Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20080228205 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 12/125,015
Fecha de publicación18 Sep 2008
Fecha de presentación21 May 2008
Fecha de prioridad9 Ene 2004
También publicado comoCA2559320A1, CA2559320C, EP1708642A1, US7399271, US20050154252, WO2005070330A1
Número de publicación12125015, 125015, US 2008/0228205 A1, US 2008/228205 A1, US 20080228205 A1, US 20080228205A1, US 2008228205 A1, US 2008228205A1, US-A1-20080228205, US-A1-2008228205, US2008/0228205A1, US2008/228205A1, US20080228205 A1, US20080228205A1, US2008228205 A1, US2008228205A1
InventoresHugh R. Sharkey, Alexander Khairkhahan, Serjan D. Nikolic, Branislav Radovancevic
Cesionario originalCardiokinetix, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Ventricular partitioning device
US 20080228205 A1
Resumen
This invention is directed to a partitioning device for separating a patient's heart chamber into a productive portion and a non-productive portion. The device is particularly suitable for treating patients with congestive heart failure. The partitioning device has a reinforced, expandable membrane which separates the productive and non-productive portions of the heart chamber and a support or spacing member extending between the reinforced membrane and the wall of the patient's heart chamber. The support or spacing member has a non-traumatic distal end to engage the ventricular wall.
Imágenes(6)
Previous page
Next page
Reclamaciones(35)
1. A device for increasing the ejection fraction of a patient's heart chamber, comprising:
a. a reinforced membrane component which has a proximal face and a distal face and which is configured to partition the patient's heart chamber into a main operational portion and a secondary, non-operational portion; and
b. a support component which is disposed in the non-productive portion of the heart chamber defined in part by the distal face of the reinforced membrane and which is configured to extend from the reinforced membrane to a region of the heart wall defining in part the heart chamber.
2. The device of claim 1 wherein reinforced membrane has a contracted configuration about a center line axis and an expanded configuration in which the membrane periphery is radially expanded away from the center line axis.
3. The device of claim 1 wherein the support component is at least in part an elongated stem.
4. The device of claim 1 wherein the support component has a distal extremity which is configured to non-traumatically engage a region of the patient's ventricular wall defining in part the secondary non-operational portion of the heart chamber.
5. The device of claim 4 wherein the distal extremity of the support component has at least one J-shaped bumper element.
6. The device of claim 4 wherein the distal extremity has from two to four J-shaped elements.
7. The device of claim 4 wherein the distal extremity has a coil shaped element.
8. The device of claim 1 including a hub secured to a central location of the reinforced membrane.
9. The device of claim 8 wherein the membrane is reinforced by a frame which is radially expandable at a proximal extremity thereof.
10. The device of claim 9 wherein the radially expandable frame has a plurality of ribs.
11. The device of claim 10 wherein the ribs have distal ends secured to the central hub.
12. The device of claim 11 wherein the distal ends of the ribs are secured to the central hub to facilitate abduction of the free proximal ends away from a centerline axis to facilitate expansion of the reinforced membrane component.
13. The device of claim 12 wherein the ribs have free proximal ends configured to engage the heart wall and secure the device within the heart chamber.
14. The device of claim 13 wherein the free proximal ends of the ribs have tissue penetrating tips.
15. The device of claim 9 wherein the membrane is secured to the ribs on a proximal side of the expandable frame.
16. The device of claim 9 wherein the reinforced membrane component restricts the radial expansion of the free proximal ends of the ribs to an angle of about 60° to about 90° from a center line axis.
17. The device of claim 16 wherein the radial expansion of the free proximal ends of the ribs are about 30° to about 60°.
18. The device of claim 3 wherein the stem is configured to extend to the ventricular wall.
19. The device of claim 1 wherein the support component is at least in part an inflatable member.
20. The device of claim 1 wherein the membrane has radial dimensions from a center line axis of about 10 to about 160 mm.
21. The device of claim 1 wherein the member has radial dimensions from a center line axis of about 5 to about 80 mm.
22. The device of claim 9 wherein the frame has about 3 to about 30 ribs.
23. The device of claim 9 wherein the frame has about 6 to about 16 ribs.
24. The device of claim 9 wherein the expandable frame is self expanding.
25. The device of claim 9 wherein the frame is formed of superelastic NiTi alloy which is in an austenite phase when unstressed.
26. The device of claim 9 wherein the frame is in a stress maintained martensite phase when delivered through the patient's vasculature to the patient's heart chamber.
27. The device of claim 1 wherein the membrane is formed at least in part of expanded fluoropolymer.
28. The device of claim 27 wherein the expanded fluoropolymer is polytetrafluoroethylene.
29. The device of claim 1 wherein the membrane is at least in part formed of a foraminous sheet.
30. A method of treating a patient with congestive heart failure, comprising:
a. providing a reinforced membrane;
b. positioning the reinforced membrane within a chamber of the patient's heart with a peripheral edge of the reinforced membrane being secured to a wall defining at least in part the patient's heart chamber; and
c. spacing a central portion of the reinforced membrane from the heart wall.
31. The method of claim 30 wherein the reinforced membrane is delivered in a folded configuration and expanded in position within the patient's heart wall.
32. The method of claim 31 wherein the reinforced membrane is first positioned within an inner lumen of an elongated catheter and the catheter is percutaneously introduced into the patient's vasculature and advanced therein to the patient's heart chamber wherein the reinforced membrane is discharged from the catheter.
33. The method of claim 31 wherein the edge of the reinforced membrane is secured to the heart wall defining at least in part the heart chamber by anchoring elements provided on the edge of the reinforced membrane.
34. The method of claim 30 wherein the reinforced membrane is self expanding.
35. A method of treating a patient with congestive heart failure, comprising the steps of:
a. providing a reinforced membrane;
b. positioning the reinforced membrane within a chamber of the patient's heart with a peripheral edge of the reinforced membrane being secured to a wall defining at least in part the patient's heart chamber; and
c. spacing a central portion of the reinforced membrane from the heart wall.
Descripción
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This is a divisional of pending U.S. patent application Ser. No. 10/754,182, filed on Jan. 9, 2004, which application is incorporated by reference as if fully set forth herein.
  • INCORPORATION BY REFERENCE
  • [0002]
    All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • FIELD OF THE INVENTION
  • [0003]
    The present invention relates generally to the field of treating congestive heart failure and more specifically, to a device and method for partitioning a patient's heart chamber and a system for delivering the treatment device.
  • BACKGROUND OF THE INVENTION
  • [0004]
    Congestive heart failure (CHF) is characterized by a progressive enlargement of the heart, particularly the left ventricle and is a major cause of death and disability in the United States. Approximately 500,000 cases occur annually in the U.S. alone. As the patient's heart enlarges, it cannot efficiently pump blood forward with each heart beat. In time, the heart becomes so enlarged the heart cannot adequately supply blood to the body. Even in healthy hearts only a certain percentage of the blood in a patient's left ventricle is pumped out or ejected from the chamber during each stroke of the heart. The pumped percentage, commonly referred to as the “ejection fraction”, is typically about sixty percent for a healthy heart. A patient with congestive heart failure can have an ejection fraction of less than 40% and sometimes lower. As a result of the low ejection fraction, a patient with congestive heart failure is fatigued, unable to perform even simple tasks requiring exertion and experiences pain and discomfort. Further, as the heart enlarges, the internal heart valves such as the mitral valve, cannot adequately close. An incompetent mitral valve allows regurgitation of blood from the left ventricle back into the left atrium, further reducing the heart's ability to pump blood forewardly.
  • [0005]
    Congestive heart failure can result from a variety of conditions, including viral infections, incompetent heart valves (e.g. mitral valve), ischemic conditions in the heart wall or a combination of these conditions. Prolonged ischemia and occlusion of coronary arteries can result in myocardial tissue in the ventricular wall dying and becoming scar tissue. Once the myocardial tissue dies, it is less contractile (sometimes non-contractile) and no longer contributes to the pumping action of the heart. It is referred to as hypokinetic. As the disease progresses, a local area of compromised myocardium may bulge out during the heart contractions, further decreasing the heart's ability to pump blood and further reducing the ejection fraction. In this instance, the heart wall is referred to as dyskinetic or akinetic. The dyskinetic region of the heart wall may stretch and eventually form an aneurysmic bulge.
  • [0006]
    Patients suffering from congestive heart failure are commonly grouped into four classes, Classes I, II, III and IV. In the early stages, Classes I and II, drug therapy is presently the most commonly prescribed treatment. Drug therapy typically treats the symptoms of the disease and may slow the progression of the disease, but it can not cure the disease. Presently, the only permanent treatment for congestive heart disease is heart transplantation, but heart transplant procedures are very risky, extremely invasive and expensive and are performed on a small percentage of patients. Many patient's do not qualify for heart transplant for failure to meet any one of a number of qualifying criteria, and, Furthermore, there are not enough hearts available for transplant to meet the needs of CHF patients who do qualify.
  • [0007]
    Substantial effort has been made to find alternative treatments for congestive heart disease. For example, surgical procedures have been developed to dissect and remove weakened portions of the ventricular wall in order to reduce heart volume. This procedure is highly invasive, risky and expensive and is commonly only done in conjunction with other procedures (such as heart valve replacement or coronary artery by-pass graft). Additionally, the surgical treatment is usually limited to Class IV patients and, accordingly, is not an option for patients facing ineffective drug treatment prior to Class IV. Finally, if the procedure fails, emergency heart transplant is the only presently available option.
  • [0008]
    Other efforts to treat CHF include the use of an elastic support, such as an artificial elastic sock placed around the heart to prevent further deleterious remodeling.
  • [0009]
    Additionally, mechanical assist devices have been developed as intermediate procedures for treating congestive heart disease. Such devices include left ventricular assist devices and total artificial hearts. A left ventricular assist device includes a mechanical pump for increasing blood flow from the left ventricle into the aorta. Total artificial heart devices, such as the Jarvik heart, are usually used only as temporary measures while a patient awaits a donor heart for transplant.
  • [0010]
    Recently, improvements have been made in treating patient's with CHF by implanting pacing leads in both sides of the heart in order to coordinate the contraction of both ventricles of the heart. This technique has been shown to improve hemodynamic performance and can result in increased ejection fraction from the right ventricle to the patient's lungs and the ejection fraction from the left ventricle to the patient's aorta. While this procedure has been found to be successful in providing some relief from CHF symptoms and slowed the progression of the disease, it has not been able to stop the disease.
  • SUMMARY OF THE INVENTION
  • [0011]
    The present invention is directed to a ventricular partitioning device and method of employing the device in the treatment of a patient with congestive heart failure. Specifically, the ventricular chamber of the CHF patient is partitioned by the device so as to reduce its total volume and to reduce the stress applied to the heart and, as a result, improve the ejection fraction thereof.
  • [0012]
    A ventricular partitioning device embodying features of the invention has a reinforced membrane component, preferably self expanding, which is configured to partition the patient's ventricular heart chamber into a main productive portion and a secondary non-productive portion, and a support or spacing component extending from the distal side of the reinforced membrane for non-traumatically engaging a region of the patient's ventricular wall defining in part the secondary non-productive portion to space a central portion of the reinforced membrane from the heart wall. The partitioning device preferably includes a centrally located hub secured to the reinforced membrane. The partitioning membrane of the device may be reinforced by a radially expandable frame component formed of a plurality of ribs.
  • [0013]
    The ribs of the expandable frame have distal ends secured to the central hub, preferably secured to facilitate abduction of the free proximal ends of the ribs away from a centerline axis. The distal ends of the ribs may be pivotally mounted or formed of material such as superelastic NiTi alloy which allow for compressing the ribs into a contracted configuration and when released allow for their self expansion. The ribs also have free proximal ends configured to engage and preferably penetrate the tissue of the heart wall so as to secure the peripheral edge of the membrane to the heart wall and fix the position of the membrane with respect thereto. The free proximal ends of the ribs may have tissue penetrating tips such as barbs or hooks. The partitioning membrane is secured to the ribs of the expandable frame, preferably on the proximal or pressure side of the expandable frame.
  • [0014]
    The supporting component or stem of the device has a length configured to extend to the heart wall (typically about 5 mm to about 50 mm, preferably about 15 to about 35 mm), to support and space the membrane from the heart wall. While only one supporting component or stem is described herein, a plurality of such components may be utilized. The supporting component or stem may have at least one inner lumen extending therein for delivery of therapeutic or diagnostic agents through the ports provided along the length thereof. The stem is provided with one or more flexible bumper-type elements on its distal end to non-traumatically engage the weakened ventricular wall and maintain the reinforced membrane, preferably the central portion thereof, spaced a desired distance from the weakened ventricular wall.
  • [0015]
    The partitioning membrane in the expanded configuration has radial dimensions from about 10 to about 160 mm, preferably about 50 to about 100 mm, as measured from the center line axis.
  • [0016]
    The partitioning device may be delivered percutaneously or intraoperatively. It is relatively easy to install and provides substantial improvement in the ejection fraction of the patient's heart chamber. These and other advantages of the invention will become more apparent from the following detailed description of the invention and the accompanying exemplary drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0017]
    FIG. 1 is a schematic perspective view of a ventricular partitioning device embodying features of the invention.
  • [0018]
    FIG. 2 is an elevational view of a delivery system for the partitioning device shown in FIG. 1
  • [0019]
    FIG. 3 is an enlarged view of the encircled region 3-3 shown in FIG. 2.
  • [0020]
    FIG. 4 is a simplified view with parts removed similar to that shown in FIG. 3 with the delivery catheter connected to the partitioning device.
  • [0021]
    FIG. 5 is an end view of the hub which is secured in the proximal end of the stem of the partitioning device shown in FIG. 1.
  • [0022]
    FIG. 6 is a schematic view of a patient's left ventricular chamber illustrating the partitioning device shown in FIG. 1 disposed within the chamber separating a working portion of the chamber from a non-working portion of the chamber.
  • [0023]
    FIG. 7 is a schematic perspective view of an alternative design embodying features of the invention with a pair of bumper elements on the distal end of the stem of the partitioning device.
  • [0024]
    FIG. 8 is a schematic perspective view of another alternative design embodying features of the invention with three bumper elements on the distal end of the stem of the partitioning device.
  • [0025]
    FIG. 9 is a schematic perspective view of another alternative design embodying features of the invention with four bumper elements on the distal end of the stem of the partitioning device.
  • [0026]
    FIG. 10 is a schematic perspective view of a fourth alternative design embodying features of the invention with a plurality of bumper elements on the distal end of the stem of the device provided with hooks which fix the end to the interior surface of the patient's ventricular wall.
  • [0027]
    FIG. 11 is a schematic perspective view of another alternative design embodying features of the invention with a membrane underlying a plurality of bumper elements on the distal end of the stem of the partitioning device.
  • [0028]
    FIG. 12 is a schematic perspective view of another alternative design embodying features of the invention with a helical coil bumper element on the distal end of the stem of the partitioning device.
  • [0029]
    FIG. 13 is a schematic perspective view of yet another alternative design embodying features of the invention with an inflatable balloon secured to the underside of the partitioning device to space and support the partitioning device from the heart wall.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0030]
    FIGS. 1-5 illustrate a partitioning device 10 which embodies features of the invention and which includes a partitioning membrane 11, a stem 12 and a radially expandable reinforcing frame 13 formed of a plurality of ribs 14. Preferably the membrane 11 is secured to the proximal or pressure side of the frame 13 as shown in FIG. 1. The distal ends 15 of the ribs 14 are secured to the central hub 16 and the proximal ends 17 of the ribs 14 are unsecured and are configured to radially extend away from a center line axis 18 which extends through the hub 16. Radial expansion of the free proximal ends 17 unfurls the membrane 11 secured to the frame 13 so that the membrane presents a relatively smooth pressure side surface. Stem 12 extends distally from the hub 16 and has a distal end 19 which has a flexible, J-shape bumper element 20 to provide a yielding engagement with a heart wall when deployed within a patient's heart chamber. The frame 13 and attached membrane 11 are collapsible toward the centerline axis 18 for delivery through a catheter.
  • [0031]
    The proximal or free ends 17 of ribs 14 are provided with sharp tip elements 21 which are configured to hold the frame 13 and the membrane 11 secured thereto in a deployed position within the patient's heart chamber. Preferably, the sharp tip elements 21 of the frame 13 penetrate into tissue of the patient's heart wall in order to secure the reinforced membrane 11 so as to partition the ventricular chamber in a desired manner.
  • [0032]
    As shown in FIG. 1, the stem 12 is provided with an inner lumen 22 for delivery of fluid to the non-operative portion of the ventricular chamber and discharge ports 23 are provided in the stem. The hub 16 is secured within the inner lumen 22 in the proximal end of stem 12 suitable means such as a friction fit, an adhesive bond or a pin. The hub 16 has a deployment pin 24, as shown in FIG. 5, which as will be described later allows the partitioning device 10 to be deployed within the patient's heart chamber and released from a delivery system used to place the device. The distal ends of the reinforcing ribs 14 are secured to the hub 16 in a suitable manner. They may be secured to the surface defining the inner lumen or the hub may be provided with channels or bores in the wall of the hub into which the distal ends of the ribs may be secured. The ribs 14 are preshaped so that when not constrained (as shown in FIGS. 1 and 2), the free proximal ends 17 thereof expand to a desired angular displacement (.theta.) away from a center line axis 18 which is about 20.degree. to about 90.degree., preferably about 50.degree. to about 80.degree.
  • [0033]
    FIGS. 2-4 illustrate a suitable delivery system 30 with a partitioning component device 10 as shown in FIG. 1. The delivery system 30 includes a control handle 31 with a delivery catheter 32 having a deploying coil screw 33 secured to the distal end 34 for releasing the partitioning device 10 from the delivery system 30. The delivery catheter 32 has an inner lumen 35 through which therapeutic or diagnostic fluids may be delivered. The delivery catheter 32 extends through the handle 31 and the proximal end of the catheter 32 is secured to torquing knob 36 to allow rotation of the catheter by rotating knob 36. An injection port 37 is provided in fluid communication with the delivery catheter 32 for injecting therapeutic or diagnostic fluids through the inner lumen 35.
  • [0034]
    The delivery system 30 may be introduced into a patient's body through guiding catheter or cannula 40 which has an inner lumen 41. A radiopaque marker (not shown) may be provided on the distal end of the guiding catheter 40 to aid in fluoroscopically guiding the catheter to the desired location. The partitioning device 10 is slidably disposed within the inner lumen 41 with the free proximal ends 17 of the ribs 14 in a constricted configuration. The guiding catheter 40 is percutaneously introduced in a conventional fashion into the patient's vasculature and advanced therein until the distal end 42 of the guiding catheter 40 is position close to the desired location for the partitioning device 10 within the patient's heart chamber such as the left ventricle. The delivery system 30 is advanced distally within the inner lumen 41 until the J-shaped bumper 20 extends out the distal end 42 of the guiding catheter 40 and engages the ventricular wall. With the delivery system 30 held in place and the bumper 20 engaging the ventricular wall, the guide catheter 40 is pulled proximally until the free ends 17 of ribs 14 are released from the distal end 42 so that anchoring tip elements 21 on the free proximal ends 17 of ribs 14 penetrate into tissue of the patient's heart wall as shown in FIG. 6 to secure the partitioning device 10 within the patient's heart chamber. With the partitioning device 10 properly positioned within the heart chamber, the delivery catheter 32 is rotated counter-clockwise to disengage the delivery system 30 from the hub 16. Upon the counter-clockwise rotation of the delivery catheter 32, the helical coil screw 33 attached to the distal end 34 of the delivery catheter 32 rides on the deployment pin 24 secured within the inner lumen 22 of the hub 16. The delivery system 30 and the guide catheter 40 may then be removed from the patient. The proximal end of the guide catheter 40 is provided with an injection port 43 to inject therapeutic or diagnostic fluids through the inner lumen 41.
  • [0035]
    FIG. 6 illustrates the placement of partitioning device 10 within a patient's left ventricle 45. The membrane 11 secured to the proximal side of ribs 14 partitions the patient's heart chamber 45 into a main productive or operational portion 46 and a secondary, essentially non-productive portion 47. The operational portion 46 is much smaller than the original ventricular chamber 45 and provides for an improved ejection fraction. The partitioning increases the ejection fraction and provides an improvement in blood flow. Over time, the non-productive portion 47 fills initially with thrombus and subsequently cellular growth. Bio-resorbable fillers such as polylactic acid, polyglycolic acid, polycaprolactone and copolymers and blends may be employed to fill the non-productive portion 47. Fillers may be suitably supplied in a suitable solvent such as DMSO. Other materials which accelerate tissue growth may be deployed in the non-productive portion 47.
  • [0036]
    FIGS. 7-12 illustrate distal ends 19 of the partitioning devices having alternative bumper elements for providing non-traumatic contact with a weakened ventricular wall. In FIG. 7 the distal end 19 of stem 12 has a pair of J-shaped bumpers 50 and 51. In FIG. 8 the distal end 19 has three J-shaped bumpers 52, 53 and 54. FIG. 9 illustrates a distal end 19 having three J-shaped bumpers 55, 56, 57 and 58. FIG. 10 depicts a slight change, where the distal end 19 has four wire J-shaped bumpers 59-62 (not shown in drawing) with sharp tips 63-66 (not shown) for securing the ends of the bumpers in heart tissue. A further alternative is illustrated in FIG. 11 where a membrane 68 is applied to the J-shaped bumpers In FIG. 12, the distal end 19 of stem 12 is provided with a coiled bumper 70 for engaging a ventricular wall.
  • [0037]
    Another modification is shown in FIG. 13 wherein an inflatable balloon 80 is provided on the distal side of the frame 13 to support and space the partitioning device 10 from a patient's ventricular wall in lieu of the stem with flexible bumpers, as shown in the partitioning devices previously described.
  • [0038]
    The ribs 14 of the partitioning device have a length of about 1 to about 8 cm, preferably, about 1.5 to about 4 cm for most left ventricle deployments. To assist in properly locating the device during advancement and placement thereof into a patient's heart chamber, the distal extremity of one or more of the ribs and/or the stem may be provided with markers at desirable locations that provide enhanced visualization by eye, by ultrasound, by X-ray, or other imaging or visualization means. Radiopaque markers may be made with, for example, stainless steel, platinum, gold, iridium, tantalum, tungsten, silver, rhodium, nickel, bismuth, other radiopaque metals, alloys and oxides of these metals.
  • [0039]
    The membrane 11 may be formed of suitable biocompatitble polymeric material which include ePTFE (expanded polytetrafluoroethylene), Nylon, PET (polyethylene terephthalate) and polyesters such as Hytrel. The membrane 11 is preferably foraminous in nature to facilitate tissue ingrowth after deployment within the patient's heart. The delivery catheter and the guiding catheter may be formed of suitable high strength polymeric material such as PEEK (polyetheretherketone), polycarbonate, PET, Nylon, and the like. Braided composite shafts may also be employed. To the extent not otherwise described herein, the various components of the partitioning device and delivery system may be formed of conventional materials and in a conventional manner as will be appreciated by those skilled in the art.
  • [0040]
    While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. Moreover, individual features of embodiments of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is intended that this invention to be defined by the scope of the appended claims as broadly as the prior art will permit.
  • [0041]
    Terms such a “element”, “member”, “device”, “section”, “portion”, “steps”, “means” and words of similar import when used herein shall not be construed as invoking the provisions of 35 U.S.C. .sctn.112(6) unless the following claims expressly use the terms “means” followed by a particular function without specific structure or “step” followed by a particular function without specific action. All patents and patent applications referred to above are hereby incorporated by reference in their entirety. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3874388 *12 Feb 19731 Abr 1975Ochsner Med Found AltonShunt defect closure system
US4007743 *20 Oct 197515 Feb 1977American Hospital Supply CorporationOpening mechanism for umbrella-like intravascular shunt defect closure device
US4425908 *22 Oct 198117 Ene 1984Beth Israel HospitalBlood clot filter
US4453545 *29 Abr 198212 Jun 1984Hiroshi InoueEndotracheal tube with movable endobronchial blocker for one-lung anesthesia
US4588404 *18 Mar 198213 May 1986Didier LapeyreTotal cardiac prosthesis
US4832055 *8 Jul 198823 May 1989Palestrant Aubrey MMechanically locking blood clot filter
US4917089 *29 Ago 198817 Abr 1990Sideris Eleftherios BButtoned device for the transvenous occlusion of intracardiac defects
US4983165 *23 Ene 19908 Ene 1991Loiterman David AGuidance system for vascular catheter or the like
US5104399 *9 Mar 198814 Abr 1992Endovascular Technologies, Inc.Artificial graft and implantation method
US5192314 *12 Dic 19919 Mar 1993Daskalakis Michael KSynthetic intraventricular implants and method of inserting
US5385156 *27 Ago 199331 Ene 1995Rose Health Care SystemsDiagnostic and treatment method for cardiac rupture and apparatus for performing the same
US5389087 *29 Jun 199214 Feb 1995Baxter International Inc.Fully exchangeable over-the-wire catheter with rip seam and gated side port
US5425744 *18 Abr 199420 Jun 1995C. R. Bard, Inc.Occluder for repair of cardiac and vascular defects
US5433727 *16 Ago 199418 Jul 1995Sideris; Eleftherios B.Centering buttoned device for the occlusion of large defects for occluding
US5496277 *22 Nov 19945 Mar 1996Schneider (Usa) Inc.Radially expandable body implantable device
US5527337 *22 Feb 199418 Jun 1996Duke UniversityBioabsorbable stent and method of making the same
US5527338 *9 Dic 199318 Jun 1996Board Of Regents, The University Of Texas SystemIntravascular device
US5634936 *6 Feb 19953 Jun 1997Scimed Life Systems, Inc.Device for closing a septal defect
US5634942 *19 Abr 19953 Jun 1997B. Braun CelsaAssembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5647870 *16 Ene 199615 Jul 1997Ep Technologies, Inc.Multiple electrode support structures
US5709707 *19 Nov 199620 Ene 1998Children's Medical Center CorporationSelf-centering umbrella-type septal closure device
US5860951 *22 Nov 199619 Ene 1999Arthrocare CorporationSystems and methods for electrosurgical myocardial revascularization
US5865730 *7 Oct 19972 Feb 1999Ethicon Endo-Surgery, Inc.Tissue stabilization device for use during surgery having remotely actuated feet
US5865791 *23 Jun 19972 Feb 1999E.P. Technologies Inc.Atrial appendage stasis reduction procedure and devices
US5867003 *9 Sep 19972 Feb 1999Fujitsu LimitedLibrary apparatus
US5871017 *15 Oct 199716 Feb 1999Mayer; Paul W.Relative motion cancelling platform for surgery
US5875782 *14 Nov 19962 Mar 1999Cardiothoracic Systems, Inc.Methods and devices for minimally invasive coronary artery revascularization on a beating heart without cardiopulmonary bypass
US5876325 *30 Sep 19972 Mar 1999Olympus Optical Co., Ltd.Surgical manipulation system
US5876449 *29 Mar 19962 Mar 1999Variomed AgStent for the transluminal implantation in hollow organs
US5879366 *20 Dic 19969 Mar 1999W.L. Gore & Associates, Inc.Self-expanding defect closure device and method of making and using
US5882340 *2 Jul 199716 Mar 1999Yoon; InbaePenetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5910150 *27 May 19978 Jun 1999Angiotrax, Inc.Apparatus for performing surgery
US5916145 *7 Ago 199829 Jun 1999Scimed Life Systems, Inc.Device and method of using a surgical assembly with mesh sheath
US5924424 *14 Oct 199720 Jul 1999Heartport, Inc.Method and apparatus for thoracoscopic intracardiac procedures
US5925062 *26 Sep 199720 Jul 1999Board Of Regents, The University Of Texas SystemIntravascular device
US5925076 *22 Jul 199720 Jul 1999Inoue; KanjiAppliance to be implanted, method of collapsing the appliance to be implanted and method of using the appliance to be implanted
US5928260 *10 Jul 199727 Jul 1999Scimed Life Systems, Inc.Removable occlusion system for aneurysm neck
US6024096 *1 May 199815 Feb 2000Correstore IncAnterior segment ventricular restoration apparatus and method
US6024756 *22 Dic 199815 Feb 2000Scimed Life Systems, Inc.Method of reversibly closing a septal defect
US6036720 *15 Dic 199714 Mar 2000Target Therapeutics, Inc.Sheet metal aneurysm neck bridge
US6045497 *29 Jul 19984 Abr 2000Myocor, Inc.Heart wall tension reduction apparatus and method
US6059715 *4 Ene 19999 May 2000Myocor, Inc.Heart wall tension reduction apparatus
US6076013 *14 Ene 199913 Jun 2000Brennan; Edward F.Apparatus and methods for treating congestive heart failure
US6077214 *29 Jul 199820 Jun 2000Myocor, Inc.Stress reduction apparatus and method
US6077218 *23 Sep 199720 Jun 2000Acorn Cardiovascular, Inc.Cardiac reinforcement device
US6193731 *27 Oct 199827 Feb 2001Fziomed, Inc.Laparoscopic insertion and deployment device
US6221092 *30 Mar 199924 Abr 2001Nissho CorporationClosure device for transcatheter operations and catheter assembly therefor
US6231561 *20 Sep 199915 May 2001Appriva Medical, Inc.Method and apparatus for closing a body lumen
US6334864 *17 May 20001 Ene 2002Aga Medical Corp.Alignment member for delivering a non-symmetric device with a predefined orientation
US6343605 *8 Ago 20005 Feb 2002Scimed Life Systems, Inc.Percutaneous transluminal myocardial implantation device and method
US6348068 *23 Jul 199919 Feb 2002Sulzer Carbomedics Inc.Multi-filament valve stent for a cardisc valvular prosthesis
US6355052 *4 Feb 199712 Mar 2002Pfm Produkte Fur Die Medizin AktiengesellschaftDevice for closure of body defect openings
US6360749 *8 Oct 199926 Mar 2002Swaminathan JayaramanModification of properties and geometry of heart tissue to influence heart function
US6364896 *9 May 20002 Abr 2002Embol-X, Inc.Compliant framework and methods of use
US6387042 *25 Feb 200014 May 2002Juan Hernandez HerreroApparatus aiding physiologic systolic and diastolic dynamics of cardiac cavities
US6406420 *21 Oct 199918 Jun 2002Myocor, Inc.Methods and devices for improving cardiac function in hearts
US6506204 *29 Dic 200014 Ene 2003Aga Medical CorporationMethod and apparatus for occluding aneurysms
US6511496 *12 Sep 200028 Ene 2003Advanced Cardiovascular Systems, Inc.Embolic protection device for use in interventional procedures
US6537198 *21 Mar 200025 Mar 2003Myocor, Inc.Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6551303 *27 Oct 199922 Abr 2003Atritech, Inc.Barrier device for ostium of left atrial appendage
US6572643 *19 Jul 20003 Jun 2003Vascular Architects, Inc.Endoprosthesis delivery catheter assembly and method
US6652555 *18 Ago 200025 Nov 2003Atritech, Inc.Barrier device for covering the ostium of left atrial appendage
US6685627 *19 Nov 20013 Feb 2004Swaminathan JayaramanModification of properties and geometry of heart tissue to influence heart function
US6730108 *27 Mar 20034 May 2004Atritech, Inc.Barrier device for ostium of left atrial appendage
US6852076 *6 Mar 20038 Feb 2005Cardiokinetix, Inc.Method for improving cardiac function
US6887192 *3 Nov 20003 May 2005Converge Medical, Inc.Heart support to prevent ventricular remodeling
US6994093 *24 May 20017 Feb 2006Chase Medical, L.P.Ventricular restoration shaping apparatus and method of use
US7485088 *5 Sep 20023 Feb 2009Chase Medical L.P.Method and device for percutaneous surgical ventricular repair
US20020019580 *10 Sep 200114 Feb 2002Lilip LauExpandable cardiac harness for treating congestive heart failure
US20020026092 *17 May 200128 Feb 2002Buckberg Gerald D.Ventricular restoration patch
US20020028981 *10 Sep 20017 Mar 2002Lilip LauExpandable cardiac harness for treating congestive heart failure
US20020032481 *9 Oct 200114 Mar 2002Shlomo GabbayHeart valve prosthesis and sutureless implantation of a heart valve prosthesis
US20020055767 *17 Oct 20019 May 2002Forde Sean T.Over-the-wire interlock attachment/detachment mechanism
US20020055775 *14 Jun 19999 May 2002Alain F. CarpentierFlexible heart valve
US20030045896 *31 Jul 20026 Mar 2003Chase Medical, LpMethod of using a ventricular restoration shaping apparatus
US20030050682 *1 Ago 200213 Mar 2003Sharkey Hugh R.Device for improving cardiac function
US20030050685 *1 Ago 200213 Mar 2003Nikolic Serjan D.Method for improving cardiac function
US20030105354 *4 Dic 20025 Jun 2003Rolf PinkosContinuous preparation of alkenyl compounds
US20030109770 *22 Nov 200212 Jun 2003Sharkey Hugh R.Device with a porous membrane for improving cardiac function
US20030120337 *3 Dic 200226 Jun 2003Atritech, Inc.Barrier device for ostium of left atrial appendage
US20040002626 *29 Ene 20031 Ene 2004Yair FeldIn-vivo method and device for improving diastolic function of the left ventricle
US20040034366 *15 Ago 200319 Feb 2004Ev3 Sunnyvale, Inc., A California CorporationDevice for containing embolic material in the LAA having a plurality of tissue retention structures
US20040044361 *28 Abr 20034 Mar 2004Frazier Andrew G.C.Detachable atrial appendage occlusion balloon
US20040054394 *17 Sep 200218 Mar 2004Don LeeStent with combined distal protection device
US20040064014 *31 May 20011 Abr 2004Melvin David B.Devices and methods for assisting natural heart function
US20050007031 *11 Jul 200313 Ene 2005Hubbell IncorporatedLow voltage luminaire assembly
US20050015109 *16 Jul 200320 Ene 2005Samuel LichtensteinMethods and devices for altering blood flow through the left ventricle
US20050038470 *15 Ago 200317 Feb 2005Van Der Burg Erik J.System and method for delivering a left atrial appendage containment device
US20050065548 *23 Sep 200324 Mar 2005Marino Joseph A.Right retrieval mechanism
US20050085826 *21 Oct 200321 Abr 2005Scimed Life Systems, Inc.Unfolding balloon catheter for proximal embolus protection
US20050096498 *16 Abr 20045 May 2005Houser Russell A.Sizing and shaping device for treating congestive heart failure
US20050113861 *25 Nov 200326 May 2005Corcoran Michael P.Left atrial appendage closure device
US20050137690 *23 Dic 200323 Jun 2005Sadra MedicalLow profile heart valve and delivery system
US20060014998 *10 Jun 200519 Ene 2006Sharkey Hugh RMultiple partitioning devices for heart treatment
US20060025800 *21 Jun 20052 Feb 2006Mitta SureshMethod and device for surgical ventricular repair
US20060029491 *13 Oct 20059 Feb 2006Garrett Norman H IiiRoto-dynamic fluidic systems
US20060030881 *5 Ago 20049 Feb 2006Cardiokinetix, Inc.Ventricular partitioning device
US20070135889 *1 Feb 200714 Jun 2007Bolton Medical, Inc.Lumen repair device with capture structure
US20080071298 *24 Sep 200720 Mar 2008Alexander KhairkhahanLaminar ventricular partitioning device
US20100121132 *21 Ene 201013 May 2010Serjan NikolicCardiac device and methods of use thereof
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US837711410 Abr 200919 Feb 2013Cardiokinetix, Inc.Sealing and filling ventricular partitioning devices to improve cardiac function
US838867210 Abr 20095 Mar 2013Cardiokinetix, Inc.System for improving cardiac function by sealing a partitioning membrane within a ventricle
US85007904 Jun 20126 Ago 2013Cardiokinetix, Inc.Retrievable cardiac devices
US867282721 Ene 201018 Mar 2014Cardiokinetix, Inc.Cardiac device and methods of use thereof
US882789222 Ago 20139 Sep 2014Cardiokinetix, Inc.Therapeutic methods and devices following myocardial infarction
US883451918 Nov 201116 Sep 2014Artritech, Inc.Method and device for left atrial appendage occlusion
US886484012 Oct 201121 Oct 2014Apollo Endosurgery, Inc.Intragastric implants with collapsible frames
US88709664 Oct 201228 Oct 2014Apollo Endosurgery, Inc.Intragastric balloon for treating obesity
US892044712 Oct 201130 Dic 2014Apollo Endosurgery, Inc.Articulated gastric implant clip
US895638018 Oct 201117 Feb 2015Apollo Endosurgery, Inc.Reactive intragastric implant devices
US901739430 Jul 201328 Abr 2015Cardiokinetix, Inc.Retrievable cardiac devices
US903959713 Jun 201426 May 2015Cardiokinetix, Inc.Ventricular volume reduction
US907866029 Sep 201014 Jul 2015Cardiokinetix, Inc.Devices and methods for delivering an endocardial device
US9198790 *17 Oct 20111 Dic 2015Apollo Endosurgery, Inc.Upper stomach gastric implants
US933299214 Mar 201310 May 2016Cardiokinetix, Inc.Method for making a laminar ventricular partitioning device
US933299314 Mar 201310 May 2016Cardiokinetix, Inc.Devices and methods for delivering an endocardial device
US936432720 Mar 201514 Jun 2016Cardiokinetix, Inc.Ventricular volume reduction
US939896914 May 201226 Jul 2016Apollo Endosurgery, Inc.Upper stomach gastric implants
US946310712 Oct 201111 Oct 2016Apollo Endosurgery, Inc.Variable size intragastric implant devices
US949836517 Oct 201122 Nov 2016Apollo Endosurgery, Inc.Intragastric implants with multiple fluid chambers
US953913328 Jun 201310 Ene 2017Apollo Endosurgery, Inc.Stomach-spanning gastric implants
US959212331 Jul 201414 Mar 2017Cardiokinetix, Inc.Therapeutic methods and devices following myocardial infarction
US96689019 Jul 20136 Jun 2017Apollo Endosurgery Us, Inc.Intragastric implants with duodenal anchors
US968197421 Oct 201420 Jun 2017Apollo Endosurgery Us, Inc.Intragastric implants with collapsible frames
US969412125 Feb 20144 Jul 2017Cardiokinetix, Inc.Systems and methods for improving cardiac function
US20120095499 *17 Oct 201119 Abr 2012Allergan, Inc.Upper stomach gastric implants
CN105476733A *27 Ene 201613 Abr 2016张刚成心脏减容装置
Clasificaciones
Clasificación de EE.UU.606/151, 606/191, 128/898
Clasificación internacionalA61B17/12, A61B19/00, A61F2/00, A61M29/00, A61F2/24, A61B17/08
Clasificación cooperativaA61B17/12122, A61B17/12022, A61B17/12186, A61B17/12172, A61F2/2487, A61B17/12136, A61B2017/12095
Clasificación europeaA61B17/12P5H, A61B17/12P7Z1, A61B17/12P7W1, A61B17/12P7B, A61B17/12P
Eventos legales
FechaCódigoEventoDescripción
24 Jul 2009ASAssignment
Owner name: CARDIOKINETIX, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARKEY, HUGH R.;KHAIRKHAHAN, ALEXANDER;NIKOLIC, SERJAN D.;AND OTHERS;REEL/FRAME:023004/0773;SIGNING DATES FROM 20040420 TO 20040424
15 Jun 2010ASAssignment
Owner name: SILICON VALLEY BANK,CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDLOKINETIX, INC.;REEL/FRAME:024539/0631
Effective date: 20100614
Owner name: SILICON VALLEY BANK, CALIFORNIA
Free format text: SECURITY AGREEMENT;ASSIGNOR:CARDIOKINETIX, INC.;REEL/FRAME:024539/0631
Effective date: 20100614
29 Dic 2011ASAssignment
Owner name: CARDIOKINETIX, INC., CALIFORNIA
Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:027504/0897
Effective date: 20111228
11 Mar 2013ASAssignment
Owner name: CARDIOKINETIX, INC., CALIFORNIA
Free format text: RELEASE;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:029993/0546
Effective date: 20130307