US20090025027A1 - Systems & methods for allocating bandwidth in switched digital video systems based on interest - Google Patents

Systems & methods for allocating bandwidth in switched digital video systems based on interest Download PDF

Info

Publication number
US20090025027A1
US20090025027A1 US11/880,448 US88044807A US2009025027A1 US 20090025027 A1 US20090025027 A1 US 20090025027A1 US 88044807 A US88044807 A US 88044807A US 2009025027 A1 US2009025027 A1 US 2009025027A1
Authority
US
United States
Prior art keywords
channel
interest
sdv
requested
bandwidth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/880,448
Inventor
Michael Craner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GuideWorks LLC
Adeia Guides Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/880,448 priority Critical patent/US20090025027A1/en
Priority to CA3021825A priority patent/CA3021825C/en
Priority to AU2008279824A priority patent/AU2008279824C1/en
Priority to MX2010000845A priority patent/MX2010000845A/en
Priority to PCT/US2008/008233 priority patent/WO2009014593A2/en
Priority to CA3109127A priority patent/CA3109127A1/en
Priority to EP11005400A priority patent/EP2410739A3/en
Priority to CA2693891A priority patent/CA2693891C/en
Priority to KR1020137017178A priority patent/KR20130082184A/en
Priority to JP2010516981A priority patent/JP5282090B2/en
Priority to CN200880107702A priority patent/CN101803380A/en
Priority to CN201110303784.1A priority patent/CN102572528B/en
Priority to EP08768860A priority patent/EP2186336A2/en
Priority to KR1020107003254A priority patent/KR101587663B1/en
Publication of US20090025027A1 publication Critical patent/US20090025027A1/en
Assigned to ROVI GUIDES, INC. reassignment ROVI GUIDES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUIDEWORKS, LLC
Assigned to GUIDEWORKS, LLC reassignment GUIDEWORKS, LLC NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: CRANER, MICHAEL L.
Priority to US13/207,390 priority patent/US8627389B2/en
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APTIV DIGITAL, INC., A DELAWARE CORPORATION, GEMSTAR DEVELOPMENT CORPORATION, A CALIFORNIA CORPORATION, INDEX SYSTEMS INC, A BRITISH VIRGIN ISLANDS COMPANY, ROVI CORPORATION, A DELAWARE CORPORATION, ROVI GUIDES, INC., A DELAWARE CORPORATION, ROVI SOLUTIONS CORPORATION, A DELAWARE CORPORATION, ROVI TECHNOLOGIES CORPORATION, A DELAWARE CORPORATION, STARSIGHT TELECAST, INC., A CALIFORNIA CORPORATION, UNITED VIDEO PROPERTIES, INC., A DELAWARE CORPORATION
Priority to JP2011265148A priority patent/JP2012050145A/en
Priority to US14/148,283 priority patent/US9516367B2/en
Assigned to UNITED VIDEO PROPERTIES, INC., GEMSTAR DEVELOPMENT CORPORATION, STARSIGHT TELECAST, INC., INDEX SYSTEMS INC., TV GUIDE INTERNATIONAL, INC., ALL MEDIA GUIDE, LLC, APTIV DIGITAL, INC., ROVI CORPORATION, ROVI TECHNOLOGIES CORPORATION, ROVI SOLUTIONS CORPORATION, ROVI GUIDES, INC. reassignment UNITED VIDEO PROPERTIES, INC. PATENT RELEASE Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/262Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists
    • H04N21/2625Content or additional data distribution scheduling, e.g. sending additional data at off-peak times, updating software modules, calculating the carousel transmission frequency, delaying a video stream transmission, generating play-lists for delaying content or additional data distribution, e.g. because of an extended sport event
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/266Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/10Arrangements for replacing or switching information during the broadcast or the distribution
    • H04H20/103Transmitter-side switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/42Arrangements for resource management
    • H04H20/423Transmitter side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/02Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
    • H04H60/06Arrangements for scheduling broadcast services or broadcast-related services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/233Processing of audio elementary streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234381Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by altering the temporal resolution, e.g. decreasing the frame rate by frame skipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2387Stream processing in response to a playback request from an end-user, e.g. for trick-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25866Management of end-user data
    • H04N21/25891Management of end-user data being end-user preferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/266Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
    • H04N21/2668Creating a channel for a dedicated end-user group, e.g. insertion of targeted commercials based on end-user profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/472End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
    • H04N21/47214End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for content reservation or setting reminders; for requesting event notification, e.g. of sport results or stock market
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/654Transmission by server directed to the client
    • H04N21/6543Transmission by server directed to the client for forcing some client operations, e.g. recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6587Control parameters, e.g. trick play commands, viewpoint selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17345Control of the passage of the selected programme
    • H04N7/17354Control of the passage of the selected programme in an intermediate station common to a plurality of user terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/16Arrangements for broadcast or for distribution of identical information repeatedly

Definitions

  • This invention relates to video distribution systems and more specifically switched digital video (SDV) technologies for improving the utilization of available bandwidth on these distribution systems.
  • SDV switched digital video
  • SDV systems allocate channels to available bandwidth. Switched channels are assigned to available frequencies as they are requested.
  • Today's SDV systems are typically designed with the assumption that the number of channels being requested will not exceed the available bandwidth. Thus, bandwidth constraints do not generally result in users being blocked from accessing channels they request.
  • bandwidth constraints do not generally result in users being blocked from accessing channels they request.
  • video distribution systems evolve, however, the growing number of media sources and end-users may render this assumption invalid, as the probability that the interest for sources will exceed the amount of available bandwidth will increase.
  • systems and methods are provided for considering the interest for channels before allocation so that at any given time the channels with the greatest number of requesters are given preference in being allocated to the available bandwidth.
  • interest before allocation only channels that have met a minimum threshold of requesters are made available, keeping bandwidth available for the most requested channels.
  • systems and methods are provided for considering the interest of each allocated channel following allocation so that at any time a channel with very few users may be de-allocated from the bandwidth to make room for another channel with a relatively larger number of requesters.
  • a channel-interest manager considers the relative priority of a requested channel before allocating it to bandwidth.
  • the channel-interest manager operates between the SDV server and an SDV client running on a user's equipment (e.g., set-top box, hereinafter “STB”).
  • STB set-top box
  • the channel-interest manager calculates the priority of a currently unallocated channel and determines whether that channel should be allocated, at least in part as a function of the interest for that channel relative to other channels in the system.
  • the channel-interest manager may be any combination of hardware and software suitable for this purpose (e.g., one or more processors, memory, storage, etc., where the processors are programmed with suitable programming logic to perform the functions of the channel-interest manager).
  • the channel-interest manager may be implemented on a stand alone server, co-hosted on a server with other applications, or integrated as part of another system application (e.g., the SDV manager) and operate cooperatively or as part of a system or SDV policy manager which considers other characteristics of the system in making dynamic decisions on which channels to allocate.
  • another system application e.g., the SDV manager
  • the channel-interest manager allocates the requested channel to available bandwidth if it meets the interest threshold and there is sufficient bandwidth available. If there is insufficient bandwidth, the channel-interest manager allocates the requested channel (after de-allocating or “bumping” another channel) if the requested channel meets the interest threshold and has a greater interest relative to other allocated channels.
  • the channel-interest manager may determine that interest for a channel exceeds the interest threshold using any suitable approach.
  • a request for an SDV channel is counted when a requester “parks” on it by tuning to it in an attempt to watch it and waiting until a channel is switched in.
  • the channel-interest manager may decrement a request count when a requester tunes away.
  • the channel-interest manager may also tag a requester who tunes away as “previously interested” so that when the channel is allocated at some future time, the “previously interested” requester may be notified.
  • requests are counted when a requester “votes” for the channel's allocation in advance of the scheduled time for the programming (e.g., such as by scheduling a reminder or a recording for a program).
  • feedback may be provided to the requester as to likelihood of channel allocation.
  • the feedback can be used with an inter-active feature to give the requester the option to wait longer for possible allocation, or to tell the manager he or she is no longer interested.
  • the allocation can also occur automatically with no interaction with the user.
  • the channel-interest manager is made aware of program boundaries on switched channels. With this information, the channel-interest manager may determine that voting or parking by users on a channel at a particular timeframe represents interest in the content that is scheduled for that channel at the given timeframe (e.g., the start of the program).
  • Delays may occur in the allocation of the channel as a result of the voting and/or parking interest for the channel remaining below the threshold for the allocation of the channel. These delays might normally result in the users missing the beginning of the programming on the channel.
  • the channel interest manager when the channel interest manager detects that the channel interest for a channel may actually be a channel interest for a program beginning on that channel at a particular time but that the allocation may involve delays beyond that particular timeframe, it may buffer the channel for the users.
  • Such buffering may be accomplished by the channel-interest manager routing the channel content to a channel buffering subsystem until such time as the channel becomes available.
  • users may then be presented with the options of (a) joining the program in progress and missing the beginning or (b) watching the program from the beginning (e.g., similar to a start-over function).
  • the program is watched in real time, it's viewing may run beyond the beginning of the next program scheduled on this or another channel and this may be undesirable to the user. Therefore, in some embodiments, an option of watching the program in faster than real time is provided, or alternatively an option of skipping through some portions of the program may be enabled.
  • Audio may be pitch controlled (e.g., by means of an audio processing technique such as the complex cepstrum) to maintain as close to the original pitch as the real-time playback while allowing the audio to be sped up in synchronization with the video.
  • the SDV client may offer the requester advertisements while the requester waits for allocation of bandwidth for a channel.
  • a delayed allocation is anticipated, a flexible number of advertisements or “filler” programming is provided (e.g., locally stored on a user's hard drive) and programs are pre-edited so they occupy less than the full time slot to accommodate these additional up-front advertisements or filler without loss of meaningful content (e.g., the conclusion to a detective program).
  • the channel-interest manager may allocate bandwidth for the channel using any suitable approach.
  • a requested switched channel (or a previously switched in channel) may be degraded to a version that requires less bandwidth (e.g., SD rather than HD) before allocation is made.
  • requested channels meeting the interest threshold may “bump” a previously allocated channel with lower relative interest.
  • the channel-interest manager may consider various “bump parameters” before de-allocating a channel. For example, the channel-interest manager may compare how long an allocated channel has been allocated with a “no-bump” threshold time and decide not to bump a program that might otherwise have been bumped if not for the fact that the program's allocation time exceeded this no-bump threshold and its de-allocation might be particularly disruptive to a viewer.
  • a no-bump threshold might be, for example, ten minutes, or long enough for a watcher to become somewhat involved in the program he/she is watching.
  • the channel-interest manager may work with a revenue manager and/or a trend manager and the interest may be considered in light of revenue impacts and trends before a channel is de-allocated.
  • a revenue manager is software and/or hardware (e.g., one or more processors, memory, storage, etc., where the processors are programmed with suitable programming logic to perform the functions of the revenue manager) that compares the revenue potential (e.g., as a result of associated advertisement or pay-per-view fees) of the previously allocated channel to a requested channel before deciding whether or not to de-allocate the previously allocated channel.
  • a trend manager is software and/or hardware (e.g., one or more processors, memory, storage, etc., where the processors are programmed with suitable logic to perform the functions of the trend manager) that measures the previously allocated channel's viewer activity over time before de-allocation. For example, if several users have tuned away from a channel at a given time it could just be because a commercial is present at that time, rather than an indication of waning interest. The number of users currently tuned at any given instant might not be an accurate indication of interest in such a scenario, and de-allocation of the channel would not be desirable or appropriate unless the general trend was moving in the direction of waning viewership over time.
  • a trend manager and a channel-interest manager may de-allocate a first channel relative to another if the viewership of the first channel is below the other channel, however, when a revenue manager is employed, it may bring into consideration the revenue associated with viewership of the first channel as well. So, for example, if the first channel has advertisement spots that paid the video service provider twice per viewer what the advertisement spots on the other channel paid, it may be worth maintaining the allocation of the first channel until viewership of the first channel dropped below half viewership of the other channel.
  • the trend manager would be invoked to insure that the maximized revenue trend is likely to be sustained.
  • the interest management system may offer a requester, or a bumped-user, one or more options when a channel is not allocated immediately upon request.
  • a requester may be provided with the option to watch the unavailable program as a pay-per-view program.
  • the SDV channel may then temporarily be provided as a VOD stream and the user may be charged.
  • the requester may be provided the option to set up a recording to record the program if it becomes available at a later time on a broadcast channel or via a switched channel at a time (e.g., early morning) when demand for bandwidth may have decreased.
  • the requester or bumped-user may be provided with an option to watch related content.
  • the requester may be provided with an option to watch content that is popular at the moment. This feature may be extended in some embodiments to notify all users when a particular channel is extremely popular at any given time (e.g., breaking news).
  • the channel-interest manager detects program overruns or other last minute scheduling changes associated with programs on non-SDV channels (e.g., broadcast channels). The channel-interest manager may then compare the number of viewers interested in watching these program overruns with the number of viewers interested in watching the regularly scheduled programming for those channels. This statistic may then be sent to the video service provider for consideration before determining which program to allocate to its regularly allocated broadcast bandwidth and which to make optionally available (subject to interest and available bandwidth) on its switched bandwidth allocation. The program not chosen for the regular broadcast bandwidth may be provided via SDV if the interest threshold is met.
  • non-SDV channels e.g., broadcast channels.
  • the interest management system may cause a message to be displayed to a user via the on-screen display of a video terminal (e.g., STB) providing the user with the option to continue to watch the currently watched program or watch “House.” Then, depending on interest, the user may be switched (seamlessly or not) to a channel where he can either watch the continuation of the overrun game or the episode of “House.” In some embodiments, an option may also be provided (e.g., on a dual tuner STB) to record the program that is not watched.
  • a video terminal e.g., STB
  • an option may also be provided (e.g., on a dual tuner STB) to record the program that is not watched.
  • the overrun may not be made available at all and this fact may be provided to the potential watchers.
  • channels of the SDV system are assigned to tiers. For example, there may be one SDV premium tier and discount tiers 1 , 2 , 3 , etc. Lower tiers may, for example, be associated with a larger tune delay (all the way to not available) and a lower probability of being allocated.
  • the channel-interest manager may also allocate bandwidth for a program in a mixed-service system as a function of one channel's interest relative to another's and in some embodiments, additionally, the impact on revenue. For example, the channel-interest manager may consider the relative priority of VOD and SDV by considering the interest and revenue potential of each. In this way, VOD and SDV are competing for the same bandwidth and when no bandwidth is left, one channel must be blocked. In this example, the channel-interest manager allocates the bandwidth to the channel with the higher priority based on interest and revenue potential with the interest “registered” in advance by any of the mechanisms discussed thus far, including trending of advance requests to watch a particular program, consideration of trends for related programs or channels, consideration of the trend of users who watch a channel through program changes, etc.
  • Emergency Alerts may be provided using a switched channel. This makes a good deal of sense given that Emergency Alerts are few and far between and it is thus wasteful to allocate a full channel to emergency alert when it is rarely watched.
  • emergency alerts are always assumed to be on non-switched channels because of their importance and because of the classical way in which emergency alert are handled in video distribution systems such as Cable systems.
  • blocking probability is inversely proportional to the interest for a channel during a given window of time (e.g., the “interest assessment interval”).
  • the EAS switched channel is treated as a special case by a STB wherein requests for it are delayed by a random backoff before being sent to the SDV server.
  • all force tunes are treated with a random backoff before request in anticipation of these force tunes being sent to multiple terminals concurrently.
  • a flag is sent with a force tune to indicate that it is a broadcast or groupcast force tune and therefore should result in a random backoff before the channel is requested.
  • the channel-interest manager receives numerous requests that exceed the interest threshold, the EAS channel is then allocated to bandwidth that is ordinarily free for other channels absent an emergency.
  • the EAS channel tuning information may be stored in a carousel data feed with a time to live of infinity (as a special mechanism only used for EAS) so that it persists in the carousel feed as an “active” channel and does not require a server response of which frequency and program number to use to tune the channel.
  • emergency alert channel tuning can be very fast.
  • the EAS channel is listed as active in the carousel, it may not actually be allocated to the bandwidth until the alert is active. This embodiment involves notification of the server of the alert event, in which case the server switches the appropriate EAS program into the carouseled frequency and program number.
  • the purpose of having the channel listed in the carousel is so that the STBs will know where to tune very quickly without having to request the channel from the server.
  • the EAS channel is typically “hidden” from the user.
  • the frequency and program number that is “reserved” for EAS may actually be in use for a “visible” channel.
  • a hidden virtual channel number and a specific frequency and program number may be set aside for EAS.
  • frequency 550 , program # 3 and an infrequently watched channel such as “the muppets channel” may be allocated to virtual channel 53 , frequency 550 , program # 2 , the virtual channel number 53 being visible to the user.
  • the channel-interest manager primarily with respect to single-tuner STBs. However, it is anticipated that the manager will function similarly with respect to multiple-tuner STBs and STBs with the ability to handle multiple channels per tuner (e.g., multiple IP stream-based video/audio services or multiple channels within a multiple-service transport multiplex).
  • multiple channels per tuner e.g., multiple IP stream-based video/audio services or multiple channels within a multiple-service transport multiplex.
  • a multiple-tuner STB includes multiple tuners each with at least one associated decoder. Such a STB can tune to more than one channel at a time.
  • a dual-tuner STB for example, can tune to two frequencies simultaneously. Each tuner can extract a program from the multiplex it finds at its tuned frequency and an associated decoder can be used to decode the program. Thus, a dual tuner STB may be able to tune, extract, decode, and display two programs from two channels simultaneously. Note that the frequency and program number tuned by one tuner may be the same or different than the frequency or program number tuned by the other tuner.
  • the channel-interest manager may receive and manage requests and interest on a per-tuner basis instead of on a per-STB basis.
  • a single STB may meet that threshold of two by attempting to tune to the channel with both tuners.
  • two STBs, each STB tuned with one tuner to channel A, for example, and each STB tuned with the other tuner to channel B, for example, may result in an interest of two being logged for each of channels A and B at the channel-interest manager.
  • both a tuner identifier and a STB identifier may be sent in the channel-request message from the STB to the channel-interest manager.
  • there are multiple decoders available to each tuner So, for example, such a STB with only a single tuner decodes and displays more than one channel at a time.
  • the channel-interest manager may receive and manage requests and interest on a per-decoder basis instead of on a per-STB or per-tuner basis.
  • a threshold of two set for a channel it may be possible for a single-tuner STB with a concurrent decode capability of two decoders to meet that threshold by attempting to decode the same program from the same frequency using both decoders to the channel with both tuners.
  • a decoder identifier in addition to a STB identifier, and perhaps a tuner identifier may be sent in the channel-request message from the STB to the channel-interest manager.
  • IP-video based STBs including those which conform to the DOCSIS standard as well as those that utilize fiber to the curb or fiber to the home technology, typically are of the latter type of system which involve having multiple decoders per tuner.
  • the tuner may be replaced with the appropriate fiber optic receiver and switching circuitry.
  • FIG. 1 is a diagram of an illustrative switched digital video system in accordance with one embodiment of the present invention
  • FIG. 2 is a flow chart of an illustrative method for allocating bandwidth after first considering interest in accordance with one embodiment of the present invention
  • FIG. 3 is a flow chart of an illustrative method for providing options to a requester when a channel is not available in accordance with one embodiment of the present invention
  • FIG. 4 is a flow chart of an illustrative method for allocating bandwidth based on interest when a currently-allocated channel fails due to failed QAM in accordance with one embodiment of the present invention
  • FIG. 5 is a flow chart of an illustrative method for de-allocating a relatively less requested channel in accordance with one embodiment of the present invention
  • FIG. 6 is a flow chart of an illustrative method for considering parameters before de-allocating a channel in accordance with one embodiment of the present invention
  • FIG. 7 is a flow chart of an illustrative method for degrading channels when bandwidth is becoming scarce in accordance with one embodiment of the present invention.
  • FIG. 8 is a flow chart of an illustrative method for detecting allocated program overruns and providing options based on interest in accordance with one embodiment of the present invention.
  • FIGS. 9A-9P show illustrative interactive media guidance application menu display screens in accordance with various embodiments of the present invention.
  • FIG. 1 shows an illustrative switched digital video system in accordance with one embodiment of the present invention.
  • services and related content flow from sources 111 on the left, to user's set-top boxes (STBs) 105 on the right.
  • Sources 111 may be any suitable combination of hardware and software for providing the indicated services to edge device 110 via network 109 .
  • Source 112 provides: data and voice services (e.g., via modular cable modem termination system (M-CMTS) 112 which provides IP services over cable according to the data over cable system interface specifications (DOCSIS) published by CableLabs at www.cablelabs.com) such as video over IP and voice over IP (VOIP) services.
  • M-CMTS modular cable modem termination system
  • DOCSIS data over cable system interface specifications
  • VOIP voice over IP
  • Source 113 provides video for a video-rich-navigation (VRN) based interactive program guide (VRN guides are described in, for example, U.S. patent application Ser. No. 11/395,380, filed Mar. 30, 2006, which is hereby incorporated by reference herein in its entirety).
  • Source 114 provides television channels as video streams for a switched digital video service.
  • Source 115 provides video streams for a video-on-demand service. This list of sources is illustrative and it should be understood that any suitable services 111 may be included in the switched digital video system (e.g., Internet services).
  • Sources 111 - 115 modulate and packetize their services for transmission over network 109 to edge device 110 .
  • Network 109 may be, for example, a gigabit Ethernet network, and sources 111 - 115 may provide their services via TCP/IP and Ethernet and may include use of MPEG transport protocol.
  • Edge device 110 e.g., a Harmonic NGS9000 edge-QAM manufactured by Harmonic Corporation of Sunnyvale, Calif.
  • Each modulator e.g., quadrature amplitude modulators
  • a 256-QAM modulator will accept multiple digital transport streams (comprising a multiplex of approximately 45 Mbps) and modulate it to fit within an analog bandwidth of 6 MHz on a cable plant.
  • Edge device 110 receives the services from network 109 and, under the control of edge resource manager (ERM) 108 , allocates portions of modulators to the services. For example, edge device 110 may receive a command from ERM 108 to connect to a 3 Mbps service from network 109 that originated from a broadcast program source feeding SDV block 114 . It may then allocate a program within one of its internal 256-QAM modulators.
  • ERP edge resource manager
  • Edge device 110 may allocate a portion of a given QAM to VOD 115 , instead of VRN 113 , depending on the instructions from ERM 108 . Or, edge device 110 may allocate QAMs (or not) among different channels of the SDV service 114 . In this regard, QAMs may be shared flexibly and dynamically across services, or allocated in a fixed manner to specific SDV channels. For example, in a given configuration, four QAMs of an eight QAM edge device may be allocated to switched channels, two to VOD, one to cable modem, and one to VRN.
  • Edge device 110 allocates and de-allocates QAMs under the control of ERM 108 .
  • ERM 108 may be any suitable combination of hardware and software for performing its features described herein. For example, it may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing its features described herein.
  • ERM 108 activates a controllable switch in network 109 (not shown) between network 109 and edge device 110 to direct what services (or portions of services) are coupled to the inputs of edge device 110 .
  • ERM 108 instructs edge device 110 to QAM modulate an input signal onto a carrier frequency.
  • ERM 108 may specify a QAM and track what services or channels are modulated on given QAMs (e.g., using a lookup table), or may simply instruct edge device 110 to allocate a given input and edge device 110 returns the carrier frequency and program number.
  • ERM 108 typically informs switched-services session manager (session manager) 101 of the carrier frequency and program number where the channel can be found. The session manager 101 in turn inserts this information into the active channels list in carousel data feed 106 .
  • Carousel data feed 106 acts as a quick-lookup channel map for set-top boxes 105 .
  • Carousel 106 may be transmitted in-band with, or out-of-band from, the other channels and/or services on a cable plant.
  • Edge device 110 modulates services and channels and transmits them to STBs 105 of a plurality of subscribers over, for example, an analog or digital cable plant or via an analog or digital terrestrial broadcast system.
  • FIG. 1 shows only the embodiment where edge device 110 transmits the channels and/or services over a single path 116 .
  • Path 116 may be a standard hybrid fiber/coax path, full fiber path or satellite, or other high speed data path.
  • IP Internet Protocol
  • STBs 105 include switched digital video clients 107 .
  • clients 107 communicate with an interactive media guidance application also implemented on the STBs 105 , such as an interactive television program guide, via a suitable application programming interface (the guide application is not shown to avoid over-cluttering the figure).
  • the interactive media guidance application includes switched digital video functionality.
  • client 107 runs on STB 105
  • any equipment suitable for accessing SDV may be used.
  • STB 105 may be any suitable settop such as, for example, a DCT 2000, 2500, 5100, 6208 or 6412 set-top box provided by Motorola, Inc.
  • the STB 105 may include any suitable control circuitry, display circuitry, communications circuitry, memory, etc.
  • the control circuitry may include one or more tuners (e.g., analog or digital tuners), encoders and decoders (e.g., MPEG encoders and decoders), processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry (e.g., cable modem and ATSC 256QAM receiver circuitry), input/output circuitry (e.g., graphics circuitry), and any other suitable components for providing analog or digital television programming in an SDV system.
  • tuners e.g., analog or digital tuners
  • encoders and decoders e.g., MPEG encoders and decoders
  • processors e.g., MIPs and/or Motorola 68000 family processors
  • memory e.g., RAM, ROM, flash memory, and
  • a display device such as a television, and a remote control, may be coupled to STB 105 to display various displays and receive user inputs.
  • the operation of control and other circuitry in a STB is well known to those skilled in the art.
  • the control circuitry is adapted to receive user input from input device 108 , execute the instructions of client 107 (using suitable microprocessors, memory, etc.), execute the instructions of any other interactive applications (e.g., an interactive television program guide), and direct the display circuitry to generate a display.
  • client 107 detects a user channel/service change and determines whether the desired channel or service is currently allocated by examining carousel 106 .
  • a user may indicate a desire to change channels by, for example, tuning using arrow keys on a remote, entering a channel number on a remote, or using any suitable interactive media guidance function that allows the user to select a program or source.
  • a user may indicate a desire to change services by, for example, linking to a VOD service from a television channel, or accessing a service via the interactive media guidance application.
  • carousel 106 is not used or only used under some circumstances.
  • client 107 will first check the carousel when it desires to tune to a channel to see if it has already been allocated. If a channel has not already been allocated, client 107 issues a request to switched-services session manager 101 for the frequency of the QAM and program number within that QAM frequency where the channel or service may be found.
  • session manager 101 determines whether there is sufficient bandwidth and/or interest for the requested channel. In response to determining if sufficient interest exists, session manager 101 instructs ERM 108 to allocate bandwidth for the channel and, if necessary, to first de-allocate another channel or service to free-up the required bandwidth.
  • a channel-interest manager 102 which determines the interest for different channels and services, is embedded within switched-services session manager 101 .
  • Channel-interest manager 102 can work alone, or in cooperation with revenue manager 103 , which assigns priority based on potential revenue of each channel or service that may be allocated or potential loss associated with each channel that may be deallocated, and trend manager 104 , which considers viewer trends to determine if viewers are active.
  • Channel-interest manager 102 may be any suitable combination of hardware and software for performing its features described herein.
  • channel-interest manager 102 may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing its features described herein.
  • Trend manager 104 may be any suitable combination of hardware and software for performing the features described herein.
  • trend manager 104 may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing the features described herein.
  • Session manager 101 communicates with channel-interest manager 102 , which then performs the algorithms necessary to determine if a channel is to be allocated to bandwidth and if a currently allocated channel may be bumped (See FIGS. 2-8 ). Session manager 101 may also communicate with revenue manager 103 and trend manager 104 in a like manner and/or other external information sources that may aid in the decision.
  • Switched-services session manager 101 then tells ERM 108 that an unallocated channel 111 should be allocated to available bandwidth (either already available or available after bumping another channel).
  • ERM 108 communicates with edge device 110 to first deallocate any bumped channels, (or alternatively degrade HD channels to SD, or take other measures to free bandwidth, including changing the partition of QAMs between service types, e.g., VOD and SDV), and allocate the new channels to edge device 110 .
  • the new channel is then linked from the network to the newly allocated QAM program number.
  • network 109 is a gigabit Ethernet network and edge device 110 is linked to network 109 via a switch.
  • edge device 110 When edge device 110 wants to connect to a service that is carried over IP on the gigabit network 109 , it registers a multicast join with the switch. Edge device 110 communicates the frequency for the new channel to ERM 108 , which in turn provides this information to session manager 101 , which updates the channel map in carousel 106 . Edge device 110 modulates the requested channel on the allocated frequency and program number where it is ultimately received by STB 105 . STB 105 receives the new frequency for the channel by checking the channel map in carousel 106 or via direct response to a channel tune request via session manager 101 and tunes to the frequency/program number to watch the program.
  • the Emergency Alert System (EAS) channel is provided using SDV.
  • channel-interest manager 102 receives numerous requests such that the interest quickly exceeds a interest threshold set for channel allocation.
  • the EAS channel is thus allocated to bandwidth that is ordinarily free for other channels absent an emergency.
  • the EAS channel information may be included in carousel data feed 106 with a time to live of infinity (as a special mechanism only used for EAS) so that it persists in the carousel feed but on a hidden channel that is not tunable directly by a user.
  • EAS channel such that unlike other switched channels in the carousel, it is never really allocated to the bandwidth until the interest threshold is met even though it is shown as active in the carousel so that the clients 107 of STBs 105 may quickly determine where to direct the STB's to tune without having to request the channel from the server.
  • ERM 108 directs Edge device 110 to switch in the channel for the EAS (not shown) to the designated QAM frequency and program number.
  • Clients 107 respond to the alert by examining the carousel and directing STBs 105 to tune to the indicated QAM frequency and program number.
  • STB requests for EAS channel are preceded with a random backoff and the first STB's request for the EAS channel that gets through the session manager causes ERM 108 to allocate the EAS channel.
  • the session manager 101 updates the channel map in the carousel to reflect the EAS channel as active.
  • FIG. 2 shows an illustrative method for allocating bandwidth based on interest in accordance with one embodiment of the present invention.
  • the method in FIG. 2 is carried out by channel-interest manager 102 shown in FIG. 1 .
  • Channel-interest manager 102 ( FIG. 1 ) keeps a dynamic channel interest calculation that is updated (step 206 ) when an unallocated channel is requested from STB 105 ( FIG. 1 ).
  • Channel interest may include many different request types to help it prioritize which channels will ultimately be allocated. Some exemplary request types are parking-based requests and voting-based requests, such as recording-based requests and reminder-based requests.
  • the various request types may be “weighted” using any suitable weighting algorithm. The weighting algorithm may be used in calculating the channel interest according to step 206 .
  • parking-based requests may be weighted more heavily than voting-based requests, and, even among votes, recording-based requests may be weighted more heavily than reminders.
  • the algorithm for determining interest in the channel includes a weighted sum of these requests.
  • a parking request When a user attempts to tune to a channel that is presently unallocated and the user “parks” (i.e., does not tune away from) on the channel in anticipation of eventual interest-dependent allocation, this is classified as a parking request. Such a request may or may not be explicitly understood to the user as “parking.” For example, in some embodiments, when a user attempts to tune to a switched channel, the user may be presented with a “one moment please” (OMP) message while the system determines whether or not to allocate the channel based on interest measured, in one case, within a specified window of time.
  • OMP one moment please
  • this window of time is small enough (e.g., less than six seconds) and the decision to allocate the channel is made relatively quickly, the OMP will be removed, the STB will tune to the newly allocated channel, and there may be no explicit indication to the user that any parking and/or allocation decision was going on behind the scenes. If, however, the decision is made to not allocate the channel, or if the decision will take longer, in some embodiments, various degrees of feedback may be provided to the user relating this information to them. This feedback may be in the form of a text message (e.g., “The requested channel is presently unavailable.”) or a graphic (e.g., a bar graph showing interest relative to threshold) or combinations of the two.
  • a text message e.g., “The requested channel is presently unavailable.”
  • a graphic e.g., a bar graph showing interest relative to threshold
  • a user “parks” on a channel, they are executing a persistent request to watch a program which has just substantially started or is in progress.
  • a distinction is provided between requesting a channel and requesting a program on that channel.
  • a user may choose to “vote” for a channel or a program on a channel.
  • voting-based requesting a user may vote concurrently for one or more channels (or programs) he may wish to watch.
  • parking can be seen as a special case of voting.
  • voting a user may vote for multiple different channels or programs to be allocated, in some situations, specifying relative priority.
  • the priority may be considered in the weighting algorithm used to calculate channel interest.
  • a user may also vote by recording a channel or program on a channel or by setting a reminder for a program on a channel.
  • recording-based requests and reminder-based requests may be weighted as less than a full request since the requester may ultimately decide not to watch the channel.
  • session manager 101 receives a request for a presently unallocated channel from a STB.
  • Channel-interest manager 102 receives a request from client 107 ( FIG. 1 ) by any of the methods discussed above (“parking” on a presently unallocated channel in anticipation of it being allocated or “voting” for a channel).
  • session manager 101 ( FIG. 1 ) communicates with ERM 108 ( FIG. 1 ) to measure the amount of available bandwidth (step 202 ) and then classifies the bandwidth as open, scarce, or full (step 203 ).
  • a classification of open signifies that there is ample space on the bandwidth to allocate a substantial number of new requests, scarce signifies that only a limited amount of space remains, and full signifies that no space remains. These classifications may be based on any threshold amount of space that the ERM programmer determines appropriate.
  • the bandwidth is open, the requested channel is allocated (step 204 ). If the bandwidth is scarce or full, session manager 101 logs the originator (STB) of the request, tags that requester as “interested” (step 205 ), and updates the channel interest for that channel (step 206 ).
  • STB originator
  • channel-interest manager 102 compares the interest and the interest threshold (step 207 ). While the interest remains lower than the threshold, channel-interest manager 102 ( FIG. 1 ) calculates the probability of allocation (step 208 ) and then sends that probability to client 107 ( FIG. 1 ) previously marked “interested” (step 209 ). The client 107 ( FIG. 1 ) then gives the requester options while waiting for allocation (step 210 ) (e.g., FIG. 3 ). Once the interest for an unallocated channel exceeds the interest threshold, the channel is allocated subject to whether there is another channel that can be bumped based on low relative channel interest (e.g., FIGS. 5 and 6 ) or whether the channel has lower quality version available (e.g., SD version rather than HD version as shown in FIG. 7 ). These conditions will be discussed in greater detail in FIGS. 5-7 .
  • FIG. 3 shows an illustrative method for providing a requester options when a channel is not available in accordance with one embodiment of the present invention.
  • client 107 When a channel is not available (or made available), client 107 ( FIG. 1 ) simultaneously gives the requester a number of options ( FIG. 2 , step 210 ). In one option, the requester may choose to watch “related content” (step 301 ). If this option is chosen, client 107 ( FIG. 1 ) retrieves an allocated channel frequency from carousel 106 ( FIG. 1 ) with similar content as the channel requested and sends it to client 107 ( FIG. 1 ) so that STB 105 ( FIG. 1 ) may tune to that channel (step 302 ). Session manager 101 ( FIG.
  • session manager 101 may classify channels as related based on any suitable method. For example, session manager 101 may classify all channels with common titles as related (e.g., “Intro to Pilates” and “Pilates for Healthy Living” would be classified as related channels based on the common word “Pilates” in the title).
  • channel-interest manager 102 ( FIG. 1 ) continuously updates the probability of allocation as the requester waits (i.e., “parks”) (step 304 ).
  • Channel-interest manager 102 ( FIG. 1 ) updates the channel interest as additional requests are made for the same channel and recalculates the likelihood of allocation feedback, which is dynamically available to the waiting requester.
  • channel-interest manager 102 ( FIG. 1 ) decrements the counter (those not actively waiting are not included in the channel interest calculation) and tags the requester as “previously interested” (step 305 ).
  • the “previously interested” requesters are notified (step 307 ) by session manager 101 ( FIG. 1 ) sending a message to those STB clients 105 ( FIG. 1 ).
  • the channel-interest manager 102 may be aware of program boundaries on switched channels. With this information, the channel-interest manager 102 ( FIG. 1 ) may determine that voting or parking by users on a channel at a particular timeframe represents interest in the content that is scheduled for that channel at the given timeframe (e.g., the start of the program). Delays may occur in the allocation of the channel as a result of the voting and/or parking interest for the channel remaining below the threshold for the allocation of the channel. These delays might normally result in the users missing the beginning of the programming on the channel.
  • the channel interest manager when the channel interest manager detects that the channel interest for a channel may actually be a channel interest for a program beginning on that channel at a particular time but that the allocation may involve delays beyond that particular timeframe, it may buffer the channel for the users. Such buffering may be accomplished by the channel-interest manager 102 ( FIG. 1 ) routing the channel content to a channel buffering subsystem until such time as the channel becomes available. Upon allocation of the channel, users may then be presented with the options of (a) joining the program in progress and missing the beginning or (b) watching the program from the beginning (e.g., similar to a start-over function).
  • an option of watching the program in faster than real time is provided, or alternatively an option of skipping through some portions of the program may be enabled.
  • any delay in the start of the program while waiting for allocation may be remedied by playing the channel at a faster speed (e.g., 1.02 ⁇ real time playback) (step 309 ).
  • This option may be implemented automatically (step 310 ) or by user-interaction (step 311 ) as explained above
  • a caching server e.g., a server with suitable tuners, decoders, and storage to cache unallocated channels
  • the caching server may detect and cache the unallocated channels.
  • edge resource manager 108 FIG.
  • edge device 110 may direct edge device 110 to include the stream from the cache server for the channel, instead of the stream from the actual source of the video.
  • the fast-playback (and other trick play functions, may be provided by the server or, alternatively, handled in local cache by the client 107 .
  • channel-interest manager 102 FIG. 1
  • channel-interest manager 102 can include the “previously interested” viewers in its channel interest calculation; thus, decrementing the count in step 306 would not be necessary.
  • the requester may also have the option of watching displayed advertisements or other alternative content while waiting for allocation (step 312 ).
  • the alternative content may be retrieved by client 107 ( FIG. 1 ) from storage on STB 105 ( FIG. 1 ).
  • switched-services session manager 101 FIG. 1
  • Switched-service session manager 101 ( FIG. 1 ) will then alert client 107 ( FIG. 1 ) to the presence of the alternative content.
  • client 107 ( FIG. 1 ) will check the carousel and, based on a flag in the carousel or an indicator from the alert, select the alternative content.
  • Another option allows the requester to watch the most popular channel at that moment in time (step 313 ). If the requester is interested in this option, channel-interest manager 102 ( FIG. 1 ) the channel with the highest interest, measured by the counter, to client 107 ( FIG. 1 ) along with its corresponding frequency retrieved from carousel 106 ( FIG. 1 ) (step 314 ). Client 107 may search the carousel for the most popular channel and display it for the user (e.g., by controlling a tuner in STB 105 ( FIG. 1 )).
  • a final option embodied in FIG. 3 gives the requester a choice to pay for an unallocated channel, rather than wait for possible allocation (step 315 ).
  • the channel may be temporarily provided as VOD or as tier 1 SDV and the requester is charged (step 316 ).
  • a certain amount of bandwidth is reserved for premium or pay services that is not available in the general pool of bandwidth available for basic switched services. If a user wishes to pay for access to this reserved bandwidth, the service that he parked on or voted for is switched into this reserved bandwidth, the user is charged, and his settop is provided the information that will allow it to tune to the newly allocated channel.
  • this channel may optionally be encrypted and that typically this channel is not added to the active channel list in the carousel, since that would allow other users to access it as well.
  • the channel may be paid for by one user and then made available to others users for free or for a reduced rate that may be a function of the number of paying users.
  • additional paying users may result in discounts to the first paying user.
  • VOD allocation for pay is managed similarly. Though a channel may not be allocated to the general pool of resources for free, it may be buffered to a subsystem such as a VOD server. If a user then wishes to pay for the service, it may be spooled directly from the VOD server in the manner it is typically done. In such cases, the user may or may not be given trick play options on the service.
  • revenue manager 103 may be any suitable combination of hardware and software for performing its features described herein.
  • revenue manager 103 may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing its features described herein.
  • channels of the SDV system are assigned to tiers. For example, there may be a SDV premium tier and discount tiers 1 , 2 , 3 , etc. Lower tiers may, for example, be associated with a larger tune delay (all the way to not available) and lower probability of being allocated. Channels may be assigned to higher or lower tiers based on observed or predicted interest, or the expected “take” or profitability of the channel. Each tier may have a certain number of reserved QAMs. In this way, more popular or higher tier channels have a higher probability of being allocated to the QAM and a lower tuning delay. For example, some channels in “Tier 1 ” may have a guaranteed allocation.
  • FIG. 4 shows an illustrative method for allocating bandwidth based on interest when a currently-allocated channel fails due to failed QAM in accordance with one embodiment of the present invention.
  • session manager 101 FIG. 1
  • ERM 108 FIG. 1
  • step 402 the amount of available bandwidth
  • step 403 classifies the bandwidth as open, scarce, or full. If the bandwidth is full, the interest for the failed QAM is considered by channel-interest manager 102 ( FIG.
  • a classification of open signifies that there is ample space on the bandwidth to allocate a substantial number of new requests, scarce signifies that only a limited amount of space remains, and full signifies that no space remains. These classifications may be based on any threshold amount of space that the ERM programmer determines appropriate.
  • the bandwidth is open, the failed channel is reallocated (step 404 ). If the bandwidth is scarce or full, channel-interest manager 102 ( FIG. 1 ) compares the channel interest and the interest threshold ( FIG. 2 , step 207 ) and treats the failed channel as a requested channel as in FIG. 2 (see FIG. 2 , steps 207 - 210 ).
  • FIG. 5 shows an illustrative method for de-allocating a relatively less requested channel in accordance with one embodiment of the present invention.
  • Channel-interest manager 102 ( FIG. 1 ) compares the number of users on currently allocated channels with the channel interest for a requested channel (step 501 ). While the channel interest for a requested channel remains lower than the current number of users on a current channel, ERM 108 ( FIG. 1 ) does not allocate the requested channel to QAM 110 ( FIG. 1 ) (step 502 ) and channel-interest manager 102 ( FIG. 1 ) continues the comparison (step 501 ). Once the interest for an unallocated channel exceeds the number of users for any allocated channel, session manager 101 ( FIG. 1 ) considers de-allocating that allocated channel as depicted in FIG. 6 .
  • FIG. 6 shows an illustrative method for considering various parameters before de-allocating a channel in accordance with one embodiment of the present invention.
  • Channel-interest manager 102 ( FIG. 1 ) compares the number viewers of a channel selected for de-allocation with a non-bump threshold (NBT) (step 601 ). While the number of viewers remains lower than the NBT, session manager 101 ( FIG. 1 ) instructs ERM 108 ( FIG. 1 ) not to de-allocate that channel from QAM 110 ( FIG. 1 ) (step 602 ). Once the number of viewers exceeds the NBT, session manager 101 ( FIG. 1 ) may instruct ERM 108 ( FIG.
  • NBT non-bump threshold
  • session manager 101 ( FIG. 1 ) to de-allocate that channel based on the amount of time that the allocated channel has been running (step 603 ). While the amount of running time remains lower than the NBT, session manager 101 ( FIG. 1 ) does not instruct ERM 108 ( FIG. 1 ) to de-allocate that channel from QAM 110 ( FIG. 1 ) (step 604 ). If, in the alternative, the running time exceeds the NBT, session manager 101 ( FIG. 1 ) may communicate with trend manager 104 ( FIG. 1 ), which stores viewer trends (step 605 ). Viewer trends may include any appropriate external viewer or program information (e.g., the program is being interrupted by a commercial).
  • the session manager 101 does not instruct ERM 108 ( FIG. 1 ) to de-allocate that channel from QAM 110 ( FIG. 1 ) (step 606 ) if trend manager 104 ( FIG. 1 ) returns that the inactivity is due to a commercial and not lack of interest. However, if trend manager 104 ( FIG. 1 ) returns that the interest-level for the allocated channel has declined, sessions manager 101 ( FIG. 1 ) instructs ERM 108 ( FIG. 1 ) to de-allocate that channel from QAM 110 ( FIG. 1 ) and to allocate the requested channel 111 ( FIG. 1 ) in its place (step 607 ). The bumped user is then given new viewing options including: watch as pay-per-view, watch related content, watch content of interest, wait for re-allocation, etc. (See FIG. 3 ).
  • FIG. 7 shows an illustrative method for degrading channels when bandwidth is becoming scarce in accordance with one embodiment of the present invention.
  • ERM 108 ( FIG. 1 ) is continuously checking edge device 110 ( FIG. 1 ) to determine if the bandwidth is becoming scarce (step 701 ). While the bandwidth remains open, ERM 108 ( FIG. 1 ) continues measuring the availability of the bandwidth (step 702 ). Once the bandwidth becomes scarce, ERM 108 ( FIG. 1 ) checks the network 109 ( FIG. 1 ) to see if the allocated channel has a lower quality version that is currently unallocated 111 ( FIG. 1 ) (e.g., SD rather than HD) (step 703 ).
  • a lower quality version that is currently unallocated 111 ( FIG. 1 ) (e.g., SD rather than HD)
  • the channel is degraded either automatically (step 704 ) or by user-interaction (step 705 ). If the degrading is done automatically or if the viewer chooses de-allocation (step 706 ), ERM 108 ( FIG. 1 ) replaces the higher quality version of the channel with the lower quality version of the channel at the same QAM (now with more room) (step 707 ), by commanding edge device 110 ( FIG. 1 ) to allocate bandwidth to the source of the degraded version of the channel.
  • FIG. 8 shows an illustrative method for detecting allocated program overruns and providing options based on interest in accordance with one embodiment of the present invention.
  • channel-interest manager 102 FIG. 1
  • ERM/server 108 FIG. 1
  • the cable service provider is given the option, then, of which program to put on their regularly broadcast QAM-overtime or regular program.
  • the program not selected by the station programmer exceeds the interest threshold (step 804 )
  • that program can be put on SDV (step 805 ) so that both programs may be viewed simultaneously-one on the regularly broadcast channel and the other as an SDV channel.
  • FIGS. 9A-9P show illustrative interactive media guidance application menu display screens in accordance with various embodiments of the present invention.
  • session manager 101 FIG. 1
  • the screens in 9 A- 9 P are illustrative and may include any possible combination of text associated with the various options given to a requester disclosed in the previous embodiments of FIG. 3 .
  • Client 107 may display screen 900 ( FIG. 9A ) as a requester views grid 901 from which he may select a channel.
  • the interest-based SDV channels and interest-based services in the guide may be starred or otherwise distinguished as in key 902 to indicate that they are available based on interest and may not be immediately available.
  • Client 107 may display screen 903 ( FIG. 9B ) once a requester selects a channel he or she wishes to watch.
  • a requester may indicate a desire to watch a channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response.
  • Channel-interest manager 102 FIG. 1 ) continues to check the availability of the requested channel until it is allocated. As the requestor waits for allocation, “One Moment Please” overlay 904 may be displayed over menu 905 containing highlighted channel selection 906 .
  • Client 107 may display screen 907 ( FIG. 9C ) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3 .
  • Overlay 908 may be displayed allowing a requester to indicate a desire to wait for allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 ( FIG. 1 ) continues to check the availability of the requested channel. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 909 ( FIG. 9D ) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3 .
  • Overlay 910 may be displayed allowing a requester to indicate a desire to view the channel once it is allocated by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 ( FIG. 1 ) continues to check the availability of the requested channel, tuning that “interested” requester to the channel as it is allocated. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options, (e.g., FIG. 3 ).
  • Client 107 may display screen 911 ( FIG. 9E ) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3 .
  • Overlay 912 may be displayed over the currently viewed channel 913 , while the name of the requested channel 914 is displayed at the bottom of screen 911 .
  • Channel-interest manager 102 ( FIG. 1 ) continues to check the availability of the requested channel until it is allocated.
  • Client 107 may display screen 915 ( FIG. 9F ) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3 .
  • Overlay 916 indicates that the channel is presently unavailable and also provides feedback to the requester of the likelihood of allocation in accordance with step 304 of FIG. 3 .
  • Client 107 may display screen 917 ( FIG. 9G ) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3 .
  • Overlay 918 may be displayed allowing a requester to indicate a desire to wait for allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 ( FIG. 1 ) continues to check the availability of the requested channel until time X has passed. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 919 ( FIG. 9H ) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3 .
  • Overlay 920 may be displayed allowing a requester to indicate a desire to be notified of allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 ( FIG. 1 ) continues to check the availability of the requested channel, notifying that “previously interested” requester as the channel is allocated. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Screen 905 ( FIG. 9F ) is illustrative of the notification embodiment of the present invention.
  • An interested user may also be notified automatically by channel-interest manager 102 ( FIG. 1 ) tagging the requester as “previously interested” before he or she tunes away from the requested channel (See FIG. 3 , step 305 ).
  • Client 107 may display screen 921 ( FIG. 9I ) as the requester waits for the channel's allocation in accordance with step 301 of FIG. 3 .
  • Overlay 920 may be displayed allowing a requester to indicate a desire to watch related content by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 ( FIG. 1 ) tunes to a previously allocated channel with related content. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 923 ( FIG. 9J ) if the requester selects “Yes” to watching related content before tuning to the allocated channel with related content.
  • Overlay 924 may be displayed allowing a requester to indicate a desire to be notified of allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response.
  • Channel-interest manager 102 FIG. 1 ) continues to check the availability of the requested channel, notifying that “previously interested” requester as the channel is allocated. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 925 ( FIG. 9K ) as the requester waits for the channel's allocation in accordance with step 313 of FIG. 3 .
  • Overlay 926 may be displayed allowing a requester to indicate a desire to watch the most popular channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 ( FIG. 1 ) tunes to a previously allocated channel with the highest number of users at that given moment. If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 927 ( FIG. 9L ) if the requester selects “Yes” to watching the most popular channel before tuning to the allocated channel with the highest number of requests.
  • Overlay 928 may be displayed allowing a requester to indicate a desire to be notified of allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response.
  • Channel-interest manager 102 FIG. 1
  • Client 107 may display screen 929 ( FIG. 9M ) as the requester waits for the channel's allocation in accordance with step 315 of FIG. 3 .
  • Overlay 930 may be displayed allowing a requester to indicate a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the requested channel may be temporarily stored as VOD or as a tier 1 channel, guaranteeing its allocation (See FIG. 3 , step 316 ). If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 931 ( FIG. 9N ) if the requester selects “Yes” to watching the channel as pay-per-view before charging the requester.
  • Overlay 932 may be displayed allowing a requester to confirm a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 ( FIG. 1 ) tunes to the requested channel in accordance with step 316 of FIG. 3 and the requester is charged. If “Exit” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 933 ( FIG. 9O ) as the requester waits for the channel's allocation to bandwidth in accordance with step 315 of FIG. 3 .
  • Screen 912 FIG. 9O
  • Overlay 934 may be displayed allowing a requester to indicate a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the requested channel may be temporarily stored as VOD or as a tier 1 channel, guaranteeing its allocation (See FIG. 3 , step 316 ). If “No” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • Client 107 may display screen 935 ( FIG. 9P ) if the requester selects “Yes” to watching the channel as pay-per-view before charging the requester.
  • Overlay 936 may be displayed allowing a requester to confirm a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 ( FIG. 1 ) tunes to the requested channel in accordance with step 316 of FIG. 3 and the requester is charged. If “Exit” is selected, client 107 ( FIG. 1 ) may give the requester other options (e.g., FIG. 3 ).
  • the screens in FIGS. 9A-9P may also have paid advertisements displayed in the background of the text in accordance with step 312 of FIG. 3 .

Abstract

Systems and methods for allocating bandwidth in a switched digital video (SDV) system based on channel interest. In some embodiments, bandwidth is deallocated from channels and allocated to requested channels having a higher interest. Tiered approaches for allocating bandwidth are disclosed. Embodiments in which QAMs are allocated across services in a multi-service system based on interest are also disclosed. Embodiments for accommodating emergency access system (EAS) functionality in a SDV system are also disclosed.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to video distribution systems and more specifically switched digital video (SDV) technologies for improving the utilization of available bandwidth on these distribution systems.
  • In the current state of the art, SDV systems allocate channels to available bandwidth. Switched channels are assigned to available frequencies as they are requested. Today's SDV systems are typically designed with the assumption that the number of channels being requested will not exceed the available bandwidth. Thus, bandwidth constraints do not generally result in users being blocked from accessing channels they request. As video distribution systems evolve, however, the growing number of media sources and end-users may render this assumption invalid, as the probability that the interest for sources will exceed the amount of available bandwidth will increase. SUMMARY OF THE INVENTION
  • In accordance with the principles of the present invention, systems and methods are provided for considering the interest for channels before allocation so that at any given time the channels with the greatest number of requesters are given preference in being allocated to the available bandwidth. By contemplating interest before allocation, only channels that have met a minimum threshold of requesters are made available, keeping bandwidth available for the most requested channels.
  • In some embodiments, systems and methods are provided for considering the interest of each allocated channel following allocation so that at any time a channel with very few users may be de-allocated from the bandwidth to make room for another channel with a relatively larger number of requesters.
  • A channel-interest manager considers the relative priority of a requested channel before allocating it to bandwidth. The channel-interest manager operates between the SDV server and an SDV client running on a user's equipment (e.g., set-top box, hereinafter “STB”). The channel-interest manager calculates the priority of a currently unallocated channel and determines whether that channel should be allocated, at least in part as a function of the interest for that channel relative to other channels in the system. The channel-interest manager may be any combination of hardware and software suitable for this purpose (e.g., one or more processors, memory, storage, etc., where the processors are programmed with suitable programming logic to perform the functions of the channel-interest manager). As understood to one skilled in the art, the channel-interest manager may be implemented on a stand alone server, co-hosted on a server with other applications, or integrated as part of another system application (e.g., the SDV manager) and operate cooperatively or as part of a system or SDV policy manager which considers other characteristics of the system in making dynamic decisions on which channels to allocate.
  • The channel-interest manager allocates the requested channel to available bandwidth if it meets the interest threshold and there is sufficient bandwidth available. If there is insufficient bandwidth, the channel-interest manager allocates the requested channel (after de-allocating or “bumping” another channel) if the requested channel meets the interest threshold and has a greater interest relative to other allocated channels. The channel-interest manager may determine that interest for a channel exceeds the interest threshold using any suitable approach.
  • In some embodiments, a request for an SDV channel is counted when a requester “parks” on it by tuning to it in an attempt to watch it and waiting until a channel is switched in. The channel-interest manager may decrement a request count when a requester tunes away. The channel-interest manager may also tag a requester who tunes away as “previously interested” so that when the channel is allocated at some future time, the “previously interested” requester may be notified. In other embodiments, requests are counted when a requester “votes” for the channel's allocation in advance of the scheduled time for the programming (e.g., such as by scheduling a reminder or a recording for a program). In various embodiments, feedback may be provided to the requester as to likelihood of channel allocation. The feedback can be used with an inter-active feature to give the requester the option to wait longer for possible allocation, or to tell the manager he or she is no longer interested. The allocation can also occur automatically with no interaction with the user.
  • In some embodiments, the channel-interest manager is made aware of program boundaries on switched channels. With this information, the channel-interest manager may determine that voting or parking by users on a channel at a particular timeframe represents interest in the content that is scheduled for that channel at the given timeframe (e.g., the start of the program).
  • Delays may occur in the allocation of the channel as a result of the voting and/or parking interest for the channel remaining below the threshold for the allocation of the channel. These delays might normally result in the users missing the beginning of the programming on the channel.
  • However, in some embodiments, when the channel interest manager detects that the channel interest for a channel may actually be a channel interest for a program beginning on that channel at a particular time but that the allocation may involve delays beyond that particular timeframe, it may buffer the channel for the users.
  • Such buffering may be accomplished by the channel-interest manager routing the channel content to a channel buffering subsystem until such time as the channel becomes available. Upon allocation of the channel, users may then be presented with the options of (a) joining the program in progress and missing the beginning or (b) watching the program from the beginning (e.g., similar to a start-over function). In the latter case, if the program is watched in real time, it's viewing may run beyond the beginning of the next program scheduled on this or another channel and this may be undesirable to the user. Therefore, in some embodiments, an option of watching the program in faster than real time is provided, or alternatively an option of skipping through some portions of the program may be enabled. This embodiment allows the program to fit into its regularly scheduled timeslot. Audio may be pitch controlled (e.g., by means of an audio processing technique such as the complex cepstrum) to maintain as close to the original pitch as the real-time playback while allowing the audio to be sped up in synchronization with the video.
  • In some embodiments, the SDV client may offer the requester advertisements while the requester waits for allocation of bandwidth for a channel. In some embodiments, a delayed allocation is anticipated, a flexible number of advertisements or “filler” programming is provided (e.g., locally stored on a user's hard drive) and programs are pre-edited so they occupy less than the full time slot to accommodate these additional up-front advertisements or filler without loss of meaningful content (e.g., the conclusion to a detective program).
  • When sufficient bandwidth does not exist for a requested channel, the channel-interest manager may allocate bandwidth for the channel using any suitable approach. In some embodiments, a requested switched channel (or a previously switched in channel) may be degraded to a version that requires less bandwidth (e.g., SD rather than HD) before allocation is made. In other embodiments, requested channels meeting the interest threshold may “bump” a previously allocated channel with lower relative interest.
  • In some embodiments, the channel-interest manager may consider various “bump parameters” before de-allocating a channel. For example, the channel-interest manager may compare how long an allocated channel has been allocated with a “no-bump” threshold time and decide not to bump a program that might otherwise have been bumped if not for the fact that the program's allocation time exceeded this no-bump threshold and its de-allocation might be particularly disruptive to a viewer. A no-bump threshold might be, for example, ten minutes, or long enough for a watcher to become somewhat involved in the program he/she is watching.
  • In other embodiments, the channel-interest manager may work with a revenue manager and/or a trend manager and the interest may be considered in light of revenue impacts and trends before a channel is de-allocated. A revenue manager is software and/or hardware (e.g., one or more processors, memory, storage, etc., where the processors are programmed with suitable programming logic to perform the functions of the revenue manager) that compares the revenue potential (e.g., as a result of associated advertisement or pay-per-view fees) of the previously allocated channel to a requested channel before deciding whether or not to de-allocate the previously allocated channel. A trend manager is software and/or hardware (e.g., one or more processors, memory, storage, etc., where the processors are programmed with suitable logic to perform the functions of the trend manager) that measures the previously allocated channel's viewer activity over time before de-allocation. For example, if several users have tuned away from a channel at a given time it could just be because a commercial is present at that time, rather than an indication of waning interest. The number of users currently tuned at any given instant might not be an accurate indication of interest in such a scenario, and de-allocation of the channel would not be desirable or appropriate unless the general trend was moving in the direction of waning viewership over time. As another example, consider that a trend manager and a channel-interest manager, working alone or together, may de-allocate a first channel relative to another if the viewership of the first channel is below the other channel, however, when a revenue manager is employed, it may bring into consideration the revenue associated with viewership of the first channel as well. So, for example, if the first channel has advertisement spots that paid the video service provider twice per viewer what the advertisement spots on the other channel paid, it may be worth maintaining the allocation of the first channel until viewership of the first channel dropped below half viewership of the other channel. The trend manager would be invoked to insure that the maximized revenue trend is likely to be sustained.
  • In some embodiments, the interest management system may offer a requester, or a bumped-user, one or more options when a channel is not allocated immediately upon request. For example, in one embodiment, a requester may be provided with the option to watch the unavailable program as a pay-per-view program. The SDV channel may then temporarily be provided as a VOD stream and the user may be charged. Alternatively or additionally, the requester may be provided the option to set up a recording to record the program if it becomes available at a later time on a broadcast channel or via a switched channel at a time (e.g., early morning) when demand for bandwidth may have decreased. In some embodiments, the requester or bumped-user may be provided with an option to watch related content. In some embodiments the requester may be provided with an option to watch content that is popular at the moment. This feature may be extended in some embodiments to notify all users when a particular channel is extremely popular at any given time (e.g., breaking news).
  • In some embodiments, the channel-interest manager detects program overruns or other last minute scheduling changes associated with programs on non-SDV channels (e.g., broadcast channels). The channel-interest manager may then compare the number of viewers interested in watching these program overruns with the number of viewers interested in watching the regularly scheduled programming for those channels. This statistic may then be sent to the video service provider for consideration before determining which program to allocate to its regularly allocated broadcast bandwidth and which to make optionally available (subject to interest and available bandwidth) on its switched bandwidth allocation. The program not chosen for the regular broadcast bandwidth may be provided via SDV if the interest threshold is met. Moving a program overrun from a broadcast channel to a switched tier channel gives the video service provider the ability to allow viewers to watch the overrun if there is interest while not disturbing the regularly scheduled programming lineup that had been published for the broadcast channel. For example, if on the FOX network, a football game is scheduled from 7-9 PM followed by “House” at 9 PM, and it turns out that the game goes into overtime, the interest management system, in one embodiment, may cause a message to be displayed to a user via the on-screen display of a video terminal (e.g., STB) providing the user with the option to continue to watch the currently watched program or watch “House.” Then, depending on interest, the user may be switched (seamlessly or not) to a channel where he can either watch the continuation of the overrun game or the episode of “House.” In some embodiments, an option may also be provided (e.g., on a dual tuner STB) to record the program that is not watched. In some cases, if insufficient interest is logged for watching the end of the overrun program (e.g., e.g., the game is between two non-local teams of little interest to begin with) the overrun may not be made available at all and this fact may be provided to the potential watchers.
  • In some embodiments, channels of the SDV system are assigned to tiers. For example, there may be one SDV premium tier and discount tiers 1, 2, 3, etc. Lower tiers may, for example, be associated with a larger tune delay (all the way to not available) and a lower probability of being allocated.
  • The channel-interest manager may also allocate bandwidth for a program in a mixed-service system as a function of one channel's interest relative to another's and in some embodiments, additionally, the impact on revenue. For example, the channel-interest manager may consider the relative priority of VOD and SDV by considering the interest and revenue potential of each. In this way, VOD and SDV are competing for the same bandwidth and when no bandwidth is left, one channel must be blocked. In this example, the channel-interest manager allocates the bandwidth to the channel with the higher priority based on interest and revenue potential with the interest “registered” in advance by any of the mechanisms discussed thus far, including trending of advance requests to watch a particular program, consideration of trends for related programs or channels, consideration of the trend of users who watch a channel through program changes, etc.
  • In another embodiment, Emergency Alerts may be provided using a switched channel. This makes a good deal of sense given that Emergency Alerts are few and far between and it is thus wasteful to allocate a full channel to emergency alert when it is rarely watched. However, in the prior art, emergency alerts are always assumed to be on non-switched channels because of their importance and because of the classical way in which emergency alert are handled in video distribution systems such as Cable systems. In the first case, there is concern that in a classical SDV system, there is some small blocking probability for any switched channel and this blocking probability is independent of the interest for that channel. In some embodiments of the present invention, however, blocking probability is inversely proportional to the interest for a channel during a given window of time (e.g., the “interest assessment interval”). In classical emergency alert systems, when a STB receives an EAS alert, it is force tuned to the EAS channel. Under this circumstance, in the present invention, this would cause a peak in interest for the EAS channel (given that all STBs are requesting it concurrently) and this high interest for use would logically, absent revenue considerations, result in the EAS channel being quickly allocated. To avoid flooding the network with requests coincidentally from multiple video terminals, in some embodiments of the present invention, the EAS switched channel is treated as a special case by a STB wherein requests for it are delayed by a random backoff before being sent to the SDV server.
  • In some embodiments, all force tunes are treated with a random backoff before request in anticipation of these force tunes being sent to multiple terminals concurrently. In some embodiments, a flag is sent with a force tune to indicate that it is a broadcast or groupcast force tune and therefore should result in a random backoff before the channel is requested. When the channel-interest manager receives numerous requests that exceed the interest threshold, the EAS channel is then allocated to bandwidth that is ordinarily free for other channels absent an emergency.
  • In some embodiments, the EAS channel tuning information may be stored in a carousel data feed with a time to live of infinity (as a special mechanism only used for EAS) so that it persists in the carousel feed as an “active” channel and does not require a server response of which frequency and program number to use to tune the channel. Thus emergency alert channel tuning can be very fast. In such embodiments, though the EAS channel is listed as active in the carousel, it may not actually be allocated to the bandwidth until the alert is active. This embodiment involves notification of the server of the alert event, in which case the server switches the appropriate EAS program into the carouseled frequency and program number. The purpose of having the channel listed in the carousel is so that the STBs will know where to tune very quickly without having to request the channel from the server. The EAS channel is typically “hidden” from the user. The frequency and program number that is “reserved” for EAS may actually be in use for a “visible” channel. For example, in a cable system such as Comcast's cable systems, a hidden virtual channel number and a specific frequency and program number may be set aside for EAS. For example, frequency 550, program #3 and an infrequently watched channel such as “the muppets channel” may be allocated to virtual channel 53, frequency 550, program # 2, the virtual channel number 53 being visible to the user.
  • Up to this point we have discussed the operation of the channel-interest manager primarily with respect to single-tuner STBs. However, it is anticipated that the manager will function similarly with respect to multiple-tuner STBs and STBs with the ability to handle multiple channels per tuner (e.g., multiple IP stream-based video/audio services or multiple channels within a multiple-service transport multiplex).
  • A multiple-tuner STB includes multiple tuners each with at least one associated decoder. Such a STB can tune to more than one channel at a time. A dual-tuner STB, for example, can tune to two frequencies simultaneously. Each tuner can extract a program from the multiplex it finds at its tuned frequency and an associated decoder can be used to decode the program. Thus, a dual tuner STB may be able to tune, extract, decode, and display two programs from two channels simultaneously. Note that the frequency and program number tuned by one tuner may be the same or different than the frequency or program number tuned by the other tuner.
  • In embodiments of the channel-interest manager system where multiple-tuner STBs are supported, the channel-interest manager may receive and manage requests and interest on a per-tuner basis instead of on a per-STB basis. In such embodiments, for example, with a threshold of two set for a channel, a single STB may meet that threshold of two by attempting to tune to the channel with both tuners. Also in such embodiments, two STBs, each STB tuned with one tuner to channel A, for example, and each STB tuned with the other tuner to channel B, for example, may result in an interest of two being logged for each of channels A and B at the channel-interest manager. Similar consideration would be given to multiple tuner STBs with greater numbers of tuners per STB (e.g., triple- and quad-tuner STBs or home media managers with multiple tuners). In such embodiments, both a tuner identifier and a STB identifier may be sent in the channel-request message from the STB to the channel-interest manager. In some STBs, there are multiple decoders available to each tuner. So, for example, such a STB with only a single tuner decodes and displays more than one channel at a time.
  • In embodiments of the channel-interest manager system where STBs with multiple decoders per tuner are supported, the channel-interest manager may receive and manage requests and interest on a per-decoder basis instead of on a per-STB or per-tuner basis. In such embodiments, for example, with a threshold of two set for a channel, it may be possible for a single-tuner STB with a concurrent decode capability of two decoders to meet that threshold by attempting to decode the same program from the same frequency using both decoders to the channel with both tuners. In such embodiments, a decoder identifier, in addition to a STB identifier, and perhaps a tuner identifier may be sent in the channel-request message from the STB to the channel-interest manager. Note that IP-video based STBs, including those which conform to the DOCSIS standard as well as those that utilize fiber to the curb or fiber to the home technology, typically are of the latter type of system which involve having multiple decoders per tuner. In the case of fiber optic supported STBs, the tuner may be replaced with the appropriate fiber optic receiver and switching circuitry.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a diagram of an illustrative switched digital video system in accordance with one embodiment of the present invention;
  • FIG. 2 is a flow chart of an illustrative method for allocating bandwidth after first considering interest in accordance with one embodiment of the present invention;
  • FIG. 3 is a flow chart of an illustrative method for providing options to a requester when a channel is not available in accordance with one embodiment of the present invention;
  • FIG. 4 is a flow chart of an illustrative method for allocating bandwidth based on interest when a currently-allocated channel fails due to failed QAM in accordance with one embodiment of the present invention;
  • FIG. 5 is a flow chart of an illustrative method for de-allocating a relatively less requested channel in accordance with one embodiment of the present invention;
  • FIG. 6 is a flow chart of an illustrative method for considering parameters before de-allocating a channel in accordance with one embodiment of the present invention;
  • FIG. 7 is a flow chart of an illustrative method for degrading channels when bandwidth is becoming scarce in accordance with one embodiment of the present invention;
  • FIG. 8 is a flow chart of an illustrative method for detecting allocated program overruns and providing options based on interest in accordance with one embodiment of the present invention.
  • FIGS. 9A-9P show illustrative interactive media guidance application menu display screens in accordance with various embodiments of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows an illustrative switched digital video system in accordance with one embodiment of the present invention. In system 100, services and related content flow from sources 111 on the left, to user's set-top boxes (STBs) 105 on the right. In this example, there are four services. Sources 111 may be any suitable combination of hardware and software for providing the indicated services to edge device 110 via network 109. Source 112 provides: data and voice services (e.g., via modular cable modem termination system (M-CMTS) 112 which provides IP services over cable according to the data over cable system interface specifications (DOCSIS) published by CableLabs at www.cablelabs.com) such as video over IP and voice over IP (VOIP) services. Source 113 provides video for a video-rich-navigation (VRN) based interactive program guide (VRN guides are described in, for example, U.S. patent application Ser. No. 11/395,380, filed Mar. 30, 2006, which is hereby incorporated by reference herein in its entirety). Source 114 provides television channels as video streams for a switched digital video service. Source 115 provides video streams for a video-on-demand service. This list of sources is illustrative and it should be understood that any suitable services 111 may be included in the switched digital video system (e.g., Internet services).
  • Sources 111-115 modulate and packetize their services for transmission over network 109 to edge device 110. Network 109 may be, for example, a gigabit Ethernet network, and sources 111-115 may provide their services via TCP/IP and Ethernet and may include use of MPEG transport protocol. Edge device 110 (e.g., a Harmonic NGS9000 edge-QAM manufactured by Harmonic Corporation of Sunnyvale, Calif.) includes a bank of modulators. Each modulator (e.g., quadrature amplitude modulators) may accept a digital transport stream of roughly 3 Mbps representing a video program, multiplex it with other video transport streams, create a transport stream multiplex and modulate it onto the cable plant. A 256-QAM modulator, for example, will accept multiple digital transport streams (comprising a multiplex of approximately 45 Mbps) and modulate it to fit within an analog bandwidth of 6 MHz on a cable plant. Edge device 110 receives the services from network 109 and, under the control of edge resource manager (ERM) 108, allocates portions of modulators to the services. For example, edge device 110 may receive a command from ERM 108 to connect to a 3 Mbps service from network 109 that originated from a broadcast program source feeding SDV block 114. It may then allocate a program within one of its internal 256-QAM modulators. Edge device 110 may allocate a portion of a given QAM to VOD 115, instead of VRN 113, depending on the instructions from ERM 108. Or, edge device 110 may allocate QAMs (or not) among different channels of the SDV service 114. In this regard, QAMs may be shared flexibly and dynamically across services, or allocated in a fixed manner to specific SDV channels. For example, in a given configuration, four QAMs of an eight QAM edge device may be allocated to switched channels, two to VOD, one to cable modem, and one to VRN.
  • Edge device 110 allocates and de-allocates QAMs under the control of ERM 108. ERM 108 may be any suitable combination of hardware and software for performing its features described herein. For example, it may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing its features described herein. ERM 108 activates a controllable switch in network 109 (not shown) between network 109 and edge device 110 to direct what services (or portions of services) are coupled to the inputs of edge device 110. ERM 108 instructs edge device 110 to QAM modulate an input signal onto a carrier frequency. ERM 108 may specify a QAM and track what services or channels are modulated on given QAMs (e.g., using a lookup table), or may simply instruct edge device 110 to allocate a given input and edge device 110 returns the carrier frequency and program number. ERM 108 typically informs switched-services session manager (session manager) 101 of the carrier frequency and program number where the channel can be found. The session manager 101 in turn inserts this information into the active channels list in carousel data feed 106. Carousel data feed 106 acts as a quick-lookup channel map for set-top boxes 105. Carousel 106 may be transmitted in-band with, or out-of-band from, the other channels and/or services on a cable plant.
  • Edge device 110 modulates services and channels and transmits them to STBs 105 of a plurality of subscribers over, for example, an analog or digital cable plant or via an analog or digital terrestrial broadcast system. For clarity, FIG. 1 shows only the embodiment where edge device 110 transmits the channels and/or services over a single path 116. Path 116 may be a standard hybrid fiber/coax path, full fiber path or satellite, or other high speed data path. In some embodiments, Internet Protocol (IP) is used to transmit the channels and/or services to STBs 105.
  • STBs 105 include switched digital video clients 107. In some embodiments, clients 107 communicate with an interactive media guidance application also implemented on the STBs 105, such as an interactive television program guide, via a suitable application programming interface (the guide application is not shown to avoid over-cluttering the figure). In other embodiments, the interactive media guidance application includes switched digital video functionality.
  • Although in the disclosed embodiment client 107 runs on STB 105, any equipment suitable for accessing SDV may be used. For example, a personal computer with a television card and/or Open Cable Unidirectional Receiver (OCUR) (PCTV). STB 105 may be any suitable settop such as, for example, a DCT 2000, 2500, 5100, 6208 or 6412 set-top box provided by Motorola, Inc.
  • STB 105 may include any suitable control circuitry, display circuitry, communications circuitry, memory, etc. The control circuitry may include one or more tuners (e.g., analog or digital tuners), encoders and decoders (e.g., MPEG encoders and decoders), processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry (e.g., cable modem and ATSC 256QAM receiver circuitry), input/output circuitry (e.g., graphics circuitry), and any other suitable components for providing analog or digital television programming in an SDV system.
  • A display device such as a television, and a remote control, may be coupled to STB 105 to display various displays and receive user inputs. The operation of control and other circuitry in a STB is well known to those skilled in the art. The control circuitry is adapted to receive user input from input device 108, execute the instructions of client 107 (using suitable microprocessors, memory, etc.), execute the instructions of any other interactive applications (e.g., an interactive television program guide), and direct the display circuitry to generate a display.
  • Whatever the chosen approach, client 107 detects a user channel/service change and determines whether the desired channel or service is currently allocated by examining carousel 106. A user may indicate a desire to change channels by, for example, tuning using arrow keys on a remote, entering a channel number on a remote, or using any suitable interactive media guidance function that allows the user to select a program or source. A user may indicate a desire to change services by, for example, linking to a VOD service from a television channel, or accessing a service via the interactive media guidance application. In some embodiments, carousel 106 is not used or only used under some circumstances. Typically, however, if a carousel is used, client 107 will first check the carousel when it desires to tune to a channel to see if it has already been allocated. If a channel has not already been allocated, client 107 issues a request to switched-services session manager 101 for the frequency of the QAM and program number within that QAM frequency where the channel or service may be found.
  • As described in more detail below, before allocating a channel, session manager 101 determines whether there is sufficient bandwidth and/or interest for the requested channel. In response to determining if sufficient interest exists, session manager 101 instructs ERM 108 to allocate bandwidth for the channel and, if necessary, to first de-allocate another channel or service to free-up the required bandwidth.
  • A channel-interest manager 102, which determines the interest for different channels and services, is embedded within switched-services session manager 101. Channel-interest manager 102 can work alone, or in cooperation with revenue manager 103, which assigns priority based on potential revenue of each channel or service that may be allocated or potential loss associated with each channel that may be deallocated, and trend manager 104, which considers viewer trends to determine if viewers are active. Channel-interest manager 102 may be any suitable combination of hardware and software for performing its features described herein. For example, channel-interest manager 102 may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing its features described herein. Trend manager 104 may be any suitable combination of hardware and software for performing the features described herein. For example, trend manager 104 may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing the features described herein.
  • When a request for a channel is made from a STB 105, the STB's local copy of the data from carousel 106 is first checked to see if that channel has already been allocated bandwidth and whether the allocated frequency and program number is stored in the carouseled channel map. If the channel map does not contain the requested channel, client 107 then sends the request to switched-services session manager 101. Session manager 101 communicates with channel-interest manager 102, which then performs the algorithms necessary to determine if a channel is to be allocated to bandwidth and if a currently allocated channel may be bumped (See FIGS. 2-8). Session manager 101 may also communicate with revenue manager 103 and trend manager 104 in a like manner and/or other external information sources that may aid in the decision.
  • Switched-services session manager 101 then tells ERM 108 that an unallocated channel 111 should be allocated to available bandwidth (either already available or available after bumping another channel). ERM 108 communicates with edge device 110 to first deallocate any bumped channels, (or alternatively degrade HD channels to SD, or take other measures to free bandwidth, including changing the partition of QAMs between service types, e.g., VOD and SDV), and allocate the new channels to edge device 110. During the new allocation, the new channel is then linked from the network to the newly allocated QAM program number. For example, in some embodiments, network 109 is a gigabit Ethernet network and edge device 110 is linked to network 109 via a switch. When edge device 110 wants to connect to a service that is carried over IP on the gigabit network 109, it registers a multicast join with the switch. Edge device 110 communicates the frequency for the new channel to ERM 108, which in turn provides this information to session manager 101, which updates the channel map in carousel 106. Edge device 110 modulates the requested channel on the allocated frequency and program number where it is ultimately received by STB 105. STB 105 receives the new frequency for the channel by checking the channel map in carousel 106 or via direct response to a channel tune request via session manager 101 and tunes to the frequency/program number to watch the program.
  • In some embodiments, the Emergency Alert System (EAS) channel is provided using SDV. When a STB receives an EAS alert, channel-interest manager 102 (FIG. 1) receives numerous requests such that the interest quickly exceeds a interest threshold set for channel allocation. The EAS channel is thus allocated to bandwidth that is ordinarily free for other channels absent an emergency. In some embodiments, the EAS channel information may be included in carousel data feed 106 with a time to live of infinity (as a special mechanism only used for EAS) so that it persists in the carousel feed but on a hidden channel that is not tunable directly by a user. Special provision is made for the EAS channel such that unlike other switched channels in the carousel, it is never really allocated to the bandwidth until the interest threshold is met even though it is shown as active in the carousel so that the clients 107 of STBs 105 may quickly determine where to direct the STB's to tune without having to request the channel from the server. In response to the EAS alert, ERM 108 directs Edge device 110 to switch in the channel for the EAS (not shown) to the designated QAM frequency and program number. Clients 107 respond to the alert by examining the carousel and directing STBs 105 to tune to the indicated QAM frequency and program number.
  • In other embodiments, STB requests for EAS channel are preceded with a random backoff and the first STB's request for the EAS channel that gets through the session manager causes ERM 108 to allocate the EAS channel. The session manager 101 in turn updates the channel map in the carousel to reflect the EAS channel as active. Once the frequency and program number assigned to the EAS channel is stored on the carousel as, subsequent pending tune requests for the EAS channel will be managed locally by the STB via look up of the frequency and program number for the EAS channel directly from the cached carousel. This results in reduction of upstream traffic that would otherwise result from a large number of STBs concurrently requesting the same channel.
  • FIG. 2 shows an illustrative method for allocating bandwidth based on interest in accordance with one embodiment of the present invention. The method in FIG. 2 is carried out by channel-interest manager 102 shown in FIG. 1. Channel-interest manager 102 (FIG. 1) keeps a dynamic channel interest calculation that is updated (step 206) when an unallocated channel is requested from STB 105 (FIG. 1). Channel interest may include many different request types to help it prioritize which channels will ultimately be allocated. Some exemplary request types are parking-based requests and voting-based requests, such as recording-based requests and reminder-based requests. In some embodiments, the various request types may be “weighted” using any suitable weighting algorithm. The weighting algorithm may be used in calculating the channel interest according to step 206. For example, parking-based requests may be weighted more heavily than voting-based requests, and, even among votes, recording-based requests may be weighted more heavily than reminders. In some embodiments, the algorithm for determining interest in the channel includes a weighted sum of these requests.
  • When a user attempts to tune to a channel that is presently unallocated and the user “parks” (i.e., does not tune away from) on the channel in anticipation of eventual interest-dependent allocation, this is classified as a parking request. Such a request may or may not be explicitly understood to the user as “parking.” For example, in some embodiments, when a user attempts to tune to a switched channel, the user may be presented with a “one moment please” (OMP) message while the system determines whether or not to allocate the channel based on interest measured, in one case, within a specified window of time. If this window of time is small enough (e.g., less than six seconds) and the decision to allocate the channel is made relatively quickly, the OMP will be removed, the STB will tune to the newly allocated channel, and there may be no explicit indication to the user that any parking and/or allocation decision was going on behind the scenes. If, however, the decision is made to not allocate the channel, or if the decision will take longer, in some embodiments, various degrees of feedback may be provided to the user relating this information to them. This feedback may be in the form of a text message (e.g., “The requested channel is presently unavailable.”) or a graphic (e.g., a bar graph showing interest relative to threshold) or combinations of the two. Typically, when a user “parks” on a channel, they are executing a persistent request to watch a program which has just substantially started or is in progress. In some embodiments, a distinction is provided between requesting a channel and requesting a program on that channel.
  • Alternatively, though similarly, a user may choose to “vote” for a channel or a program on a channel. In voting-based requesting, a user may vote concurrently for one or more channels (or programs) he may wish to watch. In some cases, parking can be seen as a special case of voting. When voting, a user may vote for multiple different channels or programs to be allocated, in some situations, specifying relative priority. In some embodiments, the priority may be considered in the weighting algorithm used to calculate channel interest.
  • A user may also vote by recording a channel or program on a channel or by setting a reminder for a program on a channel. In some embodiments, recording-based requests and reminder-based requests may be weighted as less than a full request since the requester may ultimately decide not to watch the channel.
  • Referring to FIG. 2, in step 201, session manager 101 (FIG. 1) receives a request for a presently unallocated channel from a STB. Channel-interest manager 102 receives a request from client 107 (FIG. 1) by any of the methods discussed above (“parking” on a presently unallocated channel in anticipation of it being allocated or “voting” for a channel).
  • Once a request is received (step 201), session manager 101 (FIG. 1) communicates with ERM 108 (FIG. 1) to measure the amount of available bandwidth (step 202) and then classifies the bandwidth as open, scarce, or full (step 203). A classification of open signifies that there is ample space on the bandwidth to allocate a substantial number of new requests, scarce signifies that only a limited amount of space remains, and full signifies that no space remains. These classifications may be based on any threshold amount of space that the ERM programmer determines appropriate. When the bandwidth is open, the requested channel is allocated (step 204). If the bandwidth is scarce or full, session manager 101 logs the originator (STB) of the request, tags that requester as “interested” (step 205), and updates the channel interest for that channel (step 206).
  • Next, channel-interest manager 102 (FIG. 1) compares the interest and the interest threshold (step 207). While the interest remains lower than the threshold, channel-interest manager 102 (FIG. 1) calculates the probability of allocation (step 208) and then sends that probability to client 107 (FIG. 1) previously marked “interested” (step 209). The client 107 (FIG. 1) then gives the requester options while waiting for allocation (step 210) (e.g., FIG. 3). Once the interest for an unallocated channel exceeds the interest threshold, the channel is allocated subject to whether there is another channel that can be bumped based on low relative channel interest (e.g., FIGS. 5 and 6) or whether the channel has lower quality version available (e.g., SD version rather than HD version as shown in FIG. 7). These conditions will be discussed in greater detail in FIGS. 5-7.
  • FIG. 3 shows an illustrative method for providing a requester options when a channel is not available in accordance with one embodiment of the present invention. When a channel is not available (or made available), client 107 (FIG. 1) simultaneously gives the requester a number of options (FIG. 2, step 210). In one option, the requester may choose to watch “related content” (step 301). If this option is chosen, client 107 (FIG. 1) retrieves an allocated channel frequency from carousel 106 (FIG. 1) with similar content as the channel requested and sends it to client 107 (FIG. 1) so that STB 105 (FIG. 1) may tune to that channel (step 302). Session manager 101 (FIG. 1) may classify channels as related based on any suitable method. For example, session manager 101 may classify all channels with common titles as related (e.g., “Intro to Pilates” and “Pilates for Healthy Living” would be classified as related channels based on the common word “Pilates” in the title).
  • Another option allows the requester to remain “parked” on the requested channel (step 303) while channel-interest manager 102 (FIG. 1) continuously updates the probability of allocation as the requester waits (i.e., “parks”) (step 304). Channel-interest manager 102 (FIG. 1) updates the channel interest as additional requests are made for the same channel and recalculates the likelihood of allocation feedback, which is dynamically available to the waiting requester. Alternatively, if the requester tunes away, channel-interest manager 102 (FIG. 1) decrements the counter (those not actively waiting are not included in the channel interest calculation) and tags the requester as “previously interested” (step 305). Once the channel interest exceeds the interest threshold (step 306), the “previously interested” requesters are notified (step 307) by session manager 101 (FIG. 1) sending a message to those STB clients 105 (FIG. 1).
  • In some embodiments, the channel-interest manager 102 (FIG. 1) may be aware of program boundaries on switched channels. With this information, the channel-interest manager 102 (FIG. 1) may determine that voting or parking by users on a channel at a particular timeframe represents interest in the content that is scheduled for that channel at the given timeframe (e.g., the start of the program). Delays may occur in the allocation of the channel as a result of the voting and/or parking interest for the channel remaining below the threshold for the allocation of the channel. These delays might normally result in the users missing the beginning of the programming on the channel. However, in some embodiments, when the channel interest manager detects that the channel interest for a channel may actually be a channel interest for a program beginning on that channel at a particular time but that the allocation may involve delays beyond that particular timeframe, it may buffer the channel for the users. Such buffering may be accomplished by the channel-interest manager 102 (FIG. 1) routing the channel content to a channel buffering subsystem until such time as the channel becomes available. Upon allocation of the channel, users may then be presented with the options of (a) joining the program in progress and missing the beginning or (b) watching the program from the beginning (e.g., similar to a start-over function). In the latter case, if the program is watched in real time, it's viewing may run beyond the beginning of the next program scheduled on this or another channel and this may be undesirable to the user. Therefore, in some embodiments, an option of watching the program in faster than real time is provided, or alternatively an option of skipping through some portions of the program may be enabled.
  • Returning to FIG. 3, any delay in the start of the program while waiting for allocation (step 308) may be remedied by playing the channel at a faster speed (e.g., 1.02× real time playback) (step 309). This option may be implemented automatically (step 310) or by user-interaction (step 311) as explained above For example, a caching server (e.g., a server with suitable tuners, decoders, and storage to cache unallocated channels) may be coupled to the network 108 of FIG. 1. The caching server may detect and cache the unallocated channels. When a previously unallocated channel is switched in, edge resource manager 108 (FIG. 1) may direct edge device 110 to include the stream from the cache server for the channel, instead of the stream from the actual source of the video. The fast-playback (and other trick play functions, may be provided by the server or, alternatively, handled in local cache by the client 107. As an alternative embodiment of this option (not shown in diagram), channel-interest manager 102 (FIG. 1) can include the “previously interested” viewers in its channel interest calculation; thus, decrementing the count in step 306 would not be necessary.
  • The requester may also have the option of watching displayed advertisements or other alternative content while waiting for allocation (step 312). The alternative content may be retrieved by client 107 (FIG. 1) from storage on STB 105 (FIG. 1). Alternatively, switched-services session manager 101 (FIG. 1) may offer the content directly (e.g., from local storage) or indirectly by directing edge resource manager 108 to switch in alternative content from a source coupled to network 108 (FIG. 1), and update the carousel. Switched-service session manager 101 (FIG. 1) will then alert client 107 (FIG. 1) to the presence of the alternative content. In response to the alert, client 107 (FIG. 1) will check the carousel and, based on a flag in the carousel or an indicator from the alert, select the alternative content.
  • Another option allows the requester to watch the most popular channel at that moment in time (step 313). If the requester is interested in this option, channel-interest manager 102 (FIG. 1) the channel with the highest interest, measured by the counter, to client 107 (FIG. 1) along with its corresponding frequency retrieved from carousel 106 (FIG. 1) (step 314). Client 107 may search the carousel for the most popular channel and display it for the user (e.g., by controlling a tuner in STB 105 (FIG. 1)).
  • A final option embodied in FIG. 3 gives the requester a choice to pay for an unallocated channel, rather than wait for possible allocation (step 315). When this option is selected, the channel may be temporarily provided as VOD or as tier 1 SDV and the requester is charged (step 316). For example, in some embodiments, a certain amount of bandwidth is reserved for premium or pay services that is not available in the general pool of bandwidth available for basic switched services. If a user wishes to pay for access to this reserved bandwidth, the service that he parked on or voted for is switched into this reserved bandwidth, the user is charged, and his settop is provided the information that will allow it to tune to the newly allocated channel. Note that this channel may optionally be encrypted and that typically this channel is not added to the active channel list in the carousel, since that would allow other users to access it as well. However, in some embodiments (which emulate the bar jukebox model where one patron's nickel provides music for the entire place), the channel may be paid for by one user and then made available to others users for free or for a reduced rate that may be a function of the number of paying users. In one variant, additional paying users may result in discounts to the first paying user.
  • VOD allocation for pay is managed similarly. Though a channel may not be allocated to the general pool of resources for free, it may be buffered to a subsystem such as a VOD server. If a user then wishes to pay for the service, it may be spooled directly from the VOD server in the manner it is typically done. In such cases, the user may or may not be given trick play options on the service.
  • In some embodiments, such bandwidth allocation and reservation for premium services is managed by revenue manager 103 working in conjunction with channel-interest manager 102 in switched-services session manager 101 of FIG. 1. Revenue manager 103 may be any suitable combination of hardware and software for performing its features described herein. For example, revenue manager 103 may include control circuitry having include one or more processors (e.g., MIPs and/or Motorola 68000 family processors), memory (e.g., RAM, ROM, flash memory, and hard disks), communications circuitry, and any other suitable components for providing its features described herein.
  • In some embodiments, channels of the SDV system are assigned to tiers. For example, there may be a SDV premium tier and discount tiers 1, 2, 3, etc. Lower tiers may, for example, be associated with a larger tune delay (all the way to not available) and lower probability of being allocated. Channels may be assigned to higher or lower tiers based on observed or predicted interest, or the expected “take” or profitability of the channel. Each tier may have a certain number of reserved QAMs. In this way, more popular or higher tier channels have a higher probability of being allocated to the QAM and a lower tuning delay. For example, some channels in “Tier 1” may have a guaranteed allocation.
  • FIG. 4 shows an illustrative method for allocating bandwidth based on interest when a currently-allocated channel fails due to failed QAM in accordance with one embodiment of the present invention. When a channel fails due to a QAM failure (step 401), session manager 101 (FIG. 1) communicates with ERM 108 (FIG. 1) to measure the amount of available bandwidth (step 402) and then classifies the bandwidth as open, scarce, or full (step 403). If the bandwidth is full, the interest for the failed QAM is considered by channel-interest manager 102 (FIG. 1) (step 402) A classification of open signifies that there is ample space on the bandwidth to allocate a substantial number of new requests, scarce signifies that only a limited amount of space remains, and full signifies that no space remains. These classifications may be based on any threshold amount of space that the ERM programmer determines appropriate. When the bandwidth is open, the failed channel is reallocated (step 404). If the bandwidth is scarce or full, channel-interest manager 102 (FIG. 1) compares the channel interest and the interest threshold (FIG. 2, step 207) and treats the failed channel as a requested channel as in FIG. 2 (see FIG. 2, steps 207-210).
  • FIG. 5 shows an illustrative method for de-allocating a relatively less requested channel in accordance with one embodiment of the present invention. Channel-interest manager 102 (FIG. 1) compares the number of users on currently allocated channels with the channel interest for a requested channel (step 501). While the channel interest for a requested channel remains lower than the current number of users on a current channel, ERM 108 (FIG. 1) does not allocate the requested channel to QAM 110 (FIG. 1) (step 502) and channel-interest manager 102 (FIG. 1) continues the comparison (step 501). Once the interest for an unallocated channel exceeds the number of users for any allocated channel, session manager 101 (FIG. 1) considers de-allocating that allocated channel as depicted in FIG. 6.
  • FIG. 6 shows an illustrative method for considering various parameters before de-allocating a channel in accordance with one embodiment of the present invention. Channel-interest manager 102 (FIG. 1) compares the number viewers of a channel selected for de-allocation with a non-bump threshold (NBT) (step 601). While the number of viewers remains lower than the NBT, session manager 101 (FIG. 1) instructs ERM 108 (FIG. 1) not to de-allocate that channel from QAM 110 (FIG. 1) (step 602). Once the number of viewers exceeds the NBT, session manager 101 (FIG. 1) may instruct ERM 108 (FIG. 1) to de-allocate that channel based on the amount of time that the allocated channel has been running (step 603). While the amount of running time remains lower than the NBT, session manager 101 (FIG. 1) does not instruct ERM 108 (FIG. 1) to de-allocate that channel from QAM 110 (FIG. 1) (step 604). If, in the alternative, the running time exceeds the NBT, session manager 101 (FIG. 1) may communicate with trend manager 104 (FIG. 1), which stores viewer trends (step 605). Viewer trends may include any appropriate external viewer or program information (e.g., the program is being interrupted by a commercial).
  • For example, the session manager 101 (FIG. 1) does not instruct ERM 108 (FIG. 1) to de-allocate that channel from QAM 110 (FIG. 1) (step 606) if trend manager 104 (FIG. 1) returns that the inactivity is due to a commercial and not lack of interest. However, if trend manager 104 (FIG. 1) returns that the interest-level for the allocated channel has declined, sessions manager 101 (FIG. 1) instructs ERM 108 (FIG. 1) to de-allocate that channel from QAM 110 (FIG. 1) and to allocate the requested channel 111 (FIG. 1) in its place (step 607). The bumped user is then given new viewing options including: watch as pay-per-view, watch related content, watch content of interest, wait for re-allocation, etc. (See FIG. 3).
  • FIG. 7 shows an illustrative method for degrading channels when bandwidth is becoming scarce in accordance with one embodiment of the present invention. ERM 108 (FIG. 1) is continuously checking edge device 110 (FIG. 1) to determine if the bandwidth is becoming scarce (step 701). While the bandwidth remains open, ERM 108 (FIG. 1) continues measuring the availability of the bandwidth (step 702). Once the bandwidth becomes scarce, ERM 108 (FIG. 1) checks the network 109 (FIG. 1) to see if the allocated channel has a lower quality version that is currently unallocated 111 (FIG. 1) (e.g., SD rather than HD) (step 703). If a lower quality version is available, the channel is degraded either automatically (step 704) or by user-interaction (step 705). If the degrading is done automatically or if the viewer chooses de-allocation (step 706), ERM 108 (FIG. 1) replaces the higher quality version of the channel with the lower quality version of the channel at the same QAM (now with more room) (step 707), by commanding edge device 110 (FIG. 1) to allocate bandwidth to the source of the degraded version of the channel.
  • FIG. 8 shows an illustrative method for detecting allocated program overruns and providing options based on interest in accordance with one embodiment of the present invention. If a program runs over (step 801), channel-interest manager 102 (FIG. 1) compares the interest for the overtime and the interest for the regularly scheduled program (step 802). ERM/server 108 (FIG. 1) then sends the comparison over the network to the cable service provider (step 803). The cable service provider is given the option, then, of which program to put on their regularly broadcast QAM-overtime or regular program. If the program not selected by the station programmer exceeds the interest threshold (step 804), that program can be put on SDV (step 805) so that both programs may be viewed simultaneously-one on the regularly broadcast channel and the other as an SDV channel.
  • FIGS. 9A-9P show illustrative interactive media guidance application menu display screens in accordance with various embodiments of the present invention. After requesting an unallocated channel, session manager 101 (FIG. 1) may present a requester with any one of menu display screens in FIGS. 9A-9P, while the requester waits for the number of requests to exceed the interest threshold. The screens in 9A-9P are illustrative and may include any possible combination of text associated with the various options given to a requester disclosed in the previous embodiments of FIG. 3.
  • Client 107 (FIG. 1) may display screen 900 (FIG. 9A) as a requester views grid 901 from which he may select a channel. The interest-based SDV channels and interest-based services in the guide may be starred or otherwise distinguished as in key 902 to indicate that they are available based on interest and may not be immediately available.
  • Client 107 (FIG. 1) may display screen 903 (FIG. 9B) once a requester selects a channel he or she wishes to watch. A requester may indicate a desire to watch a channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. Channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel until it is allocated. As the requestor waits for allocation, “One Moment Please” overlay 904 may be displayed over menu 905 containing highlighted channel selection 906.
  • Client 107 (FIG. 1) may display screen 907 (FIG. 9C) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3. Overlay 908 may be displayed allowing a requester to indicate a desire to wait for allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 909 (FIG. 9D) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3. Overlay 910 may be displayed allowing a requester to indicate a desire to view the channel once it is allocated by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel, tuning that “interested” requester to the channel as it is allocated. If “No” is selected, client 107 (FIG. 1) may give the requester other options, (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 911 (FIG. 9E) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3. Overlay 912 may be displayed over the currently viewed channel 913, while the name of the requested channel 914 is displayed at the bottom of screen 911. Channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel until it is allocated.
  • Client 107 (FIG. 1) may display screen 915 (FIG. 9F) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3. Overlay 916 indicates that the channel is presently unavailable and also provides feedback to the requester of the likelihood of allocation in accordance with step 304 of FIG. 3.
  • Client 107 (FIG. 1) may display screen 917 (FIG. 9G) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3. Overlay 918 may be displayed allowing a requester to indicate a desire to wait for allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel until time X has passed. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 919 (FIG. 9H) as the requester waits for the channel's allocation in accordance with step 303 of FIG. 3. Overlay 920 may be displayed allowing a requester to indicate a desire to be notified of allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel, notifying that “previously interested” requester as the channel is allocated. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3). Screen 905 (FIG. 9F) is illustrative of the notification embodiment of the present invention. An interested user may also be notified automatically by channel-interest manager 102 (FIG. 1) tagging the requester as “previously interested” before he or she tunes away from the requested channel (See FIG. 3, step 305).
  • Client 107 (FIG. 1) may display screen 921 (FIG. 9I) as the requester waits for the channel's allocation in accordance with step 301 of FIG. 3. Overlay 920 may be displayed allowing a requester to indicate a desire to watch related content by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 (FIG. 1) tunes to a previously allocated channel with related content. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 923 (FIG. 9J) if the requester selects “Yes” to watching related content before tuning to the allocated channel with related content. Overlay 924 may be displayed allowing a requester to indicate a desire to be notified of allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. Channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel, notifying that “previously interested” requester as the channel is allocated. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 925 (FIG. 9K) as the requester waits for the channel's allocation in accordance with step 313 of FIG. 3. Overlay 926 may be displayed allowing a requester to indicate a desire to watch the most popular channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 (FIG. 1) tunes to a previously allocated channel with the highest number of users at that given moment. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 927 (FIG. 9L) if the requester selects “Yes” to watching the most popular channel before tuning to the allocated channel with the highest number of requests. Overlay 928 may be displayed allowing a requester to indicate a desire to be notified of allocation by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. Channel-interest manager 102 (FIG. 1) continues to check the availability of the requested channel, notifying that “previously interested” requester as the channel is allocated. If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 929 (FIG. 9M) as the requester waits for the channel's allocation in accordance with step 315 of FIG. 3. Overlay 930 may be displayed allowing a requester to indicate a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the requested channel may be temporarily stored as VOD or as a tier 1 channel, guaranteeing its allocation (See FIG. 3, step 316). If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 931 (FIG. 9N) if the requester selects “Yes” to watching the channel as pay-per-view before charging the requester. Overlay 932 may be displayed allowing a requester to confirm a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 (FIG. 1) tunes to the requested channel in accordance with step 316 of FIG. 3 and the requester is charged. If “Exit” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 933 (FIG. 9O) as the requester waits for the channel's allocation to bandwidth in accordance with step 315 of FIG. 3. Screen 912 (FIG. 9O) also provides feedback to the requester of likelihood of allocation before the requester commits to paying for the channel. Overlay 934 may be displayed allowing a requester to indicate a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the requested channel may be temporarily stored as VOD or as a tier 1 channel, guaranteeing its allocation (See FIG. 3, step 316). If “No” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • Client 107 (FIG. 1) may display screen 935 (FIG. 9P) if the requester selects “Yes” to watching the channel as pay-per-view before charging the requester. Overlay 936 may be displayed allowing a requester to confirm a desire to pay to watch the requested channel by using arrow keys on a remote and pressing “enter” or using any suitable interactive media guidance function that allows the user to select a response. If “Yes” is selected by the requester, the STB 105 (FIG. 1) tunes to the requested channel in accordance with step 316 of FIG. 3 and the requester is charged. If “Exit” is selected, client 107 (FIG. 1) may give the requester other options (e.g., FIG. 3).
  • The screens in FIGS. 9A-9P may also have paid advertisements displayed in the background of the text in accordance with step 312 of FIG. 3.
  • The above described embodiments of the present invention are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims which follow. Furthermore, all of the flow charts and processes described above or illustrative. Steps may be added or removed to any of the flow charts, and steps may be performed in a different order.

Claims (86)

1. A method for allocating bandwidth to channels in a switched digital video (SDV) system based on channel interest, comprising:
determining the interest in a channel requested by an SDV client in the SDV system, wherein the interest is a function of requests for the channel from a plurality of SDV clients;
determining whether the interest for the requested channel meets an interest threshold; and
in response to determining that interest for the requested channel meets the interest threshold, allocating bandwidth to the requested channel and making the requested channel available for access by the requesting SDV client.
2. The method defined in claim 1 wherein the function is a weighted sum.
3. The method defined in claim 1 wherein determining whether the interest for the requested channel meets an interest threshold comprises determining the number of times the channel was previously requested by an SDV client and tuned away from when bandwidth was not allocated.
4. The method defined in claim 1 wherein determining whether the interest for the requested channel meets an interest threshold comprises determining the number of votes made for the channel, wherein the votes are requests made by SDV clients for the channel to be available at a scheduled time.
5. The method defined in claim 1 further comprising responding to a request for the channel with data indicative of the likelihood that bandwidth will be allocated to the requested channel.
6. The method defined in claim 1 wherein allocating bandwidth to the requested channel and making the requested channel available for access comprises transmitting a portion of the content of the requested channel at a rate faster than its normal transmission rate.
7. The method defined in claim 1 further comprising:
in response to determining that interest for the requested channel does not meet the interest threshold, offering alternative content to at least one of the requesting clients.
8. The method defined in claim 7 wherein the alternative content comprises one or more advertisements.
9. The method defined in claim 7 wherein the alternative content comprises content related to the content on the requested channel.
10. The method defined in claim 7 wherein the alternative content comprises content on a channel having greater interest than the requested channel.
11. The method defined in claim 1 further comprising in response to determining that the interest for the requested channel does not meet the interest threshold, making the channel available to the SDV client as a pay-per-view channel or video-on-demand offering.
12. The method defined in claim 1 further comprising, in response to determining that interest for the channel meets the interest threshold, notifying requesting SDV clients that the requested channel is available for access.
13. The method defined in claim 1 wherein allocating bandwidth to the requested channel and making the requested channel available further comprises deallocating bandwidth from a channel having a lesser interest and allocating the requested channel.
14. The method defined in claim 13 further comprising:
subsequently reallocating bandwidth to the channel having the lesser interest; and
in response to reallocating bandwidth from the channel having the lesser interest, notifying SDV clients that were previously tuned to the channel having the lesser interest at the time bandwidth was deallocated that bandwidth has been reallocated to the channel.
15. A method for providing alternative actions to a user of a switched digital video (SDV) client when a requested channel is denied, comprising:
transmitting a request for an unallocated SDV channel to a switched digital video session manager;
receiving a message from the SDV session manager denying the request; and
in response to the message, informing the user that the channel is not allocated and allowing the user to wait for the channel to be allocated, providing the user with access to the requested channel as a pay-per-view channel, or providing the user with access to the requested channel as a video-on-demand (VOD) service.
16. The method defined in claim 15 further comprising, in response to the message from the SDV session manager, offering alternative content to the user.
17. The method defined in claim 16 wherein the alternative content comprises one or more advertisements.
18. The method defined in claim 16 wherein the alternative content comprises content related to the content on the requested channel.
19. The method defined in claim 16 wherein the alternative content comprises content on a channel having interest meeting the interest threshold.
20. A method for providing users of a switched digital video (SDV) client with notifications of reallocated channels comprising:
detecting that bandwidth for a currently tuned channel has been deallocated from the SDV system; and
subsequently notifying the user when bandwidth has been reallocated for the channel.
21. The method defined in claim 20 further comprising in response to detecting the deallocation of the bandwidth, offering alternative content.
22. The method defined in claim 21 wherein the alternative content comprises one or more advertisements.
23. The method defined in claim 21 wherein the alternative content comprises content related to the content on the deallocated channel.
24. The method defined in claim 20 further comprising providing the user with access to the deallocated channel as a pay-per-view or video-on-demand channel.
25. A method for allocating QAMs in a mixed service system as a function of interest, comprising:
determining whether interest for a switched digital video (SDV) channel exceeds interest for a video-on-demand (VOD) channel; and
allocating a QAM to the SDV channel or the VOD channel based on which of the two has higher interest.
26. The method defined in claim 25 wherein allocating the QAM comprises, in response to determining that interest for the VOD channel exceeds that of the SDV channel, allocating a QAM of the SDV channel to the VOD channel.
27. A method for allocating QAMs in a mixed service system as a function of potential revenue from a channel, comprising:
determining whether potential revenue derived from expected future use of a switched digital video (SDV) channel would exceed potential revenue derived from expected future use of a video-on-demand (VOD) channel; and
allocating a QAM to the SDV channel or the VOD channel based on which of the two has higher potential revenue based on expected future use.
28. The method defined in claim 27 wherein determining whether potential revenue from expected future use of the SDV channel would exceed potential revenue derived from expected future use of the VOD channel comprises determining which channel would have higher expected advertisement revenues.
29. The method defined in claim 28 wherein allocating the QAM comprises, in response to determining that the future revenues for the VOD channel exceeds that of the SDV channel, allocating a QAM of the SDV channel to the VOD channel.
30. A method for assigning channels in a switched digital video (SDV) service to tiers, comprising:
assigning channels of an SDV service to a plurality of tiers, wherein each tier of the plurality of tiers is associated with an observed or expected interest or revenue stream; and
reserving QAMs within the SDV channel for each tier, wherein tiers having higher observed or expected interest or revenue streams are allocated more QAMs than tiers having lesser observed or expected interest or revenue streams.
31. A method for accommodating bandwidth constraints in a switched digital video (SDV) system comprising:
receiving a request for a channel;
determining whether sufficient bandwidth exists to allow the requested channel to be switched into the system;
in response to determining insufficient bandwidth exists to switch the requested channel into the system, degrading the quality of a channel to allow the requested channel to be switched into the SDV system; and
switching the requested channel into the SDV system.
32. The method defined in claim 31 wherein degrading the quality of a channel comprises degrading the quality of the requested channel.
33. The method defined in claim 31 wherein degrading the quality of a channel comprises degrading the quality of a channel other than the requested channel.
34. The method defined in claim 31 wherein degrading the quality of a channel comprises:
identifying an HD channel having a corresponding SD version;
switching the HD version of the channel out of the SDV system; and
switching the SD version of the channel into the SDV system.
35. A method for addressing program overruns in a switched digital video (SDV) system, comprising:
detecting a program overrun on a first channel currently allocated bandwidth in the SDV system;
determining whether the interest for the program overrun exceeds interest for a regularly scheduled program;
in response to determining that the interest for the program overrun exceeds the interest for the regularly scheduled program, allocating bandwidth for a second channel in the SDV system to accommodate the program overrun.
36. The method defined in claim 35 wherein allocating bandwidth for a second channel in the SDV system to accommodate the program overrun comprises carrying the overrunning program on the second channel.
37. A method for handling emergency access service (EAS) events in a switched digital video (SDV) system comprising:
persistently transmitting tuning information for an EAS channel in a carousel data feed to SDV clients; and
in response to an EAS event, switching clients to the EAS channel according to the tuning information.
38. A switched digital video (SDV) system for allocating bandwidth to channels based on channel interest, comprising:
an edge device;
a switched-services session manager comprising a channel-interest manager, wherein the channel interest manager is configured to:
determine the interest in a channel in the SDV system wherein the interest is a function of requests for the channel from a plurality of SDV clients; and
determine whether the interest for the requested channel meets an interest threshold; and
an edge resource manager configured to, in response to the channel-interest manager determining that interest for the requested channel meets the interest threshold, direct the edge device to allocate bandwidth to the requested channel, making the requested channel available for access by the requesting SDV client.
39. The system defined in claim 38 wherein the function is a weighted sum.
40. The system defined in claim 38 wherein the channel-interest manager is further configured to determine the interest by determining the number of times the channel was previously requested by an SDV client and tuned away from when bandwidth was not allocated.
41. The system defined in claim 38 the channel-interest manager is further configured to determine the interest by determining the number of votes made for the channel, wherein the votes are requests made by SDV clients for the channel to be available at a scheduled time.
42. The system defined in claim 38 wherein the channel-interest manager is further configured to respond to the request with data indicative of the likelihood that bandwidth will be allocated to the requested channel.
43. The system defined in claim 38 wherein the switched-services session manager is further configured to offer a portion of content of the requested channel at a rate faster than its normal transmission rate.
44. The system defined in claim 38 wherein the switched-services session manager is further configured to, in response to the channel-interest manager determining that interest for the requested channel does not meet the interest threshold, offer alternative content to at least one of the requesting clients.
45. The system defined in claim 44 wherein the alternative content comprises one or more advertisements.
46. The system defined in claim 44 wherein the alternative content comprises content related to the content on the requested channel.
47. The system defined in claim 44 wherein the alternative content comprises content on a channel having greater interest than the requested channel.
48. The system defined in claim 38 wherein the switched-services session manager is further configured to, in response to channel-interest manager determining that the interest for the requested channel does not meet the interest threshold, direct the edge resource manager to make the channel available to the SDV client as a pay-per-view channel or video-on-demand offering.
49. The system defined in claim 38 wherein the switched-services session manager is further configured to, in response to the channel-interest manager determining that interest for the channel meets the interest threshold, notify prior requesting SDV clients that the requested channel is available for access.
50. The system defined in claim 38 wherein the channel-interest manager is further configured to direct the edge resource manager to deallocate bandwidth from a channel having a lesser interest and allocating the bandwidth of the channel having a lesser interest to the requested channel.
51. The system defined in claim 50 wherein:
the channel-interest manager is further configured to subsequently direct the edge resource manager to reallocate bandwidth to the channel having the lesser interest; and
the switched-services session manager is configured to, in response to the edge resource manager reallocating bandwidth to the channel having the lesser interest, notify SDV clients that were tuned to the channel having the lesser interest at the time bandwidth was deallocated that bandwidth has been reallocated to the channel.
52. A switched digital video (SDV) system client for providing alternative actions to a user when a requested channel is denied, comprising:
communications circuitry; and
control circuitry configured to:
direct the communications circuitry to transmit a request for an unallocated SDV channel to a switched digital video session manager; and
in response to the communications circuitry receiving a message from the SDV session manager denying the request, informing the user that the channel is not allocated and allowing the user to wait for the channel to be allocated, providing the user with access to the requested channel as a pay-per-view channel, or providing the user with access to the requested channel as a video-on-demand (VOD) service.
53. The system defined in claim 52 wherein the control circuitry is further configured to, in response to the communications circuitry receiving the message from the SDV session manager, offering alternative content to the user.
54. The system defined in claim 53 wherein the alternative content comprises one or more advertisements.
55. The system defined in claim 53 wherein the alternative content comprises content related to the content on the requested channel.
56. The system defined in claim 53 wherein the alternative content comprises content on a channel having greater interest than the requested channel.
57. A switched digital video (SDV) system client for providing users with notifications of reallocated channels comprising control circuitry configured to:
detect that bandwidth for a currently tuned channel has been deallocated from the SDV system; and
subsequently notifying the user when bandwidth has been reallocated for the channel.
58. The system defined in claim 57 wherein the control circuitry is further configured to, in response to detecting the deallocation of the bandwidth, offering alternative content to the user.
59. The system defined in claim 58 wherein the alternative content comprises one or more advertisements.
60. The system defined in claim 58 wherein the alternative content comprises content related to the content on the deallocated channel.
61. The system defined in claim 57 further configured to provide the user with access to the deallocated channel as a pay-per-view or video-on-demand channel.
62. A switched digital video (SDV) system for allocating QAMs in a mixed service system as a function of interest, comprising:
an edge resource manager; and
a channel-interest manager configured to:
determine whether interest for a SDV channel exceeds interest for a video-on-demand (VOD) channel; and
direct the edge resource manager to allocate a QAM to the SDV channel or the VOD channel based on which of the two has higher interest.
63. The system defined in claim 62 wherein the channel-interest manager is further configured to direct the edge resource manager to allocate a QAM of the SDV channel to the VOD channel.
64. A switched digital video (SDV) system for allocating QAMs in a mixed service system as a function of potential revenue, comprising:
an edge resource manager; and
a revenue manager configured to:
determine whether potential revenue derived from expected future use of a SDV channel would exceed potential revenue derived from expected future use of a video-on-demand (VOD) channel; and
direct the edge resource manager to allocate a QAM to the SDV channel or the VOD channel based on which of the two has higher potential revenue based on expected future use.
65. The system defined in claim 64 wherein the resource manager is further configured to determine which channel would have higher expected advertisement revenues.
66. The system defined in claim 65 wherein the resource manager is further configured to, in response to determining that the future revenues for the VOD channel exceeds that of the SDV channel, direct the edge resource manager to allocate a QAM of the SDV channel to the VOD channel.
67. A switched digital video (SDV) system for assigning channels in a SDV service to tiers, comprising a switched services session manager configured to:
assign channels of an SDV service to a plurality of tiers, wherein each tier of the plurality of tiers is associated with an observed or expected interest or revenue stream; and
reserve QAMs within the SDV channel for each tier, wherein tiers having higher observed or expected interest or revenue streams are allocated more QAMs than tiers having lesser observed or expected interest or revenue streams.
68. A switched digital video (SDV) system for accommodating bandwidth constraints, comprising:
an edge resource manager; and
a channel-interest manager configured to:
determine whether sufficient bandwidth exists to allow a requested channel to be switched into the system;
in response to determining insufficient bandwidth exists to switch the requested channel into the system, direct the edge resource manager to switch a channel with degraded quality into the system to allow the requested channel to be switched into the SDV system.
69. The system defined in claim 68 wherein the edge resource manager is configured to switch the requested channel with degraded quality into the system in response to the direction of the channel-interest manager.
70. The system defined in claim 68 wherein the edge resource manager is configured to switch a channel other than the requested channel, in response to the direction of the channel-interest manager.
71. The system defined in claim 68 wherein the channel-interest manager is further configured to:
identify an HD channel having a corresponding SD version;
direct the edge resource manager to switch the HD version of the channel out of the SDV system; and
direct the edge resource manager to switch the SD version of the channel into the SDV system.
72. A switched digital video (SDV) system for addressing program overruns, comprising:
an edge resource manager; and
a channel-interest manager configured to:
detect a program overrun on a first channel currently allocated bandwidth in the SDV system;
determine whether the interest for the program overrun exceeds interest for a regularly scheduled program; and
in response to determining that the interest for the program overrun exceeds the interest for the regularly scheduled program, direct the edge resource manager to allocate bandwidth for a second channel in the SDV system to accommodate the program overrun.
73. The system defined in claim 72 wherein the second channel carries the overrunning program.
74. A switched digital system for handling emergency access service (EAS) events, comprising:
an edge resource manager; and
a channel-interest manager configured to:
persistently transmit tuning information for an EAS channel in a carousel data feed to SDV clients; and
in response to an EAS event, switch the clients to the EAS channel according to the tuning information.
75. A method for allocating bandwidth to channels in a switched digital video (SDV) system based on channel interest, comprising:
determining the interest in a channel in an SDV system, wherein the interest is a function of a plurality of SDV client requests for that channel;
determining whether interest for the requested channel meets an interest threshold; and
in response to determining that interest for the requested channel meets the interest threshold, allocating bandwidth to the requested channel and making the requested channel available for access by the requesting SDV client.
76. The method defined in claim 75, wherein channels in the SDV service are divided between two or more tiers of channels, each tier having an associated threshold, wherein at least two of the thresholds are different.
77. The method defined in claim 75 wherein the channel is an emergency alert system channel.
78. A system for allocating bandwidth to channels in a switched digital video (SDV) system based on channel interest, comprising:
an edge resource manager; and
a channel interest manager configured to:
determine the interest in a channel in an SDV system, wherein the interest is a function of a plurality of SDV client requests for that channel;
determine whether interest for the requested channel meets an interest threshold; and
in response to determining that interest for the requested channel meets the interest threshold, direct the edge resource manager to allocate bandwidth to the requested channel and making the requested channel available for access by the requesting SDV client.
79. The system defined in claim 78, wherein channels in the SDV service are divided between two or more tiers of channels, each tier having an associated threshold, wherein at least two of the thresholds are different.
80. The system defined in claim 78 wherein the channel is an emergency alert system channel.
81-120. (canceled)
121. A method for providing a start-over feature that allows a user to watch a program from the beginning even through the user has tuned to the channel for the program after the program has begun, comprising:
caching a copy of the program on a video server;
providing an option to the user to watch the program after it has already begun at a rate that is faster than the real time rate of the program so that it will fit into a duration that is less than the originally scheduled duration for the program;
determining the time remaining for the program; and
in response to the user selecting the option, streaming the program to the user from its beginning at a rate that is faster than the real time rate of the program so that the viewing time of the stream is substantially the time remaining in the originally scheduled timeslot for the program.
122. The method of claim 121, wherein the pitch of the program is algorithmically corrected so it remains substantially the same after rate adjustment as it was before the rate adjustment.
123. A system for providing a start-over feature that allows a user to watch a program from the beginning even through the user has tuned to the channel for the program after the program has begun, comprising:
a client application, implemented on the user's set-top box, configured to provide an option to the user to watch the program after it has already begun at a rate that is faster than the real time rate of the program so that it will fit into a duration that is less than the originally scheduled duration for the program; and
a video server configured to:
cache the program; and
in response to the user selecting the option, streaming the program to the user from its beginning at a rate that is faster than the real time rate of the program so that the viewing time of the stream is substantially the time remaining in the originally scheduled timeslot for the program.
124. The system of claim 123, wherein the video server is further configured to algorithmically correct the pitch of the program so it remains substantially the same after rate adjustment as it was before the rate adjustment.
125-126. (canceled)
US11/880,448 2007-07-20 2007-07-20 Systems & methods for allocating bandwidth in switched digital video systems based on interest Abandoned US20090025027A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US11/880,448 US20090025027A1 (en) 2007-07-20 2007-07-20 Systems & methods for allocating bandwidth in switched digital video systems based on interest
CN201110303784.1A CN102572528B (en) 2007-07-20 2008-07-03 For distributing the system and method for bandwidth in switched digital video systems based on interest
EP08768860A EP2186336A2 (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
AU2008279824A AU2008279824C1 (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
PCT/US2008/008233 WO2009014593A2 (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
CA3109127A CA3109127A1 (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
EP11005400A EP2410739A3 (en) 2007-07-20 2008-07-03 Start-over feature for ongoing television programs in a switched digital video system
CA2693891A CA2693891C (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
KR1020137017178A KR20130082184A (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
KR1020107003254A KR101587663B1 (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
CN200880107702A CN101803380A (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
CA3021825A CA3021825C (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest
MX2010000845A MX2010000845A (en) 2007-07-20 2008-07-03 Systems and methods for allocating bandwidth in switched digital video systems based on interest.
JP2010516981A JP5282090B2 (en) 2007-07-20 2008-07-03 System and method for allocating bandwidth in a switched digital video system based on interest
US13/207,390 US8627389B2 (en) 2007-07-20 2011-08-10 Systems and methods for allocating bandwidth in switched digital video systems based on interest
JP2011265148A JP2012050145A (en) 2007-07-20 2011-12-02 System and method for allocating bandwidth in switched digital video system based on interest
US14/148,283 US9516367B2 (en) 2007-07-20 2014-01-06 Systems and methods for allocating bandwidth in switched digital video systems based on interest

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/880,448 US20090025027A1 (en) 2007-07-20 2007-07-20 Systems & methods for allocating bandwidth in switched digital video systems based on interest

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/207,390 Continuation US8627389B2 (en) 2007-07-20 2011-08-10 Systems and methods for allocating bandwidth in switched digital video systems based on interest

Publications (1)

Publication Number Publication Date
US20090025027A1 true US20090025027A1 (en) 2009-01-22

Family

ID=40219915

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/880,448 Abandoned US20090025027A1 (en) 2007-07-20 2007-07-20 Systems & methods for allocating bandwidth in switched digital video systems based on interest
US13/207,390 Active US8627389B2 (en) 2007-07-20 2011-08-10 Systems and methods for allocating bandwidth in switched digital video systems based on interest
US14/148,283 Active 2027-11-23 US9516367B2 (en) 2007-07-20 2014-01-06 Systems and methods for allocating bandwidth in switched digital video systems based on interest

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/207,390 Active US8627389B2 (en) 2007-07-20 2011-08-10 Systems and methods for allocating bandwidth in switched digital video systems based on interest
US14/148,283 Active 2027-11-23 US9516367B2 (en) 2007-07-20 2014-01-06 Systems and methods for allocating bandwidth in switched digital video systems based on interest

Country Status (9)

Country Link
US (3) US20090025027A1 (en)
EP (2) EP2410739A3 (en)
JP (2) JP5282090B2 (en)
KR (2) KR101587663B1 (en)
CN (2) CN101803380A (en)
AU (1) AU2008279824C1 (en)
CA (3) CA3109127A1 (en)
MX (1) MX2010000845A (en)
WO (1) WO2009014593A2 (en)

Cited By (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090031341A1 (en) * 2007-07-24 2009-01-29 General Instrument Corporation Method and apparatus for reducing the number of control messages transmitted by a set top terminal in an sdv system
US20090031342A1 (en) * 2007-07-27 2009-01-29 Versteeg William C Systems and Methods of Differentiated Requests for Network Access
US20090031392A1 (en) * 2007-07-27 2009-01-29 Versteeg William C Systems and Methods of Differentiated Channel Change Behavior
US20090070830A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and System for Monitoring a Receiving Circuit Module and Controlling Switching to a Back-up Receiving Circuit Module at a Local Collection Facility from a Remote Facility
US20090066848A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for controlling a back-up receiver and encoder in a local collection facility from a remote facility
US20090068959A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and system for operating a receiving circuit for multiple types of input channel signals
US20090067490A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and system for monitoring and switching between a primary encoder and a back-up encoder in a communication system
US20090070829A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Receiving circuit module for receiving and encoding channel signals and method for operating the same
US20090070827A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and System for Monitoring and Switching Between Primary and Back-up Receiver Decoder Circuits in a Communication System
US20090067432A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for controlling a back-up multiplexer in a local collection facility from a remote facility
US20090067433A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for controlling a back-up network adapter in a local collection facility from a remote facility
US20090070846A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for monitoring and controlling a local collection facility from a remote facility using an asynchronous transfer mode (atm) network
US20090100489A1 (en) * 2007-10-11 2009-04-16 James Strothmann Simultaneous access to media in a media delivery system
US20090109836A1 (en) * 2007-10-31 2009-04-30 Wasden Mitchell B Method and system for controlling redundancy of individual components of a remote facility system
US20090119728A1 (en) * 2007-11-07 2009-05-07 Cable Television Laboratories, Inc. Tuning resolver
US20090165056A1 (en) * 2007-12-19 2009-06-25 General Instrument Corporation Method and apparatus for scheduling a recording of an upcoming sdv program deliverable over a content delivery system
US20090193485A1 (en) * 2008-01-30 2009-07-30 Remi Rieger Methods and apparatus for predictive delivery of content over a network
US20090199227A1 (en) * 2008-01-31 2009-08-06 Echostar Technologies Llc Systems and methods for providing content based upon consumer preferences
US20090217326A1 (en) * 2008-02-26 2009-08-27 Hasek Charles A Methods and apparatus for business-based network resource allocation
US20090271818A1 (en) * 2008-04-28 2009-10-29 General Instrument Corporation Method And Apparatus For Delivering Emergency Alert System (EAS) Messages Over A Switched Digital Video (SDV) System
US20090276815A1 (en) * 2008-04-30 2009-11-05 Echostar Technologies L.L.C. Systems, methods and apparatus for democratic allocation of bandwidth
US20090313383A1 (en) * 2008-05-09 2009-12-17 Roundbox, Inc. Datacasting system with automatic delivery of service mangement capability
US20090328090A1 (en) * 2008-06-25 2009-12-31 At&T Intellectual Property I, L.P. Digital Television Channel Trending
US20100077433A1 (en) * 2008-09-24 2010-03-25 Verizon Data Services Llc Multi-panel television browsing
US20100086020A1 (en) * 2008-10-07 2010-04-08 General Instrument Corporation Content delivery system having an edge resource manager performing bandwidth reclamation
US20100125887A1 (en) * 2008-11-19 2010-05-20 Qurio Holdings, Inc. Method and system to influence a viewer to select a feed
US20100162299A1 (en) * 2008-12-19 2010-06-24 Verizon Corporate Services Group Inc. System and method for delivering video-on-demand (vod) content during emergency alert system (eas) events
US20100211972A1 (en) * 2009-02-13 2010-08-19 Embarq Holdings Company, Llc System and method for displaying an emergency alert message
US20100211970A1 (en) * 2009-02-13 2010-08-19 Embarq Holdings Company, Llc System and method for bypassing an emergency alert break-in
WO2010104350A2 (en) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Method and apparatus for allocating channel bandwidth in wireless internet protocol television systems
US20100287298A1 (en) * 2009-05-06 2010-11-11 Roundbox, Inc. Datacasting system with hierarchical delivery quality of service management capability
WO2011010261A1 (en) 2009-07-24 2011-01-27 Koninklijke Philips Electronics N.V. A method and system for transmitting channels to at least one digital video recorder
US20110197239A1 (en) * 2010-02-11 2011-08-11 John Schlack Multi-service bandwidth allocation
US20110277008A1 (en) * 2010-05-06 2011-11-10 Time Warner Cable Inc. Technique for providing uninterrupted switched digital video service
US20110289536A1 (en) * 2010-05-20 2011-11-24 Comcast Cable Communications, Llc Communication for One Way Devices
US8072874B2 (en) 2007-09-11 2011-12-06 The Directv Group, Inc. Method and system for switching to an engineering signal processing system from a production signal processing system
US20110302617A1 (en) * 2010-06-04 2011-12-08 CSC Holdings, LLC On-demand session initiation and management
US20120030326A1 (en) * 2010-07-30 2012-02-02 Brendan Cassidy Method of Servicing Requests to Manage Network Congestion and Server Load and Server Thereof
US20120102517A1 (en) * 2009-06-30 2012-04-26 Huawei Technologies Co., Ltd. Method, system and device for processing media stream
US8170069B2 (en) 2007-09-11 2012-05-01 The Directv Group, Inc. Method and system for processing signals from a local collection facility at a signal processing facility
US20120117596A1 (en) * 2010-11-05 2012-05-10 Eldon Technology Limited Apparatus, systems and methods for automatically presenting stored media content at its beginning
US20120173936A1 (en) * 2010-12-29 2012-07-05 International Business Machines Corporation Channel marking for chip mark overflow and calibration errors
US20120204217A1 (en) * 2010-10-14 2012-08-09 Activevideo Networks, Inc. Streaming Digital Video between Video Devices Using a Cable Television System
US20120233274A1 (en) * 2011-03-11 2012-09-13 ISEBOX Limited Dissemination of information
US20120297410A1 (en) * 2009-11-03 2012-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Streaming With Optional Broadcast Delivery of Data Segments
US8356321B2 (en) 2007-09-11 2013-01-15 The Directv Group, Inc. Method and system for monitoring and controlling receiving circuit modules at a local collection facility from a remote facility
US20130127978A1 (en) * 2009-05-26 2013-05-23 General Instrument Corporation Simultaneous delivery of a telephony call over a broadband access network and a circuit-switched network
US20130133009A1 (en) * 2011-11-22 2013-05-23 International Business Machines Corporation Optimizing video recorder power usage for dvr network
US8627389B2 (en) 2007-07-20 2014-01-07 Rovi Guides, Inc. Systems and methods for allocating bandwidth in switched digital video systems based on interest
US8650590B2 (en) 2009-02-13 2014-02-11 Centurylink Intellectual Property Llc System and method for bypassing an emergency alert break-in for a recorded event
WO2013149128A3 (en) * 2012-03-30 2014-02-20 United Video Properties, Inc. Systems and methods for adaptively transmitting media and advertising content
US20140189754A1 (en) * 2012-12-28 2014-07-03 DISH Digital L.L.C. Adaptive multicast delivery of media streams
US20140195230A1 (en) * 2013-01-07 2014-07-10 Samsung Electronics Co., Ltd. Display apparatus and method for controlling the same
US20140241698A1 (en) * 2007-09-28 2014-08-28 At&T Intellectual Property I, L.P. Systems and methods of processing programming wish list data
US20140282776A1 (en) * 2013-03-15 2014-09-18 Cisco Technology, Inc. Video content priority aware congestion management
US20140344873A1 (en) * 2012-05-24 2014-11-20 Time Warner Cable Enterprises Llc Methods and apparatus for providing multi-source bandwidth sharing management
US20140344858A1 (en) * 2012-03-15 2014-11-20 Echostar Technologies L.L.C. Recording of Multiple Television Channels
US8930987B2 (en) 2012-03-30 2015-01-06 United Video Properties, Inc. Systems and methods for adaptively transmitting media and advertising content
US20150040176A1 (en) * 2013-07-31 2015-02-05 Time Warner Cable Enterprises Llc Methods and apparatus that facilitate channel switching during commercial breaks and/or other program segments
US8973058B2 (en) 2007-09-11 2015-03-03 The Directv Group, Inc. Method and system for monitoring and simultaneously displaying a plurality of signal channels in a communication system
US8978079B2 (en) 2012-03-23 2015-03-10 Time Warner Cable Enterprises Llc Apparatus and methods for managing delivery of content in a network with limited bandwidth using pre-caching
US20150089078A1 (en) * 2012-05-11 2015-03-26 Comcast Cable Communications, Llc Generation of Dynamic Content Interfaces
US20150089536A1 (en) * 2013-09-20 2015-03-26 EchoStar Technologies, L.L.C. Wireless tuner sharing
US9021538B2 (en) 1998-07-14 2015-04-28 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9037074B2 (en) 2007-10-30 2015-05-19 The Directv Group, Inc. Method and system for monitoring and controlling a local collection facility from a remote facility through an IP network
US20150143408A1 (en) * 2013-11-19 2015-05-21 Comcast Cable Communications, Llc Premises automation control
US9042454B2 (en) 2007-01-12 2015-05-26 Activevideo Networks, Inc. Interactive encoded content system including object models for viewing on a remote device
US9049354B2 (en) 2007-10-30 2015-06-02 The Directv Group, Inc. Method and system for monitoring and controlling a back-up receiver in local collection facility from a remote facility using an IP network
US9049073B2 (en) 2011-06-28 2015-06-02 Rovi Guides, Inc. Systems and methods for initializing allocations of transport streams based on historical data
US9071872B2 (en) 2003-01-30 2015-06-30 Rovi Guides, Inc. Interactive television systems with digital video recording and adjustable reminders
US9077860B2 (en) 2005-07-26 2015-07-07 Activevideo Networks, Inc. System and method for providing video content associated with a source image to a television in a communication network
US9125169B2 (en) 2011-12-23 2015-09-01 Rovi Guides, Inc. Methods and systems for performing actions based on location-based rules
US9123084B2 (en) 2012-04-12 2015-09-01 Activevideo Networks, Inc. Graphical application integration with MPEG objects
US9204203B2 (en) 2011-04-07 2015-12-01 Activevideo Networks, Inc. Reduction of latency in video distribution networks using adaptive bit rates
US9219922B2 (en) 2013-06-06 2015-12-22 Activevideo Networks, Inc. System and method for exploiting scene graph information in construction of an encoded video sequence
US20150373391A1 (en) * 2013-11-20 2015-12-24 Madhavrao NAIK ATUL System for deployment of value-added services over digital broadcast cable
US20160007075A1 (en) * 2014-07-02 2016-01-07 Samsung Electronics Co., Ltd. Broadcast signal receiving apparatus and control method of the same and broadcast signal transmitting apparatus
US9264779B2 (en) 2011-08-23 2016-02-16 Echostar Technologies L.L.C. User interface
US9294785B2 (en) 2013-06-06 2016-03-22 Activevideo Networks, Inc. System and method for exploiting scene graph information in construction of an encoded video sequence
US9294799B2 (en) 2000-10-11 2016-03-22 Rovi Guides, Inc. Systems and methods for providing storage of data on servers in an on-demand media delivery system
US9326047B2 (en) 2013-06-06 2016-04-26 Activevideo Networks, Inc. Overlay rendering of user interface onto source video
US9350937B2 (en) 2011-08-23 2016-05-24 Echostar Technologies L.L.C. System and method for dynamically adjusting recording parameters
US9357159B2 (en) 2011-08-23 2016-05-31 Echostar Technologies L.L.C. Grouping and presenting content
CN105657481A (en) * 2014-12-01 2016-06-08 上海斐讯数据通信技术有限公司 Video play system and method for cutting in advertisement in video
US9398346B2 (en) 2007-05-04 2016-07-19 Time Warner Cable Enterprises Llc Methods and apparatus for predictive capacity allocation
US20160330131A1 (en) * 2015-05-05 2016-11-10 Avaya Inc. Automatic cloud capacity adjustment
US9521440B2 (en) 2012-03-15 2016-12-13 Echostar Technologies L.L.C. Smartcard encryption cycling
US9578355B2 (en) 2004-06-29 2017-02-21 Time Warner Cable Enterprises Llc Method and apparatus for network bandwidth allocation
US9584839B2 (en) 2007-10-15 2017-02-28 Time Warner Cable Enterprises Llc Methods and apparatus for revenue-optimized delivery of content in a network
US9602414B2 (en) 2011-02-09 2017-03-21 Time Warner Cable Enterprises Llc Apparatus and methods for controlled bandwidth reclamation
US9621933B2 (en) * 2015-03-27 2017-04-11 Ericsson Ab System and method for providing VOD content in a switched digital video network using unicast ABR streaming
US9621946B2 (en) 2011-08-23 2017-04-11 Echostar Technologies L.L.C. Frequency content sort
US9628838B2 (en) 2013-10-01 2017-04-18 Echostar Technologies L.L.C. Satellite-based content targeting
US9635436B2 (en) 2011-08-23 2017-04-25 Echostar Technologies L.L.C. Altering presentation of received content based on use of closed captioning elements as reference locations
US9668006B2 (en) * 2011-06-01 2017-05-30 Comcast Cable Communications, Llc Content selection based on dispersion calculations
US20170180784A1 (en) * 2015-12-16 2017-06-22 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
US9756378B2 (en) 2015-01-07 2017-09-05 Echostar Technologies L.L.C. Single file PVR per service ID
US9756290B2 (en) 2007-09-11 2017-09-05 The Directv Group, Inc. Method and system for communicating between a local collection facility and a remote facility
US9762973B2 (en) 2008-11-04 2017-09-12 The Directv Group, Inc. Method and system for operating a receiving circuit module to encode a channel signal into multiple encoding formats
US9788029B2 (en) 2014-04-25 2017-10-10 Activevideo Networks, Inc. Intelligent multiplexing using class-based, multi-dimensioned decision logic for managed networks
US9788149B2 (en) 2012-08-30 2017-10-10 Time Warner Cable Enterprises Llc Apparatus and methods for enabling location-based services within a premises
US9788028B2 (en) 2015-03-27 2017-10-10 Ericsson Ab System and method for providing guaranteed channel content in a switched digital video network using multicast ABR streaming
US9800945B2 (en) 2012-04-03 2017-10-24 Activevideo Networks, Inc. Class-based intelligent multiplexing over unmanaged networks
US9826197B2 (en) 2007-01-12 2017-11-21 Activevideo Networks, Inc. Providing television broadcasts over a managed network and interactive content over an unmanaged network to a client device
US9831971B1 (en) 2011-04-05 2017-11-28 The Directv Group, Inc. Method and system for operating a communication system encoded into multiple independently communicated encoding formats
CN107426581A (en) * 2016-12-29 2017-12-01 东方有线网络有限公司 A kind of interactive TV live broadcast system implementation method based on broadcasting and TV engine control
US9843828B2 (en) 2015-03-27 2017-12-12 Ericsson Ab System and method for providing non-guaranteed channel content in a switched digital video network using multicast ABR streaming
US20180014072A1 (en) * 2014-08-29 2018-01-11 Sling Media Inc. Systems and processes for delivering digital video content based upon excitement data
US9883223B2 (en) 2012-12-14 2018-01-30 Time Warner Cable Enterprises Llc Apparatus and methods for multimedia coordination
US9894406B2 (en) 2011-08-23 2018-02-13 Echostar Technologies L.L.C. Storing multiple instances of content
US9906827B2 (en) 2003-08-12 2018-02-27 Time Warner Cable Enterprises Llc Technique for effectively delivering targeted advertisements through a communications network having limited bandwidth
US9918345B2 (en) 2016-01-20 2018-03-13 Time Warner Cable Enterprises Llc Apparatus and method for wireless network services in moving vehicles
US9918116B2 (en) 2012-11-08 2018-03-13 Echostar Technologies L.L.C. Image domain compliance
US9930387B2 (en) 2005-02-01 2018-03-27 Time Warner Cable Enterprises Llc Method and apparatus for network bandwidth conservation
US9935833B2 (en) 2014-11-05 2018-04-03 Time Warner Cable Enterprises Llc Methods and apparatus for determining an optimized wireless interface installation configuration
US9961413B2 (en) 2010-07-22 2018-05-01 Time Warner Cable Enterprises Llc Apparatus and methods for packetized content delivery over a bandwidth efficient network
US9986578B2 (en) 2015-12-04 2018-05-29 Time Warner Cable Enterprises Llc Apparatus and methods for selective data network access
US9992284B2 (en) 2008-05-09 2018-06-05 At&T Intellectual Property I, L.P. Datacasting system with intermittent listener capability
US20180176624A1 (en) * 2016-07-07 2018-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth and ABR Video QoE Management Based On OTT Video Providers and Devices
US10009652B2 (en) 2006-02-27 2018-06-26 Time Warner Cable Enterprises Llc Methods and apparatus for selecting digital access technology for programming and data delivery
US10028025B2 (en) 2014-09-29 2018-07-17 Time Warner Cable Enterprises Llc Apparatus and methods for enabling presence-based and use-based services
US10051302B2 (en) 2006-02-27 2018-08-14 Time Warner Cable Enterprises Llc Methods and apparatus for device capabilities discovery and utilization within a content distribution network
US10063934B2 (en) 2008-11-25 2018-08-28 Rovi Technologies Corporation Reducing unicast session duration with restart TV
US10085047B2 (en) 2007-09-26 2018-09-25 Time Warner Cable Enterprises Llc Methods and apparatus for content caching in a video network
US10104420B2 (en) 2011-08-23 2018-10-16 DISH Technologies, L.L.C. Automatically recording supplemental content
US10116676B2 (en) 2015-02-13 2018-10-30 Time Warner Cable Enterprises Llc Apparatus and methods for data collection, analysis and service modification based on online activity
US20180343488A1 (en) * 2017-05-26 2018-11-29 At&T Intellectual Property I, L.P. Providing Streaming Video From Mobile Computing Nodes
US10164858B2 (en) 2016-06-15 2018-12-25 Time Warner Cable Enterprises Llc Apparatus and methods for monitoring and diagnosing a wireless network
US10178435B1 (en) 2009-10-20 2019-01-08 Time Warner Cable Enterprises Llc Methods and apparatus for enabling media functionality in a content delivery network
EP3402213A3 (en) * 2017-05-08 2019-01-16 Alcatel-Lucent USA Inc. Multicast adaptive bitrate channel selection in access networks
US10194183B2 (en) 2015-12-29 2019-01-29 DISH Technologies L.L.C. Remote storage digital video recorder streaming and related methods
US10223713B2 (en) 2007-09-26 2019-03-05 Time Warner Cable Enterprises Llc Methods and apparatus for user-based targeted content delivery
US10225592B2 (en) 2007-03-20 2019-03-05 Time Warner Cable Enterprises Llc Methods and apparatus for content delivery and replacement in a network
US10250932B2 (en) 2012-04-04 2019-04-02 Time Warner Cable Enterprises Llc Apparatus and methods for automated highlight reel creation in a content delivery network
US10275128B2 (en) 2013-03-15 2019-04-30 Activevideo Networks, Inc. Multiple-mode system and method for providing user selectable video content
US20190141375A1 (en) * 2015-12-01 2019-05-09 Rovi Guides, Inc. Systems and methods for managing available bandwidth in a household
US10297287B2 (en) 2013-10-21 2019-05-21 Thuuz, Inc. Dynamic media recording
US10313755B2 (en) 2009-03-30 2019-06-04 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US10311713B2 (en) 2010-09-15 2019-06-04 Comcast Cable Communications, Llc Securing property
US20190182520A1 (en) * 2016-08-17 2019-06-13 Nec Corporation Bitrate instruction device, bitrate instruction method, and non-transitory recording medium
US20190200079A1 (en) * 2017-12-21 2019-06-27 Facebook, Inc. Predictive Analysis for Media Encodings
US10341728B2 (en) 2015-12-30 2019-07-02 Sling Media L.L.C. Media systems for temporally and contextually relevant recommendations
US10368255B2 (en) 2017-07-25 2019-07-30 Time Warner Cable Enterprises Llc Methods and apparatus for client-based dynamic control of connections to co-existing radio access networks
US10409445B2 (en) 2012-01-09 2019-09-10 Activevideo Networks, Inc. Rendering of an interactive lean-backward user interface on a television
US10410222B2 (en) 2009-07-23 2019-09-10 DISH Technologies L.L.C. Messaging service for providing updates for multimedia content of a live event delivered over the internet
US10419830B2 (en) 2014-10-09 2019-09-17 Thuuz, Inc. Generating a customized highlight sequence depicting an event
US10433030B2 (en) 2014-10-09 2019-10-01 Thuuz, Inc. Generating a customized highlight sequence depicting multiple events
US10462520B2 (en) * 2016-02-25 2019-10-29 Nippon Telegraph And Telephone Corporation Pacing control device, pacing control method, and program
US10492034B2 (en) 2016-03-07 2019-11-26 Time Warner Cable Enterprises Llc Apparatus and methods for dynamic open-access networks
US10536758B2 (en) 2014-10-09 2020-01-14 Thuuz, Inc. Customized generation of highlight show with narrative component
US20200037017A1 (en) * 2016-09-30 2020-01-30 British Telecommunications Public Limited Company Viewer importance adaptive bit rate delivery
US10560772B2 (en) 2013-07-23 2020-02-11 Time Warner Cable Enterprises Llc Apparatus and methods for selective data network access
US10586023B2 (en) 2016-04-21 2020-03-10 Time Warner Cable Enterprises Llc Methods and apparatus for secondary content management and fraud prevention
US10638361B2 (en) 2017-06-06 2020-04-28 Charter Communications Operating, Llc Methods and apparatus for dynamic control of connections to co-existing radio access networks
US10645547B2 (en) 2017-06-02 2020-05-05 Charter Communications Operating, Llc Apparatus and methods for providing wireless service in a venue
US10687115B2 (en) 2016-06-01 2020-06-16 Time Warner Cable Enterprises Llc Cloud-based digital content recorder apparatus and methods
US10735837B1 (en) * 2019-07-11 2020-08-04 Ciena Corporation Partial activation of a media channel on channel holder-based optical links
US10778930B2 (en) 2007-05-30 2020-09-15 Comcast Cable Communications, Llc Selection of electronic content and services
US10911794B2 (en) 2016-11-09 2021-02-02 Charter Communications Operating, Llc Apparatus and methods for selective secondary content insertion in a digital network
US10924775B2 (en) * 2018-06-26 2021-02-16 Qualcomm Incorporated Uplink and downlink methods for efficient operation of live uplink streaming services
US10939142B2 (en) 2018-02-27 2021-03-02 Charter Communications Operating, Llc Apparatus and methods for content storage, distribution and security within a content distribution network
US10965727B2 (en) 2009-06-08 2021-03-30 Time Warner Cable Enterprises Llc Methods and apparatus for premises content distribution
US11025985B2 (en) 2018-06-05 2021-06-01 Stats Llc Audio processing for detecting occurrences of crowd noise in sporting event television programming
US11076189B2 (en) 2009-03-30 2021-07-27 Time Warner Cable Enterprises Llc Personal media channel apparatus and methods
US11138438B2 (en) 2018-05-18 2021-10-05 Stats Llc Video processing for embedded information card localization and content extraction
US11159851B2 (en) 2012-09-14 2021-10-26 Time Warner Cable Enterprises Llc Apparatus and methods for providing enhanced or interactive features
US11197050B2 (en) 2013-03-15 2021-12-07 Charter Communications Operating, Llc Methods and apparatus for client-based dynamic control of connections to co-existing radio access networks
US11264048B1 (en) 2018-06-05 2022-03-01 Stats Llc Audio processing for detecting occurrences of loud sound characterized by brief audio bursts
US11284126B2 (en) * 2017-11-06 2022-03-22 SZ DJI Technology Co., Ltd. Method and system for streaming media live broadcast
US20220124387A1 (en) * 2020-01-16 2022-04-21 Beijing Dajia Internet Information Technology Co., Ltd. Method for training bit rate decision model, and electronic device
US11317171B2 (en) 2016-09-30 2022-04-26 British Telecommunications Public Limited Company Viewer importance adaptive bit rate delivery
US11323760B2 (en) * 2020-03-30 2022-05-03 Comcast Cable Communications, Llc Methods and systems for predicting content consumption
US11496782B2 (en) 2012-07-10 2022-11-08 Time Warner Cable Enterprises Llc Apparatus and methods for selective enforcement of secondary content viewing
US20220408123A1 (en) * 2021-06-16 2022-12-22 Meta Platforms, Inc. Systems and methods for preserving video stream quality
US11539999B2 (en) * 2018-11-05 2022-12-27 Arris Enterprises Llc Session control of broadcast video services for DAA and non-DAA automation
US11540148B2 (en) 2014-06-11 2022-12-27 Time Warner Cable Enterprises Llc Methods and apparatus for access point location
US11622144B2 (en) * 2019-11-21 2023-04-04 Arris Enterprises Llc Active video bandwidth management using SDV control
US20230247244A1 (en) * 2020-08-18 2023-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Estimating video resolution delivered by an encrypted video stream
EP4203463A3 (en) * 2015-12-16 2023-09-06 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
US11863848B1 (en) 2014-10-09 2024-01-02 Stats Llc User interface for interaction with customized highlight shows
US11929842B2 (en) 2021-05-28 2024-03-12 Microsoft Technology Licensing, Llc Broadcast priority flags for online meetings

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272479B (en) * 2008-03-31 2011-11-30 华为软件技术有限公司 Resource scheduling device and method, method and system and set-top box for demanding programs
US20100058424A1 (en) * 2008-08-26 2010-03-04 Comcast Cable Holdings, Llc System and method for controlling signal traffic peaks on a video interactive network
JP5222768B2 (en) * 2009-03-30 2013-06-26 Kddi株式会社 Channel assignment apparatus and channel assignment system
US8584173B2 (en) * 2009-07-10 2013-11-12 EchoStar Technologies, L.L.C. Automatic selection of video programming channel based on scheduling information
US8505057B2 (en) 2010-10-05 2013-08-06 Concurrent Computers Demand-based edge caching video content system and method
US8422392B2 (en) * 2010-12-31 2013-04-16 Stmicroelectronics, Inc. System and method for microeconomic multiplexing of data over communication channels
CN103477667B (en) * 2011-03-27 2017-11-03 Lg电子株式会社 Method for the service conversion in the manager apparatus of service network or equipment
CN102231849B (en) * 2011-06-17 2014-04-16 广州珠江数码集团有限公司 Digital television video on demand system and on demand method
US9071799B2 (en) 2012-02-17 2015-06-30 Echostar Technologies L.L.C. Channel tuning redirect
US8763056B2 (en) * 2012-03-07 2014-06-24 Verizon Patent And Licensing Inc. Bandwidth management for packet-based program service
US10229197B1 (en) 2012-04-20 2019-03-12 The Directiv Group, Inc. Method and system for using saved search results in menu structure searching for obtaining faster search results
US10334298B1 (en) 2012-04-20 2019-06-25 The Directv Group, Inc. Method and system for searching content using a content time based window within a user device
CN102647621B (en) * 2012-04-28 2014-07-23 武汉兴图新科电子股份有限公司 Video synchronous playback device and method
CN104429043A (en) * 2012-07-13 2015-03-18 汤姆逊许可公司 Method for allocating a data stream in a system comprising at least one service for broadcasting data streams and at least two terminals
US9253549B2 (en) * 2012-07-30 2016-02-02 Verizon Patent And Licensing Inc. Program modeling tool
CN103139604B (en) * 2013-01-14 2016-03-16 中国科学院声学研究所 A kind of IPQAM frequency point allocation based on cache model and recovery method
US8893197B2 (en) * 2013-03-14 2014-11-18 Centurylink Intellectual Property Llc Licensed and unlicensed spectrum set-top box
CN103347204B (en) * 2013-06-19 2017-03-22 江苏有线技术研究院有限公司 System and method for allocating and managing cable TV network uniform edge IPQAM resources
US10015528B2 (en) 2016-06-01 2018-07-03 Arris Enterprises Llc Methods and systems for generation of dynamic multicast channel maps

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020059626A1 (en) * 2000-08-25 2002-05-16 Thomas Lemmons System and method for optimizing broadcast bandwidth and content
US20030149975A1 (en) * 2002-02-05 2003-08-07 Charles Eldering Targeted advertising in on demand programming
US6718552B1 (en) * 1999-04-20 2004-04-06 Diva Systems Corporation Network bandwidth optimization by dynamic channel allocation
US20040133907A1 (en) * 1999-06-11 2004-07-08 Rodriguez Arturo A. Adaptive scheduling and delivery of television services
US20050123001A1 (en) * 2003-11-05 2005-06-09 Jeff Craven Method and system for providing video and data traffic packets from the same device
US20050188415A1 (en) * 2004-01-23 2005-08-25 Camiant, Inc. Video policy server
US20050249130A1 (en) * 2004-05-04 2005-11-10 Schutte Mark E Method for searching ordered entries in a service group map to facilitate auto channel discovery
US20050289618A1 (en) * 2004-06-29 2005-12-29 Glen Hardin Method and apparatus for network bandwidth allocation
US20060034341A1 (en) * 2004-08-10 2006-02-16 Swaminatha Vasudevan Method and device for receiving and providing programs
US20060218601A1 (en) * 2005-03-09 2006-09-28 Michel Walter F Methods and systems for using in-stream data within an on demand content delivery path
US20070022032A1 (en) * 2005-01-12 2007-01-25 Anderson Bruce J Content selection based on signaling from customer premises equipment in a broadcast network
US20070116048A1 (en) * 2005-04-18 2007-05-24 Tandberg Television Americas Systems and methods for next generation cable network dynamic multiplexing
US20070121678A1 (en) * 2005-11-30 2007-05-31 Brooks Paul D Apparatus and methods for utilizing variable rate program streams in a network
US20070180072A1 (en) * 2006-01-12 2007-08-02 Comcast Cable Holdings, Llc Edge qam configuration and management
US20070204311A1 (en) * 2006-02-27 2007-08-30 Hasek Charles A Methods and apparatus for selecting digital coding/decoding technology for programming and data delivery
US20070245371A1 (en) * 2006-04-17 2007-10-18 Terayon Communication Systems, Inc. Auto-adaptive program distribution system
US20080170622A1 (en) * 2007-01-12 2008-07-17 Ictv, Inc. Interactive encoded content system including object models for viewing on a remote device
US20080175143A1 (en) * 2007-01-22 2008-07-24 Carol Ansley Method and system for providing protocol-based equipment redundancy
US20080216136A1 (en) * 2007-03-03 2008-09-04 Howard Pfeffer Methods and apparatus supporting the recording of multiple simultaneously broadcast programs communicated using the same communications channel
US20080229379A1 (en) * 2007-03-12 2008-09-18 Aamer Akhter Method and apparatus providing scalability for channel change requests in a switched digital video system
US20080320540A1 (en) * 2007-05-15 2008-12-25 Brooks Paul D Methods and apparatus for bandwidth recovery in a network
US20090025052A1 (en) * 2007-07-18 2009-01-22 General Instrument Corporation Method and Apparatus for Controlling the Bandwidth of SDV Programming Supplied to an Edge Device in a n SDV System
US20090271818A1 (en) * 2008-04-28 2009-10-29 General Instrument Corporation Method And Apparatus For Delivering Emergency Alert System (EAS) Messages Over A Switched Digital Video (SDV) System

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386493A (en) * 1992-09-25 1995-01-31 Apple Computer, Inc. Apparatus and method for playing back audio at faster or slower rates without pitch distortion
JPH07219970A (en) * 1993-12-20 1995-08-18 Xerox Corp Method and apparatus for reproduction in acceleration format
US5512934A (en) * 1994-12-29 1996-04-30 At&T Corp. System and method for transmission of programming on demand
US6061056A (en) * 1996-03-04 2000-05-09 Telexis Corporation Television monitoring system with automatic selection of program material of interest and subsequent display under user control
US6005564A (en) * 1996-12-05 1999-12-21 Interval Research Corporation Display pause with elastic playback
JPH11177962A (en) 1997-12-09 1999-07-02 Toshiba Corp Information reproduction server and information reproduction device and method
US6591058B1 (en) * 1997-12-23 2003-07-08 Intel Corporation Time shifting by concurrently recording and playing a data stream
US6622171B2 (en) * 1998-09-15 2003-09-16 Microsoft Corporation Multimedia timeline modification in networked client/server systems
US6762797B1 (en) * 1999-04-14 2004-07-13 Koninklijke Philips Electronics N.V. Method and apparatus for catch-up video viewing
US6934759B2 (en) 1999-05-26 2005-08-23 Enounce, Inc. Method and apparatus for user-time-alignment for broadcast works
US6370688B1 (en) * 1999-05-26 2002-04-09 Enounce, Inc. Method and apparatus for server broadcast of time-converging multi-media streams
US6859839B1 (en) * 1999-08-06 2005-02-22 Wisconsin Alumni Research Foundation Bandwidth reduction of on-demand streaming data using flexible merger hierarchies
WO2001060057A1 (en) * 2000-02-10 2001-08-16 Tokyo Broadcasting System, Inc. Receiving terminal device and control method therefor
US7080396B2 (en) 2000-04-14 2006-07-18 Lg Electronics Inc. Event overrun and downstream event shift technology
JP2002123449A (en) * 2000-08-02 2002-04-26 Sanyo Electric Co Ltd Information distributing device
US20020170068A1 (en) * 2001-03-19 2002-11-14 Rafey Richter A. Virtual and condensed television programs
US7260311B2 (en) * 2001-09-21 2007-08-21 Matsushita Electric Industrial Co., Ltd. Apparatus, method, program and recording medium for program recording and reproducing
US7536704B2 (en) 2001-10-05 2009-05-19 Opentv, Inc. Method and apparatus automatic pause and resume of playback for a popup on interactive TV
JP3590376B2 (en) * 2001-11-30 2004-11-17 株式会社東芝 IP streaming system, policy server, and IP streaming distribution method
JP4366038B2 (en) * 2002-01-22 2009-11-18 キヤノン株式会社 Television broadcast processing apparatus and control method for television broadcast processing apparatus
JP2003219367A (en) * 2002-01-22 2003-07-31 Canon Inc Television broadcast processing apparatus, television broadcast processing system, television broadcast processing method, storage medium, and program
US7073189B2 (en) * 2002-05-03 2006-07-04 Time Warner Interactive Video Group, Inc. Program guide and reservation system for network based digital information and entertainment storage and delivery system
US7614066B2 (en) * 2002-05-03 2009-11-03 Time Warner Interactive Video Group Inc. Use of multiple embedded messages in program signal streams
US20040128690A1 (en) * 2002-12-31 2004-07-01 Yosef Zohar Ariely Apparatus, method and a computer readable medium for providing interactive services
US7260035B2 (en) * 2003-06-20 2007-08-21 Matsushita Electric Industrial Co., Ltd. Recording/playback device
WO2005022764A1 (en) 2003-08-29 2005-03-10 Varovision Co., Ltd. Contents providing system and mobile communication terminal therefor
WO2005084031A1 (en) * 2004-02-18 2005-09-09 Thomson Licensing S.A. Method and apparatus for varying a data rate in broadcast/multicast video systems
GB0412342D0 (en) * 2004-06-03 2004-07-07 Ibm Convergent playback of buffered content to real-time content play
US20060015908A1 (en) * 2004-06-30 2006-01-19 Nokia Corporation Multiple services within a channel-identification in a device
US7788393B2 (en) * 2005-02-23 2010-08-31 Cisco Technology, Inc. Switching a client from unicasting to multicasting by increasing the unicast stream rate to the client
US8099756B2 (en) * 2005-11-10 2012-01-17 Versteeg William C Channel changes between services with differing bandwidth in a switched digital video system
US7873760B2 (en) * 2005-11-11 2011-01-18 Versteeg William C Expedited digital signal decoding
US20090025027A1 (en) 2007-07-20 2009-01-22 Michael Craner Systems & methods for allocating bandwidth in switched digital video systems based on interest

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718552B1 (en) * 1999-04-20 2004-04-06 Diva Systems Corporation Network bandwidth optimization by dynamic channel allocation
US20040133907A1 (en) * 1999-06-11 2004-07-08 Rodriguez Arturo A. Adaptive scheduling and delivery of television services
US20020059626A1 (en) * 2000-08-25 2002-05-16 Thomas Lemmons System and method for optimizing broadcast bandwidth and content
US20030149975A1 (en) * 2002-02-05 2003-08-07 Charles Eldering Targeted advertising in on demand programming
US20050123001A1 (en) * 2003-11-05 2005-06-09 Jeff Craven Method and system for providing video and data traffic packets from the same device
US20050188415A1 (en) * 2004-01-23 2005-08-25 Camiant, Inc. Video policy server
US20050249130A1 (en) * 2004-05-04 2005-11-10 Schutte Mark E Method for searching ordered entries in a service group map to facilitate auto channel discovery
US20050289618A1 (en) * 2004-06-29 2005-12-29 Glen Hardin Method and apparatus for network bandwidth allocation
US20060034341A1 (en) * 2004-08-10 2006-02-16 Swaminatha Vasudevan Method and device for receiving and providing programs
US20070022032A1 (en) * 2005-01-12 2007-01-25 Anderson Bruce J Content selection based on signaling from customer premises equipment in a broadcast network
US20060218601A1 (en) * 2005-03-09 2006-09-28 Michel Walter F Methods and systems for using in-stream data within an on demand content delivery path
US20070116048A1 (en) * 2005-04-18 2007-05-24 Tandberg Television Americas Systems and methods for next generation cable network dynamic multiplexing
US20070121678A1 (en) * 2005-11-30 2007-05-31 Brooks Paul D Apparatus and methods for utilizing variable rate program streams in a network
US20070180072A1 (en) * 2006-01-12 2007-08-02 Comcast Cable Holdings, Llc Edge qam configuration and management
US20070204311A1 (en) * 2006-02-27 2007-08-30 Hasek Charles A Methods and apparatus for selecting digital coding/decoding technology for programming and data delivery
US20070245371A1 (en) * 2006-04-17 2007-10-18 Terayon Communication Systems, Inc. Auto-adaptive program distribution system
US20080170622A1 (en) * 2007-01-12 2008-07-17 Ictv, Inc. Interactive encoded content system including object models for viewing on a remote device
US20080175143A1 (en) * 2007-01-22 2008-07-24 Carol Ansley Method and system for providing protocol-based equipment redundancy
US20080216136A1 (en) * 2007-03-03 2008-09-04 Howard Pfeffer Methods and apparatus supporting the recording of multiple simultaneously broadcast programs communicated using the same communications channel
US20080229379A1 (en) * 2007-03-12 2008-09-18 Aamer Akhter Method and apparatus providing scalability for channel change requests in a switched digital video system
US20080320540A1 (en) * 2007-05-15 2008-12-25 Brooks Paul D Methods and apparatus for bandwidth recovery in a network
US20090025052A1 (en) * 2007-07-18 2009-01-22 General Instrument Corporation Method and Apparatus for Controlling the Bandwidth of SDV Programming Supplied to an Edge Device in a n SDV System
US20090271818A1 (en) * 2008-04-28 2009-10-29 General Instrument Corporation Method And Apparatus For Delivering Emergency Alert System (EAS) Messages Over A Switched Digital Video (SDV) System

Cited By (343)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055318B2 (en) 1998-07-14 2015-06-09 Rovi Guides, Inc. Client-server based interactive guide with server storage
US9154843B2 (en) 1998-07-14 2015-10-06 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9226006B2 (en) 1998-07-14 2015-12-29 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9232254B2 (en) 1998-07-14 2016-01-05 Rovi Guides, Inc. Client-server based interactive television guide with server recording
US9118948B2 (en) 1998-07-14 2015-08-25 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9021538B2 (en) 1998-07-14 2015-04-28 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9055319B2 (en) 1998-07-14 2015-06-09 Rovi Guides, Inc. Interactive guide with recording
US10075746B2 (en) 1998-07-14 2018-09-11 Rovi Guides, Inc. Client-server based interactive television guide with server recording
US9294799B2 (en) 2000-10-11 2016-03-22 Rovi Guides, Inc. Systems and methods for providing storage of data on servers in an on-demand media delivery system
US9369741B2 (en) 2003-01-30 2016-06-14 Rovi Guides, Inc. Interactive television systems with digital video recording and adjustable reminders
US9071872B2 (en) 2003-01-30 2015-06-30 Rovi Guides, Inc. Interactive television systems with digital video recording and adjustable reminders
US9906827B2 (en) 2003-08-12 2018-02-27 Time Warner Cable Enterprises Llc Technique for effectively delivering targeted advertisements through a communications network having limited bandwidth
US9578355B2 (en) 2004-06-29 2017-02-21 Time Warner Cable Enterprises Llc Method and apparatus for network bandwidth allocation
US9930387B2 (en) 2005-02-01 2018-03-27 Time Warner Cable Enterprises Llc Method and apparatus for network bandwidth conservation
US9077860B2 (en) 2005-07-26 2015-07-07 Activevideo Networks, Inc. System and method for providing video content associated with a source image to a television in a communication network
US8423660B2 (en) * 2006-01-31 2013-04-16 Roundbox, Inc. Datacasting system with hierarchical delivery quality of service management capability
US20120226816A1 (en) * 2006-01-31 2012-09-06 Roundbox, Inc. Datacasting system with hierarchical delivery quality of service management capability
US10009652B2 (en) 2006-02-27 2018-06-26 Time Warner Cable Enterprises Llc Methods and apparatus for selecting digital access technology for programming and data delivery
US10051302B2 (en) 2006-02-27 2018-08-14 Time Warner Cable Enterprises Llc Methods and apparatus for device capabilities discovery and utilization within a content distribution network
US10743066B2 (en) 2006-02-27 2020-08-11 Time Warner Cable Enterprises Llc Methods and apparatus for selecting digital access technology for programming and data delivery
US9826197B2 (en) 2007-01-12 2017-11-21 Activevideo Networks, Inc. Providing television broadcasts over a managed network and interactive content over an unmanaged network to a client device
US9355681B2 (en) 2007-01-12 2016-05-31 Activevideo Networks, Inc. MPEG objects and systems and methods for using MPEG objects
US9042454B2 (en) 2007-01-12 2015-05-26 Activevideo Networks, Inc. Interactive encoded content system including object models for viewing on a remote device
US10225592B2 (en) 2007-03-20 2019-03-05 Time Warner Cable Enterprises Llc Methods and apparatus for content delivery and replacement in a network
US10863220B2 (en) 2007-03-20 2020-12-08 Time Warner Cable Enterprises Llc Methods and apparatus for content delivery and replacement in a network
US10911313B2 (en) 2007-05-04 2021-02-02 Time Warner Cable Enterprises Llc Methods and apparatus for predictive capacity allocation
US9398346B2 (en) 2007-05-04 2016-07-19 Time Warner Cable Enterprises Llc Methods and apparatus for predictive capacity allocation
US10778930B2 (en) 2007-05-30 2020-09-15 Comcast Cable Communications, Llc Selection of electronic content and services
US11641442B2 (en) 2007-05-30 2023-05-02 Comcast Cable Communications, Llc Selection of electronic content and services
US11284036B2 (en) 2007-05-30 2022-03-22 Comcast Cable Communications, Llc Selection of electronic content and services
US9516367B2 (en) 2007-07-20 2016-12-06 Rovi Guides, Inc. Systems and methods for allocating bandwidth in switched digital video systems based on interest
US8627389B2 (en) 2007-07-20 2014-01-07 Rovi Guides, Inc. Systems and methods for allocating bandwidth in switched digital video systems based on interest
US20090031341A1 (en) * 2007-07-24 2009-01-29 General Instrument Corporation Method and apparatus for reducing the number of control messages transmitted by a set top terminal in an sdv system
US20090031392A1 (en) * 2007-07-27 2009-01-29 Versteeg William C Systems and Methods of Differentiated Channel Change Behavior
US20090031342A1 (en) * 2007-07-27 2009-01-29 Versteeg William C Systems and Methods of Differentiated Requests for Network Access
US8776160B2 (en) * 2007-07-27 2014-07-08 William C. Versteeg Systems and methods of differentiated requests for network access
US8832766B2 (en) * 2007-07-27 2014-09-09 William C. Versteeg Systems and methods of differentiated channel change behavior
US8424044B2 (en) 2007-09-11 2013-04-16 The Directv Group, Inc. Method and system for monitoring and switching between a primary encoder and a back-up encoder in a communication system
US8356321B2 (en) 2007-09-11 2013-01-15 The Directv Group, Inc. Method and system for monitoring and controlling receiving circuit modules at a local collection facility from a remote facility
US9313457B2 (en) 2007-09-11 2016-04-12 The Directv Group, Inc. Method and system for monitoring a receiving circuit module and controlling switching to a back-up receiving circuit module at a local collection facility from a remote facility
US9300412B2 (en) 2007-09-11 2016-03-29 The Directv Group, Inc. Method and system for operating a receiving circuit for multiple types of input channel signals
US20090068959A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and system for operating a receiving circuit for multiple types of input channel signals
US20090070829A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Receiving circuit module for receiving and encoding channel signals and method for operating the same
US8792336B2 (en) 2007-09-11 2014-07-29 The Directv Group, Inc. Method and system for monitoring and switching between primary and back-up receiver decoder circuits in a communication system
US8072874B2 (en) 2007-09-11 2011-12-06 The Directv Group, Inc. Method and system for switching to an engineering signal processing system from a production signal processing system
US8170069B2 (en) 2007-09-11 2012-05-01 The Directv Group, Inc. Method and system for processing signals from a local collection facility at a signal processing facility
US8973058B2 (en) 2007-09-11 2015-03-03 The Directv Group, Inc. Method and system for monitoring and simultaneously displaying a plurality of signal channels in a communication system
US20090067490A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and system for monitoring and switching between a primary encoder and a back-up encoder in a communication system
US9756290B2 (en) 2007-09-11 2017-09-05 The Directv Group, Inc. Method and system for communicating between a local collection facility and a remote facility
US20090070827A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and System for Monitoring and Switching Between Primary and Back-up Receiver Decoder Circuits in a Communication System
US20090070830A1 (en) * 2007-09-11 2009-03-12 The Directv Group, Inc. Method and System for Monitoring a Receiving Circuit Module and Controlling Switching to a Back-up Receiving Circuit Module at a Local Collection Facility from a Remote Facility
US20090067433A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for controlling a back-up network adapter in a local collection facility from a remote facility
US8724635B2 (en) 2007-09-12 2014-05-13 The Directv Group, Inc. Method and system for controlling a back-up network adapter in a local collection facility from a remote facility
US8988986B2 (en) 2007-09-12 2015-03-24 The Directv Group, Inc. Method and system for controlling a back-up multiplexer in a local collection facility from a remote facility
US7861270B2 (en) 2007-09-12 2010-12-28 The Directv Group, Inc. Method and system for controlling a back-up receiver and encoder in a local collection facility from a remote facility
US20090066848A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for controlling a back-up receiver and encoder in a local collection facility from a remote facility
US8479234B2 (en) 2007-09-12 2013-07-02 The Directv Group, Inc. Method and system for monitoring and controlling a local collection facility from a remote facility using an asynchronous transfer mode (ATM) network
US20090070846A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for monitoring and controlling a local collection facility from a remote facility using an asynchronous transfer mode (atm) network
US20090067432A1 (en) * 2007-09-12 2009-03-12 The Directv Group, Inc. Method and system for controlling a back-up multiplexer in a local collection facility from a remote facility
US10810628B2 (en) 2007-09-26 2020-10-20 Time Warner Cable Enterprises Llc Methods and apparatus for user-based targeted content delivery
US10223713B2 (en) 2007-09-26 2019-03-05 Time Warner Cable Enterprises Llc Methods and apparatus for user-based targeted content delivery
US10085047B2 (en) 2007-09-26 2018-09-25 Time Warner Cable Enterprises Llc Methods and apparatus for content caching in a video network
US20140241698A1 (en) * 2007-09-28 2014-08-28 At&T Intellectual Property I, L.P. Systems and methods of processing programming wish list data
US9961405B2 (en) * 2007-09-28 2018-05-01 At&T Intellectual Property I, L.P. Systems and methods of processing programming wish list data
US8316409B2 (en) * 2007-10-11 2012-11-20 James Strothmann Simultaneous access to media in a media delivery system
US20090100489A1 (en) * 2007-10-11 2009-04-16 James Strothmann Simultaneous access to media in a media delivery system
US11223860B2 (en) 2007-10-15 2022-01-11 Time Warner Cable Enterprises Llc Methods and apparatus for revenue-optimized delivery of content in a network
US9584839B2 (en) 2007-10-15 2017-02-28 Time Warner Cable Enterprises Llc Methods and apparatus for revenue-optimized delivery of content in a network
US9037074B2 (en) 2007-10-30 2015-05-19 The Directv Group, Inc. Method and system for monitoring and controlling a local collection facility from a remote facility through an IP network
US9049354B2 (en) 2007-10-30 2015-06-02 The Directv Group, Inc. Method and system for monitoring and controlling a back-up receiver in local collection facility from a remote facility using an IP network
US8077706B2 (en) 2007-10-31 2011-12-13 The Directv Group, Inc. Method and system for controlling redundancy of individual components of a remote facility system
US20090109836A1 (en) * 2007-10-31 2009-04-30 Wasden Mitchell B Method and system for controlling redundancy of individual components of a remote facility system
US20090119728A1 (en) * 2007-11-07 2009-05-07 Cable Television Laboratories, Inc. Tuning resolver
US8850506B2 (en) * 2007-11-07 2014-09-30 Cable Television Laboratories, Inc. Tuning resolver
US20090165056A1 (en) * 2007-12-19 2009-06-25 General Instrument Corporation Method and apparatus for scheduling a recording of an upcoming sdv program deliverable over a content delivery system
US11039185B2 (en) * 2008-01-30 2021-06-15 Time Warner Cable Enterprises Llc Methods and apparatus for predictive delivery of content over a network
US20090193485A1 (en) * 2008-01-30 2009-07-30 Remi Rieger Methods and apparatus for predictive delivery of content over a network
US9060208B2 (en) * 2008-01-30 2015-06-16 Time Warner Cable Enterprises Llc Methods and apparatus for predictive delivery of content over a network
US10057609B2 (en) 2008-01-30 2018-08-21 Time Warner Cable Enterprises Llc Methods and apparatus for predictive delivery of content over a network
US8291446B2 (en) * 2008-01-31 2012-10-16 Echostar Technologies L.L.C. Systems and methods for providing content based upon consumer preferences
US20090199227A1 (en) * 2008-01-31 2009-08-06 Echostar Technologies Llc Systems and methods for providing content based upon consumer preferences
US20150082362A1 (en) * 2008-02-26 2015-03-19 Time Warner Cable Enterprises Llc Methods and apparatus for business-based network resource allocation
US20090217326A1 (en) * 2008-02-26 2009-08-27 Hasek Charles A Methods and apparatus for business-based network resource allocation
US9961383B2 (en) * 2008-02-26 2018-05-01 Time Warner Cable Enterprises Llc Methods and apparatus for business-based network resource allocation
US8813143B2 (en) * 2008-02-26 2014-08-19 Time Warner Enterprises LLC Methods and apparatus for business-based network resource allocation
US8196165B2 (en) * 2008-04-28 2012-06-05 General Instrument Corporation Method and apparatus for delivering emergency alert system (EAS) messages over a switched digital video (SDV) system
US20090271818A1 (en) * 2008-04-28 2009-10-29 General Instrument Corporation Method And Apparatus For Delivering Emergency Alert System (EAS) Messages Over A Switched Digital Video (SDV) System
US20090276815A1 (en) * 2008-04-30 2009-11-05 Echostar Technologies L.L.C. Systems, methods and apparatus for democratic allocation of bandwidth
US20090313383A1 (en) * 2008-05-09 2009-12-17 Roundbox, Inc. Datacasting system with automatic delivery of service mangement capability
US9992284B2 (en) 2008-05-09 2018-06-05 At&T Intellectual Property I, L.P. Datacasting system with intermittent listener capability
US8127041B2 (en) * 2008-05-09 2012-02-28 Roundbox, Inc. Datacasting system with automatic delivery of service mangement capability
US10368111B2 (en) 2008-06-25 2019-07-30 At&T Intellectual Property I, L.P. Digital television channel trending
US9148237B2 (en) * 2008-06-25 2015-09-29 At&T Intellectual Property I, L.P. Digital television channel trending
US20090328090A1 (en) * 2008-06-25 2009-12-31 At&T Intellectual Property I, L.P. Digital Television Channel Trending
US8266644B2 (en) * 2008-06-25 2012-09-11 At&T Intellectual Property I, L.P. Digital television channel trending
US20120331497A1 (en) * 2008-06-25 2012-12-27 At&T Intellectual Property I, L.P. Digital Television Channel Trending
US20100077433A1 (en) * 2008-09-24 2010-03-25 Verizon Data Services Llc Multi-panel television browsing
US20100086020A1 (en) * 2008-10-07 2010-04-08 General Instrument Corporation Content delivery system having an edge resource manager performing bandwidth reclamation
US8112781B2 (en) * 2008-10-07 2012-02-07 General Instrument Corporation Content delivery system having an edge resource manager performing bandwidth reclamation
US9762973B2 (en) 2008-11-04 2017-09-12 The Directv Group, Inc. Method and system for operating a receiving circuit module to encode a channel signal into multiple encoding formats
US9166711B2 (en) * 2008-11-19 2015-10-20 Qurio Holdings, Inc. Method and system to influence a viewer to select a feed
US20100125887A1 (en) * 2008-11-19 2010-05-20 Qurio Holdings, Inc. Method and system to influence a viewer to select a feed
US10063934B2 (en) 2008-11-25 2018-08-28 Rovi Technologies Corporation Reducing unicast session duration with restart TV
US20100162299A1 (en) * 2008-12-19 2010-06-24 Verizon Corporate Services Group Inc. System and method for delivering video-on-demand (vod) content during emergency alert system (eas) events
US8650590B2 (en) 2009-02-13 2014-02-11 Centurylink Intellectual Property Llc System and method for bypassing an emergency alert break-in for a recorded event
US8336067B2 (en) * 2009-02-13 2012-12-18 Centurylink Intellectual Property Llc System and method for bypassing an emergency alert break-in
US20100211972A1 (en) * 2009-02-13 2010-08-19 Embarq Holdings Company, Llc System and method for displaying an emergency alert message
US9078044B2 (en) 2009-02-13 2015-07-07 Centurylink Intellectual Property Llc System and method for bypassing an emergency alert break-in for a television program
US20100211970A1 (en) * 2009-02-13 2010-08-19 Embarq Holdings Company, Llc System and method for bypassing an emergency alert break-in
WO2010104350A3 (en) * 2009-03-11 2010-11-25 Samsung Electronics Co., Ltd. Method and apparatus for allocating channel bandwidth in wireless internet protocol television systems
US20100232383A1 (en) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Method and apparatus for allocating channel bandwidth in wireless internet protocol television systems
WO2010104350A2 (en) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Method and apparatus for allocating channel bandwidth in wireless internet protocol television systems
US8374141B2 (en) 2009-03-11 2013-02-12 Samsung Electronics Co., Ltd Method and apparatus for allocating channel bandwidth in wireless internet protocol television systems
US11012749B2 (en) 2009-03-30 2021-05-18 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US10313755B2 (en) 2009-03-30 2019-06-04 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US11659224B2 (en) 2009-03-30 2023-05-23 Time Warner Cable Enterprises Llc Personal media channel apparatus and methods
US11076189B2 (en) 2009-03-30 2021-07-27 Time Warner Cable Enterprises Llc Personal media channel apparatus and methods
US20100287298A1 (en) * 2009-05-06 2010-11-11 Roundbox, Inc. Datacasting system with hierarchical delivery quality of service management capability
US20130127978A1 (en) * 2009-05-26 2013-05-23 General Instrument Corporation Simultaneous delivery of a telephony call over a broadband access network and a circuit-switched network
US9277535B2 (en) * 2009-05-26 2016-03-01 Google Technology Holdings LLC Simultaneous delivery of a telephony call over a broadband access network and a circuit-switched network
US10965727B2 (en) 2009-06-08 2021-03-30 Time Warner Cable Enterprises Llc Methods and apparatus for premises content distribution
US20120102517A1 (en) * 2009-06-30 2012-04-26 Huawei Technologies Co., Ltd. Method, system and device for processing media stream
US8387107B2 (en) * 2009-06-30 2013-02-26 Huawei Technologies Co., Ltd. Method, system and device for processing media stream
US10410222B2 (en) 2009-07-23 2019-09-10 DISH Technologies L.L.C. Messaging service for providing updates for multimedia content of a live event delivered over the internet
US8984572B2 (en) * 2009-07-24 2015-03-17 Koninklijke Philips N.V. Method and system for transmitting channels to at least one digital video recorder
US20120124635A1 (en) * 2009-07-24 2012-05-17 Koninklijke Philips Electronics N.V. method and system for transmitting channels to at least one digital video recorder
WO2011010261A1 (en) 2009-07-24 2011-01-27 Koninklijke Philips Electronics N.V. A method and system for transmitting channels to at least one digital video recorder
CN102474584A (en) * 2009-07-24 2012-05-23 皇家飞利浦电子股份有限公司 A method and system for transmitting channels to at least one digital video recorder
US10178435B1 (en) 2009-10-20 2019-01-08 Time Warner Cable Enterprises Llc Methods and apparatus for enabling media functionality in a content delivery network
US10321199B2 (en) * 2009-11-03 2019-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Streaming with optional broadcast delivery of data segments
US9820009B2 (en) * 2009-11-03 2017-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Streaming with optional broadcast delivery of data segments
US20120297410A1 (en) * 2009-11-03 2012-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Streaming With Optional Broadcast Delivery of Data Segments
EP2534836A4 (en) * 2010-02-11 2014-10-01 Beaumaris Networks Inc D B A Bni Video Multi-service bandwidth allocation
EP2534836A1 (en) * 2010-02-11 2012-12-19 Beaumaris Networks Inc. D/b/a BNI Video Multi-service bandwidth allocation
CN102812719A (en) * 2010-02-11 2012-12-05 宝美瑞思网络D/B/A比尼录像有限公司 Multi-service bandwidth allocation
US20110197239A1 (en) * 2010-02-11 2011-08-11 John Schlack Multi-service bandwidth allocation
US9143813B2 (en) * 2010-02-11 2015-09-22 Beaumaris Networks Inc. Multi-video-service bandwidth allocation
US20110277008A1 (en) * 2010-05-06 2011-11-10 Time Warner Cable Inc. Technique for providing uninterrupted switched digital video service
US8677431B2 (en) * 2010-05-06 2014-03-18 Time Warner Cable Enterprises Llc Technique for providing uninterrupted switched digital video service
US9131255B2 (en) 2010-05-06 2015-09-08 Time Warner Cable Enterprises Llc Technique for providing uninterrupted switched digital video service
US8898719B2 (en) * 2010-05-20 2014-11-25 Comcast Cable Communications, Llc Communication for one way devices
US20110289536A1 (en) * 2010-05-20 2011-11-24 Comcast Cable Communications, Llc Communication for One Way Devices
US9854316B1 (en) * 2010-06-04 2017-12-26 CSC Holdings, LLC On-demand session initiation and management
US20110302617A1 (en) * 2010-06-04 2011-12-08 CSC Holdings, LLC On-demand session initiation and management
US9118942B2 (en) * 2010-06-04 2015-08-25 CSC Holdings, LLC On-demand session initiation and management
US10721531B1 (en) * 2010-06-04 2020-07-21 CSC Holdings, LLC On-demand session initiation and management
US9961413B2 (en) 2010-07-22 2018-05-01 Time Warner Cable Enterprises Llc Apparatus and methods for packetized content delivery over a bandwidth efficient network
US10448117B2 (en) 2010-07-22 2019-10-15 Time Warner Cable Enterprises Llc Apparatus and methods for packetized content delivery over a bandwidth-efficient network
US9832495B2 (en) 2010-07-30 2017-11-28 Guest Tek Interactive Entertainment Ltd. Hospitality media system that avoids network congestion and server load while providing media experience within guest room, and computer server and method thereof
US20120030326A1 (en) * 2010-07-30 2012-02-02 Brendan Cassidy Method of Servicing Requests to Manage Network Congestion and Server Load and Server Thereof
US8335847B2 (en) * 2010-07-30 2012-12-18 Guest Tek Interactive Entertainment Ltd. Method of servicing requests to manage network congestion and server load and server thereof
US9179181B2 (en) 2010-07-30 2015-11-03 Guest Tek Interactive Entertainment Ltd. Hospitality media system that avoids network congestion and server load while providing media experience within guest room, and computer server and method thereof
US10311713B2 (en) 2010-09-15 2019-06-04 Comcast Cable Communications, Llc Securing property
US11189161B2 (en) 2010-09-15 2021-11-30 Comcast Cable Communications, Llc Securing property
US20120204217A1 (en) * 2010-10-14 2012-08-09 Activevideo Networks, Inc. Streaming Digital Video between Video Devices Using a Cable Television System
US9021541B2 (en) * 2010-10-14 2015-04-28 Activevideo Networks, Inc. Streaming digital video between video devices using a cable television system
US8930996B2 (en) * 2010-11-05 2015-01-06 Echostar Technologies L.L.C. Apparatus, systems and methods for automatically presenting stored media content at its beginning
US9338513B2 (en) * 2010-11-05 2016-05-10 Echostar Uk Holdings Limited Apparatus, systems and methods for automatically presenting stored media content at its beginning
US20120117596A1 (en) * 2010-11-05 2012-05-10 Eldon Technology Limited Apparatus, systems and methods for automatically presenting stored media content at its beginning
US20150128180A1 (en) * 2010-11-05 2015-05-07 Eldon Technology Limited Apparatus, systems and methods for automatically presenting stored media content at its beginning
US8793544B2 (en) * 2010-12-29 2014-07-29 International Business Machines Corporation Channel marking for chip mark overflow and calibration errors
US20120173936A1 (en) * 2010-12-29 2012-07-05 International Business Machines Corporation Channel marking for chip mark overflow and calibration errors
US8713387B2 (en) 2010-12-29 2014-04-29 International Business Machines Corporation Channel marking for chip mark overflow and calibration errors
US9602414B2 (en) 2011-02-09 2017-03-21 Time Warner Cable Enterprises Llc Apparatus and methods for controlled bandwidth reclamation
US20120233274A1 (en) * 2011-03-11 2012-09-13 ISEBOX Limited Dissemination of information
US9831971B1 (en) 2011-04-05 2017-11-28 The Directv Group, Inc. Method and system for operating a communication system encoded into multiple independently communicated encoding formats
US9204203B2 (en) 2011-04-07 2015-12-01 Activevideo Networks, Inc. Reduction of latency in video distribution networks using adaptive bit rates
US11785269B2 (en) 2011-06-01 2023-10-10 Comcast Cable Communications, Llc Content item transmission
US10116974B2 (en) 2011-06-01 2018-10-30 Comcast Cable Communications, Llc Content selection based on dispersion calculations
US10666994B2 (en) 2011-06-01 2020-05-26 Comcast Cable Communications, Llc Content selection based on dispersion calculations
US9668006B2 (en) * 2011-06-01 2017-05-30 Comcast Cable Communications, Llc Content selection based on dispersion calculations
US9049073B2 (en) 2011-06-28 2015-06-02 Rovi Guides, Inc. Systems and methods for initializing allocations of transport streams based on historical data
US10231009B2 (en) 2011-08-23 2019-03-12 DISH Technologies L.L.C. Grouping and presenting content
US9264779B2 (en) 2011-08-23 2016-02-16 Echostar Technologies L.L.C. User interface
US9621946B2 (en) 2011-08-23 2017-04-11 Echostar Technologies L.L.C. Frequency content sort
US10021444B2 (en) 2011-08-23 2018-07-10 DISH Technologies L.L.C. Using closed captioning elements as reference locations
US10104420B2 (en) 2011-08-23 2018-10-16 DISH Technologies, L.L.C. Automatically recording supplemental content
US9635436B2 (en) 2011-08-23 2017-04-25 Echostar Technologies L.L.C. Altering presentation of received content based on use of closed captioning elements as reference locations
US9357159B2 (en) 2011-08-23 2016-05-31 Echostar Technologies L.L.C. Grouping and presenting content
US10659837B2 (en) 2011-08-23 2020-05-19 DISH Technologies L.L.C. Storing multiple instances of content
US11146849B2 (en) 2011-08-23 2021-10-12 DISH Technologies L.L.C. Grouping and presenting content
US9894406B2 (en) 2011-08-23 2018-02-13 Echostar Technologies L.L.C. Storing multiple instances of content
US9350937B2 (en) 2011-08-23 2016-05-24 Echostar Technologies L.L.C. System and method for dynamically adjusting recording parameters
US9100683B2 (en) * 2011-11-22 2015-08-04 International Business Machines Corporation Optimizing video recorder power usage for DVR network
US20130133009A1 (en) * 2011-11-22 2013-05-23 International Business Machines Corporation Optimizing video recorder power usage for dvr network
US9125169B2 (en) 2011-12-23 2015-09-01 Rovi Guides, Inc. Methods and systems for performing actions based on location-based rules
US10409445B2 (en) 2012-01-09 2019-09-10 Activevideo Networks, Inc. Rendering of an interactive lean-backward user interface on a television
US9549213B2 (en) 2012-03-15 2017-01-17 Echostar Technologies L.L.C. Dynamic tuner allocation
US9489982B2 (en) 2012-03-15 2016-11-08 Echostar Technologies L.L.C. Television receiver storage management
US9349412B2 (en) 2012-03-15 2016-05-24 Echostar Technologies L.L.C. EPG realignment
US9854291B2 (en) 2012-03-15 2017-12-26 Echostar Technologies L.L.C. Recording of multiple television channels
US9781464B2 (en) 2012-03-15 2017-10-03 Echostar Technologies L.L.C. EPG realignment
US10582251B2 (en) 2012-03-15 2020-03-03 DISH Technologies L.L.C. Recording of multiple television channels
US9269397B2 (en) 2012-03-15 2016-02-23 Echostar Technologies L.L.C. Television receiver storage management
US9412413B2 (en) 2012-03-15 2016-08-09 Echostar Technologies L.L.C. Electronic programming guide
US20140344858A1 (en) * 2012-03-15 2014-11-20 Echostar Technologies L.L.C. Recording of Multiple Television Channels
US9489981B2 (en) 2012-03-15 2016-11-08 Echostar Technologies L.L.C. Successive initialization of television channel recording
US10171861B2 (en) * 2012-03-15 2019-01-01 DISH Technologies L.L.C. Recording of multiple television channels
US9361940B2 (en) * 2012-03-15 2016-06-07 Echostar Technologies L.L.C. Recording of multiple television channels
US9521440B2 (en) 2012-03-15 2016-12-13 Echostar Technologies L.L.C. Smartcard encryption cycling
US10171885B2 (en) 2012-03-23 2019-01-01 Time Warner Cable Enterprises Llc Apparatus and methods for managing delivery of content in a network with limited bandwidth using pre-caching
US8978079B2 (en) 2012-03-23 2015-03-10 Time Warner Cable Enterprises Llc Apparatus and methods for managing delivery of content in a network with limited bandwidth using pre-caching
US10667019B2 (en) 2012-03-23 2020-05-26 Time Warner Cable Enterprises Llc Apparatus and methods for managing delivery of content in a network with limited bandwidth using pre-caching
US8930987B2 (en) 2012-03-30 2015-01-06 United Video Properties, Inc. Systems and methods for adaptively transmitting media and advertising content
WO2013149128A3 (en) * 2012-03-30 2014-02-20 United Video Properties, Inc. Systems and methods for adaptively transmitting media and advertising content
US9800945B2 (en) 2012-04-03 2017-10-24 Activevideo Networks, Inc. Class-based intelligent multiplexing over unmanaged networks
US10757481B2 (en) 2012-04-03 2020-08-25 Activevideo Networks, Inc. Class-based intelligent multiplexing over unmanaged networks
US10506298B2 (en) 2012-04-03 2019-12-10 Activevideo Networks, Inc. Class-based intelligent multiplexing over unmanaged networks
US11109090B2 (en) 2012-04-04 2021-08-31 Time Warner Cable Enterprises Llc Apparatus and methods for automated highlight reel creation in a content delivery network
US10250932B2 (en) 2012-04-04 2019-04-02 Time Warner Cable Enterprises Llc Apparatus and methods for automated highlight reel creation in a content delivery network
US9123084B2 (en) 2012-04-12 2015-09-01 Activevideo Networks, Inc. Graphical application integration with MPEG objects
US20190068668A1 (en) * 2012-05-11 2019-02-28 Comcast Cable Communications, Llc Generation of Dynamic Content Interfaces
US10015223B2 (en) * 2012-05-11 2018-07-03 Comcast Cable Communications, Llc Generation of dynamic content interfaces
US20150089078A1 (en) * 2012-05-11 2015-03-26 Comcast Cable Communications, Llc Generation of Dynamic Content Interfaces
US20140344873A1 (en) * 2012-05-24 2014-11-20 Time Warner Cable Enterprises Llc Methods and apparatus for providing multi-source bandwidth sharing management
US9554166B2 (en) * 2012-05-24 2017-01-24 Time Warner Cable Enterprises Llc Methods and apparatus for providing multi-source bandwidth sharing management
US11496782B2 (en) 2012-07-10 2022-11-08 Time Warner Cable Enterprises Llc Apparatus and methods for selective enforcement of secondary content viewing
US10715961B2 (en) 2012-08-30 2020-07-14 Time Warner Cable Enterprises Llc Apparatus and methods for enabling location-based services within a premises
US10278008B2 (en) 2012-08-30 2019-04-30 Time Warner Cable Enterprises Llc Apparatus and methods for enabling location-based services within a premises
US9788149B2 (en) 2012-08-30 2017-10-10 Time Warner Cable Enterprises Llc Apparatus and methods for enabling location-based services within a premises
US11159851B2 (en) 2012-09-14 2021-10-26 Time Warner Cable Enterprises Llc Apparatus and methods for providing enhanced or interactive features
US9918116B2 (en) 2012-11-08 2018-03-13 Echostar Technologies L.L.C. Image domain compliance
US9883223B2 (en) 2012-12-14 2018-01-30 Time Warner Cable Enterprises Llc Apparatus and methods for multimedia coordination
US9716916B2 (en) * 2012-12-28 2017-07-25 Echostar Technologies L.L.C. Adaptive multicast delivery of media streams
US20140189754A1 (en) * 2012-12-28 2014-07-03 DISH Digital L.L.C. Adaptive multicast delivery of media streams
US10412464B2 (en) * 2012-12-28 2019-09-10 DISH Technologies L.L.C. Adaptive multicast delivery of media streams
US20140195230A1 (en) * 2013-01-07 2014-07-10 Samsung Electronics Co., Ltd. Display apparatus and method for controlling the same
US11073969B2 (en) 2013-03-15 2021-07-27 Activevideo Networks, Inc. Multiple-mode system and method for providing user selectable video content
US10275128B2 (en) 2013-03-15 2019-04-30 Activevideo Networks, Inc. Multiple-mode system and method for providing user selectable video content
US9154819B2 (en) * 2013-03-15 2015-10-06 Cisco Technology, Inc. Video content priority aware congestion management
US11197050B2 (en) 2013-03-15 2021-12-07 Charter Communications Operating, Llc Methods and apparatus for client-based dynamic control of connections to co-existing radio access networks
US20140282776A1 (en) * 2013-03-15 2014-09-18 Cisco Technology, Inc. Video content priority aware congestion management
US10200744B2 (en) 2013-06-06 2019-02-05 Activevideo Networks, Inc. Overlay rendering of user interface onto source video
US9219922B2 (en) 2013-06-06 2015-12-22 Activevideo Networks, Inc. System and method for exploiting scene graph information in construction of an encoded video sequence
US9294785B2 (en) 2013-06-06 2016-03-22 Activevideo Networks, Inc. System and method for exploiting scene graph information in construction of an encoded video sequence
US9326047B2 (en) 2013-06-06 2016-04-26 Activevideo Networks, Inc. Overlay rendering of user interface onto source video
US10560772B2 (en) 2013-07-23 2020-02-11 Time Warner Cable Enterprises Llc Apparatus and methods for selective data network access
US11134304B2 (en) * 2013-07-31 2021-09-28 Time Warner Cable Enterprises Llc Methods and apparatus that facilitate channel switching during commercial breaks and/or other program segments
US20150040176A1 (en) * 2013-07-31 2015-02-05 Time Warner Cable Enterprises Llc Methods and apparatus that facilitate channel switching during commercial breaks and/or other program segments
US20150089536A1 (en) * 2013-09-20 2015-03-26 EchoStar Technologies, L.L.C. Wireless tuner sharing
US9723354B2 (en) * 2013-09-20 2017-08-01 Echostar Technologies L.L.C. Wireless tuner sharing
US9628838B2 (en) 2013-10-01 2017-04-18 Echostar Technologies L.L.C. Satellite-based content targeting
US10297287B2 (en) 2013-10-21 2019-05-21 Thuuz, Inc. Dynamic media recording
US20150143408A1 (en) * 2013-11-19 2015-05-21 Comcast Cable Communications, Llc Premises automation control
US10939155B2 (en) * 2013-11-19 2021-03-02 Comcast Cable Communications, Llc Premises automation control
US11395030B2 (en) 2013-11-19 2022-07-19 Comcast Cable Communications, Llc Premises automation control
US10764627B2 (en) * 2013-11-20 2020-09-01 Atul Madhavrao Naik System for deployment of value-added services over digital broadcast cable
US20150373391A1 (en) * 2013-11-20 2015-12-24 Madhavrao NAIK ATUL System for deployment of value-added services over digital broadcast cable
US9788029B2 (en) 2014-04-25 2017-10-10 Activevideo Networks, Inc. Intelligent multiplexing using class-based, multi-dimensioned decision logic for managed networks
US11540148B2 (en) 2014-06-11 2022-12-27 Time Warner Cable Enterprises Llc Methods and apparatus for access point location
US20160007075A1 (en) * 2014-07-02 2016-01-07 Samsung Electronics Co., Ltd. Broadcast signal receiving apparatus and control method of the same and broadcast signal transmitting apparatus
US9986286B2 (en) * 2014-07-02 2018-05-29 Samsung Electronics Co., Ltd. Broadcast signal receiving apparatus and control method of the same and broadcast signal transmitting apparatus
US20180014072A1 (en) * 2014-08-29 2018-01-11 Sling Media Inc. Systems and processes for delivering digital video content based upon excitement data
US10028025B2 (en) 2014-09-29 2018-07-17 Time Warner Cable Enterprises Llc Apparatus and methods for enabling presence-based and use-based services
US11082743B2 (en) 2014-09-29 2021-08-03 Time Warner Cable Enterprises Llc Apparatus and methods for enabling presence-based and use-based services
US11882345B2 (en) 2014-10-09 2024-01-23 Stats Llc Customized generation of highlights show with narrative component
US11290791B2 (en) 2014-10-09 2022-03-29 Stats Llc Generating a customized highlight sequence depicting multiple events
US10419830B2 (en) 2014-10-09 2019-09-17 Thuuz, Inc. Generating a customized highlight sequence depicting an event
US10536758B2 (en) 2014-10-09 2020-01-14 Thuuz, Inc. Customized generation of highlight show with narrative component
US10433030B2 (en) 2014-10-09 2019-10-01 Thuuz, Inc. Generating a customized highlight sequence depicting multiple events
US11778287B2 (en) 2014-10-09 2023-10-03 Stats Llc Generating a customized highlight sequence depicting multiple events
US11863848B1 (en) 2014-10-09 2024-01-02 Stats Llc User interface for interaction with customized highlight shows
US11582536B2 (en) 2014-10-09 2023-02-14 Stats Llc Customized generation of highlight show with narrative component
US9935833B2 (en) 2014-11-05 2018-04-03 Time Warner Cable Enterprises Llc Methods and apparatus for determining an optimized wireless interface installation configuration
CN105657481A (en) * 2014-12-01 2016-06-08 上海斐讯数据通信技术有限公司 Video play system and method for cutting in advertisement in video
US9756378B2 (en) 2015-01-07 2017-09-05 Echostar Technologies L.L.C. Single file PVR per service ID
US11606380B2 (en) 2015-02-13 2023-03-14 Time Warner Cable Enterprises Llc Apparatus and methods for data collection, analysis and service modification based on online activity
US10116676B2 (en) 2015-02-13 2018-10-30 Time Warner Cable Enterprises Llc Apparatus and methods for data collection, analysis and service modification based on online activity
US11057408B2 (en) 2015-02-13 2021-07-06 Time Warner Cable Enterprises Llc Apparatus and methods for data collection, analysis and service modification based on online activity
US9621933B2 (en) * 2015-03-27 2017-04-11 Ericsson Ab System and method for providing VOD content in a switched digital video network using unicast ABR streaming
US9788028B2 (en) 2015-03-27 2017-10-10 Ericsson Ab System and method for providing guaranteed channel content in a switched digital video network using multicast ABR streaming
US9843828B2 (en) 2015-03-27 2017-12-12 Ericsson Ab System and method for providing non-guaranteed channel content in a switched digital video network using multicast ABR streaming
US20160330131A1 (en) * 2015-05-05 2016-11-10 Avaya Inc. Automatic cloud capacity adjustment
US10873538B2 (en) * 2015-05-05 2020-12-22 Avaya Inc. Automatic cloud capacity adjustment
US10951934B2 (en) * 2015-12-01 2021-03-16 Rovi Guides, Inc. Systems and methods for managing available bandwidth in a household
US20190141375A1 (en) * 2015-12-01 2019-05-09 Rovi Guides, Inc. Systems and methods for managing available bandwidth in a household
US9986578B2 (en) 2015-12-04 2018-05-29 Time Warner Cable Enterprises Llc Apparatus and methods for selective data network access
US11412320B2 (en) 2015-12-04 2022-08-09 Time Warner Cable Enterprises Llc Apparatus and methods for selective data network access
US11284149B2 (en) 2015-12-16 2022-03-22 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
EP4203463A3 (en) * 2015-12-16 2023-09-06 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
US20170180784A1 (en) * 2015-12-16 2017-06-22 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
US11765423B2 (en) 2015-12-16 2023-09-19 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
US10757469B2 (en) * 2015-12-16 2020-08-25 Rovi Guides, Inc. Methods and systems for bypassing preemptions in recorded media assets
US10368109B2 (en) 2015-12-29 2019-07-30 DISH Technologies L.L.C. Dynamic content delivery routing and related methods and systems
US10721508B2 (en) 2015-12-29 2020-07-21 DISH Technologies L.L.C. Methods and systems for adaptive content delivery
US10687099B2 (en) 2015-12-29 2020-06-16 DISH Technologies L.L.C. Methods and systems for assisted content delivery
US10194183B2 (en) 2015-12-29 2019-01-29 DISH Technologies L.L.C. Remote storage digital video recorder streaming and related methods
US10341728B2 (en) 2015-12-30 2019-07-02 Sling Media L.L.C. Media systems for temporally and contextually relevant recommendations
US9918345B2 (en) 2016-01-20 2018-03-13 Time Warner Cable Enterprises Llc Apparatus and method for wireless network services in moving vehicles
US10687371B2 (en) 2016-01-20 2020-06-16 Time Warner Cable Enterprises Llc Apparatus and method for wireless network services in moving vehicles
US10462520B2 (en) * 2016-02-25 2019-10-29 Nippon Telegraph And Telephone Corporation Pacing control device, pacing control method, and program
US11665509B2 (en) 2016-03-07 2023-05-30 Time Warner Cable Enterprises Llc Apparatus and methods for dynamic open-access networks
US10492034B2 (en) 2016-03-07 2019-11-26 Time Warner Cable Enterprises Llc Apparatus and methods for dynamic open-access networks
US10586023B2 (en) 2016-04-21 2020-03-10 Time Warner Cable Enterprises Llc Methods and apparatus for secondary content management and fraud prevention
US11669595B2 (en) 2016-04-21 2023-06-06 Time Warner Cable Enterprises Llc Methods and apparatus for secondary content management and fraud prevention
US10687115B2 (en) 2016-06-01 2020-06-16 Time Warner Cable Enterprises Llc Cloud-based digital content recorder apparatus and methods
US11146470B2 (en) 2016-06-15 2021-10-12 Time Warner Cable Enterprises Llc Apparatus and methods for monitoring and diagnosing a wireless network
US10164858B2 (en) 2016-06-15 2018-12-25 Time Warner Cable Enterprises Llc Apparatus and methods for monitoring and diagnosing a wireless network
US20180176624A1 (en) * 2016-07-07 2018-06-21 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth and ABR Video QoE Management Based On OTT Video Providers and Devices
US10939153B2 (en) * 2016-07-07 2021-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth and ABR video QoE management based on OTT video providers and devices
US20190182520A1 (en) * 2016-08-17 2019-06-13 Nec Corporation Bitrate instruction device, bitrate instruction method, and non-transitory recording medium
US10911804B2 (en) * 2016-08-17 2021-02-02 Nec Corporation Bitrate instruction device, bitrate instruction method, and non-transitory recording medium
US10931993B2 (en) * 2016-09-30 2021-02-23 British Telecommunications Public Limited Company Viewer importance adaptive bit rate delivery
US20200037017A1 (en) * 2016-09-30 2020-01-30 British Telecommunications Public Limited Company Viewer importance adaptive bit rate delivery
US11317171B2 (en) 2016-09-30 2022-04-26 British Telecommunications Public Limited Company Viewer importance adaptive bit rate delivery
US11044507B2 (en) 2016-09-30 2021-06-22 British Telecommunications Public Limited Company Viewer importance adaptive bit rate delivery
US10911794B2 (en) 2016-11-09 2021-02-02 Charter Communications Operating, Llc Apparatus and methods for selective secondary content insertion in a digital network
CN107426581A (en) * 2016-12-29 2017-12-01 东方有线网络有限公司 A kind of interactive TV live broadcast system implementation method based on broadcasting and TV engine control
EP3402213A3 (en) * 2017-05-08 2019-01-16 Alcatel-Lucent USA Inc. Multicast adaptive bitrate channel selection in access networks
US11563996B2 (en) 2017-05-26 2023-01-24 At&T Intellectual Property I, L.P. Providing streaming video from mobile computing nodes
US10820034B2 (en) * 2017-05-26 2020-10-27 At&T Intellectual Property I, L.P. Providing streaming video from mobile computing nodes
US11128906B2 (en) 2017-05-26 2021-09-21 At&T Intellectual Property I, L.P. Providing streaming video from mobile computing nodes
US20180343488A1 (en) * 2017-05-26 2018-11-29 At&T Intellectual Property I, L.P. Providing Streaming Video From Mobile Computing Nodes
US10645547B2 (en) 2017-06-02 2020-05-05 Charter Communications Operating, Llc Apparatus and methods for providing wireless service in a venue
US11356819B2 (en) 2017-06-02 2022-06-07 Charter Communications Operating, Llc Apparatus and methods for providing wireless service in a venue
US10638361B2 (en) 2017-06-06 2020-04-28 Charter Communications Operating, Llc Methods and apparatus for dynamic control of connections to co-existing radio access networks
US11350310B2 (en) 2017-06-06 2022-05-31 Charter Communications Operating, Llc Methods and apparatus for dynamic control of connections to co-existing radio access networks
US10368255B2 (en) 2017-07-25 2019-07-30 Time Warner Cable Enterprises Llc Methods and apparatus for client-based dynamic control of connections to co-existing radio access networks
US11284126B2 (en) * 2017-11-06 2022-03-22 SZ DJI Technology Co., Ltd. Method and system for streaming media live broadcast
US20190200079A1 (en) * 2017-12-21 2019-06-27 Facebook, Inc. Predictive Analysis for Media Encodings
US10939142B2 (en) 2018-02-27 2021-03-02 Charter Communications Operating, Llc Apparatus and methods for content storage, distribution and security within a content distribution network
US11553217B2 (en) 2018-02-27 2023-01-10 Charter Communications Operating, Llc Apparatus and methods for content storage, distribution and security within a content distribution network
US11594028B2 (en) 2018-05-18 2023-02-28 Stats Llc Video processing for enabling sports highlights generation
US11615621B2 (en) 2018-05-18 2023-03-28 Stats Llc Video processing for embedded information card localization and content extraction
US11373404B2 (en) 2018-05-18 2022-06-28 Stats Llc Machine learning for recognizing and interpreting embedded information card content
US11138438B2 (en) 2018-05-18 2021-10-05 Stats Llc Video processing for embedded information card localization and content extraction
US11025985B2 (en) 2018-06-05 2021-06-01 Stats Llc Audio processing for detecting occurrences of crowd noise in sporting event television programming
US11264048B1 (en) 2018-06-05 2022-03-01 Stats Llc Audio processing for detecting occurrences of loud sound characterized by brief audio bursts
US11922968B2 (en) 2018-06-05 2024-03-05 Stats Llc Audio processing for detecting occurrences of loud sound characterized by brief audio bursts
US11405660B2 (en) 2018-06-26 2022-08-02 Qualcomm Incorporated Uplink and downlink methods for efficient operation of live uplink streaming services
US10924775B2 (en) * 2018-06-26 2021-02-16 Qualcomm Incorporated Uplink and downlink methods for efficient operation of live uplink streaming services
US11539999B2 (en) * 2018-11-05 2022-12-27 Arris Enterprises Llc Session control of broadcast video services for DAA and non-DAA automation
US10735837B1 (en) * 2019-07-11 2020-08-04 Ciena Corporation Partial activation of a media channel on channel holder-based optical links
US11622144B2 (en) * 2019-11-21 2023-04-04 Arris Enterprises Llc Active video bandwidth management using SDV control
US20220124387A1 (en) * 2020-01-16 2022-04-21 Beijing Dajia Internet Information Technology Co., Ltd. Method for training bit rate decision model, and electronic device
US11323760B2 (en) * 2020-03-30 2022-05-03 Comcast Cable Communications, Llc Methods and systems for predicting content consumption
US20220337895A1 (en) * 2020-03-30 2022-10-20 Comcast Cable Communications, Llc Methods and Systems for Predicting Content Consumption
US11949931B2 (en) * 2020-03-30 2024-04-02 Comcast Cable Communications, Llc Methods and systems for predicting content consumption
US20230247244A1 (en) * 2020-08-18 2023-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Estimating video resolution delivered by an encrypted video stream
US11929842B2 (en) 2021-05-28 2024-03-12 Microsoft Technology Licensing, Llc Broadcast priority flags for online meetings
US11863805B2 (en) * 2021-06-16 2024-01-02 Meta Platforms Technologies, Llc Systems and methods for preserving video stream quality
WO2022265818A1 (en) * 2021-06-16 2022-12-22 Meta Platforms, Inc. Systems and methods for preserving video stream quality
US20220408123A1 (en) * 2021-06-16 2022-12-22 Meta Platforms, Inc. Systems and methods for preserving video stream quality

Also Published As

Publication number Publication date
EP2410739A2 (en) 2012-01-25
JP2012050145A (en) 2012-03-08
JP2010534428A (en) 2010-11-04
AU2008279824A1 (en) 2009-01-29
EP2410739A3 (en) 2012-03-21
AU2008279824C1 (en) 2014-04-10
WO2009014593A3 (en) 2009-07-23
KR20100047868A (en) 2010-05-10
CA3021825C (en) 2021-03-23
CA3021825A1 (en) 2009-01-29
CA2693891C (en) 2018-11-27
KR101587663B1 (en) 2016-01-21
US9516367B2 (en) 2016-12-06
MX2010000845A (en) 2010-05-17
US20110296475A1 (en) 2011-12-01
JP5282090B2 (en) 2013-09-04
US8627389B2 (en) 2014-01-07
CN102572528A (en) 2012-07-11
CN101803380A (en) 2010-08-11
KR20130082184A (en) 2013-07-18
US20140189730A1 (en) 2014-07-03
CN102572528B (en) 2015-11-25
CA2693891A1 (en) 2009-01-29
EP2186336A2 (en) 2010-05-19
WO2009014593A2 (en) 2009-01-29
CA3109127A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US9516367B2 (en) Systems and methods for allocating bandwidth in switched digital video systems based on interest
AU2008279824B2 (en) Systems and methods for allocating bandwidth in switched digital video systems based on interest
US11039185B2 (en) Methods and apparatus for predictive delivery of content over a network
US9554166B2 (en) Methods and apparatus for providing multi-source bandwidth sharing management
US11665265B2 (en) Method for resolving delivery path unavailability
US9124767B2 (en) Multi-DVR media content arbitration
KR101596073B1 (en) Method for temporal admission control in a digital video network
US20080069155A1 (en) Systems and methods for analog channel reuse in a cable system
US9847844B2 (en) Technique for usage forecasting in a switched digital video system
JP2010534428A5 (en)
US8938766B2 (en) Method and apparatus for deferring transmission of an SDV program to conserve network resources
AU2014201280B2 (en) Systems and Methods for Allocating Bandwidth in Switched Digital Video Systems Based on Interest
WO2009085622A1 (en) Method and apparatus for scheduling a recording of an upcoming sdv program deliverable over a content delivery system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROVI GUIDES, INC.,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUIDEWORKS, LLC;REEL/FRAME:024088/0138

Effective date: 20100226

Owner name: ROVI GUIDES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUIDEWORKS, LLC;REEL/FRAME:024088/0138

Effective date: 20100226

AS Assignment

Owner name: GUIDEWORKS, LLC,PENNSYLVANIA

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:CRANER, MICHAEL L.;REEL/FRAME:024144/0422

Effective date: 20100325

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE

Free format text: SECURITY INTEREST;ASSIGNORS:APTIV DIGITAL, INC., A DELAWARE CORPORATION;GEMSTAR DEVELOPMENT CORPORATION, A CALIFORNIA CORPORATION;INDEX SYSTEMS INC, A BRITISH VIRGIN ISLANDS COMPANY;AND OTHERS;REEL/FRAME:027039/0168

Effective date: 20110913

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: UNITED VIDEO PROPERTIES, INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: ROVI SOLUTIONS CORPORATION, CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: STARSIGHT TELECAST, INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: ROVI CORPORATION, CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: ROVI GUIDES, INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: APTIV DIGITAL, INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: TV GUIDE INTERNATIONAL, INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: INDEX SYSTEMS INC., CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: ROVI TECHNOLOGIES CORPORATION, CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: GEMSTAR DEVELOPMENT CORPORATION, CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702

Owner name: ALL MEDIA GUIDE, LLC, CALIFORNIA

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:033396/0001

Effective date: 20140702