US20080153719A1 - Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids - Google Patents

Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids Download PDF

Info

Publication number
US20080153719A1
US20080153719A1 US12/039,205 US3920508A US2008153719A1 US 20080153719 A1 US20080153719 A1 US 20080153719A1 US 3920508 A US3920508 A US 3920508A US 2008153719 A1 US2008153719 A1 US 2008153719A1
Authority
US
United States
Prior art keywords
fluid
ves
viscosity
breaker
gelled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/039,205
Inventor
James B. Crews
John R. Willingham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US12/039,205 priority Critical patent/US20080153719A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CREWS, JAMES B., WILLINGHAM, JOHN R.
Publication of US20080153719A1 publication Critical patent/US20080153719A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]

Definitions

  • the present invention relates to gelled treatment fluids used during hydrocarbon recovery operations, and more particularly relates, in one embodiment, to methods of “breaking” or reducing the viscosity of aqueous treatment fluids containing viscoelastic surfactant gelling agents used during hydrocarbon recovery operations.
  • Hydraulic fracturing is a method of using pump rate and hydraulic pressure to fracture or crack a subterranean formation. Once the crack or cracks are made, high permeability proppant, relative to the formation permeability, is pumped into the fracture to prop open the crack. When the applied pump rates and pressures are reduced or removed from the formation, the crack or fracture cannot close or heal completely because the high permeability proppant keeps the crack open.
  • the propped crack or fracture provides a high permeability path connecting the producing wellbore to a larger formation area to enhance the production of hydrocarbons.
  • fracturing fluids are aqueous-based liquids that have either been gelled or foamed.
  • a polymeric gelling agent such as a solvatable polysaccharide, for example guar and derivatized guar polysaccharides.
  • the thickened or gelled fluid helps keep the proppants within the fluid. Gelling can be accomplished or improved by the use of crosslinking agents or crosslinkers that promote crosslinking of the polymers together, thereby increasing the viscosity of the fluid.
  • One of the more common crosslinked polymeric fluids is borate crosslinked guar.
  • the recovery of fracturing fluids may be accomplished by reducing the viscosity of the fluid to a low value so that it may flow naturally from the formation under the influence of formation fluids.
  • Crosslinked gels generally require viscosity breakers to be injected to reduce the viscosity or “break” the gel.
  • Enzymes, oxidizers, and acids are known polymer viscosity breakers. Enzymes are effective within a pH range, typically a 2.0 to 10.0 range, with increasing activity as the pH is lowered towards neutral from a pH of 10.0.
  • Most conventional borate crosslinked fracturing fluids and breakers are designed from a fixed high crosslinked fluid pH value at ambient temperature and/or reservoir temperature.
  • Optimizing the pH for a borate crosslinked gel is important to achieve proper crosslink stability and controlled enzyme breaker activity.
  • polymers have been used in the past as gelling agents in fracturing fluids to carry or suspend solid particles as noted, such polymers require separate breaker compositions to be injected to reduce the viscosity. Further, such polymers tend to leave a coating on the proppant and a filter cake of dehydrated polymer on the fracture face even after the gelled fluid is broken. The coating and/or the filter cake may interfere with the functioning of the proppant. Studies have also shown that “fish-eyes” and/or “microgels” present in some polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage.
  • aqueous drilling and treating fluids may be gelled or have their viscosity increased by the use of non-polymeric viscoelastic surfactants (VES).
  • VES non-polymeric viscoelastic surfactants
  • These VES materials are in many cases advantageous over the use of polymer gelling agents in that they are comprised of low molecular weight surfactants rather than high molecular polymers.
  • the VES materials may leave less gel residue within the pores of oil producing formations, leave no filter cake (dehydrated polymer) on the formation face, leave a minimal amount of residual surfactant coating the proppant, and inherently do not create microgels or “fish-eyes”-type polymeric masses.
  • VES gelled fluids have relied only on “external” or “reservoir” conditions for viscosity reduction (breaking) and VES fluid removal (clean-up) during hydrocarbon production. Additionally, over the past decade it has been found that reservoir brine dilution has only a minor, if any, breaking effect of VES gel within the reservoir.
  • VES fluid viscosity reduction gel breaking or thinning
  • SPE 30114 describes how reservoir hydrocarbons reduce the viscosity of VES-gelled fluids.
  • SPE 31114 notes that when a VES-gelled fluid contacts crude or condensate reservoir hydrocarbons, the VES-gelled fluid will break, i.e. lose viscosity.
  • SPE 60322 describes how oil or gas reservoir hydrocarbons alter the worm-like micelles of a VES-gelled fluid into spherical micelle structures which results in water-like fluid viscosity.
  • SPE 82245 explains that contact of a VES-gelled fluid system with hydrocarbons causes the fluid to lose its viscosity.
  • VES breaking and clean-up takes a long time, such as several days up to possibly months
  • post-treatment clean-up fluids i.e. use of external VES breaking solutions
  • Desirable internal breakers that should be developed include breaker systems that use products that are incorporated within the VES-gelled fluid that are activated by downhole temperature that will allow a controlled rate of gel viscosity reduction over a rather short period of time of 1 to 8 hours or so, similar to gel break times common for conventional crosslinked polymeric fluid systems.
  • VES-gelled fluids are not comprised of polysaccharide polymers that are easily degraded by use of enzymes or oxidizers, but are comprised of surfactants that associate and form viscous rod- or worm-shaped micelle structures.
  • Conventional enzymes and oxidizers have not been found to act and degrade the surfactant molecules or the viscous micelle structures they form. It is still desirable, however, to provide some mechanism that relies on and uses internal phase breaker products that will help assure complete viscosity break of VES-gelled fluids.
  • viscosity breaking system could be devised to break the viscosity of fracturing and other well completion fluids gelled with and composed of viscoelastic surfactants, particularly break the viscosity completely and relatively quickly.
  • a method for controllably breaking the viscosity of aqueous fluids gelled with a viscoelastic surfactant involves adding to an aqueous fluid substantially gelled with at least one viscoelastic surfactant at least one breaker in an amount effective to reduce the viscosity of the gelled aqueous fluid at a time other than essentially instantaneously.
  • the fluid is then heated to a temperature effective to cause the breaker to reduce the viscosity of the gelled aqueous fluid.
  • the breaker may be a mineral oil, a hydrogenated polyalphaolefin oil and/or a saturated fatty acid.
  • an aqueous fluid that includes water; at least one viscoelastic surfactant (VES) in an amount effective to increase the viscosity of the aqueous fluid; and at least one breaker in an amount effective to reduce the viscosity of the gelled aqueous fluid at a time other than essentially instantaneously when the fluid is heated to an effective temperature.
  • the breaker may be a mineral oil, a hydrogenated polyalphaolefin oil and/or a saturated fatty acid.
  • FIG. 1 is a graph showing the viscosity breaking results using three different mineral oils in different proportions within a 3 vol % WG-3L VES-gelled fluid at 100° F. (38° C.) having 3 wt % KCl;
  • FIG. 2 is a graph of showing the viscosity breaking results using the three different mineral oils of FIG. 1 and a 50/50 blend of two oils thereof within fluid gelled with 3 vol % WG-3L and 2 pptg VES-STA 1 (0.24 kg/m 3 ) at 250° F. (121° C.) having 10.0 ppg CaCl 2 (1.2 kg/liter); and
  • FIG. 3 is a graph of viscosity as a function of time showing the effects of increasing numbers of shear cycles on an aqueous fluid having 4 wt % NaCl gelled with 3 vol % WG-3L and 0.5 vol % Escaid® 110 breaker at 150° F. (66° C.).
  • aqueous fluids gelled with viscoelastic surfactants are typically used in wellbore completions, such as hydraulic fracturing, without the use of an internal phase breaker system, and typically rely on external downhole conditions for the VES-gelled fluid to break, such as dilution with reservoir brine and more importantly gel breaking through interaction with reservoir hydrocarbons during production of such reservoir fluids to the surface.
  • external downhole conditions have showed instances where unbroken or poorly broken VES fluid remains within the reservoir after a VES fluid treatment and has impaired hydrocarbon production.
  • aqueous fluids gelled with viscoelastic surfactants that are known to be “broken” or have their viscosities reduced, although some of the known breaking methods utilize external clean-up fluids as part of the treatment design (such as pre- and post-flush fluids placed within the reservoir before and after well completion treatments, such as conventional gravel packing and also “frac-packing” —hydraulic fracturing followed by gravel packing treatment).
  • breaking methods utilize external clean-up fluids as part of the treatment design (such as pre- and post-flush fluids placed within the reservoir before and after well completion treatments, such as conventional gravel packing and also “frac-packing” —hydraulic fracturing followed by gravel packing treatment).
  • VES-gel breaking bacteria with fluid viscosity break times ranging from half a day up to 7 days.
  • VES-gelled fluids that can be as easy, as quick, and as economic as breaking conventional crosslinked polymer fluids, preferably using an internal breaker. At the same time, it is not desirable to reduce the viscosity of the fluid, i.e. break the gel immediately or essentially instantaneously.
  • a new method has been discovered to reduce the viscosity of aqueous fluids gelled with viscoelastic surfactants (i.e. surfactants that develop viscosity in aqueous brines, including chloride brines, by formation of rod- or worm-shaped micelle structures).
  • the improvement will allow relatively very quick breaks, such as within 1 to about 16 hours, compared to the current technology of using bacteria to break VES which takes at least 48 or more hours, and more typically 4 to 7 days.
  • the break occurs within 1 to about 8 hours; alternatively from 1 to about 4 hours, and in another non-restrictive version 1 to about 2 hours.
  • the breaker component of this invention can be added to the gel after batch mixing of a VES-gel treatment, or added on-the-fly after continuous mixing of a VES-gel treatment using a liquid additive metering system in one non-limiting embodiment, or the components can be used separately, if needed, as an external breaker solution to remove VES gelled fluids already placed downhole.
  • the mineral oils are not solubilized in the brine, since they are inherently hydrophobic, but rather interact with the VES surfactant worm-like micelle structures initially as dispersed microscopic oil droplets and thus form an oil-in-water type emulsion where the oil droplets are dispersed in the “internal phase” as a “discontinuous phase” of the brine medium/VES fluid which is the “outer phase” or “continuous phase”.
  • the method employs mineral oils as the breaking component. This is surprising because, as previously discussed, the literature teaches that contact of a VES-gelled fluid with hydrocarbons, such as those of the formation in a non-limiting example, essentially instantaneously reduces the viscosity of the gel or “breaks” the fluid. By “essentially instantaneously” is meant less than one-half hour.
  • the rate of viscosity break for a given reservoir temperature by the methods described herein is controlled by type and amount of salts within the mix water (i.e. seawater, KCl, NaBr, CaCl 2 , CaBr 2 , NH 4 Cl and the like), presence of a VES gel stabilizer (i.e.
  • a co-surfactant i.e. sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, potassium laurate, potassium oleate, sodium lauryl phosphate, and the like
  • VES type i.e. amine oxide, quaternary ammonium salt, and the like
  • VES loading the amount of mineral oil used, the distillation range of the mineral oil, its kinematic viscosity, the presence of components such as aromatic hydrocarbons, and the like.
  • the mineral oil after the aqueous fluid is substantially gelled. Addition of the mineral oil prior to substantial gelling tends to prevent the gelling or viscosity increase to occur.
  • substantially gelled is meant that at least 90% of the viscosity increase has been achieved before the mineral oil is added. Of course, it is acceptable to add the mineral oil after the gel has completely formed.
  • Mineral oil also known as liquid petrolatum
  • mineral oil is a by-product in the distillation of petroleum to produce gasoline. It is a chemically inert transparent colorless oil composed mainly of linear, branched, and cyclic alkanes (paraffins) of various molecular weights, related to white petrolatum. Mineral oil is produced in very large quantities, and is thus relatively inexpensive. Mineral oil products are typically highly refined, through distillation, hydrogenation, hydrotreating, and other refining processes, to have improved properties, and the type and amount of refining varies from product to product. Highly refined mineral oil is commonly used as a lubricant and a laxative, and with added fragrance is marketed as “baby oil” in the U.S.
  • mineral oil products are very inert and non-toxic, and are commonly used as baby oils and within face, body and hand lotions in the cosmetics industry.
  • Other names for mineral oil include, but are not necessarily limited to, paraffin oil, paraffinic oil, lubricating oil, white mineral oil, and white oil.
  • the mineral oil is at least 99 wt % paraffinic. Because of the relatively low content of aromatic compounds, mineral oil has a better environmental profile than other oils. In general, the more refined and less aromatic the mineral oil, the better.
  • the mineral oil may have a distillation temperature range from about 160 to about 550° C., alternatively have a lower limit of about 200° C. and independently an upper limit of about 480° C.; and a kinematic viscosity at 40° C. from about 1 to about 250 cSt, alternatively a lower limit of about 1.2 independently to an upper limit of about 125 cSt.
  • suitable mineral oils include, but are not necessarily limited to, Benol®, Carnation®, Kaydol®, Semtol®, Hydrobrite® and the like mineral oils available from Crompton Corporation, Escaid®, Exxsol® Isopar® and the like mineral oils available from ExxonMobil Chemical, and similar products from other mineral oil manufacturers.
  • a few non-limiting examples are specified in Table 1.
  • the Escaid 110® and Conoco LVT-200® mineral oils have been well known components of oil-based drilling muds and the oil industry has considerable experience with these products, thus making them an attractive choice.
  • the white mineral oils from Crompton Corporation with their high purity and high volume use within other industries are also an attractive choice.
  • type and amount of salt within the mix water used to prepare the VES fluid may affect the activity of a mineral oil in breaking a VES fluid at a given temperature.
  • a VES gel stabilizer such as VES-STA 1 available from Baker Oil Tools
  • FIG. 1 shows Escaid 110 at 5.0 gptg will readily break the 3 wt % KCL based VES fluid at 100° F. (38° C.) over a 5 hour period
  • Escaid® 110 may still have utility as a breaker for a 10.0 ppg CaCl 2 (21 wt % CaCl 2 ) based VES fluid at 250° F. (121° C.).
  • the VES fluid in FIG. 2 also includes a VES stabilizer (2.0 pptg VES-STA 1).
  • these gel-breaking products work by rearrangement of the VES micelle from rod-shaped or worm-shaped elongated structures to spherical structures.
  • the breaking components described herein are different than the unsaturated fatty acid or polyenoic and monoenoic components of U.S. provisional patent application No. 60/662,336.
  • these unsaturated fatty acids e.g. oleic, linoleic, linolenic, eicosapentaenoic, etc.
  • natural unsaturated hydrocarbons such as terpenes (e.g.
  • saturated fatty acids e.g. lauric acid, palmitic acid, stearic acid, etc. from plant, fish and/or animal origins
  • saturated fatty acids e.g. lauric acid, palmitic acid, stearic acid, etc. from plant, fish and/or animal origins
  • Other refinery distillates may potentially be used in addition to or alternatively to the mineral oils described herein, as may be hydrocarbon condensation products.
  • synthetic mineral oils, such as hydrogenated polyalphaolefins, and other synthetically derived saturated hydrocarbons may be of utility to practice this invention.
  • the breaking or viscosity reduction is triggered or initiated by heat.
  • These mineral oils will slowly, upon heating, break or reduce the viscosity of the VES gel with the addition of or in the absence of any other viscosity reducing agent.
  • the amount of mineral oil needed to break a VES-gelled fluid appears temperature dependent, with less needed as the fluid temperature increases.
  • the kinematic viscosity, molecular weight distribution, and amount of impurities also appear to influence the rate in which a mineral oil will break a VES-gelled fluid at a given temperature.
  • the effective amount of mineral oil ranges from about 0.1 to about 15 gptg based on the total fluid, in another non-limiting embodiment from a lower limit of about 0.5. Independently the upper limit of the range may be about 10 gptg based on the total fluid. (It will be appreciated that units of gallon per thousand gallons (gptg) are readily converted to Si units of the same value as, e.g. liters per thousand liters.)
  • Controlled viscosity reduction rates can be achieved at a temperature of from about 70° F. to about 300° F. (about 21 to about 149° C.), and alternatively at a temperature of from about 100° F. independently to an upper end of the range of about 280° F. (about 38 to about 138° C.). It has also been discovered that VES-gelled aqueous fluids containing the small amounts of mineral oils described herein are relatively shear stable and can tolerate some shear before viscosity reduction occurs. In one non-limiting embodiment, the fluid designer would craft the fluid system in such a way that the VES gel would break at or near the formation temperature after fracturing was accomplished.
  • Fluid design would be based primarily on formation temperature, i.e. the temperature the fluid will be heated to naturally in the formation once the treatment is over. Fluid design may be based on the expected cool down of the fluid during a treatment. In many cases the fracturing fluid may only experience actual reservoir temperature for 5% to 25% of the job time, and close to 50% of the fluid is never exposed to the original reservoir temperature because of the cool down of the reservoir by the initial fracturing fluid placed into the reservoir. It is because a portion of the fracturing fluid will not see or be exposed to the original reservoir temperature that a cooler temperature is selected that will represent what the fluid will probably see or contact, and thus laboratory break tests, such as those discussed below, are run at this cooler temperature. There would generally be no additional temperature the VES fluid would see other than original reservoir temperature.
  • the use of the disclosed breaker system is ideal for controlling viscosity reduction of VES based fracturing fluids.
  • the breaking system may also be used for breaking gravel pack fluids, acidizing or near-wellbore clean-up diverter fluids, and loss circulation pill fluids composed of VES.
  • the breaker system may additionally work for foamed fluid applications (hydraulic fracturing, acidizing, and the like), where N 2 or CO 2 gas is used for the gas phase.
  • This VES breaking method is a significant improvement in that it gives breaking rates for VES based fluids that the industry is accustomed to with conventional polymer based fracturing fluids, such as borate crosslinked guar.
  • this internal breaker system in combination with external downhole breaking conditions should help assure and improve hydrocarbon production compared to prior art that uses only external mechanisms to break the VES fluid for effective and complete VES fluid clean-up after a treatment.
  • compositions herein will directly degrade the gel created by a VES in an aqueous fluid, and alternatively will reduce the viscosity of the gelled aqueous fluid either directly, or by disaggregation or rearrangement of the VES micellar structure.
  • the inventors do necessarily not want to be limited to any particular mechanism.
  • the amount of mineral oil that may be effective in the invention may range from about 5 to about 25,000 ppm, based on the total amount of the fluid. In another non-restrictive version of the invention, the amount of mineral oil may range from a lower end of about 50 independently to an upper end of about 12,000 ppm.
  • any suitable mixing apparatus may be used for this procedure.
  • the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution.
  • the mineral oil should be added after the fluid is formulated or at least after the fluid is substantially gelled.
  • the VES that is useful in the present invention can be any of the VES systems that are familiar to those in the well service industry, and may include, but are not limited to, amines, amine salts, quaternary ammonium salts, amidoamine oxides, amine oxides, mixtures thereof and the like. Suitable amines, amine salts, quaternary ammonium salts, amidoamine oxides, and other surfactants are described in U.S. Pat. Nos. 5,964,295; 5,979,555; and 6,239,183, incorporated herein by reference in their entirety.
  • Viscoelastic surfactants improve the fracturing (frac) fluid performance through the use of a polymer-free system.
  • These systems compared to polymeric based fluids, can offer improved viscosity breaking, higher sand transport capability, are in many cases more easily recovered after treatment than polymers, and are relatively non-damaging to the reservoir with appropriate contact with sufficient quantity of reservoir hydrocarbons, such as crude oil and condensate.
  • the systems are also more easily mixed “on the fly” in field operations and do not require numerous co-additives in the fluid system, as do some prior systems.
  • the viscoelastic surfactants suitable for use in this invention include, but are not necessarily limited to, non-ionic, cationic, amphoteric, and zwitterionic surfactants.
  • Specific examples of zwitterionic/amphoteric surfactants include, but are not necessarily limited to, dihydroxyl alkyl glycinate, alkyl ampho acetate or propionate, alkyl betaine, alkyl amidopropyl betaine and alkylimino mono- or di-propionates derived from certain waxes, fats and oils.
  • Quaternary amine surfactants are typically cationic, and the betaines are typically zwitterionic.
  • the thickening agent may be used in conjunction with an inorganic water-soluble salt or organic additive such as phthalic acid, salicylic acid or their salts.
  • Non-ionic fluids are inherently less damaging to the producing formations than cationic fluid types, and are more efficacious per pound than anionic gelling agents.
  • Amine oxide viscoelastic surfactants have the potential to offer more gelling power per pound, making it less expensive than other fluids of this type.
  • the amine oxide gelling agents RN + (R′) 2 O ⁇ may have the following structure (I):
  • R is an alkyl or alkylamido group averaging from about 8 to 24 carbon atoms and R′ are independently alkyl groups averaging from about 1 to 6 carbon atoms.
  • R is an alkyl or alkylamido group averaging from about 8 to 16 carbon atoms and R′ are independently alkyl groups averaging from about 2 to 3 carbon atoms.
  • the amidoamine oxide gelling agent is Akzo Nobel's AROMOXO APA-T formulation, which should be understood as a dipropylamine oxide since both R′ groups are propyl.
  • CLEAR-FRACTM Materials sold under U.S. Pat. No. 5,964,295 include CLEAR-FRACTM, which may also comprise greater than 10% of a glycol.
  • VES is an amine oxide.
  • APA-T a particularly preferred amine oxide is APA-T, sold by Baker Oil Tools as SURFRAQTM VES.
  • SURFRAQ is a VES liquid product that is 50% APA-T and greater than 40% propylene glycol.
  • These viscoelastic surfactants are capable of gelling aqueous solutions to form a gelled base fluid.
  • the additives of this invention are used to prepare a VES system sold by Baker Oil Tools as DIAMONDFRAQTM. DIAMONDFRAQTM with its assured breaking technology overcomes reliance on external reservoir conditions in order to break, as compared with products such as CLEARFRACTM.
  • compositions herein also cover commonly known materials as AROMOX® APA-T manufactured by Akzo Nobel and other known viscoelastic surfactant gelling agents common to stimulation treatment of subterranean formations.
  • the amount of VES included in the fracturing fluid depends on at least two factors. One involves generating enough viscosity to control the rate of fluid leak off into the pores of the fracture, and the second involves creating a viscosity high enough to keep the proppant particles suspended therein during the fluid injecting step, in the non-limiting case of a fracturing fluid.
  • the VES is added to the aqueous fluid in concentrations ranging from about 0.5 to 25% by volume, alternatively up to about 12 vol % of the total aqueous fluid (from about 5 to 120 gptg).
  • the range for the present formulations is from about 1.0 to about 6.0% by volume VES product.
  • the amount of VES ranges from a lower limit of about 2 independently to an upper limit of about 10 volume %.
  • the breaking compositions of this invention can be used to reduce the viscosity of a VES-gelled aqueous fluid regardless of how the VES-gelled fluid is ultimately utilized.
  • the viscosity breaking compositions could be used in all VES applications including, but not limited to, VES-gelled friction reducers, VES viscosifiers for loss circulation pills, fracturing fluids (including foamed fracturing fluids), gravel pack fluids, viscosifiers used as diverters in acidizing (including foam diverters), VES viscosifiers used to clean up drilling mud filter cake, remedial clean-up of fluids after a VES treatment (post-VES treatment) in regular or foamed fluid forms (i.e. the fluids may be “energized”) with or the gas phase of foam being N 2 or CO 2 , and the like.
  • a value of the invention is that a fracturing or other fluid can be designed to have enhanced breaking characteristics. That is, fluid breaking is no longer dependant on external reservoir conditions for viscosity break and is controllable: the rate of viscosity reduction, if complete break is achieved/occurs throughout the reservoir interval, and the like. Importantly, better clean-up of the VES fluid from the fracture and wellbore can be achieved thereby. Better clean-up of the VES directly influences the success of the fracture treatment, which is an enhancement of the well's hydrocarbon productivity. VES fluid clean-up limitations and failures of the past can now be overcome or improved by the use of DiamondFRAQTM improved VES gel clean-up technology.
  • an aqueous fracturing fluid is first prepared by blending a VES into an aqueous fluid.
  • the aqueous fluid could be, for example, water, brine, aqueous-based foams or water-alcohol mixtures. Any suitable mixing apparatus may be used for this procedure.
  • the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution.
  • the breaking composition of this invention is added separately after the fluid is substantially gelled, in one non-limiting embodiment. In another non-limiting embodiment a portion or all of the breaking composition may be added prior to or simultaneously with the VES gelling agent if the breaking agent is in encapsulation form.
  • Propping agents are typically added to the base fluid after the addition of the VES.
  • Propping agents include, but are not limited to, for instance, quartz sand grains, glass and ceramic beads, bauxite grains, walnut shell fragments, aluminum pellets, nylon pellets, and the like.
  • the propping agents are normally used in concentrations between about 1 to 14 pounds per gallon (120-1700 kg/m 3 ) of fracturing fluid composition, but higher or lower concentrations can be used as the fracture design required.
  • the base fluid can also contain other conventional additives common to the well service industry such as water wetting surfactants, non-emulsifiers and the like.
  • the base fluid can also contain other non-conventional additives which can contribute to the breaking action of the VES fluid, and which are added for that purpose in one non-restrictive embodiment.
  • any or all of the above mineral oils may be provided in an extended release form such as encapsulation by polymer or otherwise, pelletization with binder compounds, absorbed or some other method of layering on a microscopic particle or porous substrate, and/or a combination thereof.
  • the mineral oils may be micro- and/or macro-encapsulated to permit slow or timed release thereof.
  • the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the mineral oils within to diffuse through slowly.
  • a mixture of fish gelatin and gum acacia encapsulation coating available from ISP Hallcrest, specifically Captivates® liquid encapsulation technology can be used to encapsulate mineral, plant, fish, synthetic and other saturated oils of this invention.
  • polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods of this invention.
  • the mineral oils could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKS10, and Na-SKS13, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S.A.), and other porous solid substrates such as MICROSPONGETM (available from Advanced Polymer Systems, Redwood, Calif.) and cationic exchange materials such as bentonite clay or placed within microscopic particles such as carbon nanotubes or buckminster fullerenes. Further, the mineral oils may be both absorbed into and onto porous or other substrates and then encapsulated or coated, as described above.
  • zeolites such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS
  • the fracturing fluid of the invention is pumped at a rate sufficient to initiate and propagate a fracture in the formation and to place propping agents into the fracture.
  • a typical fracturing treatment would be conducted by mixing a 20.0 to 60.0 gallon/1000 gal water (60.0 liters/ ⁇ 1000 liters) amine oxide VES, such as SurFRAQ, in a 2% (w/v) (166 lb/1000 gal, 19.9 kg/m 3 ) KCI solution at a pH ranging from about 6.0 to about 9.0.
  • the breaking component may be added during the VES addition or more typically after the VES addition using appropriate mixing and metering equipment, or if needed in a separate step after the fracturing operation is complete, or combinations of these procedures.
  • the method of the invention is practiced in the absence of gel-forming polymers and/or gels or aqueous fluids having their viscosities enhanced by polymers.
  • combination use with polymers and polymer breakers may also be of utility.
  • polymers may also be added to the VES fluid of this invention for fluid loss control purposes.
  • Types of polymers that may serve as fluid loss control agents are various starches, polyvinyl acetates, polylactic acid, guar and other polysaccharides, gelatins, and the like.
  • Viscosity reduction can be visually detected. Shaking the samples and comparing the elasticity of gel and rate of air bubbles rising out of the fluid can be used to estimate the amount of viscosity reduction observed. Measurements using a Grace 5500 rheometer at the indicated temperatures at 100 sec ⁇ 1 were used to acquire quantitative viscosity reduction of each sample.
  • FIG. 1 Shown in FIG. 1 are the results of using three mineral oils, Escaid® 110, Hydrobrite® 200 and Hydrobrite® 1000 at different concentrations within WG-3L viscoelastic surfactant gelled fluid at 100° F. (38° C.).
  • VES viscosity reduction was observed with addition of a small amount of these oils over a 5 hour period using 5.0 gptg Escaid® 110.
  • Viscosity reduction over a 5 hour period was achieved using 2.0 gptg Escaid® 110. Little reduction was seen in this Example for the more viscous Hydrobrite® 200 and 1000 oils. This appears to indicate that the viscosity of the mineral oil plays a major role in the rate of the viscosity break of a VES-gelled fluid.
  • Results showing the effect of using the mineral oils of Example 1 within WG-3L gelled fluid at 250° F. (121° C.), a much higher temperature, are presented in FIG. 2 .
  • the base fluid contained 10.0 ppg CaCl 2 (1.2 kg/liter) brine rather than the KCl brine, and VES-STA 1 was used at 2 pptg (0.2 kg/m 3 ); VES-STA 1 is a VES gel stability additive available from Baker Oil Tools.
  • the results shown in FIG. 2 shows how even the much thinner, lower viscosity Escaid® 110 mineral oil did not break the gel of the VES fluid upon contact or immediately once heated to 250° F. (121° C.), but rather lowered initial viscosity, with controlled viscosity reduction over time.
  • the 50/50 blend of Escaid® 110/Hydrobrite® 200 gave typical VES fluid viscosity upon heat-up with then a very controlled viscosity reduction over time and was comparable to the 5.0 gptg Escaid® test fluid after 4 to 5 hours.
  • FIG. 3 shows the effects of shear on a VES fluid containing 0.5 vol % Escaid® 110.
  • a field scale paddle tank batch mixer with centrifugal pump was used for the tests. The fluid temperature during the test was 83° F. (28° C.). The centrifugal pump circulated the fluid from the bottom to the top of the batch mixer tank at 3.0 bpm. Samples of the fluid were taken at 0, 2, 6 and 12 cycle volumes of VES-gelled fluid through the centrifugal pump and put on Grace and Brookfield pressurized rheometers for viscosity break testing at 150° F. (66° C.). Data was collected once the fluids reached 150° F. (66° C.); approximately 16 minute heat-up time. It may be seen from FIG.
  • VESs viscoelastic surfactants
  • compositions and methods are also disclosed herein for breaking VES-surfactant fluids where contact with reservoir fluids' external breaking mechanism is not required, although in some embodiments heat from the reservoir may help the breaking process.
  • Compositions and methods are additionally provided for breaking VES-surfactant fluids where the breaking additive is in a phase internal to the VES-surfactant fluid. Further, methods and VES fluid compositions are described herein for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants using readily available materials at relatively inexpensive concentrations.

Abstract

Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a breaker composition that contains at least one mineral oil, at least one polyalphaolefin oil, and/or at least one saturated fatty acid. The breaker may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. In one non-limiting embodiment, the breaker, e.g. mineral oil is added to the fluid after it has been substantially gelled. The breaking composition is believed to act possibly by rearranging, disaggregating or otherwise attacking the micellar structure of the VES-gelled fluid in a non-spontaneous, rate controlled manner at elevated fluid temperatures. In a specific, non-limiting instance, a brine fluid gelled with an amine oxide surfactant can have its viscosity broken with a light, low viscosity paraffinic mineral oil.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional from U.S. patent application Ser. No. 11/517,688, filed Sep. 8, 2006, which claims the benefit of U.S. Provisional Application No. 60/717,307 filed Sep. 15, 2005.
  • TECHNICAL FIELD
  • The present invention relates to gelled treatment fluids used during hydrocarbon recovery operations, and more particularly relates, in one embodiment, to methods of “breaking” or reducing the viscosity of aqueous treatment fluids containing viscoelastic surfactant gelling agents used during hydrocarbon recovery operations.
  • TECHNICAL BACKGROUND
  • One of the primary applications for viscosified fluids is hydraulic fracturing. Hydraulic fracturing is a method of using pump rate and hydraulic pressure to fracture or crack a subterranean formation. Once the crack or cracks are made, high permeability proppant, relative to the formation permeability, is pumped into the fracture to prop open the crack. When the applied pump rates and pressures are reduced or removed from the formation, the crack or fracture cannot close or heal completely because the high permeability proppant keeps the crack open. The propped crack or fracture provides a high permeability path connecting the producing wellbore to a larger formation area to enhance the production of hydrocarbons.
  • The development of suitable fracturing fluids is a complex art because the fluids must simultaneously meet a number of conditions. For example, they must be stable at high temperatures and/or high pump rates and shear rates that can cause the fluids to degrade and prematurely settle out the proppant before the fracturing operation is complete. Various fluids have been developed, but most commercially used fracturing fluids are aqueous-based liquids that have either been gelled or foamed. When the fluids are gelled, typically a polymeric gelling agent, such as a solvatable polysaccharide, for example guar and derivatized guar polysaccharides, is used. The thickened or gelled fluid helps keep the proppants within the fluid. Gelling can be accomplished or improved by the use of crosslinking agents or crosslinkers that promote crosslinking of the polymers together, thereby increasing the viscosity of the fluid. One of the more common crosslinked polymeric fluids is borate crosslinked guar.
  • The recovery of fracturing fluids may be accomplished by reducing the viscosity of the fluid to a low value so that it may flow naturally from the formation under the influence of formation fluids. Crosslinked gels generally require viscosity breakers to be injected to reduce the viscosity or “break” the gel. Enzymes, oxidizers, and acids are known polymer viscosity breakers. Enzymes are effective within a pH range, typically a 2.0 to 10.0 range, with increasing activity as the pH is lowered towards neutral from a pH of 10.0. Most conventional borate crosslinked fracturing fluids and breakers are designed from a fixed high crosslinked fluid pH value at ambient temperature and/or reservoir temperature.
  • Optimizing the pH for a borate crosslinked gel is important to achieve proper crosslink stability and controlled enzyme breaker activity.
  • While polymers have been used in the past as gelling agents in fracturing fluids to carry or suspend solid particles as noted, such polymers require separate breaker compositions to be injected to reduce the viscosity. Further, such polymers tend to leave a coating on the proppant and a filter cake of dehydrated polymer on the fracture face even after the gelled fluid is broken. The coating and/or the filter cake may interfere with the functioning of the proppant. Studies have also shown that “fish-eyes” and/or “microgels” present in some polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage.
  • Recently it has been discovered that aqueous drilling and treating fluids may be gelled or have their viscosity increased by the use of non-polymeric viscoelastic surfactants (VES). These VES materials are in many cases advantageous over the use of polymer gelling agents in that they are comprised of low molecular weight surfactants rather than high molecular polymers. The VES materials may leave less gel residue within the pores of oil producing formations, leave no filter cake (dehydrated polymer) on the formation face, leave a minimal amount of residual surfactant coating the proppant, and inherently do not create microgels or “fish-eyes”-type polymeric masses.
  • However, little progress has been made toward developing internal breaker systems for the non-polymeric VES-based gelled fluids. To this point, VES gelled fluids have relied only on “external” or “reservoir” conditions for viscosity reduction (breaking) and VES fluid removal (clean-up) during hydrocarbon production. Additionally, over the past decade it has been found that reservoir brine dilution has only a minor, if any, breaking effect of VES gel within the reservoir.
  • Instead, only one reservoir condition is primarily relied on for VES fluid viscosity reduction (gel breaking or thinning), and that has been the rear-ranging, disturbing, and/or disbanding of the VES worm-like micelle structure by contacting the hydrocarbons within the reservoir, more specifically contacting and mixing with crude oil and condensate hydrocarbons, as described in the aforementioned U.S. Pat. No. 5,964,295. SPE 30114 describes how reservoir hydrocarbons reduce the viscosity of VES-gelled fluids. SPE 31114 notes that when a VES-gelled fluid contacts crude or condensate reservoir hydrocarbons, the VES-gelled fluid will break, i.e. lose viscosity. SPE 60322 describes how oil or gas reservoir hydrocarbons alter the worm-like micelles of a VES-gelled fluid into spherical micelle structures which results in water-like fluid viscosity. SPE 82245 explains that contact of a VES-gelled fluid system with hydrocarbons causes the fluid to lose its viscosity.
  • However, in many gas wells and in cases of excessive displacement of crude oil hydrocarbons from the reservoir pores during a VES gel treatment, results have showed many instances where VES fluid in portions of the reservoir are not broken or are incompletely broken resulting in residual formation damage (hydrocarbon production impairment). In such cases post-treatment clean-up fluids composed of either aromatic hydrocarbons, alcohols, surfactants, mutual solvents, and/or other VES breaking additives have been pumped within the VES treated reservoir in order to try and break the VES fluid for removal. However, placement of clean-up fluids is problematic and normally only some sections of the reservoir interval are cleaned up, leaving the remaining sections with unbroken or poorly broken VES gelled fluid that impairs hydrocarbon production. Because of this phenomenon and other occasions where reliance on external factors or mechanisms has failed to clean-up the VES fluid from the reservoir during hydrocarbon production, or in cases where the external conditions are slow acting (instances where VES breaking and clean-up takes a long time, such as several days up to possibly months) to break and then produce the VES treatment fluid from the reservoir, and where post-treatment clean-up fluids (i.e. use of external VES breaking solutions) are inadequate in removing unbroken or poorly broken VES fluid from all sections of the hydrocarbon bearing portion of the reservoir, there has been an increasing and important industry need for VES fluids to have internal breakers. Desirable internal breakers that should be developed include breaker systems that use products that are incorporated within the VES-gelled fluid that are activated by downhole temperature that will allow a controlled rate of gel viscosity reduction over a rather short period of time of 1 to 8 hours or so, similar to gel break times common for conventional crosslinked polymeric fluid systems.
  • A challenge has been that VES-gelled fluids are not comprised of polysaccharide polymers that are easily degraded by use of enzymes or oxidizers, but are comprised of surfactants that associate and form viscous rod- or worm-shaped micelle structures. Conventional enzymes and oxidizers have not been found to act and degrade the surfactant molecules or the viscous micelle structures they form. It is still desirable, however, to provide some mechanism that relies on and uses internal phase breaker products that will help assure complete viscosity break of VES-gelled fluids.
  • It would be desirable if a viscosity breaking system could be devised to break the viscosity of fracturing and other well completion fluids gelled with and composed of viscoelastic surfactants, particularly break the viscosity completely and relatively quickly.
  • SUMMARY
  • There is provided, in one form, a method for controllably breaking the viscosity of aqueous fluids gelled with a viscoelastic surfactant (VES) that involves adding to an aqueous fluid substantially gelled with at least one viscoelastic surfactant at least one breaker in an amount effective to reduce the viscosity of the gelled aqueous fluid at a time other than essentially instantaneously. The fluid is then heated to a temperature effective to cause the breaker to reduce the viscosity of the gelled aqueous fluid. The breaker may be a mineral oil, a hydrogenated polyalphaolefin oil and/or a saturated fatty acid.
  • In another embodiment, there is provided an aqueous fluid that includes water; at least one viscoelastic surfactant (VES) in an amount effective to increase the viscosity of the aqueous fluid; and at least one breaker in an amount effective to reduce the viscosity of the gelled aqueous fluid at a time other than essentially instantaneously when the fluid is heated to an effective temperature. The breaker may be a mineral oil, a hydrogenated polyalphaolefin oil and/or a saturated fatty acid.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing the viscosity breaking results using three different mineral oils in different proportions within a 3 vol % WG-3L VES-gelled fluid at 100° F. (38° C.) having 3 wt % KCl;
  • FIG. 2 is a graph of showing the viscosity breaking results using the three different mineral oils of FIG. 1 and a 50/50 blend of two oils thereof within fluid gelled with 3 vol % WG-3L and 2 pptg VES-STA 1 (0.24 kg/m3) at 250° F. (121° C.) having 10.0 ppg CaCl2 (1.2 kg/liter); and
  • FIG. 3 is a graph of viscosity as a function of time showing the effects of increasing numbers of shear cycles on an aqueous fluid having 4 wt % NaCl gelled with 3 vol % WG-3L and 0.5 vol % Escaid® 110 breaker at 150° F. (66° C.).
  • DETAILED DESCRIPTION
  • As noted, aqueous fluids gelled with viscoelastic surfactants are typically used in wellbore completions, such as hydraulic fracturing, without the use of an internal phase breaker system, and typically rely on external downhole conditions for the VES-gelled fluid to break, such as dilution with reservoir brine and more importantly gel breaking through interaction with reservoir hydrocarbons during production of such reservoir fluids to the surface. However, reliance on external downhole conditions has showed instances where unbroken or poorly broken VES fluid remains within the reservoir after a VES fluid treatment and has impaired hydrocarbon production. There are aqueous fluids gelled with viscoelastic surfactants that are known to be “broken” or have their viscosities reduced, although some of the known breaking methods utilize external clean-up fluids as part of the treatment design (such as pre- and post-flush fluids placed within the reservoir before and after well completion treatments, such as conventional gravel packing and also “frac-packing” —hydraulic fracturing followed by gravel packing treatment). There are other known methods, but they are relatively slow—for instance the use of VES-gel breaking bacteria with fluid viscosity break times ranging from half a day up to 7 days. There has evolved in the stimulation fluid art an industry standard need for “quick gel break”, but for VES-gelled fluids this has been a substantially challenging problem. There needs to be a method for breaking VES-gelled fluids that can be as easy, as quick, and as economic as breaking conventional crosslinked polymer fluids, preferably using an internal breaker. At the same time, it is not desirable to reduce the viscosity of the fluid, i.e. break the gel immediately or essentially instantaneously.
  • A new method has been discovered to reduce the viscosity of aqueous fluids gelled with viscoelastic surfactants (i.e. surfactants that develop viscosity in aqueous brines, including chloride brines, by formation of rod- or worm-shaped micelle structures). The improvement will allow relatively very quick breaks, such as within 1 to about 16 hours, compared to the current technology of using bacteria to break VES which takes at least 48 or more hours, and more typically 4 to 7 days. In another non-limiting embodiment the break occurs within 1 to about 8 hours; alternatively from 1 to about 4 hours, and in another non-restrictive version 1 to about 2 hours. The breaker component of this invention can be added to the gel after batch mixing of a VES-gel treatment, or added on-the-fly after continuous mixing of a VES-gel treatment using a liquid additive metering system in one non-limiting embodiment, or the components can be used separately, if needed, as an external breaker solution to remove VES gelled fluids already placed downhole. The mineral oils are not solubilized in the brine, since they are inherently hydrophobic, but rather interact with the VES surfactant worm-like micelle structures initially as dispersed microscopic oil droplets and thus form an oil-in-water type emulsion where the oil droplets are dispersed in the “internal phase” as a “discontinuous phase” of the brine medium/VES fluid which is the “outer phase” or “continuous phase”.
  • Surprisingly and unexpectedly the method employs mineral oils as the breaking component. This is surprising because, as previously discussed, the literature teaches that contact of a VES-gelled fluid with hydrocarbons, such as those of the formation in a non-limiting example, essentially instantaneously reduces the viscosity of the gel or “breaks” the fluid. By “essentially instantaneously” is meant less than one-half hour. The rate of viscosity break for a given reservoir temperature by the methods described herein is controlled by type and amount of salts within the mix water (i.e. seawater, KCl, NaBr, CaCl2, CaBr2, NH4Cl and the like), presence of a VES gel stabilizer (i.e. MgO, ZnO and the like), presence of a co-surfactant (i.e. sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, potassium laurate, potassium oleate, sodium lauryl phosphate, and the like), VES type (i.e. amine oxide, quaternary ammonium salt, and the like), VES loading, the amount of mineral oil used, the distillation range of the mineral oil, its kinematic viscosity, the presence of components such as aromatic hydrocarbons, and the like.
  • It is important in most non-limiting embodiments of the invention to add the mineral oil after the aqueous fluid is substantially gelled. Addition of the mineral oil prior to substantial gelling tends to prevent the gelling or viscosity increase to occur. By “substantially gelled” is meant that at least 90% of the viscosity increase has been achieved before the mineral oil is added. Of course, it is acceptable to add the mineral oil after the gel has completely formed.
  • Mineral oil (also known as liquid petrolatum) is a by-product in the distillation of petroleum to produce gasoline. It is a chemically inert transparent colorless oil composed mainly of linear, branched, and cyclic alkanes (paraffins) of various molecular weights, related to white petrolatum. Mineral oil is produced in very large quantities, and is thus relatively inexpensive. Mineral oil products are typically highly refined, through distillation, hydrogenation, hydrotreating, and other refining processes, to have improved properties, and the type and amount of refining varies from product to product. Highly refined mineral oil is commonly used as a lubricant and a laxative, and with added fragrance is marketed as “baby oil” in the U.S. Most mineral oil products are very inert and non-toxic, and are commonly used as baby oils and within face, body and hand lotions in the cosmetics industry. Other names for mineral oil include, but are not necessarily limited to, paraffin oil, paraffinic oil, lubricating oil, white mineral oil, and white oil.
  • In one non-limiting embodiment the mineral oil is at least 99 wt % paraffinic. Because of the relatively low content of aromatic compounds, mineral oil has a better environmental profile than other oils. In general, the more refined and less aromatic the mineral oil, the better. In another non-restrictive version, the mineral oil may have a distillation temperature range from about 160 to about 550° C., alternatively have a lower limit of about 200° C. and independently an upper limit of about 480° C.; and a kinematic viscosity at 40° C. from about 1 to about 250 cSt, alternatively a lower limit of about 1.2 independently to an upper limit of about 125 cSt. Specific examples of suitable mineral oils include, but are not necessarily limited to, Benol®, Carnation®, Kaydol®, Semtol®, Hydrobrite® and the like mineral oils available from Crompton Corporation, Escaid®, Exxsol® Isopar® and the like mineral oils available from ExxonMobil Chemical, and similar products from other mineral oil manufacturers. A few non-limiting examples are specified in Table 1. The Escaid 110® and Conoco LVT-200® mineral oils have been well known components of oil-based drilling muds and the oil industry has considerable experience with these products, thus making them an attractive choice. The white mineral oils from Crompton Corporation with their high purity and high volume use within other industries are also an attractive choice.
  • TABLE 1
    Properties of Various Mineral Oils
    Escaid Exxsol Hydrobrite Hydrobrite
    Properties
    110 D110 Isopar V Benol 200 1000
    Specific Gravity 0.790-0.810 0.780-0.830 0.810-0.830 0.839-0.855 0.845-0.885 0.860-0.885
    Viscosity @ 40° C. 1.3-1.9 18.0-20.0 39.5-46.0 180.0-240.0
    Flash Point (° C.) 77.0 105 118 186 288
    Pour Point (° C.) −21.0 −9.0 −6.0
    Distillation Range
    IBP (° C.) 200 237 263
    Max DP (° C.) 248 277 329
    GC Distillation >380 >407
    5% (° C.)
    Molecular Wt. >480
    Aromatic Content <0.5% <1.0% <0.5%
    Note:
    Escaid, Exxsol and Isopar are trademarks of ExxonMobil Corporation. Benol and Hydrobrite are trademarks of Crompton Corporation.
  • It has been discovered in breaking VES-gelled fluids prepared in monovalent brines (such as 3% KCI brine) that at temperatures below about 180° F. (82° C.) Escaid® 110 works well in breaking VES-gelled fluids, and that at or above about 140° F. (60° C.) Hydrobrite® 200 works well. The use of mineral oils herein is safe, simple and economical. In some cases for reservoir temperatures between about 120° to about 240° F. (about 49° to about 116° C.) a select ratio of two or more mineral oil products, such as 50 wt % Escaido 110 to 50 wt % Hydrobrite® 200 may be used to achieve controlled, fast and complete break of a VES-gelled fluid.
  • It has also been discovered that type and amount of salt within the mix water used to prepare the VES fluid (such as 3 wt % KCl, 21 wt % CaCl2, use of natural seawater, and so on) and/or the presence of a VES gel stabilizer (such as VES-STA 1 available from Baker Oil Tools) may affect the activity of a mineral oil in breaking a VES fluid at a given temperature. For example, FIG. 1 shows Escaid 110 at 5.0 gptg will readily break the 3 wt % KCL based VES fluid at 100° F. (38° C.) over a 5 hour period, and FIG. 2 shows Escaid® 110 may still have utility as a breaker for a 10.0 ppg CaCl2 (21 wt % CaCl2) based VES fluid at 250° F. (121° C.). The VES fluid in FIG. 2 also includes a VES stabilizer (2.0 pptg VES-STA 1).
  • In one non-limiting embodiment these gel-breaking products work by rearrangement of the VES micelle from rod-shaped or worm-shaped elongated structures to spherical structures. The breaking components described herein are different than the unsaturated fatty acid or polyenoic and monoenoic components of U.S. provisional patent application No. 60/662,336. In one non-limiting embodiment these unsaturated fatty acids (e.g. oleic, linoleic, linolenic, eicosapentaenoic, etc.) may possibly be used together with the mineral oils herein. In another non-limiting embodiment, natural unsaturated hydrocarbons such as terpenes (e.g. pinene, d-limonene, etc.), saturated fatty acids (e.g. lauric acid, palmitic acid, stearic acid, etc. from plant, fish and/or animal origins) and the like may possibly be used together with or alternatively to the mineral oils herein. Other refinery distillates may potentially be used in addition to or alternatively to the mineral oils described herein, as may be hydrocarbon condensation products. Additionally, synthetic mineral oils, such as hydrogenated polyalphaolefins, and other synthetically derived saturated hydrocarbons may be of utility to practice this invention.
  • The breaking or viscosity reduction is triggered or initiated by heat. These mineral oils will slowly, upon heating, break or reduce the viscosity of the VES gel with the addition of or in the absence of any other viscosity reducing agent. The amount of mineral oil needed to break a VES-gelled fluid appears temperature dependent, with less needed as the fluid temperature increases. The kinematic viscosity, molecular weight distribution, and amount of impurities (such as aromatics, olefins, and the like) also appear to influence the rate in which a mineral oil will break a VES-gelled fluid at a given temperature. Once a fluid is completely broken at an elevated temperature a degree of viscosity reheal may occur but in most cases no rehealing is expected because, as noted, it is difficult or impossible to create a gelled fluid in the presence of mineral oil in the first place. The effective amount of mineral oil ranges from about 0.1 to about 15 gptg based on the total fluid, in another non-limiting embodiment from a lower limit of about 0.5. Independently the upper limit of the range may be about 10 gptg based on the total fluid. (It will be appreciated that units of gallon per thousand gallons (gptg) are readily converted to Si units of the same value as, e.g. liters per thousand liters.)
  • Controlled viscosity reduction rates can be achieved at a temperature of from about 70° F. to about 300° F. (about 21 to about 149° C.), and alternatively at a temperature of from about 100° F. independently to an upper end of the range of about 280° F. (about 38 to about 138° C.). It has also been discovered that VES-gelled aqueous fluids containing the small amounts of mineral oils described herein are relatively shear stable and can tolerate some shear before viscosity reduction occurs. In one non-limiting embodiment, the fluid designer would craft the fluid system in such a way that the VES gel would break at or near the formation temperature after fracturing was accomplished.
  • Fluid design would be based primarily on formation temperature, i.e. the temperature the fluid will be heated to naturally in the formation once the treatment is over. Fluid design may be based on the expected cool down of the fluid during a treatment. In many cases the fracturing fluid may only experience actual reservoir temperature for 5% to 25% of the job time, and close to 50% of the fluid is never exposed to the original reservoir temperature because of the cool down of the reservoir by the initial fracturing fluid placed into the reservoir. It is because a portion of the fracturing fluid will not see or be exposed to the original reservoir temperature that a cooler temperature is selected that will represent what the fluid will probably see or contact, and thus laboratory break tests, such as those discussed below, are run at this cooler temperature. There would generally be no additional temperature the VES fluid would see other than original reservoir temperature.
  • The use of the disclosed breaker system is ideal for controlling viscosity reduction of VES based fracturing fluids. The breaking system may also be used for breaking gravel pack fluids, acidizing or near-wellbore clean-up diverter fluids, and loss circulation pill fluids composed of VES. The breaker system may additionally work for foamed fluid applications (hydraulic fracturing, acidizing, and the like), where N2 or CO2 gas is used for the gas phase. This VES breaking method is a significant improvement in that it gives breaking rates for VES based fluids that the industry is accustomed to with conventional polymer based fracturing fluids, such as borate crosslinked guar. Potentially more importantly, the use of this internal breaker system in combination with external downhole breaking conditions should help assure and improve hydrocarbon production compared to prior art that uses only external mechanisms to break the VES fluid for effective and complete VES fluid clean-up after a treatment.
  • In one non-limiting embodiment of the invention, the compositions herein will directly degrade the gel created by a VES in an aqueous fluid, and alternatively will reduce the viscosity of the gelled aqueous fluid either directly, or by disaggregation or rearrangement of the VES micellar structure. However, the inventors do necessarily not want to be limited to any particular mechanism.
  • It is sometimes difficult to specify with accuracy in advance the amount of the various breaking components that should be added to a particular aqueous fluid gelled with viscoelastic surfactants to sufficiently or fully break the gel, in general. For instance, a number of factors affect this proportion, including but not necessarily limited to, the particular VES used to gel the fluid; the particular mineral oil used; the temperature of the fluid; the downhole pressure of the fluid, the starting pH of the fluid; and the complex interaction of these various factors. Nevertheless, in order to give an approximate feel for the proportions of the various breaking components to be used in the method of the invention, approximate ranges will be provided. In an alternative, non-limiting embodiment the amount of mineral oil that may be effective in the invention may range from about 5 to about 25,000 ppm, based on the total amount of the fluid. In another non-restrictive version of the invention, the amount of mineral oil may range from a lower end of about 50 independently to an upper end of about 12,000 ppm.
  • Any suitable mixing apparatus may be used for this procedure. In the case of batch mixing, the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution. The mineral oil should be added after the fluid is formulated or at least after the fluid is substantially gelled. The VES that is useful in the present invention can be any of the VES systems that are familiar to those in the well service industry, and may include, but are not limited to, amines, amine salts, quaternary ammonium salts, amidoamine oxides, amine oxides, mixtures thereof and the like. Suitable amines, amine salts, quaternary ammonium salts, amidoamine oxides, and other surfactants are described in U.S. Pat. Nos. 5,964,295; 5,979,555; and 6,239,183, incorporated herein by reference in their entirety.
  • Viscoelastic surfactants improve the fracturing (frac) fluid performance through the use of a polymer-free system. These systems, compared to polymeric based fluids, can offer improved viscosity breaking, higher sand transport capability, are in many cases more easily recovered after treatment than polymers, and are relatively non-damaging to the reservoir with appropriate contact with sufficient quantity of reservoir hydrocarbons, such as crude oil and condensate. The systems are also more easily mixed “on the fly” in field operations and do not require numerous co-additives in the fluid system, as do some prior systems.
  • The viscoelastic surfactants suitable for use in this invention include, but are not necessarily limited to, non-ionic, cationic, amphoteric, and zwitterionic surfactants. Specific examples of zwitterionic/amphoteric surfactants include, but are not necessarily limited to, dihydroxyl alkyl glycinate, alkyl ampho acetate or propionate, alkyl betaine, alkyl amidopropyl betaine and alkylimino mono- or di-propionates derived from certain waxes, fats and oils. Quaternary amine surfactants are typically cationic, and the betaines are typically zwitterionic. The thickening agent may be used in conjunction with an inorganic water-soluble salt or organic additive such as phthalic acid, salicylic acid or their salts.
  • Some non-ionic fluids are inherently less damaging to the producing formations than cationic fluid types, and are more efficacious per pound than anionic gelling agents. Amine oxide viscoelastic surfactants have the potential to offer more gelling power per pound, making it less expensive than other fluids of this type.
  • The amine oxide gelling agents RN+(R′)2 O may have the following structure (I):
  • Figure US20080153719A1-20080626-C00001
  • where R is an alkyl or alkylamido group averaging from about 8 to 24 carbon atoms and R′ are independently alkyl groups averaging from about 1 to 6 carbon atoms. In one non-limiting embodiment, R is an alkyl or alkylamido group averaging from about 8 to 16 carbon atoms and R′ are independently alkyl groups averaging from about 2 to 3 carbon atoms. In an alternate, non-restrictive embodiment, the amidoamine oxide gelling agent is Akzo Nobel's AROMOXO APA-T formulation, which should be understood as a dipropylamine oxide since both R′ groups are propyl.
  • Materials sold under U.S. Pat. No. 5,964,295 include CLEAR-FRAC™, which may also comprise greater than 10% of a glycol. One preferred VES is an amine oxide. As noted, a particularly preferred amine oxide is APA-T, sold by Baker Oil Tools as SURFRAQ™ VES. SURFRAQ is a VES liquid product that is 50% APA-T and greater than 40% propylene glycol. These viscoelastic surfactants are capable of gelling aqueous solutions to form a gelled base fluid. The additives of this invention are used to prepare a VES system sold by Baker Oil Tools as DIAMONDFRAQ™. DIAMONDFRAQ™ with its assured breaking technology overcomes reliance on external reservoir conditions in order to break, as compared with products such as CLEARFRAC™.
  • The methods and compositions herein also cover commonly known materials as AROMOX® APA-T manufactured by Akzo Nobel and other known viscoelastic surfactant gelling agents common to stimulation treatment of subterranean formations.
  • The amount of VES included in the fracturing fluid depends on at least two factors. One involves generating enough viscosity to control the rate of fluid leak off into the pores of the fracture, and the second involves creating a viscosity high enough to keep the proppant particles suspended therein during the fluid injecting step, in the non-limiting case of a fracturing fluid. Thus, depending on the application, the VES is added to the aqueous fluid in concentrations ranging from about 0.5 to 25% by volume, alternatively up to about 12 vol % of the total aqueous fluid (from about 5 to 120 gptg). In another non-limiting embodiment, the range for the present formulations is from about 1.0 to about 6.0% by volume VES product. In an alternate, non-restrictive form of the invention, the amount of VES ranges from a lower limit of about 2 independently to an upper limit of about 10 volume %.
  • It is expected that the breaking compositions of this invention can be used to reduce the viscosity of a VES-gelled aqueous fluid regardless of how the VES-gelled fluid is ultimately utilized. For instance, the viscosity breaking compositions could be used in all VES applications including, but not limited to, VES-gelled friction reducers, VES viscosifiers for loss circulation pills, fracturing fluids (including foamed fracturing fluids), gravel pack fluids, viscosifiers used as diverters in acidizing (including foam diverters), VES viscosifiers used to clean up drilling mud filter cake, remedial clean-up of fluids after a VES treatment (post-VES treatment) in regular or foamed fluid forms (i.e. the fluids may be “energized”) with or the gas phase of foam being N2 or CO2, and the like.
  • A value of the invention is that a fracturing or other fluid can be designed to have enhanced breaking characteristics. That is, fluid breaking is no longer dependant on external reservoir conditions for viscosity break and is controllable: the rate of viscosity reduction, if complete break is achieved/occurs throughout the reservoir interval, and the like. Importantly, better clean-up of the VES fluid from the fracture and wellbore can be achieved thereby. Better clean-up of the VES directly influences the success of the fracture treatment, which is an enhancement of the well's hydrocarbon productivity. VES fluid clean-up limitations and failures of the past can now be overcome or improved by the use of DiamondFRAQ™ improved VES gel clean-up technology.
  • In order to practice the method of the invention, an aqueous fracturing fluid, as a non-limiting example, is first prepared by blending a VES into an aqueous fluid. The aqueous fluid could be, for example, water, brine, aqueous-based foams or water-alcohol mixtures. Any suitable mixing apparatus may be used for this procedure. In the case of batch mixing, the VES and the aqueous fluid are blended for a period of time sufficient to form a gelled or viscosified solution. As noted, the breaking composition of this invention is added separately after the fluid is substantially gelled, in one non-limiting embodiment. In another non-limiting embodiment a portion or all of the breaking composition may be added prior to or simultaneously with the VES gelling agent if the breaking agent is in encapsulation form.
  • Propping agents are typically added to the base fluid after the addition of the VES. Propping agents include, but are not limited to, for instance, quartz sand grains, glass and ceramic beads, bauxite grains, walnut shell fragments, aluminum pellets, nylon pellets, and the like. The propping agents are normally used in concentrations between about 1 to 14 pounds per gallon (120-1700 kg/m3) of fracturing fluid composition, but higher or lower concentrations can be used as the fracture design required. The base fluid can also contain other conventional additives common to the well service industry such as water wetting surfactants, non-emulsifiers and the like. As noted herein, the base fluid can also contain other non-conventional additives which can contribute to the breaking action of the VES fluid, and which are added for that purpose in one non-restrictive embodiment.
  • Any or all of the above mineral oils may be provided in an extended release form such as encapsulation by polymer or otherwise, pelletization with binder compounds, absorbed or some other method of layering on a microscopic particle or porous substrate, and/or a combination thereof. Specifically, the mineral oils may be micro- and/or macro-encapsulated to permit slow or timed release thereof. In non-limiting examples, the coating material may slowly dissolve or be removed by any conventional mechanism, or the coating could have very small holes or perforations therein for the mineral oils within to diffuse through slowly. For instance, a mixture of fish gelatin and gum acacia encapsulation coating available from ISP Hallcrest, specifically Captivates® liquid encapsulation technology, can be used to encapsulate mineral, plant, fish, synthetic and other saturated oils of this invention. Also, polymer encapsulation coatings such as used in fertilizer technology available from Scotts Company, specifically POLY-S® product coating technology, or polymer encapsulation coating technology from Fritz Industries could possibly be adapted to the methods of this invention. The mineral oils could also be absorbed onto zeolites, such as Zeolite A, Zeolite 13X, Zeolite DB-2 (available from PQ Corporation, Valley Forge, Pa.) or Zeolites Na-SKS5, Na-SKS6, Na-SKS7, Na-SKS9, Na-SKS10, and Na-SKS13, (available from Hoechst Aktiengesellschaft, now an affiliate of Aventis S.A.), and other porous solid substrates such as MICROSPONGE™ (available from Advanced Polymer Systems, Redwood, Calif.) and cationic exchange materials such as bentonite clay or placed within microscopic particles such as carbon nanotubes or buckminster fullerenes. Further, the mineral oils may be both absorbed into and onto porous or other substrates and then encapsulated or coated, as described above.
  • In a typical fracturing operation, the fracturing fluid of the invention is pumped at a rate sufficient to initiate and propagate a fracture in the formation and to place propping agents into the fracture. A typical fracturing treatment would be conducted by mixing a 20.0 to 60.0 gallon/1000 gal water (60.0 liters/−1000 liters) amine oxide VES, such as SurFRAQ, in a 2% (w/v) (166 lb/1000 gal, 19.9 kg/m3) KCI solution at a pH ranging from about 6.0 to about 9.0. The breaking component may be added during the VES addition or more typically after the VES addition using appropriate mixing and metering equipment, or if needed in a separate step after the fracturing operation is complete, or combinations of these procedures.
  • In one embodiment of the invention, the method of the invention is practiced in the absence of gel-forming polymers and/or gels or aqueous fluids having their viscosities enhanced by polymers. However, combination use with polymers and polymer breakers may also be of utility. For instance, polymers may also be added to the VES fluid of this invention for fluid loss control purposes. Types of polymers that may serve as fluid loss control agents are various starches, polyvinyl acetates, polylactic acid, guar and other polysaccharides, gelatins, and the like.
  • The present invention will be explained in further detail in the following non-limiting Examples that are only designed to additionally illustrate the invention but not narrow the scope thereof.
  • GENERAL PROCEDURE FOR EXAMPLES 1 and 2
  • To a blender were added tap water, 3 wt % KCl, followed by 3 vol % viscoelastic surfactant (WG-3L-Aromox® APA-T available from Akzo Nobel). The blender was used to mix the components on a very slow speed, to prevent foaming, for about 30 minutes to viscosify the VES fluid. Mixed samples were then placed into plastic bottles. Various components singly or together, in various concentrations, were then added to each sample, and the sample was shaken vigorously for 60 seconds. The samples were placed in a water bath at the indicated temperature and visually observed every 30 minutes for viscosity reduction difference between the samples. Since a goal of the research was to find a relatively rapid gel breaking composition, samples were only observed for 5 hours or less.
  • Viscosity reduction can be visually detected. Shaking the samples and comparing the elasticity of gel and rate of air bubbles rising out of the fluid can be used to estimate the amount of viscosity reduction observed. Measurements using a Grace 5500 rheometer at the indicated temperatures at 100 sec−1 were used to acquire quantitative viscosity reduction of each sample.
  • Example 1
  • Shown in FIG. 1 are the results of using three mineral oils, Escaid® 110, Hydrobrite® 200 and Hydrobrite® 1000 at different concentrations within WG-3L viscoelastic surfactant gelled fluid at 100° F. (38° C.). Surprisingly and unexpectedly complete VES viscosity reduction was observed with addition of a small amount of these oils over a 5 hour period using 5.0 gptg Escaid® 110. Viscosity reduction over a 5 hour period was achieved using 2.0 gptg Escaid® 110. Little reduction was seen in this Example for the more viscous Hydrobrite® 200 and 1000 oils. This appears to indicate that the viscosity of the mineral oil plays a major role in the rate of the viscosity break of a VES-gelled fluid.
  • The results show an easy, efficient, and highly cost effective method for breaking VES gel viscosity.
  • Example 2
  • Results showing the effect of using the mineral oils of Example 1 within WG-3L gelled fluid at 250° F. (121° C.), a much higher temperature, are presented in FIG. 2. Here the base fluid contained 10.0 ppg CaCl2 (1.2 kg/liter) brine rather than the KCl brine, and VES-STA 1 was used at 2 pptg (0.2 kg/m3); VES-STA 1 is a VES gel stability additive available from Baker Oil Tools. The results shown in FIG. 2 shows how even the much thinner, lower viscosity Escaid® 110 mineral oil did not break the gel of the VES fluid upon contact or immediately once heated to 250° F. (121° C.), but rather lowered initial viscosity, with controlled viscosity reduction over time. Additionally, the 50/50 blend of Escaid® 110/Hydrobrite® 200 gave typical VES fluid viscosity upon heat-up with then a very controlled viscosity reduction over time and was comparable to the 5.0 gptg Escaid® test fluid after 4 to 5 hours.
  • Example 3
  • FIG. 3 shows the effects of shear on a VES fluid containing 0.5 vol % Escaid® 110. A field scale paddle tank batch mixer with centrifugal pump was used for the tests. The fluid temperature during the test was 83° F. (28° C.). The centrifugal pump circulated the fluid from the bottom to the top of the batch mixer tank at 3.0 bpm. Samples of the fluid were taken at 0, 2, 6 and 12 cycle volumes of VES-gelled fluid through the centrifugal pump and put on Grace and Brookfield pressurized rheometers for viscosity break testing at 150° F. (66° C.). Data was collected once the fluids reached 150° F. (66° C.); approximately 16 minute heat-up time. It may be seen from FIG. 3 that the viscosity of the fluid decreased only gradually with increasing number of shear cycles, and thus fluids containing mineral oils as internal breakers are sufficiently shear stable to accomplish the purpose of the fluid (e.g. fracturing a formation) before viscosity is reduced.
  • As can be seen, the method of gel breaking described herein is simple, effective, safe, and highly cost-effective. A method is provided for breaking the viscosity of aqueous treatment fluids gelled with viscoelastic surfactants (VESs). Compositions and methods are also furnished herein for breaking VES-surfactant fluids controllably, completely and relatively quickly.
  • Compositions and methods are also disclosed herein for breaking VES-surfactant fluids where contact with reservoir fluids' external breaking mechanism is not required, although in some embodiments heat from the reservoir may help the breaking process. Compositions and methods are additionally provided for breaking VES-surfactant fluids where the breaking additive is in a phase internal to the VES-surfactant fluid. Further, methods and VES fluid compositions are described herein for breaking the viscosity of aqueous fluids gelled with viscoelastic surfactants using readily available materials at relatively inexpensive concentrations.
  • In the foregoing specification, the invention has been described with reference to specific embodiments thereof, and has been demonstrated as effective in providing methods and compositions for a VES fracturing fluid breaker mechanism. However, it will be evident that various modifications and changes can be made thereto without departing from the broader spirit or scope of the invention as set forth in the appended claims. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific combinations of viscoelastic surfactants, mineral oils, and other components falling within the claimed parameters, but not specifically identified or tried in a particular composition or fluid, are anticipated to be within the scope of this invention.

Claims (9)

1. An aqueous fluid comprising:
water;
at least one viscoelastic surfactant (VES) in an amount effective to increase the viscosity of the aqueous fluid; and
at least one breaker present in an oil-soluble internal phase of the aqueous fluid in an amount effective to reduce the viscosity of the gelled aqueous fluid at a time other than essentially instantaneously when the fluid is heated to an effective temperature, where the breaker is added to the fluid after the fluid is substantially gelled, and where the breaker is selected from the group consisting of mineral oils, hydrogenated polyalphaolefin oils, saturated fatty acids and combinations thereof.
2. The aqueous fluid of claim 1 where the breaker is a mineral oil and is at least about 99 wt % paraffin.
3. The aqueous fluid of claim 1 where the breaker is a mineral oil and has a distillation temperature in the range from about 160 to about 550° C., and a kinematic viscosity at 40° C. of from about 1 to about 250 cSt.
4. The aqueous fluid of claim 1 where the effective temperature ranges from about 70 to about 300° F. (about 21 to about 149° C.).
5. The aqueous fluid of claim 1 where the breaker is a mineral oil and effective amount of the mineral oil ranges from about 0.1 to about 15 gptg based on the total fluid.
6. The aqueous fluid of claim 1 where the only viscosity reducing agent is the breaker.
7. An aqueous fluid comprising:
water;
at least one viscoelastic surfactant (VES) in an amount effective to increase the viscosity of the aqueous fluid; and
from about 0.1 to about 15 gptg based on the total fluid of a mineral oil breaker present in an oil-soluble internal phase of the aqueous fluid effective to reduce the viscosity of the gelled aqueous fluid at a time other than essentially instantaneously when the fluid is heated to a temperature ranging from about 70 to about 300° F. (about 21 to about 149° C.), where the breaker is added to the fluid after the fluid is substantially gelled, where the mineral oil is at least about 99 wt % paraffin.
8. The aqueous fluid of claim 7 where the breaker is a mineral oil and has a distillation temperature in the range from about 160 to about 550° C., and a kinematic viscosity at 40° C. of from about 1 to about 250 cSt.
9. The aqueous fluid of claim 7 where the only viscosity reducing agent is the breaker.
US12/039,205 2005-09-15 2008-02-28 Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids Abandoned US20080153719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/039,205 US20080153719A1 (en) 2005-09-15 2008-02-28 Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US71730705P 2005-09-15 2005-09-15
US11/517,688 US7347266B2 (en) 2005-09-15 2006-09-08 Use of mineral oils, hydrogenated polyalphaolefin oils and saturated fatty acids for breaking ves-gelled fluids
US12/039,205 US20080153719A1 (en) 2005-09-15 2008-02-28 Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/517,688 Division US7347266B2 (en) 2005-03-16 2006-09-08 Use of mineral oils, hydrogenated polyalphaolefin oils and saturated fatty acids for breaking ves-gelled fluids

Publications (1)

Publication Number Publication Date
US20080153719A1 true US20080153719A1 (en) 2008-06-26

Family

ID=37853901

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/517,688 Active US7347266B2 (en) 2005-03-16 2006-09-08 Use of mineral oils, hydrogenated polyalphaolefin oils and saturated fatty acids for breaking ves-gelled fluids
US12/039,205 Abandoned US20080153719A1 (en) 2005-09-15 2008-02-28 Use of Mineral Oils, Hydrogenated Polyalphaolefin Oils and Saturated Fatty Acids for Breaking VES-Gelled Fluids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/517,688 Active US7347266B2 (en) 2005-03-16 2006-09-08 Use of mineral oils, hydrogenated polyalphaolefin oils and saturated fatty acids for breaking ves-gelled fluids

Country Status (1)

Country Link
US (2) US7347266B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677311B2 (en) * 2002-08-26 2010-03-16 Schlumberger Technology Corporation Internal breaker for oilfield treatments
US9029299B2 (en) * 2004-05-13 2015-05-12 Baker Hughes Incorporated Methods and compositions for delayed release of chemicals and particles
US8499832B2 (en) * 2004-05-13 2013-08-06 Baker Hughes Incorporated Re-use of surfactant-containing fluids
US7723272B2 (en) 2007-02-26 2010-05-25 Baker Hughes Incorporated Methods and compositions for fracturing subterranean formations
US8567502B2 (en) * 2004-05-13 2013-10-29 Baker Hughes Incorporated Filtration of dangerous or undesirable contaminants
US8226830B2 (en) 2008-04-29 2012-07-24 Baker Hughes Incorporated Wastewater purification with nanoparticle-treated bed
US7703531B2 (en) * 2004-05-13 2010-04-27 Baker Hughes Incorporated Multifunctional nanoparticles for downhole formation treatments
US7550413B2 (en) * 2004-05-13 2009-06-23 Baker Hughes Incorporated Fluid loss control agents for viscoelastic surfactant fluids
US8196659B2 (en) * 2004-05-13 2012-06-12 Baker Hughes Incorporated Multifunctional particles for downhole formation treatments
US7696135B2 (en) * 2005-03-16 2010-04-13 Baker Hughes Incorporated Use of oil-soluble surfactants as breaker enhancers for VES-gelled fluids
US7696134B2 (en) * 2005-03-16 2010-04-13 Baker Hughes Incorporated Unsaturated fatty acids and mineral oils as internal breakers for VES-gelled fluids
US8921285B2 (en) 2005-09-15 2014-12-30 Baker Hughes Incorporated Particles slurried in oil for viscoelastic surfactant gelled fluids
US7615517B2 (en) * 2005-09-15 2009-11-10 Baker Hughes Incorporated Use of mineral oils to reduce fluid loss for viscoelastic surfactant gelled fluids
US7967068B2 (en) * 2005-09-15 2011-06-28 Baker Hughes Incorporated Particles in oil for viscoelastic surfactant gelled fluids
US20070154597A1 (en) * 2006-01-05 2007-07-05 Donaldson Richmond Food product with enhanced flavor and moistness and method of making the same
US8114820B2 (en) 2006-06-22 2012-02-14 Baker Hughes Incorporated Compositions and methods for controlling fluid loss
US7287590B1 (en) 2006-09-18 2007-10-30 Schlumberger Technology Corporation Internal breaker for oilfield fluids
US8067342B2 (en) * 2006-09-18 2011-11-29 Schlumberger Technology Corporation Internal breakers for viscoelastic surfactant fluids
US7635028B2 (en) * 2006-09-18 2009-12-22 Schlumberger Technology Corporation Acidic internal breaker for viscoelastic surfactant fluids in brine
US8481462B2 (en) 2006-09-18 2013-07-09 Schlumberger Technology Corporation Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids
US7544643B2 (en) * 2006-12-07 2009-06-09 Baker Hughes Incorporated Viscosity enhancers for viscoelastic surfactant stimulation fluids
US7992640B2 (en) * 2007-01-23 2011-08-09 Baker Hughes Incorporated Organic acid treating fluids with viscoelastic surfactants and internal breakers
US7942215B2 (en) * 2007-01-23 2011-05-17 Baker Hughes Incorporated Drilling fluids for oil and gas reservoirs with high carbonate contents
US8544565B2 (en) 2007-01-23 2013-10-01 Baker Hughes Incorporated Lost circulation control fluids for naturally fractured carbonate formations
US7875575B2 (en) * 2007-04-09 2011-01-25 Baker Hughes Incorporated Compositions and methods for water and gas shut-off in subterranean wells with VES fluids
US8616284B2 (en) 2007-03-21 2013-12-31 Baker Hughes Incorporated Methods for removing residual polymer from a hydraulic fracture
US8056630B2 (en) * 2007-03-21 2011-11-15 Baker Hughes Incorporated Methods of using viscoelastic surfactant gelled fluids to pre-saturate underground formations
US20080271888A1 (en) * 2007-04-09 2008-11-06 Baker Hughes Incorporated Methods of Using Viscoelastic Surfactant Gelled Fluids to Pre-Saturate Underground Formations
US7527103B2 (en) * 2007-05-29 2009-05-05 Baker Hughes Incorporated Procedures and compositions for reservoir protection
US20110017457A1 (en) * 2009-07-21 2011-01-27 Samuel Mathew M Environmental compositions and methods for well treatment
US8413745B2 (en) * 2009-08-11 2013-04-09 Baker Hughes Incorporated Water-based mud lubricant using fatty acid polyamine salts and fatty acid esters
ES2730948T3 (en) * 2010-12-03 2019-11-13 3G Mermet Corp Near infrared reflective composition and covers for architectural openings that incorporate it
US8778852B2 (en) 2012-01-24 2014-07-15 Baker Hughes Incorporated Breaking viscoelastic surfactant gelled fluids using breaker nanoparticles
WO2016178672A1 (en) 2015-05-05 2016-11-10 Halliburton Energy Services, Inc. Compositions including modified release material for treatment of subterranean formations
US10280357B2 (en) 2015-10-14 2019-05-07 CNPC USA Corp. High density and high temperature emulsifier for use in an oil based drilling fluid system
US9909050B2 (en) 2015-10-14 2018-03-06 Cnpc Usa Corporation High density and high temperature emulsifier for use in an oil based drilling fluid system
WO2020121055A1 (en) * 2018-12-13 2020-06-18 World Courier Management Limited Blast gel pack conditioning equipment

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502969A (en) * 1982-04-12 1985-03-05 Phillips Petroleum Company Workover and completion fluids
US4735731A (en) * 1984-06-15 1988-04-05 The Dow Chemical Company Process for reversible thickening of a liquid
US5807812A (en) * 1995-10-26 1998-09-15 Clearwater, Inc. Controlled gel breaker
US5858928A (en) * 1994-11-28 1999-01-12 Rhone-Poulenc Chimie Gel of an apolar medium, its use for the preparation of water-based drilling fluids
US5964295A (en) * 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6263967B1 (en) * 1998-06-12 2001-07-24 Elizabeth W Morris Well completion clean-up fluids and method for cleaning-up drilling and completion filtercakes
US20030092581A1 (en) * 2001-11-13 2003-05-15 Crews James B. Fracturing fluids for delayed flow back operations
US6631764B2 (en) * 2000-02-17 2003-10-14 Schlumberger Technology Corporation Filter cake cleanup and gravel pack methods for oil based or water based drilling fluids
US20030234103A1 (en) * 2002-06-20 2003-12-25 Jesse Lee Method for treating subterranean formation
US20040106525A1 (en) * 2002-10-28 2004-06-03 Schlumberger Technology Corp. Self-Destructing Filter Cake
US20040138071A1 (en) * 2003-01-15 2004-07-15 Gupta D. V. Satyanarayana Surfactant based viscoelastic fluids
US20040152604A1 (en) * 2003-01-31 2004-08-05 Qi Qu Acid diverting system containing quaternary amine
US6881709B2 (en) * 2000-04-05 2005-04-19 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids
US7081439B2 (en) * 2003-11-13 2006-07-25 Schlumberger Technology Corporation Methods for controlling the fluid loss properties of viscoelastic surfactant based fluids
US20070032386A1 (en) * 2002-08-26 2007-02-08 Carlos Abad Internal Breaker for Oilfield Treatments
US7207388B2 (en) * 2001-12-03 2007-04-24 Schlumberger Technology Corporation Non-Damaging Fluid-Loss Pill and Method of Using the Same
US7226896B2 (en) * 2000-11-24 2007-06-05 Institut Francais Du Petrole Organic emulsion-breaking formula and its use in treating well bores drilled in oil-base mud

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05010601A (en) 2003-04-01 2006-03-09 Separatech Canada Inc Method and apparatus for oil water separation.

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502969A (en) * 1982-04-12 1985-03-05 Phillips Petroleum Company Workover and completion fluids
US4735731A (en) * 1984-06-15 1988-04-05 The Dow Chemical Company Process for reversible thickening of a liquid
US5858928A (en) * 1994-11-28 1999-01-12 Rhone-Poulenc Chimie Gel of an apolar medium, its use for the preparation of water-based drilling fluids
US5807812A (en) * 1995-10-26 1998-09-15 Clearwater, Inc. Controlled gel breaker
US5964295A (en) * 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6263967B1 (en) * 1998-06-12 2001-07-24 Elizabeth W Morris Well completion clean-up fluids and method for cleaning-up drilling and completion filtercakes
US6631764B2 (en) * 2000-02-17 2003-10-14 Schlumberger Technology Corporation Filter cake cleanup and gravel pack methods for oil based or water based drilling fluids
US6881709B2 (en) * 2000-04-05 2005-04-19 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids
US7226896B2 (en) * 2000-11-24 2007-06-05 Institut Francais Du Petrole Organic emulsion-breaking formula and its use in treating well bores drilled in oil-base mud
US20030092581A1 (en) * 2001-11-13 2003-05-15 Crews James B. Fracturing fluids for delayed flow back operations
US7207388B2 (en) * 2001-12-03 2007-04-24 Schlumberger Technology Corporation Non-Damaging Fluid-Loss Pill and Method of Using the Same
US20030234103A1 (en) * 2002-06-20 2003-12-25 Jesse Lee Method for treating subterranean formation
US20070032386A1 (en) * 2002-08-26 2007-02-08 Carlos Abad Internal Breaker for Oilfield Treatments
US20040106525A1 (en) * 2002-10-28 2004-06-03 Schlumberger Technology Corp. Self-Destructing Filter Cake
US7265079B2 (en) * 2002-10-28 2007-09-04 Schlumberger Technology Corporation Self-destructing filter cake
US20040138071A1 (en) * 2003-01-15 2004-07-15 Gupta D. V. Satyanarayana Surfactant based viscoelastic fluids
US20040152604A1 (en) * 2003-01-31 2004-08-05 Qi Qu Acid diverting system containing quaternary amine
US7081439B2 (en) * 2003-11-13 2006-07-25 Schlumberger Technology Corporation Methods for controlling the fluid loss properties of viscoelastic surfactant based fluids

Also Published As

Publication number Publication date
US7347266B2 (en) 2008-03-25
US20070056737A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US7347266B2 (en) Use of mineral oils, hydrogenated polyalphaolefin oils and saturated fatty acids for breaking ves-gelled fluids
US9243181B2 (en) Dual-functional breaker for hybrid fluids of viscoelastic surfactant and polymer
US8633255B2 (en) Saponified fatty acids as breakers for viscoelastic surfactant-gelled fluids
US8188015B2 (en) Methods and compositions for fracturing subterranean formations
US9150777B2 (en) Use of oil-soluble surfactants as breaker enhancers for VES-gelled fluids
US7992640B2 (en) Organic acid treating fluids with viscoelastic surfactants and internal breakers
US7615517B2 (en) Use of mineral oils to reduce fluid loss for viscoelastic surfactant gelled fluids
US8101557B2 (en) Unsaturated fatty acids and mineral oils as internal breakers for VES-gelled fluids
US8044106B2 (en) Saponified fatty acids as viscosity modifiers for viscoelastic surfactant-gelled fluids
US20110224110A1 (en) Particles in Oil for Viscoelastic Surfactant Gelled Fluids
US8921285B2 (en) Particles slurried in oil for viscoelastic surfactant gelled fluids
WO2010047705A1 (en) Saponified fatty acids as viscosity modifiers for viscoelastic surfactant-gelled fluids

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CREWS, JAMES B.;WILLINGHAM, JOHN R.;REEL/FRAME:020830/0366

Effective date: 20080402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION