US20080259868A1 - Wireless communication system and associated method for routing messages to wireless networks - Google Patents

Wireless communication system and associated method for routing messages to wireless networks Download PDF

Info

Publication number
US20080259868A1
US20080259868A1 US11/982,463 US98246307A US2008259868A1 US 20080259868 A1 US20080259868 A1 US 20080259868A1 US 98246307 A US98246307 A US 98246307A US 2008259868 A1 US2008259868 A1 US 2008259868A1
Authority
US
United States
Prior art keywords
mobile station
wireless
wireless network
signal
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/982,463
Inventor
Paul F. Struhsaker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Access Solutions Ltd
Raze Technologies Inc
Original Assignee
Raze Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39872725&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080259868(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Raze Technologies Inc filed Critical Raze Technologies Inc
Priority to US11/982,463 priority Critical patent/US20080259868A1/en
Publication of US20080259868A1 publication Critical patent/US20080259868A1/en
Assigned to GENERAL ACCESS SOLUTIONS, LTD. reassignment GENERAL ACCESS SOLUTIONS, LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ACCESS SOLUTIONS, LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/14WLL [Wireless Local Loop]; RLL [Radio Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present disclosure relates generally to wireless communication systems and more particularly, to a wireless communication system and associated method for routing messages.
  • a radio link is utilized upon which to form communication channels, a fixed, or wireline, connection is not required to be formed between the sending and receiving stations to form a communication channel.
  • Information can be communicated between the sending and receiving stations at, and between, locations at which conventional wireline communications would not be permitted.
  • the infrastructure costs associated with the installation of a radio communication system are also generally lower than the corresponding costs which would be required to install a conventional, wireline communication system.
  • a radio communication can increasingly be utilized effectuate a communication service which require relatively significant data thruput capability.
  • a wireless broadband communication system has been proposed, for instance, by which to permit the effectuation of any of various communication services by way of radio links with fixed-site subscriber stations.
  • Radio links are formed with the subscriber stations by fixed-site base stations.
  • the base stations are installed at spaced-apart locations throughout the geographical area which is to be encompassed by the wireless broadband communication system.
  • Several subscriber stations are capable of communicating with a single base station.
  • Radio links are utilized between the subscriber stations and the base stations, the infrastructure costs associated with the formation of wireline connections between the subscriber stations are obviated.
  • Broadband communications, and communication services which require the communication of broadband data, as well as communication services necessitating smaller data thruput rates are effectuable through use of the wireless broadband communication system.
  • the communication ranges of the mobile stations operable in such systems is relatively small as relatively low-power signals are originated at the mobile stations and, correspondingly, originated at the network infrastructure of such systems to be terminated at the mobile stations.
  • the network infrastructure of such systems typically include fixed-location transceivers, sometimes referred to as access points.
  • the access points are capable of communicating with a group of mobile stations positioned within a micro-cellular, or other, area defined by the access point.
  • the access points are coupled to a conventional, local area network, also used to interconnect the processing stations of an office computer system.
  • the access points are connected in other manners.
  • Installation of a wireless broadband communication system to provide broadband services with a plurality of subscriber stations provides a radio infrastructure throughout a geographical area throughout which wireless broadband communication services are effectuable. If a manner could be provided by which to utilize the communication capabilities of a wireless broadband communication system to provide additional communication services, additional benefits of a wireless broadband communication system would be provided.
  • a wireless communication system that includes a base station and a routing map.
  • the base station is in wireless communication with a plurality of wireless networks.
  • the routing map stores information relating to a location of a mobile station in wireless communication with a first wireless network of the plurality of wireless networks.
  • the base station receives a signal for communication to the mobile station and wirelessly transmits the signal to only the first wireless network, according to information retrieved from the routing map related to the location of the mobile station.
  • FIG. 1 illustrates exemplary fixed wireless access network according to one embodiment of the present disclosure
  • FIG. 2 illustrates a functional block diagram of a fixed wireless access (FWA) communication system in which an embodiment of the present disclosure is operable;
  • FWA fixed wireless access
  • FIG. 3 illustrates exemplary subscriber premises in which subscriber integrated access device (IAD) according to the principles of the present disclosure is installed;
  • IAD subscriber integrated access device
  • FIG. 4 depicts exemplary subscriber integrated access device (IAD) in greater detail according to one embodiment of the present disclosure
  • FIG. 5 illustrates a representation of a fixed wireless access communication system similar to that shown in FIG. 2 here also illustrating a plurality of cellular coverage areas defined by about a plurality of subscriber stations of the fixed wireless access communication system;
  • FIG. 1 illustrates exemplary fixed wireless access network 100 according to one embodiment of the present disclosure.
  • Fixed wireless network 100 comprises a plurality of transceiver base stations, including exemplary transceiver base station 110 , that transmit forward channel (i.e., downstream) broadband signals to a plurality of subscriber premises, including exemplary subscriber premises 121 , 122 and 123 , and receive reverse channel (i.e., upstream) broadband signals from the plurality of subscriber premises.
  • Subscriber premises 121 - 123 transmit and receive via fixed, externally-mounted antennas 131 - 133 , respectively.
  • Subscriber premises 121 - 123 may comprise many different types of residential and commercial buildings, including single family homes, multi-tenant offices, small business enterprises (SBE), medium business enterprises (MBE), and so-called “SOHO” (small office/home office) premises.
  • SBE small business enterprises
  • MBE medium business enterprises
  • SOHO small office/home office
  • the transceiver base stations receive the forward channel signals from external network 150 and transmit the reverse channel signals to external network 150 .
  • External network 150 may be, for example, the public switched telephone network (PSTN) or one or more data networks, including the Internet or proprietary Internet protocol (IP) wide area networks (WANs) and local area networks (LANs).
  • PSTN public switched telephone network
  • IP Internet protocol
  • WANs wide area networks
  • LANs local area networks
  • Exemplary transceiver base station 110 is coupled to RF modem 140 , which, among other things, up-converts baseband data traffic received from external network 150 to RF signals transmitted in the forward channel to subscriber premises 121 - 123 .
  • RF modem 140 also down-converts RF signals received in the reverse channel from subscriber premises 121 - 123 to baseband data traffic that is transmitted to external network 150 .
  • RF modem 140 transmits baseband data traffic to, and receives baseband data traffic from, access processor 165 , which is disposed in central office facility 160 of the PSTN.
  • PSTN public switched telephone network
  • network 100 was chosen as a fixed wireless network only for the purposes of simplicity and clarity in explaining a subscriber integrated access device according to the principles of the present disclosure.
  • the choice of a fixed wireless network should not be construed in any manner that limits the scope of the present disclosure in any way.
  • a subscriber integrated access device according to the principles of the present disclosure may be implemented in other types of broadband access systems.
  • such access systems may include wireline systems (i.e, digital subscriber line (DSL), cable modem, fiber optic, and the like) in which a wireline connected to the subscriber integrated access device carries forward and reverse channel signals.
  • DSL digital subscriber line
  • a fixed wireless access (FWA) communication system 210 provides for radio communications between fixed-site base stations, of which the base station 212 is exemplary and fixed-site subscriber stations 214 of which the subscriber station 214 is exemplary.
  • an integrated access device (IAD) 224 forms a transceiver located at the subscriber station and at which forward link signals transmitted upon the forward link channels of the radio link are detectable and which generate reverse link signals for transmission upon the reverse link channels of the radio link.
  • IAD integrated access device
  • each base transceiver station includes a remote modem (modulator-demodulator) capable of communicating with seven separate subscriber stations located within a radial sector.
  • the circuitry of the base transceiver station is configured in other manners.
  • the base station 212 and the set of remote modems thereof, is coupled to an access process 228 which is operable, amongst other things, to perform control operations to control operation of the communication system.
  • the access process 228 is, in turn, coupled to a communication network 232 such as a public-switched telephonic network or a packet data network.
  • a correspondent node 234 is coupled to the communication network.
  • a communication path is formable between the correspondent node and the IAD 224 positioned at the subscriber station by way of the communication network, the access process 228 , the base station 212 , and the radio link 216 . Communication of information by the correspondent node to the integrated access device and from the integrated access device to the correspondent node is effectuable by way of the communication path.
  • a WLAN (wireless local area network) transceiver 238 is positioned at the subscriber station 214 at the integrated access device 224 to be connected to the transceiver circuitry of the integrated access device.
  • the WLAN transceiver defines a coverage area 242 defining a cell.
  • a mobile station 244 positioned within the cell 242 is capable of communicating with the transceiver 238 . That is to say, the radio link 246 is formable between the transceiver 238 and the mobile station 244 upon which forward and reverse link signals are communicated therebetween. Signals originated at the mobile station are communicated upon reverse link channels of the radio link 246 to the WLAN transceiver 238 . And, communication signals to be terminated at the mobile station 244 are communicated upon forward link channels of the radio link 246 .
  • signals originated at the mobile station and communicated to the WLAN transceiver can, in turn, be provided to the transceiver of the integrated access device to be communicated upon reverse link channels of the radio link 216 and, thereafter, be communicated to another device, such as the correspondent node 234 .
  • signals originated at the correspondent node, or elsewhere can be communicated to the mobile station by way of forward link channels of the radio links 216 and 246 to the mobile station. Thereby communications are effectuable with a mobile station in the fixed wireless access communication system.
  • the integrated access device 224 forms a rack-assembly having expansion slots to receive expansion cards thereat.
  • the WLAN transceiver is mounted upon, or is otherwise formed at, an expansion card connectable to the expansion slot of the rack-assembly.
  • the integrated access device together with the WLAN transceiver form an integrated device providing for two-way communication upon the radio link 216 as well as two-way communication upon the radio link 246 .
  • FIG. 3 illustrates exemplary subscriber premises 121 in which subscriber integrated access device (IAD) 310 according to the principles of the present disclosure is implemented.
  • Subscriber IAD 310 is connected to one or more communication devices in subscriber premises 121 via network termination (NT) 320 or (optionally) via a wireless local area network (LAN) connection.
  • Subscriber premises 121 may contain one or more processing devices, such as exemplary personal computers 331 , 332 , 333 and 334 , and one or more telephones, including exemplary telephones 341 , 342 and 343 , that are capable of communicating via the broadband access capability of fixed wireless access network 100 .
  • NT 320 is the external point to which data lines and phone lines within a residence or office are brought in order to be connected to the local telephone service provider.
  • AC/DC converter 390 converts the main AC power in subscriber premises 121 to primary DC power that powers subscriber IAD 310 .
  • DC battery 361 is charged from the DC output of AC/DC converter 390 in order to provide at least eight hours of backup power in case of a failure of the AC main power in subscriber premises 121 .
  • Battery monitor (BM) 362 in subscriber IAD 310 detects main AC power failures and detects low power conditions on DC battery 361 and transmits alarms to fixed wireless access network 100 through subscriber IAD 310 .
  • BM Battery monitor
  • DC battery 361 may be located inside subscriber premises 121 (as shown by dotted lines), rather than mounted on the outside of subscriber premises 121 .
  • DC battery 361 is externally mounted in order to give maintenance personnel easy access to nearly all components of the subscriber access system (i.e., subscriber IAD 310 , DC battery 361 antenna 131 ) without requiring the homeowner to be present.
  • AC/DC converter 390 is disposed in subscriber premises 121 , this does not present a problem.
  • Conventional AC/DC converters have very large mean time between failure (MTBF) ratings, so that failures are rare.
  • DC battery 361 is often mounted on the outside of subscriber premises 121 , DC battery 361 may comprise an internal tamper alarm circuit that transmits an alarm to battery monitor 362 if DC battery 361 is opened or otherwise tampered with by someone other than maintenance personnel.
  • FIG. 4 depicts exemplary subscriber integrated access device (IAD) 310 in greater detail according to one embodiment of the present disclosure.
  • Subscriber IAD 310 is an external unit capable of, for example, radio frequency down-conversion, protocol conversion, voice decompression and control functions. As noted above, the entire subscriber IAD system comprises three major elements:
  • Subscriber IAD 310 is connected directly to some subscriber premises equipment (i.e., PC 331 - 333 , telephones 341 - 343 ) to provide direct access to voice and broadband data in fixed wireless access network 100 at the NT 320 demarcation point at the customer premise. Both product cost and life-cycle/installation costs are reduced by integrating voice and data interfaces into a single external unit that connects to the standard NT 320 interface at the subscriber premises.
  • subscriber IAD 310 may also communicate wirelessly with some subscriber premises equipment, such as PC 334 , via a wireless LAN connection. As will be explained below, subscriber IAD 310 may wirelessly transmit data to and receive data from PC 334 via antenna 395 . Similarly, PC 334 may wirelessly transmit data to and receive data from subscriber IAD 310 via antenna 392 .
  • subscriber IAD 310 may provide at least four data interface options, including:
  • subscriber IAD 310 comprises RF interface (IF) 405 , control/networking PAD/voice processing circuitry 410 , DC/DC converter 415 , battery monitor 362 , and mezzanine interface 420 .
  • RF IF 405 provides modulation and demodulation of forward and reverse channel signals between transceiver base station 110 and subscriber IAD 310 .
  • DC/DC converter 415 converts the external DC power received from battery 361 to the necessary internal DC power levels used by the components of subscriber IAD 310 .
  • Battery monitor 362 monitors the battery power from DC battery 361 and receives alarm signals, if any, from DC battery 361 .
  • DC battery 361 If main AC power fails, or if DC battery 361 is tampered with, DC battery 361 transmits alarm signals to battery monitor 362 . If the DC power level from DC battery falls too low after an AC power failure, battery monitor 362 detects the low DC power level condition and generates an alarm. The alarms generated by or received by battery monitor 362 are sent to control/networking PAD/voice processing circuitry 410 in order to be transmitted back to the fixed wireless service provider.
  • control/networking PAD/voice processing circuitry 410 comprises, among other things, two voice frequency (VF) pair interface (IF) 412 and data interface (IF) 325 .
  • Control/networking PAD/voice processing circuitry 410 performs the overall control functions of subscriber IAD 310 and converts reverse channel voice and data signals received from telephones 341 - 343 and PC 331 - 333 to the necessary protocols for transmission to transceiver base station 110 via RF IF 405 .
  • control/networking PAD/voice processing circuitry 410 converts forward channel signals received from transceiver base station 110 via RF IF 405 to voice and data signals that are used by telephones 341 - 343 and PC 331 - 333 .
  • subscriber IAD 310 may also comprise an expansion slot for one or more wireline interfaces, including for example, cable modem 430 .
  • Alternative wireline interfaces may include an optical interface, a DSL router, or the like, in addition to, or in place of, RF IF 405 .
  • Cable modem 430 (or an optical interface or a DSL router) provide external interface connection points for a cable modem data line, a fiber optic line, and a DSL line, respectively.
  • mezzanine IF 420 receives expansion module 421 in order to provide additional capabilities to subscriber IAD 310 , particularly to meet the needs of small-medium business enterprises and multi-tenant units.
  • expansion module 421 may comprise a voice frequency pair interface, similar to two VF IF 412 , providing subscriber IAD 310 with a total capability or four voice lines and one data line (4V/1D).
  • expansion module 421 may comprise a T1/E1 interface. In a third embodiment, expansion module 421 may comprise a T3/E3 interface. In a fourth embodiment, expansion module 421 may comprise a DSL or cable modem interface.
  • expansion module 421 may comprise a wireless transceiver interface that communicates with PC 334 via antenna 395 .
  • antenna 395 is an integral component of subscriber IAD 310 that is coupled to a connection pin on mezzanine IF 420 .
  • expansion module 421 comprises conventional RF transceiver circuitry, but does not require its own antenna.
  • antenna 395 may be an integral component of expansion module 421 , such that subscriber IAD 310 does not contain a separate antenna for wireless LAN purposes.
  • FIG. 5 illustrates another view of the communication system 210 , here illustrating an implementation in which a plurality of subscriber stations 214 include WLAN transceivers 238 (shown in FIG. 2 ) connected to corresponding integrated access devices 224 (also shown in FIG. 2 ).
  • the coverage areas 242 defined by respective ones of the WLAN transceivers are shown in the figure. Adjacent ones of the coverage areas overlap with one another.
  • the remote modems of the base transceivers are again shown in the Figure as is the access process. An arrangement in which the remote modems communicate with subscriber stations positioned within a radio sector is shown in the figure. In other implementations, other arrangements are utilized.
  • a mobile station initially positioned within, or approximate to, a coverage area 242 defined by a WLAN transceiver positioned at a first subscriber station is permitted movement, such as out of the coverage area defined by the transceiver positioned at a first subscriber station and into the coverage area defined by a WLAN transceiver of another subscriber station.
  • a handover of communications is effectuated from the first WLAN transceiver to another WLAN transceiver, thereby to permit continued communications with the mobile station.
  • Determination of when to initiate handover of communications is made responsive to measurements of signal characteristics of communication signals communicated between the WLAN transceiver and the mobile station.
  • signal characteristics are measured, or otherwise determined, at the mobile station and results of such measures or determinations of are reported back to the WLAN transceiver and appropriate control circuitry. Thereafter, if appropriate, the handover of communications is effectuated.
  • a routing map 252 is further shown in the figure.
  • the routing map is functionally connected to the access process 228 .
  • the routing map includes a listing of the mobile stations, such as the mobile station 246 operable to transceive communication signals pursuant to the WLAN service. Indexed together with the listing of the mobile stations are the locations at which the mobile stations are positioned.
  • the routing map is accessed and the communication signals are routed to the mobile stations at the position indicated in the routing map. And, when a handover is effectuated, information routed to a mobile station but not yet delivered is rerouted to the WLAN transceiver to which communications have been handed over.
  • FIG. 6 again illustrates the communication system 210 , here showing a plurality of base stations 212 and subscriber stations 214 associated with various ones of the base stations.
  • Each of the subscriber stations includes a WLAN transceiver (shown in FIG. 2 ) various of the base transceiver stations are here shown also to be coupled by way of the communication network 232 , again either a PSTN, a packet data network, or a combination of such networks. Movement of a mobile station between the coverage areas is defined by different ones of the subscriber stations are shown in the figure. For instance, movement of a mobile station indicated by the arrow 656 represents movement of the mobile station between subscriber stations associated with separate cells of separate base stations.
  • Such movement results in access process routing of subsequent communication signals to a new cell of the fixed wireless access communication system, access process routing to a separate remote mode sector, and remote modem routing to a new subscriber integrated access device.
  • the arrow 658 is representative of movement of a mobile station within a single sector of a single base station.
  • the result is a subscriber integrated access device to a remote modem routing change.
  • the arrow 662 is representative of movement of a mobile station between adjacent sectors defined by a single base station. Such movement results in access process routing of the communication signal to the new remote modem sector transceiver.
  • the arrow 664 is representative of movement of a mobile station between sectors of different cells defined by two different base stations. Such movement results in access process to access process routing resolution, access processing routing to the new cell, access process routing to the new remote modem sector, and remote modem routing to the new subscriber access integrated device. Thereby, handovers of communications are effectuable through any movement of a mobile station between coverage areas defined by WLAN transceivers forming a portion of a fixed wireless access communication system.
  • FIG. 7 illustrates a method, shown generally at 772 of an embodiment of the present disclosure.
  • the method facilitates radio communications with the mobile station in a fixed wireless access communication system having at least a first base station and at least a first subscriber station capable of communicating with the base station.
  • a local-network radio transceiver is positioned at the fixed-site subscriber station.
  • communication signals are selectably transceived with the mobile station upon a first local radio link between the local-network radio transceiver and a mobile station when the mobile station is positioned within a coverage area defined by the local-network radio transceiver.
  • WLAN service is provided in a fixed wireless access in a communication system.
  • a mobile station operable in a wireless local area network is thereby able to communicate in the WLAN coverage area encompassing the subscriber station at which the local-network radio transceiver is positioned.

Abstract

A wireless communication system is provided that includes a base station and a routing map. The base station is in wireless communication with a plurality of wireless networks. The routing map stores information relating to a location of a mobile station in wireless communication with a first wireless network. The base station receives a signal for the mobile station and transmits the signal to only the first wireless network, according to information retrieved from the routing map related to the location of the mobile station. The wireless network may be a wireless local area network. A handover of the mobile station from the first wireless network to a second wireless network may be made based upon a measured signal characteristic between the mobile station and the first and second wireless networks.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority to copending U.S. patent application Ser. No. 09/839,499 filed on Apr. 20, 2001 and entitled “APPARATUS, AND AN ASSOCIATED METHOD, FOR PROVIDING WLAN SERVICE IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”. The present application may share common subject matter and figures with the above United States patent application, which is incorporated herein by reference for all purposes as if fully set forth herein
  • This application claims priority to: provisional U.S. Patent Application Ser. No. 60/262,712 filed on Jan. 19, 2001 and entitled “WIRELESS COMMUNICATION SYSTEM USING BLOCK FILTERING AND FAST EQUALIZATION DEMODULATION AND METHOD OF OPERATION”; provisional U.S. Patent Application Ser. No. 60/262,825 filed on Jan. 19, 2001 and entitled “APPARATUS AND ASSOCIATED METHOD FOR OPERATING UPON DATA SIGNALS RECEIVED AT A RECEIVING STATION OF A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”; provisional U.S. Patent Application Ser. No. 60/262,698 filed on Jan. 19, 2001 and entitled “APPARATUS AND METHOD FOR OPERATING A SUBSCRIBER INTERFACE IN A FIXED WIRELESS SYSTEM”; provisional U.S. Patent Application Ser. No. 60/262,827 filed on Jan. 19, 2001 entitled “APPARATUS AND METHOD FOR CREATING SIGNAL AND PROFILES AT A RECEIVING STATION”; provisional U.S. Patent Application Ser. No. 60/262,826 filed on Jan. 19, 2001 and entitled “SYSTEM AND METHOD FOR INTERFACE BETWEEN A SUBSCRIBER MODEM AND SUBSCRIBER PREMISES INTERFACES”; provisional U.S. Patent Application Ser. No. 60/262,951 filed on Jan. 19, 2001 entitled “BACKPLANE ARCHITECTURE FOR USE IN WIRELESS AND WIRELINE ACCESS SYSTEMS”; provisional U.S. Patent Application Ser. No. 60/262,824 filed on Jan. 19, 2001 entitled “SYSTEM AND METHOD FOR ON LINE INSERTION OF LINE REPLACEABLE UNITS IN WIRELESS AND WIRELINE ACCESS SYSTEMS”; provisional U.S. Patent Application Ser. No. 60/263,101 filed on Jan. 19, 2001 entitled “SYSTEM FOR COORDINATION OF TDD TRANSMISSION BURSTS WITHIN AND BETWEEN CELLS IN A WIRELESS ACCESS SYSTEM AND METHOD OF OPERATION”; provisional U.S. Patent Application Ser. No. 60/263,097 filed on Jan. 19, 2001 and entitled “REDUNDANT TELECOMMUNICATION SYSTEM USING MEMORY EQUALIZATION APPARATUS AND METHOD OF OPERATION”; provisional U.S. Patent Application Ser. No. 60/273,579 filed Mar. 5, 2001 and entitled “WIRELESS ACCESS SYSTEM FOR ALLOCATING AND SYNCHRONIZING UPLINK AND DOWNLINK OF TDD FRAMES AND METHOD OF OPERATION”; provisional U.S. Patent Application Ser. No. 60/262,955 filed Jan. 19, 2001 and entitled “TDD FDD AIR INTERFACE”; provisional U.S. Patent Application Ser. No. 60/262,708 filed on Jan. 19, 2001 and entitled “APPARATUS, AND AN ASSOCIATED METHOD, FOR PROVIDING WLAN SERVICE IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”; Ser. No. 60/273,689, filed Mar. 5, 2001, entitled “WIRELESS ACCESS SYSTEM USING MULTIPLE MODULATION FORMATS IN TDD FRAMES AND METHOD OF OPERATION”; provisional U.S. Patent Application Ser. No. 60/273,757 filed Mar. 5, 2001 and entitled “WIRELESS ACCESS SYSTEM AND ASSOCIATED METHOD USING MULTIPLE MODULATION FORMATS IN TDD FRAMES ACCORDING TO SUBSCRIBER SERVICE TYPE”; provisional U.S. Patent Application Ser. No. 60/270,378 filed Feb. 21, 2001 and entitled “APPARATUS FOR ESTABLISHING A PRIORITY CALL IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”; provisional U.S. Patent Application Ser. No. 60/270,385 filed Feb. 21, 2001 and entitled “APPARATUS FOR REALLOCATING COMMUNICATION RESOURCES TO ESTABLISH A PRIORITY CALL IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”; and provisional U.S. Patent Application Ser. No. 60/270,430 filed Feb. 21, 2001 and entitled “METHOD FOR ESTABLISHING A PRIORITY CALL IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM. The above Provisional U.S. Patent Applications are incorporated herein by reference for all purposes as if fully set forth herein.
  • The present application may share common subject matter and figures with the following United States patent applications, which are incorporated herein by reference for all purposes as if fully set forth herein:
    • 1) Copending Ser. No. 10/042,705, filed on Nov. 15, 2000, entitled “SUBSCRIBER INTEGRATED ACCESS DEVICE FOR USE IN WIRELESS AND WIRELINE ACCESS SYSTEMS”;
    • 2) Ser. No. 09/838,810, filed Apr. 20, 2001, entitled “WIRELESS COMMUNICATION SYSTEM USING BLOCK FILTERING AND FAST EQUALIZATION-DEMODULATION AND METHOD OF OPERATION”, now U.S. Pat. No. 7,075,967;
    • 3) Ser. No. 09/839,726, filed Apr. 20, 2001, entitled “APPARATUS AND ASSOCIATED METHOD FOR OPERATING UPON DATA SIGNALS RECEIVED AT A RECEIVING STATION OF A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”, now U.S. Pat. No. 7,099,383;
    • 4) Copending Ser. No. 09/839,729, filed Apr. 20, 2001, entitled “APPARATUS AND METHOD FOR OPERATING A SUBSCRIBER INTERFACE IN A FIXED WIRELESS SYSTEM”;
    • 5) Ser. No. 09/839,719, filed Apr. 20, 2001, entitled “APPARATUS AND METHOD FOR CREATING SIGNAL AND PROFILES AT A RECEIVING STATION”, now U.S. Pat. No. 6,947,477;
    • 6) Ser. No. 09/838,910, filed Apr. 20, 2001, entitled “SYSTEM AND METHOD FOR INTERFACE BETWEEN A SUBSCRIBER MODEM AND SUBSCRIBER PREMISES INTERFACES”, now U.S. Pat. No. 6,564,051;
    • 7) Copending Ser. No. 09/839,509, filed Apr. 20, 2001, entitled “BACKPLANE ARCHITECTURE FOR USE IN WIRELESS AND WIRELINE ACCESS SYSTEMS”;
    • 8) Ser. No. 09/839,514, filed Apr. 20, 2001, entitled “SYSTEM AND METHOD FOR ON-LINE INSERTION OF LINE REPLACEABLE UNITS IN WIRELESS AND WIRELINE ACCESS SYSTEMS”, now U.S. Pat. No. 7,069,047;
    • 9) Ser. No. 09/839,512, filed Apr. 20, 2001, entitled “SYSTEM FOR COORDINATION OF TDD TRANSMISSION BURSTS WITHIN AND BETWEEN CELLS IN A WIRELESS ACCESS SYSTEM AND METHOD OF OPERATION”, now U.S. Pat. No. 6,804,527;
    • 10) Ser. No. 09/839,259, filed Apr. 20, 2001, entitled “REDUNDANT TELECOMMUNICATION SYSTEM USING MEMORY EQUALIZATION APPARATUS AND METHOD OF OPERATION”, now U.S. Pat. No. 7,065,098;
    • 11) Ser. No. 09/839,457, filed Apr. 20, 2001, entitled “WIRELESS ACCESS SYSTEM FOR ALLOCATING AND SYNCHRONIZING UPLINK AND DOWNLINK OF TDD FRAMES AND METHOD OF OPERATION”, now U.S. Pat. No. 7,002,929;
    • 12) Ser. No. 09/839,075, filed Apr. 20, 2001, entitled “TDD FDD AIR INTERFACE”, now U.S. Pat. No. 6,859,655;
    • 13) Ser. No. 09/839,458, filed Apr. 20, 2001, entitled “WIRELESS ACCESS SYSTEM USING MULTIPLE MODULATION FORMATS IN TDD FRAMES AND METHOD OF OPERATION”, now U.S. Pat. No. 7,173,916.
    • 14) Ser. No. 09/839,456, filed Apr. 20, 2001, entitled “WIRELESS ACCESS SYSTEM AND ASSOCIATED METHOD USING MULTIPLE MODULATION FORMATS IN TDD FRAMES ACCORDING TO SUBSCRIBER SERVICE TYPE”, now U.S. Pat. No. 6,891,810;
    • 15) Copending Ser. No. 09/838,924, filed Apr. 20, 2001, entitled “APPARATUS FOR ESTABLISHING A PRIORITY CALL IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”;
    • 16) Ser. No. 09/839,727 filed Apr. 20, 2001 and entitled “APPARATUS FOR REALLOCATING COMMUNICATION RESOURCES TO ESTABLISH A PRIORITY CALL IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”, now U.S. Pat. No. 7,031,738;
    • 17) Ser. No. 09/839,734, filed Apr. 20, 2001, entitled “METHOD FOR ESTABLISHING A PRIORITY CALL IN A FIXED WIRELESS ACCESS COMMUNICATION SYSTEM”, now U.S. Pat. No. 7,035,241;
    • 18) Ser. No. 09/839,513, filed Apr. 20, 2001, entitled “SYSTEM AND METHOD FOR PROVIDING AN IMPROVED COMMON CONTROL BUS FOR USE IN ON-LINE INSERTION OF LINE REPLACEABLE UNITS IN WIRELESS AND WIRELINE ACCESS SYSTEMS”, now U.S. Pat. No. 6,925,516; and
    • 19) Ser. No. 09/948,059, filed Sep. 5, 2001, entitled “WIRELESS ACCESS SYSTEM USING SELECTIVELY ADAPTABLE BEAM FORMING IN TDD FRAMES AND METHOD OF OPERATION”, now U.S. Pat. No. 7,230,931.
  • The above provisional and non-provisional applications are commonly assigned to the assignee of the present invention.
  • TECHNICAL FIELD
  • The present disclosure relates generally to wireless communication systems and more particularly, to a wireless communication system and associated method for routing messages.
  • BACKGROUND
  • Advancements in communication technologies have permitted the development, and implementation, of new types of communication systems. Such communication systems are able to permit the communication of increased amounts of data at increased thruput rates relative to conventional communication systems. And, such new communication systems have permitted communication of information at, and between, communication stations positioned at locations from which communications have conventionally been inconvenient or impractical.
  • Radio communication systems, for instance, are exemplarily of communication systems of which new types, and improvements to existing types, have been made possible as a result of advancements in communication technologies. Similar to other types of communication systems, in a radio communication system, information is communicated between a sending station and a receiving station by way of a communication channel. In a radio communication system, unlike other types of communication systems, a communication channel formed between the sending and the receiving stations and upon which information is communicated by the sending station to the receiving station, is formed of a portion of the electromagnetic spectrum. Radio links are defined upon the portion of the electromagnetic spectrum allocated to the radio communication system.
  • Because a radio link is utilized upon which to form communication channels, a fixed, or wireline, connection is not required to be formed between the sending and receiving stations to form a communication channel. Information can be communicated between the sending and receiving stations at, and between, locations at which conventional wireline communications would not be permitted. Additionally, the infrastructure costs associated with the installation of a radio communication system are also generally lower than the corresponding costs which would be required to install a conventional, wireline communication system. And, as the advancements in communication technologies have permitted the bandwidth allocated to a radio communication system to be utilized more efficiently, a radio communication can increasingly be utilized effectuate a communication service which require relatively significant data thruput capability.
  • A wireless broadband communication system has been proposed, for instance, by which to permit the effectuation of any of various communication services by way of radio links with fixed-site subscriber stations. Radio links are formed with the subscriber stations by fixed-site base stations. The base stations are installed at spaced-apart locations throughout the geographical area which is to be encompassed by the wireless broadband communication system. Several subscriber stations are capable of communicating with a single base station.
  • Communication of data is effectuated between the subscriber stations and an associated base station by way of radio links upon which communication channels are defined. Because radio links are utilized between the subscriber stations and the base stations, the infrastructure costs associated with the formation of wireline connections between the subscriber stations are obviated. Broadband communications, and communication services which require the communication of broadband data, as well as communication services necessitating smaller data thruput rates are effectuable through use of the wireless broadband communication system.
  • Advancements in communication technologies have also permitted the development, and introduction, of other types of radio communication systems. Wireless communication systems, sometimes referred to as micro-cellular networks, private networks, and WLANs (wireless local area networks) are exemplary of such systems. Such networks, generally, provide for radio communications with mobile stations positioned within communication range of such networks.
  • Generally, the communication ranges of the mobile stations operable in such systems is relatively small as relatively low-power signals are originated at the mobile stations and, correspondingly, originated at the network infrastructure of such systems to be terminated at the mobile stations. The network infrastructure of such systems typically include fixed-location transceivers, sometimes referred to as access points. The access points are capable of communicating with a group of mobile stations positioned within a micro-cellular, or other, area defined by the access point. In some of such systems, the access points are coupled to a conventional, local area network, also used to interconnect the processing stations of an office computer system. In other such systems, the access points are connected in other manners.
  • Installation of a wireless broadband communication system to provide broadband services with a plurality of subscriber stations provides a radio infrastructure throughout a geographical area throughout which wireless broadband communication services are effectuable. If a manner could be provided by which to utilize the communication capabilities of a wireless broadband communication system to provide additional communication services, additional benefits of a wireless broadband communication system would be provided.
  • It is in light of this background information related to radio communication systems that the significant improvements of the present disclosure have evolved.
  • SUMMARY
  • Aspects of the disclosure may be found in a wireless communication system that includes a base station and a routing map. The base station is in wireless communication with a plurality of wireless networks. The routing map stores information relating to a location of a mobile station in wireless communication with a first wireless network of the plurality of wireless networks. The base station receives a signal for communication to the mobile station and wirelessly transmits the signal to only the first wireless network, according to information retrieved from the routing map related to the location of the mobile station.
  • A more complete appreciation of the present disclosure and to the scope thereof can be obtained from the accompanying drawings which are briefly summarized below, the following detailed description of the presently-preferred embodiments of the disclosure, and the appended claims.
  • The foregoing has outlined rather broadly the features and technical advantages of the present disclosure so that those skilled in the art may better understand the detailed description of the disclosure that follows. Additional features and advantages of the disclosure will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the disclosure in its broadest form.
  • Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates exemplary fixed wireless access network according to one embodiment of the present disclosure;
  • FIG. 2 illustrates a functional block diagram of a fixed wireless access (FWA) communication system in which an embodiment of the present disclosure is operable;
  • FIG. 3 illustrates exemplary subscriber premises in which subscriber integrated access device (IAD) according to the principles of the present disclosure is installed;
  • FIG. 4 depicts exemplary subscriber integrated access device (IAD) in greater detail according to one embodiment of the present disclosure;
  • FIG. 5 illustrates a representation of a fixed wireless access communication system similar to that shown in FIG. 2 here also illustrating a plurality of cellular coverage areas defined by about a plurality of subscriber stations of the fixed wireless access communication system;
  • FIG. 6 illustrates another representation of the fixed wireless access communication system shown in FIGS. 1 and 2; and
  • FIG. 7 illustrates a method flow diagram listing the method of operation of the method of an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates exemplary fixed wireless access network 100 according to one embodiment of the present disclosure. Fixed wireless network 100 comprises a plurality of transceiver base stations, including exemplary transceiver base station 110, that transmit forward channel (i.e., downstream) broadband signals to a plurality of subscriber premises, including exemplary subscriber premises 121, 122 and 123, and receive reverse channel (i.e., upstream) broadband signals from the plurality of subscriber premises. Subscriber premises 121-123 transmit and receive via fixed, externally-mounted antennas 131-133, respectively. Subscriber premises 121-123 may comprise many different types of residential and commercial buildings, including single family homes, multi-tenant offices, small business enterprises (SBE), medium business enterprises (MBE), and so-called “SOHO” (small office/home office) premises.
  • The transceiver base stations, including transceiver base station 110, receive the forward channel signals from external network 150 and transmit the reverse channel signals to external network 150. External network 150 may be, for example, the public switched telephone network (PSTN) or one or more data networks, including the Internet or proprietary Internet protocol (IP) wide area networks (WANs) and local area networks (LANs). Exemplary transceiver base station 110 is coupled to RF modem 140, which, among other things, up-converts baseband data traffic received from external network 150 to RF signals transmitted in the forward channel to subscriber premises 121-123. RF modem 140 also down-converts RF signals received in the reverse channel from subscriber premises 121-123 to baseband data traffic that is transmitted to external network 150. In an exemplary embodiment of the present disclosure in which external network 150 is the public switched telephone network (PSTN), RF modem 140 transmits baseband data traffic to, and receives baseband data traffic from, access processor 165, which is disposed in central office facility 160 of the PSTN.
  • It should be noted that network 100 was chosen as a fixed wireless network only for the purposes of simplicity and clarity in explaining a subscriber integrated access device according to the principles of the present disclosure. The choice of a fixed wireless network should not be construed in any manner that limits the scope of the present disclosure in any way. As will be explained below in greater detail, in alternate embodiments of the present disclosure, a subscriber integrated access device according to the principles of the present disclosure may be implemented in other types of broadband access systems. In one embodiment of the present disclosure, such access systems may include wireline systems (i.e, digital subscriber line (DSL), cable modem, fiber optic, and the like) in which a wireline connected to the subscriber integrated access device carries forward and reverse channel signals.
  • Referring to FIG. 2, a fixed wireless access (FWA) communication system 210 provides for radio communications between fixed-site base stations, of which the base station 212 is exemplary and fixed-site subscriber stations 214 of which the subscriber station 214 is exemplary. A radio link 216 upon which forward link channels 218 and reverse link channels 222 is of a bandwidth permitting broadband communication services to be effectuated with devices located at the subscriber station 214.
  • In the exemplary implementation, an integrated access device (IAD) 224 forms a transceiver located at the subscriber station and at which forward link signals transmitted upon the forward link channels of the radio link are detectable and which generate reverse link signals for transmission upon the reverse link channels of the radio link. A separate IAD 224 is located at each subscriber station of the communication system.
  • In the exemplary implementation, each base transceiver station includes a remote modem (modulator-demodulator) capable of communicating with seven separate subscriber stations located within a radial sector. In other implementations, the circuitry of the base transceiver station is configured in other manners.
  • The base station 212, and the set of remote modems thereof, is coupled to an access process 228 which is operable, amongst other things, to perform control operations to control operation of the communication system. The access process 228 is, in turn, coupled to a communication network 232 such as a public-switched telephonic network or a packet data network. And, a correspondent node 234 is coupled to the communication network. A communication path is formable between the correspondent node and the IAD 224 positioned at the subscriber station by way of the communication network, the access process 228, the base station 212, and the radio link 216. Communication of information by the correspondent node to the integrated access device and from the integrated access device to the correspondent node is effectuable by way of the communication path.
  • Pursuant to an embodiment of the present disclosure, a WLAN (wireless local area network) transceiver 238 is positioned at the subscriber station 214 at the integrated access device 224 to be connected to the transceiver circuitry of the integrated access device. The WLAN transceiver defines a coverage area 242 defining a cell. A mobile station 244 positioned within the cell 242 is capable of communicating with the transceiver 238. That is to say, the radio link 246 is formable between the transceiver 238 and the mobile station 244 upon which forward and reverse link signals are communicated therebetween. Signals originated at the mobile station are communicated upon reverse link channels of the radio link 246 to the WLAN transceiver 238. And, communication signals to be terminated at the mobile station 244 are communicated upon forward link channels of the radio link 246.
  • Because of the connection of the WLAN transceiver to the transceiver of the integrated access device 224, signals originated at the mobile station and communicated to the WLAN transceiver can, in turn, be provided to the transceiver of the integrated access device to be communicated upon reverse link channels of the radio link 216 and, thereafter, be communicated to another device, such as the correspondent node 234. Analogously, signals originated at the correspondent node, or elsewhere, can be communicated to the mobile station by way of forward link channels of the radio links 216 and 246 to the mobile station. Thereby communications are effectuable with a mobile station in the fixed wireless access communication system.
  • In the exemplary implementation, the integrated access device 224 forms a rack-assembly having expansion slots to receive expansion cards thereat. And, the WLAN transceiver is mounted upon, or is otherwise formed at, an expansion card connectable to the expansion slot of the rack-assembly. Thereby the integrated access device together with the WLAN transceiver form an integrated device providing for two-way communication upon the radio link 216 as well as two-way communication upon the radio link 246.
  • FIG. 3 illustrates exemplary subscriber premises 121 in which subscriber integrated access device (IAD) 310 according to the principles of the present disclosure is implemented. Subscriber IAD 310 is connected to one or more communication devices in subscriber premises 121 via network termination (NT) 320 or (optionally) via a wireless local area network (LAN) connection. Subscriber premises 121 may contain one or more processing devices, such as exemplary personal computers 331, 332, 333 and 334, and one or more telephones, including exemplary telephones 341, 342 and 343, that are capable of communicating via the broadband access capability of fixed wireless access network 100.
  • NT 320 is the external point to which data lines and phone lines within a residence or office are brought in order to be connected to the local telephone service provider. AC/DC converter 390 converts the main AC power in subscriber premises 121 to primary DC power that powers subscriber IAD 310. In order to comply with government regulations for telephone service to one or more telephones in subscriber premises 121, DC battery 361 is charged from the DC output of AC/DC converter 390 in order to provide at least eight hours of backup power in case of a failure of the AC main power in subscriber premises 121. Battery monitor (BM) 362 in subscriber IAD 310 detects main AC power failures and detects low power conditions on DC battery 361 and transmits alarms to fixed wireless access network 100 through subscriber IAD 310.
  • In an alternate embodiment of the present disclosure, DC battery 361 may be located inside subscriber premises 121 (as shown by dotted lines), rather than mounted on the outside of subscriber premises 121. However, in a preferred embodiment of the present disclosure, DC battery 361 is externally mounted in order to give maintenance personnel easy access to nearly all components of the subscriber access system (i.e., subscriber IAD 310, DC battery 361 antenna 131) without requiring the homeowner to be present. Although AC/DC converter 390 is disposed in subscriber premises 121, this does not present a problem. Conventional AC/DC converters have very large mean time between failure (MTBF) ratings, so that failures are rare. Furthermore, AC/DC converters are common, inexpensive commercial products that may be purchased and easily installed by the subscriber without the assistance of maintenance personnel. As will be described below in greater detail, since DC battery 361 is often mounted on the outside of subscriber premises 121, DC battery 361 may comprise an internal tamper alarm circuit that transmits an alarm to battery monitor 362 if DC battery 361 is opened or otherwise tampered with by someone other than maintenance personnel.
  • FIG. 4 depicts exemplary subscriber integrated access device (IAD) 310 in greater detail according to one embodiment of the present disclosure. Subscriber IAD 310 is an external unit capable of, for example, radio frequency down-conversion, protocol conversion, voice decompression and control functions. As noted above, the entire subscriber IAD system comprises three major elements:
      • 1) external antenna 131 allows for multiple antenna options for increased gain or multiple element antenna subsystems;
      • 2) subscriber IAD 310 main assembly contains the integrated printed circuit board (PCB) motherboard and a mezzanine interface into which an optional expansion module may be inserted to provide, for example, two additional voice frequency (VF) pairs, a T1/E1 module, or a TE/E3 module for use in a SOHO premises, a small/medium enterprise (SME) premises, or a multi-tenant unit (MTU) premises; and
      • 3) DC battery 361 and AC/DC converter 390, which may be deployed inside or (preferably) outside subscriber premises 121 to provide at least eight (8) hours of operation without AC main power.
  • Subscriber IAD 310 is connected directly to some subscriber premises equipment (i.e., PC 331-333, telephones 341-343) to provide direct access to voice and broadband data in fixed wireless access network 100 at the NT 320 demarcation point at the customer premise. Both product cost and life-cycle/installation costs are reduced by integrating voice and data interfaces into a single external unit that connects to the standard NT 320 interface at the subscriber premises. Optionally, subscriber IAD 310 may also communicate wirelessly with some subscriber premises equipment, such as PC 334, via a wireless LAN connection. As will be explained below, subscriber IAD 310 may wirelessly transmit data to and receive data from PC 334 via antenna 395. Similarly, PC 334 may wirelessly transmit data to and receive data from subscriber IAD 310 via antenna 392.
  • In an advantageous embodiment of the present disclosure, subscriber IAD 310 may provide at least four data interface options, including:
      • 1) separate Cat-5 twisted pairs for 10 Base-T Ethernet;
      • 2) one of the VF pairs may be used with, for example, a 1 Mbps or 10 Mbps Home Phone Network Alliance (HPNA) interface or other shared voice/data home wiring twisted pair system;
      • 3) home power line interface with release of higher bandwidth implementations (>1 Mbps); and
      • 4) wireless LAN connection to subscriber premises equipment.
  • In an advantageous embodiment, subscriber IAD 310 comprises RF interface (IF) 405, control/networking PAD/voice processing circuitry 410, DC/DC converter 415, battery monitor 362, and mezzanine interface 420. In a fixed wireless embodiment, RF IF 405 provides modulation and demodulation of forward and reverse channel signals between transceiver base station 110 and subscriber IAD 310. DC/DC converter 415 converts the external DC power received from battery 361 to the necessary internal DC power levels used by the components of subscriber IAD 310. Battery monitor 362 monitors the battery power from DC battery 361 and receives alarm signals, if any, from DC battery 361.
  • If main AC power fails, or if DC battery 361 is tampered with, DC battery 361 transmits alarm signals to battery monitor 362. If the DC power level from DC battery falls too low after an AC power failure, battery monitor 362 detects the low DC power level condition and generates an alarm. The alarms generated by or received by battery monitor 362 are sent to control/networking PAD/voice processing circuitry 410 in order to be transmitted back to the fixed wireless service provider.
  • In a standard (and low cost) configuration, control/networking PAD/voice processing circuitry 410 comprises, among other things, two voice frequency (VF) pair interface (IF) 412 and data interface (IF) 325. Control/networking PAD/voice processing circuitry 410 performs the overall control functions of subscriber IAD 310 and converts reverse channel voice and data signals received from telephones 341-343 and PC 331-333 to the necessary protocols for transmission to transceiver base station 110 via RF IF 405. Similarly, control/networking PAD/voice processing circuitry 410 converts forward channel signals received from transceiver base station 110 via RF IF 405 to voice and data signals that are used by telephones 341-343 and PC 331-333.
  • In alternate wireline embodiments of the present disclosure, subscriber IAD 310 may also comprise an expansion slot for one or more wireline interfaces, including for example, cable modem 430. Alternative wireline interfaces may include an optical interface, a DSL router, or the like, in addition to, or in place of, RF IF 405. Cable modem 430 (or an optical interface or a DSL router) provide external interface connection points for a cable modem data line, a fiber optic line, and a DSL line, respectively.
  • As noted above, in an advantageous embodiment of the present disclosure, mezzanine IF 420 receives expansion module 421 in order to provide additional capabilities to subscriber IAD 310, particularly to meet the needs of small-medium business enterprises and multi-tenant units. For example, expansion module 421 may comprise a voice frequency pair interface, similar to two VF IF 412, providing subscriber IAD 310 with a total capability or four voice lines and one data line (4V/1D).
  • In a second embodiment, expansion module 421 may comprise a T1/E1 interface. In a third embodiment, expansion module 421 may comprise a T3/E3 interface. In a fourth embodiment, expansion module 421 may comprise a DSL or cable modem interface.
  • Finally, in a wireless LAN embodiment, expansion module 421 may comprise a wireless transceiver interface that communicates with PC 334 via antenna 395. In the illustrated embodiment, antenna 395 is an integral component of subscriber IAD 310 that is coupled to a connection pin on mezzanine IF 420. In such an embodiment, expansion module 421 comprises conventional RF transceiver circuitry, but does not require its own antenna. However, in an alternate embodiment, antenna 395 may be an integral component of expansion module 421, such that subscriber IAD 310 does not contain a separate antenna for wireless LAN purposes.
  • FIG. 5 illustrates another view of the communication system 210, here illustrating an implementation in which a plurality of subscriber stations 214 include WLAN transceivers 238 (shown in FIG. 2) connected to corresponding integrated access devices 224 (also shown in FIG. 2). The coverage areas 242 defined by respective ones of the WLAN transceivers are shown in the figure. Adjacent ones of the coverage areas overlap with one another. The remote modems of the base transceivers are again shown in the Figure as is the access process. An arrangement in which the remote modems communicate with subscriber stations positioned within a radio sector is shown in the figure. In other implementations, other arrangements are utilized.
  • A mobile station initially positioned within, or approximate to, a coverage area 242 defined by a WLAN transceiver positioned at a first subscriber station is permitted movement, such as out of the coverage area defined by the transceiver positioned at a first subscriber station and into the coverage area defined by a WLAN transceiver of another subscriber station. Through operation of an embodiment of the present disclosure, a handover of communications is effectuated from the first WLAN transceiver to another WLAN transceiver, thereby to permit continued communications with the mobile station.
  • Determination of when to initiate handover of communications is made responsive to measurements of signal characteristics of communication signals communicated between the WLAN transceiver and the mobile station. In one implementation signal characteristics are measured, or otherwise determined, at the mobile station and results of such measures or determinations of are reported back to the WLAN transceiver and appropriate control circuitry. Thereafter, if appropriate, the handover of communications is effectuated.
  • A routing map 252 is further shown in the figure. The routing map is functionally connected to the access process 228. The routing map includes a listing of the mobile stations, such as the mobile station 246 operable to transceive communication signals pursuant to the WLAN service. Indexed together with the listing of the mobile stations are the locations at which the mobile stations are positioned. When communications are to be effectuated with a particular mobile station, such as communications originated by the correspondent node 234, the routing map is accessed and the communication signals are routed to the mobile stations at the position indicated in the routing map. And, when a handover is effectuated, information routed to a mobile station but not yet delivered is rerouted to the WLAN transceiver to which communications have been handed over.
  • FIG. 6 again illustrates the communication system 210, here showing a plurality of base stations 212 and subscriber stations 214 associated with various ones of the base stations. Each of the subscriber stations includes a WLAN transceiver (shown in FIG. 2) various of the base transceiver stations are here shown also to be coupled by way of the communication network 232, again either a PSTN, a packet data network, or a combination of such networks. Movement of a mobile station between the coverage areas is defined by different ones of the subscriber stations are shown in the figure. For instance, movement of a mobile station indicated by the arrow 656 represents movement of the mobile station between subscriber stations associated with separate cells of separate base stations. Such movement results in access process routing of subsequent communication signals to a new cell of the fixed wireless access communication system, access process routing to a separate remote mode sector, and remote modem routing to a new subscriber integrated access device. The arrow 658 is representative of movement of a mobile station within a single sector of a single base station. Here, the result is a subscriber integrated access device to a remote modem routing change.
  • The arrow 662 is representative of movement of a mobile station between adjacent sectors defined by a single base station. Such movement results in access process routing of the communication signal to the new remote modem sector transceiver. And, the arrow 664 is representative of movement of a mobile station between sectors of different cells defined by two different base stations. Such movement results in access process to access process routing resolution, access processing routing to the new cell, access process routing to the new remote modem sector, and remote modem routing to the new subscriber access integrated device. Thereby, handovers of communications are effectuable through any movement of a mobile station between coverage areas defined by WLAN transceivers forming a portion of a fixed wireless access communication system.
  • FIG. 7 illustrates a method, shown generally at 772 of an embodiment of the present disclosure. The method facilitates radio communications with the mobile station in a fixed wireless access communication system having at least a first base station and at least a first subscriber station capable of communicating with the base station. First, and as indicated by the block 774, a local-network radio transceiver is positioned at the fixed-site subscriber station. Then, and as indicated by the block 776, communication signals are selectably transceived with the mobile station upon a first local radio link between the local-network radio transceiver and a mobile station when the mobile station is positioned within a coverage area defined by the local-network radio transceiver.
  • Through operation of the method of an embodiment of the present disclosure, WLAN service is provided in a fixed wireless access in a communication system. A mobile station operable in a wireless local area network is thereby able to communicate in the WLAN coverage area encompassing the subscriber station at which the local-network radio transceiver is positioned.
  • The previous descriptions are of preferred examples for implementing the disclosure, and the scope of the disclosure should not necessarily be limited by this description. The scope of the present invention is defined by the following claims.

Claims (20)

1-24. (canceled)
25. A wireless communication system, comprising:
a base station in wireless communication with a first plurality of wireless networks; and
a routing map storing information relating to a location of a mobile station in wireless communication with a first wireless network of the first plurality of wireless networks,
wherein the base station:
receives a signal for communication to the mobile station,
retrieves from the routing map information related to the location of the mobile station, and
wirelessly transmits the signal to only the first wireless network according to the information retrieved from the router map, wherein transmission of the signal to the first wireless network causes the first wireless network to wirelessly transmit the signal to the mobile station.
26. The wireless communication system of claim 25, wherein the first wireless network is a wireless local area network.
27. The wireless communication system of claim 25, wherein:
the base station receives a report from the mobile station, the report indicating a location of the mobile station in a coverage area of a second wireless network of the first plurality of wireless networks; and
wherein the routing map stores information relating to the location of the mobile station in the coverage area of the second wireless network.
28. The wireless communication system of claim 27, wherein, in response to the routing map storing information relating to the location of the mobile station in the coverage area of the second wireless network, the base station:
determines that the signal has not been received by the mobile station;
wirelessly transmits the signal from the base station to only the second wireless network.
29. The wireless communication system of claim 27, wherein the report received from the mobile station is based upon a comparison of a first signal characteristic of first wireless communication signals communicated between the mobile station and the first wireless network and a second signal characteristic of second wireless communication signals communicated between the mobile station and the second wireless network.
30. The wireless communication system of claim 25, further comprising an access process, wherein the access process:
communicates with a plurality of base stations, wherein the base station is a first base station of the plurality of base stations;
receives the signal for communication to the mobile station;
retrieves from the routing map the information related to the location of the mobile station in the coverage area of the first wireless network, and
wirelessly transmits the signal to only the first base station according to the information retrieved from the router map.
31. The wireless communication system of claim 30, wherein:
the access process receives a report from the mobile station, the report indicating a location of the mobile station in a coverage area of a second wireless network of a second plurality of wireless networks in wireless communication with a second base station of the plurality of base stations; and
the routing map stores information relating to the location of the mobile station in the coverage area of the second wireless network.
32. The network of claim 31, wherein, in response to the routing map storing information relating to the location of the mobile station in the coverage area of the second wireless network, the access process:
determines that the signal has not been received by the mobile station; and
wirelessly transmits the signal from the access process to only the second base station.
33. A method of communicating with a mobile station in a wireless communication system, the method comprising:
storing in a routing map information related to a location of the mobile station in a coverage area of a first wireless network of a first plurality of wireless networks;
receiving at a base station a signal for communication to the mobile station, wherein the base station is capable of wireless communication with the first plurality of wireless networks;
retrieving from the routing map the information related to the location of the mobile station;
wirelessly transmitting the signal from the base station to only the first wireless network according to the information retrieved from the router map.
34. The method of claim 33, wherein the first wireless network is a wireless local area network.
35. The method of claim 33, further comprising:
detecting a location of the mobile station in a coverage area of a second wireless network of the first plurality of wireless networks;
performing a handover of the mobile station from the first wireless network to the second wireless network; and
storing in the routing map information related to the location of the mobile station in the coverage area of the second wireless network.
36. The method of claim 35, further comprising:
determining that the signal has not been received by the mobile station;
wirelessly transmitting the signal from the base station to only the second wireless network.
37. The method of claim 35, further comprising:
measuring a first signal characteristic of first wireless communication signals communicated between the mobile station and the first wireless network;
measuring a second signal characteristic of second wireless communication signals communicated between the mobile station and the second wireless network; and
comparing the first and second signal characteristics,
wherein handover of the mobile station from the first wireless network to the second wireless network is performed according to the comparison of the first and second signal characteristics.
38. The method of claim 37, wherein the first and second signal characteristics are measured at the mobile station and transmitted to one of the first and second wireless networks.
39. The method of claim 33, wherein receiving at a base station a signal for communication to the mobile station further comprises:
receiving the signal at an access process, wherein the access process is capable of communication with a plurality of base stations and the base station receiving the signal is a first base station of the plurality of base stations; and
transmitting the signal from the access process to only the first base station according to the information retrieved from the routing map.
40. The method of claim 39, further comprising:
detecting a location of the mobile station in a coverage area of a second wireless network, wherein the second wireless network is one of a second plurality of wireless networks capable of wireless communication with a second base station of the plurality of base stations;
performing a handover of the mobile station from the first wireless network to the second wireless network; and
storing in the routing map information related to the location of the mobile station in the coverage area of the second wireless network.
41. The method of claim 40, further comprising:
determining that the signal has not been received by the mobile station;
transmitting the signal from the access process to only the second base station.
42. The method of claim 40, further comprising:
measuring a first signal characteristic of first wireless communication signals communicated between the mobile station and the first subscriber station; and
measuring a second signal characteristic of second wireless communication signals communicated between the mobile station and the second subscriber station,
wherein handover of the mobile station from the first subscriber station to the second subscriber station is performed according to the first and second signal characteristics.
43. The method of claim 42, wherein the first and second signal characteristics are measured at the mobile station and transmitted to one of the first and second subscriber stations.
US11/982,463 2001-01-19 2007-10-31 Wireless communication system and associated method for routing messages to wireless networks Abandoned US20080259868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/982,463 US20080259868A1 (en) 2001-01-19 2007-10-31 Wireless communication system and associated method for routing messages to wireless networks

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
US26310101P 2001-01-19 2001-01-19
US26282701P 2001-01-19 2001-01-19
US26271201P 2001-01-19 2001-01-19
US26269801P 2001-01-19 2001-01-19
US26295501P 2001-01-19 2001-01-19
US26270801P 2001-01-19 2001-01-19
US26282401P 2001-01-19 2001-01-19
US26295101P 2001-01-19 2001-01-19
US26282501P 2001-01-19 2001-01-19
US26282601P 2001-01-19 2001-01-19
US26309701P 2001-01-19 2001-01-19
US27038501P 2001-02-21 2001-02-21
US27043001P 2001-02-21 2001-02-21
US27037801P 2001-02-21 2001-02-21
US27375701P 2001-03-05 2001-03-05
US27368901P 2001-03-05 2001-03-05
US27357901P 2001-03-05 2001-03-05
US09/839,499 US7346347B2 (en) 2001-01-19 2001-04-20 Apparatus, and an associated method, for providing WLAN service in a fixed wireless access communication system
US11/982,463 US20080259868A1 (en) 2001-01-19 2007-10-31 Wireless communication system and associated method for routing messages to wireless networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/839,499 Continuation US7346347B2 (en) 2000-11-15 2001-04-20 Apparatus, and an associated method, for providing WLAN service in a fixed wireless access communication system

Publications (1)

Publication Number Publication Date
US20080259868A1 true US20080259868A1 (en) 2008-10-23

Family

ID=39872725

Family Applications (9)

Application Number Title Priority Date Filing Date
US09/839,499 Expired - Lifetime US7346347B2 (en) 2000-11-15 2001-04-20 Apparatus, and an associated method, for providing WLAN service in a fixed wireless access communication system
US11/982,459 Abandoned US20080259826A1 (en) 2001-01-19 2007-10-31 System for coordination of communication within and between cells in a wireless access system and method of operation
US11/982,404 Abandoned US20080261588A1 (en) 2001-01-19 2007-10-31 TDD FDD communication interface
US11/982,461 Abandoned US20080254801A1 (en) 2001-01-19 2007-10-31 Method and apparatus for establishing a priority call in a fixed wireless access communication system
US11/982,424 Abandoned US20080268835A1 (en) 2000-11-15 2007-10-31 Wireless communication system and device for coupling a base station and mobile stations
US11/982,463 Abandoned US20080259868A1 (en) 2001-01-19 2007-10-31 Wireless communication system and associated method for routing messages to wireless networks
US13/488,374 Expired - Lifetime US9426794B2 (en) 2000-11-15 2012-06-04 Wireless communication system and device for coupling a base station and mobile stations
US13/532,650 Expired - Fee Related US10264562B2 (en) 2001-01-19 2012-06-25 TDD FDD communication interface
US16/384,756 Expired - Lifetime US10820312B2 (en) 2001-01-19 2019-04-15 TDD FDD communication interface

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US09/839,499 Expired - Lifetime US7346347B2 (en) 2000-11-15 2001-04-20 Apparatus, and an associated method, for providing WLAN service in a fixed wireless access communication system
US11/982,459 Abandoned US20080259826A1 (en) 2001-01-19 2007-10-31 System for coordination of communication within and between cells in a wireless access system and method of operation
US11/982,404 Abandoned US20080261588A1 (en) 2001-01-19 2007-10-31 TDD FDD communication interface
US11/982,461 Abandoned US20080254801A1 (en) 2001-01-19 2007-10-31 Method and apparatus for establishing a priority call in a fixed wireless access communication system
US11/982,424 Abandoned US20080268835A1 (en) 2000-11-15 2007-10-31 Wireless communication system and device for coupling a base station and mobile stations

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/488,374 Expired - Lifetime US9426794B2 (en) 2000-11-15 2012-06-04 Wireless communication system and device for coupling a base station and mobile stations
US13/532,650 Expired - Fee Related US10264562B2 (en) 2001-01-19 2012-06-25 TDD FDD communication interface
US16/384,756 Expired - Lifetime US10820312B2 (en) 2001-01-19 2019-04-15 TDD FDD communication interface

Country Status (1)

Country Link
US (9) US7346347B2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230931B2 (en) * 2001-01-19 2007-06-12 Raze Technologies, Inc. Wireless access system using selectively adaptable beam forming in TDD frames and method of operation
US8184603B2 (en) * 2002-01-31 2012-05-22 Lgc Wireless, Llc Communication system having a community wireless local area network for voice and high speed data communication
GB2389005B (en) * 2002-05-23 2005-09-07 Inc Motorola Communications methods and apparatus for use therein
US7254396B2 (en) 2002-09-12 2007-08-07 Broadcom Corporation Network or access point handoff based upon historical pathway
US7398097B2 (en) * 2002-12-23 2008-07-08 Scott Technologies, Inc. Dual-mesh network and communication system for emergency services personnel
US7263379B1 (en) 2002-12-23 2007-08-28 Sti Licensing Corp. Communications network for emergency services personnel
US9003048B2 (en) * 2003-04-01 2015-04-07 Microsoft Technology Licensing, Llc Network zones
US20050026625A1 (en) * 2003-07-29 2005-02-03 Gehlot Narayan L. Methods and devices for seamlessly changing protocols in a mobile unit
US7349436B2 (en) * 2003-09-30 2008-03-25 Intel Corporation Systems and methods for high-throughput wideband wireless local area network communications
US7428428B2 (en) * 2004-04-28 2008-09-23 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for wireless network range extension
US20060203829A1 (en) * 2005-02-25 2006-09-14 Benco David S Network support for hand-off between fixed and wireless networks for high-speed data applications
US20060268756A1 (en) * 2005-05-03 2006-11-30 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for efficient hand-off in wireless networks
US7889636B2 (en) * 2005-05-24 2011-02-15 Cisco Technology, Inc. System and method for implementing a mid-call policy in a RSVP environment
JP2010520672A (en) * 2007-03-02 2010-06-10 ゼットティーイー(ユーエスエー)インコーポレーテッド WiMAX Multicast Broadcast Network System Architecture
US7986914B1 (en) * 2007-06-01 2011-07-26 At&T Mobility Ii Llc Vehicle-based message control using cellular IP
US7949005B2 (en) * 2007-09-25 2011-05-24 Intel Corporation Device, system, and method of wireless communication of base stations
US8165100B2 (en) * 2007-12-21 2012-04-24 Powerwave Technologies, Inc. Time division duplexed digital distributed antenna system
US8855036B2 (en) * 2007-12-21 2014-10-07 Powerwave Technologies S.A.R.L. Digital distributed antenna system
CN101242668B (en) * 2008-03-18 2013-06-05 中兴通讯股份有限公司 A method for indicating corresponding uplink sub-frame of uplink resource indication signaling
CA2742668C (en) 2008-12-01 2017-03-07 Panasonic Corporation Radio terminal, radio base station, channel signal forming method and channel signal receiving method
US20110161963A1 (en) * 2009-12-31 2011-06-30 Nokia Corporation Methods, apparatuses, and computer program products for generating a cyclostationary extension for scheduling of periodic software tasks
KR101149648B1 (en) * 2010-07-29 2012-05-29 한국전력공사 Automatic meter reading system based on wired and wireless communication for underground distribution line
US9413500B2 (en) * 2010-09-15 2016-08-09 Interdigital Patent Holdings, Inc. Method and apparatus for dynamic bandwidth provisioning in frequency division duplex systems
EP2636094B1 (en) 2010-10-15 2020-04-15 Searete LLC Surface scattering antennas
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US9276685B2 (en) * 2011-10-14 2016-03-01 Qualcomm Incorporated Distributed antenna systems and methods of wireless communications for facilitating simulcasting and de-simulcasting of downlink transmissions
US9312941B2 (en) 2011-10-14 2016-04-12 Qualcomm Incorporated Base stations and methods for facilitating dynamic simulcasting and de-simulcasting in a distributed antenna system
US8879496B2 (en) 2011-12-19 2014-11-04 Ofinno Technologies, Llc Beamforming codeword exchange between base stations
DE102011090110A1 (en) * 2011-12-29 2013-07-04 Robert Bosch Gmbh Communication system with control of access to a common communication medium
WO2013191420A1 (en) * 2012-06-17 2013-12-27 Lg Electronics Inc. An apparatus for transceiving signals using a tdd (time division duplex) frame structure in a wireless communication system and method thereof
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
US9686008B2 (en) * 2013-03-15 2017-06-20 Orbital Sciences Corporation Protection of commercial communications
WO2015034301A1 (en) * 2013-09-04 2015-03-12 Lg Electronics Inc. Method and apparatus for aggregation of frequency division duplex and time division duplex
US9923271B2 (en) 2013-10-21 2018-03-20 Elwha Llc Antenna system having at least two apertures facilitating reduction of interfering signals
US9935375B2 (en) 2013-12-10 2018-04-03 Elwha Llc Surface scattering reflector antenna
US10236574B2 (en) 2013-12-17 2019-03-19 Elwha Llc Holographic aperture antenna configured to define selectable, arbitrary complex electromagnetic fields
US9843103B2 (en) 2014-03-26 2017-12-12 Elwha Llc Methods and apparatus for controlling a surface scattering antenna array
US9521560B2 (en) * 2014-03-31 2016-12-13 Nec Corporation Multicell beamforming system and methods for OFDMA small-cell networks
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
US9853361B2 (en) 2014-05-02 2017-12-26 The Invention Science Fund I Llc Surface scattering antennas with lumped elements
US9882288B2 (en) 2014-05-02 2018-01-30 The Invention Science Fund I Llc Slotted surface scattering antennas
CN108464030B (en) 2015-06-15 2021-08-24 希尔莱特有限责任公司 Method and system for communicating with beamforming antennas
US10263805B2 (en) 2015-09-28 2019-04-16 Commscope Technologies Llc Directional wireless drop systems for broadband networks and related methods
US11095047B2 (en) * 2016-05-26 2021-08-17 Arthur Ray DeLeon Multiple wideband or broadband antennas
US10425617B2 (en) 2016-10-03 2019-09-24 Enseo, Inc. Distribution element for a self-calibrating RF network and system and method for use of the same
US9894080B1 (en) * 2016-10-04 2018-02-13 The Florida International University Board Of Trustees Sequence hopping algorithm for securing goose messages
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
EP3651387A4 (en) * 2018-05-25 2021-03-17 SOLiD, INC. Communication node and communication system for performing clock synchronization
US11784781B2 (en) * 2021-06-07 2023-10-10 Abdul-Karim Lakhani Full duplex wireless communication system with single master clock
US11901977B2 (en) * 2022-01-14 2024-02-13 Bae Systems Information And Electronic Systems Integration Inc. Delay compensated analog beam forming network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004595A1 (en) * 1994-01-11 2001-06-21 Dent Paul Wilkinson Dual-mode methods, systems, and terminals providing reduced mobile terminal registrations
US20010046859A1 (en) * 2000-05-24 2001-11-29 Tae-Young Kil System and method for providing public/private mobile communication service
US6421329B1 (en) * 1998-04-28 2002-07-16 Genesys Telecommunications Laboratories, Inc. Methods and apparatus for enhancing wireless data network telephony including dynamic address translation
US7239618B1 (en) * 1998-12-11 2007-07-03 Lucent Technologies Inc. Single phase local mobility scheme for wireless access to packet-based networks

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797898A (en) 1986-11-21 1989-01-10 Racal Data Communications Inc. Method and apparatus for equalization of data transmission system
CA1299706C (en) 1987-08-27 1992-04-28 Yasutaka Sasaki Concentrator system capable of completing emergency calls under congested traffic
US6389010B1 (en) 1995-10-05 2002-05-14 Intermec Ip Corp. Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
US5185739A (en) 1990-02-27 1993-02-09 Motorola, Inc. Time-allocation of radio carriers
CA2041752A1 (en) * 1990-05-02 1991-11-03 Roland E. Williams Private cellular telephone system
US6749122B1 (en) 1990-05-25 2004-06-15 Broadcom Corporation Multi-level hierarchial radio-frequency system communication system
JPH0436918A (en) * 1990-06-01 1992-02-06 Matsushita Electric Ind Co Ltd Thermal protector
US5115463A (en) * 1990-06-25 1992-05-19 David Moldavsky Extended cordless telephone system
US5490252A (en) 1992-09-30 1996-02-06 Bay Networks Group, Inc. System having central processor for transmitting generic packets to another processor to be altered and transmitting altered packets back to central processor for routing
US5790936A (en) * 1992-10-26 1998-08-04 Eon Corporation Low power subscriber unit transmitting voice messages in a two-way communication system
US5416831A (en) * 1993-04-15 1995-05-16 Bellsouth Corporation System for communicating with an ADSI-compatible telephone via a service circuit node
FI106505B (en) 1993-09-27 2001-02-15 Nokia Networks Oy A radio system implementing a wireless subscriber line and a subscriber unit for a radio system
US5475735A (en) 1993-12-02 1995-12-12 Motorola, Inc. Method of providing wireless local loop operation with local mobility for a subscribed unit
US5673307A (en) * 1994-02-17 1997-09-30 Spectralink Corporation Handoff method for indoor cellular phone system
US5787355A (en) * 1994-04-22 1998-07-28 Northern Telecom Limited Method and apparatus for wireless trunking to private branch exchanges
US5479400A (en) 1994-06-06 1995-12-26 Metricom, Inc. Transceiver sharing between access and backhaul in a wireless digital communication system
US5659605A (en) 1994-06-22 1997-08-19 Bell Atlantic Network Services, Inc. Method and apparatus for providing soft dial tone using office equipment designators
US5604789A (en) 1994-07-01 1997-02-18 U S West Technologies, Inc. Method and system for providing a digital wireless local loop
EP0690638A2 (en) 1994-07-01 1996-01-03 US WEST Technologies, Inc. Method and system for providing a digital wireless local loop
US5625623A (en) 1994-10-14 1997-04-29 Erilsson Ge Mobile Communications Inc. RF site communication link
US5615249A (en) 1994-11-30 1997-03-25 Lucent Technologies Inc. Service prioritization in a cellular telephone system
US5684491A (en) 1995-01-27 1997-11-04 Hazeltine Corporation High gain antenna systems for cellular use
US5648958A (en) 1995-04-05 1997-07-15 Gte Laboratories Incorporated System and method for controlling access to a shared channel for cell transmission in shared media networks
US5638371A (en) 1995-06-27 1997-06-10 Nec Usa, Inc. Multiservices medium access control protocol for wireless ATM system
US5890055A (en) 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US5745837A (en) * 1995-08-25 1998-04-28 Terayon Corporation Apparatus and method for digital data transmission over a CATV system using an ATM transport protocol and SCDMA
US6052408A (en) 1995-09-06 2000-04-18 Aironet Wireless Communications, Inc. Cellular communication system with dynamically modified data transmission parameters
US5732076A (en) 1995-10-26 1998-03-24 Omnipoint Corporation Coexisting communication systems
US5684791A (en) 1995-11-07 1997-11-04 Nec Usa, Inc. Data link control protocols for wireless ATM access channels
US6999438B2 (en) * 1996-01-18 2006-02-14 Kabushiki Kaisha Toshiba Radio communication system
US5722051A (en) 1996-02-13 1998-02-24 Lucent Technologies Inc. Adaptive power control and coding scheme for mobile radio systems
US6289213B1 (en) 1996-02-14 2001-09-11 International Business Machines Corporation Computers integrated with a cordless telephone
US5995851A (en) 1996-03-13 1999-11-30 Lim; Jae-Bong Outdoor receiver system of a mobile communication base station
US5694424A (en) 1996-03-15 1997-12-02 Ariyavisitakul; Sirikiat Pre-cancelling postcursors in decision feedback equalization
US5809086A (en) 1996-03-20 1998-09-15 Lucent Technologies Inc. Intelligent timing recovery for a broadband adaptive equalizer
US6014546A (en) 1996-04-19 2000-01-11 Lgc Wireless, Inc. Method and system providing RF distribution for fixed wireless local loop service
SE9601618D0 (en) 1996-04-29 1996-04-29 Startskottet 37900 Ab Subscriber terminal arrangement
US6035178A (en) 1996-05-09 2000-03-07 Ericsson Inc. Satellite communication system for local-area coverage
US5745841A (en) * 1996-05-20 1998-04-28 Metawave Communications Corporation System and method for cellular beam spectrum management
JP3423151B2 (en) 1996-07-04 2003-07-07 富士通株式会社 Call processing method, subscriber unit, and access control device in WLL system
US5884148A (en) 1996-07-08 1999-03-16 Omnipoint Corporation Wireless local loop system and method
US5999818A (en) 1996-08-06 1999-12-07 Cirrus Logic, Inc. Frequency re-used and time-shared cellular communication system having multiple radio communication systems
US6185427B1 (en) 1996-09-06 2001-02-06 Snaptrack, Inc. Distributed satellite position system processing and application network
US6150955A (en) * 1996-10-28 2000-11-21 Tracy Corporation Ii Apparatus and method for transmitting data via a digital control channel of a digital wireless network
FI964714A (en) 1996-11-26 1998-05-27 Nokia Telecommunications Oy A method for securing an emergency call in a wireless subscriber network environment
US6023459A (en) * 1996-12-04 2000-02-08 Northern Telecom Limited Frequency assignment in wireless networks
SE510860C2 (en) 1996-12-09 1999-06-28 Telia Ab Systems, apparatus and method for integrating a microwave system with a millimeter wave system
US6222503B1 (en) 1997-01-10 2001-04-24 William Gietema System and method of integrating and concealing antennas, antenna subsystems and communications subsystems
US5901352A (en) * 1997-02-20 1999-05-04 St-Pierre; Sylvain System for controlling multiple networks and associated services
US5991292A (en) 1997-03-06 1999-11-23 Nortel Networks Corporation Network access in multi-service environment
US5933776A (en) 1997-07-07 1999-08-03 Hewlett-Packard Company Method and apparatus for field testing cellular telephones
US6115367A (en) 1997-08-05 2000-09-05 Vlsi Technology, Inc. Methods of analyzing a radio signal and methods of analyzing a personal handy-phone system radio signal
US6243577B1 (en) 1997-08-15 2001-06-05 Hewlett-Packard Corporation Frequency translation to local multi-point distribution system for personal communications services
FI103453B (en) * 1997-08-26 1999-06-30 Nokia Telecommunications Oy Automatic conditional crossover
US6411825B1 (en) 1997-09-09 2002-06-25 Samsung Electronics, Co., Ltd. Distributed architecture for a base station transceiver subsystem
FI106287B (en) * 1997-09-17 2000-12-29 Nokia Mobile Phones Ltd Improved procedure for changing base station
JP2001508272A (en) 1997-11-06 2001-06-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transceiver and telecommunications system having transceiver
WO1999026437A1 (en) 1997-11-14 1999-05-27 Ericsson Inc. Flexible frequency-time division duplex in radio communications systems
US6587444B1 (en) 1997-11-14 2003-07-01 Ericsson Inc. Fixed frequency-time division duplex in radio communications systems
US6016311A (en) 1997-11-19 2000-01-18 Ensemble Communications, Inc. Adaptive time division duplexing method and apparatus for dynamic bandwidth allocation within a wireless communication system
GB2331666A (en) 1997-11-20 1999-05-26 Dsc Telecom Lp Subscriber Terminal for a Wireless Telecommunications System
GB9725659D0 (en) 1997-12-03 1998-02-04 Nokia Mobile Phones Ltd The LPRF system with frequency hopping extensions
US6023462A (en) 1997-12-10 2000-02-08 L-3 Communications Corporation Fixed wireless loop system that ranks non-assigned PN codes to reduce interference
US6393008B1 (en) 1997-12-23 2002-05-21 Nokia Movile Phones Ltd. Control structures for contention-based packet data services in wideband CDMA
AU2310599A (en) 1998-01-14 1999-08-02 At & T Corporation A method and system for telephony and high speed data access on a broadband access network
SE513233C2 (en) 1998-01-23 2000-08-07 Ericsson Telefon Ab L M TDMA-TDD / FDD Radio communication system and channel selection method and device for such a system
US6208871B1 (en) 1998-02-27 2001-03-27 Motorola, Inc. Method and apparatus for providing a time adjustment to a wireless communication system
AU6516598A (en) 1998-03-29 1999-10-18 Eci Telecom Ltd. Wireless local loop system
US6374078B1 (en) * 1998-04-17 2002-04-16 Direct Wireless Corporation Wireless communication system with multiple external communication links
US6163698A (en) 1998-05-04 2000-12-19 Motorola Link setup method for a narrowband cellular communication system
US7218890B1 (en) 1998-08-07 2007-05-15 Input/Output, Inc. Seismic telemetry system
KR20000019059A (en) 1998-09-08 2000-04-06 윤종용 Source allocation and release method thereof according to data transmitting method in wireless local loop(wwl) system
US6226274B1 (en) 1998-09-24 2001-05-01 Omnipoint Corporation Method and apparatus for multiple access communication
US6522875B1 (en) 1998-11-17 2003-02-18 Eric Morgan Dowling Geographical web browser, methods, apparatus and systems
KR100301858B1 (en) 1998-12-04 2001-09-06 서평원 Method of Transmitting Multi Mobile Data in the one way
US6560213B1 (en) * 1999-03-24 2003-05-06 Hrl Laboratories, Llc Wideband wireless access local loop based on millimeter wave technology
SE517197C2 (en) 1999-04-15 2002-05-07 Ericsson Telefon Ab L M Adaptive sector classification
US6560565B2 (en) 1999-04-30 2003-05-06 Veritas Dgc Inc. Satellite-based seismic mobile information and control system
US6839334B1 (en) * 1999-05-17 2005-01-04 Lucent Technologies Inc. Control channel for time division multiple access systems
US6925068B1 (en) 1999-05-21 2005-08-02 Wi-Lan, Inc. Method and apparatus for allocating bandwidth in a wireless communication system
US6600914B2 (en) 1999-05-24 2003-07-29 Arraycomm, Inc. System and method for emergency call channel allocation
US6378119B1 (en) * 1999-05-24 2002-04-23 Dell Usa, L.P. Method and system for adaptive component placement
US6434390B2 (en) * 1999-06-03 2002-08-13 Lucent Technologies Inc. Macrodiversity control system having macrodiversity mode based on operating category of wireless unit
US7606189B1 (en) 1999-06-09 2009-10-20 Cellco Partnership Architecture of internet protocol-based cellular networks
US7173919B1 (en) 1999-06-11 2007-02-06 Texas Instruments Incorporated Random access preamble coding for initiation of wireless mobile communications sessions
US6441778B1 (en) 1999-06-18 2002-08-27 Jennifer Durst Pet locator
US6650630B1 (en) 1999-06-25 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Resource management and traffic control in time-division-duplex communication systems
US6792286B1 (en) 1999-06-28 2004-09-14 Legerity, Inc. Apparatus for transmitting and receiving signals
JP3344478B2 (en) * 1999-07-16 2002-11-11 日本電気株式会社 Path search circuit in CDMA cellular system
US6611507B1 (en) 1999-07-30 2003-08-26 Nokia Corporation System and method for effecting information transmission and soft handoff between frequency division duplex and time division duplex communications systems
US6816706B1 (en) 1999-09-08 2004-11-09 Qwest Communications International, Inc. Wireless communication access point
US6683866B1 (en) 1999-10-29 2004-01-27 Ensemble Communications Inc. Method and apparatus for data transportation and synchronization between MAC and physical layers in a wireless communication system
US6836546B1 (en) 1999-11-03 2004-12-28 Advanced Micro Devices, Inc. Apparatus and method of coupling home network signals between an analog phone line and a digital bus
US6654384B1 (en) 1999-12-30 2003-11-25 Aperto Networks, Inc. Integrated self-optimizing multi-parameter and multi-variable point to multipoint communication system
US7366133B1 (en) 1999-12-30 2008-04-29 Aperto Networks, Inc. Integrated, self-optimizing, multi-parameter/multi-variable point-to-multipoint communication system [II]
US20010033561A1 (en) 2000-01-25 2001-10-25 Telefonaktiebolaget L M Ericsson ( Publ). Combination switch and routing-switching radio base station
AU2001234691A1 (en) 2000-01-31 2001-08-07 Aeptec Microsystems, Inc. Broadband communications access device
US6430395B2 (en) * 2000-04-07 2002-08-06 Commil Ltd. Wireless private branch exchange (WPBX) and communicating between mobile units and base stations
US8363744B2 (en) * 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US7099339B1 (en) 2000-06-22 2006-08-29 Nokia Corporation Apparatus, and associated method, for integrating operation of packet radio communication systems
US6925072B1 (en) 2000-08-03 2005-08-02 Ericsson Inc. System and method for transmitting control information between a control unit and at least one sub-unit
US7061886B1 (en) 2000-09-25 2006-06-13 Cisco Technology, Inc. Packet voting in wireless communications systems
US6954432B1 (en) 2000-10-04 2005-10-11 Motorola, Inc. Method and apparatus for improving perceived signal quality of transmitted information in a full duplex wireless communication system
US7177598B2 (en) 2000-11-15 2007-02-13 Wi-Lan, Inc. Method and system for reducing channel interference in a frame-synchronized wireless communication system
US20040213188A1 (en) 2001-01-19 2004-10-28 Raze Technologies, Inc. Backplane architecture for use in wireless and wireline access systems
US7002929B2 (en) 2001-01-19 2006-02-21 Raze Technologies, Inc. Wireless access system for allocating and synchronizing uplink and downlink of TDD frames and method of operation
US6925516B2 (en) 2001-01-19 2005-08-02 Raze Technologies, Inc. System and method for providing an improved common control bus for use in on-line insertion of line replaceable units in wireless and wireline access systems
US20020098799A1 (en) 2001-01-19 2002-07-25 Struhsaker Paul F. Apparatus and method for operating a subscriber interface in a fixed wireless system
US7031738B2 (en) 2001-01-19 2006-04-18 Raze Technologies, Inc. Apparatus for reallocating communication resources to establish a priority call in a fixed wireless access communication system
US7173916B2 (en) 2001-01-19 2007-02-06 Raze Technologies, Inc. Wireless access system using multiple modulation formats in TDD frames and method of operation
US7069047B2 (en) 2001-01-19 2006-06-27 Raze Technologies, Inc. System and method for on-line insertion of line replaceable units in wireless and wireline access systems
US7274946B2 (en) 2001-01-19 2007-09-25 Raze Technologies, Inc. Apparatus for establishing a priority call in a fixed wireless access communication system
US7065098B2 (en) 2001-01-19 2006-06-20 Raze Technologies, Inc. Redundant telecommunication system using memory equalization apparatus and method of operation
US6804527B2 (en) 2001-01-19 2004-10-12 Raze Technologies, Inc. System for coordination of TDD transmission bursts within and between cells in a wireless access system and method of operation
US7230931B2 (en) 2001-01-19 2007-06-12 Raze Technologies, Inc. Wireless access system using selectively adaptable beam forming in TDD frames and method of operation
US20020097694A1 (en) 2001-01-19 2002-07-25 Struhsaker Paul F. Method for establishing a prioirity call in a fixed wireless access communication system
US20020086707A1 (en) 2000-11-15 2002-07-04 Struhsaker Paul F. Wireless communication system using block filtering and fast equalization-demodulation and method of operation
US6564051B2 (en) 2000-11-15 2003-05-13 Raze Technoliges, Inc. System and method for interface between a subscriber modem and subscriber premises interfaces
US6947477B2 (en) 2001-01-19 2005-09-20 Raze Technologies, Inc. Apparatus and method for creating signal and profiles at a receiving station
US6859655B2 (en) 2001-01-19 2005-02-22 Raze Technologies, Inc. TDD FDD air interface
US6891810B2 (en) 2001-01-19 2005-05-10 Raze Technologies, Inc. Wireless access system and associated method using multiple modulation formats in TDD frames according to subscriber service type
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US7583623B2 (en) 2001-03-02 2009-09-01 Ofer Zimmerman Method and system for packing management messages in a communication system
US6459687B1 (en) 2001-03-05 2002-10-01 Ensemble Communications, Inc. Method and apparatus for implementing a MAC coprocessor in a communication system
US8121106B2 (en) 2006-03-24 2012-02-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for managing a reference signal for uplink channel estimation in a communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004595A1 (en) * 1994-01-11 2001-06-21 Dent Paul Wilkinson Dual-mode methods, systems, and terminals providing reduced mobile terminal registrations
US6421329B1 (en) * 1998-04-28 2002-07-16 Genesys Telecommunications Laboratories, Inc. Methods and apparatus for enhancing wireless data network telephony including dynamic address translation
US7239618B1 (en) * 1998-12-11 2007-07-03 Lucent Technologies Inc. Single phase local mobility scheme for wireless access to packet-based networks
US20010046859A1 (en) * 2000-05-24 2001-11-29 Tae-Young Kil System and method for providing public/private mobile communication service

Also Published As

Publication number Publication date
US10820312B2 (en) 2020-10-27
US7346347B2 (en) 2008-03-18
US20020098843A1 (en) 2002-07-25
US20080259826A1 (en) 2008-10-23
US20080261588A1 (en) 2008-10-23
US20160037489A9 (en) 2016-02-04
US20120263079A1 (en) 2012-10-18
US20200015201A1 (en) 2020-01-09
US20080268835A1 (en) 2008-10-30
US9426794B2 (en) 2016-08-23
US20080254801A1 (en) 2008-10-16
US20120307815A1 (en) 2012-12-06
US10264562B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
US20080259868A1 (en) Wireless communication system and associated method for routing messages to wireless networks
US6564051B2 (en) System and method for interface between a subscriber modem and subscriber premises interfaces
US9379916B2 (en) Wireless communication system and device for coupling a base station and mobile stations
CN102123481B (en) Select multi-band access point with the method be associated with multi-band mobile radio station and device
US7142847B2 (en) Mobile communication system, resource switching method thereof, network control apparatus included therein, same and network control method
US7477897B2 (en) Method for handoff of a telephone call between two different wireless networks
EP1084555B1 (en) Device for providing interoperability between communications systems
US6091967A (en) Scalable radio platform
US8254943B1 (en) Method for backhaul transport recovery
US20040242149A1 (en) Flexible mobile base station
US6298246B1 (en) Subscriber terminal and method for passing control signals between a first and second signal processing units
US20020128009A1 (en) Transceiver for fixed wireless access network applications
US6980546B2 (en) Broadband internet protocol telephony system
US20030176200A1 (en) Call handling device for controlling wireless connections with wireless communications devices
WO2003013166A1 (en) Self-healing wireless communication systems
US8737996B2 (en) Communication system, communication terminal and controller
US20020126696A1 (en) Communication system and circuit controller
US8036701B2 (en) Dynamically reconfigurable base station node and method
JP2002521986A (en) Method, apparatus and system for operating a mobile telecommunications terminal in a public cellular mobile radio network
US20040203818A1 (en) Wireless LAN (local area network) connection approach based on bandwidth
KR101280077B1 (en) Method and apparatus for determining a level of involvement of mesh points in a wireless communication system
JP3399375B2 (en) Communication device and communication control method
US20030206543A1 (en) Partitioned medium access control
EP1348309A2 (en) Subscriber integrated access device for use in wireless and wireline access systems
KR100423147B1 (en) System of wireless communication for multimedia service and method thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GENERAL ACCESS SOLUTIONS, LTD., TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:ACCESS SOLUTIONS, LTD.;REEL/FRAME:050326/0971

Effective date: 20110815