US20090034317A1 - Semiconductor storage device and method of fabricating the same - Google Patents

Semiconductor storage device and method of fabricating the same Download PDF

Info

Publication number
US20090034317A1
US20090034317A1 US12/237,037 US23703708A US2009034317A1 US 20090034317 A1 US20090034317 A1 US 20090034317A1 US 23703708 A US23703708 A US 23703708A US 2009034317 A1 US2009034317 A1 US 2009034317A1
Authority
US
United States
Prior art keywords
gate wiring
storage device
semiconductor storage
wiring elements
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/237,037
Inventor
Hidemoto Tomita
Shigeki Ohbayashi
Yoshiyuki Ishigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to US12/237,037 priority Critical patent/US20090034317A1/en
Publication of US20090034317A1 publication Critical patent/US20090034317A1/en
Priority to US12/827,668 priority patent/US8395932B2/en
Priority to US13/296,956 priority patent/US8422274B2/en
Priority to US13/846,793 priority patent/US8908419B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/903FET configuration adapted for use as static memory cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/903FET configuration adapted for use as static memory cell
    • Y10S257/904FET configuration adapted for use as static memory cell with passive components,, e.g. polysilicon resistors

Definitions

  • the present invention relates to a semiconductor storage device and, more particularly, to a static random access memory.
  • a static random access memory (hereinafter referred to “SRAM”) is useful because it does not require refresh operation.
  • the number of elements constituting one memory cell in the SRAM is large to increase an occupied area by the memory cell. For this reason, it is required to reduce a cell area.
  • Japanese Laid-open Patent Publication No. 9-270468 (U.S. Pat. No. 5,744,844) and Japanese Laid-open Patent Publication No. 10-178110 (U.S. Pat. No. 5,930,163) illustrate examples of cell layout in which one cell having a length in a word line direction which is larger than a length in a bit line direction.
  • FIGS. 16 and 17 are shown in FIGS. 16 and 17 .
  • FIG. 16 is a plan view related to one memory cell of the SRAM.
  • FIG. 17 is an equivalent circuit diagram corresponding to the memory cell shown in FIG. 16 .
  • the length in the bit line direction is shortened to increase the speed, and the layout of an active layer and a gate wiring element has a simple shape to reduce a cell area.
  • a phenomenon (optical proximity) in which a resist pattern on a wafer is distorted becomes conspicuous due to the interference of light in an exposure device.
  • pattern distortion is generated by the micro-loading effect after etching.
  • the micro-loading effect is a phenomenon in which an etching rate decreases in a direction of depth when a pattern having a large difference in density.
  • OPC optical proximity correction
  • a cover margin such as a lithographic margin and a machining margin must be set in consideration of blur in photolithography process. For this reason, a portion in which a contact hole should be formed on the gate wiring element must be deformed by increasing the width of the portion by a length corresponding to a cover margin. In addition, since a width must be partially increased to make the width of the gate wiring element fine, decreasing patterning size cannot be achieved easily.
  • a semiconductor storage device including a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element, a second gate wiring element, a first connector, and a second connector.
  • the memory cell array has a plurality of memory cells.
  • Each memory cell has first and second driver transistors, first and second load transistors, and first and second access transistors. That is to say, first and second sets each having a driver transistors, a load transistors, and an access transistors are designed in each memory cell within SRAM.
  • the memory cells are two-dimensionally arranged on a semiconductor substrate.
  • the word lines are connected to the memory cells and are arranged in parallel to each other along a first direction.
  • the bit lines are connected to the memory cells and are arranged in parallel to each other along a second direction perpendicular to the first direction.
  • the first gate wiring element composes a gate electrode of the first driver transistor and the first load transistor, and has a rectangular shape having straight line on opposite sides.
  • the second gate wiring element composes a gate electrode of the access transistor, and has a rectangular shape having straight line on opposite sides. That is to say, the first and second gate wiring element have fair lines such as notch-less shape.
  • the first connector connects the first gate wiring element, an active region of the second driver transistor, and an active region of the second load transistor to each other.
  • the second connector connects the second gate wiring element to the word lines.
  • a semiconductor storage device including a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element, and a second gate wiring element.
  • the memory cell array has a plurality of memory cells. Each memory cell has first and second driver transistors, first and second load transistors, and first and second access transistors are two-dimensionally arranged on a semiconductor substrate.
  • the word lines are connected to the memory cells and arranged in parallel to each other along a first direction.
  • the bit lines are connected to the memory cells and arranged in parallel to each other along a second direction perpendicular to the first direction.
  • the first gate wiring element composes a gate electrode of the first driver transistor and the first load transistor.
  • the second gate wiring element is connected to the access transistor.
  • the first gate wiring element and the second gate wiring element have rectangular shapes each having straight line on opposite sides and being free from a notch or a projection, and are linearly laid out. In this manner, since the first and second gate wiring elements can be formed at high accuracy, the characteristics of transistors constituting a memory cells can be stabilized. For this reason, a semiconductor storage device having stable characteristics can be obtained.
  • contacts to the respective wiring elements are formed by using local inter connectors (LICs). More specifically, the contacts of the respective gate wiring elements are not formed through via holes directly formed on the gate wiring elements, but the contacts are formed by the local inter connectors (LICs) formed by tungsten damascene.
  • LICs local inter connectors
  • regular gate wiring elements each having a rectangular shape can be laid out without making a cover margin for contact in formation of the gate wiring elements.
  • first gate wiring elements and the second gate wiring elements are laid out in parallel to each other, in the step of forming gate wiring elements by photolithography process, pattern distortion caused by interference can be suppressed. Therefore, an optical proximity effect in the photolithography process can be suppressed.
  • FIG. 1 is a circuit diagram of an equivalent circuit corresponding to one memory cell of a semiconductor storage device according to a first embodiment of the present invention
  • FIG. 2 is a plan view of a configuration in which gate wiring elements of the semiconductor storage device according to first embodiment of the present invention are centered;
  • FIG. 3 is a sectional view of the configuration along A-A′ line in FIG. 2 ;
  • FIG. 4 is a sectional view of the configuration along B-B′ line in FIG. 2 ;
  • FIG. 5 is a sectional view of the configuration along C-C′ line in FIG. 2 ;
  • FIG. 6 is a sectional view of the configuration along D-D′ line in FIG. 2 ;
  • FIG. 7 is a conceptual plan view of a portion related to wires of a memory cell of the semiconductor storage device according to first embodiment of the present invention when viewed from the above;
  • FIG. 8 is a plan view showing the step of forming gate wiring elements in a method of fabricating a semiconductor storage device according to first embodiment of the present invention.
  • FIG. 9 is a plan view of a step of forming stack via holes for connecting a formed local inter connector LIC in the method.
  • FIG. 10 is a plan view of a step of burying tungsten in a first via hole and removing tungsten from the other area by etching;
  • FIG. 11 is a plan view of a step of depositing a third metal layer and etching the third metal layer in the method
  • FIG. 12 is a plan view of a step of forming gate wiring elements in four memory cells of a semiconductor storage device according to a second embodiment of the present invention.
  • FIG. 13 is a plan view of a configuration in which the four gate wiring elements in the four memory cells of the semiconductor storage device according to the second embodiment are centered;
  • FIG. 14 is a plan view of another configuration in which gate wiring elements of four memory cells of the semiconductor storage device according to the second embodiment of the present invention are centered;
  • FIG. 15 is a graph on a relationship between an aspect ratio of a gate wiring element and the number of generated defects in a semiconductor storage device according to a fourth embodiment of the present invention.
  • FIG. 16 is a plan view of a configuration in which gate wiring elements in a prior art semiconductor storage device are centered.
  • FIG. 17 is a circuit diagram of an equivalent circuit corresponding to one memory cell of the semiconductor storage device shown in FIG. 16 .
  • the semiconductor storage device has a memory cell array in which memory cells 10 each including two sets of a driver transistor 11 , a load transistor 12 , and an access transistor 13 are two-dimensionally arranged. Wires of one of the memory cells 10 will be described below.
  • This memory cell 10 has two types of gate wiring elements. More specifically, the memory cell 10 has a first gate wiring elements 3 a and 3 b composing a gate electrode of the driver transistor 11 to the load transistor 12 , and connecting the driver transistor 11 to the load transistor 12 .
  • the memory cell 10 has second gate wiring elements 3 c and 3 d composing a gate electrode of the access transistor 13 , and connecting the access transistor 13 to a word line WL.
  • the first gate wiring elements 3 a , 3 b and the second gate wiring elements 3 c , 3 d have rectangular shapes having straight line on opposite sides being free from a notch or a projection, and are laid out to have longitudinal directions thereof are parallel to the direction of the gate width of the access transistor 13 . More specifically, the gate wiring elements 3 are laid out in parallel to longitudinal direction of a word line. In this manner, since the first and second gate wiring elements 3 a , 3 b , 3 c , and 3 d can be formed at high accuracy, the characteristics of the respective transistors can be made stable. For this reason, a semiconductor storage device having stable characteristics can be fabricated.
  • the longitudinal direction of the word line is referred to as a first direction.
  • a direction being perpendicular to the first direction is referred to as a second direction.
  • contacts to the gate wiring elements are formed by using the local inter connector (LIC) described in U.S. Pat. No. 5,541,427. More specifically, as the contacts to the respective gate wiring elements, contacts are not formed through via holes directly formed on the gate wiring elements, and they are formed by the local inter connectors (LICs) formed by tungsten damascene.
  • LIC local inter connector
  • a cover margin for contact is not needed in fabrication of the gate wiring elements, and rectangular gate wiring elements can be laid out having straight line on opposite sides without a notch or a projection.
  • the gate wiring element can be in a small size.
  • the semiconductor storage device is an SRAM including first and second driver transistors 11 , first and second load transistors 12 , and first and second access transistors 13 , which are arranged in one memory cell 10 .
  • a word line WL in the longitudinal direction is longer than a bit line BIT in the longitudinal direction.
  • FIG. 2 shows a configuration in which connections between gate wiring elements 3 a , 3 b , 3 c , and 3 d and local inter connectors (LIC) 5 a , 5 b , 5 c , and 5 d are centered.
  • LIC local inter connectors
  • Each first gate wiring element 3 a and 3 b composes a gate electrode of the driver transistors 11 and the load transistor 12 .
  • the first gate wiring elements 3 a and 3 b are also in contact with the other driver transistor 11 and the other load transistor 12 in the same memory cell by the first local inter connectors (LIC) 5 a and 5 b made of tungsten (W) formed by a damascene process.
  • Each second gate wiring element 3 c , 3 d composes a gate electrode of the access transistor 13 .
  • the second gate wiring elements 3 c and 3 d are also in contact with a word line by the second local inter connectors (LICs) 5 c and 5 d .
  • Cross couple wires of an inverter in the memory cell are formed by using local inter connectors (LICs), a bit line is formed by a second metal wire, a VDD line is formed by a second metal wire, and a ground (GND) line is formed by a second metal wire.
  • LICs local inter connectors
  • bit line is formed by a second metal wire
  • VDD line is formed by a second metal wire
  • ground (GND) line is formed by a second metal wire.
  • FIGS. 3 to 6 are sectional views showing the structure along cut lines in FIG. 2 .
  • a P well region, an N well region, and a P well region are sequentially formed along the first direction.
  • the access transistor 13 , the load transistor 12 , and the driver transistors 11 are formed such that the transistors are isolated from each other by an element isolation oxide film.
  • the first gate wiring element 3 b made of poly-silicon, connecting the driver transistors 11 to the load transistor 12 extends along the first direction.
  • the second gate wiring element 3 c made of poly-silicon linearly extends on the access transistor 13 along the first direction.
  • the first and second gate wiring elements 3 b and 3 c form contacts by the first and second local inter connectors 5 b and 5 c made of tungsten and buried in a trench for a local inter connector formed in an insulating interlayer deposited on the gate wiring elements.
  • the local inter connector LIC is connected to the first metal wiring element by a stack via hole. As shown in FIG.
  • FIG. 7 shows only a configuration related to the wires except for an insulating interlayer when viewed from the above.
  • This semiconductor storage device is fabricated by the following steps.
  • a semiconductor substrate 1 is provided.
  • the element isolation oxide film 2 is formed at a predetermined portion of the semiconductor substrate 1 .
  • Ions are implanted in a predetermined portion to form a well region.
  • well regions are sequentially formed such that a P well region, an N well region, and a P well region are sequentially arranged on the semiconductor substrate 1 .
  • the direction of the arrangement is set as a first direction.
  • the first direction is equal to the longitudinal direction of one memory cell 10 .
  • the first gate wiring elements 3 a and 3 b and the second ones 3 c and 3 d are formed.
  • the first gate wiring elements 3 a and 3 b composes a gate electrode of the driver transistor 11 and the load transistor 12 , and are linearly arranged along the first direction.
  • the second gate wiring elements 3 c and 3 d composes a gate electrode of the access transistor 13 , and are linearly arranged along the first direction.
  • Each of the poly-silicon wiring layers 3 has a rectangular shape having straight line on opposite sides and being free from a notch or a projection, and is regularly arranged. For this reason, in patterning, the accuracy of decreasing patterning size can be improved.
  • a sidewall 4 is formed.
  • a source S and a drain D are formed by ion implantation.
  • Tungsten is deposited in the trench for local inter connector LIC, and the resultant structure is flattened.
  • the tungsten is left in only the trench (W damascene process) to form a local inter connector LIC 5 made of tungsten.
  • the first local inter connectors (LICs) 5 a and 5 b and the second local inter connectors (LICs) 5 c and 5 d can be formed. Since contacts to the gate wiring elements can be formed through the local inter connectors (LICs) 5 a , 5 b , 5 c , and 5 d , the shapes of the gate wiring elements need not deformed to make a margin for contact.
  • a damascene method for forming only the wires can be used as the damascene method with respect to the first local inter connectors (LICs) 5 a and 5 b .
  • Tungsten is removed except for the local inter connectors (LICs) 5 and the stack via holes 7 , as shown in FIG. 9 .
  • the stack via holes 7 can be formed to connect the second gate wiring elements 3 c and 3 d to the word line WL through the second local inter connector LICs 5 c and 5 d.
  • a first metal layer 8 is deposited on the entire surface of the resultant structure.
  • the first metal layer 8 is removed by using a mask for a first metal wiring element except for on a predetermined portion. In this manner, as shown in FIG. 10 , a word line WL constituted by the first metal layer 8 can be formed.
  • Tungsten is buried in the first via hole 14 , and tungsten is removed by etching except for the tungsten in the first via hole 14 , as shown in FIG. 10 . In this manner, an electric connection from the first metal layer 8 to a further upper layer can be formed.
  • a second metal layer 9 is deposited, and it is removed except for predetermined portions. In this manner, a bit line, a VDD line, and a ground (GND) line can be formed by the second metal layer 9 .
  • a hole for a second via hole is formed by etching.
  • a third metal wiring element 15 is deposited, and it is removed except for predetermined portions, as shown in FIG. 11 .
  • the semiconductor storage device described above can be obtained.
  • a semiconductor storage device is fabricated by this method.
  • the semiconductor storage device includes first and second gate wiring elements 3 each having a rectangular shape having straight line on opposite sides opposite to each other without a notch or a projection.
  • the first and second gate wiring elements 3 can be regularly laid out along the longitudinal direction of the word line. In this manner, the transistor characteristics of the driver transistor 11 , the load transistor 12 , the access transistor 13 , and the like constituting the semiconductor storage device can be stabilized and uniformed. Therefore, a semiconductor storage device having stable characteristics can be obtained.
  • a semiconductor storage device will be described below with reference to plan views showing the configurations of four memory cells in FIGS. 12 to 14 .
  • the semiconductor storage device is different from that according to first embodiment except that, as shown in FIG. 12 , distance (pitches) d 1 of the first gate wiring elements 3 a and 3 b and the second gate wiring elements 3 c and 3 d in the longitudinal direction are substantially equal to each other. For this reason, since generation of optical proximity effect can be suppressed in the photolithography process, the shapes of gate wiring elements need not be deformed for optical proximity correction (OPC). Therefore, a yield can be prevented from being decreased by shortage of lithographic margin. Furthermore, lithographic resolution can be improved.
  • the semiconductor storage device as shown in FIG. 13 , four memory cells are constituted as one repetitive unit. More specifically, a memory cell 10 a and another 10 b have mirror symmetry with respect to the configurations of gate wiring elements.
  • the memory cells 10 a and 10 c are mirror-symmetrical each other. Therefore, the memory cells 10 a and 10 d have the same gate wiring elements, and the memory cell 10 b and 10 c have the same configurations of gate wiring elements.
  • the repetitive unit is not limited to the above-mentioned repetitive unit, and a repetitive unit including a plurality of memory cells may be constituted by properly selecting a configuration of gate wiring elements.
  • a memory cell array may be constituted such that the configuration of the gate wiring elements of one memory cell 10 a is directly used as a repetitive unit.
  • each of the memory cells 10 b , 10 c , and 10 d has the same configuration of gate wiring elements as that of the memory cell 10 a.
  • a semiconductor storage device is different from that according to second embodiment except that the lengths and distance between gate wiring elements in the longitudinal direction in the first gate wiring elements 3 a and 3 b and the second gate wiring elements 3 c and 3 d are substantially equal to each other, respectively, and the widths and the distance between the gate wiring elements in a direction (second direction) perpendicular to the longitudinal direction are equal to each other, respectively.
  • OPC optical proximity correction
  • the lengths, widths, and the like of the first and second gate wiring elements are made substantially equal to each other, respectively, and the distance between the gate wiring elements are made equal to each other, so that burying spacing between the layers can be kept uniform. Therefore, as an insulating interlayer, not only a boron phosphorous silicate glass (BPSG) film having good overhang properties, but also a film such as an nitride silicate glass (NSG) film or a phospho-silicate glass (PSG) film using a material having relatively poor overhang properties can be used. For this reason, a high degree of freedom of material selection can be obtained, and the cost can be reduced.
  • a material of the insulating interlayer can be selected depending on conditions such as machining difficulties, a dielectric constant to be set, the degree of difficulty of void generation, and a soft error.
  • FIG. 15 shows a relationship between an aspect ratio x of a gate wiring element and the number of generated defects when the width (shorter side W) of each gate wiring element is set to be 0.15 ⁇ m.
  • this semiconductor storage device has an aspect ratio x of longer side length L to shorter side length W of each of first and second wiring elements being 5 or more. In this manner, the aspect ratio of the gate wiring element is set to be 5 or more, the number of generated defects such as pattern disappearance in a photolithography process can be considerably reduced.
  • the first gate wiring element and the second gate wiring element have rectangular shapes each having straight line on opposite sides and being free from a notch or a projection, and are linearly laid out. In this manner, since the first and second gate wiring elements can be formed at high accuracy, the characteristics of transistors constituting a memory cells can be stabilized. For this reason, a semiconductor storage device having stable characteristics can be obtained.
  • contacts to the respective wiring elements are formed by using local inter connectors (LICs). More specifically, the contacts of the respective gate wiring elements are not formed through via holes directly formed on the gate wiring elements, but the contacts are formed by the local inter connectors (LICs) formed by tungsten damascene.
  • LICs local inter connectors
  • regular gate wiring elements each having a rectangular shape can be laid out without making a cover margin for contact in formation of the gate wiring elements.
  • first gate wiring elements and the second gate wiring elements are laid out in parallel to each other, in the step of forming gate wiring elements by photolithography process, pattern distortion caused by interference can be suppressed. Therefore, an optical proximity effect in the photolithography process can be suppressed.
  • the longitudinal directions of the first and second gate wiring elements extend in the direction of the gate width of an access transistor. For this reason, the longitudinal directions of the gate wiring elements can be made equal to the longer side of the memory cell.
  • the distance (pitches) of the first and second gate electrodes are made substantially equal to each other in the longitudinal direction (first direction).
  • the shapes of the gate wiring elements need not be deformed for optical proximity effect correction (OPC).
  • OPC optical proximity effect correction
  • a decrease in yield caused by a shortage of lithographic margin can be prevented.
  • a lithographic resolution can also be improved.
  • the characteristics of the respective transistors obtained as described above can be made uniform and stable, a semiconductor storage device having stable characteristics can be obtained.
  • the semiconductor storage device since the distance between the first and second gate wiring elements can be made substantially equal to each other, an optical proximity effect can be further suppressed in photolithography process. For this reason, a decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved.
  • the characteristics of the respective transistors obtained as described above can be made uniform and stable, a semiconductor storage device having stable characteristics can be obtained.
  • the first and second gate wiring elements have shorter sides having lengths which are substantially equal to each other, a optical proximity effect can be further suppressed in photolithography process. For this reason, a decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved.
  • the shapes of the first gate wiring elements and the second gate wiring elements projected on a plane parallel to the substrate can be made substantially equal to each other, so that burying spacing between the layers can be kept uniform. Therefore, as an insulating interlayer, not only a BPSG film having good overhang properties, but also a film such as an NSG film or a PSG film using a material having relatively poor overhang properties can be used. For this reason, a high degree of freedom of material selection can be obtained, and the cost can be reduced.
  • a material of the insulating interlayer can be selected depending on conditions such as machining difficulties of chemical mechanical polishing, a dielectric constant to be set, the degree of difficulty of void generation, and a soft error.
  • the first and second gate wiring elements are symmetrically arranged with respect to a predetermined symmetrical point. For this reason, a mask can be used such that the mask is rotated about the predetermined symmetrical point.
  • an aspect ratio x of longer side L to shorter side W of each of the first and second gate wiring elements is 5 or more.
  • the aspect ratio of the gate wiring element is set to be 5 or more, the number of generated defects such as pattern disappearance can be considerably reduced.
  • the lengths of the shorter sides of the first and second gate wiring elements are 0.15 ⁇ m or less, the respective memory cells can be decreased patterning size.
  • the first and second local inter connectors consist of tungsten damascene, a contact margin for making a contact to a gate wiring element is not required. For this reason, the shapes of the gate wiring elements need not be deformed for a margin for contact in formation of the gate wiring elements.
  • the longitudinal directions of the first and second gate wiring elements are arranged in parallel to each other. For this reason, formation of the gate wiring elements can be simplified. Therefore, the fabricating steps can be simplified.
  • the semiconductor storage device since the distance between the first and second gate wiring elements adjacent to each other in at least one of the first and second directions are made substantially equal to each other, an optical proximity effect can be suppressed in photolithography process. For this reason, a decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved.
  • the characteristics of the respective transistors obtained as described above can be made uniform and stable, a semiconductor storage device having stable characteristics can be obtained.
  • the projected shapes of the first gate wiring elements and the second gate wiring elements on a plane parallel to the substrate can be made substantially equal to each other, so that burying spacing between the layers can be kept uniform. Therefore, as an insulating interlayer, not only a BPSG film having good overhang properties, but also a film such as an NSG film or a PSG film using a material having relatively poor overhang properties can be used. For this reason, a high degree of freedom of material selection can be obtained, and the cost can be reduced.
  • a material of the insulating interlayer can be selected depending on conditions such as machining difficulties of chemical mechanical polishing, a dielectric constant to be set, the degree of difficulty of void generation, and a soft error.
  • the contacts are made by the first and second connectors without directly forming contact holes in the first and second gate wiring elements. Therefore, the gate wiring elements do not require contact margins for contact. Therefore, the shapes of the gate wiring elements need not be deformed for contact margins in formation of the gate wiring elements.
  • the first and second gate wiring elements having rectangular shapes each having straight line on opposite sides and being free from a notch or a projection can be formed.
  • the first and second gate wiring elements can be regularly laid out along the longitudinal direction of a word line. For this reason, the characteristics of transistors such as a driver transistor and an access transistor constituting the semiconductor storage device can be made stable and uniform. Therefore, a semiconductor storage device having stable characteristics can be obtained.

Abstract

A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element 3 a, 3 b, a second gate wiring element 3 c, 3 d, a first connector 5 a, 5 b, and a second connector 5 c, 5 d. Each memory cell 10 has first and second sets having a driver transistor 11, a load transistor 12, and an access transistor 13. The word lines are arranged in parallel to each other along a first direction. The bit lines are arranged in parallel to each other along a second direction perpendicular to the first direction. The first gate wiring element comprises a gate electrode of the first driver transistor and the first load transistor, and has a rectangular shape having straight line on opposite sides. The second gate wiring element comprises a gate electrode of the access transistor and has a rectangular shape having straight line on opposite sides.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor storage device and, more particularly, to a static random access memory.
  • 2. Description of the Prior Art
  • A static random access memory (hereinafter referred to “SRAM”) is useful because it does not require refresh operation. However, the number of elements constituting one memory cell in the SRAM is large to increase an occupied area by the memory cell. For this reason, it is required to reduce a cell area. For example, Japanese Laid-open Patent Publication No. 9-270468 (U.S. Pat. No. 5,744,844) and Japanese Laid-open Patent Publication No. 10-178110 (U.S. Pat. No. 5,930,163) illustrate examples of cell layout in which one cell having a length in a word line direction which is larger than a length in a bit line direction. Of the examples, a flat configuration of the SRAM described in Japanese Laid-open Patent Publication No. 10-178110 is shown in FIGS. 16 and 17. FIG. 16 is a plan view related to one memory cell of the SRAM. FIG. 17 is an equivalent circuit diagram corresponding to the memory cell shown in FIG. 16. The length in the bit line direction is shortened to increase the speed, and the layout of an active layer and a gate wiring element has a simple shape to reduce a cell area.
  • From a viewpoint of decreasing patterning size, a phenomenon (optical proximity) in which a resist pattern on a wafer is distorted becomes conspicuous due to the interference of light in an exposure device. In addition, even in an etching process, pattern distortion is generated by the micro-loading effect after etching. The micro-loading effect is a phenomenon in which an etching rate decreases in a direction of depth when a pattern having a large difference in density. In recent years, in order to minimize these pattern distortions phenomena, a technique for the optical proximity correction (OPC) is developed and used in which a mask pattern is automatically corrected in advance in a photography process.
  • In general, in order to form a contact by forming a contact hole in a gate wiring element, a cover margin such as a lithographic margin and a machining margin must be set in consideration of blur in photolithography process. For this reason, a portion in which a contact hole should be formed on the gate wiring element must be deformed by increasing the width of the portion by a length corresponding to a cover margin. In addition, since a width must be partially increased to make the width of the gate wiring element fine, decreasing patterning size cannot be achieved easily.
  • In order to decrease patterning size in consideration of an optical proximity correction (OPC) pattern obtained by the optical proximity correction (OPC) technique, when gate wiring elements are complicatedly arranged, margins for the optical proximity correction must be set in the longitudinal and lateral directions. For this reason, a memory cell area cannot be reduced sufficiently because sufficient decrease in size cannot be achieved, and the margins are factors which hinder decrease in size.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to secure lithographic and machining margins without complicatedly deforming a gate shape in formation of a gate wiring element of a semiconductor storage device, especially, an SRAM.
  • In accordance with one aspect of the present invention, there is a semiconductor storage device including a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element, a second gate wiring element, a first connector, and a second connector. The memory cell array has a plurality of memory cells. Each memory cell has first and second driver transistors, first and second load transistors, and first and second access transistors. That is to say, first and second sets each having a driver transistors, a load transistors, and an access transistors are designed in each memory cell within SRAM. The memory cells are two-dimensionally arranged on a semiconductor substrate. The word lines are connected to the memory cells and are arranged in parallel to each other along a first direction. The bit lines are connected to the memory cells and are arranged in parallel to each other along a second direction perpendicular to the first direction. The first gate wiring element composes a gate electrode of the first driver transistor and the first load transistor, and has a rectangular shape having straight line on opposite sides. The second gate wiring element composes a gate electrode of the access transistor, and has a rectangular shape having straight line on opposite sides. That is to say, the first and second gate wiring element have fair lines such as notch-less shape. The first connector connects the first gate wiring element, an active region of the second driver transistor, and an active region of the second load transistor to each other. The second connector connects the second gate wiring element to the word lines.
  • In another aspect of the present invention, there is a semiconductor storage device including a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element, and a second gate wiring element. The memory cell array has a plurality of memory cells. Each memory cell has first and second driver transistors, first and second load transistors, and first and second access transistors are two-dimensionally arranged on a semiconductor substrate. The word lines are connected to the memory cells and arranged in parallel to each other along a first direction. The bit lines are connected to the memory cells and arranged in parallel to each other along a second direction perpendicular to the first direction. The first gate wiring element composes a gate electrode of the first driver transistor and the first load transistor. The second gate wiring element is connected to the access transistor.
  • In the semiconductor storage device according to the present invention, the first gate wiring element and the second gate wiring element have rectangular shapes each having straight line on opposite sides and being free from a notch or a projection, and are linearly laid out. In this manner, since the first and second gate wiring elements can be formed at high accuracy, the characteristics of transistors constituting a memory cells can be stabilized. For this reason, a semiconductor storage device having stable characteristics can be obtained. In the semiconductor storage device, contacts to the respective wiring elements are formed by using local inter connectors (LICs). More specifically, the contacts of the respective gate wiring elements are not formed through via holes directly formed on the gate wiring elements, but the contacts are formed by the local inter connectors (LICs) formed by tungsten damascene. When the local inter connectors (LICs) are used, regular gate wiring elements each having a rectangular shape can be laid out without making a cover margin for contact in formation of the gate wiring elements. In addition, since the first gate wiring elements and the second gate wiring elements are laid out in parallel to each other, in the step of forming gate wiring elements by photolithography process, pattern distortion caused by interference can be suppressed. Therefore, an optical proximity effect in the photolithography process can be suppressed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become readily understood from the following description of preferred embodiments thereof made with reference to the accompanying drawings, in which like parts are designated by like reference numeral and in which:
  • FIG. 1 is a circuit diagram of an equivalent circuit corresponding to one memory cell of a semiconductor storage device according to a first embodiment of the present invention;
  • FIG. 2 is a plan view of a configuration in which gate wiring elements of the semiconductor storage device according to first embodiment of the present invention are centered;
  • FIG. 3 is a sectional view of the configuration along A-A′ line in FIG. 2;
  • FIG. 4 is a sectional view of the configuration along B-B′ line in FIG. 2;
  • FIG. 5 is a sectional view of the configuration along C-C′ line in FIG. 2;
  • FIG. 6 is a sectional view of the configuration along D-D′ line in FIG. 2;
  • FIG. 7 is a conceptual plan view of a portion related to wires of a memory cell of the semiconductor storage device according to first embodiment of the present invention when viewed from the above;
  • FIG. 8 is a plan view showing the step of forming gate wiring elements in a method of fabricating a semiconductor storage device according to first embodiment of the present invention;
  • FIG. 9 is a plan view of a step of forming stack via holes for connecting a formed local inter connector LIC in the method;
  • FIG. 10 is a plan view of a step of burying tungsten in a first via hole and removing tungsten from the other area by etching;
  • FIG. 11 is a plan view of a step of depositing a third metal layer and etching the third metal layer in the method;
  • FIG. 12 is a plan view of a step of forming gate wiring elements in four memory cells of a semiconductor storage device according to a second embodiment of the present invention;
  • FIG. 13 is a plan view of a configuration in which the four gate wiring elements in the four memory cells of the semiconductor storage device according to the second embodiment are centered;
  • FIG. 14 is a plan view of another configuration in which gate wiring elements of four memory cells of the semiconductor storage device according to the second embodiment of the present invention are centered;
  • FIG. 15 is a graph on a relationship between an aspect ratio of a gate wiring element and the number of generated defects in a semiconductor storage device according to a fourth embodiment of the present invention;
  • FIG. 16 is a plan view of a configuration in which gate wiring elements in a prior art semiconductor storage device are centered; and
  • FIG. 17 is a circuit diagram of an equivalent circuit corresponding to one memory cell of the semiconductor storage device shown in FIG. 16.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Semiconductor storage devices according to embodiments of the present invention and a method of fabricating the same will be described below with reference to the accompanying drawings.
  • A semiconductor storage device according to first embodiment of the present invention and a method of fabricating the same will be described below with reference to FIGS. 1 to 11. The semiconductor storage device will be described first with reference to FIGS. 1 to 7. The semiconductor storage device, as shown in FIG. 1, has a memory cell array in which memory cells 10 each including two sets of a driver transistor 11, a load transistor 12, and an access transistor 13 are two-dimensionally arranged. Wires of one of the memory cells 10 will be described below. This memory cell 10 has two types of gate wiring elements. More specifically, the memory cell 10 has a first gate wiring elements 3 a and 3 b composing a gate electrode of the driver transistor 11 to the load transistor 12, and connecting the driver transistor 11 to the load transistor 12. Additionally, the memory cell 10 has second gate wiring elements 3 c and 3 d composing a gate electrode of the access transistor 13, and connecting the access transistor 13 to a word line WL. The first gate wiring elements 3 a, 3 b and the second gate wiring elements 3 c, 3 d have rectangular shapes having straight line on opposite sides being free from a notch or a projection, and are laid out to have longitudinal directions thereof are parallel to the direction of the gate width of the access transistor 13. More specifically, the gate wiring elements 3 are laid out in parallel to longitudinal direction of a word line. In this manner, since the first and second gate wiring elements 3 a, 3 b, 3 c, and 3 d can be formed at high accuracy, the characteristics of the respective transistors can be made stable. For this reason, a semiconductor storage device having stable characteristics can be fabricated. The longitudinal direction of the word line is referred to as a first direction. A direction being perpendicular to the first direction is referred to as a second direction.
  • In Japanese Laid-open Patent Publications Nos. 2000-124332, 2000-208643, and 2000-31298 describe SRAMs each having a linearly arranged gate wiring element. However, in all the SRAMs described in these publications, contacts are formed by directly forming contact holes in the gate wiring elements. In fact, since a cover margin for making a contact is required, the gate wiring element is deformed or has an excessive width. For this reason, in contrast to the present invention, a rectangular gate wiring element cannot be obtained to have straight line on opposite sides and to be free from a notch and a projection. The “notch” mentioned here is a crena or a depression. Therefore, the “straight line” means that a side has substantially linear line formed without the notch.
  • In this semiconductor storage device, contacts to the gate wiring elements are formed by using the local inter connector (LIC) described in U.S. Pat. No. 5,541,427. More specifically, as the contacts to the respective gate wiring elements, contacts are not formed through via holes directly formed on the gate wiring elements, and they are formed by the local inter connectors (LICs) formed by tungsten damascene. By using the local inter connector LIC as described above, a cover margin for contact is not needed in fabrication of the gate wiring elements, and rectangular gate wiring elements can be laid out having straight line on opposite sides without a notch or a projection. Since the first gate wiring elements 3 a and 3 b and the second ones 3 c and 3 d are laid out in parallel to each other, pattern distortion caused by interference can be suppressed in the step of forming the gate wiring elements by photolithography process. For this reason, optical proximity effect in the photolithography process can be suppressed. Therefore, the gate wiring element can be in a small size.
  • In addition, the configuration of the semiconductor storage device will be described below. As shown in FIG. 1, The semiconductor storage device is an SRAM including first and second driver transistors 11, first and second load transistors 12, and first and second access transistors 13, which are arranged in one memory cell 10. In one memory cell 10 shown in FIGS. 1 and 2, a word line WL in the longitudinal direction is longer than a bit line BIT in the longitudinal direction. FIG. 2 shows a configuration in which connections between gate wiring elements 3 a, 3 b, 3 c, and 3 d and local inter connectors (LIC) 5 a, 5 b, 5 c, and 5 d are centered. Each first gate wiring element 3 a and 3 b composes a gate electrode of the driver transistors 11 and the load transistor 12. The first gate wiring elements 3 a and 3 b are also in contact with the other driver transistor 11 and the other load transistor 12 in the same memory cell by the first local inter connectors (LIC) 5 a and 5 b made of tungsten (W) formed by a damascene process. Each second gate wiring element 3 c, 3 d composes a gate electrode of the access transistor 13. The second gate wiring elements 3 c and 3 d are also in contact with a word line by the second local inter connectors (LICs) 5 c and 5 d. Cross couple wires of an inverter in the memory cell are formed by using local inter connectors (LICs), a bit line is formed by a second metal wire, a VDD line is formed by a second metal wire, and a ground (GND) line is formed by a second metal wire.
  • Furthermore, a configuration extending from the substrate surface of a semiconductor substrate 1 of the semiconductor storage device in the vertical direction will be described below with reference to FIGS. 3 to 7. Of these drawings, FIGS. 3 to 6 are sectional views showing the structure along cut lines in FIG. 2. In the semiconductor substrate 1 of the semiconductor storage device, as shown in the sectional view along the longitudinal direction (first direction) of a word line in FIG. 3, a P well region, an N well region, and a P well region are sequentially formed along the first direction. In addition, the access transistor 13, the load transistor 12, and the driver transistors 11 are formed such that the transistors are isolated from each other by an element isolation oxide film. On the semiconductor substrate 1, the first gate wiring element 3 b, made of poly-silicon, connecting the driver transistors 11 to the load transistor 12 extends along the first direction. The second gate wiring element 3 c made of poly-silicon linearly extends on the access transistor 13 along the first direction. As shown in FIG. 3, the first and second gate wiring elements 3 b and 3 c, form contacts by the first and second local inter connectors 5 b and 5 c made of tungsten and buried in a trench for a local inter connector formed in an insulating interlayer deposited on the gate wiring elements. In addition, as shown in FIG. 4, the local inter connector LIC is connected to the first metal wiring element by a stack via hole. As shown in FIG. 5, the first local inter connectors (LICs) 5 b and 5 a made of tungsten are buried. As shown in FIG. 6, as to the connection between the gate wiring elements 3 and the local inter connectors (LICs) 5, even though mask offset happens offset by a side-wall width can be allowed. A configuration related to the wires of the semiconductor storage device is shown in the plan view in FIG. 7. FIG. 7 shows only a configuration related to the wires except for an insulating interlayer when viewed from the above.
  • A method of fabricating the semiconductor storage device will be described below with reference to FIGS. 8 to 11. This semiconductor storage device is fabricated by the following steps.
  • (a) A semiconductor substrate 1 is provided.
  • (b) The element isolation oxide film 2 is formed at a predetermined portion of the semiconductor substrate 1.
  • (c) Ions are implanted in a predetermined portion to form a well region. In this case, as shown in FIG. 8, well regions are sequentially formed such that a P well region, an N well region, and a P well region are sequentially arranged on the semiconductor substrate 1. The direction of the arrangement is set as a first direction. The first direction is equal to the longitudinal direction of one memory cell 10.
  • (d) After a gate oxide film is deposited, and poly-silicon wiring layers 3 serving as gate wiring layers are deposited.
  • (e) Ion implantation is performed to form the transistors 11, 12, and 13.
  • (f) Thereafter patterning is performed, as shown in FIG. 8. In this manner, the first gate wiring elements 3 a and 3 b and the second ones 3 c and 3 d are formed. The first gate wiring elements 3 a and 3 b, as shown in FIG. 8, composes a gate electrode of the driver transistor 11 and the load transistor 12, and are linearly arranged along the first direction. The second gate wiring elements 3 c and 3 d composes a gate electrode of the access transistor 13, and are linearly arranged along the first direction. Each of the poly-silicon wiring layers 3 has a rectangular shape having straight line on opposite sides and being free from a notch or a projection, and is regularly arranged. For this reason, in patterning, the accuracy of decreasing patterning size can be improved.
  • (g) A sidewall 4 is formed.
  • (h) A source S and a drain D are formed by ion implantation.
  • (i) A CoSi2 layer is formed.
  • (j) An etching stopper film is deposited. A flattening insulating film 6 a is deposited.
  • (k) The flattening insulating film 6 a is etched by using a mask for an local inter connector LIC. At this time, the etching is stopped by the etching stopper.
  • (l) The etching stopper film exposed by etching the flattening insulating film 6 a is removed to form a trench for a local inter connector LIC.
  • (m) Tungsten is deposited in the trench for local inter connector LIC, and the resultant structure is flattened. The tungsten is left in only the trench (W damascene process) to form a local inter connector LIC 5 made of tungsten. The first local inter connectors (LICs) 5 a and 5 b and the second local inter connectors (LICs) 5 c and 5 d can be formed. Since contacts to the gate wiring elements can be formed through the local inter connectors (LICs) 5 a, 5 b, 5 c, and 5 d, the shapes of the gate wiring elements need not deformed to make a margin for contact. As the damascene method with respect to the first local inter connectors (LICs) 5 a and 5 b, a damascene method for forming only the wires can be used.
  • (n) A flattening insulating film 6 b is deposited.
  • (o) Holes for stack via holes 7 are formed.
  • (p) Tungsten is removed except for the local inter connectors (LICs) 5 and the stack via holes 7, as shown in FIG. 9. In this manner, the stack via holes 7 can be formed to connect the second gate wiring elements 3 c and 3 d to the word line WL through the second local inter connector LICs 5 c and 5 d.
  • (q) A first metal layer 8 is deposited on the entire surface of the resultant structure.
  • (r) The first metal layer 8 is removed by using a mask for a first metal wiring element except for on a predetermined portion. In this manner, as shown in FIG. 10, a word line WL constituted by the first metal layer 8 can be formed.
  • (s) An insulating interlayer 6 c is deposited.
  • (t) A hole for a first via hole 14 is formed.
  • (u) Tungsten is buried in the first via hole 14, and tungsten is removed by etching except for the tungsten in the first via hole 14, as shown in FIG. 10. In this manner, an electric connection from the first metal layer 8 to a further upper layer can be formed.
  • (v) A second metal layer 9 is deposited, and it is removed except for predetermined portions. In this manner, a bit line, a VDD line, and a ground (GND) line can be formed by the second metal layer 9.
  • (w) An insulating interlayer 6 d is deposited.
  • (x) A hole for a second via hole is formed by etching.
  • (y) Tungsten is buried in the second via hole, and the tungsten is removed except for the second via hole.
  • (z) A third metal wiring element 15 is deposited, and it is removed except for predetermined portions, as shown in FIG. 11.
  • With the above steps, the semiconductor storage device described above can be obtained. A semiconductor storage device is fabricated by this method. The semiconductor storage device includes first and second gate wiring elements 3 each having a rectangular shape having straight line on opposite sides opposite to each other without a notch or a projection. In addition, the first and second gate wiring elements 3 can be regularly laid out along the longitudinal direction of the word line. In this manner, the transistor characteristics of the driver transistor 11, the load transistor 12, the access transistor 13, and the like constituting the semiconductor storage device can be stabilized and uniformed. Therefore, a semiconductor storage device having stable characteristics can be obtained.
  • A semiconductor storage device according to second embodiment of the present invention will be described below with reference to plan views showing the configurations of four memory cells in FIGS. 12 to 14. The semiconductor storage device is different from that according to first embodiment except that, as shown in FIG. 12, distance (pitches) d1 of the first gate wiring elements 3 a and 3 b and the second gate wiring elements 3 c and 3 d in the longitudinal direction are substantially equal to each other. For this reason, since generation of optical proximity effect can be suppressed in the photolithography process, the shapes of gate wiring elements need not be deformed for optical proximity correction (OPC). Therefore, a yield can be prevented from being decreased by shortage of lithographic margin. Furthermore, lithographic resolution can be improved.
  • The semiconductor storage device, as shown in FIG. 13, four memory cells are constituted as one repetitive unit. More specifically, a memory cell 10 a and another 10 b have mirror symmetry with respect to the configurations of gate wiring elements. The memory cells 10 a and 10 c are mirror-symmetrical each other. Therefore, the memory cells 10 a and 10 d have the same gate wiring elements, and the memory cell 10 b and 10 c have the same configurations of gate wiring elements. The repetitive unit is not limited to the above-mentioned repetitive unit, and a repetitive unit including a plurality of memory cells may be constituted by properly selecting a configuration of gate wiring elements.
  • As shown in FIG. 14, another configuration of the semiconductor storage device, a memory cell array may be constituted such that the configuration of the gate wiring elements of one memory cell 10 a is directly used as a repetitive unit. In this case, each of the memory cells 10 b, 10 c, and 10 d has the same configuration of gate wiring elements as that of the memory cell 10 a.
  • A semiconductor storage device according to third embodiment of the present invention will be described below. This semiconductor storage device is different from that according to second embodiment except that the lengths and distance between gate wiring elements in the longitudinal direction in the first gate wiring elements 3 a and 3 b and the second gate wiring elements 3 c and 3 d are substantially equal to each other, respectively, and the widths and the distance between the gate wiring elements in a direction (second direction) perpendicular to the longitudinal direction are equal to each other, respectively. For this reason, since generation of optical proximity effect can be suppressed in a photolithography process, the shapes of gate wiring elements need not be deformed for optical proximity correction (OPC). Therefore, a yield can be prevented from being deteriorated by a shortage of lithographic margin. In addition, when a regular layout pattern is used, photolithography can be performed at high accuracy by using super resolution technique.
  • The lengths, widths, and the like of the first and second gate wiring elements are made substantially equal to each other, respectively, and the distance between the gate wiring elements are made equal to each other, so that burying spacing between the layers can be kept uniform. Therefore, as an insulating interlayer, not only a boron phosphorous silicate glass (BPSG) film having good overhang properties, but also a film such as an nitride silicate glass (NSG) film or a phospho-silicate glass (PSG) film using a material having relatively poor overhang properties can be used. For this reason, a high degree of freedom of material selection can be obtained, and the cost can be reduced. In addition, a material of the insulating interlayer can be selected depending on conditions such as machining difficulties, a dielectric constant to be set, the degree of difficulty of void generation, and a soft error.
  • A semiconductor storage device according to fourth embodiment of the present invention will be described below with reference to the graph in FIG. 15. FIG. 15 shows a relationship between an aspect ratio x of a gate wiring element and the number of generated defects when the width (shorter side W) of each gate wiring element is set to be 0.15 μm. As shown in FIG. 15, this semiconductor storage device has an aspect ratio x of longer side length L to shorter side length W of each of first and second wiring elements being 5 or more. In this manner, the aspect ratio of the gate wiring element is set to be 5 or more, the number of generated defects such as pattern disappearance in a photolithography process can be considerably reduced.
  • In the semiconductor storage device according to the present invention, the first gate wiring element and the second gate wiring element have rectangular shapes each having straight line on opposite sides and being free from a notch or a projection, and are linearly laid out. In this manner, since the first and second gate wiring elements can be formed at high accuracy, the characteristics of transistors constituting a memory cells can be stabilized. For this reason, a semiconductor storage device having stable characteristics can be obtained. In the semiconductor storage device, contacts to the respective wiring elements are formed by using local inter connectors (LICs). More specifically, the contacts of the respective gate wiring elements are not formed through via holes directly formed on the gate wiring elements, but the contacts are formed by the local inter connectors (LICs) formed by tungsten damascene. When the local inter connectors (LICs) are used, regular gate wiring elements each having a rectangular shape can be laid out without making a cover margin for contact in formation of the gate wiring elements. In addition, since the first gate wiring elements and the second gate wiring elements are laid out in parallel to each other, in the step of forming gate wiring elements by photolithography process, pattern distortion caused by interference can be suppressed. Therefore, an optical proximity effect in the photolithography process can be suppressed.
  • In the semiconductor storage device according to the present invention, the longitudinal directions of the first and second gate wiring elements extend in the direction of the gate width of an access transistor. For this reason, the longitudinal directions of the gate wiring elements can be made equal to the longer side of the memory cell.
  • In addition, in the semiconductor storage device according to the present invention, the distance (pitches) of the first and second gate electrodes are made substantially equal to each other in the longitudinal direction (first direction). In this manner, since generation of an optical proximity effect can be suppressed in photolithography process, the shapes of the gate wiring elements need not be deformed for optical proximity effect correction (OPC). A decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved. In addition, since the characteristics of the respective transistors obtained as described above can be made uniform and stable, a semiconductor storage device having stable characteristics can be obtained.
  • In the semiconductor storage device according to the present invention, since the distance between the first and second gate wiring elements can be made substantially equal to each other, an optical proximity effect can be further suppressed in photolithography process. For this reason, a decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved. In addition, since the characteristics of the respective transistors obtained as described above can be made uniform and stable, a semiconductor storage device having stable characteristics can be obtained.
  • Furthermore, in the semiconductor storage device according to the present invention, since the first and second gate wiring elements have shorter sides having lengths which are substantially equal to each other, a optical proximity effect can be further suppressed in photolithography process. For this reason, a decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved.
  • Still furthermore, in the semiconductor storage device according to the present invention, the shapes of the first gate wiring elements and the second gate wiring elements projected on a plane parallel to the substrate can be made substantially equal to each other, so that burying spacing between the layers can be kept uniform. Therefore, as an insulating interlayer, not only a BPSG film having good overhang properties, but also a film such as an NSG film or a PSG film using a material having relatively poor overhang properties can be used. For this reason, a high degree of freedom of material selection can be obtained, and the cost can be reduced. In addition, a material of the insulating interlayer can be selected depending on conditions such as machining difficulties of chemical mechanical polishing, a dielectric constant to be set, the degree of difficulty of void generation, and a soft error.
  • In the semiconductor storage device according to the present invention, the first and second gate wiring elements are symmetrically arranged with respect to a predetermined symmetrical point. For this reason, a mask can be used such that the mask is rotated about the predetermined symmetrical point.
  • Furthermore, in the semiconductor storage device according to the present invention, an aspect ratio x of longer side L to shorter side W of each of the first and second gate wiring elements is 5 or more. When the aspect ratio of the gate wiring element is set to be 5 or more, the number of generated defects such as pattern disappearance can be considerably reduced.
  • Still furthermore, in the semiconductor storage device according to the present invention, the lengths of the shorter sides of the first and second gate wiring elements are 0.15 μm or less, the respective memory cells can be decreased patterning size.
  • In the semiconductor storage device according to the present invention, since the first and second local inter connectors consist of tungsten damascene, a contact margin for making a contact to a gate wiring element is not required. For this reason, the shapes of the gate wiring elements need not be deformed for a margin for contact in formation of the gate wiring elements.
  • In the semiconductor storage device according to the present invention, the longitudinal directions of the first and second gate wiring elements are arranged in parallel to each other. For this reason, formation of the gate wiring elements can be simplified. Therefore, the fabricating steps can be simplified.
  • In the semiconductor storage device according to the present invention, since the distance between the first and second gate wiring elements adjacent to each other in at least one of the first and second directions are made substantially equal to each other, an optical proximity effect can be suppressed in photolithography process. For this reason, a decrease in yield caused by a shortage of lithographic margin can be prevented. A lithographic resolution can also be improved. In addition, since the characteristics of the respective transistors obtained as described above can be made uniform and stable, a semiconductor storage device having stable characteristics can be obtained.
  • In the semiconductor storage device according to the present invention, the projected shapes of the first gate wiring elements and the second gate wiring elements on a plane parallel to the substrate can be made substantially equal to each other, so that burying spacing between the layers can be kept uniform. Therefore, as an insulating interlayer, not only a BPSG film having good overhang properties, but also a film such as an NSG film or a PSG film using a material having relatively poor overhang properties can be used. For this reason, a high degree of freedom of material selection can be obtained, and the cost can be reduced. In addition, a material of the insulating interlayer can be selected depending on conditions such as machining difficulties of chemical mechanical polishing, a dielectric constant to be set, the degree of difficulty of void generation, and a soft error.
  • In the semiconductor storage device according to the present invention, the contacts are made by the first and second connectors without directly forming contact holes in the first and second gate wiring elements. Therefore, the gate wiring elements do not require contact margins for contact. Therefore, the shapes of the gate wiring elements need not be deformed for contact margins in formation of the gate wiring elements.
  • In the method of fabricating a semiconductor storage device according to the present invention, the first and second gate wiring elements having rectangular shapes each having straight line on opposite sides and being free from a notch or a projection can be formed. In addition, the first and second gate wiring elements can be regularly laid out along the longitudinal direction of a word line. For this reason, the characteristics of transistors such as a driver transistor and an access transistor constituting the semiconductor storage device can be made stable and uniform. Therefore, a semiconductor storage device having stable characteristics can be obtained.
  • Although the present invention has been described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications are apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as defined by the appended claims, unless they depart therefrom.

Claims (2)

1. A semiconductor storage device comprising:
a memory cell array comprising memory cells each having first and second driver transistors, first and second load transistors, and first and second access transistors, the memory cells being two-dimensionally arranged on a semiconductor substrate;
a plurality of word lines connected to the memory cells and arranged in parallel to each other along a first direction;
a plurality of bit lines connected to the memory cells, the bit lines being arranged in parallel to each other along a second direction perpendicular to the first direction;
a first gate wiring element composing a gate electrode of the first driver transistor and the first load transistor, and having a rectangular shape having straight line on opposite sides;
a second gate wiring element composing a gate electrode of the access transistor, and having a rectangular shape having straight line on opposite sides;
a first connector connecting the first gate wiring element, an active region of the second driver transistor, and an active region of the second load transistor to each other; and
a second connector connecting the second gate wiring element to the word lines to each other.
2-15. (canceled)
US12/237,037 2002-01-10 2008-09-24 Semiconductor storage device and method of fabricating the same Abandoned US20090034317A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/237,037 US20090034317A1 (en) 2002-01-10 2008-09-24 Semiconductor storage device and method of fabricating the same
US12/827,668 US8395932B2 (en) 2002-01-10 2010-06-30 Semiconductor storage device and method of fabricating the same
US13/296,956 US8422274B2 (en) 2002-01-10 2011-11-15 Semiconductor storage device and method of fabricating the same
US13/846,793 US8908419B2 (en) 2002-01-10 2013-03-18 Semiconductor storage device and method of fabricating the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002003266A JP2003203993A (en) 2002-01-10 2002-01-10 Semiconductor storage device and its manufacturing method
US10/190,715 US6812574B2 (en) 2002-01-10 2002-07-09 Semiconductor storage device and method of fabricating the same
JP2002-3266 2002-10-01
US10/971,115 US20050083756A1 (en) 2002-01-10 2004-10-25 Semiconductor storage device and method of fabricating the same
US11/727,040 US20070177416A1 (en) 2002-01-10 2007-03-23 Semiconductor storage device and method of fabricating the same
US12/237,037 US20090034317A1 (en) 2002-01-10 2008-09-24 Semiconductor storage device and method of fabricating the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/727,040 Continuation US20070177416A1 (en) 2002-01-10 2007-03-23 Semiconductor storage device and method of fabricating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/827,668 Continuation US8395932B2 (en) 2002-01-10 2010-06-30 Semiconductor storage device and method of fabricating the same

Publications (1)

Publication Number Publication Date
US20090034317A1 true US20090034317A1 (en) 2009-02-05

Family

ID=19190861

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/190,715 Expired - Lifetime US6812574B2 (en) 2002-01-10 2002-07-09 Semiconductor storage device and method of fabricating the same
US10/971,115 Abandoned US20050083756A1 (en) 2002-01-10 2004-10-25 Semiconductor storage device and method of fabricating the same
US11/727,040 Abandoned US20070177416A1 (en) 2002-01-10 2007-03-23 Semiconductor storage device and method of fabricating the same
US12/237,037 Abandoned US20090034317A1 (en) 2002-01-10 2008-09-24 Semiconductor storage device and method of fabricating the same
US12/827,668 Expired - Lifetime US8395932B2 (en) 2002-01-10 2010-06-30 Semiconductor storage device and method of fabricating the same
US13/296,956 Expired - Lifetime US8422274B2 (en) 2002-01-10 2011-11-15 Semiconductor storage device and method of fabricating the same
US13/846,793 Expired - Lifetime US8908419B2 (en) 2002-01-10 2013-03-18 Semiconductor storage device and method of fabricating the same

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/190,715 Expired - Lifetime US6812574B2 (en) 2002-01-10 2002-07-09 Semiconductor storage device and method of fabricating the same
US10/971,115 Abandoned US20050083756A1 (en) 2002-01-10 2004-10-25 Semiconductor storage device and method of fabricating the same
US11/727,040 Abandoned US20070177416A1 (en) 2002-01-10 2007-03-23 Semiconductor storage device and method of fabricating the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/827,668 Expired - Lifetime US8395932B2 (en) 2002-01-10 2010-06-30 Semiconductor storage device and method of fabricating the same
US13/296,956 Expired - Lifetime US8422274B2 (en) 2002-01-10 2011-11-15 Semiconductor storage device and method of fabricating the same
US13/846,793 Expired - Lifetime US8908419B2 (en) 2002-01-10 2013-03-18 Semiconductor storage device and method of fabricating the same

Country Status (3)

Country Link
US (7) US6812574B2 (en)
JP (1) JP2003203993A (en)
DE (1) DE10241158B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100190303A1 (en) * 2003-07-15 2010-07-29 Man-Hyoung Ryoo Semiconductor device having sufficient process margin and method of forming same
US20110133253A1 (en) * 2009-10-19 2011-06-09 Panasonic Corporation Semiconductor device
US8759179B2 (en) * 2011-04-29 2014-06-24 Semiconductor Manufacturing International (Shanghai) Corporation Method of forming gate pattern and semiconductor device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203993A (en) * 2002-01-10 2003-07-18 Mitsubishi Electric Corp Semiconductor storage device and its manufacturing method
JP2005072185A (en) * 2003-08-22 2005-03-17 Fujitsu Ltd Semiconductor device and its manufacturing method
US20050167733A1 (en) * 2004-02-02 2005-08-04 Advanced Micro Devices, Inc. Memory device and method of manufacture
TW200622275A (en) 2004-09-06 2006-07-01 Mentor Graphics Corp Integrated circuit yield and quality analysis methods and systems
US7244985B2 (en) * 2005-09-06 2007-07-17 Ememory Technology Inc. Non-volatile memory array
JP2007103862A (en) 2005-10-07 2007-04-19 Renesas Technology Corp Semiconductor device and its manufacturing method
KR100707612B1 (en) * 2005-12-29 2007-04-13 동부일렉트로닉스 주식회사 Sram device and manufacturing method thereof
KR100660277B1 (en) * 2005-12-29 2006-12-20 동부일렉트로닉스 주식회사 Sram device and manufacturing method thereof
US7956421B2 (en) 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture
US7763534B2 (en) 2007-10-26 2010-07-27 Tela Innovations, Inc. Methods, structures and designs for self-aligning local interconnects used in integrated circuits
US8448102B2 (en) 2006-03-09 2013-05-21 Tela Innovations, Inc. Optimizing layout of irregular structures in regular layout context
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US7446352B2 (en) 2006-03-09 2008-11-04 Tela Innovations, Inc. Dynamic array architecture
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US7560382B2 (en) * 2006-08-28 2009-07-14 International Business Machines Corporation Embedded interconnects, and methods for forming same
US7738282B2 (en) * 2007-02-15 2010-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Cell structure of dual port SRAM
JP2008205122A (en) * 2007-02-19 2008-09-04 Nec Electronics Corp Semiconductor device and its manufacturing method
US7888705B2 (en) 2007-08-02 2011-02-15 Tela Innovations, Inc. Methods for defining dynamic array section with manufacturing assurance halo and apparatus implementing the same
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
JP2008258425A (en) 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd Standard cell and semiconductor device with the same
US8453094B2 (en) 2008-01-31 2013-05-28 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US7939443B2 (en) 2008-03-27 2011-05-10 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
WO2010008948A2 (en) 2008-07-16 2010-01-21 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
JP5638760B2 (en) 2008-08-19 2014-12-10 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5580981B2 (en) * 2008-11-21 2014-08-27 ラピスセミコンダクタ株式会社 Semiconductor element and semiconductor device
US8009463B2 (en) * 2009-07-31 2011-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Cell structure for dual port SRAM
US8993428B2 (en) * 2009-10-05 2015-03-31 International Business Machines Corporation Structure and method to create a damascene local interconnect during metal gate deposition
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
JP2010183123A (en) * 2010-05-28 2010-08-19 Renesas Electronics Corp Semiconductor device
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
JP5711612B2 (en) 2011-05-24 2015-05-07 ルネサスエレクトロニクス株式会社 Semiconductor device
US8576655B2 (en) 2011-06-21 2013-11-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor memories
JP5690683B2 (en) * 2011-07-22 2015-03-25 ルネサスエレクトロニクス株式会社 Semiconductor device
US9036404B2 (en) 2012-03-30 2015-05-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for SRAM cell structure
US8730404B2 (en) * 2012-05-31 2014-05-20 Silicon Laboratories Inc. Providing a reset mechanism for a latch circuit
JP6316727B2 (en) * 2014-10-22 2018-04-25 ルネサスエレクトロニクス株式会社 Semiconductor device
KR102352153B1 (en) 2015-03-25 2022-01-17 삼성전자주식회사 Integrated circuit device and method for manufacturing the same
US10411019B2 (en) * 2015-10-20 2019-09-10 Taiwan Semiconductor Manufacturing Co., Ltd. SRAM cell word line structure with reduced RC effects

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038178A (en) * 1987-10-20 1991-08-06 Kabushiki Kaisha Toshiba Image transfer member including an electroconductive layer
US5177028A (en) * 1991-10-22 1993-01-05 Micron Technology, Inc. Trench isolation method having a double polysilicon gate formed on mesas
US5541427A (en) * 1993-12-03 1996-07-30 International Business Machines Corporation SRAM cell with capacitor
US5596212A (en) * 1992-09-04 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device and a manufacturing method of the same
US5744844A (en) * 1996-03-29 1998-04-28 Fujitsu Limited CMOS SRAM cell
US5850096A (en) * 1994-02-25 1998-12-15 Fujitsu Limited Enhanced semiconductor integrated circuit device with a memory array and a peripheral circuit
US5930163A (en) * 1996-12-19 1999-07-27 Kabushiki Kaisha Toshiba Semiconductor memory device having two P-well layout structure
US6091630A (en) * 1999-09-10 2000-07-18 Stmicroelectronics, Inc. Radiation hardened semiconductor memory
US6160298A (en) * 1996-07-15 2000-12-12 Nec Corporation Full CMOS SRAM cell comprising Vcc and Vss buses on both sides of each of complementary data lines on a single level
US6229186B1 (en) * 1998-05-01 2001-05-08 Sony Corporation Semiconductor memory device using inverter configuration
US6313018B1 (en) * 1997-09-25 2001-11-06 Advanced Micro Devices, Inc. Process for fabricating semiconductor device including antireflective etch stop layer
US6359804B2 (en) * 1998-04-16 2002-03-19 Mitsubishi Denki Kabushiki Kaisha Static semiconductor memory cell formed in an n-well and p-well
US6476424B1 (en) * 1999-02-10 2002-11-05 Sony Corporation Semiconductor memory device
US6479905B1 (en) * 1999-07-20 2002-11-12 Samsung Electronics Co., Ltd. Full CMOS SRAM cell
US6627528B1 (en) * 1999-08-31 2003-09-30 Kabushiki Kaisha Toshiba Semiconductor device and its manufacturing process
US6677649B2 (en) * 1999-05-12 2004-01-13 Hitachi, Ltd. SRAM cells with two P-well structure
US6812574B2 (en) * 2002-01-10 2004-11-02 Renesas Technology Corp. Semiconductor storage device and method of fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383375A (en) * 1989-08-25 1991-04-09 Sony Corp Semiconductor device
JP2927463B2 (en) * 1989-09-28 1999-07-28 株式会社日立製作所 Semiconductor storage device
JP3306691B2 (en) 1994-02-25 2002-07-24 富士通株式会社 Wiring method for integrated circuit device
KR100230426B1 (en) * 1996-06-29 1999-11-15 윤종용 Static random access memory device with improved integrated ratio
JP3544126B2 (en) 1998-10-15 2004-07-21 株式会社東芝 Semiconductor device manufacturing method and semiconductor device
JP2000208643A (en) 1999-01-08 2000-07-28 Seiko Epson Corp Semiconductor storage device
JP4674386B2 (en) 1999-02-17 2011-04-20 ソニー株式会社 Semiconductor memory device
JP4465743B2 (en) * 1999-07-16 2010-05-19 ソニー株式会社 Semiconductor memory device
JP2001203139A (en) 2000-01-19 2001-07-27 Hitachi Ltd Method for manufacturing semiconductor device
JP3751796B2 (en) 2000-06-02 2006-03-01 株式会社ルネサステクノロジ Manufacturing method of semiconductor integrated circuit device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038178A (en) * 1987-10-20 1991-08-06 Kabushiki Kaisha Toshiba Image transfer member including an electroconductive layer
US5177028A (en) * 1991-10-22 1993-01-05 Micron Technology, Inc. Trench isolation method having a double polysilicon gate formed on mesas
US5596212A (en) * 1992-09-04 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device and a manufacturing method of the same
US5541427A (en) * 1993-12-03 1996-07-30 International Business Machines Corporation SRAM cell with capacitor
US5850096A (en) * 1994-02-25 1998-12-15 Fujitsu Limited Enhanced semiconductor integrated circuit device with a memory array and a peripheral circuit
US5744844A (en) * 1996-03-29 1998-04-28 Fujitsu Limited CMOS SRAM cell
US6160298A (en) * 1996-07-15 2000-12-12 Nec Corporation Full CMOS SRAM cell comprising Vcc and Vss buses on both sides of each of complementary data lines on a single level
US5930163A (en) * 1996-12-19 1999-07-27 Kabushiki Kaisha Toshiba Semiconductor memory device having two P-well layout structure
US6313018B1 (en) * 1997-09-25 2001-11-06 Advanced Micro Devices, Inc. Process for fabricating semiconductor device including antireflective etch stop layer
US6359804B2 (en) * 1998-04-16 2002-03-19 Mitsubishi Denki Kabushiki Kaisha Static semiconductor memory cell formed in an n-well and p-well
US6229186B1 (en) * 1998-05-01 2001-05-08 Sony Corporation Semiconductor memory device using inverter configuration
US6476424B1 (en) * 1999-02-10 2002-11-05 Sony Corporation Semiconductor memory device
US6677649B2 (en) * 1999-05-12 2004-01-13 Hitachi, Ltd. SRAM cells with two P-well structure
US6479905B1 (en) * 1999-07-20 2002-11-12 Samsung Electronics Co., Ltd. Full CMOS SRAM cell
US6627528B1 (en) * 1999-08-31 2003-09-30 Kabushiki Kaisha Toshiba Semiconductor device and its manufacturing process
US6091630A (en) * 1999-09-10 2000-07-18 Stmicroelectronics, Inc. Radiation hardened semiconductor memory
US6194276B1 (en) * 1999-09-10 2001-02-27 Stmicroelectronics, Inc. Radiation hardened semiconductor memory
US6812574B2 (en) * 2002-01-10 2004-11-02 Renesas Technology Corp. Semiconductor storage device and method of fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100190303A1 (en) * 2003-07-15 2010-07-29 Man-Hyoung Ryoo Semiconductor device having sufficient process margin and method of forming same
US20110156159A1 (en) * 2003-07-15 2011-06-30 Man-Hyoung Ryoo Semiconductor device having sufficient process margin and method of forming same
US8193047B2 (en) * 2003-07-15 2012-06-05 Samsung Electronics Co., Ltd. Semiconductor device having sufficient process margin and method of forming same
US9673195B2 (en) 2003-07-15 2017-06-06 Samsung Electronics Co., Ltd. Semiconductor device having sufficient process margin and method of forming same
US20110133253A1 (en) * 2009-10-19 2011-06-09 Panasonic Corporation Semiconductor device
US8431967B2 (en) * 2009-10-19 2013-04-30 Panasonic Corporation Semiconductor device
US20130234211A1 (en) * 2009-10-19 2013-09-12 Panasonic Corporation Semiconductor device
US8791507B2 (en) * 2009-10-19 2014-07-29 Panasonic Corporation Semiconductor device
US8759179B2 (en) * 2011-04-29 2014-06-24 Semiconductor Manufacturing International (Shanghai) Corporation Method of forming gate pattern and semiconductor device

Also Published As

Publication number Publication date
US20030128565A1 (en) 2003-07-10
US6812574B2 (en) 2004-11-02
US20120063213A1 (en) 2012-03-15
US20050083756A1 (en) 2005-04-21
US8422274B2 (en) 2013-04-16
US20070177416A1 (en) 2007-08-02
DE10241158A1 (en) 2003-08-14
DE10241158B4 (en) 2008-01-17
US8908419B2 (en) 2014-12-09
US8395932B2 (en) 2013-03-12
US20130234256A1 (en) 2013-09-12
JP2003203993A (en) 2003-07-18
US20100265752A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US6812574B2 (en) Semiconductor storage device and method of fabricating the same
KR100200222B1 (en) Semiconductor device and its fabrication method
US7723807B2 (en) Semiconductor device and a manufacturing method thereof
JP3075509B2 (en) Semiconductor device, DRAM cell, and manufacturing method
US6486558B2 (en) Semiconductor device having a dummy pattern
KR100829047B1 (en) Devices and methods for addressing optical edge effects in connection with etched trenches
US7250335B2 (en) Methods of fabricating integrated circuit devices including self-aligned contacts with increased alignment margin
US6552378B1 (en) Ultra compact DRAM cell and method of making
KR100210629B1 (en) Semiconductor memory device
JPH07169856A (en) Semiconductor device
US7259065B2 (en) Method of forming trench in semiconductor device
JP3238066B2 (en) Semiconductor storage device and method of manufacturing the same
US20220406792A1 (en) Semiconductor device and method for forming the wiring structures avoiding short circuit thereof
US7064051B2 (en) Method of forming self-aligned contact pads of non-straight type semiconductor memory device
KR0179806B1 (en) Method of manufacturing semiconductor memory cell
US7145195B2 (en) Semiconductor memory device and method of manufacturing the same
US6882576B2 (en) Semiconductor memory device
JP2009081452A (en) Semiconductor memory device
JP2012074723A (en) Semiconductor storage
JP3338646B2 (en) SRAM cell and method of manufacturing the same
CN117042446A (en) Method for manufacturing semiconductor structure
KR20020094223A (en) Method for fabricating semiconductor device
JPH04186874A (en) Semiconductor memory device and manufacture thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION