US20080302733A1 - Coupling agent-reacted mercury removal media - Google Patents

Coupling agent-reacted mercury removal media Download PDF

Info

Publication number
US20080302733A1
US20080302733A1 US12/116,383 US11638308A US2008302733A1 US 20080302733 A1 US20080302733 A1 US 20080302733A1 US 11638308 A US11638308 A US 11638308A US 2008302733 A1 US2008302733 A1 US 2008302733A1
Authority
US
United States
Prior art keywords
mercury
media
water
removal media
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/116,383
Inventor
Zhen Wang
Robert Abraham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amcol International Corp
Original Assignee
Amcol International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/810,240 external-priority patent/US7871524B2/en
Application filed by Amcol International Corp filed Critical Amcol International Corp
Priority to US12/116,383 priority Critical patent/US20080302733A1/en
Assigned to AMCOL INTERNATIONAL CORPORATION reassignment AMCOL INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABRAHAM, ROBERT, WANG, ZHEN
Publication of US20080302733A1 publication Critical patent/US20080302733A1/en
Priority to CN200980126655.0A priority patent/CN102089260B/en
Priority to PCT/US2009/040430 priority patent/WO2009137230A1/en
Priority to EP09743217A priority patent/EP2274257A1/en
Priority to CA2723417A priority patent/CA2723417C/en
Priority to US13/224,840 priority patent/US8382990B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Definitions

  • the present invention is directed to compositions; methods of manufacturing the compositions; and methods of using the compositions for removing mercury (organic mercury, Hg, Hg+; and/or Hg+2) and/or arsenic (As+3 and/or As+5) from any contaminated water; and/or gas stream, e.g., natural gas; industrial smoke stacks; and the like.
  • mercury organic mercury, Hg, Hg+; and/or Hg+2
  • arsenic As+3 and/or As+5
  • compositions also identified herein as “media,” or “mercury removal media,” or “Hg/As removal media” or “arsenic removal media,” can be used to remove mercury and/or arsenic from any water source and is particularly useful for removal of mercury and/or arsenic from drinking water; industrial wastewater; contaminated groundwater; contaminated sediment; offshore produced water so that the produced water can be returned to the ocean; and for removal of mercury from aqueous mining wastes.
  • the mercury removal media comprises a homogeneous, preferably extruded composition comprising a layered phyllosilicate coupled to a coupling agent containing a mercapto or sulfide reactant group, and an organic phyllosilicate surface-treating agent, preferably an onium cation, resulting in an organoclay containing sulfur.
  • the coupling agent is bonded to the organoclay chemically, physically, or by a combination of chemical and physical mechanisms.
  • Mercury and arsenic contaminants are found in water, and mercury is found in both water and gases primarily from volcanic eruptions; coal fired power plants; emissions from coal combustion; mercury vapor and/or particles from natural gas; produced water from the oil and gas industry; waste waters from gold production and non-ferrous metal production (e.g., smelters); waste water from cement production; sewage sludge incineration; caustic soda production; pig iron and steel production; and mercury production waste, mainly for battery incorporation.
  • Products containing mercury include: auto parts, batteries, fluorescent bulbs, medical products, thermometers, and thermostats.
  • the Hg/As removal media described herein has a similar physical form to the organoclays used for organic contaminant removal and can be similarly packed in a canister or cartridge, as described in the above-listed patents.
  • the Hg/As removal media described herein can be deployed in single layer or multi-layer water-permeable mats, as described in this assignee's published application Ser. Nos. 10/718,128, filed Nov. 19, 2003 (Publication No. 2005-01013707 A1), Ser. No. 11/221,019, filed Sep. 7, 2005 (Publication No. 2006/0000767 A1), [Ser. No. 11/489,383, filed Jul. 19, 2006, (Publication No. 2006-0286888 A1)], Ser. No.
  • Hg/As removal media is based on organoclay technology but it has been substantially modified using several unique chemistries to enhance adsorption of mercury and arsenic-containing compounds.
  • the mechanism of mercury adsorption is based upon chemical bonding, ionic bonding, mechanical bonding, or a combination thereof.
  • the mercury and/or arsenic will be bonded to the media's external and internal surfaces and the bonding process is non-reversible.
  • the Hg/As removal media described herein is effective on all sources of mercury and arsenic including organic types of mercury and arsenic, including organic mercury and arsenic compounds; mercury metal (zero valent); arsenite and arsenate compounds, arsenic ions (both III and V valent) and mercury ions (both I and II valent).
  • organic-based mercury and/or arsenic is involved, the adsorption mechanism of partition could be involved in addition to chemical bonding.
  • the Hg/As removal media described herein also is effective to remove oil, grease and other organic contaminant molecules. The media will be spent eventually when all of the adsorption sites are saturated. The actual media life will depend on the contaminated water compositions and the field operation conditions.
  • Greco U.S. Pat. No. 5,512,526 describes a clay-based heavy metal removal media prepared by reacting a fatty mercaptan, e.g., dodecylmercaptan, with a fatty alkyl-containing quaternary ammonium compound. As described, the mercaptan's hydrophobic fatty alkyl group associates in some manner with the fatty alkyl group of the quaternary ammonium compound.
  • a fatty mercaptan e.g., dodecylmercaptan
  • a coupling agent containing a mercapto, disulfide, tretrasulfide and/or other polysulfide functional group provides a mercury and/or arsenic removal media having increased reactivity, stability, and mercury and/or arsenic removal ability.
  • the Hg/As removal media described herein is prepared by reacting an organophilic clay, preferably containing onium ions, with a mercapto, disulfide, tetrasulfide, and/or polysulfide moiety.
  • the clay can be made organophilic by treating a clay with a surface-treating agent, such as a polymer capable of increasing the d-spacing of the clay platelets, or, preferably, with onium ions prior to or simultaneously with the coupling reaction of the mercapto- or sulfide moiety-containing coupling agent.
  • a surface-treating agent such as a polymer capable of increasing the d-spacing of the clay platelets, or, preferably, with onium ions prior to or simultaneously with the coupling reaction of the mercapto- or sulfide moiety-containing coupling agent.
  • FIGS. 1-3 are graphs showing the mercury removal efficacy of the media described in the examples.
  • FIG. 4 is a side view of an offshore oil well drilling platform generally showing the Hg/As removal media held within a canister attached to an offshore oil well drilling platform support structure with an alternative placement of a sump tank;
  • FIG. 5 is a sectional view of an embodiment of a vessel containing a plurality of Hg/As removal media-containing cartridges or canisters for efficient removal of mercury and arsenic contained in water;
  • FIG. 6 is an elevational view of a preferred embodiment of a vessel containing a plurality of Hg/As removal media-containing cartridges or canisters;
  • FIG. 7 is a top plan view of the header of the vessel shown in FIG. 6 and openings within the header for receiving permeable conduits each of which can extend through a stack of cartridges or canisters as shown in FIGS. 5 and 6 ;
  • FIG. 8 is a partially broken-away side view of an embodiment of a Hg/As removal media-containing vessel, containing multiple, stacked cartridges ( FIGS. 5 and 6 ).
  • the invention is useful for mercury and arsenic removal from any contaminated water, including drinking water; industrial wastewaters; contaminated ground water supplies; aqueous mining wastes; and contaminated underwater and soil sediments, particularly when contained in a reactive mat, as described in the applications identified in paragraph [0003], or when used in bulk form.
  • the Hg/As removal media described herein is a mercapto- or sulfide-containing layered organophilic phyllosilicate that is (or has been) made organophilic by reaction with an organic phyllosilicate surface-treating agent, preferably an onium ion-liberating compound, and has been made mercury-reactive and arsenic-reactive by bonding a mercapto- or sulfide-containing coupling agent to the phyllosilicate platelets.
  • an organic phyllosilicate surface-treating agent preferably an onium ion-liberating compound
  • the phyllosilicate can be a smectite clay, e.g., bentonite, montmorillonite, hectorite, beidellite, saponite, nontronite, volkonskoite, sauconite, stevensite, and/or a synthetic smectite derivative, particularly fluorohectorite and laponite; a mixed layered clay, particularly rectorite and their synthetic derivatives; vermiculite, illite, micaceous minerals, and their synthetic derivatives; layered hydrated crystalline polysilicates, particularly makatite, kanemite, octasilicate (illierite), magadiite and/or kenyaite; attapulgite, palygorskite, sepoilite; or any combination thereof.
  • a smectite clay e.g., bentonite, montmorillonite, hectorite, beidellite,
  • the surface modification (intercalant) agents used for organoclay formation include but are not limited to primary amine, secondary amine, tertiary amine, and onium ions and/or onium salt compounds, polyquat, polyamine, cationic polymers and their derivatives, nonionic polymers, and mixtures of thereof.
  • the surface modification agent e.g., onium ion
  • a solid or liquid composition nitrogen or aqueous, with or without an organic solvent, e.g., isopropanol and/or ethanol, if necessary to aid in dissolving the onium ion compound
  • a surface modification e.g., onium ion concentration sufficient to provide a concentration of about 5% to about 10% by weight clay (90-95% water) and the surface modification agent, e.g., onium ion compound, is added to the clay slurry water, preferably at a molar ratio of onium ions to exchangeable interlayer cations of at least about 0.5:1, more preferably at least about 1:1.
  • the onium ion-intercalated clay then is separated from the water easily, since the clay is now hydrophobic, and dried in an oven to less than about 5% water, preferably bone dry.
  • the onium ion surface modification agent compound or polymer can be added as a solid with the addition to the layered material surface modification agent blend of preferably about 20% to about 40% water and/or organic solvent, more preferably at least about 30% water or more, based on the dry weight of layered material.
  • a dry process can be described, as follows, for organoclay media preparation or manufacturing.
  • the powder form of clay mineral is fed into a mixer through a major port for solids, typically an extruder.
  • a separate port for the 2 nd powder form of solid can also be used besides the clay feeding port.
  • the liquid forms of the additives including water, intercalant agent, and the coupling agent if any, are fed into the mixer through the separate ports. Either multiple forms of the solids or the liquids could be pre-mixed, or both the solids and the liquids can be pre-mixed through a separate mixer, before they are fed into the extender.
  • a preferred liquid weight is from 10% to 50% based on the total mixture weight, more preferably from 20% to 40%, most preferably from 25% to 35%.
  • the intimate mixture from the extruder will be further dried through a dryer, and be ground to the preferred particle size.
  • a screening process could be used to collect the finished product in the desired particle size distribution.
  • the onium ions may generally be represented by the following formula:
  • the preferred phyllosilicate surface-treating agent is one or more onium ion salt compounds, generally represented by the following formula:
  • R 1 , R 2 , R 3 and R 4 are independently organic moieties, or oligomeric moieties or hydrogen.
  • useful organic moieties include, but not limited to, linear or branched alkyl, benzyl, aryl or aralkyl moieties having 1 to about 24 carbon atoms.
  • Additional phyllosilicate surface-treating agents include the materials set forth below in paragraphs [0024] to [0030].
  • the onium ions may be functionalized such as protonated ⁇ , ⁇ -amino acid with the general formula (H 3 N—(CH 2 ) n —COOH) + .
  • Examples of the preferred silane coupling agents containing a mercapto, disulfide, tetrasulfide, or polysulfide reactant group include, for example, 3-Mercaptopropyltrimethoxysilane; 3-Mercaptopropyltriethoxysilane; 3-Mercaptopropylmethyldimethoxysilane; (Mercaptomethyl)dimethylethoxysilane; (Mercaptomethyl)methyldiethoxysilane; 11-mercaptoundecyltrimethoxysilane; Bis[3-(triethoxysilyl)propyl]-tetrasulfide; Bis[3-(triethoxysilyl)propyl]-disulfide; Bis-[m-(2-triethoxysily)lethyl)tolyl]-polysulfide; and mixtures thereof.
  • the Hg/As removal media described herein can be used after the use of an organoclay for removal of organics in order to protect and extend the active life of both the organoclay, in an initial organoclay stage, and the Hg/As removal media, used after organic contaminant removal.
  • a carbon media can also be used before or after the Hg/As removal media, if necessary.
  • the retention time of contact between Hg/As-contaminated water and the Hg/As removal media should be no less than about 10 seconds, preferably at least about 1 minute, more preferably about 2 minutes or more.
  • the preferred amounts of components that form the coupling agent-reacted organoclay Hg/As removal media are as follows, in percent by weight of product (media):
  • Phyllosilicate Intercalant Agent Coupling Agent Preferably 1-90 10-50 0.5-50 More Preferably 35-83 15-45 2-20 More Preferably 50-77 20-40 2-12 More Preferably 59-71 25-35 5-9 Most Preferably 65 28 7
  • the particle size of the organophilic clay is fine enough that at least 80% by weight of the clay particles pass through a 20 mesh screen, U.S. Sieve Series; more preferably at least 80% by weight of the clay particles pass through a 100 mesh screen, U.S. Sieve Series; and most preferably at least 80% of the clay particles pass through a 140 mesh screen, U.S. Sieve Series.
  • the preferred sulfur particles have a particles size such that at least 80% by weight of the particles pass through an 18 mesh screen, U.S. Sieve Series; more preferably at least 80% by weight of the sulfur particles pass through at 50 mesh screen, U.S. Sieve Series; even more preferably at least 80% by weight of the sulfur particles pass through an 80 mesh screen, U.S. Sieve Series; and most preferably, at least 80% of the sulfur particles pass through a 100 mesh screen, U.S. Sieve Series.
  • the final product formed should have a particle size such that at least 80% by weight of the particles pass through a 4 mesh (5 mm) screen; preferably at least 80% of the product particles should be smaller than 3 mm; and more preferably at least 80% by weight the product particles should be smaller than 2 mm.
  • the preferred particle size range for the product particles is such that at least 80% by weight of the product particles are sized between 18 and 50 mesh, U.S. Sieve Series; more preferably at least 80% by weight of the product particles are sized between 10 mesh and 30 mesh, U.S. Sieve Series; even more preferably, at least 80% by weight of the product particles are sized between 8 and 40 mesh, U.S. Sieve Series; and most preferably, at least 80% by weight of the product particles are sized between 6 and 18 mesh, U.S. Sieve Series.
  • the influent was composed of ⁇ 10 ppm of Hg(NO 3 ) 2 solution with dilute nitric acid matrix.
  • the effluent samples were taken at regular intervals and the mercury content was measured by an ICP analytical test.
  • the flow rate was about 10 BV/hr using a 6-minute retention time.
  • the effluent curve is shown in FIG. 1 .
  • a commercial mercury removal media Hg/As of SME Associates, Houston, Tex.
  • a mixture of 85-90% activated carbon and 10-15% sulfur was also included in this study for comparison purpose, as shown in FIG. 1 .
  • a wet-process is also suitable as the process to make the mercury removal media described herein.
  • silane agent (Silquest® A-189 from GE Silicones, gamma-Mercaptopropyltrimethoxysilane) was pre-mixed with 20.0 g of ethanol and 2.0 g of water. This fresh prepared solution was added to the above clay-water-quat mixture, and mixed for 5 minutes. This mixture was extruded three times using a laboratory-scale extruder with a die-plate, and the final extrudates were oven-dried at 85° C. to a moisture content of less than 5% by weight. The dried extrudates were ground and resulting particles between 18 and 40 mesh (US standard sieves) were collected and tested for their performance.
  • silane agent Silquest® A-189 from GE Silicones, gamma-Mercaptopropyltrimethoxysilane
  • This mixture was extruded three times using a laboratory-scale extruder with a die-plate, and the final extrudates were oven-dried at 85° C. to a moisture content of less than 5% by weight.
  • the dried extrudates were ground and resulting particles between 18 and 40 mesh (US standard sieves) were collected and tested for their performance.
  • Example 1 The media material collected in Example 1 was packed in a column with an inner diameter of 1.5′′ and having an empty bed volume (BV) of ⁇ 92 mL.
  • the influent was composed of ⁇ 10 ppm of Hg(II) in the presence of nitric acid.
  • the effluent samples were taken at regular intervals and the mercury content was measured by the Inductively Coupled Plasma (ICP) analytical technique.
  • the flow rate was about 10 BV/hr with a 6-minute retention time.
  • the effluent data is plotted in FIG. 1 .
  • a commercial organoclay media is also included in this study for the comparison purpose.
  • Example 2 A column test was conducted on the organoclay media collected in Example 2.
  • the influent was composed of ⁇ 10 ppm of Hg(II) and ⁇ 8 ppm of mechanical emulsified motor oil.
  • the oil concentration in influent and effluent was characterized by Total Oil & Grease (TOG) analytical test. Throughout the test, the TOG for effluent was maintained at 0 ppm.
  • the effluent results on mercury were plotted in FIG. 2 .
  • Example 2 A column test was conducted on the organoclay media collected in Example 2. The influent was composed of 224 ppb of Hg(II). The effluent samples were taken at 9.4, 18.9, 28.3 Bed Volume intervals and their mercury concentration were 1.2 ppb, 0.8 ppb and 0.3 ppb, respectively. The mercury measurement tests were conducted by Test America (Buffalo Grove, Ill.) using EPA 245.2 test method.
  • Bentonite powder was fed into a 5′′ Readco continuous processor at a feed rate of 600 lb/hr. About 0.40 gallon/minute of water and 0.78 gallon/minute of combined mixture of quat and silane coupling agent were also fed in the Readco processor through two independent ports in sequence.
  • the mixed ratio between the quat (ARQUAD® 2HT from Akzo Nobel, bis(hydrogenated tallow alkyl)dimethyl ammonium chloride, ⁇ 83% active) and the silane coupling agent (Silquest® A-189 from GE Silicones, gamma-Mercaptopropyltrimethoxysilane) was abut 82.6:17.4 by weight.
  • the discharged extrudates from the processor were sent to a dryer, the dried extrudates were further milled and the granular particles between 18 and 40 mesh with a moisture content less than 5% by weight were colleted as the finished product.
  • Example 4 A similar column test as described in Example 4 was conducted on the product sample collected in Example 9. The effluent testing results are plotted in FIG. 3 .
  • the Hg/As removal media described in Example 9 was tested under offshore platform conditions using the actual offshore mercury contaminated water.
  • a commercially available organoclay product, CrudeSorbTM was also used in front of this Hg/As removal media.
  • the influent had a mercury concentration of 37.7 ppb, and the effluent was 2.8 and 4.2 ppb after the 30-minute and 90-minute treatment, respectively.
  • Example 9 The media described in Example 9 was examined for its ability to remove arsenic.
  • the media materials were packed in a column having an inner diameter of 1.5′′ and empty bed volume of ⁇ 86 mL.
  • the influent solution was composed of ⁇ 5 ppm of As(V).
  • the As(V) stock solution was prepared by dissolving Na 2 HAsO 4 .7H 2 O in the de-ionized water.
  • the effluent samples were taken at regular intervals and the arsenic content was measured by the Inductively Coupled Plasma (ICP) analytical technique.
  • the flow rate was around 10 BV/hr with 6-minute retention time.
  • the average effluent concentration was 3 ppm for a 40% removal of arsenic by the media.
  • Example 9 The media material described in Example 9 was tested under offshore platform conditions using the actual wastewater contaminated by both mercury and arsenic.
  • the contaminated water was pumped through two columns in series. Each column had a diameter of 3′′ and held about 1.5 Liter of media ( ⁇ 1,125 grams).
  • the first column was packed with the commercial available organoclay media, CrudeSorbTM, and the second column was packed the media material described in Example 9.
  • the retention time was roughly equal to 5-minute.
  • the influent had mercury and arsenic concentration of 37.7 ppb and 8.17 ppb, respectively.
  • the effluent had mercury concentrations of 2.8 ppb and 4.2 ppb, arsenic concentrations of 5.70 ppb and 5.87 ppb, respectively. So a total mercury and arsenic removal efficiency of greater than 88% and 28% were achieved, respectively.
  • the sulfur impregnated organoclay media and the coupling agent-reacted organoclay media were tested as a package using the actual wastewater contaminated by both mercury and arsenic species on an offshore platform.
  • the contaminated water was pumped through two columns in a series operation. Each column had a diameter of 3′′ and held about 1.5 Liter of media ( ⁇ 1,125 grams).
  • the first column was packed with the sulfur impregnated organoclay media as described in Example 3, and the second column was packed with the coupling agent-reacted organoclay media as described in Example 9.
  • the retention time was roughly equal to 5-minute.
  • the influent had mercury and arsenic concentration of 26.8 ppb and 10.68 ppb, respectively.
  • the effluent had mercury and arsenic concentrations of 2.4 ppb and 2.15 ppb, respectively. So a total mercury and arsenic removal efficiency of greater than 91% and 79% were achieved, respectively.
  • an offshore drilling platform generally designated by reference numeral 10 including a work deck support structure 12 for supporting a plurality of stacked work decks at a substantial height above an ocean water level 14 .
  • the work decks commonly include a cellar deck 16 at a lowest work deck level, a second deck 18 located directly above the cellar deck 16 , a third deck 20 disposed directly above deck 18 , and a main deck 22 at an uppermost work deck level.
  • a sump tank 24 has been connected to the drilling platform 10 at the cellar deck level 16 and rainwater, including entrained hydrocarbons, particularly oil, paraffins and surfactants have been directed from all deck levels, which are contained so that rainwater and entrained hydrocarbons do not spill over to the ocean, to drain by gravity into the sump tank 24 .
  • entrained hydrocarbons particularly oil, paraffins and surfactants
  • the apparatus and methods described herein function best, in offshore platform use, when the sump tank 24 A is disposed on or near a boat landing deck level 26 ( FIG. 4 ) of the offshore drilling platform 10 .
  • the sump tank can also be disposed at an upper level, such as at reference numeral 24 in FIG. 4 .
  • Mercury and/or arsenic from ocean water that is collected on the production decks 16 , 18 , 20 and 22 that may accumulate during dry weather on the inner surfaces of the conduit 28 and inner surfaces of sump tank 24 can be separated from the water that flows from the decks to the Hg/As removal media-containing cartridge 44 for recovery and separation in accordance with the apparatus and methods described herein.
  • Water containing mercury and/or arsenic is conveyed via conduit 28 from the deck areas 16 , 18 , 20 and 22 along the platform infrastructure or support leg 12 down to the sump tank 24 or 24 A, preferably sump tank 24 A for convenient servicing and/or Hg/As removal media cartridge replacement.
  • the sump tank 24 or 24 A preferably sump tank 24 A for convenient servicing and/or Hg/As removal media cartridge replacement.
  • a downwardly extending leg portion 42 of water leg 34 is operatively interconnected to, and in fluid communication with, one or more mercury and/or arsenic media-containing vessels 44 .
  • the mercury removal media within vessel 44 captures the mercury and thereby separates essentially all mercury from the water (less than about 10 parts per million, preferably less than about 1 part per million mercury remains).
  • the treated water flows through the liquid-permeable covers 76 of the cartridges 55 into the vessel 44 .
  • the treated water then flows by gravity through water exit opening 46 in the water and coalesced hydrocarbon collection vessel 44 and through exit conduit 48 back to the ocean water 14 .
  • vessel 44 includes an outer, fluid-impermeable housing 48 having a water inlet 42 interconnected through the housing 48 so that mercury-contaminated water enters vessel 44 and then flows through the HG/As removal media-containing cartridges 55 , through a plurality of longitudinal, axial, central inlet conduits 56 , 56 A, 56 B, 56 C and 56 D that may form part of a header, described in more detail hereinafter.
  • the mercury removal media-containing cartridges 55 are water-permeable by virtue of flow apertures 57 , in the cartridge cover 76 , that are sized sufficiently small such that the mercury removal media does not pass therethrough.
  • the purified water flows through the openings 57 in each liquid permeable cartridge cover 76 and collect in vessel 44 .
  • FIG. 6 another embodiment of a vessel 100 is shown containing stacks of cartridges, one of which is shown at 102 .
  • Each cartridge stack includes a plurality of annular cartridges 104 through which a porous contaminated liquid inlet conduit 106 extends.
  • the porous inlet conduit 106 is connected to a header 108 which is disposed within a bottom section 110 of the vessel 100 , similar to the contaminated water inlet conduits 56 , 56 A, 56 B, 56 C and 56 D shown in FIG. 5 .
  • the header 108 is connected to a mercury-contaminated water inlet 112 which includes a flange 114 which is connected to the flange 116 of the header 108 by a plurality of fasteners, such as bolts (not shown).
  • the header is also supported within the bottom structure 110 (see FIG. 6 ) of the vessel by a plurality of supports shown at 118 .
  • the header 108 includes a plurality of openings 120 , each of which receives a permeable conduit 106 (see FIG. 6 ).
  • the header 108 is connected to 23 permeable conduits and therefore supports 23 stacks 102 of cartridges 104 .
  • a permeable tube sheet 111 shown in FIG. 5 is not needed for collecting solids and the bottom section 110 of the vessel can be used to collect accumulated solids, or solids which do not pass through the outer covers 76 of the filter cartridges 104 .
  • a drain 122 is provided for purposes of flushing out the accumulated solids which settle in the bottom structure 110 of the vessel 100 , together with the clean water.
  • the clean water can be passed through a solids filter 123 before being directed to the ocean through conduit 125 .
  • solids will accumulate on top of the tube sheet 111 .
  • the solids must be removed from above the tube sheet 108 using one or more nozzle openings shown at 109 in FIG. 5 . As shown in FIG. 6 , these additional nozzle openings are not required in the vessel 100 because the accumulated solids are easily flushed down the drain pipe 122 into solids filter 123 .
  • the header 108 As shown in FIG. 6 , an extremely dense number of stacks of cartridges 104 is provided by the header 108 .
  • the header 108 as shown in FIG. 7 , includes 23 openings 120 , and therefore 23 porous conduits 106 and therefore 23 stacks 102 of cartridges 104 . Accordingly, the volumetric flow rate that can be handled by the vessel 100 is substantially greater than the volumetric flow rate that can be handled by the vessel 44 .
  • smaller vessels with fewer stacks of cartridges and large vessels with more stacks of cartridges are anticipated.

Abstract

The use of a coupling agent containing a mercapto, disulfide, tretrasulfide and/or polysulfide end group provides a mercury removal media having increased reactivity, stability, and mercury removal ability. The mercury removal media described herein is prepared by reacting an organophilic clay containing onium ions with a mercapto, disulfide, tetrasulfide, and/or polysulfide end moiety. Alternatively, the clay can be made organophilic by onium ion reaction prior to or simultaneously with the coupling reaction of the mercapto- or sulfide-end group-containing coupling agent.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of application Ser. No. 11/810,240 filed Jun. 5, 2007. The entire text of the priority application is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention is directed to compositions; methods of manufacturing the compositions; and methods of using the compositions for removing mercury (organic mercury, Hg, Hg+; and/or Hg+2) and/or arsenic (As+3 and/or As+5) from any contaminated water; and/or gas stream, e.g., natural gas; industrial smoke stacks; and the like. The compositions, also identified herein as “media,” or “mercury removal media,” or “Hg/As removal media” or “arsenic removal media,” can be used to remove mercury and/or arsenic from any water source and is particularly useful for removal of mercury and/or arsenic from drinking water; industrial wastewater; contaminated groundwater; contaminated sediment; offshore produced water so that the produced water can be returned to the ocean; and for removal of mercury from aqueous mining wastes. The mercury removal media comprises a homogeneous, preferably extruded composition comprising a layered phyllosilicate coupled to a coupling agent containing a mercapto or sulfide reactant group, and an organic phyllosilicate surface-treating agent, preferably an onium cation, resulting in an organoclay containing sulfur. The coupling agent is bonded to the organoclay chemically, physically, or by a combination of chemical and physical mechanisms.
  • BACKGROUND AND PRIOR ART
  • Mercury and arsenic contaminants are found in water, and mercury is found in both water and gases primarily from volcanic eruptions; coal fired power plants; emissions from coal combustion; mercury vapor and/or particles from natural gas; produced water from the oil and gas industry; waste waters from gold production and non-ferrous metal production (e.g., smelters); waste water from cement production; sewage sludge incineration; caustic soda production; pig iron and steel production; and mercury production waste, mainly for battery incorporation. Products containing mercury include: auto parts, batteries, fluorescent bulbs, medical products, thermometers, and thermostats.
  • The technologies available for mercury and arsenic removal, such as precipitation, coagulation/co-precipitation, activated carbon adsorption, ion-exchange and the like, are not sufficiently effective for mercury and arsenic (arsenite and arsenate compounds) removal. This assignee's organoclay has been proven effective on a variety of organic contaminants in the last decade. See, for example, this assignee's U.S. Pat. Nos. 6,398,951; 6,398,966; 6,409,924; and 6,749,757, incorporated herein by reference. A new Hg/As filtration media, described herein, can be operated in a similar fashion, or together with the organoclay media, but is much more effective for mercury and arsenic removal.
  • The Hg/As removal media described herein has a similar physical form to the organoclays used for organic contaminant removal and can be similarly packed in a canister or cartridge, as described in the above-listed patents. In addition, the Hg/As removal media described herein can be deployed in single layer or multi-layer water-permeable mats, as described in this assignee's published application Ser. Nos. 10/718,128, filed Nov. 19, 2003 (Publication No. 2005-01013707 A1), Ser. No. 11/221,019, filed Sep. 7, 2005 (Publication No. 2006/0000767 A1), [Ser. No. 11/489,383, filed Jul. 19, 2006, (Publication No. 2006-0286888 A1)], Ser. No. 11/599,080, filed Nov. 14, 2006 (Publication No. 2007-0059542 A1); and Ser. No. 11/741,376, filed Apr. 27, 2007 (Publication No. 2007-0206994 A1), all of which are hereby incorporated by reference. Fundamentally, the Hg/As removal media is based on organoclay technology but it has been substantially modified using several unique chemistries to enhance adsorption of mercury and arsenic-containing compounds. The mechanism of mercury adsorption is based upon chemical bonding, ionic bonding, mechanical bonding, or a combination thereof. The mercury and/or arsenic will be bonded to the media's external and internal surfaces and the bonding process is non-reversible.
  • The Hg/As removal media described herein is effective on all sources of mercury and arsenic including organic types of mercury and arsenic, including organic mercury and arsenic compounds; mercury metal (zero valent); arsenite and arsenate compounds, arsenic ions (both III and V valent) and mercury ions (both I and II valent). When the organic-based mercury and/or arsenic is involved, the adsorption mechanism of partition could be involved in addition to chemical bonding. In addition, the Hg/As removal media described herein also is effective to remove oil, grease and other organic contaminant molecules. The media will be spent eventually when all of the adsorption sites are saturated. The actual media life will depend on the contaminated water compositions and the field operation conditions.
  • Greco U.S. Pat. No. 5,512,526 describes a clay-based heavy metal removal media prepared by reacting a fatty mercaptan, e.g., dodecylmercaptan, with a fatty alkyl-containing quaternary ammonium compound. As described, the mercaptan's hydrophobic fatty alkyl group associates in some manner with the fatty alkyl group of the quaternary ammonium compound.
  • SUMMARY
  • It has been found in accordance with the present invention that the use of a coupling agent containing a mercapto, disulfide, tretrasulfide and/or other polysulfide functional group provides a mercury and/or arsenic removal media having increased reactivity, stability, and mercury and/or arsenic removal ability. The Hg/As removal media described herein is prepared by reacting an organophilic clay, preferably containing onium ions, with a mercapto, disulfide, tetrasulfide, and/or polysulfide moiety. Alternatively, the clay can be made organophilic by treating a clay with a surface-treating agent, such as a polymer capable of increasing the d-spacing of the clay platelets, or, preferably, with onium ions prior to or simultaneously with the coupling reaction of the mercapto- or sulfide moiety-containing coupling agent.
  • BRIEF DESCRIPTIONS OF THE DRAWINGS
  • FIGS. 1-3 are graphs showing the mercury removal efficacy of the media described in the examples;
  • FIG. 4 is a side view of an offshore oil well drilling platform generally showing the Hg/As removal media held within a canister attached to an offshore oil well drilling platform support structure with an alternative placement of a sump tank;
  • FIG. 5 is a sectional view of an embodiment of a vessel containing a plurality of Hg/As removal media-containing cartridges or canisters for efficient removal of mercury and arsenic contained in water;
  • FIG. 6 is an elevational view of a preferred embodiment of a vessel containing a plurality of Hg/As removal media-containing cartridges or canisters;
  • FIG. 7 is a top plan view of the header of the vessel shown in FIG. 6 and openings within the header for receiving permeable conduits each of which can extend through a stack of cartridges or canisters as shown in FIGS. 5 and 6; and
  • FIG. 8 is a partially broken-away side view of an embodiment of a Hg/As removal media-containing vessel, containing multiple, stacked cartridges (FIGS. 5 and 6).
  • It should be understood that the drawings are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • It should be understood that the invention is useful for mercury and arsenic removal from any contaminated water, including drinking water; industrial wastewaters; contaminated ground water supplies; aqueous mining wastes; and contaminated underwater and soil sediments, particularly when contained in a reactive mat, as described in the applications identified in paragraph [0003], or when used in bulk form.
  • The Hg/As removal media described herein is a mercapto- or sulfide-containing layered organophilic phyllosilicate that is (or has been) made organophilic by reaction with an organic phyllosilicate surface-treating agent, preferably an onium ion-liberating compound, and has been made mercury-reactive and arsenic-reactive by bonding a mercapto- or sulfide-containing coupling agent to the phyllosilicate platelets.
  • Phyllosilicate
  • The phyllosilicate can be a smectite clay, e.g., bentonite, montmorillonite, hectorite, beidellite, saponite, nontronite, volkonskoite, sauconite, stevensite, and/or a synthetic smectite derivative, particularly fluorohectorite and laponite; a mixed layered clay, particularly rectorite and their synthetic derivatives; vermiculite, illite, micaceous minerals, and their synthetic derivatives; layered hydrated crystalline polysilicates, particularly makatite, kanemite, octasilicate (illierite), magadiite and/or kenyaite; attapulgite, palygorskite, sepoilite; or any combination thereof.
  • Clay Surface Modification Agents
  • The surface modification (intercalant) agents used for organoclay formation include but are not limited to primary amine, secondary amine, tertiary amine, and onium ions and/or onium salt compounds, polyquat, polyamine, cationic polymers and their derivatives, nonionic polymers, and mixtures of thereof.
  • In the wet process, the surface modification agent, e.g., onium ion, is introduced into the layered material galleries in the form of a solid or liquid composition (neat or aqueous, with or without an organic solvent, e.g., isopropanol and/or ethanol, if necessary to aid in dissolving the onium ion compound) having a surface modification, e.g., onium ion concentration sufficient to provide a concentration of about 5% to about 10% by weight clay (90-95% water) and the surface modification agent, e.g., onium ion compound, is added to the clay slurry water, preferably at a molar ratio of onium ions to exchangeable interlayer cations of at least about 0.5:1, more preferably at least about 1:1. The onium ion-intercalated clay then is separated from the water easily, since the clay is now hydrophobic, and dried in an oven to less than about 5% water, preferably bone dry. The onium ion surface modification agent compound or polymer can be added as a solid with the addition to the layered material surface modification agent blend of preferably about 20% to about 40% water and/or organic solvent, more preferably at least about 30% water or more, based on the dry weight of layered material. Preferably about 30% to about 40% water, more preferably about 25-35% water, based on the dry weight of the layered material, is included in the onium ion intercalating composition, so that less water is sorbed by the intercalate, thereby necessitating less drying energy after onium ion intercalation.
  • In general, a dry process can be described, as follows, for organoclay media preparation or manufacturing. The powder form of clay mineral is fed into a mixer through a major port for solids, typically an extruder. A separate port for the 2nd powder form of solid can also be used besides the clay feeding port. The liquid forms of the additives, including water, intercalant agent, and the coupling agent if any, are fed into the mixer through the separate ports. Either multiple forms of the solids or the liquids could be pre-mixed, or both the solids and the liquids can be pre-mixed through a separate mixer, before they are fed into the extender. A preferred liquid weight is from 10% to 50% based on the total mixture weight, more preferably from 20% to 40%, most preferably from 25% to 35%. The intimate mixture from the extruder will be further dried through a dryer, and be ground to the preferred particle size. A screening process could be used to collect the finished product in the desired particle size distribution.
  • The onium ions may generally be represented by the following formula:
  • Figure US20080302733A1-20081211-C00001
  • The preferred phyllosilicate surface-treating agent is one or more onium ion salt compounds, generally represented by the following formula:
  • Figure US20080302733A1-20081211-C00002
  • wherein Q=N, P, S;
    wherein A=halide, acetate, methylsulfate, hydroxide, preferably chloride;
    wherein R1, R2, R3 and R4 are independently organic moieties, or oligomeric moieties or hydrogen. (Ref. U.S. Pat. No. 6,376,591), hereby incorporated by reference. Examples of useful organic moieties include, but not limited to, linear or branched alkyl, benzyl, aryl or aralkyl moieties having 1 to about 24 carbon atoms.
  • Examples:
    • bis(hydrogenated tallow alkyl)dimethyl ammonium chloride (Arquad® 2HT);
    • benzylbis(hydrogenated tallow alkyl)methyl ammonium chloride (Arquad® M2HTB);
    • benzyl(hydrogenated tallow alkyl)dimethyl ammonium chloride (Arquad® DMHTB);
    • trihexadecylmethyl ammonium chloride (Arquad® 316);
    • tallowalkyl trimethyl ammonium chloride (Arquad® T-27W and Arquad® T-50);
    • hexadecyl trimethyl ammonium chloride (Arquad® 16-29W and Arquad® 16-50);
    • octadecyl trimethyl ammonium chloride (Arquad® 18-50(m)); and
    • dimethylhydrogenated tallow-2-ethylhexyl ammonium methylsulfate.
  • Additional phyllosilicate surface-treating agents include the materials set forth below in paragraphs [0024] to [0030].
  • Quaternary Ammonium Ions Containing Ester Linkage: (Ref. U.S. Pat. No. 6,787,592, Hereby Incorporated by Reference, See Column 5 and 6)
  • Example:
    • di(ethyl tallowalkylate)dimethyl ammonium chloride (Arquad® DE-T).
  • Quaternary Ammonium Ions Containing Amide Linkage: (Ref US Patent application 2006/0166840 Hereby Incorporated by Reference, See Page 2)
  • The onium ions may be functionalized such as protonated α,ε-amino acid with the general formula (H3N—(CH2)n—COOH)+.
  • Alkoxylated Quaternary Ammonium Chloride Compounds (Ref. U.S. Pat. No. 5,366,647 Hereby Incorporated by Reference)
  • Examples:
    • cocoalkylmethylbis(2-hydroxyethyl) ammonium chloride (Ethoquad® C/12);
    • octadecylmethyl[polyoxyethylene(15)] ammonium chloride (Ethoquad® 8/25); and
    • octadecylmethyl (2-hydroxyethyl) ammonium chloride (Ethoquad 18/12).
  • Polyquat (U.S. Pat. No. 6,232,388, Hereby Incorporated by Reference)
  • Example:
    • N,N,N′,N′,N′-pentamethyl-N-tallowalkyl-1,3-propane diammonium dichloride (Duaquad® T-50).
  • Polyamine: (Ref. Us Patent Application 2004/0102332 Hereby Incorporated by Reference)
  • Examples:
    • N-tallow-1,3-diaminopropane (Duomeen® T);
    • N-tallowalkyl dipropylene triamine (Triameen® T); and
    • N-tallowalkyl tripropylene tetramine (Tetrameen® T).
  • Cationic Polymers, Non-Ionic Polymers, Including Homopolymer or Copolymer, Low Molecular Weight or High Molecular Weight
  • Examples:
    • Polydiallydimethylammonium chloride;
    • Poly(dimethylamine-co-epichlorohydrin);
    • Polyacrylamide; and
    • Copolymer of acrylamide and acryloyloxylethyltrimethyl ammonium chloride.
    Coupling Agent
  • Examples of the preferred silane coupling agents containing a mercapto, disulfide, tetrasulfide, or polysulfide reactant group include, for example, 3-Mercaptopropyltrimethoxysilane; 3-Mercaptopropyltriethoxysilane; 3-Mercaptopropylmethyldimethoxysilane; (Mercaptomethyl)dimethylethoxysilane; (Mercaptomethyl)methyldiethoxysilane; 11-mercaptoundecyltrimethoxysilane; Bis[3-(triethoxysilyl)propyl]-tetrasulfide; Bis[3-(triethoxysilyl)propyl]-disulfide; Bis-[m-(2-triethoxysily)lethyl)tolyl]-polysulfide; and mixtures thereof.
  • Hg/As Removal Media
  • In a preferred embodiment, particularly in offshore environments, the Hg/As removal media described herein can be used after the use of an organoclay for removal of organics in order to protect and extend the active life of both the organoclay, in an initial organoclay stage, and the Hg/As removal media, used after organic contaminant removal. An operation procedure using an initial organoclay media followed by contact with the Hg/As removal media, in series, is highly effective. A carbon media can also be used before or after the Hg/As removal media, if necessary. In general, the retention time of contact between Hg/As-contaminated water and the Hg/As removal media should be no less than about 10 seconds, preferably at least about 1 minute, more preferably about 2 minutes or more.
  • The preferred amounts of components that form the coupling agent-reacted organoclay Hg/As removal media are as follows, in percent by weight of product (media):
  • Phyllosilicate Intercalant Agent Coupling Agent
    Preferably  1-90 10-50 0.5-50 
    More Preferably 35-83 15-45  2-20
    More Preferably 50-77 20-40  2-12
    More Preferably 59-71 25-35 5-9
    Most Preferably 65 28 7
  • In preparing the product, it is preferred that the particle size of the organophilic clay is fine enough that at least 80% by weight of the clay particles pass through a 20 mesh screen, U.S. Sieve Series; more preferably at least 80% by weight of the clay particles pass through a 100 mesh screen, U.S. Sieve Series; and most preferably at least 80% of the clay particles pass through a 140 mesh screen, U.S. Sieve Series. The preferred sulfur particles have a particles size such that at least 80% by weight of the particles pass through an 18 mesh screen, U.S. Sieve Series; more preferably at least 80% by weight of the sulfur particles pass through at 50 mesh screen, U.S. Sieve Series; even more preferably at least 80% by weight of the sulfur particles pass through an 80 mesh screen, U.S. Sieve Series; and most preferably, at least 80% of the sulfur particles pass through a 100 mesh screen, U.S. Sieve Series.
  • To achieve the full advantage of the removal media described herein, the final product formed should have a particle size such that at least 80% by weight of the particles pass through a 4 mesh (5 mm) screen; preferably at least 80% of the product particles should be smaller than 3 mm; and more preferably at least 80% by weight the product particles should be smaller than 2 mm. The preferred particle size range for the product particles is such that at least 80% by weight of the product particles are sized between 18 and 50 mesh, U.S. Sieve Series; more preferably at least 80% by weight of the product particles are sized between 10 mesh and 30 mesh, U.S. Sieve Series; even more preferably, at least 80% by weight of the product particles are sized between 8 and 40 mesh, U.S. Sieve Series; and most preferably, at least 80% by weight of the product particles are sized between 6 and 18 mesh, U.S. Sieve Series.
  • EXAMPLES
  • A column study was conducted in order to demonstrate the mercury removal media's ability to remove mercury. The influent was composed of ˜10 ppm of Hg(NO3)2 solution with dilute nitric acid matrix. The effluent samples were taken at regular intervals and the mercury content was measured by an ICP analytical test. The flow rate was about 10 BV/hr using a 6-minute retention time. The effluent curve is shown in FIG. 1. A commercial mercury removal media (Hg/As of SME Associates, Houston, Tex.) containing a mixture of 85-90% activated carbon and 10-15% sulfur was also included in this study for comparison purpose, as shown in FIG. 1.
  • Although only a dry-process is described in the following examples, a wet-process is also suitable as the process to make the mercury removal media described herein.
  • Example 1 Sample L6L
  • 800.0 g of bentonite clay (particle size <75 μm preferred, and ˜8% moisture content) was mixed with 160.0 g of deionized water using the Kitchen Aid mixer until a homogenous mixture was obtained. 380.0 g of melt quat (ARQUAD® 2HT from Akzo Nobel, bis(hydrogenated tallow alkyl)dimethyl ammonium chloride, ˜83% active) was added to this bentonite-water mixture under shearing using the same mixer, and mixed for 5 minutes. 40.0 g of the silane agent (Silquest® A-189 from GE Silicones, gamma-Mercaptopropyltrimethoxysilane) was pre-mixed with 20.0 g of ethanol and 2.0 g of water. This fresh prepared solution was added to the above clay-water-quat mixture, and mixed for 5 minutes. This mixture was extruded three times using a laboratory-scale extruder with a die-plate, and the final extrudates were oven-dried at 85° C. to a moisture content of less than 5% by weight. The dried extrudates were ground and resulting particles between 18 and 40 mesh (US standard sieves) were collected and tested for their performance.
  • Example 2 Sample L6L2
  • Very similar preparation procedure was conducted except 80.0 g of the silane agent was pre-mixed with 80.0 g of ethanol and 8.0 g of water, and was subsequently added to clay-water-quat mixture.
  • Example 3 Sample L6L3
  • 800.0 g of bentonite clay (particle size <75 μm preferred, and ˜8% moisture content) was mixed with 160.0 g of deionized water using the kitchen Aid mixer until a homogenous mixture was obtained. 60.0 g of the silane agent (Silquest® A-189 from GE Silicones, gamma-Mercaptopropyltrimethoxysilane) was mixed with 380.0 g of melt quat (ARQUAD® 2HT from Akzo Nobel, bis(hydrogenated tallow alkyl)dimethyl ammonium chloride, ˜83% active), and this mixture was added to the bentonite-water mixture under shearing using the same mixer, and mixed for 5 minutes. This mixture was extruded three times using a laboratory-scale extruder with a die-plate, and the final extrudates were oven-dried at 85° C. to a moisture content of less than 5% by weight. The dried extrudates were ground and resulting particles between 18 and 40 mesh (US standard sieves) were collected and tested for their performance.
  • Example 4
  • The media material collected in Example 1 was packed in a column with an inner diameter of 1.5″ and having an empty bed volume (BV) of ˜92 mL. The influent was composed of ˜10 ppm of Hg(II) in the presence of nitric acid. The effluent samples were taken at regular intervals and the mercury content was measured by the Inductively Coupled Plasma (ICP) analytical technique. The flow rate was about 10 BV/hr with a 6-minute retention time. The effluent data is plotted in FIG. 1. A commercial organoclay media is also included in this study for the comparison purpose.
  • Examples 5-6
  • Column tests were also conducted on the organoclay media materials collected from Examples 2 and 3. The results are also plotted in FIG. 1.
  • Example 7
  • A column test was conducted on the organoclay media collected in Example 2. The influent was composed of ˜10 ppm of Hg(II) and ˜8 ppm of mechanical emulsified motor oil. The oil concentration in influent and effluent was characterized by Total Oil & Grease (TOG) analytical test. Throughout the test, the TOG for effluent was maintained at 0 ppm. The effluent results on mercury were plotted in FIG. 2.
  • Example 8
  • A column test was conducted on the organoclay media collected in Example 2. The influent was composed of 224 ppb of Hg(II). The effluent samples were taken at 9.4, 18.9, 28.3 Bed Volume intervals and their mercury concentration were 1.2 ppb, 0.8 ppb and 0.3 ppb, respectively. The mercury measurement tests were conducted by Test America (Buffalo Grove, Ill.) using EPA 245.2 test method.
  • Example 9 Sample Production Trial 2
  • Bentonite powder was fed into a 5″ Readco continuous processor at a feed rate of 600 lb/hr. About 0.40 gallon/minute of water and 0.78 gallon/minute of combined mixture of quat and silane coupling agent were also fed in the Readco processor through two independent ports in sequence. The mixed ratio between the quat (ARQUAD® 2HT from Akzo Nobel, bis(hydrogenated tallow alkyl)dimethyl ammonium chloride, ˜83% active) and the silane coupling agent (Silquest® A-189 from GE Silicones, gamma-Mercaptopropyltrimethoxysilane) was abut 82.6:17.4 by weight. The discharged extrudates from the processor were sent to a dryer, the dried extrudates were further milled and the granular particles between 18 and 40 mesh with a moisture content less than 5% by weight were colleted as the finished product.
  • Example 10
  • A similar column test as described in Example 4 was conducted on the product sample collected in Example 9. The effluent testing results are plotted in FIG. 3.
  • Example 11
  • The Hg/As removal media described in Example 9 was tested under offshore platform conditions using the actual offshore mercury contaminated water. A commercially available organoclay product, CrudeSorb™, was also used in front of this Hg/As removal media. The influent had a mercury concentration of 37.7 ppb, and the effluent was 2.8 and 4.2 ppb after the 30-minute and 90-minute treatment, respectively. A total mercury removal efficiency of >88% was achieved.
  • Arsenic Removal Example: Example 12
  • The media described in Example 9 was examined for its ability to remove arsenic. The media materials were packed in a column having an inner diameter of 1.5″ and empty bed volume of ˜86 mL. The influent solution was composed of ˜5 ppm of As(V). The As(V) stock solution was prepared by dissolving Na2HAsO4.7H2O in the de-ionized water. The effluent samples were taken at regular intervals and the arsenic content was measured by the Inductively Coupled Plasma (ICP) analytical technique. The flow rate was around 10 BV/hr with 6-minute retention time. During 90 bed volume treatment, the average effluent concentration was 3 ppm for a 40% removal of arsenic by the media.
  • Offshore Field Study Example for Both Hg and as Removal: Example 13
  • The media material described in Example 9 was tested under offshore platform conditions using the actual wastewater contaminated by both mercury and arsenic. The contaminated water was pumped through two columns in series. Each column had a diameter of 3″ and held about 1.5 Liter of media (˜1,125 grams). The first column was packed with the commercial available organoclay media, CrudeSorb™, and the second column was packed the media material described in Example 9. The retention time was roughly equal to 5-minute. The influent had mercury and arsenic concentration of 37.7 ppb and 8.17 ppb, respectively. After the 30 minutes and 90 minutes treatment, the effluent had mercury concentrations of 2.8 ppb and 4.2 ppb, arsenic concentrations of 5.70 ppb and 5.87 ppb, respectively. So a total mercury and arsenic removal efficiency of greater than 88% and 28% were achieved, respectively.
  • Example for Sulfur Media and Silane Media Combined Use: Example 14
  • The sulfur impregnated organoclay media and the coupling agent-reacted organoclay media were tested as a package using the actual wastewater contaminated by both mercury and arsenic species on an offshore platform. The contaminated water was pumped through two columns in a series operation. Each column had a diameter of 3″ and held about 1.5 Liter of media (˜1,125 grams). The first column was packed with the sulfur impregnated organoclay media as described in Example 3, and the second column was packed with the coupling agent-reacted organoclay media as described in Example 9. The retention time was roughly equal to 5-minute. The influent had mercury and arsenic concentration of 26.8 ppb and 10.68 ppb, respectively. After the 30 minutes treatment, the effluent had mercury and arsenic concentrations of 2.4 ppb and 2.15 ppb, respectively. So a total mercury and arsenic removal efficiency of greater than 91% and 79% were achieved, respectively.
  • Turning now to the drawings, and initially to FIG. 4, there is shown an offshore drilling platform generally designated by reference numeral 10 including a work deck support structure 12 for supporting a plurality of stacked work decks at a substantial height above an ocean water level 14. The work decks commonly include a cellar deck 16 at a lowest work deck level, a second deck 18 located directly above the cellar deck 16, a third deck 20 disposed directly above deck 18, and a main deck 22 at an uppermost work deck level. In extant offshore drilling platforms, a sump tank 24 has been connected to the drilling platform 10 at the cellar deck level 16 and rainwater, including entrained hydrocarbons, particularly oil, paraffins and surfactants have been directed from all deck levels, which are contained so that rainwater and entrained hydrocarbons do not spill over to the ocean, to drain by gravity into the sump tank 24. As described in this assignees U.S. Pat. Nos. 6,398,951; 6,398,966; 6,409,924; and 6,749,757, further separation of hydrocarbons from rainwater, in addition to gravity separation, is required for effective elimination of ocean water hydrocarbon contamination by providing a secondary hydrocarbon recovery apparatus containing an organoclay after the produced water and/or rainwater has been separated by gravity in the sump tank 24 or 24A. In the preferred embodiment of mercury and/or arsenic removal using the methods and apparatus described herein for mercury and/or arsenic removal offshore, one or more canisters (not shown) containing an organoclay, for hydrocarbon removal, is used in series with one or more canisters containing the Hg/As removal media (in any order). It is preferred to remove the hydrocarbons with organoclay-containing canister(s) prior to mercury and/or arsenic removal with Hg/As removal media-containing cartridges.
  • In accordance with a preferred embodiment of the methods, apparatus and Hg/As removal media described herein, it has been found that the apparatus and methods described herein function best, in offshore platform use, when the sump tank 24A is disposed on or near a boat landing deck level 26 (FIG. 4) of the offshore drilling platform 10. However, the sump tank can also be disposed at an upper level, such as at reference numeral 24 in FIG. 4.
  • Mercury and/or arsenic from ocean water that is collected on the production decks 16, 18, 20 and 22 that may accumulate during dry weather on the inner surfaces of the conduit 28 and inner surfaces of sump tank 24 can be separated from the water that flows from the decks to the Hg/As removal media-containing cartridge 44 for recovery and separation in accordance with the apparatus and methods described herein.
  • Water containing mercury and/or arsenic is conveyed via conduit 28 from the deck areas 16, 18, 20 and 22 along the platform infrastructure or support leg 12 down to the sump tank 24 or 24A, preferably sump tank 24A for convenient servicing and/or Hg/As removal media cartridge replacement. As stated in this assignee's U.S. Pat. Nos. 6,398,951, 6,398,966 and 6,409,924, it is expedient to dispose the separation apparatus described herein at or near the boat landing deck level 26 (such that at least a portion of the sump tank 24A is within about 10 feet of ocean level) since contaminants collected on the production decks 16, 18, 20 and 22 that may accumulate during dry weather on the inner surfaces of the conduit 28 and inner surfaces of sump tank 24A can be separated from the water that flows from the decks to the sump tank 24A for recovery and separation in accordance with the apparatus and methods described herein.
  • In accordance with an important feature of the methods, apparatus and mercury removal media described herein, a downwardly extending leg portion 42 of water leg 34 is operatively interconnected to, and in fluid communication with, one or more mercury and/or arsenic media-containing vessels 44. As shown in FIG. 5, the mercury removal media within vessel 44 captures the mercury and thereby separates essentially all mercury from the water (less than about 10 parts per million, preferably less than about 1 part per million mercury remains). The treated water flows through the liquid-permeable covers 76 of the cartridges 55 into the vessel 44. The treated water then flows by gravity through water exit opening 46 in the water and coalesced hydrocarbon collection vessel 44 and through exit conduit 48 back to the ocean water 14.
  • As shown in FIGS. 5 and 8, vessel 44 includes an outer, fluid-impermeable housing 48 having a water inlet 42 interconnected through the housing 48 so that mercury-contaminated water enters vessel 44 and then flows through the HG/As removal media-containing cartridges 55, through a plurality of longitudinal, axial, central inlet conduits 56, 56A, 56B, 56C and 56D that may form part of a header, described in more detail hereinafter. The mercury removal media-containing cartridges 55 are water-permeable by virtue of flow apertures 57, in the cartridge cover 76, that are sized sufficiently small such that the mercury removal media does not pass therethrough. Water entering vessel 44 through inlet conduit 42 and cartridge inlet conduits 56, 56A, 56B, 56C and 56D flows radially outwardly through the mercury removal media 45 where the mercury removal media captures, and removes, the mercury from the contaminated water. The purified water flows through the openings 57 in each liquid permeable cartridge cover 76 and collect in vessel 44. The clean water exits the vessel 44 through exit conduit 69 and through valve 71 and then is returned to the ocean 14 via outlet 73.
  • Turning to FIG. 6, another embodiment of a vessel 100 is shown containing stacks of cartridges, one of which is shown at 102. Each cartridge stack includes a plurality of annular cartridges 104 through which a porous contaminated liquid inlet conduit 106 extends. The porous inlet conduit 106 is connected to a header 108 which is disposed within a bottom section 110 of the vessel 100, similar to the contaminated water inlet conduits 56, 56A, 56B, 56C and 56D shown in FIG. 5.
  • Turning to FIGS. 6 and 7, the header 108 is connected to a mercury-contaminated water inlet 112 which includes a flange 114 which is connected to the flange 116 of the header 108 by a plurality of fasteners, such as bolts (not shown). The header is also supported within the bottom structure 110 (see FIG. 6) of the vessel by a plurality of supports shown at 118. The header 108 includes a plurality of openings 120, each of which receives a permeable conduit 106 (see FIG. 6). In the embodiment illustrated in FIGS. 6 and 7, the header 108 is connected to 23 permeable conduits and therefore supports 23 stacks 102 of cartridges 104. By providing the header 108 within the bottom structure 110 of the vessel 100, a permeable tube sheet 111 shown in FIG. 5 is not needed for collecting solids and the bottom section 110 of the vessel can be used to collect accumulated solids, or solids which do not pass through the outer covers 76 of the filter cartridges 104. A drain 122 is provided for purposes of flushing out the accumulated solids which settle in the bottom structure 110 of the vessel 100, together with the clean water. The clean water can be passed through a solids filter 123 before being directed to the ocean through conduit 125. In contrast, solids will accumulate on top of the tube sheet 111. Thus, the solids must be removed from above the tube sheet 108 using one or more nozzle openings shown at 109 in FIG. 5. As shown in FIG. 6, these additional nozzle openings are not required in the vessel 100 because the accumulated solids are easily flushed down the drain pipe 122 into solids filter 123.
  • As shown in FIG. 6, an extremely dense number of stacks of cartridges 104 is provided by the header 108. Specifically, the header 108, as shown in FIG. 7, includes 23 openings 120, and therefore 23 porous conduits 106 and therefore 23 stacks 102 of cartridges 104. Accordingly, the volumetric flow rate that can be handled by the vessel 100 is substantially greater than the volumetric flow rate that can be handled by the vessel 44. Of course, smaller vessels with fewer stacks of cartridges and large vessels with more stacks of cartridges are anticipated.

Claims (21)

1. A contaminant removal media for removing mercury and/or arsenic from water or removing mercury from a gas by contact, comprising:
an intimate mixture of a coupling agent-reacted layered phyllosilicate, wherein the coupling agent includes a mercapto or sulfide moiety.
2. The contaminant removal media of claim 1, wherein the percentage of components is as follows:
a) layered phyllosilicate: 50 to 99.5 wt. %; and
b) coupling agent: 0.5 to 50 wt. %.
3. The contaminant removal media of claim 1 further including a phyllosilicate intercalant agent, and wherein the percentage of components is as follows:
c) layered phyllosilicate: 1-90 wt. %; intercalant agent: 10-50 wt. %; and
d) coupling agent: 0.5-50 wt. %.
4. The contaminant removal media of claim 3 wherein the percentage of components is as follows:
e) layered phyllosilicate: 35-83 wt. %; intercalant agent: 15-45 wt. %; and
f) coupling agent: 2-20 wt. %.
5. The contaminant removal media of claim 4 wherein the percentage of components is as follows:
g) layered phyllosilicate: 50-77 wt. %; intercalant agent: 20-40 wt. %; and
h) coupling agent: 2-12 wt. %.
6. The contaminant removal media of claim 5 further including an intercalant agent, and wherein the percentage of components is as follows:
i) layered phyllosilicate: 59-71 wt. %; intercalant agent: 25-35 wt. %; and
j) coupling agent: 5-9 wt. %.
7. The contaminant removal media of claim 6 wherein the percentage of components is as follows:
k) layered phyllosilicate: 65 wt. %; intercalant agent: 28 wt. %; and
l) coupling agent: 7 wt. %.
8. The contaminant removal media of claim 1, wherein the mixture is compacted in an extruder.
9. A method of removing mercury and/or arsenic from water or for removing mercury from a gas comprising contacting the water or gas with the contaminant removal media of claim 1.
10. A method of removing mercury and/or arsenic from water or for removing mercury from a gas comprising contacting the water or gas with the contaminant removal media of claim 3.
11. The mercury removal media of claim 1, wherein the coupling agent-reacted layered phyllosilicate has a particle size finer than 18 mesh, U.S. Sieve Series.
12. A contaminant removal media for removing mercury and/or arsenic from water or removing mercury from a gas, by contact, comprising:
a mixture of a layered phyllosilicate intercalated with an intercalant surface modification agent; and a coupling agent containing a mercapto or sulfide moiety intimately mixed for reaction of the coupling agent with the layered phyllosilicate.
13. A method of regenerating contaminated water containing organic and mercury or arsenic contaminants comprising:
contacting the contaminated water with an organoclay for removal of organic contaminants; and
contacting the contaminated water with the contaminant removal media of claim 1 for removal of mercury or arsenic contaminants.
14. A method of regenerating contaminated water containing organic and mercury or arsenic contaminants comprising:
contacting the contaminated water with an organoclay for removal of the organic contaminant; and
contacting the contaminated water with the contaminant removal media of claim 3 for removal of mercury or arsenic contaminants.
15. The method of claim 14 wherein the organoclay and contaminant removal media are contained in separate vessels connected in series.
16. The method of claim 14 wherein the organoclay and contaminant removal media are contained in the same vessel.
17. A method of regenerating a contaminated gas containing organic and mercury or arsenic contaminants comprising:
contacting the contaminated gas with an organoclay for removal of organic contaminants; and
contacting the contaminated water with the contaminant removal media of claim 14 for removal of mercury contaminants.
18. A method of regenerating a contaminated gas containing organic and mercury or arsenic contaminants comprising:
contacting the contaminated gas with an organoclay for removal of the organic contaminant; and
contacting the contaminated water with the contaminant removal media of claim 3 for removal of mercury contaminants.
19. The contaminant removal media of claim 1, wherein the media comprises particles having a particle size such that at least 80% by weight of the particles are finer than 5 mm.
20. The contaminant removal media of claim 19, wherein the media comprises particles having a particle size such that at least 80% by weight of the particles are finer than 3 mm.
21. The contaminant removal media of claim 20, wherein the media comprises particles having a particle size such that at least 80% by weight of the particles are finer than 2 mm.
US12/116,383 2007-06-05 2008-05-07 Coupling agent-reacted mercury removal media Abandoned US20080302733A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/116,383 US20080302733A1 (en) 2007-06-05 2008-05-07 Coupling agent-reacted mercury removal media
CN200980126655.0A CN102089260B (en) 2008-05-07 2009-04-14 Coupling agent-reacted mercury and/or arsenic ion removal media
PCT/US2009/040430 WO2009137230A1 (en) 2008-05-07 2009-04-14 Coupling agent-reacted mercury and/or arsenic ion removal media
EP09743217A EP2274257A1 (en) 2008-05-07 2009-04-14 Coupling agent-reacted mercury and/or arsenic ion removal media
CA2723417A CA2723417C (en) 2008-05-07 2009-04-14 Coupling agent-reacted mercury and/or arsenic ion removal media
US13/224,840 US8382990B2 (en) 2007-06-05 2011-09-02 Method of removing mercury and/or arsenic from water or mercury from a gas using an extruded onium ion intercalated silane coupling agent reacted layered phyllosilicate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/810,240 US7871524B2 (en) 2007-06-05 2007-06-05 Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay
US12/116,383 US20080302733A1 (en) 2007-06-05 2008-05-07 Coupling agent-reacted mercury removal media

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/810,240 Continuation-In-Part US7871524B2 (en) 2007-06-05 2007-06-05 Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/224,840 Division US8382990B2 (en) 2007-06-05 2011-09-02 Method of removing mercury and/or arsenic from water or mercury from a gas using an extruded onium ion intercalated silane coupling agent reacted layered phyllosilicate

Publications (1)

Publication Number Publication Date
US20080302733A1 true US20080302733A1 (en) 2008-12-11

Family

ID=40843351

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/116,383 Abandoned US20080302733A1 (en) 2007-06-05 2008-05-07 Coupling agent-reacted mercury removal media
US13/224,840 Expired - Fee Related US8382990B2 (en) 2007-06-05 2011-09-02 Method of removing mercury and/or arsenic from water or mercury from a gas using an extruded onium ion intercalated silane coupling agent reacted layered phyllosilicate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/224,840 Expired - Fee Related US8382990B2 (en) 2007-06-05 2011-09-02 Method of removing mercury and/or arsenic from water or mercury from a gas using an extruded onium ion intercalated silane coupling agent reacted layered phyllosilicate

Country Status (5)

Country Link
US (2) US20080302733A1 (en)
EP (1) EP2274257A1 (en)
CN (1) CN102089260B (en)
CA (1) CA2723417C (en)
WO (1) WO2009137230A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137231A1 (en) * 2008-05-07 2009-11-12 Amcol International Corporation Sulfur-impregnated organoclay mercury and/or arsenic ion removal media
WO2009137233A1 (en) * 2008-05-07 2009-11-12 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
WO2010080602A3 (en) * 2008-12-19 2010-12-16 Corning Incorporated Flow-through substrates and methods for making and using them
WO2010080613A3 (en) * 2008-12-19 2010-12-16 Corning Incorporated Coated flow-through substrates and methods for making and using them
US20110247982A1 (en) * 2010-04-13 2011-10-13 King Abdulaziz City For Science And Technology Modified adsorbent for capturing heavy metals in aqueous solution
CN104549166A (en) * 2015-01-19 2015-04-29 华南理工大学 Dimercaptopropanol modified clay mineral material, and preparation method and application thereof
KR20160040199A (en) * 2013-08-07 2016-04-12 제이엑스 닛코닛세키에너지주식회사 Method for removing mercury in hydrocarbon oil
CN108940239A (en) * 2018-09-29 2018-12-07 国电环境保护研究院 The method for controlling coal-burning power plant's fine particle and heavy metal based on modified attapulgite

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8196533B2 (en) 2008-10-27 2012-06-12 Kentucky-Tennessee Clay Co. Methods for operating a fluidized-bed reactor
CA2883357C (en) 2012-08-30 2021-04-20 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
WO2014039758A2 (en) 2012-09-07 2014-03-13 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US20140291246A1 (en) 2013-03-16 2014-10-02 Chemica Technologies, Inc. Selective Adsorbent Fabric for Water Purification
US10232381B2 (en) 2014-12-19 2019-03-19 Halliburton Energy Services, Inc. Purification of organically modified surface active minerals by air classification
WO2016126550A1 (en) * 2015-02-02 2016-08-11 Novinda Corporation Expanded, mercury-sorbent materials
US10093556B2 (en) * 2015-11-05 2018-10-09 Chevron U.S.A. Inc. Processes for removing metal particles from water
CN110038890B (en) * 2019-05-15 2019-11-26 湖北同惠生物工程有限公司 A kind of ecological, environmental protective soil remediation method
CN113072154A (en) * 2021-03-24 2021-07-06 矿冶科技集团有限公司 Treatment method and application of coalescence demercuration of mercury-containing wastewater
US11883772B2 (en) 2021-08-06 2024-01-30 Active Minerals International, Llc Product for metal adsorption

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531427A (en) * 1946-05-03 1950-11-28 Ernst A Hauser Modified gel-forming clay and process of producing same
US4033764A (en) * 1974-05-21 1977-07-05 Laporte Industries Limited Recovery of metals
US4508838A (en) * 1982-08-27 1985-04-02 Sud Chemie Aktiengesellschaft Compositions containing thiolates for removal of heavy metal ions from dilute aqueous solutions
US4960740A (en) * 1986-07-21 1990-10-02 Venture Innovations, Inc. Organophilic clay compositions
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
US20010025076A1 (en) * 1999-03-19 2001-09-27 Amcol International Corporation Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
WO2004039916A1 (en) * 2002-10-31 2004-05-13 Commonwealth Scientific And Industrial Research Organisation Fire resistant material
US20070105998A1 (en) * 2005-11-07 2007-05-10 Caiguo Gong Nanocomposite compositions and processes for making the same
US20070122327A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Pollutant emission control sorbents and methods of manufacture
US20070119300A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Methods of manufacturing bentonite pollution control sorbents
US7288499B1 (en) * 2001-04-30 2007-10-30 Ada Technologies, Inc Regenerable high capacity sorbent for removal of mercury from flue gas
US20080302729A1 (en) * 2007-06-05 2008-12-11 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US7510992B2 (en) * 2007-06-05 2009-03-31 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2656803C2 (en) 1975-12-18 1986-12-18 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Process for removing mercury from a gas or liquid
FR2628338B1 (en) 1988-03-10 1991-01-04 Inst Francais Du Petrole PROCESS FOR THE REMOVAL OF MERCURY FROM HYDROCARBONS
US5275747A (en) 1990-02-01 1994-01-04 Exxon Chemical Patents Inc. Derivatized ethylene alpha-olefin polymer useful as multifunctional viscosity index improver additive for oleaginous composition
JPH05212241A (en) * 1992-02-04 1993-08-24 Mitsubishi Heavy Ind Ltd Mercury removing agent and its production
US5512526A (en) 1995-01-06 1996-04-30 Akzo Nobel N.V. Heavy metal removal system containing clay, quaternary ammonium compound, and mercaptan
US5667694A (en) * 1995-08-28 1997-09-16 Rheox, Inc. Process for the removal of heavy metals from aqueous systems using organoclays
DE69712405T2 (en) 1996-05-30 2002-10-31 Taiyo Engineering Co Ltd Process for the removal of mercury from liquid hydrocarbons
US5989506A (en) 1996-12-18 1999-11-23 Uop Llc Process for the removal and recovery of mercury from hydrocarbon streams
US6326326B1 (en) * 1998-02-06 2001-12-04 Battelle Memorial Institute Surface functionalized mesoporous material and method of making same
US6409924B1 (en) 1998-05-14 2002-06-25 Amcol International Corporation Method for removing oil from water
US6358422B1 (en) 1998-05-14 2002-03-19 Amcol International Corporation Method and apparatus for removing oil from water including monitoring of absorbent saturation
US6232388B1 (en) 1998-08-17 2001-05-15 Amcol International Corporation Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer MXD6 nylon intercalants and nanocomposites prepared with the intercalates
US6376591B1 (en) 1998-12-07 2002-04-23 Amcol International Corporation High barrier amorphous polyamide-clay intercalates, exfoliates, and nanocomposite and a process for preparing same
US6787592B1 (en) 1999-10-21 2004-09-07 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
US6793805B2 (en) 2000-05-05 2004-09-21 Institut Francais du Pétrole Process for capturing mercury and arsenic comprising evaporation then condensation of a hydrocarbon-containing cut
US7048781B1 (en) * 2002-10-07 2006-05-23 Ada Technologies, Inc. Chemically-impregnated silicate agents for mercury control
US7081434B2 (en) 2001-11-27 2006-07-25 Sinha Rabindra K Chemical formulations for the removal of mercury and other pollutants present in fluid streams
US6749757B2 (en) 2002-08-26 2004-06-15 Amcol International Corporation Method and apparatus for removing hydrocarbons from water
US20040102332A1 (en) 2002-11-25 2004-05-27 Elementis Specialties, Inc. Compositions for drilling fluids useful to provide flat temperature rheology to such fluids over a wide temperature range and drilling fluids containing such compositions
US7575682B2 (en) 2003-11-19 2009-08-18 Amcol International Corporation Contaminant-reactive geocomposite mat and method of manufacture and use
US20050103707A1 (en) 2003-11-19 2005-05-19 Amcol International Corporation Contaminant-reactive geocomposite mat and method of manufacture and use
US7419593B2 (en) 2003-11-19 2008-09-02 Amcol International Corp. Bioremediation mat and method of manufacture and use
US20060122309A1 (en) * 2004-12-02 2006-06-08 Grah Michael D Intercalated layered silicate
US7521399B2 (en) 2005-01-25 2009-04-21 Halliburton Energy Services, Inc. Drilling fluids containing biodegradable organophilic clay
EP1702931A1 (en) * 2005-03-17 2006-09-20 Henkel Kommanditgesellschaft auf Aktien Process for manufacturing organoclay-polymer nanocomposites by gas phase polymerization
US7404901B2 (en) 2005-06-06 2008-07-29 Board Of Trustees Of Michigan State University Method for the removal of arsenic ions from water
EP1840160A3 (en) * 2006-03-30 2009-04-22 Certech Asbl Nanocomposite materials, their production and articles made therefrom
US7572421B2 (en) 2006-06-19 2009-08-11 Basf Catalysts Llc Mercury sorbents and methods of manufacture and use
US7871524B2 (en) * 2007-06-05 2011-01-18 Amcol International Corporation Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay
CN100522342C (en) * 2007-07-27 2009-08-05 浙江大学 A preparation method of organobentonite for removing water-solubility organic pollutant

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531427A (en) * 1946-05-03 1950-11-28 Ernst A Hauser Modified gel-forming clay and process of producing same
US4033764A (en) * 1974-05-21 1977-07-05 Laporte Industries Limited Recovery of metals
US4508838A (en) * 1982-08-27 1985-04-02 Sud Chemie Aktiengesellschaft Compositions containing thiolates for removal of heavy metal ions from dilute aqueous solutions
US4960740A (en) * 1986-07-21 1990-10-02 Venture Innovations, Inc. Organophilic clay compositions
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
US20010025076A1 (en) * 1999-03-19 2001-09-27 Amcol International Corporation Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
US7288499B1 (en) * 2001-04-30 2007-10-30 Ada Technologies, Inc Regenerable high capacity sorbent for removal of mercury from flue gas
WO2004039916A1 (en) * 2002-10-31 2004-05-13 Commonwealth Scientific And Industrial Research Organisation Fire resistant material
US20070194289A1 (en) * 2002-10-31 2007-08-23 Commonwealth Scientific & Industrial Research Org. a Australian Corporation Fire resistant material
US20070105998A1 (en) * 2005-11-07 2007-05-10 Caiguo Gong Nanocomposite compositions and processes for making the same
US20070122327A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Pollutant emission control sorbents and methods of manufacture
US20070119300A1 (en) * 2005-11-30 2007-05-31 Yang Xiaolin D Methods of manufacturing bentonite pollution control sorbents
US20080302729A1 (en) * 2007-06-05 2008-12-11 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US7510992B2 (en) * 2007-06-05 2009-03-31 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US7553792B2 (en) * 2007-06-05 2009-06-30 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137233A1 (en) * 2008-05-07 2009-11-12 Amcol International Corporation Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
WO2009137231A1 (en) * 2008-05-07 2009-11-12 Amcol International Corporation Sulfur-impregnated organoclay mercury and/or arsenic ion removal media
WO2010080602A3 (en) * 2008-12-19 2010-12-16 Corning Incorporated Flow-through substrates and methods for making and using them
WO2010080613A3 (en) * 2008-12-19 2010-12-16 Corning Incorporated Coated flow-through substrates and methods for making and using them
CN102325590A (en) * 2008-12-19 2012-01-18 康宁股份有限公司 The flow-through substrate and preparation and the method for using that apply
US9120082B2 (en) 2010-04-13 2015-09-01 King Abdulaziz City For Science And Technology Modified adsorbent for capturing heavy metals in aqueous solution
US20110247982A1 (en) * 2010-04-13 2011-10-13 King Abdulaziz City For Science And Technology Modified adsorbent for capturing heavy metals in aqueous solution
US8419946B2 (en) * 2010-04-13 2013-04-16 King Abdulaziz City For Science And Technology Method for removing heavy metals from contaminated water
US8921262B2 (en) 2010-04-13 2014-12-30 King Abdulaziz City For Science And Technology Modified adsorbent for capturing heavy metals in aqueous solution
AU2014303817B2 (en) * 2013-08-07 2017-07-27 Jx Nippon Oil & Energy Corporation Method for removing mercury in hydrocarbon oil
KR20160040199A (en) * 2013-08-07 2016-04-12 제이엑스 닛코닛세키에너지주식회사 Method for removing mercury in hydrocarbon oil
US20160177191A1 (en) * 2013-08-07 2016-06-23 Jx Nippon Oil & Energy Corporation Method for removing mercury in hydrocarbon oil
US9803143B2 (en) * 2013-08-07 2017-10-31 NX Nippon Oil & Energy Corporation Method for removing mercury in hydrocarbon oil
KR102208840B1 (en) 2013-08-07 2021-01-27 에네오스 가부시키가이샤 Method for removing mercury in hydrocarbon oil
CN104549166A (en) * 2015-01-19 2015-04-29 华南理工大学 Dimercaptopropanol modified clay mineral material, and preparation method and application thereof
CN108940239A (en) * 2018-09-29 2018-12-07 国电环境保护研究院 The method for controlling coal-burning power plant's fine particle and heavy metal based on modified attapulgite

Also Published As

Publication number Publication date
US20110315013A1 (en) 2011-12-29
CN102089260B (en) 2014-03-12
CN102089260A (en) 2011-06-08
CA2723417C (en) 2013-03-19
CA2723417A1 (en) 2009-11-12
US8382990B2 (en) 2013-02-26
WO2009137230A1 (en) 2009-11-12
EP2274257A1 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US8382990B2 (en) Method of removing mercury and/or arsenic from water or mercury from a gas using an extruded onium ion intercalated silane coupling agent reacted layered phyllosilicate
US8025160B2 (en) Sulfur-impregnated organoclay mercury and/or arsenic ion removal media
US7510992B2 (en) Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
US7553792B2 (en) Sulfur-impregnated and coupling agent-reacted organoclay mercury and/or arsenic ion removal media
Senturk et al. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study
AU2010330678B2 (en) Amine modified clay sorbents
WO2009017479A1 (en) Systems and methods for removal of heavy metal contaminants from fluids
US20050207955A1 (en) Mercury adsorbent composition, process of making same and method of separating mercury from fluids
US11000822B2 (en) Modified clay sorbents and methods of sorbing PFAS using the same
US7871524B2 (en) Method for removing merury and/or arsenic from water using a silane coupling agent reacted organoclay
CN114423534A (en) Process for reducing the environmental effectiveness of environmental pollutants
Yildiz et al. Adsorption of phenol and chlorophenols on pure and modified sepiolite
US7910005B2 (en) Method for removing mercury and/or arsenic from contaminated water using an intimate mixture of organoclay and elemental sulfur
Naji et al. Evaluation of modified bentonite using chemical and physical methods for removal of amoxicillin from aqueous solutions: batch and continuous study
US11332388B2 (en) Removal of selenium from water with kaolinite
Mattigod et al. Removal of mercury from aqueous streams of fossil fuel power plants using novel functionalized nanoporous sorbents
Orillano Removal of Mercury From Water Using Iron (II) Sulphide Nanoparticles and Ultrafiltration Membrane
Malsawmdawngzela Silane Functionalized Composite Materials in the Remediation of Aquatic Environment Contaminated with Some Micro-Pollutants and Heavy Metal Toxic Ions
Orazova et al. Efficiency of using East Kazakhstan natural sorbents in water purification from ions of heavy metals (Cu2+)
Cushing Adsorption of polyamine chelated copper ions onto gangue minerals and high capacity adsorbents
Soleimani et al. Using Nanoclays

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMCOL INTERNATIONAL CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, ZHEN;ABRAHAM, ROBERT;REEL/FRAME:020912/0534;SIGNING DATES FROM 20080416 TO 20080417

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION