US20080176990A1 - Polycarbonate compositions, articles, and method of manufacture - Google Patents

Polycarbonate compositions, articles, and method of manufacture Download PDF

Info

Publication number
US20080176990A1
US20080176990A1 US11/774,212 US77421207A US2008176990A1 US 20080176990 A1 US20080176990 A1 US 20080176990A1 US 77421207 A US77421207 A US 77421207A US 2008176990 A1 US2008176990 A1 US 2008176990A1
Authority
US
United States
Prior art keywords
composition
alkyl
impact
acrylate
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/774,212
Inventor
Luc Govaerts
Wim Steendam
Rob Venderbosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/774,212 priority Critical patent/US20080176990A1/en
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Publication of US20080176990A1 publication Critical patent/US20080176990A1/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Abstract

A thermoplastic composition comprises about 10 to about 85 wt. % of a polycarbonate resin; about 1 to about 40 wt. % of an impact modifier composition; and about 1 to about 50 wt. % of an impact-modified alkyl(meth)acrylate polymer; each based on the total combined weight of the thermoplastic composition, exclusive of any filler. The compositions have improved weld line strength, and are useful in the manufacture of molded parts, especially for electronic devices.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a Divisional of U.S. patent application Ser. No. 10/918,934, filed Aug. 16, 2004, which is fully incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • This disclosure relates to polycarbonate compositions, methods of manufacture, and uses thereof to form articles.
  • Polycarbonates compositions are useful in the manufacture of articles and components for a wide range of applications, from automotive parts to electronic appliances. Despite their many advantages, one property that has proven difficult to achieve in some polycarbonate compositions is weld line strength. In the molding of parts from thermoplastic materials, it is common to use a mold design in which molten plastic flowing in one direction meets molten plastic flowing from another direction as the mold fills. Where the two masses meet, the streams fuse together and form a bond at the juncture. The zone where the materials join is often referred to in the industry as the weld line or knit line. The strength and impact of a molded part at the weld line is usually lower than in other sections of the part. This problem is exacerbated when the part is complex, such as those processed in a mold in which several weld lines are formed in the same part. Reduced weld line strength imposes severe limitations on the design of parts. In many cases the dimensions of the entire part are controlled by the weld line strength, and the need to have a safety factor to compensate for weakness in this area can force the designer to make parts larger than necessary, or to substitute a higher performance (and more expensive) polymer than would otherwise be needed.
  • A variety of approaches have been used in an attempt to improve weld line strength in polycarbonate compositions, particularly compositions comprising impact modifiers such as acrylonitrile-butadiene-styrene (ABS). U.S. Pat. No. 3,988,389 to Margotte et al. discloses that the weld line strength of a polycarbonate/ABS blend improved with use of a specific graft ABS formulation having a narrowly defined graft ratio, rubber particle size, rubber content, and the like. British Patent 1,182,807 describes a blend of a thermoplastic polycarbonate and a poly(methylmethacrylate) that optionally includes a minor proportion of a “rubbery polymeric material” such as styrene-butadiene rubber (SBR), nitrile rubbers, and graft polymers, primarily rubbery acrylate copolymers. U.S. Pat. No. 5,128,409 to Gaggar discloses that improve weld line strength is achieved using a combination of polycarbonate, a high rubber graft ABS, and up to about 20 wt. % of a poly(methyl methacrylate).
  • While suitable for their intended purposes, there nonetheless remains a continuing need for polycarbonate compositions with even more improved weld line strength, particularly compositions having improved weld line strength together with good impact strength, softening temperature, and/or good flow properties.
  • SUMMARY OF THE INVENTION
  • The above-described and other deficiencies of the art are met by a thermoplastic composition comprising about 10 to about 84 weight percent (wt. %) of a polycarbonate resin; about 0.5 to about 40 wt. % of a polycarbonate-polysiloxane copolymer; about 1 to about 50 wt. % of an alkyl(meth)acrylate polymer; and about 1 to about 40 wt. % of an impact modifier composition, each based on the total combined weight of thermoplastic composition, exclusive of any filler.
  • In another embodiment, a method of manufacture comprises combining the above-described components to form a thermoplastic composition.
  • In yet another embodiment, an article comprises the above-described thermoplastic composition.
  • In still another embodiment, a method of manufacture of an article comprises molding, extruding, or shaping the above-described thermoplastic composition into an article.
  • In another embodiment, the above-described and other deficiencies of the art are met by a thermoplastic composition comprising about 10 to about 85 wt. % of a polycarbonate resin; about 1 to about 40 wt. % of an impact modifier composition; and about 1 to about 50 wt. % of an impact-modified alkyl (meth)acrylate polymer, each based on the total combined weight of thermoplastic composition, exclusive of any filler.
  • In another embodiment, a method of manufacture comprises combining the above-described components to form a thermoplastic composition.
  • In yet another embodiment, an article comprises the above-described thermoplastic composition.
  • In still another embodiment, a method of manufacture of an article comprises molding, extruding, or shaping the above-described thermoplastic composition into an article.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Without being bound by theory, it is believed that the favorable results obtained herein, i.e., thermoplastic compositions having practically improved impact and strength, in particular weld line impact and strength, together with a desirable balance of flow and heat properties, may be achieved by use of a combination of a polycarbonate resin, a polycarbonate-polysiloxane copolymer, an impact modifier; and a poly(alkyl(meth)acrylate. It has also been unexpectedly found that the above properties may be achieved by use of a combination of a polycarbonate resin, an impact modifier; and an impact-modified poly(alkyl(meth)acrylate. The combination of a polycarbonate resin, a polycarbonate-polysiloxane copolymer, an impact modifier; and an impact-modified poly(alkyl(meth)acrylate provides very good results.
  • As used herein, the terms “polycarbonate” and “polycarbonate resin” means compositions having repeating structural carbonate units of the formula (1):
  • Figure US20080176990A1-20080724-C00001
  • in which at least about 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals.
  • In one embodiment, each R1 is an aromatic organic radical, for example a radical of the formula (2):

  • -A1-Y1-A2-  (2)
  • wherein each of A1 and A2 is a monocyclic divalent aryl radical and Y1 is a bridging radical having one or two atoms that separate A1 from A2. In an exemplary embodiment, one atom separates A1 from A2. Illustrative non-limiting examples of radicals of this type are —O—, —S—, —S(O)—, —S(O2)—, —C(O)—, methylene, cyclohexyl-methylene, 2-[2.2.1]-bicycloheptylidene, ethylidene, isopropylidene, neopentylidene, cyclohexylidene, cyclopentadecylidene, cyclododecylidene, and adamantylidene. The bridging radical Y1 may be a hydrocarbon group or a saturated hydrocarbon group such as methylene, cyclohexylidene, or isopropylidene.
  • Polycarbonates may be produced by the interfacial reaction of dihydroxy compounds having the formula HO—R1—OH, which includes dihydroxy compounds of formula (3)

  • HO-A1-Y1-A2-OH  (3)
  • wherein Y1, A1 and A2 are as described above. Also included are bisphenol compounds of general formula (4):
  • Figure US20080176990A1-20080724-C00002
  • wherein Ra and Rb each represent a halogen atom or a monovalent hydrocarbon group and may be the same or different; p and q are each independently integers of 0 to 4; and Xa represents one of the groups of formula (5):
  • Figure US20080176990A1-20080724-C00003
  • wherein Rc and Rd each independently represent a hydrogen atom or a monovalent linear or cyclic hydrocarbon group and Re is a divalent hydrocarbon group.
  • Some illustrative, non-limiting examples of suitable dihydroxy compounds include the following: resorcinol, 4-bromoresorcinol, hydroquinone, 4,4′-dihydroxybiphenyl, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)-1-naphthylmethane, 1,2-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane, bis(4-hydroxyphenyl)phenylmethane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 1,1-bis(hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)isobutene, 1,1-bis(4-hydroxyphenyl)cyclododecane, trans-2,3-bis(4-hydroxyphenyl)-2-butene, 2,2-bis(4-hydroxyphenyl)adamantine, (alpha,alpha′-bis(4-hydroxyphenyl)toluene, bis(4-hydroxyphenyl)acetonitrile, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3-ethyl-4-hydroxyphenyl)propane, 2,2-bis(3-n-propyl-4-hydroxyphenyl)propane, 2,2-bis(3-isopropyl-4-hydroxyphenyl)propane, 2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 2,2-bis(3-allyl-4-hydroxyphenyl)propane, 2,2-bis(3-methoxy-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, 1,1-dichloro-2,2-bis(4-hydroxyphenyl)ethylene, 1,1-dibromo-2,2-bis(4-hydroxyphenyl)ethylene, 1,1-dichloro-2,2-bis(5-phenoxy-4-hydroxyphenyl)ethylene, 4,4′-dihydroxybenzophenone, 3,3-bis(4-hydroxyphenyl)-2-butanone, 1,6-bis(4-hydroxyphenyl)-1,6-hexanedione, ethylene glycol bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)sulfoxide, bis(4-hydroxyphenyl)sulfone, 9,9-bis(4-hydroxyphenyl)fluorine, 2,7-dihydroxypyrene, 6,6′-dihydroxy-3,3,3′,3′-tetramethylspiro(bis)indane (“spirobiindane bisphenol”), 3,3-bis(4-hydroxyphenyl)phthalide, 2,6-dihydroxydibenzo-p-dioxin, 2,6-dihydroxythianthrene, 2,7-dihydroxyphenoxathin, 2,7-dihydroxy-9,10-dimethylphenazine, 3,6-dihydroxydibenzofuran, 3,6-dihydroxydibenzothiophene, and 2,7-dihydroxycarbazole, and the like, as well as combinations comprising at least one of the foregoing dihydroxy compounds.
  • Specific examples of the types of bisphenol compounds that may be represented by formula (3) include 1,1-bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane (hereinafter “bisphenol A” or “BPA”), 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)n-butane, 2,2-bis(4-hydroxy-1-methylphenyl)propane, and 1,1-bis(4-hydroxy-t-butylphenyl)propane. Combinations comprising at least one of the foregoing dihydroxy compounds may also be used.
  • Branched polycarbonates are also useful, as well as blends of a linear polycarbonate and a branched polycarbonate. The branched polycarbonates may be prepared by adding a branching agent during polymerization. These branching agents include polyfunctional organic compounds containing at least three functional groups selected from hydroxyl, carboxyl, carboxylic anhydride, haloformyl, and mixtures of the foregoing functional groups. Specific examples include trimellitic acid, trimellitic anhydride, trimellitic trichloride, tris-p-hydroxy phenyl ethane, isatin-bis-phenol, tris-phenol TC (1,3,5-tris((p-hydroxyphenyl)isopropyl)benzene), tris-phenol PA (4(4(1,1-bis(p-hydroxyphenyl)-ethyl)alpha,alpha-dimethyl benzyl)phenol), 4-chloroformyl phthalic anhydride, trimesic acid, and benzophenone tetracarboxylic acid. The branching agents may be added at a level of about 0.05-2.0 wt. %. All types of polycarbonate end groups are contemplated as being useful in the polycarbonate composition, provided that such end groups do not significantly affect desired properties of the thermoplastic compositions.
  • “Polycarbonates” and “polycarbonate resins” as used herein further includes blends of polycarbonates with other copolymers comprising carbonate chain units. A specific suitable copolymer is a polyester carbonate, also known as a copolyester-polycarbonate. Such copolymers further contain, in addition to recurring carbonate chain units of the formula (1), repeating units of formula (6)
  • Figure US20080176990A1-20080724-C00004
  • wherein D is a divalent radical derived from a dihydroxy compound, and may be, for example, a C2-10 alkylene radical, a C6-20 alicyclic radical, a C6-20 aromatic radical or a polyoxyalkylene radical in which the alkylene groups contain 2 to about 6 carbon atoms, specifically 2, 3, or 4 carbon atoms; and T divalent radical derived from a dicarboxylic acid, and may be, for example, a C2-10 alkylene radical, a C6-20 alicyclic radical, a C6-20 alkyl aromatic radical, or a C6-20 aromatic radical.
  • In one embodiment, D is a C2-6 alkylene radical. In another embodiment, D is derived from an aromatic dihydroxy compound of formula (7):
  • Figure US20080176990A1-20080724-C00005
  • wherein each Rf is independently a halogen atom, a C1-10 hydrocarbon group, or a C1-10 halogen substituted hydrocarbon group, and n is 0 to 4. The halogen is usually bromine. Examples of compounds that may be represented by the formula (7) include resorcinol, substituted resorcinol compounds such as 5-methyl resorcinol, 5-ethyl resorcinol, 5-propyl resorcinol, 5-butyl resorcinol, 5-t-butyl resorcinol, 5-phenyl resorcinol, 5-cumyl resorcinol, 2,4,5,6-tetrafluororesorcinol, 2,4,5,6-tetrabromo resorcinol, or the like; catechol; hydroquinone; substituted hydroquinones such as 2-methyl hydroquinone, 2-ethyl hydroquinone, 2-propyl hydroquinone, 2-butyl hydroquinone, 2-t-butyl hydroquinone, 2-phenyl hydroquinone, 2-cumyl hydroquinone, 2,3,5,6-tetramethyl hydroquinone, 2,3,5,6-tetra-t-butyl hydroquinone, 2,3,5,6-tetrafluorohydroquinone, 2,3,5,6-tetrabromo hydroquinone, or the like; or combinations comprising at least one of the foregoing compounds.
  • Examples of aromatic dicarboxylic acids that may be used to prepare the polyesters include isophthalic or terephthalic acid, 1,2-di(p-carboxyphenyl)ethane, 4,4′-dicarboxydiphenyl ether, 4,4′-bisbenzoic acid, and mixtures comprising at least one of the foregoing acids. Acids containing fused rings can also be present, such as in 1,4-, 1,5-, or 2,6-naphthalenedicarboxylic acids. Specific dicarboxylic acids are terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, cyclohexane dicarboxylic acid, or mixtures thereof. A specific dicarboxylic acid comprises a mixture of isophthalic acid and terephthalic acid wherein the weight ratio of terephthalic acid to isophthalic acid is about 10:1 to about 0.2:9.8. In another specific embodiment, D is a C2-6 alkylene radical and T is p-phenylene, m-phenylene, naphthalene, a divalent cycloaliphatic radical, or a mixture thereof. This class of polyester includes the poly(alkylene terephthalates).
  • In one specific embodiment, the polycarbonate is a linear homopolymer derived from bisphenol A, in which each of A1 and A2 is p-phenylene and Y1 is isopropylidene. The polycarbonates may have an intrinsic viscosity, as determined in chloroform at 25° C., of about 0.3 to about 1.5 deciliters per gram (dl/gm), specifically about 0.45 to about 1.0 dl/gm. The polycarbonates may have a weight average molecular weight (MW) of about 10,000 to about 200,000, specifically about 20,000 to about 100,000 as measured by gel permeation chromatography.
  • In one embodiment, the polycarbonate has flow properties suitable for the manufacture of thin articles. Melt volume flow rate (often abbreviated MVR) measures the rate of extrusion of a thermoplastics through an orifice at a prescribed temperature and load. Polycarbonates suitable for the formation of thin articles may have an MVR, measured at 300° C./1.2 kg, of about 4 to about 28 grams per centimeter cubed (g/cm3), specifically about 18 to about 26 g/cm3. Mixtures of polycarbonates of different flow properties may be used to achieve the overall desired flow property.
  • Suitable polycarbonates can be manufactured by processes such as interfacial polymerization and melt polymerization. Although the reaction conditions for interfacial polymerization may vary, an exemplary process generally involves dissolving or dispersing a dihydric phenol reactant in aqueous caustic soda or potash, adding the resulting mixture to a suitable water-immiscible solvent medium, and contacting the reactants with a carbonate precursor in the presence of a suitable catalyst such as triethylamine or a phase transfer catalyst, under controlled pH conditions, e.g., about 8 to about 10. The most commonly used water immiscible solvents include methylene chloride, 1,2-dichloroethane, chlorobenzene, toluene, and the like. Suitable carbonate precursors include, for example, a carbonyl halide such as carbonyl bromide or carbonyl chloride, or a haloformate such as a bishaloformates of a dihydric phenol (e.g., the bischloroformates of bisphenol A, hydroquinone, or the like) or a glycol (e.g., the bishaloformate of ethylene glycol, neopentyl glycol, polyethylene glycol, or the like). Combinations comprising at least one of the foregoing types of carbonate precursors may also be used.
  • Among the phase transfer catalysts that may be used are catalysts of the formula (R3)4Q+X, wherein each R3 is the same or different, and is a C1-10 alkyl group; Q is a nitrogen or phosphorus atom; and X is a halogen atom or a C1-8 alkoxy group or C6-188 aryloxy group. Suitable phase transfer catalysts include, for example, [CH3(CH2)3]4NX, [CH3(CH2)3]4PX, [CH3(CH2)5]4NX, [CH3(CH2)6]4NX, [CH3(CH2)4]4NX, CH3[CH3(CH2)3]3NX, and CH3[CH3(CH2)2]3NX, wherein X is Cl, Br, a C1-8 alkoxy group or a C6-188 aryloxy group. An effective amount of a phase transfer catalyst may be about 0.1 to about 10 wt. % based on the weight of bisphenol in the phosgenation mixture. In another embodiment an effective amount of phase transfer catalyst may be about 0.5 to about 2 wt. % based on the weight of bisphenol in the phosgenation mixture.
  • Alternatively, melt processes may be used to make the polycarbonates. Generally, in the melt polymerization process, polycarbonates may be prepared by co-reacting, in a molten state, the dihydroxy reactant(s) and a diaryl carbonate ester, such as diphenyl carbonate, in the presence of a transesterification catalyst in a Banbury mixer, twin screw extruder, or the like to form a uniform dispersion. Volatile monohydric phenol is removed from the molten reactants by distillation and the polymer is isolated as a molten residue.
  • The copolyester-polycarbonate resins may also be prepared by interfacial polymerization. Rather than utilizing the dicarboxylic acid per se, it is possible, and sometimes even preferred, to employ the reactive derivatives of the acid, such as the corresponding acid halides, in particular the acid dichlorides and the acid dibromides. Thus, for example instead of using isophthalic acid, terephthalic acid, or mixtures thereof, it is possible to employ isophthaloyl dichloride, terephthaloyl dichloride, and mixtures thereof.
  • In addition to the polycarbonates described above, it is also possible to use combinations of the polycarbonate with other thermoplastic polymers, for example combinations of polycarbonates and/or polycarbonate copolymers with polyesters. As used herein, a “combination” is inclusive of all mixtures, blends, alloys, and the like. Suitable polyesters comprise repeating units of formula (6), and may be, for example, poly(alkylene dicarboxylates), liquid crystalline polyesters, and polyester copolymers. It is also possible to use a branched polyester in which a branching agent, for example, a glycol having three or more hydroxyl groups or a trifunctional or multifunctional carboxylic acid has been incorporated. Furthermore, it is sometime desirable to have various concentrations of acid and hydroxyl end groups on the polyester, depending on the ultimate end use of the composition.
  • In one embodiment, poly(alkylene terephthalate)s is used. Specific examples of suitable poly(alkylene terephthalates) are poly(ethylene terephthalate) (PET), poly(1,4-butylene terephthalate) (PBT), poly(ethylene naphthanoate) (PEN), poly(butylene naphthanoate), (PBN), (polypropylene terephthalate) (PPT), polycyclohexanedimethanol terephthalate (PCT), and combinations comprising at least one of the foregoing polyesters. Also contemplated are the above polyesters with a minor amount, e.g., from about 0.5 to about 10 percent by weight, of units derived from an aliphatic diacid and/or an aliphatic polyol to make copolyesters.
  • The blends of a polycarbonate and a polyester may comprise about 1 to about 99 wt. % polycarbonate and correspondingly about 99 to about 1 wt. % polyester, in particular a poly(alkylene terephthalate). In one embodiment, the blend comprises about 30 to about 70 wt. % polycarbonate and correspondingly about 70 to about 30 wt. % polyester. The foregoing amounts are base on the total weight of the polycarbonate resin and polyester resin.
  • The thermoplastic composition may further comprise a polycarbonate-polysiloxane copolymer comprising polycarbonate blocks and polydiorganosiloxane blocks. Although this component comprises polycarbonate blocks, it is not to be considered a part of the polycarbonate resin component as described above, but rather as a separate and additional component.
  • The polycarbonate blocks comprise repeating structural units of formula (1) as described above, and preferably wherein R1 is of formula (2) as described above. These units may be derived from reaction of dihydroxy compounds of formula (3) as described above. In one embodiment, the dihydroxy compound is bisphenol A, in which each of A1 and A2 is p-phenylene and Y1 is isopropylidene.
  • The polydiorganosiloxane blocks comprise repeating structural units of formula (8):
  • Figure US20080176990A1-20080724-C00006
  • wherein each occurrence of R is same or different, and is a C1-13 monovalent organic radical. For example, R may be a C1-C13 alkyl group, C1-C13 alkoxy group, C2-C13 alkenyl group, C2-C13 alkenyloxy group, C3-C6 cycloalkyl group, C3-C6 cycloalkoxy group, C6-C10 aryl group, C6-C10 aryloxy group, C7-C13 aralkyl group, C7-C13 aralkoxy group, C7-C13 alkaryl group, or C7-C13 alkaryloxy group. Combinations of the foregoing R groups may be used in the same copolymer.
  • D in formula (8) is selected so as to provide the desired properties to the thermoplastic composition. The value of D will therefore vary depending on the type and relative amount of each component in the thermoplastic composition, including the type and amount of polycarbonate, polysiloxane-polycarbonate copolymer, poly(alkyl(meth)acrylate, impact modifier, and other additives. Suitable values for D may be determined by one of ordinary skill in the art without undue experimentation using the guidelines taught herein. Generally, D has an average value of 2 to about 1000, specifically about 10 to about 100, more specifically about 25 to about 80, even more specifically about 40 to about 70. In one embodiment, D has an average value of about 30 to about 60, and in still another embodiment, D has an average value of about 50. Where D is of a lower value, e.g., less than about 40, it may be necessary to use a relatively larger amount of the polysiloxane-polycarbonate copolymer. Conversely, where D is of a higher value, e.g., greater than about 40, it may be necessary to use a relatively smaller amount of the polysiloxane-polycarbonate copolymer.
  • In one embodiment the polydiorganosiloxane blocks comprise repeating structural units of formula (9)
  • Figure US20080176990A1-20080724-C00007
  • wherein R and D are as defined above. R2 in formula (9) is a divalent C2-C8 aliphatic group. Each M in formula (9) may be the same or different, and may be a halogen, cyano, nitro, C1-C8 alkylthio, C1-C8 alkyl, C1-C8 alkoxy, C2-C8 alkenyl, C2-C8 alkenyloxy group, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C6-C10 aryl, C6-C10 aryloxy, C7-C12 aralkyl, C7-C12 aralkoxy, C7-C12 alkaryl, or C7-C12 alkaryloxy, wherein each n is independently 0, 1, 2, 3, or 4.
  • In one embodiment, M is bromo or chloro, an alkyl group such as methyl, ethyl, or propyl, an alkoxy group such as methoxy, ethoxy, or propoxy, or an aryl group such as phenyl, chlorophenyl, or tolyl; R2 is a dimethylene, trimethylene or tetramethylene group; and R is a C1-8 alkyl, haloalkyl such as trifluoropropyl, cyanoalkyl, or aryl such as phenyl, chlorophenyl or tolyl. In another embodiment, R is methyl, or a mixture of methyl and trifluoropropyl, or a mixture of methyl and phenyl. In still another embodiment, M is methoxy, n is one, R2 is a divalent C1-C3 aliphatic group, and R is methyl.
  • These units may be derived from the corresponding dihydroxy polydiorganosiloxane (10):
  • Figure US20080176990A1-20080724-C00008
  • wherein R, D, M, R2, and n are as described above.
  • Such dihydroxy polysiloxanes can be made by effecting a platinum catalyzed addition between a siloxane hydride of the formula (11),
  • Figure US20080176990A1-20080724-C00009
  • wherein R and D are as previously defined, and an aliphatically unsaturated monohydric phenol. Suitable aliphatically unsaturated monohydric phenols included, for example, eugenol, 2-alkylphenol, 4-allyl-2-methylphenol, 4-allyl-2-phenylphenol, 4-allyl-2-bromophenol, 4-allyl-2-t-butoxyphenol, 4-phenyl-2-phenylphenol, 2-methyl-4-propylphenol, 2-allyl-4,6-dimethylphenol, 2-allyl-4-bromo-6-methylphenol, 2-allyl-6-methoxy-4-methylphenol and 2-allyl-4,6-dimethylphenol. Mixtures comprising at least one of the foregoing may also be used.
  • The polysiloxane-polycarbonate copolymer may be manufactured by reaction of dihydroxy polysiloxane (10) with a carbonate source and a dihydroxy aromatic compound of formula (3), optionally in the presence of a phase transfer catalyst as described above. Suitable conditions are similar to those useful in forming polycarbonates. Preferably, the copolymers are prepared by phosgenation, at temperatures from below 0° C. to about 100° C., preferably about 25° C. to about 50° C. Since the reaction is exothermic, the rate of phosgene addition may be used to control the reaction temperature. The amount of phosgene required will generally depend upon the amount of the dihydric reactants. Alternatively, the polysiloxane-polycarbonate copolymers may be prepared by co-reacting in a molten state, the dihydroxy monomers and a diaryl carbonate ester, such as diphenyl carbonate, in the presence of a transesterification catalyst as described above.
  • In the production of the polysiloxane-polycarbonate copolymer, the amount of dihydroxy polydiorganosiloxane is selected so as to provide the desired properties to the copolymer, and thus to the compositions. The amount of dihydroxy polydiorganosiloxane will therefore vary depending on desired level of flame retardancy, the value of D, and the type and relative amount of each component in the thermoplastic composition, including the type and amount of polycarbonate, type and amount of any impact modifier, type and amount of polysiloxane-polycarbonate copolymer, and type and amount of poly(alkyl)methacrylates. Suitable amounts of dihydroxy polydiorganosiloxane can be determined by one of ordinary skill in the art without undue experimentation using the guidelines taught herein. Typically, the amount of dihydroxy polydiorganosiloxane is selected so as to produce a copolymer comprising about 8 to about 40 wt. % of polydimethylsiloxane, or an equivalent molar amount of another polydiorganosiloxane. The amount of dihydroxy polydiorganosiloxane may further be selected so as to produce a copolymer comprising about 15 to about 30 wt. % of polydimethylsiloxane, specifically about 15 to about 25 wt. %, or an equivalent molar amount of another polydiorganosiloxane. The amount of dimethylsiloxane units in the polysiloxane-polycarbonate copolymer may be determined by those of ordinary skill in the art using known methods. For example, the weight percent of dimethylsiloxane units in a compound of formula (10) may be determined by comparison of the integrated intensity of the aromatic protons to the protons on the siloxane chains in the 1H NMR spectra of a homogenous sample dissolved in CDCl3 (without tetramethylsilane).
  • In one embodiment, the amount of dihydroxy polydiorganosiloxane is selected so as to produce a copolymer comprising about 0.1 to about 30 mole percent of polydiorganosiloxane blocks relative to the moles of polycarbonate blocks, more specifically about 0.5 to about 20 mol percent, and even more specifically, about 0.5 to about 12 mole percent of polydiorganosiloxane blocks relative to the moles of polycarbonate blocks. Such polysiloxane-polycarbonate copolymers may be opaque or transparent. Suitable polysiloxane-polycarbonate copolymers are commercially available from GE Plastics.
  • The polysiloxane-polycarbonate copolymers may have a weight-average molecular weight (measured, for example, by gel permeation chromatography, ultra-centrifugation, or light scattering) of about 10,000 to about 200,000, preferably about 20,000 to about 100,000.
  • The thermoplastic compositions further include an impact modifier composition. Suitable impact modifiers include elastomer-modified graft copolymers comprising (i) an elastomeric (i.e., rubbery) polymer substrate having a Tg less than about 10° C., more specifically less than about −10° C., or more specifically about −40° to −80° C., and (ii) a rigid polymeric superstrate grafted to the elastomeric polymer substrate. As is known, elastomer-modified graft copolymers may be prepared by first providing the elastomeric polymer, then polymerizing the constituent monomer(s) of the rigid phase in the presence of the elastomer to obtain the graft copolymer. The grafts may be attached as graft branches or as shells to an elastomer core. The shell may merely physically encapsulate the core, or the shell may be partially or essentially completely grafted to the core.
  • Suitable materials for use as the elastomer phase include, for example, conjugated diene rubbers; copolymers of a conjugated diene with less than about 50 wt. % of a copolymerizable monomer; olefin rubbers such as ethylene propylene copolymers (EPR) or ethylene-propylene-diene monomer rubbers (EPDM); ethylene-vinyl acetate rubbers; silicone rubbers; elastomeric C1-8 alkyl(meth)acrylates; elastomeric copolymers of C1-8 alkyl(meth)acrylates with butadiene and/or styrene; or combinations comprising at least one of the foregoing elastomers.
  • Preferably, conjugated diene monomers are used for preparing the elastomer phase, and are of formula (12):
  • Figure US20080176990A1-20080724-C00010
  • wherein each Xb is independently hydrogen, C1-C5 alkyl, or the like. Examples of conjugated diene monomers that may be used are butadiene, isoprene, 1,3-heptadiene, methyl-1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-pentadiene; 1,3- and 2,4-hexadienes, and the like, as well as mixtures comprising at least one of the foregoing conjugated diene monomers. Specific conjugated diene homopolymers include polybutadiene and polyisoprene.
  • Copolymers of a conjugated diene rubber may also be used, for example those produced by aqueous radical emulsion polymerization of a conjugated diene and one or more monomers copolymerizable therewith. Monomers that are suitable for copolymerization with the conjugated diene include monovinylaromatic monomers containing condensed aromatic ring structures, such as vinyl naphthalene, vinyl anthracene and the like, or monomers of formula (13):
  • Figure US20080176990A1-20080724-C00011
  • wherein each Xc is independently hydrogen, C1-C12 alkyl, C3-C12 cycloalkyl, C6-C12 aryl, C7-C12 aralkyl, C7-C12 alkaryl, C1-C12 alkoxy, C3-C12 cycloalkoxy, C6-C12 aryloxy, chloro, bromo, or hydroxy, and R is hydrogen, C1-C5 alkyl, bromo, or chloro. Examples of suitable monovinylaromatic monomers that may be used include styrene, 3-methylstyrene, 3,5-diethylstyrene, 4-n-propylstyrene, alpha-methylstyrene, alpha-methyl vinyltoluene, alpha-chlorostyrene, alpha-bromostyrene, dichlorostyrene, dibromostyrene, tetra-chlorostyrene, and the like, and combinations comprising at least one of the foregoing compounds. Styrene and/or alpha-methylstyrene may be used as monomers copolymerizable with the conjugated diene monomer.
  • Other monomers that may be copolymerized with the conjugated diene are monovinylic monomers such as itaconic acid, acrylamide, N-substituted acrylamide or methacrylamide, maleic anhydride, maleimide, N-alkyl-, aryl-, or haloaryl-substituted maleimide, glycidyl(meth)acrylates, and monomers of the generic formula (14):
  • Figure US20080176990A1-20080724-C00012
  • wherein R is hydrogen, C1-C5 alkyl, bromo, or chloro, and Xc is cyano, C1-C12 alkoxycarbonyl, C1-C12 aryloxycarbonyl, hydroxy carbonyl, or the like. Examples of monomers of formula (10) include acrylonitrile, ethacrylonitrile, methacrylonitrile, alpha-chloroacrylonitrile, beta-chloroacrylonitrile, alpha-bromoacrylonitrile, acrylic acid, methyl(meth)acrylate, ethyl(meth)acrylate, n-butyl(meth)acrylate, t-butyl (meth)acrylate, n-propyl(meth)acrylate, isopropyl(meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like, and combinations comprising at least one of the foregoing monomers. Monomers such as n-butyl acrylate, ethyl acrylate, and 2-ethylhexyl acrylate are commonly used as monomers copolymerizable with the conjugated diene monomer. However, it is preferred that the amount of Mixtures of the foregoing monovinyl monomers and monovinylaromatic monomers may also be used.
  • Suitable (meth)acrylate monomers suitable for use as the elastomeric phase may be cross-linked, particulate emulsion homopolymers or copolymers of C1-9 alkyl(meth)acrylates, in particular C4-6 alkyl acrylates, for example n-butyl acrylate, t-butyl acrylate, n-propyl acrylate, isopropyl acrylate, 2-ethylhexyl acrylate, and th like, and combinations comprising at least one of the foregoing monomers. The C1-9 alkyl(meth)acrylate monomers may optionally be polymerized in admixture with up to 15 wt. % of comonomers of formulas (12), (13), or (14). Exemplary comonomers include but are not limited to butadiene, isoprene, styrene, methyl methacrylate, phenyl methacrylate, phenethylmethacrylate, N-cyclohexylacrylamide, vinyl methyl ether or acrylonitrile, and mixtures comprising at least one of the foregoing comonomers. Optionally, up to 5 wt. % a polyfunctional crosslinking comonomer may be present, for example divinylbenzene, alkylenediol di(meth)acrylates such as glycol bisacrylate, alkylenetriol tri(meth)acrylates, polyester di(meth)acrylates, bisacrylamides, triallyl cyanurate, triallyl isocyanurate, allyl(meth)acrylate, diallyl maleate, diallyl fumarate, diallyl adipate, triallyl esters of citric acid, triallyl esters of phosphoric acid, and the like, as well as combinations comprising at least one of the foregoing crosslinking agents.
  • The elastomer phase may be polymerized by mass, emulsion, suspension, solution or combined processes such as bulk-suspension, emulsion-bulk, bulk-solution or other techniques, using continuous, semibatch, or batch processes. The particle size of the elastomer substrate is not critical. For example, an average particle size of about 0.001 to about 25 micrometers, specifically about 0.01 to about 15 micrometers, or even more specifically about 0.1 to about 8 micrometers may be used for emulsion based polymerized rubber lattices. A particle size of about 0.5 to about 10 micrometers, specifically about 0.6 to about 1.5 micrometers may be used for bulk polymerized rubber substrates. Particle size may be measured by simple light transmission methods or capillary hydrodynamic chromatography (CHDF). The elastomer phase may be a particulate, moderately cross-linked conjugated butadiene or C4-6 alkyl acrylate rubber, and preferably has a gel content greater than 70%. Also suitable are mixtures of butadiene with styrene and/or C4-6 alkyl acrylate rubbers.
  • The elastomeric phase may provide about 30 to about 95 wt. % of the total graft copolymer, more specifically about 40 to about 90 wt. %, and even more specifically about 50 to about 85 wt. % of the elastomer-modified graft copolymer, the remainder being the rigid graft phase.
  • The rigid phase of the elastomer-modified graft copolymer may be formed by graft polymerization of a mixture comprising a monovinylaromatic monomer and optionally one or more comonomers in the presence of one or more elastomeric polymer substrates. The above-described monovinylaromatic monomers of formula (13) may be used in the rigid graft phase, including styrene, alpha-methyl styrene, halostyrenes such as dibromostyrene, vinyltoluene, vinylxylene, butylstyrene, para-hydroxystyrene, methoxystyrene, or the like, or combinations comprising at least one of the foregoing monovinylaromatic monomers.
  • Suitable comonomers include, for example, the above-described monovinylic monomers and/or monomers of the general formula (10). In one embodiment, R is hydrogen or C1-C2 alkyl, and Xc is cyano or C1-C12 alkoxycarbonyl. Specific examples of suitable comonomers for use in the rigid phase include acrylonitrile, ethacrylonitrile, methacrylonitrile, ethyl(meth)acrylate, n-propyl (meth)acrylate, isopropyl(meth)acrylate, and the like, and combinations comprising at least one of the foregoing comonomers. In one embodiment, acrylonitrile is used as the comonomer. In another embodiment, the rigid phase is essentially free of methyl methacrylate, i.e., the monomers used to form the rigid grafting phase contains less than about 5 weight percent methyl methacrylate.
  • The relative ratio of monovinylaromatic monomer and comonomer in the rigid graft phase may vary widely depending on the type of elastomer substrate, type of monovinylaromatic monomer(s), type of comonomer(s), and the desired properties of the impact modifier. The rigid phase may generally comprise up to 90 wt. % of monovinyl aromatic monomer, specifically about 10 to about 80 wt. %, more specifically about 20 to about 70 wt. % monovinylaromatic monomer, with the balance being comonomer(s).
  • Depending on the amount of elastomer-modified polymer present, a separate matrix or continuous phase of ungrafted rigid polymer or copolymer may be simultaneously obtained along with the elastomer-modified graft copolymer. Typically, such impact modifiers comprise about 40 to about 95 wt. % elastomer-modified graft copolymer and about 5 to about 65 wt. % graft (co)polymer, based on the total weight of the impact modifier. In another embodiment, such impact modifiers comprise about 50 to about 85 wt. %, more specifically about 75 to about 85 wt. % rubber-modified graft copolymer, together with about 15 to about 50 wt. %, more specifically about 15 to about 25 wt. % graft (co)polymer, based on the total weight of the impact modifier.
  • Another specific type of elastomer-modified impact modifier composition comprises structural units derived from: at least one silicone rubber monomer, a branched acrylate rubber monomer having the formula H2C═C(Rd)C(O)OCH2CH2Re, wherein Rd is hydrogen or a C1-C8 linear or branched hydrocarbyl group and Re is a branched C3-C16 hydrocarbyl group; a first graft link monomer; a polymerizable alkenyl-containing organic material; and a second graft link monomer. The silicone rubber monomer may comprise, for example, a cyclic siloxane, tetraalkoxysilane, trialkoxysilane, (acryloxy)alkoxysilane, (mercaptoalkyl)alkoxysilane, vinylalkoxysilane, or allylalkoxysilane, alone or in combination, e.g., decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, tetramethyltetravinylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, octamethylcyclotetrasiloxane and/or tetraethoxysilane.
  • Exemplary branched acrylate rubber monomers include iso-octyl acrylate, 6-methyloctyl acrylate, 7-methyloctyl acrylate, 6-methylheptyl acrylate, and the like, alone or in combination. The polymerizable alkenyl-containing organic material may be, for example, a monomer of formula (9) or (10), e.g., styrene, alpha-methylstyrene, acrylonitrile, methacrylonitrile, or an unbranched (meth)acrylate such as methyl methacrylate, 2-ethylhexyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, or the like, alone or in combination.
  • The at least one first graft link monomer may be an (acryloxy)alkoxysilane, a (mercaptoalkyl)alkoxysilane, a vinylalkoxysilane, or an allylalkoxysilane, alone or in combination, e.g., (gamma-methacryloxypropyl)(dimethoxy)methylsilane and/or (3-mercaptopropyl)trimethoxysilane. The at least one second graft link monomer is a polyethylenically unsaturated compound having at least one allyl group, such as allyl methacrylate, triallyl cyanurate, or triallyl isocyanurate, alone or in combination.
  • The silicone-acrylate impact modifier compositions can be prepared by emulsion polymerization, wherein, for example at least one silicone rubber monomer is reacted with at least one first graft link monomer at a temperature from about 30° C. to about 110° C. to form a silicone rubber latex, in the presence of a surfactant such as dodecylbenzenesulfonic acid. Alternatively, a cyclic siloxane such as cyclooctamethyltetrasiloxane and an tetraethoxyorthosilicate may be reacted with a first graft link monomer such as (gamma-methacryloxypropyl)methyldimethoxysilane, to afford silicone rubber having an average particle size from about 100 nanometers to about 2 microns. At least one branched acrylate rubber monomer is then polymerized with the silicone rubber particles, optionally in presence of a cross linking monomer, such as allylmethacrylate in the presence of a free radical generating polymerization catalyst such as benzoyl peroxide. This latex is then reacted with a polymerizable alkenyl-containing organic material and a second graft link monomer. The latex particles of the graft silicone-acrylate rubber hybrid may be separated from the aqueous phase through coagulation (by treatment with a coagulant) and dried to a fine powder to produce the silicone-acrylate rubber impact modifier composition. This method can be generally used for producing the silicone-acrylate impact modifier having a particle size from about 100 nanometers to about two micrometers.
  • The thermoplastic composition further comprises a poly(alkyl (meth)acrylate), wherein the alkyl group is straight or branched-chain, and has 1 or 2 carbons atoms. In one embodiment the poly(alkyl(meth)acrylate) is poly(methyl methacrylate) (PMMA). PMMA may be produced by the polymerization of methyl methacrylate monomer, and may be derived by (1) the reaction of acetone cyanohydrin, methanol, and sulphuric acid or (2) the oxidation of tert-butyl alcohol to methacrolein and then to methacrylic acid followed by the esterification reaction with methanol. As is known, PMMA homopolymer is difficult to obtain, and therefore is available commercially and used herein as a mixture of the homopolymer and various copolymers of methyl methacrylate and C1-C4 alkyl acrylates, such as ethyl acrylate. “PMMA” as used herein therefore includes such mixtures, which are commercially available from, for example, Atofina under the trade designations V825, V826, V920, V045, and VM, and from Lucite under the trade names CLG340, CLG356, CLG960, CLG902, CMG302.
  • In one embodiment, the poly(alkyl(meth)acrylate) is an impact-modified poly(alkyl(meth)acrylate), for example an impact-modified poly(methyl methacrylate). Impact-modified poly(alkyl(meth)acrylate)s have improved impact strength relative to poly(alkyl(meth)acrylate)s. Suitable impact-modified poly(alkyl (meth)acrylate)s have improved impact strength. For example, the impact-modified poly(alkyl(meth)acrylate)s have a notched Izod of greater than about 20 J/m, specifically greater than about 25 J/m, more specifically greater than about 30 J/m, even more specifically greater than about 38 J/m, measured in accordance with ASTM D-256 at room temperature.
  • A variety of methods may be used to increase the impact strength of the poly(alkyl(meth)acrylate). One useful method is to incorporate an effective amount of a co-polymerizable non-alkyl(meth)acrylate) component. Suitable non-alkyl (meth)acrylate) components include monovinylaromatic monomers containing condensed aromatic ring structures, such as vinyl naphthalene, vinyl anthracene and the like, or monomers of formula (13) above; as well as monovinylic monomers such as itaconic acid, acrylamide, N-substituted acrylamide or methacrylamide, maleic anhydride, maleimide, N-alkyl-, aryl-, or haloaryl-substituted maleimide, glycidyl (meth)acrylates, and non-alkyl(meth)acrylate) monomers of the generic formula (14) above. Specific suitable monomers of formula (13) include styrene, 3-methylstyrene, 3,5-diethylstyrene, 4-n-propylstyrene, alpha-methylstyrene, alpha-methyl vinyltoluene, alpha-chlorostyrene, alpha-bromostyrene, dichlorostyrene, dibromostyrene, tetra-chlorostyrene, and the like, and specific non-alkyl (meth)acrylate) monomers of the generic formula (14) include acrylonitrile, ethacrylonitrile, methacrylonitrile, alpha-chloroacrylonitrile, beta-chloroacrylonitrile, alpha-bromoacrylonitrile, and the like, and combinations comprising at least one of the foregoing compounds. Styrene and/or alpha-methylstyrene may be used.
  • Another method that may be useful to increase the impact strength of the poly(alkyl(meth)acrylate) is to incorporate an effective amount of a co-polymerizable C3-C8 alkyl(meth)acrylate), i.e., an alkyl(meth)acrylate wherein the alkyl group has three to about eight carbon atoms. Exemplary C3-C8 alkyl (meth)acrylates include n-butyl(meth)acrylate, t-butyl(meth)acrylate, n-propyl (meth)acrylate, isopropyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, and the like, and combinations comprising at least one of the foregoing monomers. Monomers such as n-butyl acrylate, and 2-ethylhexyl acrylate may be useful. Mixtures of the foregoing copolymerizable monovinylaromatic monomers, monovinyl monomers and C3-C8 alkyl(meth)acrylate), may also be used.
  • Effective amounts of the copolymerizable monovinylaromatic monomers, monovinylic monomers and/or C3-C8 alkyl(meth)acrylate)s is generally small, for example about 0.1 to about 5 mole percent of the total impact-modified poly(alkyl(meth)acrylate) compositions, specifically about 0.5 to about 2 mole percent of the total impact-modified poly(alkyl(meth)acrylate) compositions. The monovinylaromatic monomers, monovinylic monomers and/or C3-C8 alkyl (meth)acrylate)s may be copolymerized with the C1-C2 alkyl(meth)acrylate monomers used to form the poly(alkyl(meth)acrylate), or they may be separately polymerized and then combined with the poly(alkyl(meth)acrylate). Bulk or emulsion co-polymerization may be used.
  • Another method that may be useful to increase the impact strength of the poly(alkyl(meth)acrylate) is to incorporate an effective amount of an impact modifier component as described above, i.e., a component comprising an elastomeric component and a rigid phase. The impact modifier component may be covalently bound (e.g., grafted) or otherwise mixed, blended, or alloyed with the poly(alkyl (meth)acrylate) Alternatively, in another embodiment, the impact-modified poly(alkyl(meth)acrylate) may comprise a poly(alkyl(meth)acrylate) component covalently bound (e.g., grafted) or mixed, blended, or alloyed with a small amount of an elastomeric component having a Tg less than about 10° C., more specifically less than about −10° C., or more specifically about −40° to −80° C. Suitable elastomeric components are described above.
  • In either case, a suitable elastomeric component may be formed from monomers of formula (14), in particular (meth)acrylate monomers. The elastomer component may be cross-linked, particulate emulsion homopolymers or copolymers of C1-9 alkyl(meth)acrylates, in particular C4-6 alkyl acrylates, for example n-butyl acrylate, t-butyl acrylate, n-propyl acrylate, isopropyl acrylate, 2-ethylhexyl acrylate, and the like, and combinations comprising at least one of the foregoing monomers. The C1-9 alkyl(meth)acrylate monomers may optionally be polymerized in admixture with up to 15 wt. % of comonomers of formulas (12) or (13), or (14). Exemplary comonomers include but are not limited to butadiene, isoprene, styrene, methyl methacrylate, phenyl methacrylate, phenethylmethacrylate, N-cyclohexylacrylamide, vinyl methyl ether or acrylonitrile, and mixtures comprising at least one of the foregoing comonomers. A particular comonomer is styrene.
  • Suitable impact-modified poly(alkyl(meth)acrylate)s are commercially available, and include, for example, those available from Atofina under the trade names HFI, for example HFI-10, HFI-7 and HFI7G-100; V052i and VMi; DR; and MI-7; and those available from Lucite under the trade names ST15G6, ST25G6, ST35G6, ST45G6, ST25G7.
  • The advantageous properties of the present compositions are due at least in part to the appropriate selection the relative amounts of each component, using the guidance provided herein.
  • In one embodiment, it has been found that use of a polycarbonate-polysiloxane copolymer can provide improved weld strength. These compositions may broadly comprise about 10 to about 84 wt. % polycarbonate, about 0.5 to about 40 wt. % polycarbonate-polysiloxane copolymer, about 1 to about 40 wt. % impact modifier, and about 1 to about 50 wt. % poly(alkyl(meth)acrylate), which may be impact-modified poly(alkyl(meth)acrylate).
  • In another embodiment the compositions may comprise about 30 to about 80 wt. % polycarbonate, about 2 to about 35 wt. % polycarbonate-polysiloxane copolymer, about 2.5 to about 35 wt. % impact modifier, and about 5 to about 35 wt. % poly(alkyl(meth)acrylate), which may be impact-modified poly(alkyl (meth)acrylate).
  • In still another embodiment, the compositions comprise about 45 to about 75 wt. % polycarbonate, about 2.5 to about 30 wt. %, more specifically about 1 to about 25 wt % polycarbonate-polysiloxane copolymer, about 5 to about 35 wt. %, more specifically about 5 to about 15 wt. % impact modifier, and about 10 to about 35 wt. %, more specifically about 15 to about 30 wt. % poly(alkyl(meth)acrylate), which may be impact-modified poly(alkyl(meth)acrylate).
  • It has also been found that use of an impact-modified poly(alkyl (meth)acrylate) can provide improved weld line strength. These compositions may broadly comprise about 10 to about 85 wt. % polycarbonate, about 1 to about 40 wt. % impact modifier, and about 1 to about 50 wt. % impact-modified poly(alkyl (meth)acrylate).
  • In another embodiment, these compositions may broadly about 20 to about 80 wt. % polycarbonate, about 2.5 to about 35 wt. % impact modifier, and about 5 to about 35 wt. % impact-modified poly(alkyl(meth)acrylate).
  • Alternatively, these compositions may broadly about 30 to about 75 wt. % polycarbonate, about 5 to about 35 wt. % impact modifier, and about 10 to about 35 wt. % impact-modified poly(alkyl(meth)acrylate). Still more specifically, these compositions may comprise about 45 to about 75 wt. % polycarbonate, about 5 to about 15 wt. % impact modifier, and about 15 to about 30 wt. % impact-modified poly(alkyl(meth)acrylate).
  • The thermoplastic composition may further include various additives ordinarily incorporated in resin compositions of this type, with the proviso that the additives are preferably selected so as to not significantly adversely affect the desired properties of the thermoplastic composition. In one embodiment, the additive(s) may be treated to prevent or substantially reduce any degradative activity. Such treatments may include coating with a substantially inert substance such as silicone, acrylic, or epoxy resins. Treatment may also comprise chemical passivation to remove, block, or neutralize catalytic sites. A combination of treatments may be used. Additives such as fillers, reinforcing agents, and pigments may be treated. Mixtures of additives may be used. Such additives may be mixed at a suitable time during the mixing of the components for forming the composition.
  • Suitable fillers or reinforcing agents include, for example, silicates and silica powders such as aluminum silicate (mullite), synthetic calcium silicate, zirconium silicate, fused silica, crystalline silica graphite, natural silica sand, or the like; boron powders such as boron-nitride powder, boron-silicate powders, or the like; oxides such as TiO2, aluminum oxide, magnesium oxide, or the like; calcium sulfate (as its anhydride, dihydrate or trihydrate); calcium carbonates such as chalk, limestone, marble, synthetic precipitated calcium carbonates, or the like; talc, including fibrous, modular, needle shaped, lamellar talc, or the like; wollastonite; surface-treated wollastonite; glass spheres such as hollow and solid glass spheres, silicate spheres, cenospheres, aluminosilicate (armospheres), or the like; kaolin, including hard kaolin, soft kaolin, calcined kaolin, kaolin comprising various coatings known in the art to facilitate compatibility with the polymeric matrix resin, or the like; single crystal fibers or “whiskers” such as silicon carbide, alumina, boron carbide, iron, nickel, copper, or the like; fibers (including continuous and chopped fibers) such as asbestos, carbon fibers, glass fibers, such as E, A, C, ECR, R, S, D, or NE glasses, or the like; sulfides such as molybdenum sulfide, zinc sulfide or the like; barium compounds such as barium titanate, barium ferrite, barium sulfate, heavy spar, or the like; metals and metal oxides such as particulate or fibrous aluminum, bronze, zinc, copper and nickel or the like; flaked fillers such as glass flakes, flaked silicon carbide, aluminum diboride, aluminum flakes, steel flakes or the like; fibrous fillers, for example short inorganic fibers such as those derived from blends comprising at least one of aluminum silicates, aluminum oxides, magnesium oxides, and calcium sulfate hemihydrate or the like; natural fillers and reinforcements, such as wood flour obtained by pulverizing wood, fibrous products such as cellulose, cotton, sisal, jute, starch, cork flour, lignin, ground nut shells, corn, rice grain husks or the like; organic fillers such as polytetrafluoroethylene; reinforcing organic fibrous fillers formed from organic polymers capable of forming fibers such as poly(ether ketone), polyimide, polybenzoxazole, poly(phenylene sulfide), polyesters, polyethylene, aromatic polyamides, aromatic polyimides, polyetherimides, polytetrafluoroethylene, acrylic resins, poly(vinyl alcohol) or the like; as well as additional fillers and reinforcing agents such as mica, clay, feldspar, flue dust, fillite, quartz, quartzite, perlite, tripoli, diatomaceous earth, carbon black, or the like, or combinations comprising at least one of the foregoing fillers or reinforcing agents.
  • The fillers and reinforcing agents may be coated with a layer of metallic material to facilitate conductivity, or surface treated with silanes to improve adhesion and dispersion with the polymeric matrix resin. In addition, the reinforcing fillers may be provided in the form of monofilament or multifilament fibers and may be used either alone or in combination with other types of fiber, through, for example, co-weaving or core/sheath, side-by-side, orange-type or matrix and fibril constructions, or by other methods known to one skilled in the art of fiber manufacture. Suitable cowoven structures include, for example, glass fiber-carbon fiber, carbon fiber-aromatic polyimide (aramid) fiber, and aromatic polyimide fiberglass fiber or the like. Fibrous fillers may be supplied in the form of, for example, rovings, woven fibrous reinforcements, such as 0-90 degree fabrics or the like; non-woven fibrous reinforcements such as continuous strand mat, chopped strand mat, tissues, papers and felts or the like; or three-dimensional reinforcements such as braids. Fillers are generally used in amounts of 0 to about 50 parts by weight, based on 100 parts by weight of the thermoplastic composition.
  • Suitable antioxidant additives include, for example, organophosphites such as tris(nonyl phenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite, distearyl pentaerythritol diphosphite or the like; alkylated monophenols or polyphenols; alkylated reaction products of polyphenols with dienes, such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane, or the like; butylated reaction products of para-cresol or dicyclopentadiene; alkylated hydroquinones; hydroxylated thiodiphenyl ethers; alkylidene-bisphenols; benzyl compounds; esters of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols; esters of beta-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols; esters of thioalkyl or thioaryl compounds such as distearylthiopropionate, dilaurylthiopropionate, ditridecylthiodipropionate, octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, pentaerythrityl-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate or the like; amides of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid or the like, or combinations comprising at least one of the foregoing antioxidants. Antioxidants are generally used in amounts of about 0.01 to about 1 parts by weight, specifically about 0.1 to about 0.5 parts by weight based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Suitable heat and color stabilizer additives include, for example, organophosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl)phosphite, tris-(mixed mono- and di-nonylphenyl)phosphite or the like; phosphonates such as dimethylbenzene phosphonate or the like, phosphates such as trimethyl phosphate, or the like, or combinations comprising at least one of the foregoing heat stabilizers. Heat and color stabilizers are generally used in amounts of about 0.01 to about 5 parts by weight, specifically about 0.05 to about 0.3 parts by weight based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Suitable secondary heat stabilizer additives include, for example thioethers and thioesters such as pentaerythritol tetrakis(3-(dodecylthio)propionate), pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], dilauryl thiodipropionate, distearyl thiodipropionate, dimyristyl thiodipropionate, ditridecyl thiodipropionate, pentaerythritol octylthiopropionate, dioctadecyl disulphide, and the like, and combinations comprising at least one of the foregoing heat stabilizers. Secondary stabilizers are generally used in amount of about 0.01 to about 5, specifically about 0.03 to about 0.3 parts by weight, based upon 100 parts by weight of parts by weight of the polycarbonate component and the impact modifier composition.
  • Light stabilizers and/or ultraviolet light (UV) absorbing additives may also be used. Suitable light stabilizer additives include, for example, benzotriazoles such as 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)-benzotriazole and 2-hydroxy-4-n-octoxy benzophenone, or the like, or combinations comprising at least one of the foregoing light stabilizers. Light stabilizers are generally used in amounts of about 0.01 to about 10 parts by weight, specifically about 0.1 to about 1 based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Suitable UV absorbing additives include for example, hydroxybenzophenones; hydroxybenzotriazoles; hydroxybenzotriazines; cyanoacrylates; oxanilides; benzoxazinones; 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (CYASORB 5411); 2-hydroxy-4-n-octyloxybenzophenone (CYASORB 531); 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)-phenol (CYASORB 1164); 2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazin-4-one) (CYASORB UV-3638); 1,3-bis[(2-cyano-3,3-diphenylacryloyl)oxy]-2,2-bis[[(2-cyano-3,3-diphenylacryloyl)oxy]methyl]propane (UVINUL 3030); 2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazin-4-one); 1,3-bis[(2-cyano-3,3-diphenylacryloyl)oxy]-2,2-bis[[(2-cyano-3,3-diphenylacryloyl)oxy]methyl]propane; nano-size inorganic materials such as titanium oxide, cerium oxide, and zinc oxide, all with particle size less than about 100 nanometers; or the like, or combinations comprising at least one of the foregoing UV absorbers. UV absorbers are generally used in amounts of about 0.1 to about 5.0 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Plasticizers, lubricants, and/or mold release agents additives may also be used. There is considerable overlap among these types of materials, which include, for example, phthalic acid esters such as dioctyl-4,5-epoxy-hexahydrophthalate; tris-(octoxycarbonylethyl)isocyanurate; tristearin; di- or polyfunctional aromatic phosphates such as resorcinol tetraphenyl diphosphate (RDP), the bis(diphenyl)phosphate of hydroquinone and the bis(diphenyl)phosphate of bisphenol-A; poly-alpha-olefins; epoxidized soybean oil; silicones, including silicone oils; esters, for example, fatty acid esters such as alkyl stearyl esters, e.g., methyl stearate; stearyl stearate, pentaerythritol tetrastearate, and the like; mixtures of methyl stearate and hydrophilic and hydrophobic nonionic surfactants comprising polyethylene glycol polymers, polypropylene glycol polymers, and copolymers thereof, e.g., methyl stearate and polyethylene-polypropylene glycol copolymers in a suitable solvent; waxes such as beeswax, montan wax, paraffin wax or the like. Such materials are generally used in amounts of about 0.1 to about 20 parts by weight, specifically about 1 to about 10 parts by weight based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • The term “antistatic agent” refers to monomeric, oligomeric, or polymeric materials that can be processed into polymer resins and/or sprayed onto materials or articles to improve conductive properties and overall physical performance. Examples of monomeric antistatic agents include glycerol monostearate, glycerol distearate, glycerol tristearate, ethoxylated amines, primary, secondary and tertiary amines, ethoxylated alcohols, alkyl sulfates, alkylarylsulfates, alkylphosphates, alkylaminesulfates, alkyl sulfonate salts such as sodium stearyl sulfonate, sodium dodecylbenzenesulfonate or the like, quaternary ammonium salts, quaternary ammonium resins, imidazoline derivatives, sorbitan esters, ethanolamides, betaines, or the like, or combinations comprising at least one of the foregoing monomeric antistatic agents.
  • Exemplary polymeric antistatic agents include certain polyesteramides polyether-polyamide(polyetheramide) block copolymers, polyetheresteramide block copolymers, polyetheresters, or polyurethanes, each containing polyalkylene glycol moieties polyalkylene oxide units such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like. Such polymeric antistatic agents are commercially available, for example Pelestat 6321 (Sanyo) or Pebax MH1657 (Atofina), Irgastat P18 and P22 (Ciba-Geigy). Other polymeric materials that may be used as antistatic agents are inherently conducting polymers such as polyaniline (commercially available as PANIPOL®EB from Panipol), polypyrrole and polythiophene (commercially available from Bayer), which retain some of their intrinsic conductivity after melt processing at elevated temperatures. In one embodiment, carbon fibers, carbon nanofibers, carbon nanotubes, carbon black, or any combination of the foregoing may be used in a polymeric resin containing chemical antistatic agents to render the composition electrostatically dissipative. Antistatic agents are generally used in amounts of about 0.1 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Colorants such as pigment and/or dye additives may also be present. Suitable pigments include for example, inorganic pigments such as metal oxides and mixed metal oxides such as zinc oxide, titanium dioxides, iron oxides or the like; sulfides such as zinc sulfides, or the like; aluminates; sodium sulfo-silicates sulfates, chromates, or the like; carbon blacks; zinc ferrites; ultramarine blue; Pigment Brown 24; Pigment Red 101; Pigment Yellow 119; organic pigments such as azos, di-azos, quinacridones, perylenes, naphthalene tetracarboxylic acids, flavanthrones, isoindolinones, tetrachloroisoindolinones, anthraquinones, anthanthrones, dioxazines, phthalocyanines, and azo lakes; Pigment Blue 60, Pigment Red 122, Pigment Red 149, Pigment Red 177, Pigment Red 179, Pigment Red 202, Pigment Violet 29, Pigment Blue 15, Pigment Green 7, Pigment Yellow 147 and Pigment Yellow 150, or combinations comprising at least one of the foregoing pigments. Pigments are generally used in amounts of about 0.01 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Suitable dyes are generally organic materials and include, for example, coumarin dyes such as coumarin 460 (blue), coumarin 6 (green), nile red or the like; lanthanide complexes; hydrocarbon and substituted hydrocarbon dyes; polycyclic aromatic hydrocarbon dyes; scintillation dyes such as oxazole or oxadiazole dyes; aryl- or heteroaryl-substituted poly(C2-8) olefin dyes; carbocyanine dyes; indanthrone dyes; phthalocyanine dyes; oxazine dyes; carbostyryl dyes; napthalenetetracarboxylic acid dyes; porphyrin dyes; bis(styryl)biphenyl dyes; acridine dyes; anthraquinone dyes; cyanine dyes; methine dyes; arylmethane dyes; azo dyes; indigoid dyes, thioindigoid dyes, diazonium dyes; nitro dyes; quinone imine dyes; aminoketone dyes; tetrazolium dyes; thiazole dyes; perylene dyes, perinone dyes; bis-benzoxazolylthiophene (BBOT); triarylmethane dyes; xanthene dyes; thioxanthene dyes; naphthalimide dyes; lactone dyes; fluorophores such as anti-stokes shift dyes which absorb in the near infrared wavelength and emit in the visible wavelength, or the like; luminescent dyes such as 7-amino-4-methylcoumarin; 3-(2′-benzothiazolyl)-7-diethylaminocoumarin; 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole; 2,5-bis-(4-biphenylyl)-oxazole; 2,2′-dimethyl-p-quaterphenyl; 2,2-dimethyl-p-terphenyl; 3,5,3″″,5″″-tetra-t-butyl-p-quinquephenyl; 2,5-diphenylfuran; 2,5-diphenyloxazole; 4,4′-diphenylstilbene; 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran; 1,1′-diethyl-2,2′-carbocyanine iodide; 3,3′-diethyl-4,4′,5,5′-dibenzothiatricarbocyanine iodide; 7-dimethylamino-1-methyl-4-methoxy-8-azaquinolone-2; 7-dimethylamino-4-methylquinolone-2; 2-(4-(4-dimethylaminophenyl)-1,3-butadienyl)-3-ethylbenzothiazolium perchlorate; 3-diethylamino-7-diethyliminophenoxazonium perchlorate; 2-(1-naphthyl)-5-phenyloxazole; 2,2′-p-phenylen-bis(5-phenyloxazole); rhodamine 700; rhodamine 800; pyrene; chrysene; rubrene; coronene, or the like, or combinations comprising at least one of the foregoing dyes. Dyes are generally used in amounts of about 0.01 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Where a foam is desired, suitable blowing agents include for example, low boiling halohydrocarbons and those that generate carbon dioxide; blowing agents that are solid at room temperature and when heated to temperatures higher than their decomposition temperature, generate gases such as nitrogen, carbon 25 dioxide ammonia gas, such as azodicarbonamide, metal salts of azodicarbonamide, 4,4′oxybis(benzenesulfonylhydrazide), sodium bicarbonate, ammonium carbonate, or the like, or combinations comprising at least one of the foregoing blowing agents. Blowing agents are generally used in amounts of about 0.5 to about 20 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Suitable flame retardant that may be added may be organic compounds that include phosphorus, bromine, and/or chlorine. Non-brominated and non-chlorinated phosphorus-containing flame retardants may be preferred in certain applications for regulatory reasons, for example organic phosphates and organic compounds containing phosphorus-nitrogen bonds.
  • One type of exemplary organic phosphate is an aromatic phosphate of the formula (GO)3P═O, wherein each G is independently an alkyl, cycloalkyl, aryl, alkaryl, or aralkyl group, provided that at least one G is an aromatic group. Two of the G groups may be joined together to provide a cyclic group, for example, diphenyl pentaerythritol diphosphate, which is described by Axelrod in U.S. Pat. No. 4,154,775. Other suitable aromatic phosphates may be, for example, phenyl bis(dodecyl)phosphate, phenyl bis(neopentyl)phosphate, phenyl bis(3,5,5′-trimethylhexyl)phosphate, ethyl diphenyl phosphate, 2-ethylhexyl di(p-tolyl)phosphate, bis(2-ethylhexyl)p-tolyl phosphate, tritolyl phosphate, bis(2-ethylhexyl)phenyl phosphate, tri(nonylphenyl)phosphate, bis(dodecyl)p-tolyl phosphate, dibutyl phenyl phosphate, 2-chloroethyl diphenyl phosphate, p-tolyl bis(2,5,5′-trimethylhexyl)phosphate, 2-ethylhexyl diphenyl phosphate, or the like. A specific aromatic phosphate is one in which each G is aromatic, for example, triphenyl phosphate, tricresyl phosphate, isopropylated triphenyl phosphate, and the like.
  • Di- or polyfunctional aromatic phosphorus-containing compounds are also useful, for example, compounds of the formulas below:
  • Figure US20080176990A1-20080724-C00013
  • wherein each G1 is independently a hydrocarbon having 1 to about 30 carbon atoms; each G2 is independently a hydrocarbon or hydrocarbonoxy having 1 to about 30 carbon atoms; each X is independently a bromine or chlorine; m is 0 to 4, and n is 1 to about 30. Examples of suitable di- or polyfunctional aromatic phosphorus-containing compounds include resorcinol tetraphenyl diphosphate (RDP), the bis(diphenyl)phosphate of hydroquinone and the bis(diphenyl)phosphate of bisphenol-A, respectively, their oligomeric and polymeric counterparts, and the like.
  • Exemplary suitable flame retardant compounds containing phosphorus-nitrogen bonds include phosphonitrilic chloride, phosphorus ester amides, phosphoric acid amides, phosphonic acid amides, phosphinic acid amides, and tris(aziridinyl)phosphine oxide. When present, phosphorus-containing flame retardants are generally present in amounts of about 1 to about 20 parts by weight, based on 100 parts by weight of polycarbonate resin and any impact modifier.
  • Halogenated materials may also be used as flame retardants, for example halogenated compounds and resins of formula (15):
  • Figure US20080176990A1-20080724-C00014
  • wherein R is an alkylene, alkylidene or cycloaliphatic linkage, e.g., methylene, ethylene, propylene, isopropylene, isopropylidene, butylene, isobutylene, amylene, cyclohexylene, cyclopentylidene, or the like; or an oxygen ether, carbonyl, amine, or a sulfur containing linkage, e.g., sulfide, sulfoxide, sulfone, or the like. R can also consist of two or more alkylene or alkylidene linkages connected by such groups as aromatic, amino, ether, carbonyl, sulfide, sulfoxide, sulfone, or the like.
  • Ar and Ar′ in formula (15) are each independently mono- or polycarbocyclic aromatic groups such as phenylene, biphenylene, terphenylene, naphthylene, or the like.
  • Y is an organic, inorganic, or organometallic radical, for example (1) halogen, e.g., chlorine, bromine, iodine, fluorine or (2) ether groups of the general formula OE, wherein E is a monovalent hydrocarbon radical similar to X or (3) monovalent hydrocarbon groups of the type represented by R or (4) other substituents, e.g., nitro, cyano, and the like, said substituents being essentially inert provided that there is at least one and preferably two halogen atoms per aryl nucleus.
  • When present, each X is independently a monovalent hydrocarbon group, for example an alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, decyl, or the like; an aryl groups such as phenyl, naphthyl, biphenyl, xylyl, tolyl, or the like; and aralkyl group such as benzyl, ethylphenyl, or the like; a cycloaliphatic group such as cyclopentyl, cyclohexyl, or the like. The monovalent hydrocarbon group may itself contain inert substituents.
  • Each d is independently 1 to a maximum equivalent to the number of replaceable hydrogens substituted on the aromatic rings comprising Ar or Ar′. Each e is independently 0 to a maximum equivalent to the number of replaceable hydrogens on R. Each a, b, and c is independently a whole number, including 0. When b is not 0, neither a nor c may be 0. Otherwise either a or c, but not both, may be 0. Where b is 0, the aromatic groups are joined by a direct carbon-carbon bond.
  • The hydroxyl and Y substituents on the aromatic groups, Ar and Ar′ can be varied in the ortho, meta or para positions on the aromatic rings and the groups can be in any possible geometric relationship with respect to one another.
  • Included within the scope of the above formula are bisphenols of which the following are representative: 2,2-bis-(3,5-dichlorophenyl)-propane; bis-(2-chlorophenyl)-methane; bis(2,6-dibromophenyl)-methane; 1,1-bis-(4-iodophenyl)-ethane; 1,2-bis-(2,6-dichlorophenyl)-ethane; 1,1-bis-(2-chloro-4-iodophenyl)ethane; 1,1-bis-(2-chloro-4-methylphenyl)-ethane; 1,1-bis-(3,5-dichlorophenyl)-ethane; 2,2-bis-(3-phenyl-4-bromophenyl)-ethane; 2,6-bis-(4,6-dichloronaphthyl)-propane; 2,2-bis-(2,6-dichlorophenyl)-pentane; 2,2-bis-(3,5-dibromophenyl)-hexane; bis-(4-chlorophenyl)-phenyl-methane; bis-(3,5-dichlorophenyl)-cyclohexylmethane; bis-(3-nitro-4-bromophenyl)-methane; bis-(4-hydroxy-2,6-dichloro-3-methoxyphenyl)-methane; and 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane 2,2bis-(3-bromo-4-hydroxyphenyl)-propane. Also included within the above structural formula are: 1,3-dichlorobenzene, 1,4-dibrombenzene, 1,3-dichloro-4-hydroxybenzene, and biphenyls such as 2,2′-dichlorobiphenyl, polybrominated 1,4-diphenoxybenzene, 2,4′-dibromobiphenyl, and 2,4′-dichlorobiphenyl as well as decabromo diphenyl oxide, and the like.
  • Also useful are oligomeric and polymeric halogenated aromatic compounds, such as a copolycarbonate of bisphenol A and tetrabromobisphenol A and a carbonate precursor, e.g., phosgene. Metal synergists, e.g., antimony oxide, may also be used with the flame retardant. When present, halogen containing flame retardants are generally present in amounts of about 1 to about 50 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Inorganic flame retardants may also be used, for example salts of C2-16 alkyl sulfonate salts such as potassium perfluorobutane sulfonate (Rimar salt), potassium perfluorooctane sulfonate, tetraethylammonium perfluorohexane sulfonate, and potassium diphenylsulfone sulfonate, and the like; salts formed by reacting for example an alkali metal or alkaline earth metal (for example lithium, sodium, potassium, magnesium, calcium and barium salts) and an inorganic acid complex salt, for example alkali metal and alkaline-earth metal salts such as Na2CO3, K2CO3, MgCO3, CaCO3, BaCO3, Li3AlF6, BaSiF6, KBF4, K3AlF6, KAlF4, K2SiF6, and/or Na3AlF6, or the like. When present, inorganic flame retardant salts are generally present in amounts of about 0.01 to about 25 parts by weight, more specifically about 0.1 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • Anti-drip agents may also be used, for example a fibril forming or non-fibril forming fluoropolymer such as polytetrafluoroethylene (PTFE). The anti-drip agent may be encapsulated by a rigid copolymer as described above, for example SAN. PTFE encapsulated in SAN is known as TSAN. Encapsulated fluoropolymers may be made by polymerizing the encapsulating polymer in the presence of the fluoropolymer, for example an aqueous dispersion. TSAN may provide significant advantages over PTFE, in that TSAN may be more readily dispersed in the composition. A suitable TSAN may comprise, for example, about 50 wt. % PTFE and about 50 wt. % SAN, based on the total weight of the encapsulated fluoropolymer. The SAN may comprise, for example, about 75 wt. % styrene and about 25 wt. % acrylonitrile based on the total weight of the copolymer. Alternatively, the fluoropolymer may be pre-blended in some manner with a second polymer, such as for, example, an aromatic polycarbonate resin or SAN to form an agglomerated material for use as an anti-drip agent. Either method may be used to produce an encapsulated fluoropolymer. Antidrip agents are generally used in amounts of about 0.1 to about 10 parts by weight, based on 100 parts by weight of the thermoplastic composition, excluding any filler.
  • The thermoplastic compositions may be manufactured by methods generally available in the art, for example, in one embodiment powdered polycarbonate resin, polycarbonate-polysiloxane copolymer, impact modifier, poly(alkyl(meth)acrylate), and/or other optional components are first blended, optionally with chopped glass strands or other fillers in a Henschel high speed mixer. Other low shear processes, including but not limited to hand mixing, may also accomplish this blending. The blend is then fed into the throat of a twin-screw extruder via a hopper. Alternatively, one or more of the components may be incorporated into the composition by feeding directly into the extruder at the throat and/or downstream through a sidestuffer. Such additives may also be compounded into a masterbatch with a desired polymeric resin and fed into the extruder. The extruder is generally operated at a temperature higher than that necessary to cause the composition to flow. The extrudate is immediately quenched in a water batch and pelletized. The pellets, so prepared, when cutting the extrudate may be one-fourth inch long or less as desired. Such pellets may be used for subsequent molding, shaping, or forming.
  • The thermoplastic compositions have excellent physical properties. In particular, the thermoplastic compositions have improved weld line strength. Weld line strength may be determined, for example, using bars molded in a double gated mold (thereby producing a weld line), and having a length of 170 millimeter (mm) (+10%), a width of 10 mm (+10%), and a thickness of 2 or 4 mm (+10%) as indicated.
  • Improved knit line strength may be reflected, for example, by improved tensile Charpy values of a sample having a weld line. The thermoplastic compositions may also have a tensile Charpy, measured on a 2 mm (±10%) bar molded in a double gated mold, of greater than about 100 kJ/m2, specifically greater than about 105, more specifically greater than about 110, even more specifically greater than about 115, even more specifically greater than about 120 kJ/m2, measured at room temperature in accordance with DIN 53448-B.
  • In a particularly unexpected feature, use of the present compositions results in a decrease in the change (delta) in tensile stress at yield for a sample having a weld line relative to a sample without a weld line. Thus, bars comprising the thermoplastic compositions, molded in a double gated mold and having a thickness of 2 mm (±10%) may have a delta tensile stress at yield of less than about 6 MPa, specifically less than about 5.5 MPa, relative to bars comprising the thermoplastic compositions, molded in a single gated mold, and having a thickness of 2 mm (±10%) bar, when determined in accordance with ISO 527 at room temperature. The thermoplastic compositions may also have delta tensile stress at yield of smaller than about 6 MPa, specifically smaller than about 4 MPa, measured on a 4 mm thick (+10%) bar molded in a double-gated mold vs. a single gated mold in accordance with ISO 527 at room temperature.
  • The thermoplastic compositions may also have a flexural strain at break of greater than about 3.5%, specifically greater than about 5.0%, measured on a 4 mm thick (+10%) bar molded in a double-gated mold in accordance with ISO 527 at room temperature.
  • The thermoplastic compositions may also have a tensile elongation at break of greater than about 3.8%, specifically greater than about 2.8, measured on a 4 mm thick (±10%) bar molded in a double-gated mold in accordance with ISO 527 at room temperature. The thermoplastic compositions may also have a tensile elongation at break of greater than about 2.5%, specifically greater than about 3.0%, more specifically greater than about 3.5%, measured on a 2 mm thick (+10%) bar molded in a double-gated mold in accordance with ISO 527 at room temperature.
  • The thermoplastic compositions may also have an Unnotched Izod Impact, measured on 4 mm thick (+10%) bars molded in a double gated mold, of greater than about 7 kJ/m2, specifically greater than about 8.5 kJ/m2, more specifically greater than about 9.5 kJ/m2, measured at room temperature in accordance with ISO 180/1A.
  • The impact strength of the thermoplastic compositions is also good at low temperatures. The thermoplastic compositions may have a Notched Izod Impact, measured on 4 mm thick (±10%) bars molded without a weld line, of greater than about 30 kJ/m2, specifically greater than about 33 kJ/m2, more specifically greater than about 40 kJ/m2, measured at room temperature in accordance with ISO 180/1A. The thermoplastic compositions may have a Notched Izod Impact, measured on 4 mm thick (±10%) bars molded without a weld line, of greater than about 20 kJ/m2, specifically greater than about 25 kJ/m2, more specifically greater than about 28 kJ/m2, measured at 0° C. in accordance with ISO 180/1A. The thermoplastic compositions may have a Notched Izod Impact, measured on 4 mm (±10%) bars molded without a weld line, of greater than about 15 kJ/m2, specifically greater than about 17 kJ/m2, measured at −30° C. in accordance with ISO 180/1A.
  • In addition, the thermoplastic compositions have excellent viscosity characteristics. For example, the thermoplastic compositions have a melt volume ratio (MVR) of about 10 to about 35, more specifically about 15 to about 30 cm3/10 minutes, measured at 260° C./5 kg in accordance with ISO 1133.
  • The thermoplastic polycarbonate compositions may further have a Vicat B/120 of about 100 to about 140° C., more specifically about 110 to about 138° C., measured in accordance with ISO 306 at 120° C./5 kg.
  • Shaped, formed, or molded articles comprising the polycarbonate compositions are also provided. The polycarbonate compositions may be molded into useful shaped articles by a variety of means such as injection molding, extrusion, rotational molding, blow molding and thermoforming to form articles such as, for example, computer and business machine housings such as housings for monitors, handheld electronic device housings such as housings for cell phones, electrical connectors, and components of lighting fixtures, ornaments, home appliances, roofs, greenhouses, sun rooms, swimming pool enclosures, and the like.
  • In an advantageous feature, the thermoplastic compositions can provide articles having improved weld line strength.
  • The polycarbonate compositions are is further illustrated by the following non-limiting examples, which are based on the following components.
  • TABLE 1
    Trade name
    Abbreviation Component (Source)
    PC-1 BPA polycarbonate resin made by a melt process GE Plastics
    with an MVR at 300° C./1.2 kg of about 26 g/10 min
    PC-2 BPA polycarbonate resin made by a melt process GE Plastics
    with an MVR at 300° C./1.2 kg of about 6 g/10 min
    PC-PDMS Polysiloxane-polycarbonate copolymer comprising GE Plastics
    units derived from BPA and units derived from
    formula (10), wherein n is 0, R2 is propylene, R is
    methyl, D has an average value of about 50, the
    copolymer having an absolute weight average
    molecular weight of about 30000 g/mol, and a
    dimethylsiloxane content of about 20 wt. %
    ABS High rubber graft emulsion polymerized ABS GE Plastics
    comprising about 11.1 wt. % acrylonitrile and about
    38.5 wt. % styrene grafted to about 51 wt. %
    polybutadiene with a crosslink density of 43-55%
    PMMA-1 Methyl methacrylate (MMA)-ethyl acrylate (EA) PMMA V920 from
    co-polymer, comprising about 95.6 mol % MMA Atofina
    and about 4.4 mol % EA
    PMMA-2 Methyl methacrylate-ethyl acrylate (MMA-EA) co- PMMA HFI-7 from
    polymer with an acrylic/styrene rubber, comprising Atofina
    about 90.8 mol % MMA, about 8.6 mol % EA, and
    about 0.6 mol % styrene
    SAN Styrene acrylonitrile comprising about 25 wt. % GE Plastics
    acrylonitrile and 75 wt. % styrene
  • The components shown in Table 2 (wt. %), and further including 0.1-0.5 wt. % of a mold release agent and 0.1 to 0.5 wt. % of a combination of an antioxidant and a light stabilizer were combined using a Werner & Pfleiderer co-rotating twin screw extruder (25 millimeter screw) using a melt temperature range of about 250 to about 300° C., and subsequently molded at a melt temperature range of about 250 to about 300° C. for impact and heat distortion temperature and double gated property testing on a Engel 100 ton injection molding machine. Results of testing, using the methods described above, are also shown in Table 2.
  • TABLE 2
    Sample No.
    1* 2* 3 4* 5 6 7* 8* 9 10 11 12 13 14 15 16
    Formulations
    PC 57 57 57 49.5 49.5 49.5 70 70 62.5 67.5 57.5 45 54.5 44.5 32 54.5
    PMMA-1 (V920) 28 28 17 17 17 17 17 28 28 28 28
    PMMA-2 (HFI-7) 28 28
    SAN 28 28 17
    ABS 14 14 14 14 14 14 12 12 12 12 12 12 14 14 14
    MBS 9
    PC-PDMS 7.5 7.5 7.5 7.5 2.5 12.5 25 2.5 12.5 25 7.5
    Properties
    MVR 29.1 21.5 15.5 17.1 18.9 17.7 21.8 23.1 19.1 20.9 17.7 13.1 22.2 17.7 13.7 20.8
    Double gated bar, 2 mm 85.7 100.1 123.8 90.8 121.9 129.5 94.0 98.5 110.1 101.1 114.4 154.3 113.6 124.5 114.3 126.5
    Tensile Charpy, kJ/m2
    Double gated bar, 2 mm 1.8 3.4 3.9 2.2 3.6 3.9 2.3 3.6 3.9 3.6 4.0 3.6 3.1 3.0 3.0 5.5
    Tensile Elongation, %
    Double gated bar, 2 mm 40.9 53.9 49.6 44.2 49.6 43.8 43.8 53.8 51.1 51.5 50.7 47.5 50.4 47.7 46.1 57.0
    Tensile Stress at yield, Mpa
    Single gated bar vs. double 16.1 3.4 1.9 7.7 3.6 3.4 13.2 3.8 3.2 3.9 2.7 4.6 4.1 4.9 5.0 0.4
    gated bar, 2 mm,
    Delta Tensile Stress at yield,
    Mpa
    Double gated bar 4 mm 5.9 8.9 11.6 6.4 9.9 12.0 2.8 8.7 14.7 9.8 16.4 24.7 8.9 12.3 13.4 15.8
    Izod (Unnotched), kJ/m2
    Double gated bar 4 mm 1.9 4.2 4.2 2.3 4.1 3.8 2.4 5.9 5.8 5.9 5.4 4.4 4.2 4.0 3.8 5.5
    Tensile Elongation, %
    Double gated bar, 4 mm 41.2 55.2 49.5 43.7 49.7 43.8 43.8 55.9 51.2 53.2 50.4 47.1 50.9 48.6 46.5 57.5
    Tensile Stress at yield, Mpa
    Single gated bar vs. double 14.7 1.3 1.5 6.6 2.2 1.9 14.3 0.3 1.3 0.8 1.7 3.2 2.0 2.5 2.7 0.7
    gated bar, 4 mm
    Delta Tensile Stress at yield,
    MPa
    Double gated bar, 4 mm, 1.9 5.7 6.1 2.9 5.3 5.2 3.0 7.0 7.1 7.3 7.0 5.9 5.2 5.4 5.2 5.5
    Flexural Strain at break, %
    Single gated bar, 4 mm
    INI at RT, kJ/m2 36.0 33.8 33.6 52.6 37.4 36.1 40.0 40.5 43.1 40.8 43.8 45.7 33.6 36.2 38.2 33.6
    INI at 0° C., kJ/m2 28.9 25.7 28.2 43.2 29.7 29.8 32.0 31.7 33.9 33.3 36.6 38.3 26.6 29.9 32.0 24.5
    INI at −30° C., kJ/m2 14.5 15.0 17.2 25.2 20.6 18.6 26.0 18.4 25.7 19.8 28.9 32.2 16.1 22.2 27.2 15
    Vicat B 120° C./5 kg, ° C. 128.1 117.7 118.1 135.7 115.6 113.5 132.1 128.3 127.4 129.7 127.4 124.7 120.3 117.5 114.9 122
    *Controls
  • As may be seen from the above data, weld line strength, as reflected by properties of the double gated bars, improve when SAN is replaced with PMMA (compare sample 1 with sample 2; sample 4 with sample 5; and sample 7 with sample 8). Surprisingly, it was found that replacing the PMMA with impact-modified PMMA provided a further improvement in double-gated values for Tensile Charpy, Izod (Unnotched), and delta tensile stress (compare, samples 2 with sample 3; and sample 5 with sample 6).
  • Another improvement was observed when a portion of the polycarbonate resin was replaced with a polycarbonate-polysiloxane copolymer (compare e.g., sample 2 with sample 5; sample 3 with sample 6; and sample 8 with sample 9). This improvement was particularly unexpected, as DE 0206006 discloses that use of a polycarbonate-polysiloxane copolymer result in a decrease in impact and knit line impact strength. Excellent best results are obtained using a combination of impact-modified PMMA and polycarbonate-polysiloxane copolymer.
  • Particularly good INI (impact notched Izod) values are obtained when a portion of the polycarbonate is replaced with polycarbonate-polysiloxane copolymer.
  • As used herein, “(meth)acrylate” is inclusive of both acrylates and methacrylates. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Compounds are described using standard nomenclature. For example, any position not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a hydrogen atom. A dash (“−”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CHO is attached through carbon of the carbonyl group. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. The endpoints of all ranges directed to the same property or amount are independently combinable and inclusive of the endpoint. The modifier “about” used in connection with a quantity is inclusive of the stated value, and has the meaning dictated by the context, for example the degree of error associated with measurement of the particular quantity. Where a measurement is followed by the notation “(±10%)”, the measurement may vary within the indicated percentage either positively or negatively. This variance may be manifested in the sample as a whole (e.g., a sample that has a uniform width that is within the indicated percentage of the stated value), or by variation(s) within the sample (e.g., a sample having a variable width, all such variations being within the indicated percentage of the stated value). All references are incorporated herein by reference.
  • While typical embodiments have been set forth for the purpose of illustration, the foregoing descriptions should not be deemed to be a limitation on the scope herein. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope herein.

Claims (23)

1. A thermoplastic composition, comprising:
about 10 to about 85 wt. % of a polycarbonate resin;
about 1 to about 40 wt. % of an impact modifier composition; and
about 1 to about 50 wt. % of an impact-modified alkyl(meth)acrylate polymer;
each based on the total combined weight of the thermoplastic composition, exclusive of any filler.
2. The composition of claim 1, comprising about 20 to about 80 wt. % of a polycarbonate resin; about 2.5 to about 35 wt. % of an impact modifier composition; and about 5 to about 35 wt. % of an impact-modified alkyl(meth)acrylate polymer; each based on the total combined weight of the thermoplastic composition, exclusive of any filler.
3. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a double gated mold and having a thickness of 2 mm (+10%) has a tensile Charpy of greater than about 100 kJ/m2 measured in accordance with DIN 53448-B.
4. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a double gated molded and having a thickness of 2 mm (±10%) has a delta tensile stress at yield of less than about 6 MPa relative to a sample bar of the same composition molded in a single gated mold and having a thickness of 2 mm (±10%), when measured in accordance with ISO 527.
5. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a double gated mold and having a thickness of 2 mm (±10%) has a tensile elongation at break of greater than about 2.5% measured in accordance with ISO 527 at room temperature.
6. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a double gated mold and having a thickness of 4 mm (±10%) has an Unnotched Izod Impact of greater than about 7 kJ/m2 measured in accordance with ISO 180/1A.
7. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a double gated mold and having a thickness of 2 mm (±10%) has a tensile elongation at break of greater than about 2.5% measured on a 2 mm (±10%) bar molded in a double-gated mold in accordance with ISO 527 at room temperature.
8. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a single gated mold and having a thickness of 4 mm (±10%) has a Notched Izod Impact of greater than about 20 kJ/m2, measured at 0° C. in accordance with ISO 180/1A.
9. The composition of claim 1, wherein a sample bar of the thermoplastic composition molded in a single gated mold and having a thickness of 4 mm (±10%) has Notched Izod Impact of greater than about 15 kJ/m2, measured at −30° C. in accordance with ISO 180/1A.
10. The composition of claim 1, further comprising a polysiloxane-polycarbonate copolymer, wherein the polysiloxane-polycarbonate copolymer comprises:
aromatic carbonate units of formula (1):
Figure US20080176990A1-20080724-C00015
wherein at least about 60 percent of the total number of R1 groups are aromatic organic radicals and the balance thereof are aliphatic, alicyclic, or aromatic radicals; and
polydiorganosiloxane units of formula (7)
Figure US20080176990A1-20080724-C00016
wherein
each R is independently a C1-13 monovalent organic radical;
D has an average value of 2 to about 1000,
each R2 is independently a divalent C2-C8 aliphatic group;
each M is independently a halogen, cyano, nitro, C1-C8 alkylthio, C1-C8 alkyl, C1-C8 alkoxy, C2-C8 alkenyl, C2-C8 alkenyloxy group, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C6-C10 aryl, C6-C10 aryloxy, C7-C12 aralkyl, C7-C12 aralkoxy, C7-C12 alkaryl, or C7-C12 alkaryloxy; and
each n is independently 0, 1, 2, 3, or 4.
11. The composition of claim 1, wherein the impact modifier comprises an elastomeric phase comprising a butadiene rubber, an isoprene rubber, an ethylene-propylene rubber, an ethylene-propylene-diene monomer rubber, an ethylene-vinyl acetate rubbers, a silicone rubber, an elastomeric rubber derived from a C4-9 alkyl (meth)acrylate; an elastomeric copolymer of a C1-9 alkyl(meth)acrylate with butadiene and/or styrene, or a combination comprising at least one of the foregoing elastomers, together with a rigid copolymer phase derived from the copolymerization of a monomer of formula (13):
Figure US20080176990A1-20080724-C00017
wherein each Xc is independently hydrogen, C1-C12 alkyl, C3-C12 cycloalkyl, C6-C12 aryl, C7-C12 aralkyl, C7-C12 alkaryl, C1-C12 alkoxy, C3-C12 cycloalkoxy, C6-C12 aryloxy, chloro, bromo, or hydroxy, and R is hydrogen, C1-C5 alkyl, bromo, or chloro, with a monomer of the generic formula (14):
Figure US20080176990A1-20080724-C00018
wherein R is hydrogen, C1-C5 alkyl, bromo, or chloro, and Xc is cyano, C1-C12 alkoxycarbonyl, C1-C12 aryloxycarbonyl, or hydroxycarbonyl.
12. The composition of claim 1 wherein the impact modifier is ABS, MBS, AES, MABS, ASA, or a combination comprising at least one of the foregoing impact modifiers.
13. The composition of claim 1, wherein the impact-modified poly(alkyl (meth)acrylate) comprises PMMA.
14. The composition of claim 1, wherein the impact-modified poly(alkyl (meth)acrylate) has a notched Izod of greater than about 20 J/m measured in accordance with ASTM D-256 at room temperature.
15. The composition of claim 1, wherein the impact-modified poly(alkyl (meth)acrylate) comprises about 0.1 to about 5 wt. % of an impact modifying component.
16. The composition of claim 15, wherein the impact modifying component is formed from a copolymerizable monovinylaromatic monomer, a copolymerizable monovinylic monomer that is not C1-C2 alkyl(meth)acrylate), or a mixture comprising at least one of the foregoing monomers.
17. The composition of claim 16, wherein the impact-modified poly(alkyl (meth)acrylate) comprises units derived from methyl methacrylate, ethyl acrylate, and styrene.
18. The composition of claim 1, further comprising a filler, a reinforcing agent, a pigment, or a combination comprising at least one of the foregoing additives.
19. An article comprising the composition of claim 1.
20. A thermoplastic composition, comprising:
about 20 to about 80 wt. % of a polycarbonate resin;
about 2.5 to about 35 wt. % of an impact modifier composition; and
about 5 to about 35 wt. % of an impact-modified alkyl(meth)acrylate polymer; each based on the total combined weight of the thermoplastic composition, exclusive of any filler, and
wherein a sample bar of the thermoplastic composition molded in a double gated mold and having a thickness of 2 mm (+10%) has a tensile Charpy of greater than about 100 kJ/m2 measured in accordance with DIN 53448-B.
21. The composition of claim 20, wherein the impact-modified poly(alkyl (meth)acrylate) comprises PMMA.
22. An article comprising the composition of claim 20.
23. A thermoplastic composition comprising:
about 20 to about 80 wt. % of a polycarbonate resin;
about 2.5 to about 35 wt. % of an impact modifier composition, wherein the impact modifier is ABS, MBS, AES, MABS, ASA, or a combination comprising at least one of the foregoing impact modifiers; and
about 5 to about 35 wt. % of an impact-modified alkyl(meth)acrylate polymer, wherein the impact-modified poly(alkyl(meth)acrylate) comprises PMMA; each based on the total combined weight of the thermoplastic composition, exclusive of any filler, and
wherein a sample bar of the thermoplastic composition molded in a double gated mold and having a thickness of 2 mm (±10%) has a tensile Charpy of greater than about 100 kJ/m2 measured in accordance with DIN 53448-B.
US11/774,212 2004-08-16 2007-07-06 Polycarbonate compositions, articles, and method of manufacture Abandoned US20080176990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/774,212 US20080176990A1 (en) 2004-08-16 2007-07-06 Polycarbonate compositions, articles, and method of manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/918,934 US7365125B2 (en) 2004-08-16 2004-08-16 Polycarbonate compositions, articles, and method of manufacture
US11/774,212 US20080176990A1 (en) 2004-08-16 2007-07-06 Polycarbonate compositions, articles, and method of manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/918,934 Division US7365125B2 (en) 2004-08-16 2004-08-16 Polycarbonate compositions, articles, and method of manufacture

Publications (1)

Publication Number Publication Date
US20080176990A1 true US20080176990A1 (en) 2008-07-24

Family

ID=35266916

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/918,934 Active 2025-05-24 US7365125B2 (en) 2004-08-16 2004-08-16 Polycarbonate compositions, articles, and method of manufacture
US11/774,212 Abandoned US20080176990A1 (en) 2004-08-16 2007-07-06 Polycarbonate compositions, articles, and method of manufacture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/918,934 Active 2025-05-24 US7365125B2 (en) 2004-08-16 2004-08-16 Polycarbonate compositions, articles, and method of manufacture

Country Status (8)

Country Link
US (2) US7365125B2 (en)
EP (1) EP1627897B1 (en)
JP (2) JP5008843B2 (en)
KR (1) KR101233497B1 (en)
CN (1) CN1754912B (en)
AT (1) ATE410478T1 (en)
DE (1) DE602005010162D1 (en)
TW (1) TW200617105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199337A1 (en) * 2008-12-22 2010-06-23 Cheil Industries Inc. Blend composition of polycarbonate resin and vinyl-based copolymer and molded product made using the same
US20100160560A1 (en) * 2008-12-22 2010-06-24 Cheil Industries Inc. Thermoplastic Resin Composition and Molded Product Made Using the Same
CN109476057A (en) * 2016-07-28 2019-03-15 沙特基础工业全球技术有限公司 The polycarbonate Alloys of high release performance
CN112538248A (en) * 2020-11-30 2021-03-23 金发科技股份有限公司 Flame-retardant polycarbonate composite material and preparation method and application thereof

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365125B2 (en) * 2004-08-16 2008-04-29 General Electric Company Polycarbonate compositions, articles, and method of manufacture
US7498401B2 (en) * 2005-03-03 2009-03-03 Sabic Innovative Plastics Ip B.V. Thermoplastic polycarbonate compositions, articles made therefrom and method of manufacture
WO2007132596A1 (en) * 2006-05-15 2007-11-22 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition
US7632881B2 (en) * 2006-06-22 2009-12-15 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions and articles formed therefrom
US8030400B2 (en) 2006-08-01 2011-10-04 Sabic Innovative Plastics Ip B.V. Thermoplastic polycarbonate compositions with improved chemical and scratch resistance
US8871865B2 (en) * 2006-08-01 2014-10-28 Sabic Global Technologies B.V. Flame retardant thermoplastic polycarbonate compositions
KR100798014B1 (en) * 2006-12-29 2008-01-24 제일모직주식회사 Polycarbonate-polysiloxane copolymer resin composition with high impact strength at low temperature and mechanical strength
US8222351B2 (en) * 2007-02-12 2012-07-17 Sabic Innovative Plastics Ip B.V. Low gloss polycarbonate compositions
US8222350B2 (en) * 2007-02-12 2012-07-17 Sabic Innovative Plastics Ip B.V. Low gloss polycarbonate compositions
GB0711017D0 (en) * 2007-06-08 2007-07-18 Lucite Int Uk Ltd Polymer Composition
US7723428B2 (en) * 2007-07-31 2010-05-25 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions with improved molding capability
WO2009058352A1 (en) * 2007-11-02 2009-05-07 Mallard Creek Polymers One component thermoset latex composition
US20090124749A1 (en) * 2007-11-09 2009-05-14 Sabic Innovative Plastics Ip Bv Scratch resistant polycarbonate compositions
KR100878572B1 (en) * 2007-12-31 2009-01-15 제일모직주식회사 Thermoplastic resin composition, and molded product prepared therefrom
US9570211B2 (en) * 2008-08-27 2017-02-14 Covestro Llc Transparent thermoplastic composition with improved electrical conductivity in the melt
KR101225949B1 (en) * 2008-11-06 2013-01-24 제일모직주식회사 Thermoplastic resin composition
CN101457006B (en) * 2008-12-31 2013-03-27 东莞金富亮塑胶颜料有限公司 Wood-like co-extrusion PMMA modified material and preparation method thereof
JP2011094070A (en) * 2009-10-30 2011-05-12 Idemitsu Kosan Co Ltd Polycarbonate resin composition, polycarbonate resin molded article, and method for manufacturing the molded article
KR101280304B1 (en) * 2009-12-31 2013-07-01 제일모직주식회사 Molded Article for Electronic Device Housing and Method for Preparing the Same
JP2011184649A (en) * 2010-03-11 2011-09-22 Toray Ind Inc Thermoplastic resin composition and molding
KR101297160B1 (en) * 2010-05-17 2013-08-21 제일모직주식회사 Polycarbonate resin composition and molded product using the same
KR101309808B1 (en) 2010-07-30 2013-09-23 제일모직주식회사 Flame retardant polycarbonate resin composition having good scratch resistance and impact resistance and molded article using the same
CN102311623B (en) * 2010-09-29 2012-09-26 深圳市科聚新材料有限公司 High temperature resistance polycarbonate composite material and preparation method thereof
KR101340539B1 (en) 2010-11-23 2014-01-02 제일모직주식회사 High gloss and high impact resistance polycarbonate resin composition having good surface property and molded article using the same
KR101335290B1 (en) 2010-12-30 2013-12-02 제일모직주식회사 Polycarbonate Resin Composition With Excellent Chemical Resistance
TW201335275A (en) * 2012-01-27 2013-09-01 Cheil Ind Inc Polycarbonate resin composition with excellent colorability, impact resistance and scratch resistance
KR20140075520A (en) 2012-12-11 2014-06-19 제일모직주식회사 Polycarbonate resin, method for preparing the same, and article comprising the same
KR101557534B1 (en) 2012-12-14 2015-10-06 제일모직주식회사 Polycarbonate resin composition and article produced therefrom
KR101557541B1 (en) * 2012-12-27 2015-10-06 제일모직주식회사 Polycarbonate resin composition and article produced therefrom
JP6174403B2 (en) * 2013-07-19 2017-08-02 帝人株式会社 Flame retardant resin composition containing polycarbonate-polydiorganosiloxane copolymer resin and molded article thereof
JP6313971B2 (en) * 2013-12-26 2018-04-18 出光興産株式会社 Molded body for outdoor installation
KR101685665B1 (en) * 2014-12-04 2016-12-12 주식회사 엘지화학 Copolycarbonate and composition comprising the same
KR20160067714A (en) 2014-12-04 2016-06-14 주식회사 엘지화학 Copolycarbonate and article containing the same
CN105038179A (en) * 2015-08-14 2015-11-11 刘民钦 High-strength PC pipe fitting
KR101825652B1 (en) 2015-11-06 2018-02-05 주식회사 엘지화학 Copolycarbonate and composition comprising the same
KR101795179B1 (en) 2015-12-10 2017-11-07 현대자동차주식회사 A resin composition for coating on plastic glazing, a plastic glazing coated therewith and a method for preparation the plastic glazing
JP6889159B2 (en) * 2015-12-11 2021-06-18 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ High impact strength polycarbonate composition for addition manufacturing
DE102016100690A1 (en) * 2016-01-18 2017-07-20 Kurtz Gmbh Method and device for producing a particle foam part
KR102160190B1 (en) * 2016-06-13 2020-09-28 사빅 글로벌 테크놀러지스 비.브이. polycarbonate-based thermal conductivity and ductility enhanced polymer compositions
CN106065171B (en) * 2016-08-19 2018-08-10 广东锦湖日丽高分子材料有限公司 A kind of high durable PC-ASA alloy materials and preparation method thereof
KR102488159B1 (en) * 2017-03-01 2023-01-12 이데미쓰 고산 가부시키가이샤 Polycarbonate-based resin composition and molded article thereof
EP3643747A1 (en) 2018-10-22 2020-04-29 SABIC Global Technologies B.V. Transparent and flexible blends of pmma and polycarbonate-siloxane copolymer
EP3643748A1 (en) 2018-10-22 2020-04-29 SABIC Global Technologies B.V. High ductility blends of pmma and polycarbonate-siloxane copolymer
CN109867966A (en) * 2019-03-18 2019-06-11 深圳烯湾科技有限公司 Polycarbonate compositions and its preparation method and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390657A (en) * 1981-10-19 1983-06-28 General Electric Company Composition of polycarbonate, an ABS resin and an acrylate-methacrylate interpolymer
US4461868A (en) * 1982-03-20 1984-07-24 Bayer Aktiengesellschaft Mixture of a thermoplastic polymer of an alkyl methacrylate and a graft polymer of methyl methacrylate onto crosslinked alkyl acrylate rubber
US4740553A (en) * 1985-10-08 1988-04-26 Denki Kagaku Kogyo Kabushiki Kaisha Molding composition containing an elastomer-containing styrene resin, a polycarbonate resin, and a polymer of an acrylate monomer possessing environmental stress cracking resistance
US4880554A (en) * 1988-08-22 1989-11-14 The Dow Chemical Company Thermoplastic blend of polycarbonate, polymethylmethacrylate and AES
US6072011A (en) * 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
US7365125B2 (en) * 2004-08-16 2008-04-29 General Electric Company Polycarbonate compositions, articles, and method of manufacture

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635895A (en) * 1965-09-01 1972-01-18 Gen Electric Process for preparing thermoplastic polycarbonates
US3511895A (en) 1966-04-01 1970-05-12 Union Carbide Corp Polymerization process and product thereof
GB1182807A (en) 1967-08-03 1970-03-04 Ici Ltd Thermoplastic Polymeric Compositions
US3686355A (en) * 1970-05-08 1972-08-22 Gen Electric Shaped composition of polymer and surface modifying block copolymer additive and method
CA979569A (en) * 1970-12-09 1975-12-09 Toray Industries, Inc. Method for producing impact resistant thermoplastic resin by continuous bulk polymerization
US3988389A (en) * 1972-12-06 1976-10-26 Bayer Aktiengesellschaft Moulding compositions contain polycarbonate and graft copolymer of a resin forming monomer on a rubber
US4154775A (en) 1977-09-06 1979-05-15 General Electric Company Flame retardant composition of polyphenylene ether, styrene resin and cyclic phosphate
WO1980000084A1 (en) 1978-06-22 1980-01-24 Gen Electric Ductile and solvent resistant polycarbonate compositions having improved flame resistance
US4217438A (en) * 1978-12-15 1980-08-12 General Electric Company Polycarbonate transesterification process
US4238597A (en) * 1979-04-26 1980-12-09 General Electric Company Process for producing copolyester-carbonates
JPS5614549A (en) * 1979-07-12 1981-02-12 Sumitomo Naugatuck Co Ltd Thermoplastic resin composition with excellent heat cycle property
US4357271A (en) * 1980-12-31 1982-11-02 General Electric Company Thermoplastic polycarbonate resins reinforced with silane treated fillers
US4478981A (en) * 1982-03-22 1984-10-23 Petrarch Systems Inc. Mixtures of polyacrylate resins and siloxane carbonate copolymers
US4550139A (en) 1982-03-22 1985-10-29 Petrarch Systems, Inc. Mixtures of polyacrylate resins and siloxane-styrene copolymers
US4555384A (en) * 1982-09-24 1985-11-26 Cosden Technology, Inc. Apparatus for producing styrenic/alkenylnitrile copolymers
US5116905A (en) * 1983-08-30 1992-05-26 General Electric Company Polycarbonate resin mixtures
DE3347071A1 (en) * 1983-08-31 1985-03-14 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS BASED ON POLYSILOXANE-POLYCARBONT BLOCK COPOLYMERS
US4487896A (en) * 1983-09-02 1984-12-11 General Electric Company Copolyester-carbonate compositions exhibiting improved processability
DE3414116A1 (en) * 1984-04-14 1985-10-24 Bayer Ag, 5090 Leverkusen UV-STABILIZED POLYCARBONATE MOLDED BODY
EP0164477A1 (en) 1984-06-14 1985-12-18 General Electric Company Polycarbonates exhibiting improved heat resistance
NL8403295A (en) 1984-10-31 1986-05-16 Gen Electric POLYMER MIXTURE WITH POLYCARBONATE AND POLYESTER.
DE3519690A1 (en) * 1985-02-26 1986-08-28 Bayer Ag, 5090 Leverkusen THERMOPLASTIC MOLDS BASED ON POLYSILOXANE-POLYCARBONATE BLOCK COPOLYMERS
DE3521407A1 (en) 1985-06-14 1987-01-02 Bayer Ag THERMOPLASTIC MOLDS WITH IMPROVED FLOW SEAM STRENGTH
DE3542678A1 (en) * 1985-12-03 1987-06-04 Bayer Ag THERMOPLASTIC POLYCARBONATE MOLDINGS
DE3617511A1 (en) 1986-05-24 1987-11-26 Bayer Ag FLAME-RESISTANT, THERMOPLASTIC MOLDS
DE3619059A1 (en) 1986-06-06 1987-12-10 Bayer Ag EASY-REMOVABLE MOLDS
NL8601899A (en) 1986-07-22 1988-02-16 Gen Electric MIXTURES BASED ON POLYCARBONATES WITH IMPROVED PHYSICAL AND CHEMICAL PROPERTIES.
DE3707360A1 (en) * 1987-03-07 1988-09-15 Bayer Ag THERMOPLASTIC MOLDS
US4788252A (en) * 1987-07-22 1988-11-29 General Electric Company Mixtures based on polycarbonates having improved physical and chemical properties
DE3803405A1 (en) * 1988-02-05 1989-08-17 Roehm Gmbh IMPACT MODIFIER FOR POLYCARBONATE
NO170326C (en) * 1988-08-12 1992-10-07 Bayer Ag DIHYDROKSYDIFENYLCYKLOALKANER
US4927880A (en) * 1988-11-14 1990-05-22 General Electric Company Low gloss molded articles using polyorganosiloxane/polyvinyl-based graft polymers
NL8803113A (en) * 1988-12-19 1990-07-16 Gen Electric POLYMER MIXTURE WITH AROMATIC POLYCARBONATE AND TWO AGENTS FOR IMPROVING IMPACT STRENGTH; ARTICLES MADE THEREFROM.
EP0374635A3 (en) * 1988-12-21 1991-07-24 Bayer Ag Polycarbonate-polysiloxane block copolymers based on dihydroxydiphenyl cycloalkanes
JPH068386B2 (en) * 1988-12-26 1994-02-02 出光石油化学株式会社 Polycarbonate resin composition
DE3908038A1 (en) 1989-03-11 1990-09-13 Bayer Ag MIXTURES OF POLYDIORGANOSILOXAN POLYCARBONATE BLOCK COCCONDENSATES WITH SILOXANES AND WITH POLYMERPROOF AND / OR WITH RUBBER-ELASTIC POLYMERISES
JPH02274460A (en) * 1989-04-12 1990-11-08 Sumitomo Metal Ind Ltd Cutting speed control method and device for wire cutter
US5128409A (en) * 1989-06-21 1992-07-07 General Electric Company Polycarbonate/graft ABS blends with improved weld line strength
DE69022567T2 (en) 1989-07-07 1996-02-22 Idemitsu Petrochemical Co POLYCARBONATE-POLYDIMETHYLSILOXANE COPOLYMER AND PRODUCTION METHOD.
US5023297A (en) * 1989-12-22 1991-06-11 General Electric Company Impact and solvent resistant polycarbonate composition
DE4016417A1 (en) 1990-05-22 1991-11-28 Bayer Ag Polycarbonate flame retardant alloys - contain copolymer, graft polymer and poly:organo:siloxane¨-polycarbonate block copolymer, for good mechanical properties
WO1992012208A1 (en) 1990-12-27 1992-07-23 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin composition
DE69223550T2 (en) * 1991-05-28 1998-04-16 Denki Kagaku Kogyo Kk Flame retardant resin composition
EP0522753A3 (en) 1991-07-01 1993-08-11 General Electric Company Flame retardant aromatic polycarbonates and aromatic polycarbonate blends
EP0524731B1 (en) 1991-07-01 2002-03-13 General Electric Company Polymer blends of polycarbonate-polysiloxane block copolymers with polycarbonates and polyestercarbonate copolymers
DE69224938T2 (en) * 1991-07-01 1998-10-22 Gen Electric Terpolymer with aliphatic polyester segments, polysiloxane segments and polycarbonate segments
US5391603A (en) * 1992-03-09 1995-02-21 The Dow Chemical Company Impact modified syndiotactic vinyl aromatic polymers
US5451632A (en) * 1992-10-26 1995-09-19 Idemitsu Petrochemical Co., Ltd. Polycarbonate-polyorganosiloxane copolymer and a resin composition
NL9202090A (en) * 1992-12-02 1994-07-01 Gen Electric Polymer blend with aromatic polycarbonate, styrene-containing copolymer and / or graft polymer and a silicone-polycarbonate block copolymer, articles formed therefrom.
US5384353A (en) * 1993-05-12 1995-01-24 General Electric Company Glass reinforced PC/ABS blend with toughness
US5723541A (en) * 1993-06-16 1998-03-03 Rasor Associates, Inc. Ocular lens composition and method of formation
EP0633292B1 (en) * 1993-07-09 1998-12-30 General Electric Company Compositions of siloxane polyestercarbonate block terpolymers and high heat polycarbonates
EP0635547A3 (en) 1993-07-23 1995-05-10 Gen Electric Reduced gloss, flame retarded, high impact thermoplastic composition.
EP0645422A1 (en) 1993-08-19 1995-03-29 General Electric Company Flame retardant polycarbonate blends
US5414045A (en) * 1993-12-10 1995-05-09 General Electric Company Grafting, phase-inversion and cross-linking controlled multi-stage bulk process for making ABS graft copolymers
JPH07207085A (en) * 1994-01-12 1995-08-08 Nippon G Ii Plast Kk High-impact resin composition
US5616674A (en) * 1994-05-10 1997-04-01 General Electric Company Method of preparing polycarbonate-polysiloxane block copolymers
US6001929A (en) * 1994-07-15 1999-12-14 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin composition
US5530083A (en) * 1994-07-21 1996-06-25 General Electric Company Silicone-polycarbonate block copolymers and polycarbonate blends having reduced haze, and method for making
AU3276495A (en) * 1994-08-22 1996-03-14 Dow Chemical Company, The Filled carbonate polymer blend compositions
DE4436776A1 (en) 1994-10-14 1996-04-18 Bayer Ag Flame retardant, thermoplastic polycarbonate molding compounds
US5777034A (en) 1995-12-28 1998-07-07 Rohm And Haas Company Methacrylate resin blends
US6613820B2 (en) * 1997-08-29 2003-09-02 General Electric Company Polycarbonate resin composition
US6545089B1 (en) * 1997-09-04 2003-04-08 General Electric Company Impact modified carbonnate polymer composition having improved resistance to degradation and improved thermal stability
EP1124878B1 (en) * 1998-10-29 2004-01-21 General Electric Company Weatherable block copolyestercarbonates and blends containing them
DE69913386T2 (en) 1998-12-25 2004-05-27 Idemitsu Petrochemical Co., Ltd. FLAME-RETARDANT POLYCARBONATE RESIN COMPOSITION AND MOLDED OBJECT
DE19904392A1 (en) * 1999-02-04 2000-08-10 Bayer Ag Polycarbonate molding compounds with improved antistatic properties
US6306507B1 (en) * 1999-05-18 2001-10-23 General Electric Company Thermally stable polymers, method of preparation, and articles made therefrom
JP2000327900A (en) * 1999-05-25 2000-11-28 Teijin Chem Ltd Thermoplastic resin composition
JP2001164040A (en) * 1999-12-14 2001-06-19 Teijin Chem Ltd Thermoplastic resin composition
US6252013B1 (en) * 2000-01-18 2001-06-26 General Electric Company Method for making siloxane copolycarbonates
CN100451073C (en) 2000-03-31 2009-01-14 沙比克创新塑料Ip有限公司 Flame-retardant resin molding
WO2002036687A1 (en) 2000-11-01 2002-05-10 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin compositions
DE10054275A1 (en) * 2000-11-02 2002-05-08 Bayer Ag Impact-modified polycarbonate compositions
DE10145773A1 (en) 2001-09-17 2003-04-03 Bayer Ag ABS compositions with improved combinations of properties
DE10145775A1 (en) * 2001-09-17 2003-04-03 Bayer Ag ABS compositions with improved combinations of properties
JP5134172B2 (en) * 2001-09-20 2013-01-30 帝人化成株式会社 Aromatic polycarbonate resin composition
US6630525B2 (en) * 2001-10-09 2003-10-07 General Electric Company Polycarbonate-siloxane copolymers
US20030139504A1 (en) * 2001-11-12 2003-07-24 General Electric Company Flame retardant resinous compositions and method
US7294399B2 (en) 2002-04-02 2007-11-13 Arkema France Weather-resistant, high-impact strength acrylic compositions
US7018567B2 (en) * 2002-07-22 2006-03-28 General Electric Company Antistatic flame retardant resin composition and methods for manufacture thereof
DE10235754A1 (en) * 2002-08-05 2004-02-19 Bayer Ag Polycarbonate molding material, useful for production of shaped parts and where contact with specific media is involved, e.g. solvents, lubricants and cleaning agents, is modified with graft polymerizate containing phosphorus compounds
US6833422B2 (en) * 2002-08-16 2004-12-21 General Electric Company Method of preparing transparent silicone-containing copolycarbonates
WO2004076512A2 (en) * 2003-02-21 2004-09-10 General Electric Company Transparent and high-heat polycarbonate-polysiloxane copolymers and transparent blends with polycarbonate and a process for preparing same
KR20050107583A (en) * 2003-02-21 2005-11-14 제너럴 일렉트릭 캄파니 Translucent thermoplastic composition, method for making the composition and articles molded therefrom
US20050085580A1 (en) 2003-10-16 2005-04-21 General Electric Company Light-Colored Polycarbonate Compositions and Methods
KR100557684B1 (en) 2003-12-23 2006-03-07 제일모직주식회사 Polycarbonate Resin Composition with Good Fatigue Strength
US7223804B2 (en) 2003-12-30 2007-05-29 General Electric Company Polycarbonate composition
WO2005075549A1 (en) 2004-02-03 2005-08-18 General Electric Company Polycarbonate composition with enhanced flex-fold properties
US7300646B2 (en) * 2004-02-27 2007-11-27 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Skin lightening agents, compositions and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390657A (en) * 1981-10-19 1983-06-28 General Electric Company Composition of polycarbonate, an ABS resin and an acrylate-methacrylate interpolymer
US4461868A (en) * 1982-03-20 1984-07-24 Bayer Aktiengesellschaft Mixture of a thermoplastic polymer of an alkyl methacrylate and a graft polymer of methyl methacrylate onto crosslinked alkyl acrylate rubber
US4740553A (en) * 1985-10-08 1988-04-26 Denki Kagaku Kogyo Kabushiki Kaisha Molding composition containing an elastomer-containing styrene resin, a polycarbonate resin, and a polymer of an acrylate monomer possessing environmental stress cracking resistance
US4880554A (en) * 1988-08-22 1989-11-14 The Dow Chemical Company Thermoplastic blend of polycarbonate, polymethylmethacrylate and AES
US6072011A (en) * 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
US7365125B2 (en) * 2004-08-16 2008-04-29 General Electric Company Polycarbonate compositions, articles, and method of manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199337A1 (en) * 2008-12-22 2010-06-23 Cheil Industries Inc. Blend composition of polycarbonate resin and vinyl-based copolymer and molded product made using the same
US20100160560A1 (en) * 2008-12-22 2010-06-24 Cheil Industries Inc. Thermoplastic Resin Composition and Molded Product Made Using the Same
US20100160481A1 (en) * 2008-12-22 2010-06-24 Cheil Industries Inc. Blend Composition of Polycarbonate Resin and Vinyl-Based Copolymer and Molded Product Made Using the Same
US8053534B2 (en) 2008-12-22 2011-11-08 Cheil Industries, Inc. Thermoplastic resin composition and molded product made using the same
CN109476057A (en) * 2016-07-28 2019-03-15 沙特基础工业全球技术有限公司 The polycarbonate Alloys of high release performance
CN112538248A (en) * 2020-11-30 2021-03-23 金发科技股份有限公司 Flame-retardant polycarbonate composite material and preparation method and application thereof

Also Published As

Publication number Publication date
US20060036035A1 (en) 2006-02-16
KR101233497B1 (en) 2013-02-14
CN1754912B (en) 2012-04-18
KR20060050497A (en) 2006-05-19
JP2012111961A (en) 2012-06-14
DE602005010162D1 (en) 2008-11-20
JP5008843B2 (en) 2012-08-22
EP1627897B1 (en) 2008-10-08
TW200617105A (en) 2006-06-01
CN1754912A (en) 2006-04-05
ATE410478T1 (en) 2008-10-15
US7365125B2 (en) 2008-04-29
JP2006077240A (en) 2006-03-23
EP1627897A1 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US7365125B2 (en) Polycarbonate compositions, articles, and method of manufacture
US8871858B2 (en) Thermoplastic polycarbonate compositions
US8883878B2 (en) Thermoplastic polycarbonate compositions
US7649057B2 (en) Thermoplastic polycarbonate compositions with low gloss, articles made therefrom and method of manufacture
US7563846B2 (en) Low gloss thermoplastic composition, method of making, and articles formed therefrom
US20060287422A1 (en) Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US7498383B2 (en) Low gloss thermoplastic composition, method of making, and articles formed therefrom
US7935777B2 (en) Polycarbonate compositions
US20070135570A1 (en) Thermoplastic polycarbonate compositions with low gloss, articles made therefrom and method of manufacture
US20070060716A1 (en) Fatigue resistant thermoplastic composition, method of making, and articles formed therefrom
US20070135569A1 (en) Thermoplastic polycarbonate compositions, method of manufacture, and method of use thereof
US20080029744A1 (en) Flame retardant thermoplastic polycarbonate compositions
US20080033108A1 (en) Thermoplastic polycarbonate compositions with improved chemical and scratch resistance
US20070232744A1 (en) Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US20080194756A1 (en) Low gloss polycarbonate compositions
US20080114103A1 (en) Thermoplastic Polycarbonate Compositions With Improved Static Resistance
US20090312479A1 (en) Polycarbonate compositions
US20070232739A1 (en) Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture

Legal Events

Date Code Title Description
AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551

Effective date: 20070831

Owner name: SABIC INNOVATIVE PLASTICS IP B.V.,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551

Effective date: 20070831

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION