US20080166362A1 - New effector conjugates, process for their production and their pharmaceutical use - Google Patents

New effector conjugates, process for their production and their pharmaceutical use Download PDF

Info

Publication number
US20080166362A1
US20080166362A1 US12/000,258 US25807A US2008166362A1 US 20080166362 A1 US20080166362 A1 US 20080166362A1 US 25807 A US25807 A US 25807A US 2008166362 A1 US2008166362 A1 US 2008166362A1
Authority
US
United States
Prior art keywords
dione
dihydroxy
tetramethyl
methyl
oxacyclohexadec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/000,258
Inventor
Markus Berger
Gerhard Siemeister
Ulrich Klar
Jorg Willuda
Andreas Menrad
Klaus Bosslet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10234975A external-priority patent/DE10234975A1/en
Priority claimed from DE10305098A external-priority patent/DE10305098A1/en
Application filed by Individual filed Critical Individual
Priority to US12/000,258 priority Critical patent/US20080166362A1/en
Publication of US20080166362A1 publication Critical patent/US20080166362A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • a precondition for such an approach in which a highly active (toxic) active agent (effector) is coupled to a high-molecular, tumor-specific recognition unit, such as, for example, to an antibody, is a substantial inactivity of the conjugate, whose minimum components are represented by a recognition unit and an effector, until it has reached the target site (tumor). Arriving at the target site, the conjugate binds to the cell surface and the active ingredient, optionally after the preceding internalization of the entire complex, can be released.
  • a highly active (toxic) active agent (effector) is coupled to a high-molecular, tumor-specific recognition unit, such as, for example, to an antibody
  • a substantial inactivity of the conjugate whose minimum components are represented by a recognition unit and an effector, until it has reached the target site (tumor). Arriving at the target site, the conjugate binds to the cell surface and the active ingredient, optionally after the preceding internalization of the entire complex, can be released.
  • the successful therapy of solid tumors can be limited, however, by an inadequate penetration of the antibody into the tumor as well as the heterogeneous dispersion of the corresponding tumor-associated antigens in the tumor tissue.
  • the tumor-vascular system is attacked in a specific way.
  • the growth of tumors below a volume of about 2 mm 3 depends on a neoangiogenesis.
  • the subsequent tumor growth is based on an intact vascular system, which ensures the supply with nutrients or the removal of waste products.
  • the selective destruction of this system should therefore result in a necrosis of the tumor.
  • the attack on the vascular system of the tumor promises a number of advantages relative to the direct attack on the tumor itself.
  • endothelial cells are easier to access, since no tumor tissue has to be penetrated.
  • the damage of an individual tumor vessel should result in a necrosis of thousands of tumor cells. To damage a tumor vessel, it is not necessary to kill all endothelial cells.
  • the specific attack of endothelial cells in or close to the tumors minimizes systemic side effects. Endothelial cells are genetically very stable, so that the probability of a development of resistance against the tumor therapeutic agent is low.
  • the object of this invention is thus, inter alia,
  • the invention describes the production of effector recognition unit conjugates of general formula (I), wherein the substituents therein have the above-mentioned meanings, but at least one group FG 1 is replaced by a group FG 2a or FG 2b , wherein FG 1a or FG 2b can have the following meanings:
  • a recognition unit is conjugated via a sulfur atom with the group FG 2a , wherein the indicated sulfur atom is a component of the recognition unit, or via an amide function of group FG 2b , wherein the indicated nitrogen atom is a component of the recognition unit; wherein the recognition unit can be, for example, a peptide, a soluble receptor, a cytokine, a lymphokine, an aptamer, a aptmer, a aptmer, a aptmer, a recombinant protein, a framework structure, a monoclonal antibody or a fragment of a monoclonal antibody.
  • the above-mentioned effector recognition unit conjugates can comprise one or more recognition units; in this case, the recognition units that belong to a conjugate can be identical or different. It is preferred that the recognition units of a conjugate be identical.
  • effector recognition unit conjugates according to the invention can be used in the form of their ⁇ -, ⁇ - or ⁇ -cyclodextrin-clathrates or in the form of liposomal or pegylated compositions.
  • the conjugates according to the invention are preferably used for the treatment of diseases that are associated with proliferative processes.
  • diseases that are associated with proliferative processes.
  • the therapy of different tumors the therapy of inflammatory and/or neurodegenerative diseases, such as multiple sclerosis or Alzheimer's disease, the therapy of angiogenesis-associated diseases such as the growth of solid tumors, rheumatoid arthritis or diseases of the ocular fundus, can be mentioned.
  • epothilones their precursors and derivatives of general formula I is carried out according to the methods that are known to one skilled in the art, as they are described in, for example, DE 19907588, WO 98/25929, WO 99/58534, WO 99/2514, WO 99/67252, WO 99/67253, WO 99/7692, EP 99/4915, WO 00/485, WO 00/1333, WO 00/66589, WO 00/49019, WO 00/49020, WO 00/49021, WO 00/71521, WO 00/37473, WO 00/57874, WO 01/92255, WO 01/81342, WO 01/73103, WO 01/64650, WO 01/70716, U.S.
  • alkyl groups R 1a , R 1b , R 2a , R 2b , R 3 , R 4a , R 4b , R 5 , R 8 , R 10 , R 11 , R 20 , R 21 , R 22 , R 23 , R 24a , R 24b , R 24c , R 25 and R 26 straight-chain or branched-chain alkyl groups with 1-20 carbon atoms can be considered, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert.-butyl, pentyl, isopentyl, neopentyl, heptyl, hexyl, and decyl.
  • Alkyl groups R 1a , R 1b , R 2a , R 2b , R 3 , R 4a , R 4b , R 5 , R 8 , R 10 , R 11 , R 20 , R 21 , R 22 , R 23 , R 24a , R 24b , R 24c , R 25 and R 26 can also be perfluorinated or substituted by 1-5 halogen atoms, hydroxy groups, C 1 -C 4 -alkoxy groups or C 6 -C 12 -aryl groups (which can be substituted by 1-3 halogen atoms).
  • R 1a , R 1b , R 2a , R 2b , R 3 , R 4a , R 4b , R 5 , R 8 , R 10 , R 11 , R 22 , R 26 and V substituted and unsubstituted carbocyclic or heterocyclic radicals with one or more heteroatoms, such as phenyl, naphthyl, furyl, thienyl, pyridyl, pyrazolyl, pyrimidinyl, oxazolyl, pyridazinyl, pyrazinyl, quinolyl, thiazolyl, benzothiazolyl or benzoxazolyl, which can be substituted in one or more places by halogen, OH, O-alkyl, CO 2 H, CO 2 -alkyl, —NH 2 , —NO 2 , —N 3 , —CN, C 1 -C 20 -alkyl, C 1 -C 20 -al
  • bicyclic and tricyclic aryl radicals W substituted and unsubstituted, carbocyclic or heterocyclic radicals with one or more heteroatoms such as naphthyl, anthryl, benzothiazolyl, benzoxazolyl, benzimidazolyl, quinolyl, isoquinolyl, benzoxazinyl, benzofuranyl, indolyl, indazolyl, quinoxalinyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, thienopyridinyl, pyridopyridinyl, benzopyrazolyl, benzotriazolyl, or dihydroindolyl, which can be substituted in one or more places by halogen, OH, O-alkyl, CO 2 H, CO 2 -alkyl, —NH 2 , —NO 2 , —N 3 , —CN, C 1 -C 20
  • the aralkyl groups in R 1a , R 1b , R 2a , R 2b , R 3 , R 4a , R 4b , R 5 , R 8 , R 10 , R 11 , R 22 and R 26 can contain in the ring up to 14 C atoms, preferably 6 to 10 C atoms, and in the alkyl chain 1 to 8 atoms, preferably 1 to 4 atoms.
  • an aralkyl radical for example, benzyl, phenylethyl, naphthylmethyl, naphthylethyl, furylmethyl, thienylethyl or pyridylpropyl is suitable.
  • the rings can be substituted in one or more places by halogen, OH, O-alkyl, CO 2 H, CO 2 -alkyl, —NO 2 , —N 3 , —CN, C 1 -C 20 -alkyl, C 1 -C 20 -acyl or C 1 -C 20 -acyloxy groups.
  • protective groups PG tris(C 1 -C 20 alkyl)silyl, bis(C 1 -C 20 alkyl)-arylsilyl, (C 1 -C 20 alkyl)-diarylsilyl, tris(aralkyl)-silyl, C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl, C 4 -C 7 -cycloalkyl, which in addition can contain an oxygen atom in the ring, aryl, C 7 -C 20 -aralkyl, C 1 -C 20 -acyl, aroyl, C 1 -C 20 -alkoxycarbonyl, C 1 -C 20 -alkylsulfonyl as well as arylsulfonyl can be cited.
  • alkyl-, silyl- and acyl radicals for the protective groups PG especially the radicals that are known to one skilled in the art are considered.
  • alkoxycarbonyl radical e.g., trichloroethyloxycarbonyl (Troc) is suitable.
  • acyl radical e.g., formyl, acetyl, propionyl, isopropionyl, trichloromethylcarbonyl, pivalyl, butyryl or benzoyl, which radical can be substituted with an amino and/or hydroxy group, is suitable.
  • amino protective groups PG the radicals that are known to one skilled in the art are suitable.
  • the Alloc, Boc, Z, benzyl, f-Moc, Troc, stabase or benzostabase group can be mentioned.
  • halogen atoms fluorine, chlorine, bromine or iodine can be considered.
  • the acyl groups can contain 1 to 20 carbon atoms, wherein formyl, acetyl, propionyl, isopropionyl and pivalyl groups are preferred.
  • the C 2 -C 10 -alkylene- ⁇ , ⁇ -dioxy group that is possible for X is preferably an ethylene ketal or neopentyl ketal group.
  • Preferred compounds of general formula I are those in which A-Y represents O—C( ⁇ O) or NR 21 —C( ⁇ O); D-E represents an H 2 C—CH 2 group; G represents a CH 2 group; Z represents an oxygen atom; R 1a , R 1b in each case represent C 1 -C 10 alkyl or together a —(CH 2 ) p group with p equal to 2 or 3 or 4; R 2a , R 2b , independently of one another, represent hydrogen, C 1 -C 10 alkyl, C 2 -C 10 alkenyl, or C 2 -C 10 alkynyl; R 3 represents hydrogen; R 4a , R 4b , independently of one another, represent hydrogen or C 1 -C 10 alkyl; R 5 represents hydrogen, or C 1 -C 4 alkyl or CH 2 OH or CH 2 NH 2 or CH 2 N(alkyl, acyl) 1,2 or CH 2 Hal; R 6 and R 7 together represent an additional bond or together an NH group
  • linkers of general formula (III) compounds are preferred in which V represents a bond or an aryl radical, o is equal to zero, and T represents an oxygen atom.
  • Q represents a bond or a group
  • Q represents a bond or a group
  • linkers of general formula (IV) compounds are preferred in which o is zero to four, and q is zero to three.
  • o is 0, 2 or 3;
  • W 1 is an oxygen atom;
  • q is equal to 0;
  • R 22 is hydrogen, C 1 -C 3 alkyl or aralkyl;
  • R 23 is hydrogen or C 1 -C 3 alkyl;
  • R 24a is hydrogen or C 1 -C 3 alkyl;
  • R 27 is fluorine, chlorine, CN, NO 2 , CO 2 R 28 or OR 28 ;
  • R 28 is hydrogen or C 1 -C 5 alkyl;
  • U is oxygen, CHR 22 or CHR 22 —NR 23 —C( ⁇ O)—.
  • binding regions derived from antibodies so-called CDRs, are suitable.
  • framework structures for use as recognition units for example, high-molecular structures that are not derived from antibodies are suitable.
  • structures of the fibronectin type 3 and of crystallins can be mentioned.
  • fragments of monoclonal antibodies for use as recognition units for example, single-chain Fv, Fab, F(ab) 2 as well as recombinant multimers can be mentioned.
  • recognition units those are considered that are suitable for, for example, the recognition and/or diagnosis and/or therapy of solid tumors and malignant diseases of the hematopoietic system.
  • recognition units that are additionally preferred, those are considered that allow a selective recognition of the disease-specific vascular system, preferably of the angiogenesis.
  • Table 1 cites examples of especially preferred recognition units for treating solid tumors.
  • antibodies or antibody fragments such as CD19, CD20, CD40, CD22, CD25, CD5, CD52, CD10, CD2, CD7, CD33, CD38, CD40, CD72, CD4, CD21, CD5, CD37 and CD30, can also be mentioned.
  • antibodies or fragments thereof such as VCAM, CD31, ELAM, endoglin, VEGFRI/II, ⁇ v ⁇ 3 Tie1 ⁇ 2, TES23 (CD44ex6), phosphatidylserine, PSMA, VEGFR/VEGF complex or ED-B-fibronectin, can be mentioned.
  • the invention also relates to linkers of general formula III 1
  • RG 1 can be an O ⁇ C ⁇ N group or an S ⁇ C ⁇ N group, and o, V, q and FG 1 have the meanings that are already mentioned above, as well as linkers of general formula III 2
  • R 26 can be C 1 -C 10 alkyl, aryl, or aralkyl, and o, V, q, T and FG have the meanings that are already mentioned above, as well as linkers of general formula II 3
  • RG 3 can be an OH group or an NHR 24a group or a COOH group, and o, V, q and FG 1 have the meanings that are already mentioned above; but with the proviso that the compound I-(4-amino-phenyl)-pyrrole-2,5-dione is not included.
  • the invention also relates to linkers of general formula (IV 1 ):
  • RG 1 is an O ⁇ C ⁇ N group or an S ⁇ C ⁇ N group, and o, q, r, W 2 , R 27 , U and FG 1 have the meanings that are mentioned in claim 1 ;
  • RG 3 is an OH group or an NHR 24a group or a COOH group, and R 24a , o, q, r, W 2 , R 27 , U and FG 1 have the meanings that are mentioned in claim 1 .
  • linkers of general formulas III 1 , III 2 or III 3 are preferred, wherein V represents a bond or an aryl radical, o is equal to zero, and T is an oxygen atom.
  • linkers of general formulas III 1 , III 2 or III 3 according to the invention are preferred, in which V represents a bond or an aryl radical or a group
  • Q represents a bond or a group
  • Q represents a bond or a group
  • linkers of general formulas IV 1 , IV 2 or IV 3 in which o is zero to four and q is zero to three.
  • W 1 is an oxygen atom
  • q is equal to 0
  • R 22 is hydrogen, C 1 -C 3 alkyl or aralkyl
  • R 23 is hydrogen or C 1 -C 3 alkyl
  • R 24a is hydrogen or C 1 -C 3 alkyl
  • R 27 is fluorine, chlorine, CN, NO 2 , CO 2 R 28 or OR 28
  • R 28 is hydrogen or C 1 -C 5 alkyl
  • U is oxygen, CHR 22 or CHR 22 —NR 23 —C( ⁇ O).
  • a linker of general formula III 3 or IV 3 with a compound of general formula I, in which the condition that at least one group L 1 , L 2 or L 4 represent a linker need not be met, and L 1 and/or L 2 and/or L 4 have the meaning of a C( ⁇ O)Hal group or a C( ⁇ S)Hal group, and free hydroxyl groups and/or amino groups that are not required for the reaction are optionally protected.
  • the invention also relates to the use of a compound of general formula I, wherein the substituents have the above-mentioned meanings, but the condition that at least one substituent L 1 , L 2 or L 4 represents a linker of general formula III or IV need not be met, and at least one substituent L 1 , L 2 or L 4 represents hydrogen, a group C( ⁇ O)Cl, or a group C(S)Cl, in a method as described above.
  • the invention also relates to the use of a compound of general formula I, wherein the substituents have the above-mentioned meanings, but the condition that at least one substituent L1, L2 or L 4 represent a linker of general formula III or IV need not be met, and at least one substituent L 1 , L 2 or L 4 represents hydrogen, a group C( ⁇ O)Cl, or a group C(S)Cl, for the production of an effector recognition unit conjugate as described above.
  • the invention also relates to the use of a linker of general formula III 1 , III 2 , III 3 , IV 1 , IV 2 or IV 3 for the production of an effector conjugate, as described above.
  • the invention also relates to the use of a linker of general formula III 1 , III 2 , III 3 , IV 1 , IV 2 or IV 3 for the production of an effector recognition unit conjugate as described above.
  • the invention also relates to the use of a recognition unit, as described above, in a process according to the invention for the production of an effector recognition unit conjugate, as described above.
  • the invention also relates to the effector recognition unit conjugates according to the invention for use as a medicament or for the production of a medicament or a pharmaceutical composition.
  • the invention relates finally to the use of the effector recognition unit conjugates according to the invention for the production of medicaments for the treatment of diseases that are associated with proliferative processes, such as tumors, inflammatory and/or neurodegenerative diseases, multiple sclerosis, Alzheimer's disease, or for the treatment of angiogenesis-associated diseases, such as tumor growth, rheumatoid arthritis or diseases of the ocular fundus.
  • diseases that are associated with proliferative processes such as tumors, inflammatory and/or neurodegenerative diseases, multiple sclerosis, Alzheimer's disease, or for the treatment of angiogenesis-associated diseases, such as tumor growth, rheumatoid arthritis or diseases of the ocular fundus.
  • Example L2a 7.6 g (30.7 mmol) of the compound that is prepared according to Example L2a is reacted analogously to Example L1b, and 4.92 g (27.8 mmol, 90%) of the title compound is isolated as a colorless oil.
  • Example L2b 4.92 g (27.8 mmol) of the compound that is prepared according to Example L2b is reacted analogously to Example LIc, and 5.01 g (26.2 mmol, 94%) of the title compound is isolated as a colorless oil.
  • Example L2c 2.00 g (10.5 mmol) of the compound that is prepared according to Example L2c is reacted analogously to Example LId, and 2.33 g (8.65 mmol, 82%) of the title compound is isolated as a colorless oil.
  • Example L2d 2.00 g (7.83 mmol) of the compound that is prepared according to Example L2d is reacted analogously to Example L1, and 0.64 g (2.51 mmol, 32%) of the title compound is isolated as a colorless oil.
  • Example L3a 1.09 g (3.23 mmol) of the compound that is prepared according to Example L3a is reacted analogously to Example Llb, and 0.744 g (2.78 mmol, 86%) of the title compound is isolated as a colorless oil.
  • Example L3b 0.74 g (2.77 mmol) of the compound that is prepared according to Example L3b is reacted analogously to Example LIc, and 0.77 g (2.74 mmol, 99%) of the title compound is isolated as a colorless oil.
  • Example L3c 0.77 g (2.74 mmol) of the compound that is prepared according to Example L3c is reacted analogously to Example LId, and 0.72 g (2.00 mmol, 73%) of the title compound is isolated as a colorless oil.
  • Example L3d 0.72 g (2.00 mmol) of the compound that is prepared according to Example L3d is reacted analogously to Example L1, and 0.49 g (1.42 mmol, 71%) of the title compound is isolated as a colorless oil.
  • Example L5 10.0 g (47.3 mmol) of the compound that is prepared according to Example L5 is reacted analogously to Example L4a, and 3.19 g (15.3 mmol, 32%) of the title compound is isolated as a colorless oil.
  • Example L9 Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-nitro-phenol is reacted with 6.34 g of the compound that is prepared according to Example L5, and after working-up and purification, 3.78 g (10.4 mmol, 35%) of the title compound is isolated.
  • Example L9 Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-nitro-phenol is reacted with 8.44 g of the compound that is prepared according to Example L6, and after working-up and purification, 3.78 g (10.4 mmol, 35%) of the title compound is isolated.
  • Example L12 Analogously to Example L12, 4.02 g (13.8 mmol) 4-tert-butyldimethylsilanyloxymethyl-phenol are reacted with 3.56 g (13.8 mmol) of the compound prepared according to Example L5. After working-up, purification and analogous treatment with p-toluenesulfonic acid, 3.19 g (10.1 mmol, 60%) of the title compound are isolated.
  • Example L12 Analogously to Example L12, 5.41 g (22.7 mmol) 4-tert-butyldimethylsilanyloxymethyl-phenol are reacted with 6.39 g (22.7 mmol) of the compound prepared according to Example L6. After working-up, purification and analogous treatment with p-toluenesulfonic acid, 5.91 g (15.3 mmol, 67%) of the title compound are isolated.
  • Example L9 Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-chloro-phenol are reacted with 5.42 g of the compound prepared according to Example L4. After working-up and purification, 8.49 g (26.2 mmol, 89%) of the title compound are isolated.
  • Example L9 Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-chloro-phenol are reacted with 6.24 g of the compound prepared according to Example L5. After working-up and purification, 5.11 g (14.5 mmol, 49%) of the title compound are isolated.
  • Example L9 Analogously to Example L9, 4.61 g (29 mmol) 4-hydroxymethyl-2-chloro-phenol are reacted with 8.17 g of the compound prepared according to Example L6. After working-up and purification, 4.61 g (10.9 mmol, 38%) of the title compound are isolated.
  • Example ELla 50 mg (78 ⁇ mol) of the compound that is prepared according to Example ELla is dissolved in a mixture of 1.5 ml of trichloromethane and 1.5 ml of dimethylformamide, mixed with 144 mg of the linker that is prepared according to Example L4a, 79 mg of copper(I) chloride, and it is heated for 18 hours to 70° C.
  • the crude mixture is purified by chromatography on thin-layer plates, and 51 mg (62 mmol, 80%) of the title compound is isolated as a colorless oil.
  • Example ELla 50 mg (78 ⁇ mol) of the compound that is prepared according to Example ELla is reacted analogously to Example ELIb with the linker that is produced according to Example L5a, and after purification, 39 mg (45.9 ⁇ mol, 59%) of the title compound is isolated as a colorless oil.
  • Example EL3a 84 mg (98.8 ⁇ mol) of the compound that is prepared according to Example EL3a is reacted analogously to Example EL1, and after purification, 43 mg (58.4 ⁇ mol, 59%) of the title compound is isolated as a colorless foam.
  • Example EL3 26 mg (35.3 ⁇ mol) of the compound that is prepared according to Example EL3 is reacted analogously to Example EL2, and after purification, 9.1 mg (12.1 ⁇ mol, 34%) of title compound A as well as 3.0 mg (4.0 ⁇ mol, 1%) of title compound B are isolated in each case as a colorless foam.
  • Example EL1a 50 mg (78 ⁇ mol) of the compound that is prepared according to Example EL1a is reacted analogously to Example EL1b with the linker that is produced according to Example L6a, and after purification, 56 mg (60.8 ⁇ mol, 78%) of the title compound is isolated as a colorless oil.
  • Example EL5a 20 mg (21.7 ⁇ mol) of the compound that is prepared according to Example EL5a is reacted analogously to Example EL1, and after purification, 10 mg (12.4 ⁇ mol, 57%) of the title compound is isolated as a colorless foam.
  • Example EL5 18 mg (22 ⁇ mol) of the compound that is prepared according to Example EL5 is reacted analogously to Example EL2, and after purification, 9.2 mg (11.2 ⁇ mol, 51%) of title compound A as well as 3.2 mg (3.9 ⁇ mol, 18%) of title compound B are isolated in each case as a colorless foam.
  • Example EL7a 100 mg (156 ⁇ mol) of the compound that is prepared according to Example EL7a is reacted analogously to Example EL1b with the linker that is produced according to Example L4a, and after purification, 121 mg (147 ⁇ mol, 94%) of the title compound is isolated as a colorless oil.
  • Example EL7b 46 mg (56 ⁇ mol) of the compound that is prepared according to Example EL7b is reacted analogously to Example EL1, and after purification, 17 mg (24 ⁇ mol, 43%) of the title compound is isolated as a colorless foam.
  • Example EL7 29 mg (41 ⁇ mol) of the compound that is prepared according to Example EL7 is reacted analogously to Example EL2, and after purification, 18 mg (24.9 ⁇ mol, 61%) of title compound A as well as 3.0 mg (4.1 ⁇ mol, 10%) of title compound B are isolated in each case as a colorless foam.
  • Example EL7a 100 mg (156 ⁇ mol) of the compound that is prepared according to Example EL7a is reacted analogously to Example EL1b with the linker that is produced according to Example L5a, and after purification, (65.9 ⁇ mol, 42%) of the title compound is isolated as a colorless oil.
  • Example EL7b 56 mg (65.9 ⁇ mol) of the compound that is prepared according to Example EL7b is reacted analogously to Example EL1, and after purification, 24.7 mg (33.6 ⁇ mol, 51%) of the title compound is isolated as a colorless foam.
  • Example EL9 24.7 mg (33.6 ⁇ mol) of the compound that is prepared according to Example EL9 is reacted analogously to Example EL2, and after purification, 16.7 mg (22.2 ⁇ mol, 66%) of title compound A as well as 2.0 mg (2.7 ⁇ mol, 8%) of title compound B are isolated in each case as a colorless foam.
  • Example EL1 Analogously to Example EL1, 248 mg (289 ⁇ mol) of the compound that is prepared according to Example EL12a is reacted, and after working-up and purification, 149 mg (201 ⁇ mol, 69%) of the title compound is isolated.
  • Example EL2 Analogously to Example EL2, 144 mg (194 ⁇ mol) of the compound that is prepared according to Example EL12 is reacted, and after working-up and purification, 89 mg (117 ⁇ mol, 60%) of the title compound is isolated.
  • Example EL12a Analogously to Example EL12a, 1.0 g (1.56 mmol) of the compound that is prepared according to Example EL7a is reacted, and 1.05 g (1.49 mmol, 96%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 304 mg (355 ⁇ mol) of the compound that is prepared according to Example EL14a is reacted, and after working-up and purification, 67 mg (90 ⁇ mol, 25%) of the title compound is isolated.
  • Example EL2 Analogously to Example EL2, 67 mg (90 ⁇ mol) of the compound that is prepared according to Example EL14 is reacted, and after working-up and purification, 32 mg (42 ⁇ mol, 47%) of the title compound is isolated.
  • Example EL12b Analogously to Example EL12b, 200 mg (284 ⁇ mol) of the compound that is prepared according to Example EL12a is reacted with 770 mg of the compound that is prepared according to Example L9, and after working-up and purification, 129 mg (129 ⁇ mol, 45%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 129 mg (129 ⁇ mol) of the compound that is prepared according to Example EL18a is reacted, and after working-up and purification, 71 mg (80 ⁇ mol, 62%) of the title compound is isolated.
  • Example EL2 Analogously to Example EL2, 71 mg (80 ⁇ mol) of the compound that is prepared according to Example EL18 is reacted, and after working-up and purification, 41 mg (45 ⁇ mol, 57%) of title compound A as well as 12 mg (13 ⁇ mol, 17%) of title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 243 mg (345 ⁇ mol) of the compound that is prepared according to Example EL12a is reacted with 1 g of the compound that is prepared according to Example L10, and after working-up and purification, 25 mg (24 ⁇ mol, 7%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 212 mg (206 ⁇ mol) of the compound that is prepared according to Example EL20a is reacted, and after working-up and purification, 117 mg (128 ⁇ mol, 62%) of the title compound is isolated.
  • 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-d
  • Example EL2 Analogously to Example EL2, 117 mg (128 ⁇ mol) of the compound that is prepared according to Example EL20 is reacted, and after working-up and purification, 63 mg (68 ⁇ mol, 53%) of title compound A as well as 19 mg (20 ⁇ mol, 16%) of title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 243 mg (345 ⁇ mol) of the compound that is prepared according to Example EL12a is reacted with 1.19 g of the compound that is prepared according to Example L11, and after working-up and purification, 171 mg (155 ⁇ mol, 45%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 171 mg (155 ⁇ mol) of the compound that is prepared according to Example EL22a is reacted, and after working-up and purification, 108 mg (110 ⁇ mol, 71%) of the title compound is isolated.
  • Example EL2 Analogously to Example EL2, 108 mg (110 ⁇ mol) of the compound that is prepared according to Example EL22 is reacted, and after working-up and purification, 65.9 mg (65.8 ⁇ mol, 60%) of title compound A as well as 19.8 mg (20 ⁇ mol, 18%) of title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 271 mg (385 ⁇ mol) of the compound that is prepared according to Example EL14a is reacted with 1.04 g of the compound that is prepared according to Example L9, and after working-up and purification, 193 mg (193 ⁇ mol, 50%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 193 mg (193 ⁇ mol) of the compound that is prepared according to Example EL24a is reacted, and after working-up and purification, 107 mg (120 ⁇ mol, 62%) of the title compound is isolated.
  • Example EL2 Analogously to Example EL2, 102 mg (115 ⁇ mol) of the compound that is prepared according to Example EL19 is reacted, and after working-up and purification, 65 mg (72 ⁇ mol, 63%) of title compound A as well as 3 mg (3.3 ⁇ mol, 3%) of title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 273 mg (387 ⁇ mol) of the compound that is prepared according to Example EL14a is reacted with 1.12 g of the compound that is prepared according to Example L10, and after working-up and purification, 69 mg (67 ⁇ mol, 17%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 69 mg (67 ⁇ mol) of the compound that is prepared according to Example EL26a is reacted, and after working-up and purification, 26 mg (28 ⁇ mol, 42%) of the title compound is isolated.
  • 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-d
  • Example EL2 Analogously to Example EL2, 38 mg (41 mmol) of the compound that is prepared according to Example EL19 is reacted, and after working-up and purification, 14 mg (15 ⁇ mol, 37%) of title compound A as well as 2 mg (2 ⁇ mol, 5%) of title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 273 mg (387 ⁇ mol) of the compound that is prepared according to Example EL14a is reacted with 1.34 g of the compound that is prepared according to Example L11, and after working-up and purification, 196 mg (178 ⁇ mol, 46%) of the title compound is isolated.
  • Example EL1 Analogously to Example EL1, 196 mg (178 ⁇ mol) of the compound that is prepared according to Example EL28a is reacted, and after working-up and purification, 100 mg (101 ⁇ mol, 57%) of the title compound is isolated.
  • Example EL2 Analogously to Example EL2, 100 mg (101 ⁇ mol) of the compound that is prepared according to Example EL19 is reacted, and after working-up and purification, 21 mg (21 ⁇ mol, 21%) of title compound A as well as 2 mg (2 ⁇ mol, 2%) of title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 218 mg (309 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 314 mg of the compound prepared according to Example L12. After working-up and purification, 103 mg (118 ⁇ mol, 35%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 103 mg (118 ⁇ mol) of the compound prepared according to Example EL30a are reacted. After working-up and purification, 13 mg (15 ⁇ mol, 13%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 13 mg (15 ⁇ mol) of the compound prepared according to Example EL30 are reacted. After working-up and purification, 5.7 mg (6.6 ⁇ mol, 44%) of the title compound are isolated.
  • Example EL12b Analogously to Example EL12b, 218 mg (309 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 396 mg of the compound prepared according to Example L13. After working-up and purification, 157 mg (159 ⁇ mol, 51%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 157 mg (159 mmol) of the compound prepared according to Example EL32a are reacted. After working-up and purification, 32 mg (37 ⁇ mol, 23%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 30 mg (34 ⁇ mol) of the compound prepared according to Example EL32 are reacted. After working-up and purification, 13 mg (15 ⁇ mol, 44%) of the title compound are isolated.
  • Example EL12b Analogously to Example EL12b, 218 mg (309 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 422 mg of the compound prepared according to Example L14. After working-up and purification, 77 mg (73 ⁇ mol, 24%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 77 mg (73 ⁇ mol) of the compound prepared according to Example EL34a are reacted. After working-up and purification, 14 mg (15 ⁇ mol, 20%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 14 mg (15 ⁇ mol) of the compound prepared according to Example EL34 are reacted. After working-up and purification, 6 mg (6 ⁇ mol, 42%) of the title compound are isolated.
  • Example EL12b Analogously to Example EL12b, 330 mg (470 ⁇ mol) of the compound prepared according to Example EL14a are reacted with 544 mg of the compound prepared according to Example L12. After working-up and purification, 170 mg (178 ⁇ mol, 38%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 170 mg (178 ⁇ mol) of the compound prepared according to Example EL36a are reacted. After working-up and purification, 21 mg (24 ⁇ mol, 14%) of the title compound are isolated.
  • Example EL12b Analogously to Example EL12b, 450 mg (640 ⁇ mol) of the compound prepared according to Example EL14a are reacted with 811 mg of the compound prepared according to Example L13. After working-up and purification, 108 mg (110 ⁇ mol, 17%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 64 mg (73 ⁇ mol) of the compound prepared according to Example EL38 are reacted. After working-up and purification, 25 mg (28 mmol, 39%) of the title compound A as well as 5.4 mg (6.1 ⁇ mol, 8.3%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 450 mg (640 ⁇ mol) of the compound prepared according to Example EL14a are reacted with 992 mg of the compound prepared according to Example L14. After working-up and purification, 67 mg (63 ⁇ mol, 10%) of the title compound are isolated.
  • Example EL38 Analogously to Example EL38, 67 mg (63 ⁇ mol) of the compound prepared according to Example EL40a are reacted. After working-up and purification, 23 mg (24 ⁇ mol, 38%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 33 mg (35 ⁇ mol) of the compound prepared according to Example EL40 are reacted. After working-up and purification, 13 mg (14 mmol, 38%) of the title compound A as well as 4 mg (4 ⁇ mol, 12%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 329 mg (467 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 885 mg of the compound prepared according to Example L15. After working-up and purification, 126 mg (127 ⁇ mol, 27%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 126 mg (127 ⁇ mol) of the compound prepared according to Example EL42a are reacted. After working-up and purification, 79 mg (90 ⁇ mol, 71%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 66 mg (75 ⁇ mol) of the compound prepared according to Example EL42 are reacted. After working-up and purification, 29.4 mg (32.9 ⁇ mol, 44%) of the title compound A as well as 9.7 mg (10.9 ⁇ mol, 14%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 329 mg (467 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 821 mg of the compound prepared according to Example L16. After working-up and purification, 120 mg (118 ⁇ mol, 25%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 120 mg (118 ⁇ mol) of the compound prepared according to Example EL44a are reacted. After working-up and purification, 60 mg (66 ⁇ mol, 56%) of the title compound are isolated.
  • 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,1S,12S, 16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17
  • Example EL2 Analogously to Example EL2, 60 mg (66 ⁇ mol) of the compound prepared according to Example EL44 is reacted. After working-up and purification, 32 mg (34.7 ⁇ mol, 53%) of the title compound A as well as 11 mg (11.9 ⁇ mol, 18%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 323 mg (459 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 790 mg of the compound prepared according to Example L17. After working-up and purification, 96 mg (88 ⁇ mol, 19%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 59 mg (54 ⁇ mol) of the compound prepared according to Example EL46a are reacted. After working-up and purification, 27 mg (27.7 ⁇ mol, 51%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 27 mg (27 ⁇ mol) of the compound prepared according to Example EL46 are reacted. After working-up and purification, 14 mg (14.1 ⁇ mol, 52%) of the title compound A as well as 5 mg (5.0 ⁇ mol, 19%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 340 mg (482 ⁇ mol) of the compound prepared according to Example EL14a are reacted with 885 mg of the compound prepared according to Example L15. After working-up and purification, 151 mg (152 ⁇ mol, 32%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 151 mg (152 ⁇ mol) of the compound prepared according to Example EL48a are reacted. After working-up and purification, 46 mg (52 ⁇ mol, 34%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 46 mg (52 ⁇ mol) of the compound prepared according to Example EL48 are reacted. After working-up and purification, 6 mg (6.7 ⁇ mol, 13%) of the title compound A as well as 1 mg (1.1 ⁇ mol, 2%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 340 mg (482 ⁇ mol) of the compound prepared according to Example EL14a are reacted with 848 mg of the compound prepared according to Example L16. After working-up and purification, 158 mg (155 ⁇ mol, 32%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 158 mg (155 ⁇ mol) of the compound prepared according to Example EL50a are reacted. After working-up and purification, 58 mg (64 ⁇ mol, 41%) of the title compound are isolated.
  • 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,1S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17
  • Example EL2 Analogously to Example EL2, 58 mg (64 ⁇ mol) of the compound prepared according to Example EL50 are reacted. After working-up and purification, 25 mg (27 ⁇ mol, 42%) of the title compound A as well as 7 mg (7.6 ⁇ mol, 12%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 355 mg (476 ⁇ mol) of the compound prepared according to Example EL14a are reacted with 790 mg of the compound prepared according to Example L17. After working-up and purification, 122 mg (112 ⁇ mol, 24%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 122 mg (112 ⁇ mol) of the compound prepared according to Example EL52a are reacted. After working-up and purification, 28 mg (29 ⁇ mol, 26%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 28 mg (29 ⁇ mol) of the compound prepared according to Example EL52 are reacted. After working-up and purification, 6.2 mg (6.3 ⁇ mol, 22%) of the title compound A as well as 0.3 mg (0.3 ⁇ mol, 1%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 160 mg (227 ⁇ mol) of the compound prepared according to Example EL12a are reacted with 191 mg (4-amino-3-nitro-phenyl)-methanol. After working-up and purification, 51 mg (61 ⁇ mol, 27%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 101 mg (101 ⁇ mol) of the compound prepared according to Example EL54a are reacted. After working-up and purification, 62 mg (70 ⁇ mol, 69%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 62 mg (70 ⁇ mol) of the compound prepared according to Example EL54 are reacted. After working-up and purification, 38 mg (42 ⁇ mol, 60%) of the title compound A as well as 11 mg (12 ⁇ mol, 17%) of the title compound B are isolated.
  • Example EL54b Analogously to Example EL54b, 50 mg (60 ⁇ mol) of the compound prepared according to Example EL54a are reacted with the compound prepared according to Example L5. After working-up and purification, 58 mg (56 ⁇ mol, 94%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 82 mg (80 ⁇ mol) of the compound prepared according to Example EL56a are reacted. After working-up and purification, 34 mg (37 ⁇ mol, 46%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 34 mg (37 ⁇ mol) of the compound prepared according to Example EL56 are reacted. After working-up and purification, 19 mg (20.4 ⁇ mol, 55%) of the title compound A as well as 6 mg (6.4 ⁇ mol, 17%) of the title compound B are isolated.
  • Example EL54b Analogously to Example EL54b, 130 mg (156 ⁇ mol) of the compound prepared according to Example EL54a are reacted with the compound prepared according to Example L6. After working-up and purification, 120 mg (109 ⁇ mol, 70%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 120 mg (109 ⁇ mol) of the compound prepared according to Example EL58a are reacted. After working-up and purification, 89 mg (90 ⁇ mol, 83%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 89 mg (90 ⁇ mol) of the compound prepared according to Example EL58 are reacted. After working-up and purification, 45 mg ( ⁇ mol, %) of the title compound A as well as 15 mg ( ⁇ mol, %) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 1.25 g (1.77 mmol) of the compound prepared according to Example EL12a are reacted with 1.75 g of the compound prepared according to L18. After working-up and purification, 119 mg (138 ⁇ mol, 8%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 101 mg (117 ⁇ mol) of the compound prepared according to Example EL60a are reacted. After working-up and purification, 68 mg (91 ⁇ mol, 77%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 68 mg (91 ⁇ mol) of the compound prepared according to Example EL60 are reacted. After working-up and purification, 26 mg (34 ⁇ mol, 37%) of the title compound A as well as 10 mg (13 ⁇ mol, 14%) of the title compound B are isolated.
  • Example EL12b Analogously to Example EL12b, 1.73 g (2.46 mmol) of the compound prepared according to Example EL14a are reacted with 2.06 g (4-amino-3-nitro-phenyl)-methanol. After working-up and purification, 420 mg (502 ⁇ mol, 20%) of the title compound are isolated.
  • Example EL54b Analogously to Example EL54b, 140 mg (167 ⁇ mol) of the compound prepared according to Example EL62a are reacted with the compound prepared according to Example L4. After working-up and purification, 150 mg (150 ⁇ mol, 90%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 145 mg (145 ⁇ mol) of the compound prepared according to Example EL62a are reacted. After working-up and purification, 67 mg (76 mmol, 52%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 67 mg (76 ⁇ mol) of the compound prepared according to Example EL62 are reacted. After working-up and purification, 37 mg (41 ⁇ mol, 54%) of the title compound A as well as 12 mg (13 ⁇ mol, 18%) of the title compound B are isolated.
  • Example EL54b Analogously to Example EL54b, 140 mg (167 ⁇ mol) of the compound prepared according to Example EL62a are reacted with the compound prepared according to Example L5. After working-up and purification, 155 mg (150 ⁇ mol, 90%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 150 mg (151 ⁇ mol) of the compound prepared according to Example EL64a are reacted. After working-up and purification, 68 mg (74 ⁇ mol, 49%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 68 mg (74 ⁇ mol) of the compound prepared according to Example EL64 are reacted. After working-up and purification, 44 mg (47 ⁇ mol, 64%) of the title compound A as well as 3 mg (3 ⁇ mol, 4%) of the title compound B are isolated.
  • Example EL54b Analogously to Example EL54b, 140 mg (167 ⁇ mol) of the compound prepared according to Example EL62a are reacted with the compound prepared according to Example L6. After working-up and purification, 165 mg (150 ⁇ mol, 90%) of the title compound are isolated.
  • Example EL1 Analogously to Example EL1, 145 mg (132 ⁇ mol) of the compound prepared according to Example EL66a are reacted. After working-up and purification, 106 mg (108 ⁇ mol, 82%) of the title compound are isolated.
  • Example EL2 Analogously to Example EL2, 106 mg (108 ⁇ mol) of the compound prepared according to Example EL66 are reacted. After working-up and purification, 58 mg (58 ⁇ mol, 54%) of the title compound A as well as 6 mg (6 ⁇ mol, 6%) of the title compound B are isolated.
  • ED-B fibronectin domain B
  • AP39 fibronectin domain B
  • the solution of 661 ⁇ g of tri(2-carboxyethyl)phosphine-hydrochloride in 2361l of PBS is mixed with the solution of 1.54 mg of AP39 in 1.12 ml of PBS, and it is incubated for 1.5 hours at 25° C.
  • Desalination is done with a pre-equilibrated NAP-5 column at a concentration of 450 ⁇ l of AP39r and 50 ⁇ l of PBS.
  • the reduced antibody fragment AP39r is isolated in a concentration of 0.7 mg/ml.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL4, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL6, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL8, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL10, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate that is prepared according to Example EL11, and the solution of the title compounds is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL16, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL17, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL13, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL15, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL19, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL25, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL21, and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL23 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL27 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL29 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL31 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL33 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL35 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL37 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL39 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL41 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL43 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL45 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL47 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL49 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL51 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL53 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL55 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL57 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL59 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • Example ELE1a Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL61 and the solution of the title compound is isolated.
  • the dilution factor relative to the antibody fragment is approximately 2.5.
  • thionyl groups For the introduction of thionyl groups an amine-free solution of the 2H8 antibody in phosphate buffer having a concentration in the range of about 1-10 mg/ml at a pH of 7.2 is mixed with the 10- to 100-fold excess of 2-iminothiolane and is allowed to react for 1 hour at 23° C.
  • the number of the introduced thiol groups is 1 to about 15 depending on the excess of reagent.

Abstract

Conjugates of epothilones and epothilone derivatives (as effectors) with suitable biomolecules (as recognition units) are described. Their production is carried out by the effectors being reacted with suitable linkers, and the compounds that are produced are conjugated to the recognition units. The pharmaceutical use of the conjugates for treating proliferative or angiogenesis-associated processes is described.

Description

  • This application is a divisional of U.S. Ser. No. 11/509,557 filed on Aug. 25, 2006, which is a divisional of U.S. Ser. No. 10/631,011 filed on Jul. 31, 2003, which claims the benefit of U.S. Application Ser. No. 60/451,673 filed on Mar. 5, 2003, all of which are fully incorporated by reference herein.
  • The development of the understanding relating to the recognition of binding regions, especially in the field of monoclonal antibodies or fragments thereof against specific tumor antigens, makes it possible to consider a selective tumor therapy by specific release of an anti-tumor active agent at the target site.
  • A precondition for such an approach, in which a highly active (toxic) active agent (effector) is coupled to a high-molecular, tumor-specific recognition unit, such as, for example, to an antibody, is a substantial inactivity of the conjugate, whose minimum components are represented by a recognition unit and an effector, until it has reached the target site (tumor). Arriving at the target site, the conjugate binds to the cell surface and the active ingredient, optionally after the preceding internalization of the entire complex, can be released.
  • The successful therapy of solid tumors, especially with monoclonal antibodies, can be limited, however, by an inadequate penetration of the antibody into the tumor as well as the heterogeneous dispersion of the corresponding tumor-associated antigens in the tumor tissue.
  • These limitations could be avoided in that the tumor-vascular system is attacked in a specific way. The growth of tumors below a volume of about 2 mm3 depends on a neoangiogenesis. The subsequent tumor growth is based on an intact vascular system, which ensures the supply with nutrients or the removal of waste products. The selective destruction of this system should therefore result in a necrosis of the tumor. The attack on the vascular system of the tumor promises a number of advantages relative to the direct attack on the tumor itself. In comparison to tumor cells, endothelial cells are easier to access, since no tumor tissue has to be penetrated. The damage of an individual tumor vessel should result in a necrosis of thousands of tumor cells. To damage a tumor vessel, it is not necessary to kill all endothelial cells. The specific attack of endothelial cells in or close to the tumors minimizes systemic side effects. Endothelial cells are genetically very stable, so that the probability of a development of resistance against the tumor therapeutic agent is low.
  • Within the scope of this invention, surprisingly enough, a possibility has now been found to link the chemically very sensitive, highly-functionalized class of active agents of epothilones and analogs thereof to a high-molecular recognition unit via different linkers in different positions of the active agent.
  • The object of this invention is thus, inter alia,
      • 1. to find a method to link highly active active agents from the structural class of the epothilones and epothilone derivatives with suitable linkers,
      • 2. to synthesize suitable linkers,
      • 3. to develop a method to link these epothilone-linker conjugates to recognition units, such as, for example, monoclonal antibodies or fragments thereof, to form immune conjugates that are both chemically and metabolically sufficiently stable for the development of a pharmaceutical, and that are superior to the epothilones or epothilone derivatives that are taken as a basis with respect to their therapeutic range, their selectivity of action and/or undesirable toxic side effects and/or the degree of their activity.
        This invention accordingly comprises effector conjugates of general formula I
  • Figure US20080166362A1-20080710-C00001
  • in which
      • R1a, R1b, independently of one another, are hydrogen, C1-C10 alkyl, aryl, aralkyl, or together a —(CH2)m group, in which m is 2 to 5,
      • R2a, R2b, independently of one another, are hydrogen, C1-C10 alkyl, aryl, aralkyl, or together a —(CH2)n group, in which n is 2 to 5, or C2-C10 alkenyl, or C2-C10 alkynyl,
      • R3 is hydrogen, C1-C10 alkyl, aryl or aralkyl, and
      • R4a, R4b, independently of one another, are hydrogen, C1-C10 alkyl, aryl, aralkyl, or together a —(CH2)p group, in which p is 2 to 5,
      • R5 is hydrogen, C1-C10 alkyl, aryl, aralkyl, CO2H, CO2alkyl, CH2OH, CH2OAlkyl, CH2OAcyl, CN, CH2NH2, CH2N(alkyl, acyl)1,2, or CH2Hal,
      • Hal is a halogen atom,
      • R6, R7 in each case are hydrogen, or together an additional bond, or together an oxygen atom, or together an NH group, or together an N-alkyl group, or together a CH2 group, and
      • G is an oxygen atom or CH2,
      • D-E is a group H2C—CH2, HC═CH, C≡C, CH(OH)—CH(OH), CH(OH)—CH2, CH2—CH(OH),
  • Figure US20080166362A1-20080710-C00002
      •  O—CH2, or, if G represents a CH2 group, D-E is CH2—O,
      • W is a group C(═X)R8, or a bi- or tricyclic aromatic or heteroaromatic radical,
      • L3 is hydrogen, or, if a radical in W contains a hydroxyl group, forms a group O-L4 with the latter, or, if a radical in W contains an amino group, forms a group NR25-L4 with the latter,
      • R25 is hydrogen or C1-C10 alkyl,
      • X is an oxygen atom, or two OR20 groups, or a C2-C10 alkylenedioxy group that may be straight-chain or branched, or H/OR9, or a CR10R11 group,
      • R8 is hydrogen, C1-C10 alkyl, aryl, aralkyl, halogen or CN, and
      • R9 is hydrogen or a protective group PGX,
      • R10, R11 in each case independently of one another, are hydrogen, C1-C20 alkyl, aryl, aralkyl, or together with a methylene carbon atom form a 5- to 7-membered carbocyclic ring,
      • Z can represent oxygen or H/OR12,
      • R12 can represent hydrogen or a protective group PGZ,
      • A-Y can represent a group O—C(═O), O—CH2, CH2—C(═O), NR21—C(═O) or NR21—SO2,
      • R20 can represent C1-C20 alkyl,
      • R21 can represent a hydrogen atom or C1-C10 alkyl,
      • PGX, PGY, and PGZ can represent a protective group PGZ, and
      • L1, L2, and L4, independently of one another, can represent hydrogen, a group C(═O)Cl, a group C(═S)Cl, a group PGY or a linker of general formula (III) or (IV);
        • provided that at least one substituent L1, L2 or L4 represents a linker of general formula (III) or (IV);
      • the linker of general formula (III) has the following structure,
  • Figure US20080166362A1-20080710-C00003
  • in which
      • T can represent oxygen or sulfur,
      • U can represent oxygen, CHR22, CHR22—NR23—C(═O)—, CHR22—NR23—C(═S)—, O—C(═O)—CHR22—NR23—C(═O)—, O—C(═O)—CHR22—NR23—C(═S)— or NR24a,
      • o can represent 0 to 15,
      • V can represent a bond, aryl, a group
  • Figure US20080166362A1-20080710-C00004
      •  or a group
  • Figure US20080166362A1-20080710-C00005
      • s can represent 0 to 4,
      • Q can represent a bond, O—C(═O)—NR24c, O—C(═S)—NR24c,
  • Figure US20080166362A1-20080710-C00006
      • R22 can represent hydrogen, C1-C10 alkyl, aryl or aralkyl,
      • R23 can represent hydrogen or C1-C10 alkyl,
      • R24a, R24b, and R24c, independently of one another, can represent hydrogen or C1-C10 alkyl,
      • q can represent 0 to 15,
      • FG1 can represent C1-C10 alkyl-S3,
  • Figure US20080166362A1-20080710-C00007
      •  or CO2H; and
      • the linker of general formula (IV) has the following structure,
  • Figure US20080166362A1-20080710-C00008
  • in which
      • T can represent oxygen or sulfur,
      • W1, W2 are the same or different and can represent oxygen or NR24a,
      • o can represent 0 to 5,
      • R22 can represent hydrogen, C1-C10 alkyl, aryl or aralkyl,
      • R23 can represent hydrogen, or C1-C10 alkyl
      • R24a can represent hydrogen or C1-C10 alkyl,
      • R27 can represent halogen, CN, NO2, CO2R28, or OR28,
      • R28 can represent hydrogen, C1-C10 alkyl, aryl or aralkyl,
      • q can represent 0 to 5,
      • U can represent oxygen, CHR22, CHR22—NR23—C(═O)—, CHR22—NR23—C(═S)— or C1-C20 alkyl,
      • r can represent 0 to 20,
      • FG1 can represent C1-C10 alkyl-S3,
  • Figure US20080166362A1-20080710-C00009
  • as a single isomer or a mixture of different isomers and/or as a pharmaceutically acceptable salt thereof.
  • In addition, the invention describes the production of effector recognition unit conjugates of general formula (I), wherein the substituents therein have the above-mentioned meanings, but at least one group FG1 is replaced by a group FG2a or FG2b, wherein FG1a or FG2b can have the following meanings:
  • FG2a: —S—S—,
  • Figure US20080166362A1-20080710-C00010
  • FG2b: —CONH— and
  • wherein a recognition unit is conjugated via a sulfur atom with the group FG2a, wherein the indicated sulfur atom is a component of the recognition unit, or via an amide function of group FG2b, wherein the indicated nitrogen atom is a component of the recognition unit;
    wherein the recognition unit can be, for example, a peptide, a soluble receptor, a cytokine, a lymphokine, an aptamer, a spiegelmer, a recombinant protein, a framework structure, a monoclonal antibody or a fragment of a monoclonal antibody.
  • According to this invention, the above-mentioned effector recognition unit conjugates can comprise one or more recognition units; in this case, the recognition units that belong to a conjugate can be identical or different. It is preferred that the recognition units of a conjugate be identical.
  • The effector recognition unit conjugates according to the invention can be used in the form of their α-, β- or γ-cyclodextrin-clathrates or in the form of liposomal or pegylated compositions.
  • The conjugates according to the invention are preferably used for the treatment of diseases that are associated with proliferative processes. For example, the therapy of different tumors, the therapy of inflammatory and/or neurodegenerative diseases, such as multiple sclerosis or Alzheimer's disease, the therapy of angiogenesis-associated diseases such as the growth of solid tumors, rheumatoid arthritis or diseases of the ocular fundus, can be mentioned.
  • The production of epothilones, their precursors and derivatives of general formula I is carried out according to the methods that are known to one skilled in the art, as they are described in, for example, DE 19907588, WO 98/25929, WO 99/58534, WO 99/2514, WO 99/67252, WO 99/67253, WO 99/7692, EP 99/4915, WO 00/485, WO 00/1333, WO 00/66589, WO 00/49019, WO 00/49020, WO 00/49021, WO 00/71521, WO 00/37473, WO 00/57874, WO 01/92255, WO 01/81342, WO 01/73103, WO 01/64650, WO 01/70716, U.S. Pat. No. 6,204,388, U.S. Pat. No. 6,387,927, U.S. Pat. No. 6,380,394, U.S. Ser. No. 02/52028, U.S. Ser. No. 02/58286, U.S. Ser. No. 02/62030, WO 02/32844, WO 02/30356, WO 02/32844, WO 02/14323, and WO 02/8440.
  • As alkyl groups R1a, R1b, R2a, R2b, R3, R4a, R4b, R5, R8, R10, R11, R20, R21, R22, R23, R24a, R24b, R24c, R25 and R26, straight-chain or branched-chain alkyl groups with 1-20 carbon atoms can be considered, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert.-butyl, pentyl, isopentyl, neopentyl, heptyl, hexyl, and decyl.
  • Alkyl groups R1a, R1b, R2a, R2b, R3, R4a, R4b, R5, R8, R10, R11, R20, R21, R22, R23, R24a, R24b, R24c, R25 and R26 can also be perfluorinated or substituted by 1-5 halogen atoms, hydroxy groups, C1-C4-alkoxy groups or C6-C12-aryl groups (which can be substituted by 1-3 halogen atoms).
  • As aryl radicals R1a, R1b, R2a, R2b, R3, R4a, R4b, R5, R8, R10, R11, R22, R26 and V, substituted and unsubstituted carbocyclic or heterocyclic radicals with one or more heteroatoms, such as phenyl, naphthyl, furyl, thienyl, pyridyl, pyrazolyl, pyrimidinyl, oxazolyl, pyridazinyl, pyrazinyl, quinolyl, thiazolyl, benzothiazolyl or benzoxazolyl, which can be substituted in one or more places by halogen, OH, O-alkyl, CO2H, CO2-alkyl, —NH2, —NO2, —N3, —CN, C1-C20-alkyl, C1-C20-acyl or C1-C20-acyloxy groups, are suitable. The heteroatoms can be oxidized provided that this does not cause the aromatic character to be lost, such as, for example, the oxidation of a pyridyl to a pyridyl-N-oxide.
  • As bicyclic and tricyclic aryl radicals W, substituted and unsubstituted, carbocyclic or heterocyclic radicals with one or more heteroatoms such as naphthyl, anthryl, benzothiazolyl, benzoxazolyl, benzimidazolyl, quinolyl, isoquinolyl, benzoxazinyl, benzofuranyl, indolyl, indazolyl, quinoxalinyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, thienopyridinyl, pyridopyridinyl, benzopyrazolyl, benzotriazolyl, or dihydroindolyl, which can be substituted in one or more places by halogen, OH, O-alkyl, CO2H, CO2-alkyl, —NH2, —NO2, —N3, —CN, C1-C20-alkyl, C1-C20-acyl or C1-C20-acyloxy groups, are suitable. The heteroatoms can be oxidized provided that this does not cause the aromatic character to be lost, such as, for example, the oxidation of a quinolyl to a quinolyl-N-oxide.
  • The aralkyl groups in R1a, R1b, R2a, R2b, R3, R4a, R4b, R5, R8, R10, R11, R22 and R26 can contain in the ring up to 14 C atoms, preferably 6 to 10 C atoms, and in the alkyl chain 1 to 8 atoms, preferably 1 to 4 atoms. As an aralkyl radical, for example, benzyl, phenylethyl, naphthylmethyl, naphthylethyl, furylmethyl, thienylethyl or pyridylpropyl is suitable. The rings can be substituted in one or more places by halogen, OH, O-alkyl, CO2H, CO2-alkyl, —NO2, —N3, —CN, C1-C20-alkyl, C1-C20-acyl or C1-C20-acyloxy groups.
  • As representatives of protective groups PG, tris(C1-C20 alkyl)silyl, bis(C1-C20 alkyl)-arylsilyl, (C1-C20 alkyl)-diarylsilyl, tris(aralkyl)-silyl, C1-C20-alkyl, C2-C20-alkenyl, C4-C7-cycloalkyl, which in addition can contain an oxygen atom in the ring, aryl, C7-C20-aralkyl, C1-C20-acyl, aroyl, C1-C20-alkoxycarbonyl, C1-C20-alkylsulfonyl as well as arylsulfonyl can be cited.
  • As alkyl-, silyl- and acyl radicals for the protective groups PG, especially the radicals that are known to one skilled in the art are considered. Preferred are the alkyl or silyl radicals that can be easily cleaved from the corresponding alkyl and silyl ethers, such as, for example, the methoxymethyl, methoxyethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrofuranyl, trimethylsilyl, triethylsilyl, tert.-butyldimethylsilyl, tert.-butyldiphenylsilyl, tribenzylsilyl, triisopropylsilyl, benzyl, para-nitrobenzyl, and para-methoxybenzyl radicals, as well as alkylsulfonyl and arylsulfonyl radicals. As an alkoxycarbonyl radical, e.g., trichloroethyloxycarbonyl (Troc) is suitable. As an acyl radical, e.g., formyl, acetyl, propionyl, isopropionyl, trichloromethylcarbonyl, pivalyl, butyryl or benzoyl, which radical can be substituted with an amino and/or hydroxy group, is suitable.
  • As amino protective groups PG, the radicals that are known to one skilled in the art are suitable. For example, the Alloc, Boc, Z, benzyl, f-Moc, Troc, stabase or benzostabase group can be mentioned.
  • As halogen atoms, fluorine, chlorine, bromine or iodine can be considered.
  • The acyl groups can contain 1 to 20 carbon atoms, wherein formyl, acetyl, propionyl, isopropionyl and pivalyl groups are preferred.
  • The C2-C10-alkylene-α,ω-dioxy group that is possible for X is preferably an ethylene ketal or neopentyl ketal group.
  • Preferred compounds of general formula I are those in which A-Y represents O—C(═O) or NR21—C(═O); D-E represents an H2C—CH2 group; G represents a CH2 group; Z represents an oxygen atom; R1a, R1b in each case represent C1-C10 alkyl or together a —(CH2)p group with p equal to 2 or 3 or 4; R2a, R2b, independently of one another, represent hydrogen, C1-C10 alkyl, C2-C10 alkenyl, or C2-C10 alkynyl; R3 represents hydrogen; R4a, R4b, independently of one another, represent hydrogen or C1-C10 alkyl; R5 represents hydrogen, or C1-C4 alkyl or CH2OH or CH2NH2 or CH2N(alkyl, acyl)1,2 or CH2Hal; R6 and R7 together represent an additional bond or together an NH group or together an N-alkyl group or together a CH2 group or together an oxygen atom; W represents a group C(═X)R8 or a 2-methylbenzothiazol-5-yl radical or a 2-methylbenzoxazol-5-yl radical or a quinolin-7-yl radical or a 2-aminomethylbenzothiazol-5-yl radical or a 2-hydroxymethylbenzothiazol-5-yl radical or a 2-aminomethylbenzoxazol-5-yl radical or a 2-hydroxymethylbenzoxazol-5-yl radical; X represents a CR10R11 group; R8 represents hydrogen or C1-C4 alkyl or a fluorine atom or a chlorine atom or a bromine atom; R10/R11 represent hydrogen/2-methylthiazol-4-yl or hydrogen/2-pyridyl or hydrogen/2-methyloxazol-4-yl or hydrogen/2-aminomethylthiazol-4-yl or hydrogen/2-aminomethyloxazol-4-yl or hydrogen/2-hydroxymethylthiazol-4-yl or hydrogen/2-hydroxymethyloxazol-4-yl.
  • As linkers of general formula (III), compounds are preferred in which V represents a bond or an aryl radical, o is equal to zero, and T represents an oxygen atom.
  • As linkers of general formula (III), in addition compounds are preferred in which V represents a bond or an aryl radical or a group
  • Figure US20080166362A1-20080710-C00011
  • Q represents a bond or a group
  • Figure US20080166362A1-20080710-C00012
  • and o is 0 to 4. Especially preferred are compounds of general formula (III), wherein V represents a bond or a group
  • Figure US20080166362A1-20080710-C00013
  • Q represents a bond or a group
  • Figure US20080166362A1-20080710-C00014
  • o is equal to 0, 2 or 3; s is equal to 1; and T is an oxygen atom.
  • As linkers of general formula (IV), compounds are preferred in which o is zero to four, and q is zero to three. Especially preferred are compounds of general formula (IV), wherein o is 0, 2 or 3; W1 is an oxygen atom; q is equal to 0; R22 is hydrogen, C1-C3 alkyl or aralkyl; R23 is hydrogen or C1-C3 alkyl; R24a is hydrogen or C1-C3 alkyl; R27 is fluorine, chlorine, CN, NO2, CO2R28 or OR28; R28 is hydrogen or C1-C5 alkyl; and U is oxygen, CHR22 or CHR22—NR23—C(═O)—.
  • As recombinant proteins for use as recognition units, for example, binding regions derived from antibodies, so-called CDRs, are suitable.
  • As framework structures for use as recognition units, for example, high-molecular structures that are not derived from antibodies are suitable. For example, structures of the fibronectin type 3 and of crystallins can be mentioned.
  • As fragments of monoclonal antibodies for use as recognition units, for example, single-chain Fv, Fab, F(ab)2 as well as recombinant multimers can be mentioned.
  • As preferred recognition units, those are considered that are suitable for, for example, the recognition and/or diagnosis and/or therapy of solid tumors and malignant diseases of the hematopoietic system.
  • As recognition units that are additionally preferred, those are considered that allow a selective recognition of the disease-specific vascular system, preferably of the angiogenesis.
  • Table 1 cites examples of especially preferred recognition units for treating solid tumors.
  • TABLE 1
    Antigen Identity/ Monoclonal
    Tumor Characteristics Antibodies References
    Gynecol. (GY) CA 125′ > 200 kD OC 125 Kabawat et al., 1983;
    mucin GP Szymendera, 1986
    Ovarian 80 Kd GP OC 133 Masuko et al., Cancer
    Res, 1984
    Ovarian ‘SGA’ 360 Kd GP OMI de Krester et al., 1986
    Ovarian High Mr mucin Mo v1 Miotti et al., Cancer Res,
    1985
    Ovarian High Mr mucin/ Mo v2 Miotti et al., Cancer Res,
    glycolipid 1985
    Ovarian NS 3C2 Tsuji et al., Cancer Res,
    1985
    Ovarian NS 4C7 Tsuji et al., Cancer Res,
    1985
    Ovarian High Mr mucin ID3 Gangopadhyay et al.,
    1985
    Ovarian High Mr mucin DU-PAN-2 Lan et al., 1985
    GY 7700 Kd GP F 36/22 Croghan et al., 1984
    Ovarian ‘gp 68’ 48 Kd GP 4F7/7A10 Bhattacharya et al., 1984
    GY 40, 42 kD GP OV-TL3 Poels et al., 1986
    GY ‘TAG-72’ High Mr B72.3 Thor et al., 1986
    mucin
    Ovarian 300-400 Kd GP DF3 Kufe et al., 1984
    Ovarian 60 Kd GP 2C8/2F7 Bhattacharya et al., 1985
    GY 105 Kd GP MF 116 Mattes et al., 1984
    Ovarian 38-40 kD GP Mov18 Miotti et al., 1987
    GY ‘CEA’ 180 Kd GP CEA 11-H5 Wagener et al., 1984
    Ovarian CA 19-9 or GICA CA 19-9 (1116NS Atkinson et al., 1982
    19-9)
    Ovarian ‘FLAP’ 67 Kd GP H17-E2 McDicken et al., 1985
    Ovarian 72 Kd 791T/36 Perkins et al., 1985
    Ovarian 69 Kd PLAP NDOG2 Sunderland et al., 1984
    Ovarian unknown Mr PLAP H317 Johnson et al., 1981
    Ovarian p185HER2 4D5, 3H4, 7C2, Shepard et al., 1991
    6E9, 2C4, 7F3,
    2H11, 3E8, 5B8,
    7D3, SB8
    Uterus, Ovary HMFG-2 HMFG2 Epenetos et al., 1982
    GY HMFG-2 3.14.A3 Burchell et al., 1983
    Breast 330-450 Kd GP DF3 Hayes et al., 1985
    Breast NS NCRC-11 Ellis et al., 1984
    Breast 37 kD 3C6F9 Mandeville et al., 1987
    Breast NS MBE6 Teramoto et al., 1982
    Breast NS CLNH5 Glassy et al., 1983
    Breast 47 Kd GP MAC 40/43 Kjeldsen et al., 1986
    Breast High Mr GP EMA Sloane et al., 1981
    Breast High Mr GP HMFG1 HFMG2 Arklie et al., 1981
    Breast NS 3.15.C3 Arklie et al., 1981
    Breast NS M3, M8, M24 Foster et al., 1982
    Breast 1 (Ma) Blood Group M18 Foster et al., 1984
    Ags
    Breast NS 67-D-11 Rasmussen et al., 1982
    Breast Estrogen Receptor D547Sp, D75P3, Kinsel et al., 1989
    H222
    Breast EGF Receptor Anti EGF Sainsbury et al., 1985
    Breast Laminine Receptor LR-3 Horan Hand et al., 1985
    Breast erb B-2 p185 TA1 Gusterson et al., 1988
    Breast NS H59 Hendler et al., 1981
    Breast 126 Kd GP 10-3D-2 Soule et al., 1983
    Breast NS HmAB1,2 Imam et al., 1984;
    Schlom et al., 1985
    Breast NS MBR 1,2,3 Menard et al., 1983
    Breast 95 Kd 24-17-1 Thompson et al., 1983
    Breast 100 Kd 24-17-2 (3E1-2) Croghan et al., 1983
    Breast NS F36/22.M7/105 Croghan et al., 1984
    Breast 24 Kd C11, G3, H7 Adams et al., 1983
    Breast 90 Kd GP B6-2 Colcher et al., 1981
    Breast CEA & 180 Kd GP B1-1 Colcher et al., 1983
    Breast Colon & pancreas, Cam 17-1 Imperial Cancer
    mucin-like Research Technology
    Ca 19-9 MAb listing
    Breast Milk mucin, nuclear SM3 Imperial Cancer
    protein Research Technology
    Mab listing
    Breast Milk mucin, nuclear SM4 Imperial Cancer
    protein Research Technology
    Mab listing
    Breast Affinity-purified milk C-Mul (566) Imperial Cancer
    mucin Research Technology
    Mab listing
    Breast P185HER2 4D5 3H4, 7C2, Shepard et al., 1991
    6E9, 2C4, 7F3,
    2H11, 3E8, 5B8,
    7D3, 5B8
    Breast CA 125 > 200 Kd GP OC 125 Kabawat et al., 1985
    Breast High Mr mucin/ MO v2 Miotti et al., 1985
    glycolipid
    Breast High Mr mucin DU-PAN-2 Lan et al., 1984
    Breast ‘gp48’ 48 Kd GP 4F7/7A10 Bhattacharya et al., 1984
    Breast 300-400 Kd GP DF3 Kufe et al., 1984
    Breast ‘TAG-72’ high Mr B72-3 Thor et al., 1986
    mucin
    Breast ‘CEA’ 180 Kd GP cccccCEA 11 Wagener et al., 1984
    Breast ‘PLAP’ 67 Kd GP H17-E2 McDicken et al., 1985
    Breast HMFG-2 > 400 Kd GP 3-14-A3 Burchell et al., 1983
    Breast NS FO23C5 Riva et al., 1988
    Colorectal TAG-72 High Mr B72-3 Colcher et al., 1987
    mucin
    Colorectal GP37 (17-1A) 1038-17- Paul et al., 1986
    1A
    Colorectal Surface GP CO17-1A LoBuglio et al., 1988
    Colorectal CEA ZCE-025 Patt et al., 1988
    Colorectal CEA AB2 Griffin et al., 1988a
    Colorectal Cell surface AG HT-29-15 Cohn et al., 1987
    Colorectal Secretory epithelium 250-30.6 Leydem et al., 1986
    Colorectal Surface glycoprotein 44X14 Gallagher et al., 1986
    Colorectal NS A7 Takahashi et al., 1988
    Colorectal NS GA73-3 Munz et al., 1986
    Colorectal NS 791T/36 Farrans et al., 1982
    Colorectal Cell Membrane & 28A32 Smith et al., 1987
    Cytoplasmatic Ag
    Colorectal CEA & Vindesin 28.19.8 Corvalen, 1987
    Colorectal gp72 X MMCO-791 Byers et al., 1987
    Colorectal high Mr mucin DU-PAN-2 Lan et al., 1985
    Colorectal high Mr mucin ID3 Gangopadhyay et al.,
    1985
    Colorectal CEA 180 Kd GP CEA 11-H5 Wagener et al., 1984
    Colorectal 60 Kd GP 2C8/2F7 Bhattacharya et al., 1985
    Colorectal CA-19-9 (or GICA) CA-19-9 Atkinson et al., 1982
    (1116NS 19-9)
    Colorectal Lewis a PR5C5 Imperial Cancer
    Research Technology
    Mab Listing
    Colorectal Lewis a PR4D2 Imperial Cancer
    Research Technology
    Mab Listing
    Colorectal Colon mucus PR4D1 Imperial Cancer
    Research Technology
    Mab Listing
    Melanoma P97a 4-1 Woodbury et al., 1980
    Melanoma P97a 8-2 M17 Brown, et al., 1981a
    Melanoma P97b 96-5 Brown, et al., 1981a
    Melanoma P97c 118-1, 133-2, Brown, et al., 1981a
    (113-2)
    Melanoma P97c L1, L10, R10 Brown et al., 1981b
    (R19)
    Melanoma P97d I12 Brown et al., 1981b
    Melanoma P97e K5 Brown et al., 1981b
    Melanoma P155 6-1 Loop et al., 1981
    Melanoma GD3 R24 Dippold et al., 1980
    disialogangliosides
    Melanoma P210, p60, p250 5-1 Loop et al., 1981
    Melanoma P280 p440 225.28S Wilson et al., 1981
    Melanoma GP 94, 75, 70 & 25 465.12S Wilson et al., 1981
    Melanoma P240-P250, P450 9-2-27 Reisfeld et al., 1982
    Melanoma 100, 77, 75 Kd F11 Chee et al., 1982
    Melanoma 94 Kd 376.96S Imai et al., 1982
    Melanoma 4 GP Chains 465.12S Imai et al., 1982; Wilson
    et al., 1981
    Melanoma GP 74 15-75 Johnson & Reithmuller,
    1982
    Melanoma GP 49 15-95 Johnson & Reithmuller,
    1982
    Melanoma 230 Kd Mel-14 Carrel et al., 1982
    Melanoma 92 Kd Mel-12 Carrel et al., 1982
    Melanoma 70 Kd Me3-TB7 Carrel et al., 1: 387, 1982
    Melanoma HMW MAA similar to 225.28SD Kantor et al., 1982
    9-2-27 AG
    Melanoma HMW MAA similar to 763.24TS Kantor et al., 1982
    9-2-27 AG
    Melanoma GP95 similar to 376- 705F6 Stuhlmiller et al., 1982
    96S 465-12S
    Melanoma GP125 436910 Saxton et al., 1982
    Melanoma CD41 M148 Imperial Cancer
    Research Technology
    Mab listing
    Gastrointestinal high Mr mucin ID3 Gangopadhyay et al.,
    (GI) 1985
    Gallbladder, high Mr mucin DU-PAN-2 Lan et al., 1985
    Pancreas,
    Stomach
    Pancreas NS OV-TL3 Poels et al., 1984
    Pancreas, ‘TAG-72’ high Mr B72-3 Thor et al., 1986
    Stomach, mucin
    Esophagus
    Stomach ‘CEA’ 180 Kd GP CEA 11-H5 Wagener et al., 1984
    Pancreas HMFG-2 > 400 Kd GP 3-14-A3 Burchell et al., 1983
    GI NS C COLI Lemkin et al., 1984
    Pancreas, CA 19-9 (or GICA) CA-19-9 Szymendera, 1986
    Stomach (1116NS 19-9)
    and CA50
    Pancreas CA125 GP OC125 Szymendera, 1986
    Lung p185HER2 Shepard et al., 1991
    Non-small-cell 4D5, 3H4, 7C2,
    lung cancer 6E9, 2C4, 7F3,
    (NSCLC) 2H11, 3E8, 5B8,
    7D3, SB8
    NSCLC high Mr MO v2 Miotti et al., 1985
    mucin/glycolipid
    NSCLC ‘TAG -72’ high Mr B72-3 Thor et al., 1986
    mucin
    NSCLC High Mr mucin DU-PAN-2 Lan et al., 1985
    NSCLC ‘CEA’ 180 kD GP CEA 11-H5 Wagener et al., 1984
    Malignant Cytoplastic antigen that MUG 8-22 Stavrou, 1990
    Glioma consists of 85HG-22
    cells
    Malignant Cell surface Ag that MUC 2-63 Stavrou, 1990
    Glioma consists of 85HG-\63
    cells
    Malignant Cell surface Ag that MUC 2-39 Stavrou, 1990
    Glioma consists of 86HG-39
    cells
    Malignant Cell surface Ag that MUG 7-39 Stavrou, 1990
    Glioma consists of 86HG-39
    cells
    GC, Other P53 PAb 240, PAb Imperial Cancer
    246, PAb 1801 Research Technology
    MaB Listing
    Small, Round- Neural cell adhesion ERIC-1 Imperial Cancer
    Cell Tumors molecules Research Technology
    MaB Listing
    Medulloblastomas, M148 Imperial Cancer
    Neuroblastomas, Research Technology
    Rhabdomyosarcomas MaB Listing
    Neuroblastomas FMH25 Imperial Cancer
    Research Technology
    MaB Listing
    Kidneys & P155 6-1 Loop et al., 1981
    Glioblastomas
    Bladders & “Ca Antigen” 350-390 CA1 Ashall et al., 1982
    Laryngeal kD
    Tumors
    Neuroblastoma GD2 3F8 Cheung et al., 1986
    Prostate Gp48 48 kD GP 4F7/7A10 Bhattacharya et al., 1984
    Prostate 60 kD GP 2C8/2F7 Bhattacharya et al., 1985
    Thyroid ‘CEA’ 180 kD GP CEA 11-H5 Wagener et al., 1984
    Prostata Neurocellin-2 (NC-2), 2H8, 10G6 Berlex
    TMEFF2, TENB2,
    tomoregulin, TMP-2
  • As especially preferred recognition units for treating hematological tumors, antibodies or antibody fragments, such as CD19, CD20, CD40, CD22, CD25, CD5, CD52, CD10, CD2, CD7, CD33, CD38, CD40, CD72, CD4, CD21, CD5, CD37 and CD30, can also be mentioned.
  • As especially preferred recognition units for anti-angiogenic therapy, antibodies or fragments thereof, such as VCAM, CD31, ELAM, endoglin, VEGFRI/II, αvβ3 Tie½, TES23 (CD44ex6), phosphatidylserine, PSMA, VEGFR/VEGF complex or ED-B-fibronectin, can be mentioned.
  • The compounds that are mentioned below are especially preferred according to the invention as effector elements:
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-11-methyl-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-methyl-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-methyl-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-methyl-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-fluoro-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-fluoro-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-chloro-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-chloro-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-fluoro-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-fluoro-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-chloro-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-chloro-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,1′-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-[2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-[2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S(E),7S,10R,11S,12S,16R)-7,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,1S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-propyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-propyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-butyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-6-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-butyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-allyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-allyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-allyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-allyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-allyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-allyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-propyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-propyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-butyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-butyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-allyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-allyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-allyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-allyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-allyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-allyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione,
    • (1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione,
    • (1S,3S,7S,10R,11S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione.
  • In a compound of general formula (I) according to the invention that contains one of the above-mentioned elements, the hydrogen atoms in the above-mentioned elements are replaced in the positions indicated in formula (I) by radicals L1-L3, wherein radicals L1-L3 have the above-indicated meanings.
  • The invention also relates to linkers of general formula III1

  • RG1-(CH2)o—V—(CH2)q—FG1  III1,
  • in which
  • RG1 can be an O═C═N group or an S═C═N group, and o, V, q and FG1 have the meanings that are already mentioned above, as well as linkers of general formula III2

  • RG2-(CH2)o—V—(CH2)q—FG1  III2,
  • in which
  • RG2 can be a Hal-C(=T)-CHR22 group or a Hal-C(=T)-CHR22—NR23—C(=T) group or an R26—C(═O)—O—C(=T)-CHR22 group or an R26—C(═O)—O—C(=T)-CHR22—NR23—C(=T) group; R26 can be C1-C10 alkyl, aryl, or aralkyl, and o, V, q, T and FG have the meanings that are already mentioned above, as well as linkers of general formula II3

  • RG3-(CH2)o—V—(CH2)q—FG1  III3,
  • in which
  • RG3 can be an OH group or an NHR24a group or a COOH group, and o, V, q and FG1 have the meanings that are already mentioned above; but with the proviso that the compound I-(4-amino-phenyl)-pyrrole-2,5-dione is not included.
  • The invention also relates to linkers of general formula (IV1):
  • Figure US20080166362A1-20080710-C00015
  • in which
  • RG1 is an O═C═N group or an S═C═N group, and o, q, r, W2, R27, U and FG1 have the meanings that are mentioned in claim 1;
  • or linkers of general formula (IV2):
  • Figure US20080166362A1-20080710-C00016
  • in which
  • RG2 is a Hal-C(=T)-CHR22 group or a Hal-C(=T)-CHR22—NR23—C(=T) group or an R26—C(═O)—O—C(=T)-CHR22 group or an R26—C(═O)—O—C(=T)-CHR22—NR23—C(=T) group, wherein R26 is C1-C10 alkyl, aryl, or aralkyl, and R22, R23, T, o, q, r, W2, R27, U and FG1 have the meanings that are mentioned in claim 1;
  • or linkers of general formula (IV3):
  • Figure US20080166362A1-20080710-C00017
  • in which
  • RG3 is an OH group or an NHR24a group or a COOH group, and R24a, o, q, r, W2, R27, U and FG1 have the meanings that are mentioned in claim 1.
  • According to the invention, linkers of general formulas III1, III2 or III3 are preferred, wherein V represents a bond or an aryl radical, o is equal to zero, and T is an oxygen atom.
  • In addition, linkers of general formulas III1, III2 or III3 according to the invention are preferred, in which V represents a bond or an aryl radical or a group
  • Figure US20080166362A1-20080710-C00018
  • Q represents a bond or a group
  • Figure US20080166362A1-20080710-C00019
  • and o is 0 to 4. Especially preferred from the above are those linkers in which V represents a bond or a group
  • Figure US20080166362A1-20080710-C00020
  • Q represents a bond or a group
  • Figure US20080166362A1-20080710-C00021
  • o is equal to 0, 2 or 3; s is equal to 1; and T is an oxygen atom.
  • In addition, preferred according to the invention are linkers of general formulas IV1, IV2 or IV3, in which o is zero to four and q is zero to three. Especially preferred from the above are those linkers in which o is 0, 2 or 3; W1 is an oxygen atom; q is equal to 0; R22 is hydrogen, C1-C3 alkyl or aralkyl; R23 is hydrogen or C1-C3 alkyl; R24a is hydrogen or C1-C3 alkyl; R27 is fluorine, chlorine, CN, NO2, CO2R28 or OR28; R28 is hydrogen or C1-C5 alkyl; and U is oxygen, CHR22 or CHR22—NR23—C(═O).
  • Additionally, the invention relates to methods
  • to react a linker of general formula III1 or IV1 with a compound of general formula I, in which the condition that at least one group L1, L2 or L4 represent a linker need not be met, and in which L1 and/or L2 and/or L4 have the meaning of a hydrogen atom, and free hydroxyl groups and/or amino groups that are not required for the reaction optionally are protected,
  • to react a linker of general formula III2 or IV2 with a compound of general formula I, in which the condition that at least one group L1, L2 or L4 represent a linker need not be met, and L1 and/or L2 and/or L4 have the meaning of a hydrogen atom, and free hydroxyl groups and/or amino groups that are not required for the reaction are optionally protected, or
  • to react a linker of general formula III3 or IV3 with a compound of general formula I, in which the condition that at least one group L1, L2 or L4 represent a linker need not be met, and L1 and/or L2 and/or L4 have the meaning of a C(═O)Hal group or a C(═S)Hal group, and free hydroxyl groups and/or amino groups that are not required for the reaction are optionally protected.
  • The invention also relates to the use of a compound of general formula I, wherein the substituents have the above-mentioned meanings, but the condition that at least one substituent L1, L2 or L4 represents a linker of general formula III or IV need not be met, and at least one substituent L1, L2 or L4 represents hydrogen, a group C(═O)Cl, or a group C(S)Cl, in a method as described above.
  • The invention also relates to the use of a compound of general formula I, wherein the substituents have the above-mentioned meanings, but the condition that at least one substituent L1, L2 or L4 represent a linker of general formula III or IV need not be met, and at least one substituent L1, L2 or L4 represents hydrogen, a group C(═O)Cl, or a group C(S)Cl, for the production of an effector recognition unit conjugate as described above.
  • The invention also relates to the use of a linker of general formula III1, III2, III3, IV1, IV2 or IV3 for the production of an effector conjugate, as described above.
  • The invention also relates to the use of a linker of general formula III1, III2, III3, IV1, IV2 or IV3 for the production of an effector recognition unit conjugate as described above.
  • The invention also relates to the use of a recognition unit, as described above, in a process according to the invention for the production of an effector recognition unit conjugate, as described above.
  • The invention also relates to the effector recognition unit conjugates according to the invention for use as a medicament or for the production of a medicament or a pharmaceutical composition.
  • The invention relates finally to the use of the effector recognition unit conjugates according to the invention for the production of medicaments for the treatment of diseases that are associated with proliferative processes, such as tumors, inflammatory and/or neurodegenerative diseases, multiple sclerosis, Alzheimer's disease, or for the treatment of angiogenesis-associated diseases, such as tumor growth, rheumatoid arthritis or diseases of the ocular fundus.
  • EXAMPLES OF THE SYNTHESIS OF LINKERS (L) Example L1 (S) 2-[(3-Methyltrisulfanyl-propionyl)-methyl-amino]-propanoic acid Example L1a (S) 2-[(3-Acetylsulfanyl-propionyl)-methyl-amino]-propanoic acid ethyl ester
  • The solution of 15 g (89.5 mmol) of N-methylalanine ethyl ester-hydrochloride in 850 ml of anhydrous tetrahydrofuran is mixed at 23° C. with 4.1 g of an approximately 60% sodium hydride dispersion and, after 3 hours, with 23.5 g of 3-acetylsulfanyl-propanoic acid chloride. It is allowed to react for two days, mixed with saturated sodium bicarbonate solution, and extracted several times with ethyl acetate. The combined organic extracts are washed with saturated sodium chloride solution, dried over sodium sulfate, and the residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel. 17.6 g (67.3 mmol, 75%) of the title compound is isolated as a colorless oil.
  • Example L1b (S) 2-[(3-Mercapto-propionyl)-methyl-amino]-propanoic acid
  • The solution of 17.6 g (67.3 mmol) of the compound prepared according to Example L1a in 150 ml of methanol is mixed at 23° C. with 44 ml of a 5M sodium hydroxide solution, and it is stirred for 5 hours. By adding 4N hydrochloric acid, a pH of 2 is set, and it is extracted with dichloromethane. The combined organic extracts are washed with saturated sodium chloride solution and dried over sodium sulfate. The residue that is obtained after filtration and removal of the solvent (13.0 g, maximum 67.3 mmol) is further reacted without purification.
  • Example L1c (S) 2-[(3-Mercapto-propionyl)-methyl-amino]-propanoic acid methyl ester
  • The solution of 4.53 g (maximum 23.7 mol) of the crude product, prepared according to Example LIb, in 135 ml of diethyl ether is esterified at 0° C. with an ethereal solution of diazomethane. After removal of the solvent, 4.59 g (22.4 mmol, 94%) of the title compound is isolated as a pale yellow oil, which is further reacted without purification.
  • Example L1d (S) 2-[(3-Methyltrisulfanyl-propionyl)-methyl-amino]-propanoic acid methyl ester
  • The solution of 14 g (68.2 mmol) of the compound, prepared according to Example L1c, in 180 ml of trichloromethane is added to the solution of 21 g of 2-methyldisulfanyl-isoindole-1,3-dione in 420 ml of trichloromethane, and it is stirred for 16 hours at 23° C. It is concentrated by evaporation, dissolved in dichloromethane, and stirred for 0.5 hour. Solid is filtered off, the filtrate is concentrated by evaporation, and the residue is purified by chromatography on fine silica gel. 16.2 g (57.2 mmol, 84%) of the title compound is isolated as a colorless oil.
  • Example L1 (S) 2-[(3-Methyltrisulfanyl-propionyl)-methyl-amino]-propanoic acid
  • The solution of 10 g (35.3 mmol) of the compound, prepared according to Example L1d, in 20 ml of ethanol is mixed with 1 l of phosphate puffer with a pH of 7, pig liver esterase, and it is incubated at 27° C. for 46 hours. By adding a 4N hydrochloric acid, the pH is adjusted to 1, it is extracted with dichloromethane, dried over sodium sulfate, and after filtration and removal of the solvent, 8.3 g (30.8 mmol, 87%) of the title compound is isolated as a colorless oil, which is reacted without further purification.
  • 1H-NMR (CDCl3): δ=1.43+1.51 (3H), 2.55+2.63 (3H), 2.87 (2H), 2.88+3.00 (3H), 3.08-3.26 (2H), 4.63+5.19 (1H), 7.90 (1H) ppm.
  • Example L2 [(3-Methyltrisulfanyl-propionyl)-methyl-amino]-acetic acid Example L2a 2-[(3-Acetylsulfanyl-propionyl)-methyl-amino]-acetic acid ethyl ester
  • 7.13 g (46.4 mmol) of N-methylglycine ethyl ester-hydrochloride is reacted analogously to Example Lla, and 6.9 g (27.9 mmol, 60%) of the title compound is isolated as a colorless oil.
  • Example L2b [(3-Mercapto-propionyl)-methyl-amino]-acetic acid
  • 7.6 g (30.7 mmol) of the compound that is prepared according to Example L2a is reacted analogously to Example L1b, and 4.92 g (27.8 mmol, 90%) of the title compound is isolated as a colorless oil.
  • Example L2c [(3-Mercapto-propionyl)-methyl-amino]-acetic acid methyl ester
  • 4.92 g (27.8 mmol) of the compound that is prepared according to Example L2b is reacted analogously to Example LIc, and 5.01 g (26.2 mmol, 94%) of the title compound is isolated as a colorless oil.
  • Example L2d [(3-Methyltrisulfanyl-propionyl)-methyl-amino]-acetic acid methyl ester
  • 2.00 g (10.5 mmol) of the compound that is prepared according to Example L2c is reacted analogously to Example LId, and 2.33 g (8.65 mmol, 82%) of the title compound is isolated as a colorless oil.
  • Example L2 [(3-Methyltrisulfanyl-propionyl)-methyl-amino]-acetic acid
  • 2.00 g (7.83 mmol) of the compound that is prepared according to Example L2d is reacted analogously to Example L1, and 0.64 g (2.51 mmol, 32%) of the title compound is isolated as a colorless oil.
  • 1H-NMR (CDCl3): δ=2.41+2.56 (3H), 2.61-3.27 (7H), 3.98 (2H), 4.38 (1H) ppm.
  • Example L3 (S) 2-[(3-Methyltrisulfanyl-propionyl)-methyl-amino]-3-phenyl-propionic acid Example L3a (S) 2-[(3-Acetylsulfanyl-propionyl)-methyl-amino]-3-phenyl-propanoic acid ethyl ester
  • 7.73 g (31.7 mmol) of N-methylphenylalanine ethyl ester-hydrochloride is reacted analogously to Example Lla, and 2.3 g (6.82 mmol, 22%) of the title compound is isolated as a colorless oil.
  • Example L3b (S) 2-[(3-Mercapto-propionyl)-methyl-amino]-3-phenyl-propanoic acid
  • 1.09 g (3.23 mmol) of the compound that is prepared according to Example L3a is reacted analogously to Example Llb, and 0.744 g (2.78 mmol, 86%) of the title compound is isolated as a colorless oil.
  • Example L3c (S) 2-[(3-Mercapto-propionyl)-methyl-amino]-3-phenyl-propanoic acid methyl ester
  • 0.74 g (2.77 mmol) of the compound that is prepared according to Example L3b is reacted analogously to Example LIc, and 0.77 g (2.74 mmol, 99%) of the title compound is isolated as a colorless oil.
  • Example L3d (S) 2-[(3-Methyltrisulfanyl-propionyl)-methyl-amino]-3-phenyl-propanoic acid methyl ester
  • 0.77 g (2.74 mmol) of the compound that is prepared according to Example L3c is reacted analogously to Example LId, and 0.72 g (2.00 mmol, 73%) of the title compound is isolated as a colorless oil.
  • Example L3 (S) 2-[(3-Methyltrisulfanyl-propionyl)-methyl-amino]-3-phenyl-propanoic acid
  • 0.72 g (2.00 mmol) of the compound that is prepared according to Example L3d is reacted analogously to Example L1, and 0.49 g (1.42 mmol, 71%) of the title compound is isolated as a colorless oil.
  • Example L4 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid
  • 20.0 g (193.9 mmol) of 4-aminobutyric acid is mixed with 19 g of maleic acid anhydride, 290 ml of acetic acid, and it is heated for 4 hours in an oil bath at 130° C. It is azeotropically concentrated by evaporation with repeated addition of toluene, the residue is dissolved in dichloromethane and purified by chromatography on fine silica gel. 17.1 g (93.4 mmol, 48%) of the title compound is isolated as a crystalline solid.
  • 1H-NMR (CDCl3): δ=1.93 (2H), 2.38 (2H), 3.60 (2H), 6.71 (2H) ppm.
  • Example L4a 1-(3-Isocyanato-propyl)-pyrrole-2,5-dione
  • 5.0 g (27.3 mmol) of the compound that is prepared according to Example L4 is dissolved in 90 ml of tetrahydrofuran, mixed with 8 ml of triethylamine and 6.17 ml of phosphoric acid diphenylester azide, and it is stirred for 1.5 hours at 23° C. Then, it is mixed with 110 ml of toluene, the tetrahydrofuran is distilled off, and it is heated for 2 hours to 70° C. The crude product is purified by chromatography on fine silica gel. 1.77 g (9.82 mmol, 36%) of the title compound is isolated.
  • Example L5 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid
  • 100 g (762 mmol) of 6-aminocaproic acid is reacted analogously to Example L5, and 93.8 g (444 mmol, 58%) of the title compound is isolated as a crystalline solid.
  • 1H-NMR (CDCl3): δ=1.34 (2H), 1.55-1.70 (4H), 2.34 (2H), 3.51 (2H), 6.69 (2H) ppm.
  • Example L5a 1-(5-Isocyanato-pentyl)-pyrrole-2,5-dione
  • 10.0 g (47.3 mmol) of the compound that is prepared according to Example L5 is reacted analogously to Example L4a, and 3.19 g (15.3 mmol, 32%) of the title compound is isolated as a colorless oil.
  • Example L6 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid
  • 10 g (49.7 mmol) of 11-aminoundecanoic acid is reacted analogously to Example L5, and 6.29 g (22.4 mmol, 45%) of the title compound is isolated as a crystalline solid.
  • 1H-NMR (CDCl3): δ=1.19-1.36 (12H), 1.51-1.67 (4H), 2.34 (2H), 3.49 (2H), 6.68 (2H) ppm.
  • Example L6a 1-(10-Isocyanato-decyl)-pyrrole-2,5-dione
  • 5.28 g (18.8 mmol) of the compound that is prepared according to Example L6 is reacted analogously to Example L4a, and 3.37 g (12.1 mmol, 64%) of the title compound is isolated as a colorless oil.
  • Example L7 1-(4-Amino-phenyl)-pyrrole-2,5-dione
  • The solution of 21.6 g (200 mmol) of 1,4-phenylenediamine in 200 ml of tetrahydrofuran is mixed over 1.5 hours with the solution of 19.6 g of maleic acid anhydride, and it is stirred for 22 hours at 23° C. It is filtered, rewashed with tetrahydrofuran, and the filtrate is dried. 37.1 g (197 mmol, 98%) of the title compound is isolated as a crystalline solid.
  • 1H-NMR (d6-DMSO): δ=6.28 (1H), 6.48 (1H), 6.53 (2H), 7.30 (2H), 7.50-9.00 (2H) ppm.
  • Example L8 1-(4-Hydroxy-phenyl)-pyrrole-2,5-dione
  • The suspension that consists of 5.0 g (45.8 mmol) of 4-aminophenol, 4.49 g of maleic acid anhydride and 40 ml of acetic acid is refluxed for 3 hours. It is concentrated by evaporation, residual acetic acid is removed azeotropically by repeated distillation with acetic acid, and the residue is purified by chromatography on fine silica gel. 2.83 g (15.0 mmol, 33%) of the title compound is isolated.
  • 1H-NMR (d6-DMSO): δ=6.83 (2H), 7.09 (2H), 7.13 (2H), 9.71 (1H) ppm.
  • Example L9 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-hydroxymethyl-2-nitro-phenyl ester
  • The solution of 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-nitro-phenol in 250 ml of dichloromethane is mixed with 6.1 g of N,N′-dicyclohexylcarbodiimide and 2.4 ml of pyridine, and the solution of 5.5 g of the compound, prepared according to Example L4, in 250 ml of dichloromethane, is added dropwise within 15 minutes. It is stirred for one more hour at 23° C., filtered, the filtrate is concentrated by evaporation and purified by chromatography on fine silica gel. 1.73 g (5.2 mmol, 18%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=2.07 (3H), 2.67 (2H), 3.67 (2H), 4.79 (2H), 6.72 (2H), 7.28 (1H), 7.66 (1H), 8.10 (1H) ppm.
  • Example L10 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-hydroxymethyl-2-nitro-phenyl ester
  • Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-nitro-phenol is reacted with 6.34 g of the compound that is prepared according to Example L5, and after working-up and purification, 3.78 g (10.4 mmol, 35%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.42 (2H), 1.66 (2H), 1.88 (2H), 2.64 (2H), 3.55 (2H), 4.78 (2H), 6.69 (2H), 7.21 (1H), 7.64 (1H), 8.09 (1H) ppm.
  • Example LII 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-hydroxymethyl-2-nitro-phenyl ester
  • Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-nitro-phenol is reacted with 8.44 g of the compound that is prepared according to Example L6, and after working-up and purification, 3.78 g (10.4 mmol, 35%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.21-1.63 (14H), 1.76 (2H), 1.99 (1H), 2.63 (2H), 3.51 (2H), 4.78 (2H), 6.68 (2H), 7.21 (1H), 7.65 (1H), 8.10 (1H) ppm.
  • Example L12 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-hydroxymethyl-phenyl ester
  • 5.5 g (23.1 mmol) 4-tert-Butyldimethylsilanyloxymethyl-phenol, 20 mg N,N-Dimethyl-4-aminopyridine und 4.23 g (23.1 mmol) of the compound prepared according to Example L4 are dissolved in 92 ml of dichloromethane and cooled to 0° C. 4.77 g (23.1 mmol) N,N′-Dicyclohexylcarbodiimide in 24 ml dichloromethane are added dropwise to the cooled solution over a period of 15 min. The mixture is stirred for 16 hours at 23° C., filtered, the filtrate is concentrated and purified by chromatography on fine silica gel. 7.18 g (17.8 mmol, 77%) 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid-4-tert-butyldimethylsilanyloxymethyl-phenyl ester are isolated. 1.42 g thereof are dissolved in 63 ml THF and 7 ml water, and 0.67 g (3.52 mmol) p-toluenesulfonic acid are added at room temperature. After 16 hours, a saturated sodium bicarbonate solution is added and the mixture is extracted several times with ethyl acetate. The combined organic layers are washed with a saturated solution of sodium chloride, dried over sodium sulfate and purified by chromatography on fine silica gel. 0.43 g (1.5 mmol, 42%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.71 (1H), 2.04 (2H), 2.58 (2H), 3.67 (2H), 4.68 (2H), 6.71 (2H), 7.09 (2H), 7.38 (2H) ppm.
  • Example L13 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-hydroxymethyl-phenyl ester
  • Analogously to Example L12, 4.02 g (13.8 mmol) 4-tert-butyldimethylsilanyloxymethyl-phenol are reacted with 3.56 g (13.8 mmol) of the compound prepared according to Example L5. After working-up, purification and analogous treatment with p-toluenesulfonic acid, 3.19 g (10.1 mmol, 60%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.42 (2H), 1.59-1.83 (5H), 2.55 (2H), 3.55 (2H), 4.68 (2H), 6.69 (2H), 7.06 (2H), 7.38 (2H) ppm.
  • Example L14 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-hydroxymethyl-phenyl ester
  • Analogously to Example L12, 5.41 g (22.7 mmol) 4-tert-butyldimethylsilanyloxymethyl-phenol are reacted with 6.39 g (22.7 mmol) of the compound prepared according to Example L6. After working-up, purification and analogous treatment with p-toluenesulfonic acid, 5.91 g (15.3 mmol, 67%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.24-1.43 (12H), 1.57 (3H), 1.74 (2H), 2.55 (2H), 3.50 (2H), 4.69 (2H), 6.68 (2H), 7.06 (2H), 7.38 (2H) ppm.
  • Example L15 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-hydroxymethyl-2-chloro-phenyl ester
  • Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-chloro-phenol are reacted with 5.42 g of the compound prepared according to Example L4. After working-up and purification, 8.49 g (26.2 mmol, 89%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=2.07 (3H), 2.64 (2H), 3.67 (2H), 4.67 (2H), 6.72 (2H), 7.14 (1H), 7.27 (1H), 7.46 (1H) ppm.
  • Example L16 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-hydroxymethyl-2-chloro-phenyl ester
  • Analogously to Example L9, 5.0 g (29.6 mmol) of 4-hydroxymethyl-2-chloro-phenol are reacted with 6.24 g of the compound prepared according to Example L5. After working-up and purification, 5.11 g (14.5 mmol, 49%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.43 (2H), 1.66 (2H), 1.81 (3H), 2.61 (2H), 3.55 (2H), 4.67 (2H), 6.69 (2H), 7.10 (1H), 7.26 (1H), 7.46 (1H) ppm.
  • Example L17 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-hydroxymethyl-2-chloro-phenyl ester
  • Analogously to Example L9, 4.61 g (29 mmol) 4-hydroxymethyl-2-chloro-phenol are reacted with 8.17 g of the compound prepared according to Example L6. After working-up and purification, 4.61 g (10.9 mmol, 38%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.18-1.84 (17H), 2.61 (2H), 3.51 (2H), 4.67 (2H), 6.68 (2H), 7.10 (1H), 7.27 (1H), 7.46 (1H) ppm.
  • Example L18 1-(6-Hydroxy-hexyl)-pyrrol-2,5-dione
  • 26 ml of a 1.0 M solution of borane-tetrahydrofurane-complex in tetrahydrofurane is added to a solution of 5.0 g (23.7 mmol) of the acid prepared according to Example L5 in 50 ml of anhydrous tetrahydrofurane and the mixture is stirred for 3 hours at 23° C. The mixture is poured into a saturated solution of sodium bicarbonate, extracted several times with ethyl acetate, and the combined organic extracts are dried over sodium sulfate. After filtration and removal of the solvent, the residue is purified by chromatography. 2.53 g (12.8 mmol, 54%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.24-1.65 (9H), 3.52 (2H), 3.63 (2H), 6.68 (2H) ppm.
  • EXAMPLES OF THE SYNTHESIS OF EFFECTOR-LINKER CONJUGATES (EL) Example EL1 (4S,7R,8S,9S,13Z,16S)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester Example EL1a (4S,7R,8S,9S,13Z,16S)-7-Allyl-8-(tert-butyl-dimethyl-silanyloxy)-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione
  • The solution of 6.0 g (7.93 mmol) of (4S,7R,8S,9S,13Z,16S)-7-allyl-4,8-bis(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione, which was produced analogously to the process that is described in WO 00/66589, in 186 ml of anhydrous dichloromethane is mixed at 0° C. with 26.4 ml of a 20% solution of trifluoroacetic acid in dichloromethane, and it is stirred for 6 hours at 0° C. It is poured into saturated sodium bicarbonate solution, extracted with dichloromethane, the combined organic extracts are washed with water and dried over magnesium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel. 3.32 g (5.17 mmol, 65%) of the title compound is isolated as a colorless solid.
  • 1H-NMR (CDCl3): δ=0.09 (3H), 0.12 (3H), 0.93 (9H), 1.00 (3H), 1.06 (3H), 1.22 (3H), 1.70 (3H), 1.03-1.77 (5H), 1.95 (1H), 2.31-2.56 (6H), 2.83 (3H), 2.87 (1H), 3.00 (1H), 3.30 (1H), 3.90 (1H), 4.09 (1H), 4.94-5.03 (2H), 5.20 (1H), 5.77 (1H), 5.88 (1H), 7.34 (1H), 7.78 (1H), 7.95 (1H) ppm.
  • Example EL1b (4S,7R,8S,9S,13Z,16S)-3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-7-allyl-8-tert-butyl-dimethylsilyloxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • 50 mg (78 μmol) of the compound that is prepared according to Example ELla is dissolved in a mixture of 1.5 ml of trichloromethane and 1.5 ml of dimethylformamide, mixed with 144 mg of the linker that is prepared according to Example L4a, 79 mg of copper(I) chloride, and it is heated for 18 hours to 70° C. The crude mixture is purified by chromatography on thin-layer plates, and 51 mg (62 mmol, 80%) of the title compound is isolated as a colorless oil.
  • Example EL1 (4S,7R,8S,9S,13Z,16S)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • The solution of 41 mg (50 μmol) of the compound, prepared according to Example 1b, in a mixture of 0.8 ml of tetrahydrofuran and 0.8 ml of acetonitrile is mixed with 310 μl of hexafluorosilicic acid, 310 μl of hydrogen fluoride-pyridine complex, and it is stirred for 23 hours at 23° C. It is poured into a 5% sodium hydroxide solution, extracted with ethyl acetate, the combined organic extracts are washed with a saturated sodium chloride solution and dried over sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on thin-layer plates, and 26 mg (36.7 μmol, 73%) of the title compound is isolated as a colorless foam.
  • 1H-NMR (CDCl3): δ=0.99 (3H), 1.14 (3H), 1.17 (3H), 1.20-1.51 (3H), 1.54-1.87 (6H), 1.70 (3H), 2.22 (1H), 2.28-3.02 (9H), 2.83 (3H), 3.31 (1H), 3.45 (1H), 3.68 (1H), 4.44+4.83 (1H), 4.99 (1H), 5.03 (1H), 5.15 (1H), 5.61 (1H), 5.72 (1H), 5.91 (1H), 6.68 (2H), 7.36 (1H), 7.78 (1H), 7.90 (1H) ppm.
  • Example EL2 (1S,3S,7S,10R,11S,12S,16R)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester (B)
  • The solution of 44 mg (62.2 μmol) of the compound, prepared according to Example 1, in 2.0 ml of dichloromethane is cooled to −50° C. and mixed in portions over a period of 1.5 hours with a total of 1.7 ml of an approximately 0.1 M solution of dimethyl dioxiran in acetone. It is poured into a saturated sodium thiosulfate solution, extracted with dichloromethane, and the combined organic extracts are dried over sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on thin-layer plates, and 22.7 mg (31.4 μmol, 50%) of title compound A as well as 7.6 mg (10.5 μmol, 17%) of title compound B are isolated in each case as a colorless foam.
  • 1H-NMR (CDCl3) of A: δ=1.01 (3H), 1.14 (3H), 1.16 (3H), 1.20-1.94 (8H), 1.32 (3H), 2.11-2.74 (9H), 2.82 (1H), 2.84 (3H), 3.30 (2H), 3.48 (2H), 3.68 (1H), 4.36+4.93 (1H), 4.99 (1H), 5.04 (1H), 5.54 (1H), 5.69 (1H), 6.05 (1H), 6.68 (2H), 7.32 (1H), 7.80 (1H), 7.88 (1H) ppm.
  • 1H-NMR (CDCl3) of B: δ=1.02 (6H), 1.26 (3H), 1.33 (1H), 1.23-2.27 (12H), 2.54-2.78 (4H), 2.82 (3H), 2.91 (1H), 3.13 (1H), 3.40 (2H), 3.66 (1H), 4.11 (1H), 4.84 (1H), 4.95 (1H), 5.01 (1H), 5.70 (1H), 5.81+5.93 (1H), 6.04+6.13 (1H), 6.69 (2H), 7.35 (1H), 7.75 (1H), 7.90+7.99 (1H) ppm.
  • Example EL3 (4S,7R,8S,9S,13Z,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester Example EL3a (4S,7R,8S,9S,13Z,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-7-allyl-8-tert-butyl-dimethylsilyloxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • 50 mg (78 μmol) of the compound that is prepared according to Example ELla is reacted analogously to Example ELIb with the linker that is produced according to Example L5a, and after purification, 39 mg (45.9 μmol, 59%) of the title compound is isolated as a colorless oil.
  • Example EL3 (4S,7R,8S,9S,13Z,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • 84 mg (98.8 μmol) of the compound that is prepared according to Example EL3a is reacted analogously to Example EL1, and after purification, 43 mg (58.4 μmol, 59%) of the title compound is isolated as a colorless foam.
  • 1H-NMR (CDCl3): δ=0.89 (3H), 0.96 (3H), 0.85-1.97 (17H), 1.12 (3H), 2.16-3.01 (10H), 2.82 (3H), 3.44 (1H), 3.65 (1H), 4.41+4.53 (1H), 4.98 (1H), 5.03 (1H), 5.15 (1H), 5.60 (1H), 5.71 (1H), 5.90 (1H), 6.68 (2H), 7.35 (1H), 7.77 (1H), 7.89+7.96 (1H) ppm.
  • Example EL4 (1S,3S,7S,10R,11S,12S,16R)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester (B)
  • 26 mg (35.3 μmol) of the compound that is prepared according to Example EL3 is reacted analogously to Example EL2, and after purification, 9.1 mg (12.1 μmol, 34%) of title compound A as well as 3.0 mg (4.0 μmol, 1%) of title compound B are isolated in each case as a colorless foam.
  • 1H-NMR (CDCl3) of A: δ=0.83-1.94 (15H), 0.98 (3H), 1.14 (3H), 1.16 (3H), 1.32 (3H), 2.15-2.82 (8H), 2.84 (3H), 3.44 (2H), 3.51 (1H), 3.66 (1H), 4.46 (1H), 4.99 (1H), 5.04 (1H), 5.54 (1H), 5.69 (1H), 6.06 (1H), 6.68 (2H), 7.33 (1H), 7.80 (1H), 7.89 (1H) ppm.
  • 1H-NMR (CDCl3) of B: δ=0.78-2.74 (23H), 1.01 (3H), 1.03 (3H), 1.33 (3H), 2.82 (3H), 2.91 (1H), 3.14 (1H), 3.39 (1H), 3.47 (2H), 3.67 (1H), 4.12 (1H), 4.49 (1H), 4.92-5.06 (2H), 5.53+5.80 (1H), 5.69 (1H), 6.11 (1H), 6.68 (2H), 7.34 (1H), 7.74+7.79 (1H), 7.89+8.02 (1H) ppm.
  • Example EL5 (4S,7R,8S,9S,13Z,16S)-[10-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-decyl]-carbamic acid-7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester Example EL5a (4S,7R,8S,9S,13Z,16S)-[10-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-decyl]-carbamic acid-7-allyl-8-tert-butyl-dimethylsilyloxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • 50 mg (78 μmol) of the compound that is prepared according to Example EL1a is reacted analogously to Example EL1b with the linker that is produced according to Example L6a, and after purification, 56 mg (60.8 μmol, 78%) of the title compound is isolated as a colorless oil.
  • Example EL5 (4S,7R,8S,9S,13Z,16S)-[10-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-decyl]-carbamic acid-7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • 20 mg (21.7 μmol) of the compound that is prepared according to Example EL5a is reacted analogously to Example EL1, and after purification, 10 mg (12.4 μmol, 57%) of the title compound is isolated as a colorless foam.
  • 1H-NMR (CDCl3): δ=0.91-1.87 (22H), 0.97 (3H), 1.13 (3H), 1.17 (3H), 1.70 (3H), 2.18-2.69 (8H), 2.80 (1H), 2.82 (3H), 2.96 (1H), 3.47 (1H), 3.50 (2H), 3.66 (1H), 3.97+4.36 (1H), 4.98 (1H), 5.04 (1H), 5.16 (1H), 5.61 (1H), 5.72 (1H), 5.91 (1H), 6.68 (2H), 7.37 (1H), 7.77 (1H), 7.90+7.97 (1H) ppm.
  • Example EL6 (1S,3S,7S,10R,11S,12S,16R)-[10-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-decyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-[10-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-decyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester (B)
  • 18 mg (22 μmol) of the compound that is prepared according to Example EL5 is reacted analogously to Example EL2, and after purification, 9.2 mg (11.2 μmol, 51%) of title compound A as well as 3.2 mg (3.9 μmol, 18%) of title compound B are isolated in each case as a colorless foam.
  • 1H-NMR (CDCl3) of A: δ=0.98 (3H), 1.14 (3H), 1.16 (3H), 1.32 (3H), 1.03-1.67 (21H), 1.71-1.94 (3H), 2.18-2.78 (9H), 2.83 (3H), 3.50 (3H), 3.66 (1H), 3.87+4.43 (1H), 4.98 (1H), 5.04 (1H), 5.53 (1H), 5.69 (1H), 6.07 (1H), 6.68 (2H), 7.33 (1H), 7.80 (1H), 7.89+7.93 (1H) ppm.
  • 1H-NMR (CDCl3) of B: δ=0.80-1.64 (21H), 1.01 (3H), 1.03 (3H), 1.25 (3H), 1.33 (3H), 1.79-2.25 (5H), 2.34+3.14 (1H), 2.52-2.76 (4H), 2.81 (3H), 2.91 (1H), 3.40 (1H), 3.51 (2H), 3.67+3.82 (1H), 4.13+4.26 (1H), 4.46 (1H), 4.94 (1H), 5.01 (1H), 5.70 (1H), 5.81+5.94 (1H), 6.05+6.12 (1H), 6.68 (2H), 7.36 (1H), 7.74 (1H), 7.91+8.02 (1H) ppm.
  • Example EL7 (4S,7R,8S,9S,13Z,16S)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester Example EL7a (4S,7R,8S,9S,13Z,16S)-7-Allyl-4-(tert-butyl-dimethyl-silanyloxy)-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione
  • The solution of 5.3 g (7.01 mmol) of (4S,7R,8S,9S,13Z,16S)-7-allyl-4,8-bis(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione, which was produced analogously to the process described in WO 00/66589, in a mixture of 85 ml of tetrahydrofuran and 85 ml of acetonitrile, is mixed with 31.7 ml of hexafluorosilicic acid, cooled to 0° C., 8.1 ml of trifluoroacetic acid is added dropwise, and it is stirred for 20 hours at 0° C. It is poured into water, neutralized by adding a saturated sodium bicarbonate solution and extracted several times with ethyl acetate. The combined organic extracts are washed with saturated sodium chloride solution, dried over sodium sulfate, and the residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel. 2.82 g (4.39 mmol, 63%) of the title compound is isolated as a colorless solid.
  • 1H-NMR (CDCl3): δ=−0.09 (3H), 0.08 (3H), 0.84 (9H), 1.08 (3H), 1.10 (3H), 1.12 (3H), 1.21-1.86 (5H), 1.70 (3H), 2.15 (1H), 2.29-2.97 (8H), 2.84 (3H), 3.14 (1H), 3.96 (1H), 4.03 (1H), 4.97-5.06 (2H), 5.23 (1H), 5.61 (1H), 5.77 (1H), 7.35 (1H), 7.79 (1H), 7.93 (1H) ppm.
  • Example EL7b (4S,7R,8S,9S,13Z,16S)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-7-allyl-4-tert-butyl-dimethylsilyloxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester
  • 100 mg (156 μmol) of the compound that is prepared according to Example EL7a is reacted analogously to Example EL1b with the linker that is produced according to Example L4a, and after purification, 121 mg (147 μmol, 94%) of the title compound is isolated as a colorless oil.
  • Example EL7 (4S,7R,8S,9S,13Z,16S)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester.
  • 46 mg (56 μmol) of the compound that is prepared according to Example EL7b is reacted analogously to Example EL1, and after purification, 17 mg (24 μmol, 43%) of the title compound is isolated as a colorless foam.
  • 1H-NMR (CDCl3): δ=0.99-1.30 (2H), 1.03 (3H), 1.07 (3H), 1.21 (3H), 1.51-1.97 (6H), 1.72 (3H), 2.27-2.61 (6H), 2.83 (3H), 2.88 (1H), 3.09 (1H), 3.14 (2H), 3.51 (1H), 3.58 (2H), 4.04 (1H), 4.96-5.04 (2H), 5.12 (1H), 5.19 (1H), 5.28 (1H), 5.75 (1H), 5.86 (1H), 6.66 (2H), 7.35 (1H), 7.78 (1H), 7.96 (1H) ppm.
  • Example EL8 (1S,3S,7S,10R,11S,12S,16R)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-11-yl ester (A) and (1S,3S,7S,10R,11S,12S,16R)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]-heptadec-11-yl ester (B)
  • 29 mg (41 μmol) of the compound that is prepared according to Example EL7 is reacted analogously to Example EL2, and after purification, 18 mg (24.9 μmol, 61%) of title compound A as well as 3.0 mg (4.1 μmol, 10%) of title compound B are isolated in each case as a colorless foam.
  • 1H-NMR (CDCl3) of A: δ=0.98 (3H), 1.05 (3H), 1.24 (3H), 1.26 (3H), 1.12-1.83 (9H), 2.12-2.46 (4H), 2.59 (2H), 2.76 (1H), 2.84 (3H), 3.14 (2H), 3.59 (3H), 3.98 (1H), 4.10 (1H), 4.95-5.02 (2H), 5.17 (2H), 5.77 (1H), 6.19 (1H), 6.70 (2H), 7.38 (1H), 7.82 (1H), 7.97 (1H) ppm.
  • 1H-NMR (CDCl3) of B: δ=0.96 (3H), 1.01 (3H), 1.13-1.86 (11H), 1.28 (3H), 1.32 (1H), 2.16-2.50 (6H), 2.84 (3H), 3.02 (1H), 3.15 (2H), 3.50 (1H), 3.61 (2H), 3.88 (1H), 4.19 (1H), 4.96-5.04 (2H), 5.13 (1H), 5.28 (1H), 5.78 (1H), 6.33 (1H), 6.71 (2H), 7.36 (1H), 7.81 (1H), 7.96 (1H) ppm.
  • Example EL9 (4S,7R,8S,9S,13Z,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester Example EL9a (4S,7R,8S,9S,13Z,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-7-allyl-4-tert-butyl-dimethylsilyloxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester
  • 100 mg (156 μmol) of the compound that is prepared according to Example EL7a is reacted analogously to Example EL1b with the linker that is produced according to Example L5a, and after purification, (65.9 μmol, 42%) of the title compound is isolated as a colorless oil.
  • Example EL9 (4S,7R,8S,9S,13Z,16S)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester
  • 56 mg (65.9 μmol) of the compound that is prepared according to Example EL7b is reacted analogously to Example EL1, and after purification, 24.7 mg (33.6 μmol, 51%) of the title compound is isolated as a colorless foam.
  • 1H-NMR (CDCl3): δ=0.97-1.84 (11H), 1.02 (3H), 1.07 (3H), 1.20 (3H), 1.71 (3H), 1.91 (1H), 2.27-2.57 (6H), 2.84 (3H), 2.88 (1H), 2.95 (1H), 3.16 (2H), 3.51 (3H), 4.02 (1H), 4.46+4.83 (1H), 4.94-5.03 (2H), 5.15 (1H), 5.20 (1H), 5.74 (1H), 5.84 (1H), 6.68 (2H), 7.35 (1H), 7.80 (1H), 7.96 (1H) ppm.
  • Example EL10 (1S,3S,7S,10R,l I S,12S,16R)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-11-yl ester (A) and (1S,3S,7S,10R,11S,12S,16R)-[5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-pentyl]-carbamic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]hepta-dec-11-yl ester (B)
  • 24.7 mg (33.6 μmol) of the compound that is prepared according to Example EL9 is reacted analogously to Example EL2, and after purification, 16.7 mg (22.2 μmol, 66%) of title compound A as well as 2.0 mg (2.7 μmol, 8%) of title compound B are isolated in each case as a colorless foam.
  • 1H-NMR (CDCl3) of A: δ=0.98 (3H), 1.04 (3H), 1.10-1.75 (13H), 1.23 (3H), 1.26 (3H), 2.09-2.62 (6H), 2.75 (1H), 2.84 (3H), 3.15 (2H), 3.51 (2H), 3.57 (1H), 3.99 (1H), 4.08 (1H), 4.46+4.74 (1H), 4.93-5.02 (2H), 5.18 (1H), 5.76 (1H), 6.18 (1H), 6.68 (2H), 7.38 (1H), 7.82 (1H), 7.97 (1H) ppm.
  • 1H-NMR (CDCl3) of B: δ=0.83-1.85 (13H), 0.95 (3H), 1.01 (3H), 1.27 (3H), 1.32 (3H), 2.17-2.49 (6H), 2.84 (3H), 3.03 (1H), 3.17 (2H), 3.48 (1H), 3.53 (2H), 3.86 (1H), 4.18 (1H), 4.66 (1H), 4.94-5.03 (2H), 5.27 (1H), 5.76 (1H), 6.33 (1H), 6.69 (2H), 7.35 (1H), 7.81 (1H), 7.96 (1H) ppm.
  • Example EL11 (1S,3S(E),7S,10R,11S,12S,16R)-[3-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-propyl]-carbamic acid 7-[3-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-propylcarbamoyloxy]-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-5,9-dioxo-4,17-dioxa-bicyclo[14.1. O]heptadec-11-yl ester
  • 10 mg (19.7 μmol) of (1S,3S(E),7S,10R,11S,12S,16R)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadecane is reacted analogously to Example EL1b with the linker that is produced according to Example L4a, and after purification, 7 mg (8.06 μmol, 41%) of the title compound is isolated as a colorless oil.
  • 1H-NMR (CDCl3): δ=0.88-2.20 (13H), 1.03 (3H), 1.05 (3H), 1.10 (3H), 1.24 (3H), 1.28 (3H), 2.08 (3H), 2.63-2.85 (4H), 2.71 (3H), 2.99-3.25 (3H), 3.41-3.50 (3H), 3.62 (2H), 4.88-5.70 (5H), 6.52 (1H), 6.69 (2H), 6.71 (2H), 7.02 (1H) ppm.
  • Example EL12 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester Example EL12a (4S,7R,8S,9S,13Z,16S)-Chloroformic acid-7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester
  • The solution of 1.0 g (1.56 mmol) of the compound, prepared according to Example EL1a, in 20 ml of dichloromethane is mixed at 0° C. with the solution of 285 mg of triphosgene in 6 ml of dichloromethane, 160 μl of pyridine, and it is stirred for 2.5 hours at 23° C. It is concentrated by evaporation, the residue is dissolved in ethyl acetate, washed with water and saturated sodium chloride solution, and dried over magnesium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel. 1.08 g (1.53 mmol, 98%) of the title compound is isolated.
  • Example EL12b (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester
  • The solution of 267 mg (370 μmol) of the compound, prepared according to Example EL12a, in 16 ml of ethyl acetate, is mixed with 51 μl of triethylamine, 700 mg of the compound that is prepared according to Example L8, and it is stirred for 16 hours at 23° C. It is poured into water, extracted several times with ethyl acetate, the combined organic extracts are washed with saturated sodium chloride solution and dried over magnesium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel. 188 mg (219 μmol, 59%) of the title compound is isolated.
  • Example EL12 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester
  • Analogously to Example EL1, 248 mg (289 μmol) of the compound that is prepared according to Example EL12a is reacted, and after working-up and purification, 149 mg (201 μmol, 69%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.08 (3H), 1.14 (3H), 1.26 (3H), 1.04-1.90 (8H), 2.24-2.57 (6H), 2.68-2.99 (3H), 2.81 (3H), 3.45 (1H), 3.72 (1H), 5.02 (1H), 5.06 (1H), 5.17 (1H), 5.65 (1H), 5.74 (1H), 5.98 (1H), 6.79 (2H), 6.88 (2H), 7.21 (2H), 7.33 (1H), 7.64 (1H), 7.97 (1H) ppm.
  • Example EL13 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester
  • Analogously to Example EL2, 144 mg (194 μmol) of the compound that is prepared according to Example EL12 is reacted, and after working-up and purification, 89 mg (117 μmol, 60%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.10 (3H), 1.14 (3H), 1.27 (3H), 1.32 (3H), 1.19-1.85 (7H), 2.08-2.89 (8H), 2.81 (3H), 3.50 (1H), 3.70 (1H), 5.02 (1H), 5.07 (1H), 5.58 (1H), 5.72 (1H), 6.10 (1H), 6.81 (2H), 6.88 (2H), 7.21 (2H), 7.31 (1H), 7.68 (1H), 7.93 (1H) ppm.
  • Example EL14 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester Example EL14a (4S,7R,8S,9S,13Z,16S)-Chloroformic acid-7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester
  • Analogously to Example EL12a, 1.0 g (1.56 mmol) of the compound that is prepared according to Example EL7a is reacted, and 1.05 g (1.49 mmol, 96%) of the title compound is isolated.
  • Example EL14b (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester
  • The solution of 313 mg (0.44 mmol) of the compound, prepared according to Example EL14a, in 19 ml of ethyl acetate is mixed with 840 mg of the compound that is prepared according to Example L8, 61.5 μl of triethylamine, and it is stirred for 16 hours at 23° C. It is mixed with water, extracted several times with ethyl acetate, the combined organic extracts are washed with saturated sodium chloride solution and dried over sodium sulfate. The residue that is obtained after filtration and removal of the solvent is purified by chromatography on fine silica gel. 298 mg (348 μmol, 79%) of the title compound is isolated.
  • Example EL14 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester
  • Analogously to Example EL1, 304 mg (355 μmol) of the compound that is prepared according to Example EL14a is reacted, and after working-up and purification, 67 mg (90 μmol, 25%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.09 (3H), 1.11 (3H), 0.84-2.02 (7H), 1.27 (3H), 1.72 (3H), 2.29-2.58 (6H), 2.84 (3H), 2.89 (1H), 2.96 (1H), 3.63 (1H), 4.03 (1H), 5.06 (2H), 5.23 (2H), 5.80 (1H), 5.85 (1H), 6.86 (2H), 7.30 (2H), 7.35 (1H), 7.39 (1H), 7.80 (1H), 7.96 (1H) ppm.
  • Example EL15 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-phenyl ester
  • Analogously to Example EL2, 67 mg (90 μmol) of the compound that is prepared according to Example EL14 is reacted, and after working-up and purification, 32 mg (42 μmol, 47%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.05 (3H), 1.06 (3H), 1.25 (3H), 1.35 (3H), 1.21-1.90 (7H), 2.18 (2H), 2.33-2.67 (4H), 2.73 (1H), 2.85 (3H), 3.79 (1H), 4.11 (1H), 4.33 (1H), 5.02 (1H), 5.07 (1H), 5.31 (1H), 5.81 (1H), 6.27 (1H), 6.86 (2H), 7.29 (2H), 7.35-7.41 (3H), 7.83 (1H), 7.99 (1H) ppm.
  • Example EL16 (1S,3S(E),7S,10R,11S,12S,16R)—N-[1-({4-[2-(7,11-Dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-3-yl)-propenyl]-thiazol-2-ylmethyl}-carbamoyl)-ethyl]-3-methyltrisulfanyl-N-methyl-propionamide
  • The solution of 7 mg (13 μmol) of (1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-aminomethyl-thiazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-8,8,10,12,16-penta-methyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione, which was produced analogously to the process described in WO 99/01124, in 0.5 ml of dichloromethane is mixed with 7 mg of the compound that is prepared according to Example L1, 0.4 mg of 4-dimethylaminopyridine and 4 mg of N,N′-dicyclohexylcarbodiimide are added, and it is stirred for 20 minutes at 23° C. Precipitated urea is filtered out, and it is purified by chromatography on a preparative thin-layer plate. 5 mg (6.5 μmol, 50%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.00 (3H), 1.08 (3H), 1.17 (3H), 1.23-1.77 (5H), 1.28 (3H), 1.36 (3H), 1.39 (3H), 1.88-2.13 (3H), 2.10 (3H), 2.37 (1H), 2.49-2.66 (2H), 2.55 (3H), 2.77-2.92 (4H), 2.97 (3H), 3.16 (2H), 3.31 (1H), 3.77 (1H), 4.08 (1H), 4.19 (1H), 4.62 (1H), 4.76 (1H), 5.25 (1H), 5.45 (1H), 6.57 (1H), 7.01 (1H), 7.06 (1H) ppm.
  • Example EL17 (1S,3S(E),7S,10R,11S,12S,16R)-2-[Methyl-(3-methyltrisulfanyl-propionyl)-amino]-propionic acid-4-[2-(7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-3-yl)-propenyl]-thiazol-2-ylmethyl ester
  • Analogously to Example EL16, 10 mg (19 μmol) of (1S,3S(E),7S,10R,11S, 12S,16R)-7,11-dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione, which was produced analogously to the process that is described in WO 99/01124, is reacted, and 2.2 mg (2.8 μmol, 15%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.09 (3H), 1.18 (3H), 1.27 (1H), 1.28 (3H), 1.32-1.76 (3H), 1.37 (3H), 1.47 (3H), 1.95 (1H), 2.06 (1H), 2.12 (3H), 2.38 (1H), 2.51-2.63 (2H), 2.56 (3H), 2.78-2.92 (5H), 2.97+3.01 (3H), 3.13-3.35 (3H), 3.71 (1H), 3.77 (1H), 4.00 (1H), 4.18 (1H), 5.25 (1H), 5.39 (2H), 5.45 (1H), 6.60 (1H), 7.17 (1H) ppm.
  • Example EL18 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester Example EL18a 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL12b, 200 mg (284 μmol) of the compound that is prepared according to Example EL12a is reacted with 770 mg of the compound that is prepared according to Example L9, and after working-up and purification, 129 mg (129 μmol, 45%) of the title compound is isolated.
  • Example EL18 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL1, 129 mg (129 μmol) of the compound that is prepared according to Example EL18a is reacted, and after working-up and purification, 71 mg (80 μmol, 62%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=0.88-2.11 (11H), 1.02 (3H), 1.14 (3H), 1.71 (3H), 2.23-2.56 (6H), 2.63-2.71 (3H), 2.74 (3H), 2.97 (1H), 3.39 (1H), 3.68 (3H), 4.58 (1H), 4.78 (1H), 5.01 (1H), 5.05 (1H), 5.18 (1H), 5.56 (1H), 5.71 (1H), 5.97 (1H), 6.73 (2H), 7.19 (1H), 7.31 (1H), 7.36 (1H), 7.75 (1H), 7.77 (1H), 7.95 (1H) ppm.
  • Example EL19 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (B)
  • Analogously to Example EL2, 71 mg (80 μmol) of the compound that is prepared according to Example EL18 is reacted, and after working-up and purification, 41 mg (45 μmol, 57%) of title compound A as well as 12 mg (13 μmol, 17%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.04 (3H), 1.14 (3H), 1.16 (3H), 1.32 (3H), 1.34-1.84 (6H), 2.01-2.74 (12H), 2.78 (3H), 2.86 (1H), 3.44 (1H), 3.68 (3H), 4.56 (1H), 4.74 (1H), 5.01 (1H), 5.06 (1H), 5.47 (1H), 5.70 (1H), 6.07 (1H), 6.73 (2H), 7.20 (1H), 7.32 (1H), 7.36 (1H), 7.77 (1H), 7.81 (1H), 7.90 (1H) ppm.
  • Example EL20 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester Example EL20a 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL12b, 243 mg (345 μmol) of the compound that is prepared according to Example EL12a is reacted with 1 g of the compound that is prepared according to Example L10, and after working-up and purification, 25 mg (24 μmol, 7%) of the title compound is isolated.
  • Example EL20 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL1, 212 mg (206 μmol) of the compound that is prepared according to Example EL20a is reacted, and after working-up and purification, 117 mg (128 μmol, 62%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.14 (6H), 1.04-2.78 (20H), 1.70 (3H), 2.74 (3H), 2.97 (1H), 3.39 (1H), 3.56 (2H), 3.68 (1H), 4.11 (1H), 4.58 (1H), 4.77 (1H), 5.00 (1H), 5.05 (1H), 5.18 (1H), 5.56 (1H), 5.71 (1H), 5.97 (1H), 6.69 (2H), 7.12 (1H), 7.29 (1H), 7.36 (1H), 7.75 (2H), 7.94 (1H) ppm.
  • Example EL21 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (B)
  • Analogously to Example EL2, 117 mg (128 μmol) of the compound that is prepared according to Example EL20 is reacted, and after working-up and purification, 63 mg (68 μmol, 53%) of title compound A as well as 19 mg (20 μmol, 16%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.03 (3H), 1.14 (3H), 1.15 (3H), 1.32 (3H), 1.07-2.75 (22H), 2.77 (3H), 2.86 (1H), 3.44 (1H), 3.55 (2H), 3.69 (1H), 4.55 (1H), 4.77 (1H), 5.01 (1H), 5.06 (1H), 5.47 (1H), 5.70 (1H), 6.08 (1H), 6.70 (2H), 7.14 (1H), 7.31 (1H), 7.35 (1H), 7.76 (1H), 7.80 (1H), 7.90 (1H) ppm.
  • Example EL22 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester Example EL22a 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL12b, 243 mg (345 μmol) of the compound that is prepared according to Example EL12a is reacted with 1.19 g of the compound that is prepared according to Example L11, and after working-up and purification, 171 mg (155 μmol, 45%) of the title compound is isolated.
  • Example EL22 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL1, 171 mg (155 μmol) of the compound that is prepared according to Example EL22a is reacted, and after working-up and purification, 108 mg (110 μmol, 71%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.14 (6H), 0.88-2.56 (28H), 1.70 (3H), 2.63 (2H), 2.71 (1H), 2.74 (3H), 2.98 (1H), 3.39 (1H), 3.50 (2H), 3.69 (1H), 4.58 (1H), 4.77 (1H), 5.00 (1H), 5.05 (1H), 5.17 (1H), 5.56 (1H), 5.71 (1H), 5.97 (1H), 6.68 (2H), 7.11 (1H), 7.29 (1H), 7.36 (1H), 7.75 (1H), 7.76 (1H), 7.94 (1H) ppm.
  • Example EL23 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1R,3S,7S,10R,11S,12S, 16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (B)
  • Analogously to Example EL2, 108 mg (110 μmol) of the compound that is prepared according to Example EL22 is reacted, and after working-up and purification, 65.9 mg (65.8 μmol, 60%) of title compound A as well as 19.8 mg (20 μmol, 18%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.04 (3H), 1.14 (3H), 1.15 (3H), 1.63 (3H), 0.92-1.85 (23H), 2.10-2.81 (9H), 2.77 (3H), 2.86 (1H), 3.45 (1H), 3.51 (2H), 3.69 (1H), 4.55 (1H), 4.74 (1H), 5.01 (1H), 5.06 (1H), 5.47 (1H), 5.70 (1H), 6.08 (1H), 6.68 (2H), 7.13 (1H), 7.31 (1H), 7.35 (1H), 7.77 (1H), 7.80 (1H), 7.90 (1H) ppm.
  • Example EL24 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester Example EL24a 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL12b, 271 mg (385 μmol) of the compound that is prepared according to Example EL14a is reacted with 1.04 g of the compound that is prepared according to Example L9, and after working-up and purification, 193 mg (193 μmol, 50%) of the title compound is isolated.
  • Example EL24 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL1, 193 mg (193 μmol) of the compound that is prepared according to Example EL24a is reacted, and after working-up and purification, 107 mg (120 μmol, 62%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.07 (3H), 1.23 (3H), 0.97-2.13 (8H), 1.71 (3H), 2.28-2.54 (6H), 2.67 (2H), 2.84 (3H), 2.88 (1H), 2.95 (1H), 3.56 (1H), 3.67 (2H), 4.01 (1H), 4.93 (1H), 4.98 (1H), 5.17 (1H), 5.22 (3H), 5.70 (1H), 5.84 (1H), 6.72 (2H), 7.30 (1H), 7.34 (1H), 7.69 (1H), 7.80 (1H), 7.95 (1H), 8.13 (1H) ppm.
  • Example EL25 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (B)
  • Analogously to Example EL2, 102 mg (115 μmol) of the compound that is prepared according to Example EL19 is reacted, and after working-up and purification, 65 mg (72 μmol, 63%) of title compound A as well as 3 mg (3.3 μmol, 3%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.97 (3H), 1.04 (3H), 1.23 (3H), 1.31 (3H), 1.10-2.75 (18H), 2.85 (3H), 3.68 (2H), 3.71 (1H), 4.09 (1H), 4.28 (1H), 4.92 (1H), 4.97 (1H), 5.20 (2H), 5.23 (1H), 5.72 (1H), 6.26 (1H), 6.72 (2H), 7.30 (1H), 7.37 (1H), 7.68 (1H), 7.83 (1H), 7.98 (1H), 8.13 (1H) ppm.
  • Example EL26 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8 S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester Example EL26a 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL12b, 273 mg (387 μmol) of the compound that is prepared according to Example EL14a is reacted with 1.12 g of the compound that is prepared according to Example L10, and after working-up and purification, 69 mg (67 μmol, 17%) of the title compound is isolated.
  • Example EL26 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL1, 69 mg (67 μmol) of the compound that is prepared according to Example EL26a is reacted, and after working-up and purification, 26 mg (28 μmol, 42%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=0.93 (3H), 0.95 (3H), 1.16 (3H), 1.60 (3H), 0.98-2.61 (20H), 2.73 (3H), 2.77 (1H), 3.45 (3H), 3.83 (1H), 4.05 (1H), 4.83 (1H), 4.88 (1H), 5.05 (1H), 5.13 (3H), 5.62 (1H), 5.74 (1H), 6.61 (2H), 7.16 (1H), 7.26 (1H), 7.60 (1H), 7.70 (1H), 7.88 (1H), 8.03 (1H) ppm.
  • Example EL27 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-1-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (B)
  • Analogously to Example EL2, 38 mg (41 mmol) of the compound that is prepared according to Example EL19 is reacted, and after working-up and purification, 14 mg (15 μmol, 37%) of title compound A as well as 2 mg (2 μmol, 5%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.96 (3H), 1.03 (3H), 1.08-1.86 (13H), 1.23 (3H), 1.30 (3H), 2.16 (2H), 2.23-2.78 (7H), 2.83 (3H), 3.54 (2H), 3.71 (1H), 4.09 (1H), 4.27 (1H), 4.91 (1H), 4.96 (1H), 5.21 (3H), 5.72 (1H), 6.25 (1H), 6.69 (2H), 7.23 (1H), 7.36 (1H), 7.67 (1H), 7.82 (1H), 7.96 (1H), 8.11 (1H) ppm.
  • Example EL28 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester Example EL28a 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL12b, 273 mg (387 μmol) of the compound that is prepared according to Example EL14a is reacted with 1.34 g of the compound that is prepared according to Example L11, and after working-up and purification, 196 mg (178 μmol, 46%) of the title compound is isolated.
  • Example EL28 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example EL1, 196 mg (178 μmol) of the compound that is prepared according to Example EL28a is reacted, and after working-up and purification, 100 mg (101 μmol, 57%) of the title compound is isolated.
  • 1H-NMR (CDCl3): δ=1.03 (3H), 1.06 (3H), 1.23 (3H), 1.70 (3H), 0.99-1.81 (21H), 1.91 (1H), 2.27-2.53 (6H), 2.63 (2H), 2.83 (3H), 2.88 (1H), 2.95 (1H), 3.51 (2H), 3.56 (1H), 4.00 (1H), 4.92 (1H), 4.98 (1H), 5.13-5.26 (4H), 5.71 (1H), 5.83 (1H), 6.68 (2H), 7.23 (1H), 7.34 (1H), 7.67 (1H), 7.79 (1H), 7.95 (1H), 8.13 (1H) ppm.
  • Example EL29 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[1,0-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1R,3S,7S,10R,11S, 12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (B)
  • Analogously to Example EL2, 100 mg (101 μmol) of the compound that is prepared according to Example EL19 is reacted, and after working-up and purification, 21 mg (21 μmol, 21%) of title compound A as well as 2 mg (2 μmol, 2%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.97 (3H), 1.04 (3H), 1.23 (3H), 0.84-1.84 (24H), 1.71 (3H), 2.15 (2H), 2.23-2.68 (5H), 2.71 (1H), 2.83 (3H), 3.50 (2H), 3.71 (1H), 4.09 (1H), 4.27 (1H), 4.91 (1H), 4.96 (1H), 5.19 (2H), 5.23 (1H), 5.72 (1H), 6.26 (1H), 6.68 (2H), 7.23 (1H), 7.36 (1H), 7.66 (1H), 7.83 (1H), 7.97 (1H), 8.12 (1H) ppm.
  • Example EL30 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester Example EL30a 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL12b, 218 mg (309 μmol) of the compound prepared according to Example EL12a are reacted with 314 mg of the compound prepared according to Example L12. After working-up and purification, 103 mg (118 μmol, 35%) of the title compound are isolated.
  • Example EL30 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL1, 103 mg (118 μmol) of the compound prepared according to Example EL30a are reacted. After working-up and purification, 13 mg (15 μmol, 13%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=0.88-1.84 (7H), 1.00 (3H), 1.12 (3H), 1.14 (3H), 1.71 (3H), 2.04 (2H), 2.23-2.71 (8H), 2.74 (3H), 2.99 (1H), 3.40 (1H), 3.67 (3H), 4.48 (1H), 4.76 (1H), 5.00 (1H), 5.04 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.98 (1H), 6.72 (2H), 7.01 (2H), 7.08 (2H), 7.37 (1H), 7.76 (1H), 7.96 (1H) ppm.
  • Example EL31 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.0]heptadec-7-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL2, 13 mg (15 μmol) of the compound prepared according to Example EL30 are reacted. After working-up and purification, 5.7 mg (6.6 μmol, 44%) of the title compound are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.04 (3H), 1.14 (3H), 1.16 (3H), 1.32 (3H), 1.34-1.84 (6H), 2.04 (2H), 2.15-2.75 (10H), 2.78 (3H), 2.85 (1H), 3.44 (1H), 3.67 (3H), 4.48 (1H), 4.73 (1H), 5.01 (1H), 5.05 (1H), 5.47 (1H), 5.70 (1H), 6.07 (1H), 6.72 (2H), 7.02 (2H), 7.13 (2H), 7.31 (1H), 7.77 (1H), 7.93 (1H) ppm.
  • Example EL32 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester Example EL32a 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL12b, 218 mg (309 μmol) of the compound prepared according to Example EL12a are reacted with 396 mg of the compound prepared according to Example L13. After working-up and purification, 157 mg (159 μmol, 51%) of the title compound are isolated.
  • Example EL32 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL1, 157 mg (159 mmol) of the compound prepared according to Example EL32a are reacted. After working-up and purification, 32 mg (37 μmol, 23%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=0.99 (3H), 1.12 (3H), 1.14 (3H), 1.04-2.84 (20H), 1.70 (3H), 2.75 (3H), 3.00 (1H), 3.40 (1H), 3.55 (2H), 3.68 (1H), 4.48 (1H), 4.76 (1H), 5.00 (1H), 5.04 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.98 (1H), 6.69 (2H), 6.98 (2H), 7.07 (2H), 7.37 (1H), 7.76 (2H), 7.96 (1H) ppm.
  • Example EL33 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[1,0-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL2, 30 mg (34 μmol) of the compound prepared according to Example EL32 are reacted. After working-up and purification, 13 mg (15 μmol, 44%) of the title compound are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.01 (3H), 1.13 (3H), 1.14 (3H), 1.32 (3H), 1.07-2.75 (22H), 2.78 (3H), 2.85 (1H), 3.44 (1H), 3.55 (2H), 3.69 (1H), 4.48 (1H), 4.73 (1H), 5.01 (1H), 5.05 (1H), 5.45 (1H), 5.70 (1H), 6.08 (1H), 6.69 (2H), 6.99 (2H), 7.12 (2H), 7.32 (1H), 7.77 (1H), 7.92 (1H) ppm.
  • Example EL34 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester Example EL34a 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL12b, 218 mg (309 μmol) of the compound prepared according to Example EL12a are reacted with 422 mg of the compound prepared according to Example L14. After working-up and purification, 77 mg (73 μmol, 24%) of the title compound are isolated.
  • Example EL34 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL1, 77 mg (73 μmol) of the compound prepared according to Example EL34a are reacted. After working-up and purification, 14 mg (15 μmol, 20%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=0.99 (3H), 1.11 (3H), 1.14 (3H), 0.88-1.88 (22H), 1.70 (3H), 2.24-2.58 (8H), 2.67 (1H), 2.75 (3H), 3.00 (1H), 3.40 (1H), 3.51 (2H), 3.68 (1H), 4.48 (1H), 4.76 (1H), 5.00 (1H), 5.04 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.98 (1H), 6.68 (2H), 6.98 (2H), 7.07 (2H), 7.37 (1H), 7.76 (1H), 7.96 (1H) ppm.
  • Example EL35 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,1S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL2, 14 mg (15 μmol) of the compound prepared according to Example EL34 are reacted. After working-up and purification, 6 mg (6 μmol, 42%) of the title compound are isolated.
  • 1H-NMR (CDCl3) von A: δ=1.01 (3H), 1.14 (6H), 1.20-1.90 (26H), 2.12-2.58 (8H), 2.71 (1H), 2.77 (3H), 2.85 (1H), 3.44 (1H), 3.51 (2H), 3.69 (1H), 4.48 (1H), 4.73 (1H), 5.01 (1H), 5.05 (1H), 5.45 (1H), 5.70 (1H), 6.08 (1H), 6.68 (2H), 6.99 (2H), 7.12 (2H), 7.31 (1H), 7.77 (1H), 7.92 (1H) ppm.
  • Example EL36 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester Example EL36a 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL12b, 330 mg (470 μmol) of the compound prepared according to Example EL14a are reacted with 544 mg of the compound prepared according to Example L12. After working-up and purification, 170 mg (178 μmol, 38%) of the title compound are isolated.
  • Example EL36 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL1, 170 mg (178 μmol) of the compound prepared according to Example EL36a are reacted. After working-up and purification, 21 mg (24 μmol, 14%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.07 (3H), 1.22 (3H), 0.97-2.13 (8H), 1.70 (3H), 2.28-2.63 (8H), 2.84 (3H), 2.82-2.95 (2H), 3.55 (1H), 3.67 (2H), 3.97 (1H), 4.92 (1H), 4.96 (1H), 5.15 (1H), 5.16 (2H), 5.22 (1H), 5.70 (1H), 5.82 (1H), 6.68 (2H), 7.08 (2H), 7.34 (1H), 7.41 (2H), 7.79 (1H), 7.94 (1H) ppm.
  • Example EL37 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[1,0-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester (A) and 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester (B)
  • 32 mg (38 μmol) of the compound prepared according to Example EL36 are reacted. After working-up and purification, 10.1 mg (12 μmol, 31%) of title compound A as well as 1.2 mg (1.4 μmol, 3.7%) of title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.96 (3H), 1.04 (3H), 1.24 (3H), 1.29 (3H), 0.90-1.78 (7H), 2.04 (2H), 2.16 (2H), 2.20-2.62 (6H), 2.72 (1H), 2.84 (3H), 3.67 (2H), 3.69 (1H), 4.07 (1H), 4.20 (1H), 4.91 (1H), 4.95 (1H), 5.14 (2H), 5.22 (1H), 5.72 (1H), 6.24 (1H), 6.71 (2H), 7.10 (2H), 7.37 (1H), 7.40 (2H), 7.88 (1H), 7.97 (1H) ppm.
  • Example EL38 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester Example EL38a 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL12b, 450 mg (640 μmol) of the compound prepared according to Example EL14a are reacted with 811 mg of the compound prepared according to Example L13. After working-up and purification, 108 mg (110 μmol, 17%) of the title compound are isolated.
  • Example EL38 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester
  • 108 mg (110 μmol) of the compound prepared according to Example EL38a in 22 ml dichloromethane are mixed with 1.06 ml (2.74 mmol) of a 20% solution of trifluoroacetic acid in dichloromethane. After 16 hours the mixture is diluted with dichloromethane and poured into a saturated solution of sodium bicarbonate. The mixture is extracted several times with dichloromethane and the combined organic extracts are dried over sodium sulfate. The residue obtained by filtration and removal of the solvent is purified by chromatography on fine silica gel. 64 mg (73 μmmol, 67%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.07 (3H), 1.16 (3H), 1.70 (3H), 0.98-1.96 (12H), 2.25-2.58 (8H), 2.83 (3H), 2.90 (2H), 3.55 (3H), 3.97 (1H), 4.92 (1H), 4.96 (1H), 5.15 (1H), 5.16 (2H), 5.22 (1H), 5.70 (1H), 5.82 (1H), 6.69 (2H), 7.08 (2H), 7.34 (1H), 7.41 (2H), 7.79 (1H), 7.94 (1H) ppm.
  • Example EL39 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[1,0-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester (A) und 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1. O]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester (B)
  • Analogously to Example EL2, 64 mg (73 μmol) of the compound prepared according to Example EL38 are reacted. After working-up and purification, 25 mg (28 mmol, 39%) of the title compound A as well as 5.4 mg (6.1 μmol, 8.3%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.96 (3H), 1.04 (3H), 1.13-1.82 (13H), 1.23 (3H), 1.29 (3H), 2.15 (2H), 2.22-2.64 (6H), 2.71 (1H), 2.84 (3H), 3.54 (2H), 3.69 (1H), 4.08 (1H), 4.20 (1H), 4.91 (1H), 4.95 (1H), 5.14 (2H), 5.22 (1H), 5.72 (1H), 6.24 (1H), 6.69 (2H), 7.07 (2H), 7.37 (1H), 7.40 (2H), 7.82 (1H), 7.97 (1H) ppm.
  • Example EL40 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester Example EL40a 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL12b, 450 mg (640 μmol) of the compound prepared according to Example EL14a are reacted with 992 mg of the compound prepared according to Example L14. After working-up and purification, 67 mg (63 μmol, 10%) of the title compound are isolated.
  • Example EL40 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example EL38, 67 mg (63 μmol) of the compound prepared according to Example EL40a are reacted. After working-up and purification, 23 mg (24 μmol, 38%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.07 (3H), 1.21 (3H), 1.70 (3H), 0.99-1.81 (21H), 1.91 (1H), 2.27-2.58 (8H), 2.83 (3H), 2.89 (2H), 3.50 (2H), 3.55 (1H), 3.97 (1H), 4.92 (1H), 4.96 (1H), 5.15 (1H), 5.16 (2H), 5.20 (1H), 5.70 (1H), 5.82 (1H), 6.68 (2H), 7.08 (2H), 7.34 (1H), 7.41 (2H), 7.79 (1H), 7.94 (1H) ppm.
  • Example EL41 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester (A) and 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[1,0-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester (B)
  • Analogously to Example EL2, 33 mg (35 μmol) of the compound prepared according to Example EL40 are reacted. After working-up and purification, 13 mg (14 mmol, 38%) of the title compound A as well as 4 mg (4 μmol, 12%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.96 (3H), 1.04 (3H), 1.23 (3H), 0.91-1.78 (27H), 2.16 (2H), 2.23-2.68 (5H), 2.71 (1H), 2.84 (3H), 3.50 (2H), 3.69 (1H), 4.07 (1H), 4.20 (1H), 4.91 (1H), 4.95 (1H), 5.14 (2H), 5.22 (1H), 5.72 (1H), 6.24 (1H), 6.68 (2H), 7.07 (2H), 7.37 (1H), 7.40 (2H), 7.82 (1H), 7.97 (1H) ppm.
  • Example EL42 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chlor-phenyl ester Example EL42a 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chlor-phenyl ester
  • Analogously to Example EL12b, 329 mg (467 μmol) of the compound prepared according to Example EL12a are reacted with 885 mg of the compound prepared according to Example L15. After working-up and purification, 126 mg (127 μmol, 27%) of the title compound are isolated.
  • Example EL42 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chlor-phenyl ester
  • Analogously to Example EL1, 126 mg (127 μmol) of the compound prepared according to Example EL42a are reacted. After working-up and purification, 79 mg (90 μmol, 71%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.13 (3H), 1.14 (3H), 1.70 (3H), 1.31-1.72 (17H), 2.75 (3H), 2.99 (1H), 3.40 (1H), 3.68 (3H), 4.49 (1H), 4.70 (1H), 5.00 (1H), 5.05 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.98 (1H), 6.72 (2H), 6.99 (1H), 7.07 (1H), 7.10 (1H), 7.36 (1H), 7.75 (1H), 7.95 (1H) ppm.
  • Example EL43 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chlor-phenyl ester (A) and 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1R,3S,7S,10R,11S,12S, 16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chlor-phenyl ester (B)
  • Analogously to Example EL2, 66 mg (75 μmol) of the compound prepared according to Example EL42 are reacted. After working-up and purification, 29.4 mg (32.9 μmol, 44%) of the title compound A as well as 9.7 mg (10.9 μmol, 14%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.03 (3H), 1.13 (3H), 1.15 (3H), 1.23 (1H), 1.31 (3H), 1.34-2.74 (17H), 2.78 (3H), 2.86 (1H), 3.44 (1H), 3.67 (3H), 4.46 (1H), 4.67 (1H), 5.01 (1H), 5.05 (1H), 5.46 (1H), 5.70 (1H), 6.08 (1H), 6.72 (2H), 7.01 (1H), 7.08 (1H), 7.16 (1H), 7.31 (1H), 7.77 (1H), 7.92 (1H) ppm.
  • Example EL44 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chloro-phenyl ester Example EL44a 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL12b, 329 mg (467 μmol) of the compound prepared according to Example EL12a are reacted with 821 mg of the compound prepared according to Example L16. After working-up and purification, 120 mg (118 μmol, 25%) of the title compound are isolated.
  • Example EL44 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL1, 120 mg (118 μmol) of the compound prepared according to Example EL44a are reacted. After working-up and purification, 60 mg (66 μmol, 56%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.05 (1H), 1.13 (3H), 1.14 (3H), 1.33-1.89 (12H), 1.71 (3H), 2.24-2.70 (8H), 2.74 (3H), 3.00 (1H), 3.40 (1H), 3.55 (2H), 3.69 (1H), 4.49 (1H), 4.71 (1H), 5.00 (1H), 5.05 (1H), 5.18 (1H), 5.56 (1H), 5.71 (1H), 5.99 (1H), 6.70 (2H), 6.95 (1H), 7.03 (1H), 7.11 (1H), 7.37 (1H), 7.75 (1H), 7.95 (1H), ppm.
  • Example EL45 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,1S,12S, 16S)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (B)
  • Analogously to Example EL2, 60 mg (66 μmol) of the compound prepared according to Example EL44 is reacted. After working-up and purification, 32 mg (34.7 μmol, 53%) of the title compound A as well as 11 mg (11.9 μmol, 18%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) von A: δ=1.02 (3H), 1.14 (3H), 1.15 (3H), 1.24 (1H), 1.32 (3H), 1.34-2.74 (21H), 2.77 (3H), 2.86 (1H), 3.44 (1H), 3.55 (2H), 3.69 (1H), 4.46 (1H), 4.67 (1H), 5.01 (1H), 5.05 (1H), 5.46 (1H), 5.70 (1H), 6.09 (1H), 6.69 (2H), 6.99 (1H), 7.04 (1H), 7.16 (1H), 7.32 (1H), 7.77 (1H), 7.92 (1H) ppm.
  • Example EL46 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chloro-phenyl ester Example EL46a 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL12b, 323 mg (459 μmol) of the compound prepared according to Example EL12a are reacted with 790 mg of the compound prepared according to Example L17. After working-up and purification, 96 mg (88 μmol, 19%) of the title compound are isolated.
  • Example EL46 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yloxycarbonyloxymethyl]-2-chlor-phenyl ester
  • Analogously to Example EL1, 59 mg (54 μmol) of the compound prepared according to Example EL46a are reacted. After working-up and purification, 27 mg (27.7 μmol, 51%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.13 (3H), 1.15 (3H), 1.23-2.70 (31H), 1.71 (3H), 2.74 (3H), 2.99 (1H), 3.40 (1H), 3.51 (2H), 3.68 (1H), 4.49 (1H), 4.70 (1H), 5.00 (1H), 5.04 (1H), 5.18 (1H), 5.56 (1H), 5.71 (1H), 5.99 (1H), 6.68 (2H), 6.95 (1H), 7.03 (1H), 7.11 (1H), 7.36 (1H), 7.75 (1H), 7.95 (1H) ppm.
  • Example EL47 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[1,0-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1R,3S,7S,10R, II S, 12S,16S)-[10-allyl-1′-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (B)
  • Analogously to Example EL2, 27 mg (27 μmol) of the compound prepared according to Example EL46 are reacted. After working-up and purification, 14 mg (14.1 μmol, 52%) of the title compound A as well as 5 mg (5.0 μmol, 19%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.02 (3H), 1.13 (3H), 1.15 (3H), 1.19-1.84 (27H), 2.09-2.74 (8H), 2.77 (3H), 2.85 (1H), 3.44 (1H), 3.50 (2H), 3.69 (1H), 4.46 (1H), 4.67 (1H), 5.01 (1H), 5.06 (1H), 5.45 (1H), 5.70 (1H), 6.08 (1H), 6.68 (2H), 6.99 (1H), 7.04 (1H), 7.16 (1H), 7.31 (1H), 7.76 (1H), 7.91 (1H) ppm.
  • Example EL48 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester Example EL48a 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL12b, 340 mg (482 μmol) of the compound prepared according to Example EL14a are reacted with 885 mg of the compound prepared according to Example L15. After working-up and purification, 151 mg (152 μmol, 32%) of the title compound are isolated.
  • Example EL48 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL1, 151 mg (152 μmol) of the compound prepared according to Example EL48a are reacted. After working-up and purification, 46 mg (52 μmol, 34%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.07 (3H), 1.26 (3H), 1.71 (3H), 1.15-2.44 (13H), 2.51 (2H), 2.65 (2H), 2.84 (3H), 2.91 (1H), 3.55 (1H), 3.68 (2H), 3.99 (1H), 4.92 (1H), 4.98 (1H), 5.06-5.25 (4H), 5.70 (1H), 5.83 (1H), 6.72 (2H), 7.17 (1H), 7.31 (1H), 7.34 (1H), 7.49 (1H), 7.80 (1H), 7.96 (1H) ppm.
  • Example EL49 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-butanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (B)
  • Analogously to Example EL2, 46 mg (52 μmol) of the compound prepared according to Example EL48 are reacted. After working-up and purification, 6 mg (6.7 μmol, 13%) of the title compound A as well as 1 mg (1.1 μmol, 2%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.97 (3H), 1.04 (3H), 1.24 (3H), 1.30 (3H), 1.14-2.76 (21H), 2.85 (3H), 3.68 (3H), 4.09 (1H), 4.23 (1H), 4.91 (1H), 4.97 (1H), 5.11 (2H), 5.22 (1H), 5.72 (1H), 6.25 (1H), 6.72 (2H), 7.16 (1H), 7.30 (1H), 7.37 (1H), 7.48 (1H), 7.83 (1H), 7.99 (1H) ppm.
  • Example EL50 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8 S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester Example EL50a 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL12b, 340 mg (482 μmol) of the compound prepared according to Example EL14a are reacted with 848 mg of the compound prepared according to Example L16. After working-up and purification, 158 mg (155 μmol, 32%) of the title compound are isolated.
  • Example EL50 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL1, 158 mg (155 μmol) of the compound prepared according to Example EL50a are reacted. After working-up and purification, 58 mg (64 μmol, 41%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.08 (3H), 1.22 (3H), 1.71 (3H), 0.90-2.45 (17H), 2.51 (2H), 2.61 (2H), 2.83 (3H), 2.88 (1H), 3.55 (3H), 3.97 (1H), 4.92 (1H), 4.98 (1H), 5.10-5.25 (4H), 5.71 (1H), 5.83 (1H), 6.69 (2H), 7.12 (1H), 7.30 (1H), 7.34 (1H), 7.49 (1H), 7.79 (1H), 7.95 (1H) ppm.
  • Example EL51 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,1S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 6-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (B)
  • Analogously to Example EL2, 58 mg (64 μmol) of the compound prepared according to Example EL50 are reacted. After working-up and purification, 25 mg (27 μmol, 42%) of the title compound A as well as 7 mg (7.6 μmol, 12%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.97 (3H), 1.04 (3H), 1.24 (3H), 1.31 (3H), 1.12-2.65 (21H), 2.72 (1H), 2.84 (3H), 3.55 (2H), 3.71 (1H), 4.08 (1H), 4.22 (1H), 4.91 (1H), 4.96 (1H), 5.12 (2H), 5.23 (1H), 5.72 (1H), 6.24 (1H), 6.69 (2H), 7.13 (1H), 7.30 (1H), 7.37 (1H), 7.48 (1H), 7.83 (1H), 7.97 (1H) ppm.
  • Example EL52 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester Example EL52a 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL12b, 355 mg (476 μmol) of the compound prepared according to Example EL14a are reacted with 790 mg of the compound prepared according to Example L17. After working-up and purification, 122 mg (112 μmol, 24%) of the title compound are isolated.
  • Example EL52 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(4S,7R,8S,9S,13Z,16S)-[7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example EL1, 122 mg (112 μmol) of the compound prepared according to Example EL52a are reacted. After working-up and purification, 28 mg (29 μmol, 26%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.08 (3H), 1.22 (3H), 1.11-2.48 (26H), 1.71 (3H), 2.51 (2H), 2.61 (2H), 2.83 (3H), 2.89 (1H), 3.46-3.58 (3H), 3.98 (1H), 4.61 (2H), 4.92 (1H), 4.98 (1H), 5.11-5.25 (3H), 5.70 (1H), 5.83 (1H), 6.68 (2H), 7.00 (1H), 7.18 (1H), 7.29 (1H), 7.36 (1H), 7.79 (1H), 7.95 (1H) ppm.
  • Example EL53 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (A) and 11-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoic acid 4-(1R,3S,7S,10R,11S,12S,16S)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester (B)
  • Analogously to Example EL2, 28 mg (29 μmol) of the compound prepared according to Example EL52 are reacted. After working-up and purification, 6.2 mg (6.3 μmol, 22%) of the title compound A as well as 0.3 mg (0.3 μmol, 1%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.97 (3H), 1.04 (3H), 1.23 (3H), 0.82-1.83 (25H), 2.16 (2H), 2.24-2.65 (7H), 2.72 (1H), 2.84 (3H), 3.50 (2H), 3.70 (1H), 4.08 (1H), 4.21 (1H), 4.92 (1H), 4.97 (1H), 5.11 (2H), 5.22 (1H), 5.72 (1H), 6.25 (1H), 6.67 (2H), 7.12 (1H), 7.30 (1H), 7.37 (1H), 7.49 (1H), 7.83 (1H), 7.98 (1H) ppm.
  • Example EL54 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-butyrylamino]-benzyl ester Example EL54a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-amino-benzyl ester
  • Analogously to Example EL12b, 160 mg (227 μmol) of the compound prepared according to Example EL12a are reacted with 191 mg (4-amino-3-nitro-phenyl)-methanol. After working-up and purification, 51 mg (61 μmol, 27%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=0.07 (3H), 0.12 (3H), 0.92 (9H), 0.99 (3H), 1.03 (3H), 1.23 (3H), 0.85-1.74 (8H), 1.93 (1H), 2.28 (1H), 2.38 (2H), 2.49 (1H), 2.66 (1H), 2.77 (3H), 2.82 (1H), 2.97 (1H), 3.22 (1H), 3.87 (1H), 4.85-5.03 (4H), 5.22 (1H), 5.42 (1H), 5.74 (1H), 5.89 (1H), 6.10 (2H), 6.68 (1H), 7.19 (1H), 7.32 (1H), 7.73 (1H), 7.90 (1H), 7.98 (1H) ppm.
  • Example EL54b (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester
  • 153 mg (837 μmol) of the compound prepared according to Example L4 are mixed with 1.82 ml thionyl chloride and refluxed for 3.5 hours. The mixture is diluted with toluene and evaporated. A solution of 130 mg (156 μmol) of the compound prepared according to Example 54a in 6 ml dichloromethane is added, 75 μl pyridine are admixed, and the mixture is stirred at 23° C. for 16 hours. It is poured into water, extracted several times with dichloromethane, the combined organic extracts are washed with water and dried over sodium sulfate. After filtration and removal of the solvent, the residue is purified by chromatography. 101 mg (101 μmol, 65%) of the title compound are isolated.
  • Example EL54 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester
  • Analogously to Example EL1, 101 mg (101 μmol) of the compound prepared according to Example EL54a are reacted. After working-up and purification, 62 mg (70 μmol, 69%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.14 (6H), 1.39 (2H), 1.64 (2H), 1.71 (3H), 1.80 (2H), 2.07 (2H), 2.23-2.54 (8H), 2.69 (1H), 2.77 (3H), 2.96 (1H), 3.39 (1H), 3.65 (2H), 3.69 (1H), 4.52 (1H), 4.75 (1H), 5.00 (1H), 5.05 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.98 (1H), 6.71 (2H), 7.31 (1H), 7.36 (1H), 7.77 (1H), 7.91 (1H), 7.93 (1H), 8.67 (1H), 10.28 (1H) ppm.
  • Example EL55 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester (B)
  • Analogously to Example EL2, 62 mg (70 μmol) of the compound prepared according to Example EL54 are reacted. After working-up and purification, 38 mg (42 μmol, 60%) of the title compound A as well as 11 mg (12 μmol, 17%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.03 (3H), 1.13 (3H), 1.17 (3H), 1.32 (3H), 1.20-2.58 (17H), 2.70 (1H), 2.79 (3H), 2.85 (1H), 3.43 (1H), 3.65 (2H), 3.69 (1H), 4.52 (1H), 4.72 (1H), 5.01 (1H), 5.05 (1H), 5.45 (1H), 5.70 (1H), 6.07 (1H), 6.71 (2H), 7.31 (1H), 7.35 (1H), 7.78 (1H), 7.88 (1H), 7.95 (1H), 8.68 (1H), 10.28 (1H) ppm.
  • Example EL56 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoylamino]-3-nitro-benzyl ester Example EL56a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoylamino]-3-nitro-benzyl ester
  • Analogously to Example EL54b, 50 mg (60 μmol) of the compound prepared according to Example EL54a are reacted with the compound prepared according to Example L5. After working-up and purification, 58 mg (56 μmol, 94%) of the title compound are isolated.
  • Example EL56 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoylamino]-3-nitro-benzyl ester
  • Analogously to Example EL1, 82 mg (80 μmol) of the compound prepared according to Example EL56a are reacted. After working-up and purification, 34 mg (37 μmol, 46%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.14 (6H), 1.70 (3H), 1.31-2.57 (20H), 2.69 (1H), 2.78 (3H), 2.97 (1H), 3.39 (1H), 3.54 (2H), 3.69 (1H), 4.51 (1H), 4.74 (1H), 5.00 (1H), 5.05 (1H), 5.18 (1H), 5.55 (1H), 5.78 (1H), 5.98 (1H), 6.69 (2H), 7.31 (1H), 7.36 (1H), 7.76 (1H), 7.92 (1H), 7.93 (1H), 8.71 (1H), 10.32 (1H) ppm.
  • Example EL57 (1S,3S,7S,10R,1S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoylamino]-3-nitro-benzyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoylamino]-3-nitro-benzyl ester (B)
  • Analogously to Example EL2, 34 mg (37 μmol) of the compound prepared according to Example EL56 are reacted. After working-up and purification, 19 mg (20.4 μmol, 55%) of the title compound A as well as 6 mg (6.4 μmol, 17%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.02 (3H), 1.14 (3H), 1.15 (3H), 1.39 (2H), 1.70 (3H), 1.65 (2H), 1.80 (2H), 2.06 (2H), 2.23-2.55 (8H), 2.69 (1H), 2.77 (3H), 2.97 (1H), 3.39 (1H), 3.65 (2H), 3.69 (1H), 4.52 (1H), 4.75 (1H), 5.00 (1H), 5.05 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.97 (1H), 6.71 (2H), 7.31 (1H), 7.36 (1H), 7.76 (1H), 7.91 (1H), 7.93 (1H), 8.68 (1H), 10.28 (1H) ppm.
  • Example EL58 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[11-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoylamino]-3-nitro-benzyl ester Example EL58a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[11-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoylamino]-3-nitro-benzyl ester
  • Analogously to Example EL54b, 130 mg (156 μmol) of the compound prepared according to Example EL54a are reacted with the compound prepared according to Example L6. After working-up and purification, 120 mg (109 μmol, 70%) of the title compound are isolated.
  • Example EL58 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 4-[11-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoylamino]-3-nitro-benzyl ester
  • Analogously to Example EL1, 120 mg (109 μmol) of the compound prepared according to Example EL58a are reacted. After working-up and purification, 89 mg (90 μmol, 83%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.13 (3H), 1.14 (3H), 1.70 (3H), 1.04-2.56 (30H), 2.69 (1H), 2.78 (3H), 2.97 (1H), 3.39 (1H), 3.50 (2H), 3.69 (1H), 4.52 (1H), 4.74 (1H), 5.01 (1H), 5.05 (1H), 5.18 (1H), 5.55 (1H), 5.71 (1H), 5.97 (1H), 6.67 (2H), 7.31 (1H), 7.36 (1H), 7.76 (1H), 7.91 (1H), 7.93 (1H), 8.72 (1H), 10.33 (1H) ppm.
  • Example EL59 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[11-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoylamino]-3-nitro-benzyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[11-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoylamino]-3-nitro-benzyl ester (B)
  • Analogously to Example EL2, 89 mg (90 μmol) of the compound prepared according to Example EL58 are reacted. After working-up and purification, 45 mg (μmol, %) of the title compound A as well as 15 mg (μmol, %) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.03 (3H), 1.13 (3H), 1.16 (3H), 1.20-1.83 (26H), 2.09-2.57 (8H), 2.72 (1H), 2.79 (3H), 2.86 (1H), 3.44 (1H), 3.50 (2H), 3.69 (1H), 4.51 (1H), 4.72 (1H), 5.01 (1H), 5.05 (1H), 5.45 (1H), 5.71 (1H), 6.08 (1H), 6.68 (2H), 7.32 (1H), 7.35 (1H), 7.78 (1H), 7.88 (1H), 7.96 (1H), 8.73 (1H), 10.33 (1H) ppm.
  • Example EL60 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl ester Example EL60a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl ester
  • Analogously to Example EL12b, 1.25 g (1.77 mmol) of the compound prepared according to Example EL12a are reacted with 1.75 g of the compound prepared according to L18. After working-up and purification, 119 mg (138 μmol, 8%) of the title compound are isolated.
  • Example EL60 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-8-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-4-yl ester 6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl ester
  • Analogously to Example EL1, 101 mg (117 μmol) of the compound prepared according to Example EL60a are reacted. After working-up and purification, 68 mg (91 μmol, 77%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.12-1.87 (19H), 1.70 (3H), 2.23-2.56 (6H), 2.66 (1H), 2.83 (3H), 2.97 (1H), 3.40 (2H), 3.48 (2H), 3.68 (1H), 3.75 (1H), 5.01 (1H), 5.05 (1H), 5.17 (2H), 5.51 (1H), 5.72 (1H), 5.97 (1H), 6.68 (2H), 7.35 (1H), 7.78 (1H), 7.92 (1H) ppm.
  • Example EL61 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 6-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexyl ester (B)
  • Analogously to Example EL2, 68 mg (91 μmol) of the compound prepared according to Example EL60 are reacted. After working-up and purification, 26 mg (34 μmol, 37%) of the title compound A as well as 10 mg (13 μmol, 14%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=1.03 (3H), 1.14 (3H), 1.18 (3H), 1.32 (3H), 1.10-1.85 (15H), 2.11-2.43 (5H), 2.52 (1H), 2.70 (1H), 2.84 (3H), 2.86 (1H), 3.38-3.51 (4H), 3.69 (1H), 3.74 (1H), 5.01 (1H), 5.05 (1H), 5.42 (1H), 5.72 (1H), 6.07 (1H), 6.69 (2H), 7.32 (1H), 7.80 (1H), 7.90 (1H) ppm.
  • Example EL62 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-butyrylamino]-benzyl ester Example EL62a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-amino-benzyl ester
  • Analogously to Example EL12b, 1.73 g (2.46 mmol) of the compound prepared according to Example EL14a are reacted with 2.06 g (4-amino-3-nitro-phenyl)-methanol. After working-up and purification, 420 mg (502 μmol, 20%) of the title compound are isolated.
  • 1H-NMR (CDCl3): 6=−0.10 (3H), 0.09 (3H), 0.84 (9H), 0.96-1.21 (2H), 1.01 (3H), 1.12 (3H), 1.15 (3H), 1.70 (3H), 1.61-1.85 (4H), 2.11 (1H), 2.29 (2H), 2.54-2.78 (3H), 2.83 (3H), 2.90 (1H), 3.31 (1H), 3.93 (1H), 4.86 (1H), 4.96 (1H), 5.04 (1H), 5.11 (1H), 5.25 (2H), 5.55 (1H), 5.72 (1H), 6.14 (2H), 6.82 (1H), 7.35 (1H), 7.43 (1H), 7.79 (1H), 7.91 (1H), 8.18 (1H) ppm.
  • Example EL62b (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester
  • Analogously to Example EL54b, 140 mg (167 μmol) of the compound prepared according to Example EL62a are reacted with the compound prepared according to Example L4. After working-up and purification, 150 mg (150 μmol, 90%) of the title compound are isolated.
  • Example EL62 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-butyrylamino]-benzyl ester
  • Analogously to Example EL1, 145 mg (145 μmol) of the compound prepared according to Example EL62a are reacted. After working-up and purification, 67 mg (76 mmol, 52%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.08 (3H), 1.22 (3H), 1.70 (3H), 1.09-2.12 (8H), 2.27-2.55 (8H), 2.83 (3H), 2.87 (2H), 3.56 (1H), 3.65 (2H), 3.99 (1H), 4.93 (1H), 4.98 (1H), 5.12-5.26 (4H), 5.71 (1H), 5.83 (1H), 6.70 (2H), 7.33 (1H), 7.67 (1H), 7.79 (1H), 7.94 (1H), 8.25 (1H), 8.79 (1H), 10.32 (1H) ppm.
  • Example EL63 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-butyrylamino]-3-nitro-benzyl ester (B)
  • Analogously to Example EL2, 67 mg (76 μmol) of the compound prepared according to Example EL62 are reacted. After working-up and purification, 37 mg (41 μmol, 54%) of the title compound A as well as 12 mg (13 μmol, 18%) of the title compound B are isolated.
  • Example EL64 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-hexanoylamino]-benzyl ester Example EL64a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl) hexanoylamino]-3-nitro-benzyl ester
  • Analogously to Example EL54b, 140 mg (167 μmol) of the compound prepared according to Example EL62a are reacted with the compound prepared according to Example L5. After working-up and purification, 155 mg (150 μmol, 90%) of the title compound are isolated.
  • Example EL64 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-hexanoylamino]-benzyl ester
  • Analogously to Example EL1, 150 mg (151 μmol) of the compound prepared according to Example EL64a are reacted. After working-up and purification, 68 mg (74 μmol, 49%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.02 (3H), 1.07 (3H), 1.23 (3H), 1.70 (3H), 1.16-2.54 (20H), 2.84 (3H), 2.87 (2H), 3.54 (3H), 3.98 (1H), 4.92 (1H), 4.98 (1H), 5.13-5.26 (4H), 5.71 (1H), 5.83 (1H), 6.68 (2H), 7.33 (1H), 7.67 (1H), 7.79 (1H), 7.94 (1H), 8.26 (1H), 8.82 (1H), 10.37 (1H) ppm.58
  • Example EL65 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl) hexanoylamino]-3-nitro-benzyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-hexanoylamino]-3-nitro-benzyl ester (B)
  • Analogously to Example EL2, 68 mg (74 μmol) of the compound prepared according to Example EL64 are reacted. After working-up and purification, 44 mg (47 μmol, 64%) of the title compound A as well as 3 mg (3 μmol, 4%) of the title compound B are isolated.
  • Example EL66 (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-undecanoylamino]-benzyl ester Example EL66a (4S,7R,8S,9S,13Z,16S)-Carbonic acid 7-allyl-4-(tert-butyl-dimethyl-silanyloxy)-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl) undecanoylamino]-3-nitro-benzyl ester
  • Analogously to Example EL54b, 140 mg (167 μmol) of the compound prepared according to Example EL62a are reacted with the compound prepared according to Example L6. After working-up and purification, 165 mg (150 μmol, 90%) of the title compound are isolated.
  • Example EL66 (4S,7R,8S,9S,13Z,16S) Carbonic acid 7-allyl-4-hydroxy-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-2,6-dioxo-oxacyclohexadec-13-en-8-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-3-nitro-undecanoylamino]-benzyl ester
  • Analogously to Example EL1, 145 mg (132 μmol) of the compound prepared according to Example EL66a are reacted. After working-up and purification, 106 mg (108 μmol, 82%) of the title compound are isolated.
  • 1H-NMR (CDCl3): δ=1.01 (3H), 1.06 (3H), 1.24 (3H), 1.70 (3H), 1.14-2.57 (30H), 2.82 (3H), 2.89 (2H), 3.50 (2H), 3.55 (1H), 4.01 (1H), 4.92 (1H), 4.99 (1H), 5.11-5.28 (4H), 5.70 (1H), 5.83 (1H), 6.69 (2H), 7.34 (1H), 7.67 (1H), 7.79 (1H), 7.96 (1H), 8.26 (1H), 8.85 (1H), 10.38 (1H) ppm.
  • Example EL67 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl) undecanoylamino]-3-nitro-benzyl ester (A) and (1R,3S,7S,10R,11S,12S,16S)-Carbonic acid 10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-[4-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-undecanoylamino]-3-nitro-benzyl ester (B)
  • Analogously to Example EL2, 106 mg (108 μmol) of the compound prepared according to Example EL66 are reacted. After working-up and purification, 58 mg (58 μmol, 54%) of the title compound A as well as 6 mg (6 μmol, 6%) of the title compound B are isolated.
  • 1H-NMR (CDCl3) of A: δ=0.96 (3H), 1.04 (3H), 1.23 (3H), 1.31 (3H), 0.81-1.83 (23H), 2.16 (2H), 2.23-2.66 (6H), 2.71 (1H), 2.85 (3H), 3.5 (2H), 3.72 (1H), 4.08 (1H), 4.24 (1H), 4.92 (1H), 4.97 (1H), 5.15 (2H), 5.22 (1H), 5.72 (1H), 6.25 (1H), 6.68 (2H), 7.36 (1H), 7.66 (1H), 7.83 (1H), 7.97 (1H), 8.25 (1H), 8.83 (1H), 10.37 (1H) ppm.
  • EXAMPLES OF THE SYNTHESIS OF EFFECTOR-LINKER RECOGNITION UNITS (ELE) Example ELE1 [3-(3-(AP39r) Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-propyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester Example ELE1a Reduction of an Antibody Fragment with Terminal Cysteine
  • A single-strand protein that consists of the variable domains of the heavy and light antibody chains (single-chain Fv, scFv) of the amino acid sequence EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFSMSWVRQAPGKGLEWVSSISGSS GTTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPFPYFDYWGQ GTLVTVSSGDGSSGGSGGASEIVLTQSPGTLSLSPGERATLSCRASQSVSSSFLAW YQQKPGQAPRLLIYYASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQT GRIPPTFGQGTKVEIKGGGCA (SEQ ID NO: 1), which specifically recognizes the fibronectin domain B (ED-B) and is referred to as AP39, is used for coupling after reduction of the c-terminal cysteine.
  • For reduction, the solution of 661 μg of tri(2-carboxyethyl)phosphine-hydrochloride in 2361l of PBS is mixed with the solution of 1.54 mg of AP39 in 1.12 ml of PBS, and it is incubated for 1.5 hours at 25° C. Desalination is done with a pre-equilibrated NAP-5 column at a concentration of 450 μl of AP39r and 50 μl of PBS. After elution with 1 ml of PBS, the reduced antibody fragment AP39r is isolated in a concentration of 0.7 mg/ml.
  • Example ELE1 (1S,3S,7S(3RS), 10R,11S,12S,16R)-[3-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-propyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester
  • 22.5 μl of a 1.38 mmol solution of effector-linker conjugate A in DMSO, prepared according to Example EL2, is added to 400 μl of the solution, prepared according to Example ELE1a, of the reduced antibody fragment, mixed with 77.5 μl of PBS and incubated at 25° C. for 1 hour. Desalination is done with a pre-equilibrated NAP5 column at a concentration of 500 μl of the reaction solution. After elution with PBS, the solution of the title compound is isolated The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26203.1 m/z (exp.): 26218±20
  • Example ELE2 (1S,3S,7S(3RS), 10R,11S,12S,16R)-[5-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-pentyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL4, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26231.2 m/z (exp.): 26236±20
  • Example ELE3 (1S,3S,7S(3RS), 10R,11S,12S,16R)-[10-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-decyl]-carbamic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-7-yl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL6, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26301.4 m/z (exp.): 26303±20
  • Example ELE4 (1S,3S,7S,10R,l S(3RS),12S,16R)-[3-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-propyl]-carbamic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-11-yl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL8, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26203.2 m/z (exp.): 26206±20
  • Example ELE5 (1S,3S,7S,10R,11S(3RS),12S,16R)-[5-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-pentyl]-carbamic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-11-yl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL10, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26231.2 m/z (exp.): 26225±20
  • Example ELE6 (1S,3S(E),7S,10R,11S,12S,16R)-[3-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-propyl]-carbamic acid-7-[3-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-propylcarbamoyloxy]-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-1′-yl ester (A) and (1S,3S(E),7S,10R,11S,12S,16R)-[3-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-propyl]-carbamic acid-11-[3-(2,5-dioxo-2,5-dihydro-pyrrol-1-yl)-propylcarbamoyloxy]-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester (B)
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate that is prepared according to Example EL11, and the solution of the title compounds is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26347.3 m/z (exp.): 26358±20
  • Example ELE7 (1S,3S(E),7S,10R,11S,12S,16R)—N-[1-({4-[2-(7,1,1-Dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-3-yl)-propenyl]-thiazol-2-ylmethyl}-carbamoyl)-ethyl]-3-(AP39r)-disulfanyl-N-methyl-propionamide
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL16, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26173 m/z (exp.): 26174+20
  • Example ELE8 (1S,3S(E),7S,10R,11S,12S,16R)-2-[Methyl-(3-(AP39r)-disulfanyl-propionyl)-amino]-propionic acid-4-[2-(7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4,17-dioxa-bicyclo [14.1.0]heptadec-3-yl)-propenyl]-thiazol-2-ylmethyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL17, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26174 m/z (exp.): 26163±20
  • Example ELE9 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid-10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL13, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26238 m/z (exp.): 26224+20
  • Example ELE10 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid-10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yl ester 4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL15, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26238 m/z (exp.): 26243±20
  • Example ELE11 4-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S, 12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL19, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26383 m/z (exp.): 26377±20
  • Example ELE12 4-(3-(AP39r)-Sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with effector-linker conjugate A that is prepared according to Example EL25, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26383 m/z (exp.): 26381±20
  • Example ELE13 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL21, and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26411 m/z (exp.): 26384±30
  • m/z (Calc.): 25673 m/z (exp.): 25657±20 (6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid fragment)
  • Example ELE14 11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL23 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26482 m/z (exp.): 26477±20
  • m/z (Calc.): 25744 m/z (exp.): 26752±20 (11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid fragment)
  • Example ELE15 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL27 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26411m/z (exp.): 26398±20
  • m/z (Calc.): 25673 m/z (exp.): 25665±20 (6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid fragment)
  • Example ELE16 11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL29 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26482 m/z (exp.): 26491±20
  • m/z (Calc.) 25744 m/z (exp.): 25757±20 (11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid fragment)
  • Example ELE17 4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL31 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26338 m/z (exp.): 26304±30
  • Example ELE18 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL33 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26366 m/z (exp.): 26347±30
  • Example ELE19 11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL35 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26437 m/z (exp.): 26412±30
  • Example ELE20 4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL37 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26338 m/z (exp.): 26338±20
  • Example ELE21 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL39 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26366 m/z (exp.): 26384±30
  • Example ELE22 11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL41 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26437 m/z (exp.): 26421±30
  • Example ELE23 4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL43 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.) 26373 m/z (exp.): 26358±20
  • m/z (Calc.): 25645 m/z (exp.): 25627±20 (4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid fragment)
  • Example ELE24 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL45 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26401 m/z (exp.): 26395±20
  • Example ELE25 11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yloxycarbonyloxymethyl]-2-chlor-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL47 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26471 m/z (exp.): 26463±20
  • Example ELE26 4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chloro-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL49 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26373 m/z (exp.): 26341±30
  • Example ELE27 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chlor-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL51 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26401 m/z (exp.): 26391±20
  • Example ELE28 11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-chlor-phenyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL53 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26471 m/z (exp.): 26466±20
  • Example ELE29 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[4-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butyrylamino]-3-nitro-benzyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL55 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26337 m/z (exp.): δ 20
  • Example ELE30 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexanoylamino]-3-nitro-benzyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL57 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26365 m/z (exp.): ±20
  • Example ELE31 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 4-[11-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-undecanoylamino]-3-nitro-benzyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL59 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26436 m/z (exp.): ±20
  • Example ELE32 (1S,3S,7S,10R,11S,12S,16R)-Carbonic acid 10-allyl-11-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-7-yl ester 6-(3-(AP39r)-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-hexyl ester
  • Analogously to Example ELE1, the antibody fragment that is reduced according to Example ELE1a is reacted with the effector-linker conjugate A that is prepared according to Example EL61 and the solution of the title compound is isolated. The dilution factor relative to the antibody fragment is approximately 2.5.
  • m/z (Calc.): 26246 m/z (exp.): ±20
  • Example ELE33 4-(3-(2H8-Ab)x-sulfanyl-2,5-dioxo-pyrrolidin-1-yl)-butanoic acid 4-(1S,3S,7S,10R,11S,12S,16R)-[10-allyl-7-hydroxy-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-5,9-dioxo-4,17-dioxa-bicyclo[14.1.0]heptadec-11-yloxycarbonyloxymethyl]-2-nitro-phenyl ester
  • 100 μl of a solution of the thionylated antibody prepared according to Example ELE33a (about 3 nmol, about 6 thiol groups) are mixed with 42.3 μl of a 1.1 mM solution of the effector-linker conjugate A prepared according to Example EL25 in PBS, and the mixture is incubated at 23° C. for 1 hour. Desalination is performed by using a pre-equilibrated NAP5 column with a loading of 150 μl of the reaction solution. After elution with PBS, the solution of the title compound is isolated. The loading factor x of antibody 2H8-A in relation to effector-linker is about 1:4 to 1:5.
  • Example ELE33a Thionylation of a Complete Immunoglobuline (IgG), e.g., the 2H8 Antibody
  • For the introduction of thionyl groups an amine-free solution of the 2H8 antibody in phosphate buffer having a concentration in the range of about 1-10 mg/ml at a pH of 7.2 is mixed with the 10- to 100-fold excess of 2-iminothiolane and is allowed to react for 1 hour at 23° C. The number of the introduced thiol groups is 1 to about 15 depending on the excess of reagent.

Claims (18)

1-28. (canceled)
29. An effector recognition unit conjugate of formula (I),
Figure US20080166362A1-20080710-C00022
in which
R1a, R1b, independently of one another, are hydrogen, C1-C10 alkyl, aryl, aralkyl, or together a —CH2)m group, in which m is 2 to 5,
R2a, R2b, independently of one another, are hydrogen, C1-C10 alkyl, aryl, aralkyl, or together a —(CH2)n group, in which n is 2 to 5, or C2-C10 alkenyl, or C2-C10 alkynyl,
R3 is hydrogen, C1-C10 alkyl, aryl or aralkyl, and
R4a, R4b, independently of one another, are hydrogen, C1-C10 alkyl, aryl, aralkyl, or together a —CH2)p group, in which p is 2 to 5,
R5 is hydrogen, C1-C10 alkyl, aryl, aralkyl, CO2H, CO2alkyl, CH2OH, CH2Oalkyl, CH2Oacyl, CN, CH2NH2, CH2N(alkyl, acyl)1,2, or CH2Hal,
Hal is a halogen atom,
R6, R7 in each case are hydrogen, or together an additional bond, or together an oxygen atom, or together an NH group, or together an N-alkyl group, or together a CH2 group, and
G is an oxygen atom or CH2,
D-E is a group H2C—CH2, HC═CH, C≡C, CH(OH)—CH(OH), CH(OH)—CH2, CH2—CH(OH),
Figure US20080166362A1-20080710-C00023
O—CH2, or, if G represents a CH2 group, D-E is CH2—O,
W is a group C(═X)R8, or a bicyclic or tricyclic aromatic or heteroaromatic radical,
L3 is hydrogen, or, if a radical in W contains a hydroxyl group, forms a group O-L4 with the latter, or, if a radical in W contains an amino group, forms a group
NR25-L4 with the latter,
R25 is hydrogen or C1-C10 alkyl,
X is an oxygen atom, or two OR20 groups, or a C2-C10 alkylenedioxy group that may be straight or branched, or H and OR9, or a CR10R11 group,
R8 is hydrogen, C1-C10 alkyl, aryl, aralkyl, halogen or CN, and
R9 is hydrogen or a protective group PGX,
R10, R11, in each case independently of one another, are hydrogen, C1-C20 alkyl, aryl, aralkyl, or together with a methylene carbon atom form a 5- to 7-membered carbocyclic ring,
Z can represent oxygen or H and OR12,
R12 can represent hydrogen or a protective group PGZ,
A-Y can represent a group O—C(═O), O—CH2, CH2—C(═O), NR21—C(═O) or NR21—SO2,
R20 can represent C1-C20 alkyl,
R21 can represent a hydrogen atom or C1-C10 alkyl,
PGX, PGY, and PGZ can represent a protective group PG, and
L1, L2, and L4, independently of one another, can represent hydrogen, a group C(═O)Cl, a group C(═S)Cl, a group PGY or a linker of general formula (III) or (IV);
provided that at least one substituent L1, L2 or L4 represents a linker of general formula (III) or (IV);
the linker of general formula (III) has the following structure,
Figure US20080166362A1-20080710-C00024
in which
T can represent oxygen or sulfur,
U can represent oxygen, CHR22, CHR22—NR23—C(═O)—, O—C(═O)—CHR22—NR23—C(═O)—, O—C(═O)—CHR22—NR23—C(═S)—, CHR22—NR23—C(═S)— or NR24a,
o can represent 0 to 15,
V can represent a bond, aryl, a group
Figure US20080166362A1-20080710-C00025
or a group
Figure US20080166362A1-20080710-C00026
s can represent 0 to 4,
Q can represent a bond, O—C(═O)—NR24c, O—C(═S)—NR24c,
Figure US20080166362A1-20080710-C00027
R22 can represent hydrogen, C1-C10 alkyl, aryl or aralkyl,
R23 can represent hydrogen or C1-C10 alkyl,
R24a, R24b, and R24c, independently of one another, can represent hydrogen or
C1-C10 alkyl,
q can represent 0 to 15,
FG1 can represent C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00028
Figure US20080166362A1-20080710-C00029
 or CO2H; and
the linker of general formula (IV) has the following structure,
Figure US20080166362A1-20080710-C00030
in which
T can represent oxygen or sulfur,
W1, W2 are the same or different and can represent oxygen or NR24a,
o can represent 0 to 5,
R24a can represent hydrogen or C1-C10 alkyl,
R27 can represent halogen, CN, NO2, CO2R28, or OR28,
R28 can represent hydrogen, C1-C10 alkyl, aryl or aralkyl,
q can represent 0 to 5,
U can represent oxygen, CHR22, CHR22—NR23—C(═O)—, CHR22—NR23—C(═S)— or
C1-C20 alkyl,
R22 can represent hydrogen, C1-C10 alkyl, aryl or aralkyl,
R23 can represent hydrogen or C1-C10 alkyl,
r can represent 0 to 20,
FG1 can represent C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00031
 or CO2H,
and wherein
at least one group FG1 is not as defined above, but instead is a group FG2a or FG2b, wherein
FG2a is —S—S—,
Figure US20080166362A1-20080710-C00032
FG2b is —CONH—;
wherein
a recognition unit is conjugated via a sulfur atom with group FG2a or via an amide function with group FG 2b;
and wherein the recognition unit is selected from peptides, soluble receptors, cytokines, lymphokines, aptamers, spiegelmers, recombinant proteins, new framework structures, monoclonal antibodies and fragments of monoclonal antibodies;
or
a single isomer or a mixture of different isomers or a pharmaceutically acceptable salt thereof.
30. An effector recognition unit conjugate according to claim 29, wherein the conjugate contains more than one recognition unit, and wherein the recognition units are identical.
31. An effector recognition unit conjugate according to claim 29, wherein the recognition unit is an antibody, or an antigen-binding fragment thereof, which is specific for an antigen that is selected from OC 125, OC 133, OMI, Mo vl, Mo v2, 3C2, 4C7, ID3, DU-PAN-2, F 36/22, 4F7/7A10, OV-TL3, B72.3, DF3, 2C8/2F7, MF 116, Mov18, CEA 1′-H5, CA 19-9, (1116NS19-9), H17-E2, 791T/36, NDOG2, H317, 4D5, 3H4, 7C2, 6E9, 2C4, 7F3, 2H1, 3E8, 5B8, 7D3, SB8, HMFG2, 3.14.A3, DF3, NCRC-11, 3C6F9, MBE6, CLNH5, MAC 40/43, EMA, HMFG1 HFMG2, 3.15.C3, M3, M8, M24, M18,67-D-11, D547Sp, D75P3, H222, Anti EGF, LR-3, TA1, H59, 10-3D-2, HmAB1,2, MBR 1,2,3, 24-17-1, 24-17-2 (3E1-2), F36/22.M7/105, C11, G3, H7, B6-2, BI-1, Cam 17-1, SM3, SM4, C-Mul (566), 4D53H4, 7C2, 6E9, 2C4, 7F3, 2H11, 3E8, 5B8, 7D3, 5B8, OC 125, MO v2, DU-PAN-2, 4F7/7A10, DF3, B72-3, cccccCEA 11, H17-E2, 3-14-A3, F023C5, B72-3, (17-1A) 1038-17-1A, C017-1A, ZCE-025, AB2, HT-29-15, 250-30.6, 44×14, A7, GA73-3, 791T/36, 28A32, 28.19.8, X MMCO-791, DU-PAN-2, ID3, CEA, 1-H5, 2C8/2F7, CA-19-9 (1116NS19-9), PR5C5, PR4D2, PR4D1, 4-1, 8-2 M17, 96-5, 118-1, 133-2, (113-2), L1, L10, R10 (R19), 112, K5, 6-1, R24, 5-1, 225.28S, 465.12S, 9-2-27, F11, 376.96S, 465.12S, 15-75, 15-95, Me1-14, Me1-12, Me3-TB7, 225.28SD, 763.24TS, 705F6, 436910, M148, ID3, DU-PAN-2, OV-TL3, B72-3, CEA 1-H5, 3-14-A3, C COL1, CA-19-9, 116NS19-9) and CA50, OC125, 4D5, 3H4, 7C2, 6E9, 2C4, 7F3, 2H11, 3E8, 5B8, 7D3, SB8, MO v2, B72-3, DU-PAN-2, CEA 11-H5, MUG 8-22, MUC2-63, MUC2-39, MUG 7-39, PAb 240, PAb 246, PAb 1801, ERIC-1, M148, FMH25, 6-1, CA1, 3F8, 4F7/7A10, 2C8/2F7, CEA, 11-H5, 2H8, 10G6, CD19, CD20, CD40, CD22, CD25, CD5, CD52, CD10, CD2, CD7, CD33, CD38, CD40, CD72, CD4, CD21, CD37, CD30, VCAM, CD31, ELAM, endoglin, VEGFR1/II, αvβ3 Tie½, TES23 (CD44ex6), phosphatidylserine, PSMA, VEGFR/VEGF complex and ED-B-fibronectin.
32. A method for preparing an effector recognition unit conjugate according to claim 29 comprising reacting an effector conjugate of formula (I) with at least one recognition unit selected from peptides, soluble receptors, cytokines, lymphokines, aptamers, spiegelmers, recombinant proteins, new framework structures, monoclonal antibodies and fragments of monoclonal antibodies.
33. A method according to claim 32, wherein the effector conjugate of formula (I), is prepared by reacting
a compound of formula (I), wherein at least one substituent L1, L2 or L4 represent a linker of formula (III) or (IV), and at least one substituent L1, L2 or L4 represents hydrogen, a group C(═O)Cl, or a group C(═S)Cl,
with a linker that is selected from a linker of formula (III1), (III2), (III3), (IV1), (IV2) and (IV3),

RG1-(CH2)o—V—(CH2)q—FG1  III1,
in which
RG1 is an O═C═N group or an S═C═N group,
o is 0 to 15,
V is a bond, aryl, a group
Figure US20080166362A1-20080710-C00033
or a group
Figure US20080166362A1-20080710-C00034
q is Oto 15,
FG1 is C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00035
or CO2H;

RG2-(CH2)o—V—(CH2)qFG1  III2,
in which
RG2 is a Hal-C(=T)-CHR22 group, or a Hal-C(=T)-CHR22—NR23—C(=T) group, or an R26—C(═O)—O—C(=T)-CHR22 group, or an R26—C(═O)—O—C(=T)-CHR22—NR23—C(=T) group, wherein R26 is C1-C10 alkyl, aryl, or aralkyl,
o is Oto 15,
V is a bond, aryl, a group
Figure US20080166362A1-20080710-C00036
or a group
Figure US20080166362A1-20080710-C00037
q is 0 to 15,
FG1 is C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00038
or CO2H;

RG3-(CH2)o—V—(CH2)q—FG1  III3,
in which
RG3 is an OH group, or an NHR24a group, or a COOH group,
o is Oto 15,
V is a bond, aryl, a group
Figure US20080166362A1-20080710-C00039
or a group
Figure US20080166362A1-20080710-C00040
q is 0 to 15,
FG1 is C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00041
or CO2H;
with the proviso that the compound I-(4-amino-phenyl)-pyrrole-2,5-dione is not included;
Figure US20080166362A1-20080710-C00042
in which
RG1 is an O═C═N group or an S═C═N group,
W2 is oxygen or NR24a,
o is 0 to 5,
R27 is halogen, CN, NO2, CO2R28, or OR28,
q is 0 to 5,
U is oxygen, CHR22, CHR22—NR23—C(═O)—CHR22—NR23OC(S)C
r is 0 to 20,
FG1 is C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00043
or CO2H,
Figure US20080166362A1-20080710-C00044
in which
RG2 is a Hal-C(=T)-CHR22 group, or a Hal-C(=T)-CHR22—NR23—C(=T) group, or an R26—C(═O)—O—C(=T)-CHR22 group, or an R26—C(═O)—O—C(=T)-CHR22—NR23—C(=T) group, wherein R26 is C1-C10 alkyl, aryl, or aralkyl,
T is oxygen or sulfur,
W2 is oxygen or NR14a,
o is 0 to 5,
R27 is halogen, CN, NO2, CO2R28, or OR28,
q is 0 to 5,
U is oxygen, CHR22, CHR22—NR23—C(═O)—, CHR22—NR23—C(═S)— or C1-C20 alkyl,
R22 is hydrogen, C1-C10 alkyl, aryl or aralkyl,
R23 is hydrogen or C1-C10 alkyl,
r is 0 to 20,
FG1 is C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00045
or CO2H,
Figure US20080166362A1-20080710-C00046
in which
RG3 is an OH group or an NHR24a group or a COOH group,
W2 is oxygen or NR24a,
o is Oto 5,
R24a is hydrogen or C1-C10 alkyl,
R27 is halogen, CN, NO2, CO2R28, or OR28,
q is 0 to 5,
U is oxygen, CHR22, CHR22—NR23C(═O)—, CHR22—NR23—C(═S)— or C1-C20 alkyl,
r is 0 to 20,
FG1 is C1-C10 alkyl-S3,
Figure US20080166362A1-20080710-C00047
or CO2H.
34. A method according to claim 33, wherein in the effector conjugate of formula (I) at least one substituent L1, L2 or L4 represent a linker of formula (III) or (IV), and at least one substituent L1, L2 or L4 represents hydrogen, a group C(═O)Cl, or a group C(═S)Cl.
35. A pharmaceutical composition comprising an effector recognition unit conjugate according to claim 29 and a pharmaceutically acceptable carrier.
36. A method for treating a disease that is associated with proliferative processes comprising administering to a patient in need thereof an effective amount of a pharmaceutical composition according to claim 35.
37. A method for treating a tumor, an inflammatory disease, a neurodegenerative disease, an angiogenesis-associated disease, multiple sclerosis, Alzheimer's disease, or rheumatoid arthritis comprising administering to a patient in need thereof an effective amount of a pharmaceutical composition according to claim 35.
38. A method for treating multiple sclerosis, Alzheimer's disease, or rheumatoid arthritis comprising administering to a patient in need thereof an effective amount of a pharmaceutical composition according to claim 35.
39. A method for treating a tumor comprising administering to a patient in need thereof an effective amount of a pharmaceutical composition according to claim 35.
40. An effector recognition unit conjugate according to claim 29, wherein the effector element is
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-11-methyl-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl) 1-methyl-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7, 11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-methyl-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-methyl-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-11-methyl-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1. O]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl) 1-fluoro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-fluoro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-fluoro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-chloro-2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-1-chloro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-methyl-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-methyl-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-methyl-2-(2-pyridylvinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-fluoro-2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-fluoro-2-(2-pyridyl)vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-chloro-2-(2-pyridylvinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-chloro-2-(2-pyridylvinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-fluoro-2-(2-pyridylvinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-fluoro-2-(2-pyridyl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-chloro-2-(2-pyridyl)vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-chloro-2-(2-pyridylvinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-methyl-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-methyl-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-methyl-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-fluoro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-fluoro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-fluoro-vinyl]-7,11-dihydroxy 10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(Z))-16-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[1-chloro-2-(2-methyl-oxazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-oxazol-4-yl)-1-chloro-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(1S,3S(Z),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-oxazol-4-yl)-1-chloro-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]hepta-decane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,1S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[2-(2-methyl-thiazol-4-yl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-16-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S(E))-16-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[2-(2-methyl-thiazol-4-yl)-vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-[2-(2-hydroxymethyl-thiazol-4-yl)-vinyl]-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-3-[2-(2-Aminomethyl-thiazol-4-yl)-vinyl]-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-[2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-[2-(2-pyridylvinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S(E))-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-[2-(2-pyridyl)-vinyl]-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S(E),7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-[2-(2-pyridyl)vinyl]-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,1,1-Dihydroxy-8,8,10,12,16-pentamethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-propyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-propyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-butyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-butyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzothiazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzothiazol-5-yl)-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzothiazol-5-yl)-4,8-dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzothiazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzothiazol-5-yl)-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzothiazol-5-yl)-7,11-dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-5,5,7,9,13-pentamethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-5,5,7,9,13-pentamethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-8,8,10,12,16-pentamethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4,17-dioxa-bicyclo[114.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-ethyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-ethyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-ethyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-ethyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-propyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)—I 6-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-propyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R, I S,12S,16R)-7,11-Dihydroxy-10-propyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-propyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-butyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-butyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-butyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1. O]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1. O]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-butyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1. O]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-prop-2-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-prop-2-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-but-3-enyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-but-3-enyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-16-(2-methyl-benzoxazol-5-yl)-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)-4,8-Dihydroxy-16-(2-hydroxymethyl-benzoxazol-5-yl)-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(4S,7R,8S,9S,13Z,16S)— 16-(2-Aminomethyl-benzoxazol-5-yl)-4,8-dihydroxy-7-but-3-inyl-5,5,9,13-tetramethyl-oxacyclohexadec-13-ene-2,6-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-3-(2-methyl-benzoxazol-5-yl)-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-7,11-Dihydroxy-3-(2-hydroxymethyl-benzoxazol-5-yl)-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione;
(1S,3S,7S,10R,11S,12S,16R)-3-(2-Aminomethyl-benzoxazol-5-yl)-7,11-dihydroxy-10-but-3-inyl-8,8,12,16-tetramethyl-4,17-dioxa-bicyclo[14.1.0]heptadecane-5,9-dione, wherein the hydrogen atoms in the above-mentioned effector elements are replaced in the positions indicated in formula (I) by radicals L1-L3.
41. An effector recognition unit conjugate according to claim 29, wherein in the effector element
A-Y represents O—C(═O) or NR21—C(═O),
D-E represents an H2C—CH2 group,
G represents a CH2 group,
z represents an oxygen atom,
R1a, R1b in each case represent C1-C10 alkyl or together a —(CH2)p group with p equal to 2 or 3 or 4,
R2a, R2b, independently of one another, represent hydrogen, C1-C10 alkyl, C2-C10 alkenyl, or C2-C10 alkynyl,
R3 represents hydrogen,
R4a, R4b, independently of one another, represent hydrogen or C1-C10 alkyl;
R5 represents hydrogen, or C1-C4 alkyl or CH2OH or CH2NH2 or CH2N(alkyl, acyl)1,2 or CH2Hal,
R6 and R7 together represent an additional bond or together an NH group, or together an N-alkyl group, or together a CH2 group, or together an oxygen atom,
W represents a group C(═X)R8 or a 2-methylbenzothiazol-5-yl radical or a 2-methylbenzoxazol-5-yl radical or a quinolin-7-yl radical or a 2-aminomethylbenzothiazol-5-yl radical or a 2-hydroxymethylbenzothiazol-5-yl radical or a 2-aminomethyl-benzoxazol-5-yl radical or a 2-hydroxymethylbenzoxazol-5-yl radical,
X represents a CR10R11 group,
R8 represents hydrogen or C1-C4 alkyl or a fluorine atom or a chlorine atom or a bromine atom,
R10/R11 represent hydrogen/2-methylthiazol-4-yl or hydrogen/2-pyridyl or hydrogen/2-methyloxazol-4-yl or hydrogen/2-aminomethylthiazol-4-yl or hydrogen/2-aminomethyloxazol-4-yl or hydrogen/2-hydroxymethylthiazol-4-yl or hydrogen/2-hydroxymethyloxazol-4-yl.
42. An effector recognition unit conjugate according to claim 29, wherein in the effector element the linker is a compound of formula (III), wherein
V represents a bond or an aryl radical,
o is zero, and
T is an oxygen atom.
43. An effector recognition unit conjugate according to claim 29, wherein in the effector element the linker is a compound of formula (III), wherein
V represents a bond or an aryl radical or a group
Figure US20080166362A1-20080710-C00048
is 0 to 4, and
Q is a bond or a group
Figure US20080166362A1-20080710-C00049
44. An effector recognition unit conjugate according to claim 29, wherein in the effector element the linker is a compound of formula (III), wherein
V is a bond or a group
Figure US20080166362A1-20080710-C00050
Q is a bond or a group
Figure US20080166362A1-20080710-C00051
o is 0, 2 or 3,
s is 1, and
T is an oxygen atom.
45. An effector recognition unit conjugate according to claim 29, wherein in the effector element the linker is a compound of formula (IV), wherein
o is 0 to 4, and
q is 0 to 3.
US12/000,258 2002-07-31 2007-12-11 New effector conjugates, process for their production and their pharmaceutical use Abandoned US20080166362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/000,258 US20080166362A1 (en) 2002-07-31 2007-12-11 New effector conjugates, process for their production and their pharmaceutical use

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE10234975A DE10234975A1 (en) 2002-07-31 2002-07-31 New effector conjugates of epithilones useful to treat e.g. diseases associated with proliferative processes, neurodegenerative diseases, multiple sclerosis, Alzheimer's disease and rheumatoid arthritis
DE10234975.4 2002-07-31
DE10305098A DE10305098A1 (en) 2003-02-07 2003-02-07 New effector conjugates of epithilones useful to treat e.g. diseases associated with proliferative processes, neurodegenerative diseases, multiple sclerosis, Alzheimer's disease and rheumatoid arthritis
DE10305098.1 2003-02-07
US45167303P 2003-03-05 2003-03-05
US10/631,011 US7129254B2 (en) 2002-07-31 2003-07-31 Effector conjugates, process for their production and their pharmaceutical use
US11/509,557 US7335775B2 (en) 2002-07-31 2006-08-25 Effector conjugates, process for their production and their pharmaceutical use
US12/000,258 US20080166362A1 (en) 2002-07-31 2007-12-11 New effector conjugates, process for their production and their pharmaceutical use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/509,557 Division US7335775B2 (en) 2002-07-31 2006-08-25 Effector conjugates, process for their production and their pharmaceutical use

Publications (1)

Publication Number Publication Date
US20080166362A1 true US20080166362A1 (en) 2008-07-10

Family

ID=38812801

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/631,011 Expired - Fee Related US7129254B2 (en) 2002-07-31 2003-07-31 Effector conjugates, process for their production and their pharmaceutical use
US11/509,557 Expired - Fee Related US7335775B2 (en) 2002-07-31 2006-08-25 Effector conjugates, process for their production and their pharmaceutical use
US12/000,258 Abandoned US20080166362A1 (en) 2002-07-31 2007-12-11 New effector conjugates, process for their production and their pharmaceutical use

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/631,011 Expired - Fee Related US7129254B2 (en) 2002-07-31 2003-07-31 Effector conjugates, process for their production and their pharmaceutical use
US11/509,557 Expired - Fee Related US7335775B2 (en) 2002-07-31 2006-08-25 Effector conjugates, process for their production and their pharmaceutical use

Country Status (7)

Country Link
US (3) US7129254B2 (en)
AR (1) AR040956A1 (en)
EA (1) EA200500223A1 (en)
PE (1) PE20040747A1 (en)
RS (1) RS20050082A (en)
TW (1) TW200404065A (en)
UY (1) UY27915A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030176663A1 (en) * 1998-05-11 2003-09-18 Eidgenossische Technische Hochscule Specific binding molecules for scintigraphy
JP2003524018A (en) * 2000-02-24 2003-08-12 アイトゲネーシシェ テクニシェ ホッホシューレ チューリッヒ Antibodies specific for the ED-B domain of fibronectin, complexes containing said antibodies, and uses thereof for detecting and treating angiogenesis
US20020197700A1 (en) * 2000-09-07 2002-12-26 Schering Ag Receptor of the EDb-fibronectin domains
DE102004004787A1 (en) * 2004-01-30 2005-08-18 Schering Ag New effector-linker and effector-recognition unit conjugates derived from epothilones, useful as targeted drugs for treating proliferative diseases, e.g. tumors or neurodegenerative disease
US7541330B2 (en) 2004-06-15 2009-06-02 Kosan Biosciences Incorporated Conjugates with reduced adverse systemic effects
US20090074711A1 (en) * 2006-09-07 2009-03-19 University Of Southhampton Human therapies using chimeric agonistic anti-human cd40 antibody
PT2187965T (en) 2007-08-17 2020-01-17 Purdue Research Foundation Psma binding ligand-linker conjugates and methods for using
US8253725B2 (en) * 2007-12-28 2012-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for generating surface models of geometric structures
US9951324B2 (en) 2010-02-25 2018-04-24 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
JP6892218B2 (en) 2012-11-15 2021-06-23 エンドサイト・インコーポレイテッドEndocyte, Inc. How to treat diseases caused by drug delivery conjugates and PSMA-expressing cells
EP2934596A1 (en) * 2012-12-21 2015-10-28 Glykos Finland Oy Linker-payload molecule conjugates
EP3415489A1 (en) 2013-10-18 2018-12-19 Deutsches Krebsforschungszentrum Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
EP3160513B1 (en) 2014-06-30 2020-02-12 Glykos Finland Oy Saccharide derivative of a toxic payload and antibody conjugates thereof
SG11201701623UA (en) 2014-09-12 2017-03-30 Genentech Inc Anti-her2 antibodies and immunoconjugates
US10188759B2 (en) 2015-01-07 2019-01-29 Endocyte, Inc. Conjugates for imaging
MA43345A (en) 2015-10-02 2018-08-08 Hoffmann La Roche PYRROLOBENZODIAZEPINE ANTIBODY-DRUG CONJUGATES AND METHODS OF USE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552893A (en) * 1983-03-07 1985-11-12 Smithkline Beckman Corporation Leukotriene antagonists
US5942555A (en) * 1996-03-21 1999-08-24 Surmodics, Inc. Photoactivatable chain transfer agents and semi-telechelic photoactivatable polymers prepared therefrom
US6075120A (en) * 1991-04-01 2000-06-13 Cortech, Inc. Bradykinin antagonist
US20020045609A1 (en) * 2000-05-26 2002-04-18 Gary Ashley Epothilone derivatives and methods for making and using the same
US20020058286A1 (en) * 1999-02-24 2002-05-16 Danishefsky Samuel J. Synthesis of epothilones, intermediates thereto and analogues thereof
US20020058817A1 (en) * 1996-12-03 2002-05-16 Danishefsky Samuel J. Synthesis of epothilones, intermediates thereto and analogues thereof
US6410301B1 (en) * 1998-11-20 2002-06-25 Kosan Biosciences, Inc. Myxococcus host cells for the production of epothilones
US6441213B1 (en) * 2000-05-18 2002-08-27 National Starch And Chemical Investment Holding Corporation Adhesion promoters containing silane, carbamate or urea, and donor or acceptor functionality
US20040242854A1 (en) * 2001-07-02 2004-12-02 Osborn Nigel John Chemical capture reagent
US6864330B2 (en) * 2000-08-22 2005-03-08 Basf Aktiengesellschaft Use of hydrophilic graft copolymers containing N-vinylamine and/or open-chain N-vinylamide units in cosmetic formulations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US58817A (en) * 1866-10-16 Improved mop-head
US58286A (en) * 1866-09-25 Improvement in animal-traps
US45609A (en) * 1864-12-27 Improvement in car-trucks
DK130984A (en) 1983-03-07 1984-09-08 Smithkline Beckman Corp Leukotriene antagonists
IL107400A0 (en) 1992-11-10 1994-01-25 Cortech Inc Bradykinin antagonists
CA2401800A1 (en) 2000-03-01 2001-09-07 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
AU2001295195B2 (en) 2000-04-28 2007-02-01 Kosan Biosciences, Inc. Myxococcus host cells for the production of epothilones

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552893A (en) * 1983-03-07 1985-11-12 Smithkline Beckman Corporation Leukotriene antagonists
US6075120A (en) * 1991-04-01 2000-06-13 Cortech, Inc. Bradykinin antagonist
US5942555A (en) * 1996-03-21 1999-08-24 Surmodics, Inc. Photoactivatable chain transfer agents and semi-telechelic photoactivatable polymers prepared therefrom
US20020058817A1 (en) * 1996-12-03 2002-05-16 Danishefsky Samuel J. Synthesis of epothilones, intermediates thereto and analogues thereof
US6410301B1 (en) * 1998-11-20 2002-06-25 Kosan Biosciences, Inc. Myxococcus host cells for the production of epothilones
US20020058286A1 (en) * 1999-02-24 2002-05-16 Danishefsky Samuel J. Synthesis of epothilones, intermediates thereto and analogues thereof
US6441213B1 (en) * 2000-05-18 2002-08-27 National Starch And Chemical Investment Holding Corporation Adhesion promoters containing silane, carbamate or urea, and donor or acceptor functionality
US20020045609A1 (en) * 2000-05-26 2002-04-18 Gary Ashley Epothilone derivatives and methods for making and using the same
US6864330B2 (en) * 2000-08-22 2005-03-08 Basf Aktiengesellschaft Use of hydrophilic graft copolymers containing N-vinylamine and/or open-chain N-vinylamide units in cosmetic formulations
US20040242854A1 (en) * 2001-07-02 2004-12-02 Osborn Nigel John Chemical capture reagent

Also Published As

Publication number Publication date
US7335775B2 (en) 2008-02-26
US20050026971A1 (en) 2005-02-03
EA200500223A1 (en) 2005-08-25
US7129254B2 (en) 2006-10-31
RS20050082A (en) 2007-09-21
AR040956A1 (en) 2005-04-27
US20070088060A1 (en) 2007-04-19
PE20040747A1 (en) 2004-12-11
TW200404065A (en) 2004-03-16
UY27915A1 (en) 2004-02-27

Similar Documents

Publication Publication Date Title
US7335775B2 (en) Effector conjugates, process for their production and their pharmaceutical use
EP1718340B1 (en) New effector conjugates, process for their production and their pharmaceutical use
NZ537870A (en) New effector conjugates, process for their production and their pharmaceutical use
US5708146A (en) Thioether conjugates
CA2647130C (en) Camptothecin-binding moiety conjugates
US5824805A (en) Branched hydrazone linkers
US11691982B2 (en) Thailanstatin analogs
US20210283125A1 (en) Camptothecin derivatives and conjugates thereof
US20050234247A1 (en) New effector conjugates, process for their production and their pharmaceutical use
DE10305098A1 (en) New effector conjugates of epithilones useful to treat e.g. diseases associated with proliferative processes, neurodegenerative diseases, multiple sclerosis, Alzheimer's disease and rheumatoid arthritis
DE10234975A1 (en) New effector conjugates of epithilones useful to treat e.g. diseases associated with proliferative processes, neurodegenerative diseases, multiple sclerosis, Alzheimer's disease and rheumatoid arthritis
JP2023522259A (en) drug antibody conjugate

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION