US20090038796A1 - Expandable leak path preventer in fluid activated downhole tools - Google Patents

Expandable leak path preventer in fluid activated downhole tools Download PDF

Info

Publication number
US20090038796A1
US20090038796A1 US11/891,580 US89158007A US2009038796A1 US 20090038796 A1 US20090038796 A1 US 20090038796A1 US 89158007 A US89158007 A US 89158007A US 2009038796 A1 US2009038796 A1 US 2009038796A1
Authority
US
United States
Prior art keywords
downhole tool
expandable seal
expandable
actuating chamber
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/891,580
Inventor
James G. King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US11/891,580 priority Critical patent/US20090038796A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KING, JAMES G.
Priority to PCT/US2008/072205 priority patent/WO2009023472A2/en
Publication of US20090038796A1 publication Critical patent/US20090038796A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/06Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells for setting packers

Definitions

  • the present invention is directed to expandable leak path preventers for use in downhole tools, and in particular, to expandable seal inserts disposed in downhole tools that expand upon exposure to certain fluids to provide leak path seals in the downhole tools.
  • Hydraulic set tools such as packers and liner hangers use dynamic seals on the setting pistons. These dynamic seals are often “life of the well” seals meaning that the seals must not fail, i.e., they must hold differential pressure, during the entire life of the well.
  • the dynamic seals although not “life of the well” seals, are seals that at some point in their useful life will be subjected to differential pressures after the downhole tool is actuated or set. For example, after a packer is set, a plug may be placed in the tailpipe of the packer for an upper end workover. In such a case, the dynamic seals in the packer will be subjected to differential pressures that may cause the dynamic seals to fail.
  • the failed downhole tool In the event that the dynamic seals fail, the failed downhole tool must be removed and a new replacement or repaired downhole tool must be run-in and set in place of the failed downhole tool.
  • fluid activated downhole tools such as packers and liner hangers include at least one expandable seal member or insert, formed from an expandable material, disposed within the actuating chamber of the downhole tool.
  • the actuating chamber includes the actuator, e.g., the setting piston.
  • the actuating chamber is in fluid communication with the bore of the downhole tool through a port. As fluid, e.g., hydraulic fluid, is pumped down through the downhole tool to set the downhole tool, it travels through the port and into the actuating chamber to move the actuator and set the downhole tool.
  • the port provides fluid communication between the actuating chamber and the wellbore environment.
  • fluid e.g., wellbore fluid
  • port such as through a rupture disk that breaks when the downhole tool reaches a location having a certain pressure
  • two expandable seal inserts are placed in the actuating chamber above and below the point where the port communicates with the actuating chamber.
  • the expandable seal inserts begin to expand due to their contact with the fluid.
  • the expandable seal inserts continue to expand until a seal is formed over the port and the actuator.
  • the expandable material inserts provide a secondary seal to the actuator's normal dynamic seals and a primary seal across the port.
  • the expandable seal inserts may also provide a secondary seal to one or more dynamic seals disposed opposite the actuator that are part of the assembled downhole tool.
  • a fluid actuated downhole tool for an oil or gas well has a run-in position and a set position and comprises a housing with a longitudinal bore therethrough; an actuating chamber, the actuating chamber having an actuator operatively associated therein for moving the downhole tool from the run-in position to the set position; and an expandable seal insert disposed within the actuating chamber, adjacent a leak path, the expandable seal insert being formed from an expandable material, wherein the expandable seal insert expands and seals the leak path when contacted with a fluid for actuating the downhole tool, the fluid causing the actuator to move the downhole tool from the run-in position to the set position.
  • a further feature of the downhole tool is that the downhole tool may further comprise a port in fluid communication with the actuating chamber, wherein the expandable seal insert is disposed adjacent the port thereby causing the port to become sealed by the expandable seal insert when the downhole tool is in the set position.
  • the port may be in fluid communication with bore.
  • the actuator may include outer and inner wall surfaces in sliding engagement with respective outer and inner wall surfaces of the actuating chamber, the leak path including the sliding engagement between outer and inner wall surfaces of the actuator with the respective outer and inner wall surface of the actuating chamber, and the expandable seal insert being disposed adjacent the actuator thereby allowing the sliding engagement between outer and inner wall surfaces of the actuator with the respective outer and inner wall surface of the actuating chamber to become sealed by the expandable seal insert when the downhole tool is in the set position.
  • the leak path may include at least one internal dynamic seal
  • the expandable seal insert is disposed adjacent at least one of the at least one internal dynamic seals thereby allowing the at least one of the at least one internal dynamic seals to become sealed by the expandable seal insert when the downhole tool is in the set position.
  • the actuator may comprise a piston in sliding engagement with the actuating chamber, the piston comprising at least one dynamic seal and the expandable seal insert being connected to the piston.
  • the downhole tool may include at least two expandable seal inserts, one of the at least two expandable seal inserts being disposed adjacent a port in fluid communication with the actuating chamber and another of the at least two expandable seal inserts being disposed adjacent the actuator.
  • the actuator may comprise a piston in sliding engagement with the actuating chamber, the piston comprising at least one dynamic seal and the expandable seal insert being connected to the piston.
  • the expandable material comprises a swellable polymer.
  • the expandable seal insert may comprise an encapsulating dissolvable material encapsulating the expandable material prior to setting the downhole tool.
  • the encapsulating material may comprise a bio-degradable polymer.
  • the biodegradable polymer may comprise a polyvinyl-alcohol based polymer.
  • the downhole tool may be a packer.
  • an improved downhole tool has a run-in position and a set position and is actuatable by a fluid.
  • the improvement comprises at least one expandable seal insert disposed along at least one leak path, each of the at least one expandable seal inserts being capable of expanding and sealing at least one of the at least one leak paths.
  • a further feature of the improved downhole tool is that at least one of the at least one expandable seal inserts may be disposed within an actuating chamber of the downhole tool. Another feature of the improved downhole tool is that at least one of the at least one expandable seal inserts may be connected to an actuator. An additional feature of the improved downhole tool is that at least one of the at least one expandable seal inserts may be disposed within an actuating chamber of the downhole tool adjacent a port in fluid communication with the actuating chamber. Still another feature of the improved downhole tool is that at least one of the at least one expandable seal inserts comprises a sleeve disposed within an actuating chamber of the downhole tool.
  • a method of preventing formation of a leak path in an actuated downhole tool in its set position comprises the steps of: (a) actuating a downhole tool with a fluid, wherein during actuation, the downhole tool is moved from a run-in position to a set position; (b) contacting an expandable seal insert comprising an expandable material with the fluid causing the expandable seal insert to expand; and (c) sealing a leak path in the downhole tool due to the expansion of the expandable seal insert, thereby by preventing fluid leakage through the leak path with the expanded expandable seal insert.
  • a further feature of the method is that the expandable seal insert may be expanded by dissolving a dissolvable material initially disposed between the expandable seal insert and the fluid.
  • step (b) may be performed during actuation of the downhole tool from the run-in position to the set position.
  • step (b) may be performed after actuation of the downhole tool from the run-in position to the set position.
  • FIG. 1 is a partial cross-sectional view of a packer shown in the run-in or unset position.
  • FIG. 2 is a partial cross-sectional view of the bottom portion of the packer shown in FIG. 1
  • FIG. 3 is a partial cross-sectional view of the bottom portion of the packer referred to in FIG. 1 shown in the set position.
  • downhole tool 40 is a packer.
  • Downhole tool 40 comprises a longitudinal bore 44 , a setting port 46 in fluid communication with bore 44 , actuating chamber 48 , and actuator 50 .
  • Actuator 50 is shown in this embodiment as a piston having dynamic seals 51 , 52 .
  • actuating chamber 48 includes two expandable seal inserts 60 , 62 , one disposed below port 46 (expandable seal insert 62 ) and one disposed above port 46 (expandable seal insert 60 ).
  • expandable seal insert 60 is affixed or connected to actuator 50 such that as actuator 50 moves from the run-in position ( FIG. 2 ) to the set position ( FIG. 3 ), expandable seal insert 60 moves with actuator 50 .
  • expandable seal inserts 60 , 62 are sleeves disposed within actuating chamber 48 . It is to be understood, however, the expandable seal inserts 60 , 62 may have any shape desired or necessary to seal one or more leak path after setting of the downhole tool.
  • Each expandable seal insert 60 , 62 comprises, at least in part, an expandable material that is capable of expanding and sealing against the walls of actuating chamber 48 of downhole tool 40 .
  • expandable seal inserts 60 , 62 are formed completely out of the expandable material.
  • expandable seal inserts 60 , 62 include non-expandable components such as stiffing rings or other support structures or substrates to which the expandable material is connected.
  • Suitable expandable materials include urethane and polyurethane materials, including polyurethane foams, biopolymers, and superabsorbent polymers.
  • the expandable materials swell by absorbing fluids such as water or hydrocarbons. Nitriles and polymers sold as 1064 EPDM from Rubber Engineering in Salt Lake City, Utah are acceptable expandable materials.
  • the expandable material comprises a swellable polymer such as cross-linked or partially cross-linked polyacrylamide, polyurethane, ethylene propylene, or other material capable of absorbing hydrocarbon or aqueous, or other fluids, and, thus, swelling to provide the desired seals.
  • the expandable material is a shape-memory material, for example, a metal shape-memory material or a compressed elastomer or polymer that is held in the compressed state by a dissolvable material such as those discussed below.
  • the expandable materials or the expandable seal inserts 60 , 62 themselves may be encapsulated with a layer of material dissolvable by fluids such as water or hydraulic fluid.
  • a layer of material dissolvable by fluids such as water or hydraulic fluid.
  • the term “encapsulated” and “encapsulating” means that the dissolvable material forms an initial barrier between the fluid and the expandable materials or the expandable seal inserts 60 , 62 .
  • the encapsulated layer allows the use of expandable materials, and expandable seal inserts 60 , 62 formed from expandable materials, that expand virtually instantaneously upon contacting the fluid by protecting the expandable materials until expansion is desired.
  • Encapsulating dissolvable materials for encapsulating the expandable materials may be any material known to persons of ordinary skill in the art that can be dissolved, degraded, or disintegrated over an amount of time by a temperature or fluid such as water-based drilling fluids, hydrocarbon-based drilling fluids, or natural gas.
  • the encapsulating dissolvable material is calibrated such that the amount of time necessary for the dissolvable material to dissolve is known or easily determinable without undue experimentation.
  • Suitable encapsulating dissolvable materials include polymers and biodegradable polymers, for example, polyvinyl-alcohol based polymers such as the polymer HYDROCENETM available from Idroplax, S.r.l.
  • polylactide (“PLA”) polymer 4060D from Nature-WorksTM, a division of Cargill Dow LLC
  • TLF-6267 polyglycolic acid (“PGA”) from DuPont Specialty Chemicals
  • polycaprolactams and mixtures of PLA and PGA solid acids, such as sulfamic acid, trichloroacetic acid, and citric acid, held together with a wax or other suitable binder material
  • solid acids such as sulfamic acid, trichloroacetic acid, and citric acid, held together with a wax or other suitable binder material
  • polyethylene homopolymers and paraffin waxes polyalkylene oxides, such as polyethylene oxides, and polyalkylene glycols, such as polyethylene glycols.
  • These polymers may be preferred in water-based drilling fluids because they are slowly soluble in water.
  • the expandable material is one or more chemical components that undergo a chemical reaction when expandable seal inserts 60 , 62 are contacted with the fluid being pumped through bore 44 and port 46 of the downhole tool.
  • the expandable material may be a combination of solid particles of magnesium oxide and monopotassium phosphate encapsulated by one or more of the above-referenced encapsulating dissolvable materials.
  • the chemical components of the expandable material react in the presence of the fluid, e.g., water or hydraulic fluid, causing the chemical components to form a gel phase and, ultimately, a crystallized solid ceramic material magnesium potassium phosphate hexahydrate which is a chemically bonded ceramic.
  • the encapsulating dissolvable material may also be used to separate one or more chemical component from one or more another chemical component to prevent premature reaction and expansion.
  • the amount of time necessary for actuator 50 to more from the run-in position ( FIG. 2 ) to the set position ( FIG. 3 ) should be taken into consideration. If the expandable seal inserts 60 , 62 expand prematurely, downhole tool 40 may not be completely set.
  • packer 40 includes dynamic seals 51 , 52 and static seal 53 , all of which are potential leak paths after downhole tool 40 is moved to the set position ( FIG. 3 ).
  • Expandable seal inserts 60 , 62 are disposed adjacent these dynamic seals and, in the embodiment shown in FIGS. 2-3 , adjacent port 46 . It is to be understood, however, that expandable seal inserts 60 , 62 may be disposed such that port 46 , or one or more dynamic seals 51 , 52 or static seal 53 , do not have an expandable seal insert disposed adjacently thereto.
  • one or more expandable seal inserts may be disposed in downhole tool 40 , or other downhole tools at locations other than within actuating chamber 48 .
  • expandable seal inserts 60 , 62 may be disposed at any location within a downhole tool where leak paths are known to occur.
  • downhole tool 40 is disposed within a wellbore at the desired location.
  • Hydraulic fluid (not shown) is pumped down bore 44 , through port 46 , and into actuating chamber 48 .
  • actuator 50 is forced upwards causing downhole tool 40 to move from its run-in position ( FIG. 2 ) to its set position ( FIG. 3 ).
  • expandable seal insert 60 moves upward with actuator 50 .
  • the hydraulic fluid not only forces actuator 50 from its run-in position to its set position, the hydraulic fluid also causes expandable seal inserts 60 , 62 to expand. As expandable seal inserts 60 , 62 expand, port 46 is blocked by expandable seal insert 62 .
  • expandable seal insert 62 provides a primary seal over port 46 and a secondary seal over static seal 53
  • expandable seal insert 60 provides secondary seals over dynamic seals 51 , 52 .
  • downhole tool 40 may be a liner hanger, or any other downhole tool or component that has a run-in position and set position, wherein the downhole tool is moved from the run-in position to the set position using a fluid such as hydraulic fluid or other wellbore fluid.
  • one or more expandable seal inserts may be disposed in numerous locations throughout the downhole tool to provide primary, secondary, tertiary, etc. seals when the expandable seal inserts contact a fluid either during or after setting the downhole tool.
  • the expandable seal inserts may be customized based upon the size needed to provide the appropriate seal. Moreover, the expandable seal inserts may customized based upon the amount of time necessary to set the downhole tool prior to the expanding seal inserts providing the appropriate seal. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.

Abstract

Expandable seal members or inserts are included as part of fluid activated downhole tools such as packers and liner hangers. The expandable seal inserts comprise one or more expandable materials that expand and seal against the chamber carrying the actuator of the downhole tool. Fluid flowing in the downhole tool to actuate and, thus, set the downhole tool, also causes the expandable seal inserts to expand. In so doing, the expandable seal inserts provide seals, some redundant to dynamic seals and static seals already present in the downhole tool, to assist in preventing leaks in the downhole tool that may otherwise cause the downhole tool to fail.

Description

    BACKGROUND
  • 1. Field of Invention
  • The present invention is directed to expandable leak path preventers for use in downhole tools, and in particular, to expandable seal inserts disposed in downhole tools that expand upon exposure to certain fluids to provide leak path seals in the downhole tools.
  • 2. Description of Art
  • Hydraulic set tools such as packers and liner hangers use dynamic seals on the setting pistons. These dynamic seals are often “life of the well” seals meaning that the seals must not fail, i.e., they must hold differential pressure, during the entire life of the well. Alternatively, the dynamic seals, although not “life of the well” seals, are seals that at some point in their useful life will be subjected to differential pressures after the downhole tool is actuated or set. For example, after a packer is set, a plug may be placed in the tailpipe of the packer for an upper end workover. In such a case, the dynamic seals in the packer will be subjected to differential pressures that may cause the dynamic seals to fail.
  • In the event that the dynamic seals fail, the failed downhole tool must be removed and a new replacement or repaired downhole tool must be run-in and set in place of the failed downhole tool.
  • SUMMARY OF INVENTION
  • Broadly, fluid activated downhole tools such as packers and liner hangers include at least one expandable seal member or insert, formed from an expandable material, disposed within the actuating chamber of the downhole tool. The actuating chamber includes the actuator, e.g., the setting piston. In one embodiment, the actuating chamber is in fluid communication with the bore of the downhole tool through a port. As fluid, e.g., hydraulic fluid, is pumped down through the downhole tool to set the downhole tool, it travels through the port and into the actuating chamber to move the actuator and set the downhole tool. In another embodiment, the port provides fluid communication between the actuating chamber and the wellbore environment. In this embodiment, as fluid, e.g., wellbore fluid, is permitted access through port, such as through a rupture disk that breaks when the downhole tool reaches a location having a certain pressure, to move the actuator within the actuating chamber to the set position.
  • In one embodiment, two expandable seal inserts are placed in the actuating chamber above and below the point where the port communicates with the actuating chamber. As the actuator is actuated by the fluid, the expandable seal inserts begin to expand due to their contact with the fluid. After the actuator sets the downhole tool, the expandable seal inserts continue to expand until a seal is formed over the port and the actuator. Thus, the expandable material inserts provide a secondary seal to the actuator's normal dynamic seals and a primary seal across the port. In certain downhole tools, the expandable seal inserts may also provide a secondary seal to one or more dynamic seals disposed opposite the actuator that are part of the assembled downhole tool.
  • In one embodiment, a fluid actuated downhole tool for an oil or gas well is disclosed. The downhole tool has a run-in position and a set position and comprises a housing with a longitudinal bore therethrough; an actuating chamber, the actuating chamber having an actuator operatively associated therein for moving the downhole tool from the run-in position to the set position; and an expandable seal insert disposed within the actuating chamber, adjacent a leak path, the expandable seal insert being formed from an expandable material, wherein the expandable seal insert expands and seals the leak path when contacted with a fluid for actuating the downhole tool, the fluid causing the actuator to move the downhole tool from the run-in position to the set position.
  • A further feature of the downhole tool is that the downhole tool may further comprise a port in fluid communication with the actuating chamber, wherein the expandable seal insert is disposed adjacent the port thereby causing the port to become sealed by the expandable seal insert when the downhole tool is in the set position. Another feature of the downhole tool is that the port may be in fluid communication with bore. An additional feature of the downhole tool is that the actuator may include outer and inner wall surfaces in sliding engagement with respective outer and inner wall surfaces of the actuating chamber, the leak path including the sliding engagement between outer and inner wall surfaces of the actuator with the respective outer and inner wall surface of the actuating chamber, and the expandable seal insert being disposed adjacent the actuator thereby allowing the sliding engagement between outer and inner wall surfaces of the actuator with the respective outer and inner wall surface of the actuating chamber to become sealed by the expandable seal insert when the downhole tool is in the set position. Still another feature of the downhole tool is that the leak path may include at least one internal dynamic seal, and wherein the expandable seal insert is disposed adjacent at least one of the at least one internal dynamic seals thereby allowing the at least one of the at least one internal dynamic seals to become sealed by the expandable seal insert when the downhole tool is in the set position. A further feature of the downhole tool is that the actuator may comprise a piston in sliding engagement with the actuating chamber, the piston comprising at least one dynamic seal and the expandable seal insert being connected to the piston. Another feature of the downhole tool is that the downhole tool may include at least two expandable seal inserts, one of the at least two expandable seal inserts being disposed adjacent a port in fluid communication with the actuating chamber and another of the at least two expandable seal inserts being disposed adjacent the actuator. An additional feature of the downhole tool is that the actuator may comprise a piston in sliding engagement with the actuating chamber, the piston comprising at least one dynamic seal and the expandable seal insert being connected to the piston. Still another feature of the downhole tool is that the expandable material comprises a swellable polymer. A further feature of the downhole tool is that the expandable seal insert may comprise an encapsulating dissolvable material encapsulating the expandable material prior to setting the downhole tool. Another feature of the downhole tool is that the encapsulating material may comprise a bio-degradable polymer. An additional feature of the downhole tool is that the biodegradable polymer may comprise a polyvinyl-alcohol based polymer. Still another feature of the downhole tool is that the downhole tool may be a packer.
  • In another embodiment, an improved downhole tool has a run-in position and a set position and is actuatable by a fluid. The improvement comprises at least one expandable seal insert disposed along at least one leak path, each of the at least one expandable seal inserts being capable of expanding and sealing at least one of the at least one leak paths.
  • A further feature of the improved downhole tool is that at least one of the at least one expandable seal inserts may be disposed within an actuating chamber of the downhole tool. Another feature of the improved downhole tool is that at least one of the at least one expandable seal inserts may be connected to an actuator. An additional feature of the improved downhole tool is that at least one of the at least one expandable seal inserts may be disposed within an actuating chamber of the downhole tool adjacent a port in fluid communication with the actuating chamber. Still another feature of the improved downhole tool is that at least one of the at least one expandable seal inserts comprises a sleeve disposed within an actuating chamber of the downhole tool.
  • In an additional embodiment, a method of preventing formation of a leak path in an actuated downhole tool in its set position is disclosed. The method comprises the steps of: (a) actuating a downhole tool with a fluid, wherein during actuation, the downhole tool is moved from a run-in position to a set position; (b) contacting an expandable seal insert comprising an expandable material with the fluid causing the expandable seal insert to expand; and (c) sealing a leak path in the downhole tool due to the expansion of the expandable seal insert, thereby by preventing fluid leakage through the leak path with the expanded expandable seal insert.
  • A further feature of the method is that the expandable seal insert may be expanded by dissolving a dissolvable material initially disposed between the expandable seal insert and the fluid. Another feature of the method is that step (b) may be performed during actuation of the downhole tool from the run-in position to the set position. An additional feature of the method is that step (b) may be performed after actuation of the downhole tool from the run-in position to the set position.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a partial cross-sectional view of a packer shown in the run-in or unset position.
  • FIG. 2 is a partial cross-sectional view of the bottom portion of the packer shown in FIG. 1
  • FIG. 3 is a partial cross-sectional view of the bottom portion of the packer referred to in FIG. 1 shown in the set position.
  • While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF INVENTION
  • Referring now to FIGS. 1-3, downhole tool 40 is a packer. Downhole tool 40 comprises a longitudinal bore 44, a setting port 46 in fluid communication with bore 44, actuating chamber 48, and actuator 50. Actuator 50 is shown in this embodiment as a piston having dynamic seals 51, 52.
  • Referring now to FIGS. 2-3, actuating chamber 48 includes two expandable seal inserts 60, 62, one disposed below port 46 (expandable seal insert 62) and one disposed above port 46 (expandable seal insert 60). In the embodiment shown in FIGS. 1-3, expandable seal insert 60 is affixed or connected to actuator 50 such that as actuator 50 moves from the run-in position (FIG. 2) to the set position (FIG. 3), expandable seal insert 60 moves with actuator 50. As shown in FIGS. 2-3, expandable seal inserts 60, 62 are sleeves disposed within actuating chamber 48. It is to be understood, however, the expandable seal inserts 60, 62 may have any shape desired or necessary to seal one or more leak path after setting of the downhole tool.
  • Each expandable seal insert 60, 62 comprises, at least in part, an expandable material that is capable of expanding and sealing against the walls of actuating chamber 48 of downhole tool 40. In one specific embodiment, expandable seal inserts 60, 62 are formed completely out of the expandable material. In other embodiments, expandable seal inserts 60, 62 include non-expandable components such as stiffing rings or other support structures or substrates to which the expandable material is connected.
  • Suitable expandable materials include urethane and polyurethane materials, including polyurethane foams, biopolymers, and superabsorbent polymers. In one embodiment, the expandable materials swell by absorbing fluids such as water or hydrocarbons. Nitriles and polymers sold as 1064 EPDM from Rubber Engineering in Salt Lake City, Utah are acceptable expandable materials. In one embodiment, the expandable material comprises a swellable polymer such as cross-linked or partially cross-linked polyacrylamide, polyurethane, ethylene propylene, or other material capable of absorbing hydrocarbon or aqueous, or other fluids, and, thus, swelling to provide the desired seals. In another embodiment, the expandable material is a shape-memory material, for example, a metal shape-memory material or a compressed elastomer or polymer that is held in the compressed state by a dissolvable material such as those discussed below.
  • In one embodiment, the expandable materials or the expandable seal inserts 60, 62 themselves may be encapsulated with a layer of material dissolvable by fluids such as water or hydraulic fluid. As used herein, the term “encapsulated” and “encapsulating” means that the dissolvable material forms an initial barrier between the fluid and the expandable materials or the expandable seal inserts 60, 62. In such embodiments, the encapsulated layer allows the use of expandable materials, and expandable seal inserts 60, 62 formed from expandable materials, that expand virtually instantaneously upon contacting the fluid by protecting the expandable materials until expansion is desired.
  • Encapsulating dissolvable materials for encapsulating the expandable materials may be any material known to persons of ordinary skill in the art that can be dissolved, degraded, or disintegrated over an amount of time by a temperature or fluid such as water-based drilling fluids, hydrocarbon-based drilling fluids, or natural gas. Preferably, the encapsulating dissolvable material is calibrated such that the amount of time necessary for the dissolvable material to dissolve is known or easily determinable without undue experimentation. Suitable encapsulating dissolvable materials include polymers and biodegradable polymers, for example, polyvinyl-alcohol based polymers such as the polymer HYDROCENE™ available from Idroplax, S.r.l. located in Altopascia, Italy, polylactide (“PLA”) polymer 4060D from Nature-Works™, a division of Cargill Dow LLC; TLF-6267 polyglycolic acid (“PGA”) from DuPont Specialty Chemicals; polycaprolactams and mixtures of PLA and PGA; solid acids, such as sulfamic acid, trichloroacetic acid, and citric acid, held together with a wax or other suitable binder material; polyethylene homopolymers and paraffin waxes; polyalkylene oxides, such as polyethylene oxides, and polyalkylene glycols, such as polyethylene glycols. These polymers may be preferred in water-based drilling fluids because they are slowly soluble in water.
  • In one specific embodiment having an encapsulating dissolvable material, the expandable material is one or more chemical components that undergo a chemical reaction when expandable seal inserts 60, 62 are contacted with the fluid being pumped through bore 44 and port 46 of the downhole tool. For example, the expandable material may be a combination of solid particles of magnesium oxide and monopotassium phosphate encapsulated by one or more of the above-referenced encapsulating dissolvable materials. After the dissolution of the encapsulating dissolvable material, the chemical components of the expandable material react in the presence of the fluid, e.g., water or hydraulic fluid, causing the chemical components to form a gel phase and, ultimately, a crystallized solid ceramic material magnesium potassium phosphate hexahydrate which is a chemically bonded ceramic. In such embodiments, the encapsulating dissolvable material may also be used to separate one or more chemical component from one or more another chemical component to prevent premature reaction and expansion.
  • In selecting the appropriate expandable material and, if necessary or desired the encapsulating material, for expandable seal inserts 60, 62, the amount of time necessary for actuator 50 to more from the run-in position (FIG. 2) to the set position (FIG. 3) should be taken into consideration. If the expandable seal inserts 60, 62 expand prematurely, downhole tool 40 may not be completely set.
  • As shown in FIGS. 2-3, packer 40 includes dynamic seals 51, 52 and static seal 53, all of which are potential leak paths after downhole tool 40 is moved to the set position (FIG. 3). Expandable seal inserts 60, 62 are disposed adjacent these dynamic seals and, in the embodiment shown in FIGS. 2-3, adjacent port 46. It is to be understood, however, that expandable seal inserts 60, 62 may be disposed such that port 46, or one or more dynamic seals 51, 52 or static seal 53, do not have an expandable seal insert disposed adjacently thereto. Moreover, one or more expandable seal inserts may be disposed in downhole tool 40, or other downhole tools at locations other than within actuating chamber 48. In other words, despite expandable seal inserts 60, 62 being shown disposed within actuating chamber 48, it is to be understood that expandable seal inserts 60, 62 may be disposed at any location within a downhole tool where leak paths are known to occur.
  • In operation, downhole tool 40 is disposed within a wellbore at the desired location. Hydraulic fluid (not shown) is pumped down bore 44, through port 46, and into actuating chamber 48. As the pressure from the hydraulic fluid increases, actuator 50 is forced upwards causing downhole tool 40 to move from its run-in position (FIG. 2) to its set position (FIG. 3). In so doing, expandable seal insert 60 moves upward with actuator 50. The hydraulic fluid not only forces actuator 50 from its run-in position to its set position, the hydraulic fluid also causes expandable seal inserts 60, 62 to expand. As expandable seal inserts 60, 62 expand, port 46 is blocked by expandable seal insert 62. Leak paths located at dynamic seals 51, 52 and static seal 53 are likewise blocked by expandable seals 60 and 62, respectively. As a result, expandable seal insert 62 provides a primary seal over port 46 and a secondary seal over static seal 53, and expandable seal insert 60 provides secondary seals over dynamic seals 51, 52.
  • It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. For example, downhole tool 40 may be a liner hanger, or any other downhole tool or component that has a run-in position and set position, wherein the downhole tool is moved from the run-in position to the set position using a fluid such as hydraulic fluid or other wellbore fluid. Additionally, one or more expandable seal inserts may be disposed in numerous locations throughout the downhole tool to provide primary, secondary, tertiary, etc. seals when the expandable seal inserts contact a fluid either during or after setting the downhole tool. Further, the expandable seal inserts may be customized based upon the size needed to provide the appropriate seal. Moreover, the expandable seal inserts may customized based upon the amount of time necessary to set the downhole tool prior to the expanding seal inserts providing the appropriate seal. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.

Claims (22)

1. A fluid actuated downhole tool for an oil or gas well, the downhole tool having a run-in position and a set position, the downhole tool comprising:
a housing with a longitudinal bore therethrough;
an actuating chamber, the actuating chamber having an actuator operatively associated therein for moving the downhole tool from the run-in position to the set position; and
an expandable seal insert disposed within the actuating chamber, adjacent a leak path, the expandable seal insert being formed from an expandable material,
wherein the expandable seal insert expands and seals the leak path when contacted with a fluid for actuating the downhole tool, the fluid causing the actuator to move the downhole tool from the run-in position to the set position.
2. The downhole tool of claim 1, further comprising a port in fluid communication with the actuating chamber, wherein the expandable seal insert is disposed adjacent the port thereby causing the port to become sealed by the expandable seal insert when the downhole tool is in the set position.
3. The downhole tool of claim 2, wherein the port is in fluid communication with bore.
4. The downhole tool of claim 1, wherein the actuator includes outer and inner wall surfaces in sliding engagement with respective outer and inner wall surfaces of the actuating chamber,
the leak path including the sliding engagement between outer and inner wall surfaces of the actuator with the respective outer and inner wall surface of the actuating chamber, and
the expandable seal insert being disposed adjacent the actuator thereby allowing the sliding engagement between outer and inner wall surfaces of the actuator with the respective outer and inner wall surface of the actuating chamber to become sealed by the expandable seal insert when the downhole tool is in the set position.
4. The downhole tool of claim 1, wherein the leak path includes at least one internal dynamic seal, and
wherein the expandable seal insert is disposed adjacent at least one of the at least one internal dynamic seals thereby allowing the at least one of the at least one internal dynamic seals to become sealed by the expandable seal insert when the downhole tool is in the set position.
5. The downhole tool of claim 1, wherein the actuator comprises a piston in sliding engagement with the actuating chamber, the piston comprising at least one dynamic seal and the expandable seal insert being connected to the piston.
6. The downhole tool of claim 1, wherein the downhole tool includes at least two expandable seal inserts, one of the at least two expandable seal inserts being disposed adjacent a port in fluid communication with the actuating chamber and another of the at least two expandable seal inserts being disposed adjacent the actuator.
7. The downhole tool of claim 6, wherein the actuator comprises a piston in sliding engagement with the actuating chamber, the piston comprising at least one dynamic seal and the expandable seal insert being connected to the piston.
8. The downhole tool of claim 1, wherein the expandable material comprises a swellable polymer.
9. The downhole tool of claim 1, wherein the expandable seal insert comprises an encapsulating dissolvable material encapsulating the expandable material prior to setting the downhole tool.
10. The downhole tool of claim 9, wherein the encapsulating material comprises a bio-degradable polymer.
11. The downhole tool of claim 10, wherein the bio-degradable polymer comprises a polyvinyl-alcohol based polymer.
12. The downhole tool of claim 1, wherein the downhole tool is a packer.
13. An improved downhole tool having a run-in position and a set position, the downhole tool being actuatable by a fluid, the improvement comprising at least one expandable seal insert disposed along at least one leak path, each of the at least one expandable seal inserts being capable of expanding and sealing at least one of the at least one leak paths.
14. The improved downhole tool of claim 13, wherein at least one of the at least one expandable seal inserts is disposed within an actuating chamber of the downhole tool.
15. The improved downhole tool of claim 13, wherein at least one of the at least one expandable seal inserts is connected to an actuator.
16. The improved downhole tool of claim 13, wherein at least one of the at least one expandable seal inserts is disposed within an actuating chamber of the downhole tool adjacent a port in fluid communication with the actuating chamber.
17. The improved downhole tool of claim 13, wherein at least one of the at least one expandable seal inserts comprises a sleeve disposed within an actuating chamber of the downhole tool.
18. A method of preventing formation of a leak path in an actuated downhole tool in its set position, the method comprising the steps of:
(a) actuating a downhole tool with a fluid, wherein during actuation, the downhole tool is moved from a run-in position to a set position;
(b) contacting an expandable seal insert comprising an expandable material with the fluid causing the expandable seal insert to expand; and
(c) sealing a leak path in the downhole tool due to the expansion of the expandable seal insert, thereby by preventing fluid leakage through the leak path with the expanded expandable seal insert
19. The method of claim 18, wherein the expandable seal insert is expanded by dissolving a dissolvable material initially disposed between the expandable seal insert and the fluid.
20. The method of claim 18, wherein step (b) is performed during actuation of the downhole tool from the run-in position to the set position.
21. The method of claim 18, wherein step (b) is performed after actuation of the downhole tool from the run-in position to the set position.
US11/891,580 2007-08-10 2007-08-10 Expandable leak path preventer in fluid activated downhole tools Abandoned US20090038796A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/891,580 US20090038796A1 (en) 2007-08-10 2007-08-10 Expandable leak path preventer in fluid activated downhole tools
PCT/US2008/072205 WO2009023472A2 (en) 2007-08-10 2008-08-05 Expandable leak path preventer in fluid activated downhole tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/891,580 US20090038796A1 (en) 2007-08-10 2007-08-10 Expandable leak path preventer in fluid activated downhole tools

Publications (1)

Publication Number Publication Date
US20090038796A1 true US20090038796A1 (en) 2009-02-12

Family

ID=40345381

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/891,580 Abandoned US20090038796A1 (en) 2007-08-10 2007-08-10 Expandable leak path preventer in fluid activated downhole tools

Country Status (2)

Country Link
US (1) US20090038796A1 (en)
WO (1) WO2009023472A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089911A1 (en) * 2005-05-10 2007-04-26 Moyes Peter B Downhole tool
US20100243276A1 (en) * 2009-03-27 2010-09-30 Baker Hughes Incorporated Downhole swellable sealing system and method
US20110147014A1 (en) * 2009-12-21 2011-06-23 Schlumberger Technology Corporation Control swelling of swellable packer by pre-straining the swellable packer element
US20120175134A1 (en) * 2011-01-11 2012-07-12 Schlumberger Technology Corporation Oilfield apparatus and method comprising swellable elastomers
US20120186814A1 (en) * 2009-08-05 2012-07-26 Vi Nguy System And Method For Preserving A Hydraulic Packer
WO2015031459A1 (en) * 2013-08-29 2015-03-05 Weatherford/Lamb, Inc. Packer having swellable and compressible elements
US20160258241A1 (en) * 2014-06-13 2016-09-08 Halliburton Energy Services, Inc. Downhole tools comprising composite sealing elements
US20160369595A1 (en) * 2015-06-19 2016-12-22 James T. Farrow Plunger assembly with dampening system
US9863223B2 (en) 2015-12-28 2018-01-09 James T. Farrow Plunger assembly with dual dart system
US9863218B2 (en) 2015-05-01 2018-01-09 James T. Farrow Plunger assembly with coated dart and wear pads
US9945209B2 (en) 2015-05-06 2018-04-17 James T. Farrow Plunger assembly with expandable seal
US10066463B2 (en) 2015-06-19 2018-09-04 James T. Farrow Plunger assembly with internal dart passage
US20220381099A1 (en) * 2021-05-28 2022-12-01 National Oilwell Varco Norway As Liner hanger running tool
US20230116346A1 (en) * 2021-10-13 2023-04-13 Halliburton Energy Services, Inc. Well Tool Actuation Chamber Isolation
CN117231161A (en) * 2023-09-19 2023-12-15 德州泉安油田技术服务有限公司 Drilling tool for underground malignant plugging and underground packing plugging process

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945541A (en) * 1955-10-17 1960-07-19 Union Oil Co Well packer
US4363358A (en) * 1980-02-01 1982-12-14 Dresser Industries, Inc. Subsurface tubing hanger and stinger assembly
US4437516A (en) * 1981-06-03 1984-03-20 Baker International Corporation Combination release mechanism for downhole well apparatus
US4444252A (en) * 1981-06-10 1984-04-24 Baker International Corporation Slack adjustment for slip system in downhole well apparatus
US4903777A (en) * 1986-10-24 1990-02-27 Baker Hughes, Incorporated Dual seal packer for corrosive environments
US4982764A (en) * 1989-09-26 1991-01-08 Saxon Edward G High confidence tube plug
US5141053A (en) * 1991-05-30 1992-08-25 Otis Engineering Corporation Compact dual packer with locking dogs
US5476543A (en) * 1994-07-19 1995-12-19 Ryan; Robert G. Environmentally safe well plugging composition
US5704970A (en) * 1994-12-08 1998-01-06 Kunimine Industries Co., Ltd. Water-preventing sealant with plasticity
US20050171248A1 (en) * 2004-02-02 2005-08-04 Yanmei Li Hydrogel for use in downhole seal applications
US20060124310A1 (en) * 2004-12-14 2006-06-15 Schlumberger Technology Corporation System for Completing Multiple Well Intervals
US20060175065A1 (en) * 2004-12-21 2006-08-10 Schlumberger Technology Corporation Water shut off method and apparatus
US20070246225A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Well tools with actuators utilizing swellable materials
US20070257441A1 (en) * 2004-10-27 2007-11-08 Baaijens Matheus N Sealing of a Wellbore Device in a Tubular Element
US20070277979A1 (en) * 2006-06-06 2007-12-06 Halliburton Energy Services Downhole wellbore tools having deteriorable and water-swellable components thereof and methods of use
US20080007060A1 (en) * 2002-07-06 2008-01-10 Simpson Neil Andrew Abercrombi Coupling tubulars
US20080289812A1 (en) * 2007-04-10 2008-11-27 Schlumberger Technology Corporation System for downhole packing
US7467664B2 (en) * 2006-12-22 2008-12-23 Baker Hughes Incorporated Production actuated mud flow back valve

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2945541A (en) * 1955-10-17 1960-07-19 Union Oil Co Well packer
US4363358A (en) * 1980-02-01 1982-12-14 Dresser Industries, Inc. Subsurface tubing hanger and stinger assembly
US4437516A (en) * 1981-06-03 1984-03-20 Baker International Corporation Combination release mechanism for downhole well apparatus
US4444252A (en) * 1981-06-10 1984-04-24 Baker International Corporation Slack adjustment for slip system in downhole well apparatus
US4903777A (en) * 1986-10-24 1990-02-27 Baker Hughes, Incorporated Dual seal packer for corrosive environments
US4982764A (en) * 1989-09-26 1991-01-08 Saxon Edward G High confidence tube plug
US5141053A (en) * 1991-05-30 1992-08-25 Otis Engineering Corporation Compact dual packer with locking dogs
US5476543A (en) * 1994-07-19 1995-12-19 Ryan; Robert G. Environmentally safe well plugging composition
US5704970A (en) * 1994-12-08 1998-01-06 Kunimine Industries Co., Ltd. Water-preventing sealant with plasticity
US20080007060A1 (en) * 2002-07-06 2008-01-10 Simpson Neil Andrew Abercrombi Coupling tubulars
US20050171248A1 (en) * 2004-02-02 2005-08-04 Yanmei Li Hydrogel for use in downhole seal applications
US7304098B2 (en) * 2004-02-02 2007-12-04 Schlumberger Technology Corporation Hydrogel for use in downhole seal applications
US20070257441A1 (en) * 2004-10-27 2007-11-08 Baaijens Matheus N Sealing of a Wellbore Device in a Tubular Element
US20060124310A1 (en) * 2004-12-14 2006-06-15 Schlumberger Technology Corporation System for Completing Multiple Well Intervals
US7387165B2 (en) * 2004-12-14 2008-06-17 Schlumberger Technology Corporation System for completing multiple well intervals
US20060175065A1 (en) * 2004-12-21 2006-08-10 Schlumberger Technology Corporation Water shut off method and apparatus
US7493947B2 (en) * 2004-12-21 2009-02-24 Schlumberger Technology Corporation Water shut off method and apparatus
US20070246225A1 (en) * 2006-04-20 2007-10-25 Hailey Travis T Jr Well tools with actuators utilizing swellable materials
US20070277979A1 (en) * 2006-06-06 2007-12-06 Halliburton Energy Services Downhole wellbore tools having deteriorable and water-swellable components thereof and methods of use
US7467664B2 (en) * 2006-12-22 2008-12-23 Baker Hughes Incorporated Production actuated mud flow back valve
US20080289812A1 (en) * 2007-04-10 2008-11-27 Schlumberger Technology Corporation System for downhole packing

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089911A1 (en) * 2005-05-10 2007-04-26 Moyes Peter B Downhole tool
US9453381B2 (en) 2005-05-10 2016-09-27 Baker Hughes Incorporated Downhole drive force generating tool
US8459377B2 (en) 2005-05-10 2013-06-11 Baker Hughes Incorporated Downhole drive force generating tool
US20100243276A1 (en) * 2009-03-27 2010-09-30 Baker Hughes Incorporated Downhole swellable sealing system and method
US8157019B2 (en) 2009-03-27 2012-04-17 Baker Hughes Incorporated Downhole swellable sealing system and method
US20120186814A1 (en) * 2009-08-05 2012-07-26 Vi Nguy System And Method For Preserving A Hydraulic Packer
US8408319B2 (en) * 2009-12-21 2013-04-02 Schlumberger Technology Corporation Control swelling of swellable packer by pre-straining the swellable packer element
US20110147014A1 (en) * 2009-12-21 2011-06-23 Schlumberger Technology Corporation Control swelling of swellable packer by pre-straining the swellable packer element
US8490707B2 (en) * 2011-01-11 2013-07-23 Schlumberger Technology Corporation Oilfield apparatus and method comprising swellable elastomers
US20120175134A1 (en) * 2011-01-11 2012-07-12 Schlumberger Technology Corporation Oilfield apparatus and method comprising swellable elastomers
US9637997B2 (en) 2013-08-29 2017-05-02 Weatherford Technology Holdings, Llc Packer having swellable and compressible elements
WO2015031459A1 (en) * 2013-08-29 2015-03-05 Weatherford/Lamb, Inc. Packer having swellable and compressible elements
GB2534050A (en) * 2013-08-29 2016-07-13 Weatherford Lamb Inc Packer having swellable and compressible elements
GB2534050B (en) * 2013-08-29 2017-11-01 Weatherford Tech Holdings Llc Packer having swellable and compressible elements
US20160258241A1 (en) * 2014-06-13 2016-09-08 Halliburton Energy Services, Inc. Downhole tools comprising composite sealing elements
US10738559B2 (en) * 2014-06-13 2020-08-11 Halliburton Energy Services, Inc. Downhole tools comprising composite sealing elements
US9863218B2 (en) 2015-05-01 2018-01-09 James T. Farrow Plunger assembly with coated dart and wear pads
US9945209B2 (en) 2015-05-06 2018-04-17 James T. Farrow Plunger assembly with expandable seal
US20160369595A1 (en) * 2015-06-19 2016-12-22 James T. Farrow Plunger assembly with dampening system
US9951590B2 (en) * 2015-06-19 2018-04-24 James T. Farrow Plunger assembly with dampening system
US10066463B2 (en) 2015-06-19 2018-09-04 James T. Farrow Plunger assembly with internal dart passage
US9863223B2 (en) 2015-12-28 2018-01-09 James T. Farrow Plunger assembly with dual dart system
US20220381099A1 (en) * 2021-05-28 2022-12-01 National Oilwell Varco Norway As Liner hanger running tool
US20230116346A1 (en) * 2021-10-13 2023-04-13 Halliburton Energy Services, Inc. Well Tool Actuation Chamber Isolation
WO2023063962A1 (en) * 2021-10-13 2023-04-20 Halliburton Energy Services, Inc. Well tool actuation chamber isolation
CN117231161A (en) * 2023-09-19 2023-12-15 德州泉安油田技术服务有限公司 Drilling tool for underground malignant plugging and underground packing plugging process

Also Published As

Publication number Publication date
WO2009023472A2 (en) 2009-02-19
WO2009023472A3 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
US20090038796A1 (en) Expandable leak path preventer in fluid activated downhole tools
US7931093B2 (en) Method and system for anchoring and isolating a wellbore
EP2201214B1 (en) Activating mechanism
US7798225B2 (en) Apparatus and methods for creation of down hole annular barrier
US7717183B2 (en) Top-down hydrostatic actuating module for downhole tools
US20160194933A1 (en) Improved Isolation Barrier
GB2479669A (en) Gas activated actuator device for downhole tools
US7631699B2 (en) System and method for pressure isolation for hydraulically actuated tools
CA2803450C (en) Mitigating leaks in production tubulars
US20140352974A1 (en) Reactive choke for automatic wellbore fluid management and methods of using same
US10240428B2 (en) Packer assembly with thermal expansion buffers and isolation methods
US20120138315A1 (en) Downhole Seal
US8353355B2 (en) Drill string/annulus sealing with swellable materials
WO2016171665A1 (en) Modular swell packer element

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KING, JAMES G.;REEL/FRAME:019741/0752

Effective date: 20070808

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION