US20080296013A1 - Top mounted injector for coiled tubing injection - Google Patents

Top mounted injector for coiled tubing injection Download PDF

Info

Publication number
US20080296013A1
US20080296013A1 US11/907,700 US90770007A US2008296013A1 US 20080296013 A1 US20080296013 A1 US 20080296013A1 US 90770007 A US90770007 A US 90770007A US 2008296013 A1 US2008296013 A1 US 2008296013A1
Authority
US
United States
Prior art keywords
component
injector
mounting
gooseneck
tubing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/907,700
Inventor
Allan J. Pleskie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foremost Industries Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to FOREMOST INDUSTRIES LTD. reassignment FOREMOST INDUSTRIES LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 020148, FRAME 0683. ASSIGNOR HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST. Assignors: PLESKIE, ALLAN J.
Assigned to FOREMOST INDUSTRIES, LTD. reassignment FOREMOST INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PLESKIE, ALLAN J.
Publication of US20080296013A1 publication Critical patent/US20080296013A1/en
Assigned to FOREMOST INDUSTRIES LTD. reassignment FOREMOST INDUSTRIES LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 020262 FRAME 0294. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF THE ENTIRE INTEREST. Assignors: PLESKIE, ALLAN J.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/22Handling reeled pipe or rod units, e.g. flexible drilling pipes

Definitions

  • This invention relates to a mounting arrangement for use with a coiled tubing injector of the type for inserting and withdrawing coiled tubing in a well.
  • a wide variety of coiled tubing injectors and the manner in which they are mounted over a well being serviced have been developed in the last couple of decades as have been the designs of the gripper driving system which engages the tubing and pushes it into the well and withdraws it therefrom.
  • the gripper driven system has been commonly mounted within a framework which normally also carries thereon a gooseneck providing the guide for feeding the tubing from and returning it to a storage reel.
  • Various methods are utilized in mounting the injector above a well head, and more recently it has been common practice for the framework of the injector component to be associated with a mast which is raised to an injector operating position above the well.
  • the overall framework and injector combination has commonly included a heavy, lower base structure which may also provide a working platform.
  • the forces which occur in the injector, and particularly those which developed in pushing the tubing into a bore hole and subsequently drawing it out, are transferred to the well head or mast framework through the base structure.
  • a strain gauge which provides information as to the load the injector is being subjected by its insertion into and withdrawal of the coiled tubing from the well.
  • the framework of the overall injector component in such known structures must include a heavy top frame portion above the gripper driving system for the mounting of the gooseneck which transfers a significant load from the effect of the tubing being pulled or pushed over the gooseneck which itself extends a considerable distance upwardly and laterally from the top frame portion of the framework of the injector component.
  • the framework has had to include therefore an intermediate force transmitting frame components extending between the heavy base portion and the top portion which components are usually positioned about the actual grip and feed mechanism.
  • These frame components which are spaced about the gripper drive and provide part of the framework are commonly referred to as a crash cage.
  • This commonly used design accordingly adds considerable weight to the total injector component, which in turn adds to the cost of its production and its use in the field.
  • even while adding to the weight of the total structure there are known instances of the crash cage deflecting under service load conditions, thus resulting in misalignment in the feeding of the coiled tubing to the extent of affecting its path of travel.
  • the injector assembly includes an injector component containing drive means engageable with the tubing for forcing the tubing therethrough in upward or downward directions, and a mounting component engageable with the support system for holding the injector component in an operable position above the bore hole with the injector component suspended only by the mounting component.
  • the mounting component includes carrier means engageable with the support system for transferring to the support system the forces transferred to the mounting component from the injector component during the injection and withdrawal of the tubing by the injector component.
  • an injector structure of the type mountable in a support structure above a well head for use in inserting and withdrawing operations of coiled tubing in relation to a well bore hole, and including a mounting component, a tubular injection component and a gooseneck component.
  • the mounting component is adapted to be located in a working position on the support system, and the tubular injection component contains drive means engageable with the coiled tubing for forcing the tubing longitudinally in either direction in the well bore hole.
  • the gooseneck component is adapted to receive the coiled tubing from a storage reel and direct the tubing from the storage reel to the drive means of the injection component during the inserting operation.
  • the gooseneck component receives the tubing from the injector component and directs it to the storage reel during the withdrawal operation from the borehole.
  • the injector component has a top portion providing upper connection means
  • the gooseneck component has a mounting base providing lower connecting means.
  • the mounting component has an upper surface area for engagement with the mounting base of the gooseneck component and includes attachment means interacting with the lower connection means of the gooseneck component so as to support the gooseneck thereabove.
  • the mounting component further has an underside providing inter-locking means for engaging the upper connection means of the injection component for thereby suspending the injection component thereunder.
  • the mounting component is disposed between the top portion of the injector component and the mounting base of the gooseneck component so that during operation of the injector all forces developed in the injection component and the gooseneck component are thereby transferred to the supporting structure through the intermediately located mounting component.
  • FIG. 1 is a perspective view showing the injector assembly of the present invention as it would be carried in a mast structure or the like above a well head;
  • FIG. 2 is a top view of the overall injector assembly of FIG. 1 ;
  • FIG. 3 is a frontal view of the assembly as shown on FIG. 1 , but showing it mounted in a mast in an operational arrangement;
  • FIG. 4 is cross section view of the injector assembly mounted in the mast as seen from the line 4 - 4 of FIG. 3 ;
  • FIG. 5 is a top view of the injector assembly of FIG. 1 , but on an enlarged scale with the gooseneck component removed so as to show a top deck of the mounting component of the invention;
  • FIG. 6 is a bottom perspective view of the mounting component and showing the relationship of the interconnecting parts of the injector component to the bottom structure of the mounting component of the invention
  • FIG. 7 is a perspective view of the complete injector component per se showing the top front and from opposite the side to that of FIG. 1 ;
  • FIG. 8 is a side view of the injector component per se in an unmounted condition, as seen from the side opposite to that of FIG. 4 ;
  • FIG. 9 is an enlarged partial side view showing in detail the interconnection between the injector component and mounting component as would be seen looking in the same direction as in FIG. 4 .
  • reference number 10 generally denotes the overall coiled tubing injector system of the present invention and wherein the overall injector system 10 consists in operation of three major components, including an injector component 11 , a gooseneck component 12 , and a mounting component 13 .
  • the basic working components of the injector component 11 may be of known designs which include two sets of continuous linked drive chains (not shown) having opposed flights on opposite sides of the passage of the coiled tubing to be driven into and out of a bore hole. These drive chains normally carry gripping members for engaging the tubing and driving the tubing as the drive chains are circulated. Each set of drive chains is driven by a pair of upper drive sprockets 14 , 14 , as best seen in FIG. 7 , the chains passing around upper drive sprockets 14 , 14 and lower idler sprocket 15 , 15 . The upper drive sprockets 14 , 14 are driven by a pair of drive motors 16 , 16 having reversible output.
  • the injector component 11 includes other features, such as the mechanism for forcing the gripping member into contact with the tubing, but these may be of types well known in the art, and thus are not shown in the drawings or further described herein.
  • a significant novel aspect of the injector component of the present invention is that its overall framework 17 may be formed of a much lighter construction than in known designs, and the reason for this being possible will become hereinafter. Further features of the injector component 11 , particularly with its mounting arrangement will also be described in more detail below.
  • the gooseneck component 12 which is shown in FIGS. 1 to 4 , its overall basic design, nevertheless, may be much in accordance with known designs. As shown in FIG. 1 , for example, it includes a base portion 20 with a first inner section 21 of the member forming on arched track, over which the tubing is pulled during operation.
  • the gooseneck is shown as being formed integrally with the base portion 10 .
  • the gooseneck has an outer section 22 which is hinged to an outer end of the inner portion 21 .
  • An outer end of a hydraulic cylinder 23 which is pivotally connected by a pivot pin 38 at the forwardly projecting front portion 29 of the mounting component 13 , can be optionally connected to a lug 24 on an underside of the outer section 22 .
  • the outer section is pushed to an operative position forming a continuous arcuate path with inner section 21 for the travel of the tubing on entering or leaving the injector component 11 .
  • the overall injector system 10 of the present invention is adapted to be mounted over the well head (not shown) and may be carried by way of its mounting component 13 on a support system generally shown at 25 ( FIG. 3 ).
  • the support system 13 is illustrated herein as being a conventional mast, or the like, shown generally as 26 ( FIGS. 3 and 4 ).
  • the mounting component 13 is made up of a framework 30 , which may be provided with means for rigidly attaching it within the structure of the mast. In the embodiment shown, however, the mounting component is in the form of a dolly-like platform which is held in position by an engagement of two pairs of rollers 27 , one of each pair being shown on each side of the platform ( FIG. 3 ).
  • rollers 27 are closely received within a pair of channel members 28 , 28 which are rigidly affixed to the mast and form tracks at either side of the mounting component 13 , as is best seen in FIG. 3 .
  • This is well known in the method of mounting an injector in a mast to allow the movement of the injector into a working position in alignment with the well head.
  • other means of affixing the platform 30 in a mast, or like structure, above a well head are known.
  • Such means must have the capability of rigidly holding the vertical positioning of the injector system 10 , and be capable of transferring to the mast the weight and working forces which are transferred thereto from the injector component 11 and gooseneck component 12 .
  • the overall framework 30 of the mounting component 13 of the present invention may be relatively simple. As the forces which are transferred to the lower and upper parts of the mounting component 13 from the two major components 11 and 12 used in the injecting process, such forces are then transferred from this intermediate mounting component 13 to the supporting system 25 .
  • the mounting component 13 has little depth, as the base portion 20 of the gooseneck component 12 is mounted on a base plate 31 forming an upper surface on the framework 30 by way of interlocking parts 32 ( FIG. 5 ) affixed to the base plate 31 .
  • inner ribs 33 providing appropriate openings for receiving connecting pins associated with mating openings in upwardly projecting connecting members of the injector component 11 , whereby the injector component affixed beneath the mounting component 13 is in an entirely suspended condition relative to the mounting component.
  • the framework 17 of the injector component 11 per se does not have to be structurally large nor does it have to be provided with an external force transmitting framework or cage to transfer forces developed in the gooseneck component 12 .
  • a laterally projecting work platform 35 for the convenience of personnel during maintenance of the injector component.
  • the work platform 35 need only be of a construction which is very light in relation to normal framing used in the lower part of known injection components. This platform 35 is not shown in place in FIG. 7 and 8 , but there is apparent in these Figure the presence of a winch 36 , which is attached to the bottom of the injector component 11 for use in the operation of the injector system and in maintenance work.
  • Generally supporting framework 37 which is part of, or as shown, is affixed rigidly to the main frame of the injector component projects upwardly from the injector component 11 and into the space within the mounting component 13 encompassed by its framework 30 .
  • This framework 37 of the injector component includes a rearward set of upwardly turned support structures 39 which are provided with pin receiving openings for alignment with openings in ribs 33 exposed in the underside of the framework 30 forming the mounting component 13 . Pins 40 are received in the aligned openings to support the rear portion of the injector component in a suspended form beneath the framework 30 .
  • the framework 37 further includes a pair of upturned flange means 41 at the forward side of the injector component. Rearward portions 43 of the pair of flange means 41 are connected by a transverse connecting beam member 44 extending therebetween. Forward portions 45 , 45 of the upturned flange means 41 are provided with vertical threaded bolts 46 , 46 . Beneath the forward portion of the framework 30 of the mounting component 13 there is included a horizontally disposed panel member 47 ( FIG. 6 ) which includes openings for receiving the bolts 46 , 46 . Nuts 50 , 50 are provided for each bolt 46 , 46 and are positioned one each above and below the panel 47 of the framework 30 .
  • a strain gauge 51 for connection between the injector component 11 and the mounting component 13 , as best seen in FIGS. 7 to 9 , for providing a continuous indication of the forces developed in injecting or withdrawing the tubing from the bore hole and therefore an indication of force transferred between the injector component 11 to the mast 26 via the mounting component 13 .
  • the strain gauge 51 is provided with a mounting stem 52 ( FIG. 8 ) which has a lower bifurcated end 53 adapted to straddle the transverse beam 44 which, as described above, forms part of the injector component 11 .
  • the stem 52 is thus connected to the beam 44 with a bolt 54 which passes through aligned openings in the bifurcated end 53 and an opening in the transverse beam 44 of the injector component 11 .
  • a head portion 55 of the strain gauge 51 is provided with a plurality of fastener 56 which are connected beneath the framework 30 of the mounting component 13 .

Abstract

A tubing injector unit for use in inserting and withdrawing coiled tubing from a well bore hole having in its structure a tubing injector component, a gooseneck component and a mounting component for connection of the overall unit to a supporting structure such as a mast. The mounting component has an upper area for carrying the gooseneck component thereon and a lower underside area forming an injector component supporting structure. The unit in operation thereby supports the injector component in a suspended condition beneath the mounting component so that the working forces which develop in inserting and withdrawing tubing in a bore hole are transferred separately to the mounting component by the injector component and the gooseneck component and thus directly to the supporting structure by the mounting component.

Description

    CONVENTION PRIORITY CLAIM
  • This application claims the benefit of convention priority based on Canadian Application No. 2,590,562, filed May 28, 2007, entitled Top Mounted Injector For Coiled Tubing Injection, the disclosures of which are incorporated herein in the entireties.
  • FILED OF THE INVENTION
  • This invention relates to a mounting arrangement for use with a coiled tubing injector of the type for inserting and withdrawing coiled tubing in a well.
  • BACKGROUND OF THE INVENTION
  • A wide variety of coiled tubing injectors and the manner in which they are mounted over a well being serviced have been developed in the last couple of decades as have been the designs of the gripper driving system which engages the tubing and pushes it into the well and withdraws it therefrom. The gripper driven system has been commonly mounted within a framework which normally also carries thereon a gooseneck providing the guide for feeding the tubing from and returning it to a storage reel. Various methods are utilized in mounting the injector above a well head, and more recently it has been common practice for the framework of the injector component to be associated with a mast which is raised to an injector operating position above the well.
  • The overall framework and injector combination has commonly included a heavy, lower base structure which may also provide a working platform. The forces which occur in the injector, and particularly those which developed in pushing the tubing into a bore hole and subsequently drawing it out, are transferred to the well head or mast framework through the base structure. There is commonly provided between the base and the structure to which the load is transferred from the injector component, a strain gauge which provides information as to the load the injector is being subjected by its insertion into and withdrawal of the coiled tubing from the well.
  • The framework of the overall injector component in such known structures must include a heavy top frame portion above the gripper driving system for the mounting of the gooseneck which transfers a significant load from the effect of the tubing being pulled or pushed over the gooseneck which itself extends a considerable distance upwardly and laterally from the top frame portion of the framework of the injector component. The framework has had to include therefore an intermediate force transmitting frame components extending between the heavy base portion and the top portion which components are usually positioned about the actual grip and feed mechanism. These frame components which are spaced about the gripper drive and provide part of the framework are commonly referred to as a crash cage. This commonly used design accordingly adds considerable weight to the total injector component, which in turn adds to the cost of its production and its use in the field. Moreover, even while adding to the weight of the total structure, there are known instances of the crash cage deflecting under service load conditions, thus resulting in misalignment in the feeding of the coiled tubing to the extent of affecting its path of travel.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide an injector mounting system which is of reduced weight and thus less costly to produce, transport and operate in the field.
  • It is a further object of the present invention to provide an injector mounting system in a top mounted fashion which is not only of a simpler design but is not subject to the same adverse operating conditions experienced by the commonly used form of injector structures now in use.
  • According to the present invention, there is provided an injector assembly of a type mountable in a support system, such as a mast, above a well head for use in inserting and withdrawing coiled tubing in relation to a well bore hole. The injector assembly includes an injector component containing drive means engageable with the tubing for forcing the tubing therethrough in upward or downward directions, and a mounting component engageable with the support system for holding the injector component in an operable position above the bore hole with the injector component suspended only by the mounting component. The mounting component includes carrier means engageable with the support system for transferring to the support system the forces transferred to the mounting component from the injector component during the injection and withdrawal of the tubing by the injector component.
  • In a preferred embodiment of the invention, there is provided an injector structure of the type mountable in a support structure above a well head for use in inserting and withdrawing operations of coiled tubing in relation to a well bore hole, and including a mounting component, a tubular injection component and a gooseneck component. The mounting component is adapted to be located in a working position on the support system, and the tubular injection component contains drive means engageable with the coiled tubing for forcing the tubing longitudinally in either direction in the well bore hole. The gooseneck component is adapted to receive the coiled tubing from a storage reel and direct the tubing from the storage reel to the drive means of the injection component during the inserting operation. Alternatively, the gooseneck component receives the tubing from the injector component and directs it to the storage reel during the withdrawal operation from the borehole. The injector component has a top portion providing upper connection means, and the gooseneck component has a mounting base providing lower connecting means. The mounting component has an upper surface area for engagement with the mounting base of the gooseneck component and includes attachment means interacting with the lower connection means of the gooseneck component so as to support the gooseneck thereabove. The mounting component further has an underside providing inter-locking means for engaging the upper connection means of the injection component for thereby suspending the injection component thereunder. Thus, the mounting component is disposed between the top portion of the injector component and the mounting base of the gooseneck component so that during operation of the injector all forces developed in the injection component and the gooseneck component are thereby transferred to the supporting structure through the intermediately located mounting component.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings which show an embodiment of invention by way of example:
  • FIG. 1 is a perspective view showing the injector assembly of the present invention as it would be carried in a mast structure or the like above a well head;
  • FIG. 2 is a top view of the overall injector assembly of FIG. 1;
  • FIG. 3 is a frontal view of the assembly as shown on FIG. 1, but showing it mounted in a mast in an operational arrangement;
  • FIG. 4 is cross section view of the injector assembly mounted in the mast as seen from the line 4-4 of FIG. 3;
  • FIG. 5 is a top view of the injector assembly of FIG. 1, but on an enlarged scale with the gooseneck component removed so as to show a top deck of the mounting component of the invention;
  • FIG. 6 is a bottom perspective view of the mounting component and showing the relationship of the interconnecting parts of the injector component to the bottom structure of the mounting component of the invention;
  • FIG. 7 is a perspective view of the complete injector component per se showing the top front and from opposite the side to that of FIG. 1;
  • FIG. 8 is a side view of the injector component per se in an unmounted condition, as seen from the side opposite to that of FIG. 4; and
  • FIG. 9 is an enlarged partial side view showing in detail the interconnection between the injector component and mounting component as would be seen looking in the same direction as in FIG. 4.
  • DETAILED DESCRIPTION
  • In the drawings, reference number 10 generally denotes the overall coiled tubing injector system of the present invention and wherein the overall injector system 10 consists in operation of three major components, including an injector component 11, a gooseneck component 12, and a mounting component 13.
  • The basic working components of the injector component 11 may be of known designs which include two sets of continuous linked drive chains (not shown) having opposed flights on opposite sides of the passage of the coiled tubing to be driven into and out of a bore hole. These drive chains normally carry gripping members for engaging the tubing and driving the tubing as the drive chains are circulated. Each set of drive chains is driven by a pair of upper drive sprockets 14, 14, as best seen in FIG. 7, the chains passing around upper drive sprockets 14,14 and lower idler sprocket 15,15. The upper drive sprockets 14,14 are driven by a pair of drive motors 16,16 having reversible output. The injector component 11 includes other features, such as the mechanism for forcing the gripping member into contact with the tubing, but these may be of types well known in the art, and thus are not shown in the drawings or further described herein.
  • A significant novel aspect of the injector component of the present invention is that its overall framework 17 may be formed of a much lighter construction than in known designs, and the reason for this being possible will become hereinafter. Further features of the injector component 11, particularly with its mounting arrangement will also be described in more detail below.
  • With reference to the gooseneck component 12, which is shown in FIGS. 1 to 4, its overall basic design, nevertheless, may be much in accordance with known designs. As shown in FIG. 1, for example, it includes a base portion 20 with a first inner section 21 of the member forming on arched track, over which the tubing is pulled during operation. The gooseneck is shown as being formed integrally with the base portion 10. For the sake of forming a more compact unit when not in use, the gooseneck has an outer section 22 which is hinged to an outer end of the inner portion 21. An outer end of a hydraulic cylinder 23, which is pivotally connected by a pivot pin 38 at the forwardly projecting front portion 29 of the mounting component 13, can be optionally connected to a lug 24 on an underside of the outer section 22. Thus, on expansion of the hydraulic cylinder 23, the outer section is pushed to an operative position forming a continuous arcuate path with inner section 21 for the travel of the tubing on entering or leaving the injector component 11.
  • The overall injector system 10 of the present invention is adapted to be mounted over the well head (not shown) and may be carried by way of its mounting component 13 on a support system generally shown at 25 (FIG. 3). The support system 13 is illustrated herein as being a conventional mast, or the like, shown generally as 26 (FIGS. 3 and 4). The mounting component 13 is made up of a framework 30, which may be provided with means for rigidly attaching it within the structure of the mast. In the embodiment shown, however, the mounting component is in the form of a dolly-like platform which is held in position by an engagement of two pairs of rollers 27, one of each pair being shown on each side of the platform (FIG. 3). Such rollers 27 are closely received within a pair of channel members 28,28 which are rigidly affixed to the mast and form tracks at either side of the mounting component 13, as is best seen in FIG. 3. This is well known in the method of mounting an injector in a mast to allow the movement of the injector into a working position in alignment with the well head. However, other means of affixing the platform 30 in a mast, or like structure, above a well head are known. Such means must have the capability of rigidly holding the vertical positioning of the injector system 10, and be capable of transferring to the mast the weight and working forces which are transferred thereto from the injector component 11 and gooseneck component 12.
  • In any event, it may be seen that the overall framework 30 of the mounting component 13 of the present invention may be relatively simple. As the forces which are transferred to the lower and upper parts of the mounting component 13 from the two major components 11 and 12 used in the injecting process, such forces are then transferred from this intermediate mounting component 13 to the supporting system 25. The mounting component 13 has little depth, as the base portion 20 of the gooseneck component 12 is mounted on a base plate 31 forming an upper surface on the framework 30 by way of interlocking parts 32 (FIG. 5 ) affixed to the base plate 31. As will be described in more detail below, there are provided within the framework 30, inner ribs 33 providing appropriate openings for receiving connecting pins associated with mating openings in upwardly projecting connecting members of the injector component 11, whereby the injector component affixed beneath the mounting component 13 is in an entirely suspended condition relative to the mounting component.
  • As previously indicated, because the forces from both the gooseneck component 12 and the injector component 11 itself are not transferred to a lower portion of the injector component, the framework 17 of the injector component 11 per se does not have to be structurally large nor does it have to be provided with an external force transmitting framework or cage to transfer forces developed in the gooseneck component 12. Thus, at the bottom of the injector component 11 there is no need for the conventional heavy base portion. It is preferable, however, to affix to a flat bottom portion 34 of the injector component 11, a laterally projecting work platform 35 for the convenience of personnel during maintenance of the injector component. For obvious reasons the work platform 35 need only be of a construction which is very light in relation to normal framing used in the lower part of known injection components. This platform 35 is not shown in place in FIG. 7 and 8, but there is apparent in these Figure the presence of a winch 36, which is attached to the bottom of the injector component 11 for use in the operation of the injector system and in maintenance work.
  • With particular reference to FIGS. 4 and 6 to 9, one arrangement in which the injector component 11 is suspended from beneath the mounting component 13 will now be given. Generally supporting framework 37 which is part of, or as shown, is affixed rigidly to the main frame of the injector component projects upwardly from the injector component 11 and into the space within the mounting component 13 encompassed by its framework 30. This framework 37 of the injector component includes a rearward set of upwardly turned support structures 39 which are provided with pin receiving openings for alignment with openings in ribs 33 exposed in the underside of the framework 30 forming the mounting component 13. Pins 40 are received in the aligned openings to support the rear portion of the injector component in a suspended form beneath the framework 30. The framework 37 further includes a pair of upturned flange means 41 at the forward side of the injector component. Rearward portions 43 of the pair of flange means 41 are connected by a transverse connecting beam member 44 extending therebetween. Forward portions 45, 45 of the upturned flange means 41 are provided with vertical threaded bolts 46,46. Beneath the forward portion of the framework 30 of the mounting component 13 there is included a horizontally disposed panel member 47 (FIG. 6) which includes openings for receiving the bolts 46,46. Nuts 50,50 are provided for each bolt 46,46 and are positioned one each above and below the panel 47 of the framework 30.
  • There is provided a strain gauge 51 for connection between the injector component 11 and the mounting component 13, as best seen in FIGS. 7 to 9, for providing a continuous indication of the forces developed in injecting or withdrawing the tubing from the bore hole and therefore an indication of force transferred between the injector component 11 to the mast 26 via the mounting component 13. The strain gauge 51 is provided with a mounting stem 52 (FIG. 8) which has a lower bifurcated end 53 adapted to straddle the transverse beam 44 which, as described above, forms part of the injector component 11. The stem 52 is thus connected to the beam 44 with a bolt 54 which passes through aligned openings in the bifurcated end 53 and an opening in the transverse beam 44 of the injector component 11. A head portion 55 of the strain gauge 51 is provided with a plurality of fastener 56 which are connected beneath the framework 30 of the mounting component 13.
  • Various modifications to the disclosed embodiment of the invention will be obvious to those skilled in the art without departing from the spirit of the invention as defined in the appending claims.

Claims (7)

1. An injector assembly of a type mountable in a support system above a well head for use in inserting and withdrawing coiled tubing in relation to a well bore hole; said injector assembly comprising:
an injector component containing drive means engageable with said tubing for forcing said tubing therethrough in upward or downward directions,
a mounting component engageable with said support system for holding said injector component in an operable position suspended therefrom below said mounting component above said bore hole,
said mounting component including carrier means engageable with said support system for transferring to said support system the forces transferred to said mounting component from said injector component during the injection and withdrawal of said tubing by said injector component.
2. An injector assembly as defined in claim 1 wherein said mounting component includes a framework body providing mounting means for supporting thereon a gooseneck assembly above said injector component.
3. An injector assembly as defined in claim 2, and further comprising load cell means in said framework body for providing data relating to external forces encountered in said injector component and thus transferred to said framework body of said mounting component in the operation of the injector component in forcing said tubing into and out of said well borehole.
4. An injector system as defined in claim 2, and wherein said support system includes a mast, said framework body of said mounting component being carried within said mast for transferring to said mast all forces transferred thereto from said injector component and said gooseneck.
5. An injector assembly as defined in claim 4, wherein said injector component includes a lower end portion spaced below said mounting component, and further comprising:
a laterally projecting work platform carried at said lower end of said injector component for positioning within said mast.
6. An injector structure of the type mountable in a support structure above a well head for use in inserting and withdrawing operations of coiled tubing in relation to a well bore hole;
a mounting component for location in a working position on said support structure,
a tubular injection component containing drive means engageable with the coiled tubing for forcing said tubing longitudinally in either direction in said well bore hole;
said injector component having a top portion providing upper connection means,
a gooseneck component for receiving said coiled tubing from a storage reel and directing said tubing from the storage reel to said drive means of said injection component during the inserting operation or receiving said tubing from said injector component and directing said coiled tubing to the storage reel during the withdrawal operation,
said gooseneck component having a mounting base providing lower connecting means,
said mounting component having an upper surface area for engagement with said mounting base of said gooseneck component and including attachment means interacting with said connection means of said gooseneck component so as to support said gooseneck thereabove,
said mounting component further having an underside providing inter-locking means engaging said upper connection means of said injection component for thereby suspending said injection component thereunder,
said mounting component being thereby disposed between the top portion of said injector component and said mounting base of said gooseneck component;
whereby during operation of said injector all forces developed in said injection component and said gooseneck component are transferred to said supporting structure through said mounting component.
7. An injector assembly as defined in claim 6, wherein said injector component includes a lower end portion spaced below said mounting component, and further comprising:
a laterally projecting work platform carried at said lower end of said injector component for positioning within said mast.
US11/907,700 2007-05-28 2007-10-16 Top mounted injector for coiled tubing injection Abandoned US20080296013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002590562A CA2590562A1 (en) 2007-05-28 2007-05-28 Top mounted injector for coiled tubing injection
CA2,590,562 2007-05-28

Publications (1)

Publication Number Publication Date
US20080296013A1 true US20080296013A1 (en) 2008-12-04

Family

ID=40074399

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/907,700 Abandoned US20080296013A1 (en) 2007-05-28 2007-10-16 Top mounted injector for coiled tubing injection

Country Status (2)

Country Link
US (1) US20080296013A1 (en)
CA (1) CA2590562A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011107889A2 (en) * 2010-03-03 2011-09-09 Xtreme Coil Drilling Corp. Coiled tubing injector assembly
CN102287151A (en) * 2011-05-13 2011-12-21 宝鸡石油机械有限责任公司 Guide arch device suitable for coiled tubing unit or drilling machine pipe
CN103147702A (en) * 2013-03-06 2013-06-12 宝鸡通力鼎新专用汽车有限公司 Injection head motion device of continuous string coiled tubing unit
WO2016022885A1 (en) * 2014-08-08 2016-02-11 Premier Coil Solutions, Inc. Coiled tubing unit locking knee-joint mechanisms
US9587450B2 (en) 2014-08-08 2017-03-07 Premier Coil Solutions, Inc. Injector head tilt mechanism
US9995094B2 (en) 2014-03-10 2018-06-12 Consolidated Rig Works L.P. Powered milling clamp for drill pipe
US10787870B1 (en) 2018-02-07 2020-09-29 Consolidated Rig Works L.P. Jointed pipe injector
US10995563B2 (en) 2017-01-18 2021-05-04 Minex Crc Ltd Rotary drill head for coiled tubing drilling apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108360987B (en) * 2018-02-02 2024-01-30 中国石油天然气集团有限公司 Guide device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285485A (en) * 1964-01-23 1966-11-15 Bowen Tools Inc Apparatus for handling tubing or other elongate objects
US4585061A (en) * 1983-10-18 1986-04-29 Hydra-Rig Incorporated Apparatus for inserting and withdrawing coiled tubing with respect to a well
US4655291A (en) * 1985-09-23 1987-04-07 Otis Engineering Corporation Injector for coupled pipe
US5188174A (en) * 1991-04-03 1993-02-23 Stewart & Stevenson Services, Inc. Apparatus for inserting and withdrawing coil tubing into a well
US5273188A (en) * 1991-10-30 1993-12-28 Soremartec S.A. Machine and method for the metered pouring of precise small quantities of flowable aerated foamed food products
US5309990A (en) * 1991-07-26 1994-05-10 Hydra-Rig, Incorporated Coiled tubing injector
US5553668A (en) * 1995-07-28 1996-09-10 Halliburton Company Twin carriage tubing injector apparatus
US5738173A (en) * 1995-03-10 1998-04-14 Baker Hughes Incorporated Universal pipe and tubing injection apparatus and method
US5775417A (en) * 1997-03-24 1998-07-07 Council; Malcolm N. Coiled tubing handling apparatus
US5799731A (en) * 1996-04-17 1998-09-01 Halliburton Company Tubing guide with optimized profile and offset
US5842530A (en) * 1995-11-03 1998-12-01 Canadian Fracmaster Ltd. Hybrid coiled tubing/conventional drilling unit
US5937943A (en) * 1997-02-14 1999-08-17 Westbury Service Company, L.L.C. Tubing insertion and withdrawal apparatus for use with a live well
US6003598A (en) * 1998-01-02 1999-12-21 Cancoil Technology Corporation Mobile multi-function rig
US6158516A (en) * 1998-12-02 2000-12-12 Cudd Pressure Control, Inc. Combined drilling apparatus and method
US6431286B1 (en) * 2000-10-11 2002-08-13 Cancoil Integrated Services Inc. Pivoting injector arrangement
US6530432B2 (en) * 2001-07-11 2003-03-11 Coiled Tubing Solutions, Inc. Oil well tubing injection system and method
US20030098150A1 (en) * 2001-11-28 2003-05-29 Technicoil Corporation Mast and trolley arrangement for mobile multi-function rig
US6609565B1 (en) * 2000-10-06 2003-08-26 Technicoil Corporation Trolley and traveling block system
US20040211555A1 (en) * 2003-04-25 2004-10-28 Austbo Larry L. Tubing guide and coiled tubing injector
US6973979B2 (en) * 2003-04-15 2005-12-13 Savanna Energy Services Corp. Drilling rig apparatus and downhole tool assembly system and method
US7111689B2 (en) * 2004-05-07 2006-09-26 Bj Services Co Coiled tubing injector deployment assembly and method
US20070089882A1 (en) * 2005-10-21 2007-04-26 Bart Patton Compensation system for a jacking frame

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285485A (en) * 1964-01-23 1966-11-15 Bowen Tools Inc Apparatus for handling tubing or other elongate objects
US4585061A (en) * 1983-10-18 1986-04-29 Hydra-Rig Incorporated Apparatus for inserting and withdrawing coiled tubing with respect to a well
US4655291A (en) * 1985-09-23 1987-04-07 Otis Engineering Corporation Injector for coupled pipe
US5188174A (en) * 1991-04-03 1993-02-23 Stewart & Stevenson Services, Inc. Apparatus for inserting and withdrawing coil tubing into a well
US5309990A (en) * 1991-07-26 1994-05-10 Hydra-Rig, Incorporated Coiled tubing injector
US5273188A (en) * 1991-10-30 1993-12-28 Soremartec S.A. Machine and method for the metered pouring of precise small quantities of flowable aerated foamed food products
US5738173A (en) * 1995-03-10 1998-04-14 Baker Hughes Incorporated Universal pipe and tubing injection apparatus and method
US5875850A (en) * 1995-03-10 1999-03-02 Baker Hughes Incorporated Universal pipe and tubing injection apparatus and method
US5553668A (en) * 1995-07-28 1996-09-10 Halliburton Company Twin carriage tubing injector apparatus
US5842530A (en) * 1995-11-03 1998-12-01 Canadian Fracmaster Ltd. Hybrid coiled tubing/conventional drilling unit
US5799731A (en) * 1996-04-17 1998-09-01 Halliburton Company Tubing guide with optimized profile and offset
US5937943A (en) * 1997-02-14 1999-08-17 Westbury Service Company, L.L.C. Tubing insertion and withdrawal apparatus for use with a live well
US5775417A (en) * 1997-03-24 1998-07-07 Council; Malcolm N. Coiled tubing handling apparatus
US6003598A (en) * 1998-01-02 1999-12-21 Cancoil Technology Corporation Mobile multi-function rig
US6158516A (en) * 1998-12-02 2000-12-12 Cudd Pressure Control, Inc. Combined drilling apparatus and method
US6609565B1 (en) * 2000-10-06 2003-08-26 Technicoil Corporation Trolley and traveling block system
US6431286B1 (en) * 2000-10-11 2002-08-13 Cancoil Integrated Services Inc. Pivoting injector arrangement
US6530432B2 (en) * 2001-07-11 2003-03-11 Coiled Tubing Solutions, Inc. Oil well tubing injection system and method
US20030098150A1 (en) * 2001-11-28 2003-05-29 Technicoil Corporation Mast and trolley arrangement for mobile multi-function rig
US6973979B2 (en) * 2003-04-15 2005-12-13 Savanna Energy Services Corp. Drilling rig apparatus and downhole tool assembly system and method
US20040211555A1 (en) * 2003-04-25 2004-10-28 Austbo Larry L. Tubing guide and coiled tubing injector
US7111689B2 (en) * 2004-05-07 2006-09-26 Bj Services Co Coiled tubing injector deployment assembly and method
US20070089882A1 (en) * 2005-10-21 2007-04-26 Bart Patton Compensation system for a jacking frame

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011107889A2 (en) * 2010-03-03 2011-09-09 Xtreme Coil Drilling Corp. Coiled tubing injector assembly
WO2011107889A3 (en) * 2010-03-03 2012-02-16 Xtreme Coil Drilling Corp. Coiled tubing injector assembly
US20130048270A1 (en) * 2010-03-03 2013-02-28 Richard Havinga Coiled Tubing Injector Assembly
US9249636B2 (en) * 2010-03-03 2016-02-02 Xtreme Drilling And Coil Services, Inc. Coiled tubing injector assembly
CN102287151A (en) * 2011-05-13 2011-12-21 宝鸡石油机械有限责任公司 Guide arch device suitable for coiled tubing unit or drilling machine pipe
CN103147702A (en) * 2013-03-06 2013-06-12 宝鸡通力鼎新专用汽车有限公司 Injection head motion device of continuous string coiled tubing unit
US9995094B2 (en) 2014-03-10 2018-06-12 Consolidated Rig Works L.P. Powered milling clamp for drill pipe
US9574411B2 (en) 2014-08-08 2017-02-21 Premier Coil Solutions, Inc. Coiled tubing unit locking knee-joint mechanisms
US9587450B2 (en) 2014-08-08 2017-03-07 Premier Coil Solutions, Inc. Injector head tilt mechanism
WO2016022885A1 (en) * 2014-08-08 2016-02-11 Premier Coil Solutions, Inc. Coiled tubing unit locking knee-joint mechanisms
US10995563B2 (en) 2017-01-18 2021-05-04 Minex Crc Ltd Rotary drill head for coiled tubing drilling apparatus
US11136837B2 (en) 2017-01-18 2021-10-05 Minex Crc Ltd Mobile coiled tubing drilling apparatus
US10787870B1 (en) 2018-02-07 2020-09-29 Consolidated Rig Works L.P. Jointed pipe injector

Also Published As

Publication number Publication date
CA2590562A1 (en) 2008-11-28

Similar Documents

Publication Publication Date Title
US20080296013A1 (en) Top mounted injector for coiled tubing injection
US5921329A (en) Installation and removal of top drive units
EP1705413B1 (en) Pipe tensioner machine
JPS63167818A (en) Method and apparatus for mounting and detaching loader with respect to tractor
CA2562509C (en) Telescopic feed beam for rock drill
CN202194683U (en) Smooth groove bridge type scraping plate stage loader
CN104477734A (en) Ultra-deep vertical shaft guide steel cable tensioning device and tensioning method
CN105264165A (en) Multipurpose cantilever skidding frame
CN107963401B (en) Belt conveyor of dismouting fuselage does not shut down
CN102275714B (en) There is the tooth bar traction system of the tooth bar of improvement
US5803189A (en) Directional boring machine
CN101191419B (en) Fully mechanized working faces track along end head bracket
CN201024072Y (en) Large tonnage heavy weight small thrust horizontal moving device
CN1526914A (en) Hydraulic coal mine support for low-position roof blasting-down
CN200981749Y (en) Guiding panel turnover device on roller way transportation line
US7476058B2 (en) Mining roof support frame with base skids lifting device
CN2780906Y (en) Auxiliary device for moving and mounting derrick
CN200999622Y (en) Fully Mechanized working faces along track end head bracket
CN209954600U (en) Auxiliary connecting mechanism for auxiliary frame assembly and control arm assembly tool and bolt and nut
US20100200258A1 (en) Tool wrench assembly
JP3140417B2 (en) Rice transplanter seedling planting equipment
CN213677366U (en) Feeding system for bundling gas pipe fittings
CN220396282U (en) Drawing mechanism for battery module
CN1112189A (en) Rail for coal carrying machine assembled on chain scraper conveyor
JP3529327B2 (en) Combine

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOREMOST INDUSTRIES LTD., CANADA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 020148, FRAME 0683;ASSIGNOR:PLESKIE, ALLAN J.;REEL/FRAME:020262/0294

Effective date: 20071105

Owner name: FOREMOST INDUSTRIES, LTD., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PLESKIE, ALLAN J.;REEL/FRAME:020148/0683

Effective date: 20071105

AS Assignment

Owner name: FOREMOST INDUSTRIES LTD., CANADA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 020262 FRAME 0294;ASSIGNOR:PLESKIE, ALLAN J.;REEL/FRAME:022957/0182

Effective date: 20071105

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION