US20090043343A1 - Method and Apparatus for Enhanced Delivery of Treatment Device to the Intervertebral Disc Annulus - Google Patents

Method and Apparatus for Enhanced Delivery of Treatment Device to the Intervertebral Disc Annulus Download PDF

Info

Publication number
US20090043343A1
US20090043343A1 US12/255,839 US25583908A US2009043343A1 US 20090043343 A1 US20090043343 A1 US 20090043343A1 US 25583908 A US25583908 A US 25583908A US 2009043343 A1 US2009043343 A1 US 2009043343A1
Authority
US
United States
Prior art keywords
delivery
therapeutic device
delivery tool
support element
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/255,839
Inventor
Lawrence W. Wales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anulex Technologies Inc
Original Assignee
Anulex Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/947,078 external-priority patent/US6592625B2/en
Priority claimed from US10/133,339 external-priority patent/US7052516B2/en
Priority claimed from US10/327,106 external-priority patent/US7004970B2/en
Priority claimed from US10/352,981 external-priority patent/US20030153976A1/en
Priority claimed from US11/120,750 external-priority patent/US7615076B2/en
Application filed by Anulex Technologies Inc filed Critical Anulex Technologies Inc
Priority to US12/255,839 priority Critical patent/US20090043343A1/en
Publication of US20090043343A1 publication Critical patent/US20090043343A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0482Needle or suture guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0487Suture clamps, clips or locks, e.g. for replacing suture knots; Instruments for applying or removing suture clamps, clips or locks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/0065Type of implements the implement being an adhesive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00663Type of implements the implement being a suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00668Type of implements the implement being a tack or a staple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0417T-fasteners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0446Means for attaching and blocking the suture in the suture anchor
    • A61B2017/0461Means for attaching and blocking the suture in the suture anchor with features cooperating with special features on the suture, e.g. protrusions on the suture
    • A61B2017/0462One way system, i.e. also tensioning the suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0472Multiple-needled, e.g. double-needled, instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0474Knot pushers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0475Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery using sutures having a slip knot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0477Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery with pre-tied sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B2017/06052Needle-suture combinations in which a suture is extending inside a hollow tubular needle, e.g. over the entire length of the needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • A61B2017/06176Sutures with protrusions, e.g. barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0646Surgical staples, i.e. penetrating the tissue for insertion into cartillege, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0647Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3872Meniscus for implantation between the natural bone surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/3008Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30158Convex polygonal shapes trapezoidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30171Concave polygonal shapes rosette- or star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30172T-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30299Three-dimensional shapes umbrella-shaped or mushroom-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30451Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30461Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30462Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/305Snap connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30579Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30777Oblong apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30879Ribs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30891Plurality of protrusions
    • A61F2002/30892Plurality of protrusions parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/4435Support means or repair of the natural disc wall, i.e. annulus, e.g. using plates, membranes or meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/444Intervertebral or spinal discs, e.g. resilient for replacing the nucleus pulposus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4662Measuring instruments used for implanting artificial joints for measuring penetration depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0026Angular shapes trapezoidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0052T-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0093Umbrella-shaped, e.g. mushroom-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00035Other metals or alloys
    • A61F2310/00155Gold or Au-based alloys

Definitions

  • the invention generally relates to methods and devices for the closure, sealing, repair, augmentation, reconstruction or otherwise treatment of an intervertebral disc annulus, and accompanying delivery devices and tools, and their methods of use.
  • the repair can be of an aperture in the disc wall, or a weakened or thin portion.
  • the term “aperture” refers to a hole in the annulus that is a result of a surgical incision or dissection into the intervertebral disc annulus, or the consequence of a naturally occurring tear (rent).
  • the invention generally relates to surgical devices and methods for the treatment of intervertebral disc wall repair or reconstruction.
  • the invention further relates to an annular repair device, or stent, for annular disc repair. These implants can be of natural or synthetic materials.
  • the invention further relates to an enhanced delivery method and device for the delivery of a patch, mesh, barrier, scaffold, or other implant to treat an intervertebral disc.
  • the spinal column is formed from a number of bony vertebrae, which in their normal state are separated from each other by intervertebral discs. These discs are comprised of the annulus fibrosus, and the nucleus pulposus, both of which are soft tissue.
  • the intervertebral disc acts in the spine as a crucial stabilizer, and as a mechanism for force distribution between adjacent vertebral bodies. Without a competent disc, collapse of the intervertebral disc may occur, contributing to abnormal joint mechanics and premature development of degenerative and/or arthritic changes.
  • the normal intervertebral disc has an outer ligamentous ring called the annulus surrounding the nucleus pulposus.
  • the annulus binds the adjacent vertebrae together and is constituted of collagen fibers that are attached to the vertebrae and cross each other so that half of the individual fibers will tighten as the vertebrae are rotated in either direction, thus resisting twisting or torsional motion.
  • the nucleus pulposus is constituted of soft tissue, having about 85% water content, which moves about during bending from front to back and from side to side.
  • the aging process contributes to gradual changes in the intervertebral discs.
  • the annulus loses much of its flexibility and resilience, becoming more dense and solid in composition.
  • the aging annulus may also be marked by the appearance or propagation of cracks or fissures in the annular wall.
  • the nucleus desiccates, increasing viscosity and thus losing its fluidity.
  • these features of the aged intervertebral discs result in less dynamic stress distribution because of the more viscous nucleus pulposus, and less ability to withstand localized stresses by the annulus fibrosus due to its desiccation, loss of flexibility and the presence of fissures. Fissures can also occur due to disease or other pathological conditions.
  • nucleus pulposus is urged outwardly from the subannular space through a rent, often into the spinal column. Extruded nucleus pulposus can, and often does, mechanically press on the spinal cord or spinal nerve rootlet. This painful condition is clinically referred to as a ruptured or herniated disc.
  • the subannular nucleus pulposus migrates along the path of least resistance forcing the fissure to open further, allowing migration of the nucleus pulposus through the wall of the disc, with resultant nerve compression and leakage of chemicals of inflammation into the space around the adjacent nerve roots supplying the extremities, bladder, bowel and genitalia.
  • the usual effect of nerve compression and inflammation is intolerable back or neck pain, radiating into the extremities, with accompanying numbness, weakness, and in late stages, paralysis and muscle atrophy, and/or bladder and bowel incontinence.
  • injury, disease or other degenerative disorders may cause one or more of the intervertebral discs to shrink, collapse, deteriorate or become displaced, herniated, or otherwise damaged and compromised.
  • the repair of a damaged intervertebral disc might include the augmentation of the nucleus pulposus, and various efforts at nucleus pulposus replacement have been reported.
  • the present invention is directed at the repair of the annulus, whether or not a nuclear augmentation is also warranted.
  • the present inventions provide methods and devices related to enhancing the delivery of devices for reconstruction of the disc wall in cases of displaced, herniated, thinned, ruptured, or otherwise damaged or infirmed intervertebral discs.
  • an enhanced device and method is disclosed for the delivery of devices to treat an intervertebral disc having an aperture, weakened or thin portion in the wall of the annulus fibrosis of the intervertebral disc. Repair, reconstruction, sealing, occluding an aperture, weakened or thin portion in the wall of the annulus may prevent or avoid migration of intradiscal material from the disc space.
  • the method and device of the present invention allows controlled delivery of an expandable device as described in, for example, pending U.S. patent application Ser. No. 11/120,750, filed May 3, 2005. Reference is made to pending applications as listed above for further details about the various treatment devices, their construction and other attributes of their deliveries. This application is to further describe an invention that may be utilized to enhance the delivery of these various implants.
  • the method and device of the invention includes, in one embodiment, the steps of providing a first delivery tool having a proximal end and a distal end, the distal end carrying a treatment device; introducing the distal end of the first delivery tool at least partially into the intervertebral disc space; and deploying said treatment device said treatment delivery tool also comprising means to enhance the controlled opening of the treatment device.
  • treatment devices and their delivery tools may be used in combination with fixation devices as described in previous pending applications identified above.
  • the implantable medical treatment devices are placed, positioned, and subsequently affixed in the annulus to reduce re-extrusion of the nucleus or other intradiscal material through an aperture by: establishing a barrier or otherwise closing or partially closing an aperture; and/or helping to restore the natural integrity of the wall of the annulus; and/or promoting healing of the annulus.
  • Increased integrity and faster and/or more thorough healing of the aperture may reduce future recurrence of herniation of the disc nucleus, or intradiscal material, from the intervertebral disc, and the recurrence of resulting radicular or back pain.
  • the repair of the annular tissue could promote enhanced biomechanics and reduce the possibility of intervertebral disc height collapse and segmental instability, thus possibly avoiding recurrent radicular or back pain after a surgical procedure.
  • the repair of an annular aperture (after for example, a discectomy procedure) with the reduction of the re-extrusion of the nucleus may also advantageously reduce adhesion formation surrounding the nerve roots.
  • the nuclear material of the disc is toxic to the nerves and is believed to cause increased inflammation surrounding the nerves, which in turn can cause increased scar formation (adhesions or epidural fibrosis) upon healing. Adhesions created around the nerve roots can cause continued back pain. Any reduction in adhesion formation is believed to reduce future recurrence of pain.
  • Annular repair devices and methods may create a mechanical barrier to the extrusion of intradiscal material (i.e., nucleus pulposus, or nuclear augmentation materials) from the disc space, add mechanical integrity to the annulus and the tissue surrounding an aperture, weakened, or thin portion of the wall of the annulus, and promote faster and more complete healing of the aperture, weakened or thin portion.
  • intradiscal material i.e., nucleus pulposus, or nuclear augmentation materials
  • the devices of the present invention may be used in other procedures that involve access (whether induced or naturally occurring) through the annulus of the intervertebral disc, or prophylactic application to the annulus.
  • An example of another procedure that could require a repair technique involves the replacement of the nucleus (nucleus replacement) with an implantable nucleus material to replace the functioning of the natural nucleus when it is degenerated.
  • the object of the invention in this case would be similar in that the repair would maintain the replacement nucleus within the disc space.
  • treatment delivery devices such as the delivery devices described in FIGS. 43 to 46 and FIGS. 57 to 64 may be used to place an annular treatment devices which are employed to repair an aperture, degenerated, weakened, or thin portion in an intervertebral disc annulus.
  • Placement of a treatment device as depicted, for example, in FIGS. 43 to 46 into disc tissue below the surface of an annular aperture and deploying the device to reach an optimal configuration to occlude, close, repair, augment, or otherwise treat an aperture, weakened or thin portion of the annulus fibrosus may be challenging since the device is placed with little direct visualization.
  • a treatment device placed below the surface of the annulus is preferably inserted into the disc with a diminished dimension to allow the device to be placed through and below the aperture surface, while preferably obtaining a delivery and deployed state that is larger, acting to bridge the aperture below the outer annular surface. Since a surgeon is unable to visualize the delivery of the implant into an “open”, deployed configuration, the ability to assure that the device reliability obtains the desired, open configuration is important. Complicating the delivery is the need for the treatment device to be able to move or push softer tissue aside (i.e., nucleus pulposus and inner layers of annulus fibrosus) during delivery to appropriately situate itself in a bridging relationship over the aperture, weakened, or thin portion of the annulus needing repair.
  • tissue aside i.e., nucleus pulposus and inner layers of annulus fibrosus
  • the delivery device of the present invention also allows for the surgeon to be able to deploy the device in the subannular space and “seat” (e.g., pulling the delivery device in a proximal direction) the implant device against inner layers of the annulus without deforming the device in a manner that may compromise the implant's ability to reach a maximal deployment.
  • the following description is exemplary of an enhanced delivery device that provides for increased “leverage” in the delivery and the deployment of a patch that is delivered to the intervertebral disc requiring repair, whether or not there may be additional elements of the device to further acutely secure the device to disc tissue, such as sutures, staples, anchor bands, barbs, tension bands, adhesives, or other acute fixation elements known to those skilled in the art.
  • the inventive treatment delivery device can be used with a variety of repair devices to seal, reconstruct and/or repair the intervertebral disc, as described in other pending applications, for example, implant devices found in FIGS. 2-4 , 9 , 10 , 12 - 20 , and 27 - 32 .
  • This list is not intended to be exclusionary but rather exemplary.
  • a reconfigurable device (note: patch, stent, implant, device, mesh, barrier, scaffold and treatment device are here used interchangeably) that has, in use, at least a portion of the device in the sub-annular space of the intervertebral disc annulus.
  • the enhanced delivery device of the present invention will be described in further detail with respect to one of the embodiments of an annular patch delivery, as seen in FIGS. 33 to 64 .
  • the description is not intended to be exclusive to the delivery of the braided treatment device, but it is intended to exemplify the use of an enhanced delivery tool and one skilled in the art could readily apply the invention in a variety of delivery devices and repair implants
  • Some of the concepts disclosed hereinbelow may advantageously additionally incorporate design elements to reduce the number of steps (and time), and/or simplify the surgical technique, and/or reduce the risk of causing complications during the repair of the intervertebral disc annulus.
  • the following treatment devices may become incorporated by the surrounding tissues, or to act as a scaffold in the short-term (3-6 months) for tissue incorporation, creating a subannular barrier in and across the aperture by placement of a patch of biocompatible material acting as a bridge or a scaffold, providing a platform for traverse of fibroblasts or other normal cells of repair existing in and around the various layers of the disc annulus.
  • FIG. 1 shows a primary closure of an opening in the disc annulus.
  • FIGS. 2A-2B show a primary closure with a stent.
  • FIGS. 3A-3D show an annulus stent being inserted into and expanded within the disc annulus.
  • FIGS. 4A-4C shows a perspective view of a further illustrative embodiment of an annulus stent, and collapsed views thereof.
  • FIGS. 5A-5C show the annulus stent of FIG. 4A being inserted into the disc annulus.
  • FIGS. 6A-6C show a method of inserting the annulus stent of FIG. 4A into the disc annulus.
  • FIG. 7 shows an illustrative embodiment of an introduction device for an annulus stent.
  • FIG. 8 shows a variation of the device depicted in FIG. 7 .
  • FIGS. 9A-9C show an exemplary introduction tool for use with the devices of FIGS. 7 and 8 with a stent deflected.
  • FIGS. 10A-10B show a still further illustrative embodiment of an annulus stent employing secondary barbed fixation devices.
  • FIG. 11A shows a herniated disc in perspective view
  • FIG. 11B shows the same disc after discectomy.
  • FIGS. 12A-12G show a still further illustrative embodiment of an introduced and expanded annulus stent/patch being fixated and the aperture reapproximated.
  • FIGS. 13A-13C schematically depict a still further embodiment of the invention where an expandable stent/patch is tethered in situ using a cinch line.
  • FIGS. 14A-14C schematically depict the patch of FIG. 13 being fixated through use of a barbed surgical staple device and a cinch line.
  • FIGS. 15A-15C schematically depict a still further embodiment of the invention where an expandable stent/patch is tethered in situ using a cinch line.
  • FIGS. 16A-16C schematically depict the stent/patch of FIG. 15 being fixated through use of a barbed surgical staple device that penetrates the patch/stent and a cinch line.
  • FIG. 17 depicts an exemplary use of filler material within the aperture during placement of a patch/stent tethered by a cinch line.
  • FIGS. 18A-18E show exemplary embodiments of various additional patch/stent fixation techniques.
  • FIG. 19 shows a still further illustrative embodiment of a stent/patch having a frame.
  • FIGS. 20A-20C show a still further exemplary embodiment of the invention having external fixation anchors.
  • FIGS. 21A-21C show still further embodiments of the invention having external fixation anchors.
  • FIGS. 22A-22C show still further embodiments of the invention having external fixation anchors.
  • FIG. 23 shows a delivered configuration of fixation means that may result from the use of a single, or multiple, devices to deliver multiple barbs, anchor, or T-anchors sequentially or simultaneously.
  • FIGS. 24A-24B show an illustrative configuration of an anchor band delivery device.
  • FIGS. 25A-25D show an anchor band delivery device comprising two devices, each with at least one T-anchor (barbs) and band with pre-tied knot and optional knot pusher according to illustrative embodiments of the invention.
  • FIG. 26 shows an anchor and band delivery device according to one embodiment of the invention.
  • FIGS. 27A-27B show, respectively, a lateral view of a still further exemplary embodiment of the present invention having a braided arrangement in a collapsed configuration and an axial view of the exemplary embodiment in an expanded configuration.
  • FIG. 28 shows a lateral view of the exemplary embodiment of FIG. 27A in a collapsed configuration mounted on an illustrative delivery device.
  • FIG. 29 shows a lateral cutaway view of the exemplary embodiment of FIG. 27A in a collapsed configuration.
  • FIG. 30 shows a lateral cutaway view of the exemplary embodiment of FIG. 27B in an expanded configuration.
  • FIG. 31 shows a lateral view of an illustrative delivery member as shown in the exemplary embodiment of FIGS. 29 and 30 .
  • FIG. 32 shows a lateral view of an exemplary embodiment of the invention in an expanded configuration subannularly.
  • FIG. 33 shows a transverse view of a treatment device mounted on a delivery tool in an unexpanded configuration in the subannular cavity.
  • FIG. 34 shows a transverse view of the treatment device being deployed into an expanded configuration in the subannular cavity.
  • FIG. 35 shows a transverse view of the treatment device fully deployed and adjacent the annular wall.
  • FIG. 36 shows a transverse view of the placement of a fixation element delivery device into the deployed treatment device.
  • FIG. 37 shows a transverse view of the placement of a fixation element through the treatment device and the annular wall.
  • FIG. 38 shows a transverse view of after affixing a fixation element delivered in FIG. 37 and partial removal of the fixation element delivery device.
  • FIG. 39 shows a transverse view of the fixation element after removal of the fixation element delivery tool.
  • FIG. 40 shows a transverse view of an additional fixation element locked in place on the opposite side of the treatment device.
  • FIG. 41 shows a transverse view of the removal of the treatment device delivery tool.
  • FIG. 42 shows a sagittal view of an illustrative embodiment of a treatment device mounted on a delivery tool in an unexpanded configuration in the subannular cavity.
  • FIG. 43 shows a sagittal view of after affixing a fixation element to the treatment device of FIG. 42 .
  • FIG. 44 shows a sagittal view of the placement of a fixation element delivery tool through the treatment device and the annular wall.
  • FIG. 45 shows a sagittal view of the placement of an additional fixation element through the treatment device and the annular wall.
  • FIG. 46 shows a sagittal view after the removal of the fixation element delivery tool.
  • FIG. 47 is a view of the anchor band delivery tool pre-deployment in cross section.
  • FIG. 48 shows a detail of the distal end of the anchor band (fixation element) delivery tool in cross section.
  • FIG. 49 shows a detail of the slide body and cannula anchor of an exemplary fixation element delivery tool in cross section.
  • FIG. 50 is a view of the anchor band delivery tool in cross section during a deployment cycle.
  • FIG. 51 is a detail of the distal end of the anchor band delivery tool depicted in FIG. 50 .
  • FIG. 52 shows a detail of the slide body and cannula anchor of an exemplary fixation element delivery tool in cross section during a deployment cycle.
  • FIG. 53 shows a detail of the suture retention block and blade assembly of the anchor band delivery tool.
  • FIG. 54 is a view of the anchor band delivery tool in cross section during the cutting of the suture tether and release of the anchor band.
  • FIG. 55 shows a detail of the distal end of the anchor band delivery tool during release of the anchor band.
  • FIG. 56 shows a detail of the shows a detail of the suture retention block and blade assembly of the anchor band delivery tool during the cutting of the tether.
  • FIG. 57 depicts an illustrative embodiments of a therapeutic device delivery tool (TDDT).
  • TDDT therapeutic device delivery tool
  • FIG. 58 shows a detail of the distal end of the therapeutic device delivery tool with a therapeutic device mounted thereon.
  • FIG. 59 depicts the deployment of a therapeutic device using the TDDT.
  • FIG. 60 depicts a detail of the distal end of the TDDT during deployment of a therapeutic device.
  • FIG. 61 depicts the TDDT during release of the therapeutic device.
  • FIG. 62 is a detail view of the distal end of the TDDT during release of the therapeutic device.
  • FIG. 63 is a plan view along the axis of an expanded exemplary therapeutic device, showing the engagement of the TDDT latch.
  • FIG. 64 is a plan view along the axis of an expanded exemplary therapeutic device, showing the disengagement of the TDDT latch.
  • FIG. 65 shows a sagittal view of an illustrative embodiment of a treatment device mounted on a delivery tool in an unexpanded configuration in the subannular cavity, with enhanced delivery support element 540 .
  • FIG. 66 shows a sagittal view of FIG. 65 after deployment and seating of the treatment device.
  • FIG. 67 depicts illustrative embodiments of the proximal end of a therapeutic device delivery tool (TDDT) with enhanced delivery support elements 540 prior to treatment device deployment.
  • TDDT therapeutic device delivery tool
  • FIG. 68 depicts illustrative embodiments of the proximal end of a therapeutic device delivery tool (TDDT) with enhanced delivery support elements 540 during treatment device deployment.
  • TDDT therapeutic device delivery tool
  • FIG. 69 depicts detail illustrative embodiments of the distal end of the TDDT with an enhanced delivery support elements 540 during deployment of a therapeutic device.
  • FIG. 70 depicts illustrative embodiments of the proximal end of a therapeutic device delivery tool (TDDT) with enhanced delivery support elements 540 after deployment of a treatment device.
  • TDDT therapeutic device delivery tool
  • FIG. 71 depicts detail illustrative embodiments of the distal end of the TDDT with an enhanced delivery support elements 540 after deployment of a therapeutic device.
  • FIG. 72 illustrates an alternative embodiment of the distal portion of the TDDT during the deployment of a therapeutic device with delivery support elements 540 and a element collar 544 .
  • FIG. 73 illustrates an alternative embodiment of the distal portion of the TDDT during the deployment of a therapeutic device with delivery support element 540 .
  • FIG. 74 illustrates an alternative embodiment of the distal portion of the TDDT and treatment device during the deployment of a therapeutic device and with delivery support element 540 that may be integral with the treatment device.
  • FIG. 75 illustrates an alternative embodiment of the distal portion of the TDDT and treatment device during the deployment of a therapeutic device and with delivery support element 540 that may be integral with the treatment device.
  • the following descriptions will illustratively depict and describe methods, devices, and tools to deliver a treatment to an intervertebral disc after a, lumbar discectomy procedure; although, it is anticipated that these methods, devices, and tools may be similarly used in a variety of applications.
  • the embodiments described herein may also advantageously maintain materials within the disc space other than natural disc tissue (nucleus, annulus, cartilage, etc.), such as implants and materials that may be used to replace and/or augment the nucleus pulposus or other parts of disc's tissues. These procedures may be performed to treat, for example, degenerative disc disease.
  • nucleus pulposus i.e., implantable prosthetics or injectable, in-situ curable polymer protein, or the like
  • a fusion between vertebral bodies i.e., implantable bony or synthetic prosthetics with materials to facilitate fusion, such as growth factors like bone morphogenic proteins
  • surgeons differ in their techniques and methods in performing an intervention on a spinal disc, and the inventive descriptions and depictions of methods, devices and delivery tools to repair annular tissue could be employed with a variety of surgical techniques; such as, but not limited to: open surgical, microsurgical discectomy (using a magnifying scope or loupes), minimally invasive surgical (through, for example, a METRxTM system available from Medtronic, Inc.), and percutaneous access.
  • surgical techniques such as, but not limited to: open surgical, microsurgical discectomy (using a magnifying scope or loupes), minimally invasive surgical (through, for example, a METRxTM system available from Medtronic, Inc.), and percutaneous access.
  • Surgeons may also employ a variety of techniques for intra-operative assessment and/or visualization of the procedure, which may include: intra-operative probing, radiography (e.g., C-arm, flat plate), and endoscopy. It is contemplated that the inventive embodiments described are not limited by the various techniques that may be employed by the surgeon.
  • the surgical approach to the intervertebral disc throughout the figures and descriptions depict a common approach, with related structures, to a lumbar discectomy; although, it is possible that surgeons may prefer alternative approaches to the intervertebral disc for various applications (for example, different intervertebral disc levels such as the cervical or thoracic region, or for nucleus augmentation), which may include, but is not limited to: posterior-lateral, anterior, anterior-lateral, transforaminal, extra-foraminal, extra-pedicular, axial (i.e., through the vertebral bodies), retroperitoneal, trans psoas (through the Psoas muscle), contralateral, and along the spinal foramen.
  • the approach to the intervertebral disc space should not be interpreted to limit the use of the invention for the repair or reconstruction of the an aperture, weakened or thin portion of the annulus, as described herein.
  • the boundary in the intervertebral disc space between the annulus fibrosus and the nucleus pulposus as depicted herein may be demarked or otherwise highlighted; however, it is important to recognize that these tissues are not as precisely demarked in human tissues, and may be even less so as the patient ages or evinces degeneration of the intervertebral disc. This demarcation may be especially difficult to discern during an operative procedure, using for example; available surgical tools (i.e., probes), fluoroscopic guidance (x-ray), or visual (endoscope) guidance.
  • the layers of the annulus have more structural integrity (and strength) than the nucleus, and this integrity varies from the outer most layers of the annulus being of higher structural integrity than the inner most layers of the annulus.
  • the drawings and descriptions herein are necessarily simplified to depict the operation of the devices and illustrate various steps in the method.
  • the tissues may be manipulated by, and are frequently in contact with, the various tools and devices; however, for clarity of construction and operation, the figures may not show intimate contact between the tissues the tools and the devices.
  • a herniated disc occurs when disc nucleus material emerges from the subannular region and outside of the disc. Herniated disc nucleus material then impinges on nerve tissue, causing pain.
  • a discectomy attempts to relieve pressure on the nerve tissue through surgical removal of disc material, the result usually being an aperture in the disc annulus wall, and usually a void in the subannular space where disc nucleus was removed, as shown in FIG. 11B .
  • FIG. 11B typifies a disc after the discectomy procedure has been performed, as do most of the drawings and descriptions contained herein.
  • Tools and instruments that may be used to perform these functions may include: scalpels, Cobb elevators, Kerrison punch, various elevators (straight, angled, for example a Penfield), nerve probe hook, nerve retractor, curettes (angled, straight, ringed), rongeurs (straight or angulated, for example a Peapod), forceps, needle holders, nerve root retractors, scissors. This list is illustrative, but is not intended to be exhaustive or interpreted as limiting.
  • probe e.g., Penfield elevator
  • prepare e.g., angled or ringed curette, rongeur, forceps
  • generally assess e.g., angled probe
  • treatment site or facilitate the manipulation (e.g., forceps, needle holder), introduction (e.g., forceps, needle holder, angled probe), or deployment (e.g., forceps, needle holder, angled probe) of the treatment device and/or it's components.
  • the following exemplary embodiments are introduced here to provide inventive illustrations of the types of techniques that can be employed to reduce the time and skill required to affix the patch to the annulus, versus suturing and tying a knot.
  • FIGS. 33-46 depict an illustrative method for the deployment of a treatment device into the intervertebral disc 200 .
  • FIGS. 33-46 depict an illustrative method for the deployment of a treatment device into the intervertebral disc 200 .
  • there are a variety of applications, approaches, techniques, tools, and methods for accessing and performing spinal disc surgery which may be dependent on physician preferences and could be arbitrary. Therefore, the following description and depiction of the method should be considered illustrative and not limiting.
  • the disc 200 which is comprised of the annulus fibrosus 202 and the nucleus pulposus 204 , is shown in a transverse cross section.
  • the disc 200 as described above, is disposed anatomically between caudal and cephalad vertebral bodies, which a portion of a vertebral body (spinous process 206 ) seen in FIG. 30 .
  • the disc 200 may be accessed for treatment via a surgical incision 208 made in the paramedian region lateral of the spinal canal 210 .
  • a microdiscectomy procedure may precede the placement of a treatment device in order to remove disc fragments and to provide a subannular cavity 212 .
  • the subannular cavity 212 may be preexisting or may be created for the purpose of performing a nuclear augmentation
  • An aperture 214 in the annulus provides a path for the mesh or treatment device delivery tool 500 to place treatment device 600 .
  • the treatment device 600 can take the form as described in the embodiments above, or as additionally described below with reference to FIGS. 63-64 , as described in commonly-assigned copending U.S. patent application Ser. No. 10/352,981, filed on Jan. 29, 2003 and incorporated herein by reference, or any other appropriate form.
  • the anchor band delivery device 400 can take the form as described in the embodiments above, or as additionally described below with reference to FIGS. 47-52 , as described in commonly-assigned copending U.S. patent application Ser. No. 10/327,106, filed on Dec. 24, 2002 and incorporated herein by reference or any other appropriate form.
  • a delivery device 500 is introduced through surgical incision 208 to traverse aperture 214 and position treatment device 600 in subannular cavity 212 .
  • treatment device 600 is in a first configuration sized to permit its passage to the subannular cavity 212 .
  • FIG. 42 shows a detail, sagittal view of mesh device 600 mounted on the distal portion 602 of delivery tool 500 , introduced to the cavity. Also shown are sections of intervertebral disc tissues.
  • treatment device 600 may have element 608 to latch the mesh device once deployed into its final deployed configuration. If required, there may be a variety of ways to latch, lock or otherwise secure the device in its final configuration, as described previously, or additionally depicted and described below in FIGS. 71A-E .
  • the treatment device delivery tool 500 can be manipulated by, for example, pulling a finger grip 502 in the direction of arrow 300 to deploy treatment device 600 in the subannular cavity 212 . As illustrated here, this deployment involves a longitudinal shortening of the treatment device, drawing end 606 toward end 604 , resulting in a lateral expansion of the treatment device 600 .
  • the pulling of the finger grip 502 may be preceded by the release of a safety lock 504 preventing deployment of the treatment device until intended by the surgeon. As illustrated here, the lock is released through rotation of handle member 504 in the direction of arrow 302 .
  • a marking 538 on the delivery tool 500 may visually assist the surgeon in assessing the degree to which the device has been placed in subannular space.
  • FIG. 35 shows the finger grip 502 reaching its intended limit, and the concomitant full intended deployment of treatment device 600 , where end 606 reaches its intended design position for the deployed configuration of the device 600 .
  • end 606 is pulled adjacent to end 604 , and device 600 has reached its maximum intended lateral expansion.
  • the deployed device 600 may be pulled to internally engage and at least partially conform to the cavity 212 .
  • the full travel of the finger grip 502 can be determined by the design of the delivery device, or informed by the judgment of the surgeon through visualization, tactile realization, or the like.
  • the delivery tool 500 may also be advantageous for the delivery tool 500 to have a perceptible (i.e., audible, tactile, visual) indication that the treatment device has been fully deployed.
  • the mesh/patch delivery tool 500 may be of the type described hereinabove, or as additionally described in FIGS. 57-62 below, or in other sections of this disclosure.
  • An enhancement to the delivery of the treatment device 600 with mesh delivery tool 500 may include delivery support elements that project from the mesh delivery tool 500 to further enhance the deployment shape and configuration of the treatment device during deployment and “seating” of the device against annular tissue.
  • FIG. 65 shows a detail, sagittal view of mesh device 600 mounted on the distal portion 602 of delivery tool 500 , introduced to the cavity having two delivery support elements 540 passing along the axis of the delivery tool 500 and attached to the treatment device 600 .
  • the delivery support elements 540 as shown in FIG. 65 may be of a variety of constructions and materials; although, as depicted in one embodiment of the invention in FIG. 65 , they represent sutures or tethers used to support the delivery of the treatment device.
  • each end of the suture is attached to a proximal actuating member of the delivery device, such as finger grip assembly 502 .
  • a proximal actuating member of the delivery device such as finger grip assembly 502 .
  • the suture line of delivery support element 540 passes: through a proximal portion of the mesh into a distal portion within the mesh ( 540 ′—the proximal detachable portion of 540 ), out of the mesh and back into the mesh in a distal portion of the treatment device, and then back out of a proximal portion of the mesh.
  • delivery support elements assist in the deployment of the treatment device 600 and facilitate “seating” of treatment device 600 , as may be required, to a final configuration that abuts, conforms, or otherwise is in proximity to the tissues in need of repair, as shown FIG. 66 .
  • FIG. 66 is similar to FIG.
  • Delivery support elements 540 advantageously provide increased “leverage” by treatment delivery device 500 to controllably deliver, deploy and open a treatment device in a locale and configuration as desired. Additionally, the delivery support elements allow a surgeon to “pull back” and seat a treatment device against more rigid tissue, such as the outer layers of the annulus, while not buckling or otherwise deforming the treatment device during the seating process as it is pulled through softer tissues such as nucleus pulposus and the inner layers of the annulus fibrosus. Importantly, the delivery support elements allow a more reliable delivery of a treatment device which is extremely important for a surgeon since there is no easy way to visualize adequate delivery of the implant.
  • FIGS. 65 and 66 depict a mesh delivery tool 500 having two delivery support members 540 arranged in a caudal/cephalad arrangement, although the number of delivery support elements and their arrangement could be varied depending on the treatment device support needed and the final deployed configuration desired.
  • delivery tool 500 could be constructed to use only a single delivery support member 540 to direct the deployment of the treatment device in a single direction.
  • multiple support elements can be used to control the mesh deployment in multiple directions, for example, in four directions—medial, lateral, cephalad and caudal, or any other arrangement that advantageously situates the treatment device in a desired configuration.
  • FIGS. 65 and 66 depict an arrangement of the delivery support elements being located cephalad and caudal to an annular aperture, although this is for illustration purposes only and a medial/lateral arrangement could also be employed.
  • Controlled delivery, seating and deployment of the treatment device may also be beneficial in optimally opening the treatment device to accommodate the fixation of the device to annular tissue, with various means as described herein.
  • support elements may be attached to a separate actuator to actuate the support elements before, during, or after the deployment of the treatment device.
  • FIG. 36 next depicts a fixation element or anchor band delivery device 400 introduced through surgical incision 208 , where the distal end 402 is passed through the annulus fibrosus 202 adjacent to the aperture 214 , and subsequently through treatment device 600 , as illustrated by arrow 190 .
  • Fixation element delivery tool 400 may have features to provide tactile feedback once the delivery tool has been introduced into tissue to an acceptable extent, for example a feature like tissue-stop 432 . As illustrated, delivery device 400 is passed distally until stop 432 and pledget member 309 of the fixation device 308 come in contact with the outer surface of the annulus.
  • FIG. 44 shows a detail, sagittal view of a distal end of a fixation element delivery tool 400 introduced into disc tissue and through treatment patch 600 . As shown in FIG. 44 , one fixation element has been deployed and fixated. FIG. 44 also depicts an exemplary treatment device detection feature 442 on the outer surface of needle cannula 428 , as more clearly illustrated in FIG. 48 .
  • the patch detection feature 442 on the distal end of needle cannula 428 may advantageously provide perceptible feedback (tactile and/or audible) to the surgeon that the anchor band delivery tool has accessed and penetrated the patch and it is therefore acceptable to deliver the band.
  • Feature 442 is discussed in more detail below.
  • the delivery device 400 can be manipulated similarly to the treatment device delivery tool. For example, moving finger grip 404 in the direction of arrow 304 will withdraw a portion (for example, the slotted needle cannula 428 ) of distal end 402 of the device 400 and deploy a fixation element 308 , as more described below, in the subannular cavity 212 to secure the treatment device 600 .
  • the pulling of the finger grip 404 may be preceded by the release of a safety lock 406 preventing deployment of the fixation element until intended by the surgeon. As illustrated here, the safety 406 is released through rotation of safety 406 in the direction of arrow 306 .
  • the fixation element delivery tool 400 may be of the type described hereinabove, or as additionally described in FIGS. 47-56 below, or in other areas of this disclosure
  • FIG. 37 depicts the deployment of a fixation element, 308 into disc tissue following the deployment of FIG. 36 .
  • the fixation device may be as described above, for instance a T-anchor, suture, tether, knot, pledget or barb.
  • the fixation element 308 is a T-anchor with suture bodies, knot, and pledget as more fully described below.
  • a knot pusher end 406 of inner cannula 426 is shown holding a proximal portion of the fixation device's 308 slip knot 440 , while T-anchor 316 is drawn in tension proximally by tether or suture line 310 , to adjust the length of the fixation element 308 to provide the proper tension to securely hold the treatment device 600 in situ.
  • a proximal end of the fixation element such as a pledget 309 , is held or urged into engagement with a bearing surface on the exterior of the annulus.
  • the proximal end of the fixation device can also include a T-anchor or knot or similar tissue locking element.
  • FIG. 48 is a cross sectional view of the distal end of delivery tool 400 as it may be introduced in disc tissue.
  • FIG. 55 shows the distal end of the delivery tool 400 after retraction of the slotted needle cannula 428 and tensioning and drawing T-anchor 316 proximally to a potential final state.
  • the proximal drawing of T-anchor 316 is also illustrated in a detail, sagittal view in FIG. 45 , with arrows 324 illustrating motion of the T-anchor.
  • the construction of the locking element 316 is exemplary and is not intended to be limiting of alternative constructions of 316 , such as one or more pledgets, knots, barbs or other forms to effect the same function.
  • FIG. 38 shows the partial withdrawal of the fixation element delivery device once the fixation element has been deployed.
  • the final step during the pulling of finger grip 404 proximally results in the release of the fixation element in situ.
  • the release may be accompanied by visual or tactile or auditory confirmation, such as a click.
  • the fixation element delivery tool can be completely withdrawn as shown in FIG. 39 , leaving the suture body 310 of a fixation element extending through the surgical incision 208 .
  • the proximal portion of suture body 310 may be cut to a suitable length with readily available surgical tools such as a scalpel or surgical scissors and removed from the surgical site.
  • FIG. 43 shows a detail, sagittal view of a single deployed anchor band assembly 308 with T-anchor 316 , pledget 309 , slip knot 440 and associated tether components 318 and 310 (after it has been cut in the epi-annular space). Also shown are portions or sections of intervertebral disc tissues. As shown, fixation element 308 is fixedly engaged with the disc tissue and the patch 600 . FIG. 40 depicts the treatment device 600 after placement of 2 fixation devices 308 , as does FIG. 46 shown in a detail, sagittal view Of course, any number of fixation devices appropriate to secure the treatment device 600 can be used.
  • device 600 may be of a construction and design, as described herein, that does not necessitate anchor bands to effect securement of device 600 within the disc space and therefore, illustrations using fixation elements are to be exemplary, and not limiting.
  • the treatment device 600 is released from the delivery tool 500 . As illustrated here, this is accomplished in a two-step process. First the release mechanism is enabled by rotating knob 506 in the direction of arrows 312 . An indicator may then be activated as shown by arrow 320 of indicator 508 in FIG. 41 , such as spring-loaded release indicator 508 to notify the surgeon that the treatment device has been released from the delivery tool 500 .
  • indicator 508 Accompanying the deployment of indicator 508 is the uncoupling of the treatment device 600 at the distal end 602 , as will be described in greater detail below.
  • the delivery tool 500 can then be withdrawn as depicted in the transverse view of FIG. 41 , leaving treatment device 600 in situ.
  • FIGS. 47-53 depict illustrative embodiments of an fixation element delivery tool (or FEDT) as discussed above, which may be referred to alternatively as an anchor band delivery tool (or ABDT).
  • the fixation element 308 is depicted as loaded in the distal end 402 of the ABDT, which will be discussed in greater detail with reference to FIG. 48 .
  • the ABDT 400 is comprised of a main body member 410 which may be fixedly attached distally to outer cannula 422 , and also to inner cannula 426 at inner cannula anchor 438 . Distally, inner cannula 426 , as better illustrated in detail in FIG.
  • main body 410 may comprise a knot pusher (or other means to effect securement of suture tethers 310 and 318 with locking element 440 ) and T-anchor stand-off 434 .
  • main body 410 has disposed safety member 406 with an outside diameter telescopically and rotatably received in the inner diameter of a knob 408 .
  • Knob 408 and main body member 410 are rigidly attached to one another Slidably disposed within the lumen of the main body member 410 is suture retention block 414 , depicted with suture body 310 threaded through its center hole.
  • a spring 316 is also slidably disposed within the lumen of the main body member and can abut either suture retention block 414 or slider member 418 .
  • Slider member 418 can be integral with finger grip 404 (not shown) as depicted in FIGS. 36-38 . Attached to the proximal end of slider member 418 is a suture cutting blade assembly 420 .
  • the blade assembly serves to sever the suture body after deployment of the fixation elements as described herein.
  • a slot in the slider member 418 allows the slider member 418 to slide past the outer cannula anchor 426 and, as described previously, 426 may be stationary with respect to main body 410 .
  • a slotted needle cannula 428 slidably disposed in the lumen of the outer cannula 422 , is secured the distal end of slider member 418 by needle cannula anchor 430 , such that the translation of the slider member 418 within main body member 410 concomitantly translates the slotted hypotube 428 within the outer cannula 422 .
  • FIG. 48 is a detailed view of the distal end 402 of the ABDT 400 .
  • the slotted hypotube 428 is slidably received in the outer cannula 422 .
  • a tether, consisting of a suture line 318 and a pledget body 309 is located in proximity to an optional tissue stop 432 on the outer cannula 422 . It is also possible for pledget 309 to be held by an optional outer cannula pledget holder 433 until release of the anchor band.
  • the suture line 318 is slidably knotted to suture body 310 .
  • the distal end of suture body 310 is attached to T-anchor 316 , which is held by T-anchor stand-off 434 .
  • T-anchor stand-off 434 and knot pusher 436 may be components of inner cannula 426 .
  • needle hypotube 428 extends distally of outer cannula 422 and allows the point of slotted hypotube 428 to extend distally of the T-anchor holder 434 .
  • FIGS. 47 and 48 depict the ABDT in its initial delivery configuration.
  • the ABDT is locked in this configuration by the distal end of safety 406 engaging the finger grip 404 (not shown) as depicted in FIGS. 36-38 .
  • FIG. 36 the rotation of handle member 406 in the direction of arrow 306 allows the finger grip 404 (not shown) to engage a slot on safety 406 , and permits the surgeon to pull finger grip 404 proximally toward the proximal knob 408 .
  • FIGS. 50 and 51 illustrate the partial deployment of anchor band assembly from ABDT, wherein slotted needle cannula 428 has been partially retracted to expose T-anchor 316 .
  • FIG. 49 is a detail, cross sectional view of the distal end of the handle of ABDT 400 , illustratively showing the inter-relationships of delivery tool components in the initial configuration and
  • FIG. 52 is a similar detail, cross sectional view showing the inter-relationships after at least a partial deployment of device 400 .
  • FIG. 53 is a detail of the suture retention body 414 , suture body 310 , spring 316 and cutting assembly blade 420 , during partial deployment of delivery tool 400 , as discussed above.
  • FIG. 54 is a detail view of the blade 420 severing the suture body 310 .
  • anchor band assembly 308 is advantageously cinched into a fixing and/or compressive relationship between ends 309 and 316 , as well as any structures (e.g., nucleus, annulus, treatment device) between elements 309 and 316 .
  • suture body 310 After severing suture body 310 , suture body 310 is still attached, to the anchor band, but has at this point been severed proximally. The suture body 310 will therefore be unthreaded from the interior of the ABDT as the ABDT is withdrawn. As discussed above the suture line 310 may be further cut to length with readily available surgical scissors. Alternatively, a severing mechanism similar to those described herein in the distal portion of tool 400 may be employed to avoid an additional step of trimming the end of body 310 .
  • FIG. 53 is a detail of the suture retention body 414 , suture body 310 , spring 316 and cutting assembly blade 420 , during partial deployment of delivery tool 400 , as discussed above
  • T-anchor assembly can be designed to pass through softer, or otherwise more pliable tissues (e.g., nucleus pulposus, softer annular layers) while resisting, under the same tension, passage through tougher tissues and/or substrates (e.g., outer annular layers, treatment device construct).
  • pliable tissues e.g., nucleus pulposus, softer annular layers
  • substrates e.g., outer annular layers, treatment device construct
  • tension delivered to the suture line 310 can be limited by the interface between the slide body member 318 and the suture retention block 414 , through spring 316 such that tension is exerted on T-anchor body 316 which may sufficiently allow movement of T-anchor 316 through softer tissue, but alternatively requires a greater force to pull T-anchor body through other materials or substrates such as the treatment device 600 or outer layers of the annulus 202 .
  • Spring 316 can be designed to sufficiently draw tissues and/or the patch together, while not overloading suture line 310 when the fixation has been effected. Spring 316 may also be advantageously designed to allow blade assembly 420 , upon reaching an appropriate loading to effect the delivery, to sever the suture line 310 .
  • T-anchor body and suture line may be constructed to require approximately 5 pounds of force to draw the T-anchor assembly through nuclear tissue, but substantially greater load to draw T-anchor through annular tissue and/or patch device.
  • Spring may be designed to exert approximately 5 pounds, sufficiently pulling anchor through nuclear tissue, and in proximity to treatment device, as intended.
  • the severing and the design of the tether elements are such that the ultimate strength of the suture line is greater than the load required to draw T-anchor through soft tissue, or the like, and less than the load inflicted to cause the severing by blade assembly.
  • the description herein is intended to be illustrative and not limiting, in that other device and delivery tools could be derived to employ the inventive embodiments.
  • FIGS. 57-62 depict illustrative embodiments of a therapeutic device delivery tool (TDDT), or mesh delivery tool (or MDT) as discussed above.
  • the treatment device (or mesh or patch) 600 is depicted as loaded in the distal end of the TDDT 500 , which will be discussed in greater detail with reference to FIG. 58 .
  • the TDDT 500 is comprised of a main body housing 510 which may be fixedly attached distally to outer cannula 522 , which in a lumen thereof slidably receives a holding tube assembly 526 .
  • holding tube 526 may comprise a slotted end and accommodate an actuator rod or stylet 514 in an inner lumen.
  • main body 510 has disposed thereon safety member 504 , and has an outside diameter telescopically and rotatably received in the inner diameter of cap 506 .
  • Cap 506 forms part of end cap assembly 524 , which also comprises ball plunger assembly 536 , which will be described in greater detail below.
  • actuator body assembly 518 Slidably disposed within the lumen of the main body member 510 is actuator body assembly 518 , which abuts at its distal end, optionally in mating fashion or via detents, against a proximal end of finger grip member 502 , which his also slidably disposed in the lumen of main body 510 .
  • a spring 516 is also slidably disposed within the lumen of the main body member and can abut either actuator body assembly 518 or finger grip member 502 .
  • the finger grip member can optionally comprise finger members at a distal end, carrying detents to engage with tabs, slots, or other cooperative structure on the inner lumen of main body 510 to lock the finger grip member, aggressively or gently, in the undeployed (unused) or deployed (used) configuration.
  • a holding tube assembly in the form of a slotted hypotube needle cannula 526 , is slidably disposed in the lumen of the outer cannula 522 , and is secured to the distal end of actuator body assembly 518 , such that the translation of the finger grip member 502 proximally within main body member 510 concomitantly translates the actuator body assembly 518 , and thus holding tube assembly 526 within the outer cannula 522 .
  • FIG. 58 is a detailed view of the distal end 602 of the TDDT 500 .
  • the holding tube assembly 526 is slidably received in the outer cannula 522 .
  • the TDDT is designed to releasably deploy the treatment device 600 after the distal end 602 is navigated by the surgeon to the intended deployment site.
  • the treatment device 600 shown in cross section and discussed further below, comprises a proximal end, forming a collar or cuff 604 , and a distal end, also forming a collar or cuff 606 .
  • the proximal end 604 is slidably disposed on holding tube assembly 526 , and abuts and is held stationary by outer cannula 522 .
  • the distal end of the holding tube assembly 526 can be formed to carry treatment device latch 608 .
  • the device latch 608 is formed with a flange or other detent to engage the distal end of treatment device 600 , preferable the distal most end of distal collar 606 .
  • the slotted end of holding tube assembly 526 is held radially rigid by actuation rod 514 , such that the treatment device 600 is held firmly on the distal end 602 of the TDDT 500 .
  • FIGS. 57 and 58 depict the TDDT in its initial delivery configuration.
  • FIG. 67 depicts the treatment device delivery tool 500 of FIG. 57 with an additional inventive embodiment of delivery support elements 540 .
  • One end of each delivery support element 540 (illustratively FIG. 67 reveals two delivery support elements) may be fixedly attached to the proximal portion of the delivery tool 500 and may be actuated by, for example, finger grip 502 .
  • 540 ′ is temporarily affixed in between the junction of actuator body 518 and finger grip 502 in FIG. 67 .
  • the TDDT of FIGS. 57 and 58 is locked in this configuration by the distal end of safety 506 engaging the finger grip 502 .
  • FIG. 59 the rotation of safety 506 in the direction of arrow 302 allows the finger grip 502 to engage a slot on safety 506 , and permits the surgeon to pull finger grip 502 proximally in the direction of arrow 300 toward the proximal cap 506 . Doing so results in the translation of the slider member 518 proximally, and concomitantly, the proximal translation of the holding tube assembly 526 . The result, as further illustrated in FIG.
  • the delivery of treatment device may be enhanced with delivery support elements 540 , which also move with slider member 518 and finger grip 502 and result in the delivery of the treatment device as seen in FIG. 69 .
  • FIG. 60 depicts the distal end of the TDDT 500 after fully withdrawing the finger grip member 502 proximally, as discussed above (or FIG. 69 for enhanced delivery with delivery support members).
  • the treatment device 600 When the finger grip has reached the limit of its intended travel upon being pulled by a surgeon, the treatment device 600 will be in its deployed configuration. In this configuration, detents on the proximal end of treatment device latch 608 will be poised to engage the proximal end 604 of treatment device 600 to hold it in the deployed state.
  • the actuation rod 514 can be seen to hold the distal end of the holding tube assembly 526 engaged with the distal end 606 of the treatment device 600 , providing for maneuverability or removal until released.
  • FIGS. 61 and 62 illustrate the final deployment of the treatment device 600 just prior to withdrawal of the TDDT.
  • the rotation of cap 506 in the direction of arrow 312 releases actuator body assembly 518 from ball plunger 536 , permitting its translation proximally under the bias of spring 516 .
  • Translation of the actuator body assembly 518 withdraws actuator rod 514 in the proximal direction, which permits the release of the treatment device 600 from the distal end of the TDDT, as further described with reference to FIG. 62 .
  • the translation proximally of actuator body assembly 518 permits indicator 508 to emerge from a hole in the cap 506 , providing a perceptible indication to the surgeon that the TDDT can be removed and will leave the treatment device in situ.
  • FIG. 62 the withdrawal of the actuation rod 514 is illustrated, which allows for inward radial compression of the tip of the holding tube assembly 526 .
  • the distal end of the holding tube assembly 526 Once the distal end of the holding tube assembly 526 is compressed radially inwardly, it can then pass through the inner diameter of the treatment device latch 608 , and allow withdrawal of the entire TDDT from the treatment device 600 .
  • the final disengagement of the distal end of the outer cannula 522 can advantageously permit the engagement of detents on the treatment device latch 608 to engage the proximal collar 604 of the treatment device 600 , locking it in a deployed configuration.
  • FIGS. 70 and 71 depict the final configurations of a delivery tool 500 with delivery support elements 540 .
  • FIG. 70 illustrates the release of the releasable end of support element 540 ′ from the juncture between the actuator body 518 and the finger grip 502 after rotation of knob 506 .
  • Free ends of support elements 540 ′ may now travel distally down along the shaft of the delivery tool, through the mesh implant, and be releasably detached from the delivered mesh.
  • FIG. 71 shows the motion 542 of the end of support element 540 ′ passing distally through the mesh as the delivery tool is being withdrawn from the treatment device.
  • delivery support elements are removed from the treatment device after its acute placement.
  • the treatment device (and its delivery and deployment tools) is the unique inter-relationship of the actuator body, spring, and the holder tube assembly, allowing the device to be deployed while still holding the device firmly during deployment.
  • the use of the actuator rod to stiffen the distal end of the small diameter outer cannula, and the use of a radially compact treatment device offers additional advantages, such as the ability to pass through softer, or otherwise more pliable tissues (e.g., nucleus pulposus, softer annular layers) while resisting columnar bending during navigation.
  • a mesh patch as described in FIGS. 63 and 64 can be employed, but such a device configuration is not intended to be limiting. Other devices that expand radially through linear actuation can also be used.
  • the spring may be designed to exert approximately 5 pounds, sufficient to provide tactile control while preventing inadvertent release of the treatment device.
  • FIGS. 63 and 64 depict anterior views of the distal end 602 of the TDDT and treatment device 600 following deployment.
  • FIG. 63 shows the distal end of holding tube assembly 526 engaging the treatment device latch 608 .
  • FIG. 64 shows the distal end of 526 ′ disengaged, following withdrawal of the actuation rod 514 as discussed hereinabove.
  • FIG. 72 illustrates a further embodiment of an enhanced delivery of a treatment device 600 through the use of delivery support elements 540 and a support element collar 544 .
  • Support element collar 544 may act to hold the support elements distally and to guide elements' travel along the shaft of the treatment device delivery tool 500 .
  • the collar may be constructed to allow the support elements to movable pass through the collar, and thus the collar may remain relatively stationary along the TDDT shaft, or conversely, the collar may be affixed to the elements and be movable along the TDDT shaft.
  • the collar could have a limited dimension along the shaft, serving principally as a guide for support elements 540 ; or conversely, collar 544 could extend along a significant portion of the shaft of delivery tool 500 , resembling a tube along the outer shaft of delivery tool 500 .
  • the latter construction may provide increased leverage and support to the delivery support elements.
  • a variety of biocompatible materials may be used to construct the collar, such as, but not limited to: polymers, metals, ceramics, synthetics, engineered, shape memory, biodegradable/bioresorbable.
  • Exemplary delivery support elements 540 have been characterized previously, for exemplary reasons only, as sutures; although, it is contemplated that the construction of the support elements may take various forms such as rods, beams, bars, wires, bands, tubes or other actuating elements to assist in the deployment, opening, seating or otherwise delivery of a treatment device.
  • FIG. 73 depicts a device support element constructed of a tube and an attachment element 548 to releasably attach the support element 540 to the treatment device. The attachment element 548 is released after the delivery of the treatment device and the support element is removed with the TDDT 500 .
  • attachment element may take a variety of forms to allow attachment of support element 540 to treatment device 600 , including but not limited to: hooks, latches, knots, clips, grips, fasteners, pins, staples, clasps, slides or other attachment means.
  • Support elements and collars may be comprised of a variety of biocompatible materials, including, but not limiting: polymers, metals and metallic alloys, ceramics, synthetics, engineered, shape memory, biodegradable/bioresorbable.
  • FIG. 74 depicts an exemplary embodiment wherein a support element may be constructed of, for example, a suture with knots along its length. One end of the suture is affixed to a distal end of the treatment device. Proximally, the proximal end of treatment device may have delivery support element latch 546 configured to lockingly receive portions of a support element 540 .
  • elements along 540 may engage with the proximal portion of the treatment device to secure support elements when the treatment device is in an expanded configuration.
  • a suture line with knots is depicted to illustrate the use of an embodiment of support elements that may remain with the treatment device after deployment, however there may be a variety of different constructions of a support element 540 as well as means to lockingly attach the support element to the treatment device, utilizing for example, hooks, latches, anchors, clips, grips, fasteners, pins, staples, clasps, slides, or other attachment means.
  • These support elements may be formed from a variety of biocompatible materials including, but not limiting: polymers, metals, biodegradable/bioresorbable, natural, synthetic, genetically engineered.
  • FIG. 75 An additional exemplary embodiment of a support element that may be an integral portion of treatment device can be seen in FIG. 75 .
  • Delivery support elements 540 assist in the opening, deployment, seating and otherwise delivery of treatment device 600 .
  • Support elements 540 may be constructed of an elastic material, allowing the device to obtain the configuration in FIG. 75 when the device is deployed.
  • Elements 540 act as “tension bands” to support the opening of the device and provide tension when “seating” the device against tissue.
  • Elements may be constructed of a variety of biocompatible materials, such as: polymers, metals, synthetic, natural, engineered, superelastic alloys, shape memory, biodegradable/bioresorbable, etc.
  • any tactile, visual or audible signals to assist, or otherwise enhance, the surgeon's ability to reliably deliver and deploy treatment devices may be advantageous.
  • Assisting the delivery with the inventive enhanced delivery embodiments with delivery support elements described herein may allow for increased reliability of delivery and fixation of a treatment device for the repair of annular tissue.
  • Exemplary materials that could be used to construct the various delivery support elements, collars, attachment elements include, but are not limited to: biocompatible polymeric materials (polyester, polypropylene, polyethylene, polyimides and derivatives thereof (e.g., polyetherimide), polyamide and derivatives thereof (e.g., polyphthalamide), polyketones and derivatives thereof (e.g., PEEK, PAEK, PEKK), PET, polycarbonate, acrylic, polyurethane, polycarbonate urethane, acetates and derivatives thereof (e.g., acetal copolymer), polysulfones and derivatives thereof (e.g., polyphenylsulfone), or biocompatible metallic materials (stainless steel, nickel titanium, titanium, cobalt chromium, platinum and its alloys, gold and it alloys), or biodegradeable/bioresorbable materials, or naturally or synthetically derived materials.
  • biocompatible polymeric materials polyethylene, polyimides and derivatives thereof (e.g., poly
  • the body portions of the stent could be made of NiTi alloy, plastics including polypropylene and polyethylene, polymethylmethacrylate, stainless steel and other biocompatible metals, chromium cobalt alloy, or collagen.
  • Webbing materials can include silicone, collagen, ePTFE, DACRON, polyester, polypropylene, polyethylene, and other biocompatible materials and can be woven or non-woven.
  • Membranes might be fashioned of silicone, polypropylene, polyester, SURLYN, PEBAX, polyethylene, polyurethane or other biocompatible materials.
  • Inflation fluids for membranes can include gases, liquids, foams, emulsions, and can be or contain bioactive materials and can also be for mechanical, biochemical and medicinal purposes.
  • the stent body, webbing and/or membrane can be drug eluting or bioabsorbable, as known in the medical implant arts.
  • any of the devices or delivery tools described herein, or portions thereof, could be rendered visible or more visible via fluoroscopy, if desired, through the incorporation of radiopaque materials or markers.
  • implantable devices are constructed with MRI compatible materials.
  • devices and/or their components could be wholly or partially radiopaque, as result of, for example: compounding various radiopaque materials (e.g., barium sulphate) into device materials; affixing radiopaque materials to device structures (e.g., bands of platinum, gold, or their derivative alloys); deposition of radiopaque materials onto device structures (e.g., deposition of platinum, gold of their derivative alloys); processing radiopaque materials into device structures (e.g., braiding/weaving platinum or gold wires or its alloy derivatives).
  • One inventive way to achieve radiopacity of a device described herein, for example treatment device 600 is placing one or more radiopaque marker bands onto filaments of braided device 600 before (or possibly after) creating end

Abstract

The present invention provides methods and devices for enhancing the delivery of treatment devices for treating the annulus of an intervertebral disc. The methods and devices may employ delivery support elements to delivery tools used to deliver expandable treatment devices to the intervertebral disc. Fixation devices and methods are also disclosed, which may help to secure the treatment device in place.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 11/120,750 filed May 3, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/352,981 filed Jan. 29, 2003 and a continuation-in-part of U.S. patent application Ser. No. 10/327,106 filed Dec. 24, 2002, each of which are continuations-in-part of U.S. patent application Ser. No. 10/133,339 filed Apr. 29, 2002, which is a continuation-in-part of U.S. patent application Ser. No. 09/947,078, filed Sep. 5, 2001, now U.S. Pat. No. 6,592,625, issued Jul. 15, 2003, which is a continuation of U.S. patent application Ser. No. 09/484,706, filed Jan. 18, 2000, which claims the benefit of U.S. Provisional Application No. 60/160,710, filed Oct. 20, 1999. This application also claims, through U.S. patent application Ser. No. 10/133,339, the benefit of U.S. Provisional Application No. 60/309,105, filed Jul. 31, 2001. This application is also related to, and claims the benefit of, U.S. patent application Ser. No. 10/075,615, filed on Feb. 15, 2002. All are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The invention generally relates to methods and devices for the closure, sealing, repair, augmentation, reconstruction or otherwise treatment of an intervertebral disc annulus, and accompanying delivery devices and tools, and their methods of use. The repair can be of an aperture in the disc wall, or a weakened or thin portion. The term “aperture” refers to a hole in the annulus that is a result of a surgical incision or dissection into the intervertebral disc annulus, or the consequence of a naturally occurring tear (rent). The invention generally relates to surgical devices and methods for the treatment of intervertebral disc wall repair or reconstruction. The invention further relates to an annular repair device, or stent, for annular disc repair. These implants can be of natural or synthetic materials. The effects of said reconstruction is restoration of disc wall integrity, which may reduce the failure rate (3-21%) of a common surgical procedure (disc fragment removal or discectomy), or advantageously provide a barrier to intradiscal material migration. In particular, the invention further relates to an enhanced delivery method and device for the delivery of a patch, mesh, barrier, scaffold, or other implant to treat an intervertebral disc.
  • BACKGROUND OF THE INVENTION
  • The spinal column is formed from a number of bony vertebrae, which in their normal state are separated from each other by intervertebral discs. These discs are comprised of the annulus fibrosus, and the nucleus pulposus, both of which are soft tissue. The intervertebral disc acts in the spine as a crucial stabilizer, and as a mechanism for force distribution between adjacent vertebral bodies. Without a competent disc, collapse of the intervertebral disc may occur, contributing to abnormal joint mechanics and premature development of degenerative and/or arthritic changes.
  • The normal intervertebral disc has an outer ligamentous ring called the annulus surrounding the nucleus pulposus. The annulus binds the adjacent vertebrae together and is constituted of collagen fibers that are attached to the vertebrae and cross each other so that half of the individual fibers will tighten as the vertebrae are rotated in either direction, thus resisting twisting or torsional motion. The nucleus pulposus is constituted of soft tissue, having about 85% water content, which moves about during bending from front to back and from side to side.
  • The aging process contributes to gradual changes in the intervertebral discs. The annulus loses much of its flexibility and resilience, becoming more dense and solid in composition. The aging annulus may also be marked by the appearance or propagation of cracks or fissures in the annular wall. Similarly, the nucleus desiccates, increasing viscosity and thus losing its fluidity. In combination, these features of the aged intervertebral discs result in less dynamic stress distribution because of the more viscous nucleus pulposus, and less ability to withstand localized stresses by the annulus fibrosus due to its desiccation, loss of flexibility and the presence of fissures. Fissures can also occur due to disease or other pathological conditions. Occasionally fissures may form rents through the annular wall. In these instances, the nucleus pulposus is urged outwardly from the subannular space through a rent, often into the spinal column. Extruded nucleus pulposus can, and often does, mechanically press on the spinal cord or spinal nerve rootlet. This painful condition is clinically referred to as a ruptured or herniated disc.
  • In the event of annulus rupture, the subannular nucleus pulposus migrates along the path of least resistance forcing the fissure to open further, allowing migration of the nucleus pulposus through the wall of the disc, with resultant nerve compression and leakage of chemicals of inflammation into the space around the adjacent nerve roots supplying the extremities, bladder, bowel and genitalia. The usual effect of nerve compression and inflammation is intolerable back or neck pain, radiating into the extremities, with accompanying numbness, weakness, and in late stages, paralysis and muscle atrophy, and/or bladder and bowel incontinence. Additionally, injury, disease or other degenerative disorders may cause one or more of the intervertebral discs to shrink, collapse, deteriorate or become displaced, herniated, or otherwise damaged and compromised.
  • Surgical repairs or replacements of displaced or herniated discs are attempted approximately 390,000 times in the USA each year. Historically, there has been no known way to repair or reconstruct the annulus. Instead, surgical procedures to date are designed to relieve symptoms by removing unwanted disc fragments and relieving nerve compression. While results are currently acceptable, they are not optimal. Various authors report 3.1-21% recurrent disc herniation, representing a failure of the primary procedure and requiring re-operation for the same condition. An estimated 10% recurrence rate results in 39,000 re-operations in the United States each year.
  • Some have also suggested that the repair of a damaged intervertebral disc might include the augmentation of the nucleus pulposus, and various efforts at nucleus pulposus replacement have been reported. The present invention is directed at the repair of the annulus, whether or not a nuclear augmentation is also warranted.
  • BRIEF SUMMARY OF THE INVENTION
  • The present inventions provide methods and devices related to enhancing the delivery of devices for reconstruction of the disc wall in cases of displaced, herniated, thinned, ruptured, or otherwise damaged or infirmed intervertebral discs. In accordance with the invention, an enhanced device and method is disclosed for the delivery of devices to treat an intervertebral disc having an aperture, weakened or thin portion in the wall of the annulus fibrosis of the intervertebral disc. Repair, reconstruction, sealing, occluding an aperture, weakened or thin portion in the wall of the annulus may prevent or avoid migration of intradiscal material from the disc space. The method and device of the present invention allows controlled delivery of an expandable device as described in, for example, pending U.S. patent application Ser. No. 11/120,750, filed May 3, 2005. Reference is made to pending applications as listed above for further details about the various treatment devices, their construction and other attributes of their deliveries. This application is to further describe an invention that may be utilized to enhance the delivery of these various implants.
  • The method and device of the invention includes, in one embodiment, the steps of providing a first delivery tool having a proximal end and a distal end, the distal end carrying a treatment device; introducing the distal end of the first delivery tool at least partially into the intervertebral disc space; and deploying said treatment device said treatment delivery tool also comprising means to enhance the controlled opening of the treatment device.
  • It is also anticipated that the treatment devices and their delivery tools may be used in combination with fixation devices as described in previous pending applications identified above.
  • The objects and various advantages of the invention will be apparent from the description which follows. In general, the implantable medical treatment devices are placed, positioned, and subsequently affixed in the annulus to reduce re-extrusion of the nucleus or other intradiscal material through an aperture by: establishing a barrier or otherwise closing or partially closing an aperture; and/or helping to restore the natural integrity of the wall of the annulus; and/or promoting healing of the annulus. Increased integrity and faster and/or more thorough healing of the aperture may reduce future recurrence of herniation of the disc nucleus, or intradiscal material, from the intervertebral disc, and the recurrence of resulting radicular or back pain. In addition, it is believed that the repair of the annular tissue could promote enhanced biomechanics and reduce the possibility of intervertebral disc height collapse and segmental instability, thus possibly avoiding recurrent radicular or back pain after a surgical procedure.
  • Moreover, the repair of an annular aperture (after for example, a discectomy procedure) with the reduction of the re-extrusion of the nucleus may also advantageously reduce adhesion formation surrounding the nerve roots. The nuclear material of the disc is toxic to the nerves and is believed to cause increased inflammation surrounding the nerves, which in turn can cause increased scar formation (adhesions or epidural fibrosis) upon healing. Adhesions created around the nerve roots can cause continued back pain. Any reduction in adhesion formation is believed to reduce future recurrence of pain.
  • Annular repair devices and methods may create a mechanical barrier to the extrusion of intradiscal material (i.e., nucleus pulposus, or nuclear augmentation materials) from the disc space, add mechanical integrity to the annulus and the tissue surrounding an aperture, weakened, or thin portion of the wall of the annulus, and promote faster and more complete healing of the aperture, weakened or thin portion.
  • Although much of the discussion is directed toward the repair of the intervertebral disc after a surgical procedure, such as discectomy (a surgical procedure performed to remove herniated fragments of the disc nucleus), it is contemplated that the devices of the present invention may be used in other procedures that involve access (whether induced or naturally occurring) through the annulus of the intervertebral disc, or prophylactic application to the annulus. An example of another procedure that could require a repair technique involves the replacement of the nucleus (nucleus replacement) with an implantable nucleus material to replace the functioning of the natural nucleus when it is degenerated. The object of the invention in this case would be similar in that the repair would maintain the replacement nucleus within the disc space.
  • According to one embodiment of the present invention, treatment delivery devices such as the delivery devices described in FIGS. 43 to 46 and FIGS. 57 to 64 may be used to place an annular treatment devices which are employed to repair an aperture, degenerated, weakened, or thin portion in an intervertebral disc annulus. Placement of a treatment device as depicted, for example, in FIGS. 43 to 46 into disc tissue below the surface of an annular aperture and deploying the device to reach an optimal configuration to occlude, close, repair, augment, or otherwise treat an aperture, weakened or thin portion of the annulus fibrosus may be challenging since the device is placed with little direct visualization. A treatment device placed below the surface of the annulus is preferably inserted into the disc with a diminished dimension to allow the device to be placed through and below the aperture surface, while preferably obtaining a delivery and deployed state that is larger, acting to bridge the aperture below the outer annular surface. Since a surgeon is unable to visualize the delivery of the implant into an “open”, deployed configuration, the ability to assure that the device reliability obtains the desired, open configuration is important. Complicating the delivery is the need for the treatment device to be able to move or push softer tissue aside (i.e., nucleus pulposus and inner layers of annulus fibrosus) during delivery to appropriately situate itself in a bridging relationship over the aperture, weakened, or thin portion of the annulus needing repair. Moreover, the delivery device of the present invention also allows for the surgeon to be able to deploy the device in the subannular space and “seat” (e.g., pulling the delivery device in a proximal direction) the implant device against inner layers of the annulus without deforming the device in a manner that may compromise the implant's ability to reach a maximal deployment. The following description is exemplary of an enhanced delivery device that provides for increased “leverage” in the delivery and the deployment of a patch that is delivered to the intervertebral disc requiring repair, whether or not there may be additional elements of the device to further acutely secure the device to disc tissue, such as sutures, staples, anchor bands, barbs, tension bands, adhesives, or other acute fixation elements known to those skilled in the art.
  • The inventive treatment delivery device can be used with a variety of repair devices to seal, reconstruct and/or repair the intervertebral disc, as described in other pending applications, for example, implant devices found in FIGS. 2-4, 9, 10, 12-20, and 27-32. This list is not intended to be exclusionary but rather exemplary. In some of the devices described therein, there is: a reconfigurable device (note: patch, stent, implant, device, mesh, barrier, scaffold and treatment device are here used interchangeably) that has, in use, at least a portion of the device in the sub-annular space of the intervertebral disc annulus. In particular, the enhanced delivery device of the present invention will be described in further detail with respect to one of the embodiments of an annular patch delivery, as seen in FIGS. 33 to 64. The description is not intended to be exclusive to the delivery of the braided treatment device, but it is intended to exemplify the use of an enhanced delivery tool and one skilled in the art could readily apply the invention in a variety of delivery devices and repair implants
  • Some of the concepts disclosed hereinbelow may advantageously additionally incorporate design elements to reduce the number of steps (and time), and/or simplify the surgical technique, and/or reduce the risk of causing complications during the repair of the intervertebral disc annulus. In addition, the following treatment devices may become incorporated by the surrounding tissues, or to act as a scaffold in the short-term (3-6 months) for tissue incorporation, creating a subannular barrier in and across the aperture by placement of a patch of biocompatible material acting as a bridge or a scaffold, providing a platform for traverse of fibroblasts or other normal cells of repair existing in and around the various layers of the disc annulus.
  • Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate illustrative embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1 shows a primary closure of an opening in the disc annulus.
  • FIGS. 2A-2B show a primary closure with a stent.
  • FIGS. 3A-3D show an annulus stent being inserted into and expanded within the disc annulus.
  • FIGS. 4A-4C shows a perspective view of a further illustrative embodiment of an annulus stent, and collapsed views thereof.
  • FIGS. 5A-5C show the annulus stent of FIG. 4A being inserted into the disc annulus.
  • FIGS. 6A-6C show a method of inserting the annulus stent of FIG. 4A into the disc annulus.
  • FIG. 7 shows an illustrative embodiment of an introduction device for an annulus stent.
  • FIG. 8 shows a variation of the device depicted in FIG. 7.
  • FIGS. 9A-9C show an exemplary introduction tool for use with the devices of FIGS. 7 and 8 with a stent deflected.
  • FIGS. 10A-10B show a still further illustrative embodiment of an annulus stent employing secondary barbed fixation devices.
  • FIG. 11A shows a herniated disc in perspective view, and FIG. 11B shows the same disc after discectomy.
  • FIGS. 12A-12G show a still further illustrative embodiment of an introduced and expanded annulus stent/patch being fixated and the aperture reapproximated.
  • FIGS. 13A-13C schematically depict a still further embodiment of the invention where an expandable stent/patch is tethered in situ using a cinch line.
  • FIGS. 14A-14C schematically depict the patch of FIG. 13 being fixated through use of a barbed surgical staple device and a cinch line.
  • FIGS. 15A-15C schematically depict a still further embodiment of the invention where an expandable stent/patch is tethered in situ using a cinch line.
  • FIGS. 16A-16C schematically depict the stent/patch of FIG. 15 being fixated through use of a barbed surgical staple device that penetrates the patch/stent and a cinch line.
  • FIG. 17 depicts an exemplary use of filler material within the aperture during placement of a patch/stent tethered by a cinch line.
  • FIGS. 18A-18E show exemplary embodiments of various additional patch/stent fixation techniques.
  • FIG. 19 shows a still further illustrative embodiment of a stent/patch having a frame.
  • FIGS. 20A-20C show a still further exemplary embodiment of the invention having external fixation anchors.
  • FIGS. 21A-21C show still further embodiments of the invention having external fixation anchors.
  • FIGS. 22A-22C show still further embodiments of the invention having external fixation anchors.
  • FIG. 23 shows a delivered configuration of fixation means that may result from the use of a single, or multiple, devices to deliver multiple barbs, anchor, or T-anchors sequentially or simultaneously.
  • FIGS. 24A-24B show an illustrative configuration of an anchor band delivery device.
  • FIGS. 25A-25D show an anchor band delivery device comprising two devices, each with at least one T-anchor (barbs) and band with pre-tied knot and optional knot pusher according to illustrative embodiments of the invention.
  • FIG. 26 shows an anchor and band delivery device according to one embodiment of the invention.
  • FIGS. 27A-27B show, respectively, a lateral view of a still further exemplary embodiment of the present invention having a braided arrangement in a collapsed configuration and an axial view of the exemplary embodiment in an expanded configuration.
  • FIG. 28 shows a lateral view of the exemplary embodiment of FIG. 27A in a collapsed configuration mounted on an illustrative delivery device.
  • FIG. 29 shows a lateral cutaway view of the exemplary embodiment of FIG. 27A in a collapsed configuration.
  • FIG. 30 shows a lateral cutaway view of the exemplary embodiment of FIG. 27B in an expanded configuration.
  • FIG. 31 shows a lateral view of an illustrative delivery member as shown in the exemplary embodiment of FIGS. 29 and 30.
  • FIG. 32 shows a lateral view of an exemplary embodiment of the invention in an expanded configuration subannularly.
  • FIG. 33 shows a transverse view of a treatment device mounted on a delivery tool in an unexpanded configuration in the subannular cavity.
  • FIG. 34 shows a transverse view of the treatment device being deployed into an expanded configuration in the subannular cavity.
  • FIG. 35 shows a transverse view of the treatment device fully deployed and adjacent the annular wall.
  • FIG. 36 shows a transverse view of the placement of a fixation element delivery device into the deployed treatment device.
  • FIG. 37 shows a transverse view of the placement of a fixation element through the treatment device and the annular wall.
  • FIG. 38 shows a transverse view of after affixing a fixation element delivered in FIG. 37 and partial removal of the fixation element delivery device.
  • FIG. 39 shows a transverse view of the fixation element after removal of the fixation element delivery tool.
  • FIG. 40 shows a transverse view of an additional fixation element locked in place on the opposite side of the treatment device.
  • FIG. 41 shows a transverse view of the removal of the treatment device delivery tool.
  • FIG. 42 shows a sagittal view of an illustrative embodiment of a treatment device mounted on a delivery tool in an unexpanded configuration in the subannular cavity.
  • FIG. 43 shows a sagittal view of after affixing a fixation element to the treatment device of FIG. 42.
  • FIG. 44 shows a sagittal view of the placement of a fixation element delivery tool through the treatment device and the annular wall.
  • FIG. 45 shows a sagittal view of the placement of an additional fixation element through the treatment device and the annular wall.
  • FIG. 46 shows a sagittal view after the removal of the fixation element delivery tool.
  • FIG. 47 is a view of the anchor band delivery tool pre-deployment in cross section.
  • FIG. 48 shows a detail of the distal end of the anchor band (fixation element) delivery tool in cross section.
  • FIG. 49 shows a detail of the slide body and cannula anchor of an exemplary fixation element delivery tool in cross section.
  • FIG. 50 is a view of the anchor band delivery tool in cross section during a deployment cycle.
  • FIG. 51 is a detail of the distal end of the anchor band delivery tool depicted in FIG. 50.
  • FIG. 52 shows a detail of the slide body and cannula anchor of an exemplary fixation element delivery tool in cross section during a deployment cycle.
  • FIG. 53 shows a detail of the suture retention block and blade assembly of the anchor band delivery tool.
  • FIG. 54 is a view of the anchor band delivery tool in cross section during the cutting of the suture tether and release of the anchor band.
  • FIG. 55 shows a detail of the distal end of the anchor band delivery tool during release of the anchor band.
  • FIG. 56 shows a detail of the shows a detail of the suture retention block and blade assembly of the anchor band delivery tool during the cutting of the tether.
  • FIG. 57 depicts an illustrative embodiments of a therapeutic device delivery tool (TDDT).
  • FIG. 58 shows a detail of the distal end of the therapeutic device delivery tool with a therapeutic device mounted thereon.
  • FIG. 59 depicts the deployment of a therapeutic device using the TDDT.
  • FIG. 60 depicts a detail of the distal end of the TDDT during deployment of a therapeutic device.
  • FIG. 61 depicts the TDDT during release of the therapeutic device.
  • FIG. 62 is a detail view of the distal end of the TDDT during release of the therapeutic device.
  • FIG. 63 is a plan view along the axis of an expanded exemplary therapeutic device, showing the engagement of the TDDT latch.
  • FIG. 64 is a plan view along the axis of an expanded exemplary therapeutic device, showing the disengagement of the TDDT latch.
  • FIG. 65 shows a sagittal view of an illustrative embodiment of a treatment device mounted on a delivery tool in an unexpanded configuration in the subannular cavity, with enhanced delivery support element 540.
  • FIG. 66 shows a sagittal view of FIG. 65 after deployment and seating of the treatment device.
  • FIG. 67 depicts illustrative embodiments of the proximal end of a therapeutic device delivery tool (TDDT) with enhanced delivery support elements 540 prior to treatment device deployment.
  • FIG. 68 depicts illustrative embodiments of the proximal end of a therapeutic device delivery tool (TDDT) with enhanced delivery support elements 540 during treatment device deployment.
  • FIG. 69 depicts detail illustrative embodiments of the distal end of the TDDT with an enhanced delivery support elements 540 during deployment of a therapeutic device.
  • FIG. 70 depicts illustrative embodiments of the proximal end of a therapeutic device delivery tool (TDDT) with enhanced delivery support elements 540 after deployment of a treatment device.
  • FIG. 71 depicts detail illustrative embodiments of the distal end of the TDDT with an enhanced delivery support elements 540 after deployment of a therapeutic device.
  • FIG. 72 illustrates an alternative embodiment of the distal portion of the TDDT during the deployment of a therapeutic device with delivery support elements 540 and a element collar 544.
  • FIG. 73 illustrates an alternative embodiment of the distal portion of the TDDT during the deployment of a therapeutic device with delivery support element 540.
  • FIG. 74 illustrates an alternative embodiment of the distal portion of the TDDT and treatment device during the deployment of a therapeutic device and with delivery support element 540 that may be integral with the treatment device.
  • FIG. 75 illustrates an alternative embodiment of the distal portion of the TDDT and treatment device during the deployment of a therapeutic device and with delivery support element 540 that may be integral with the treatment device.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION
  • Reference will now be made in detail to selected illustrative embodiments of the invention, with occasional reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • As discussed in previous pending applications, it is understood that there can be a variety of device designs of patches/stents/implants/meshes/devices/treatment devices to repair damaged annular tissue and/or otherwise facilitate maintaining other intradiscal materials within the disc space. These devices can be constructed of single components or multiple components, with a variety of different materials, whether synthetic, naturally occurring, recombinated (genetically engineered) to achieve various objectives in the delivery, deployment and fixation of a device to repair or reconstruct the annulus. The following device concepts are further discussed for additional embodiments of a device and/or system for the repair of an intervertebral disc annulus. The following descriptions will illustratively depict and describe methods, devices, and tools to deliver a treatment to an intervertebral disc after a, lumbar discectomy procedure; although, it is anticipated that these methods, devices, and tools may be similarly used in a variety of applications. As an example, the embodiments described herein may also advantageously maintain materials within the disc space other than natural disc tissue (nucleus, annulus, cartilage, etc.), such as implants and materials that may be used to replace and/or augment the nucleus pulposus or other parts of disc's tissues. These procedures may be performed to treat, for example, degenerative disc disease. Whether these materials are intended to replace the natural functioning of the nucleus pulposus (i.e., implantable prosthetics or injectable, in-situ curable polymer protein, or the like) or provide a fusion between vertebral bodies (i.e., implantable bony or synthetic prosthetics with materials to facilitate fusion, such as growth factors like bone morphogenic proteins) one skilled in the art would realize that variations to the embodiments described herein may be employed to better address characteristic differences in the various materials and/or implants that could be placed within the intervertebral disc space, and that these variations would be within the scope of the invention.
  • Furthermore, it should be noted that surgeons differ in their techniques and methods in performing an intervention on a spinal disc, and the inventive descriptions and depictions of methods, devices and delivery tools to repair annular tissue could be employed with a variety of surgical techniques; such as, but not limited to: open surgical, microsurgical discectomy (using a magnifying scope or loupes), minimally invasive surgical (through, for example, a METRx™ system available from Medtronic, Inc.), and percutaneous access. Surgeons may also employ a variety of techniques for intra-operative assessment and/or visualization of the procedure, which may include: intra-operative probing, radiography (e.g., C-arm, flat plate), and endoscopy. It is contemplated that the inventive embodiments described are not limited by the various techniques that may be employed by the surgeon.
  • In addition, the surgical approach to the intervertebral disc throughout the figures and descriptions depict a common approach, with related structures, to a lumbar discectomy; although, it is possible that surgeons may prefer alternative approaches to the intervertebral disc for various applications (for example, different intervertebral disc levels such as the cervical or thoracic region, or for nucleus augmentation), which may include, but is not limited to: posterior-lateral, anterior, anterior-lateral, transforaminal, extra-foraminal, extra-pedicular, axial (i.e., through the vertebral bodies), retroperitoneal, trans psoas (through the Psoas muscle), contralateral, and along the spinal foramen. The approach to the intervertebral disc space should not be interpreted to limit the use of the invention for the repair or reconstruction of the an aperture, weakened or thin portion of the annulus, as described herein.
  • It is also important to note that the boundary in the intervertebral disc space between the annulus fibrosus and the nucleus pulposus as depicted herein may be demarked or otherwise highlighted; however, it is important to recognize that these tissues are not as precisely demarked in human tissues, and may be even less so as the patient ages or evinces degeneration of the intervertebral disc. This demarcation may be especially difficult to discern during an operative procedure, using for example; available surgical tools (i.e., probes), fluoroscopic guidance (x-ray), or visual (endoscope) guidance. However, in general, the layers of the annulus have more structural integrity (and strength) than the nucleus, and this integrity varies from the outer most layers of the annulus being of higher structural integrity than the inner most layers of the annulus.
  • Moreover, the drawings and descriptions herein are necessarily simplified to depict the operation of the devices and illustrate various steps in the method. In use, the tissues may be manipulated by, and are frequently in contact with, the various tools and devices; however, for clarity of construction and operation, the figures may not show intimate contact between the tissues the tools and the devices.
  • As depicted in FIG. 11A, a herniated disc occurs when disc nucleus material emerges from the subannular region and outside of the disc. Herniated disc nucleus material then impinges on nerve tissue, causing pain. A discectomy attempts to relieve pressure on the nerve tissue through surgical removal of disc material, the result usually being an aperture in the disc annulus wall, and usually a void in the subannular space where disc nucleus was removed, as shown in FIG. 11B. FIG. 11B typifies a disc after the discectomy procedure has been performed, as do most of the drawings and descriptions contained herein. However, it should be understood that in order to perform a discectomy procedure, there are a variety of instruments and tools readily available to the surgeon during spine surgery, or other surgical procedures, to obtain the outcome as shown in FIG. 11, or other outcomes intended by the surgeon and the surgical procedure. These tools and instruments may be used to: incise, resect, dissect, remove, manipulate, elevate, retract, probe, cut, curette, measure or otherwise effect a surgical outcome. Tools and instruments that may be used to perform these functions may include: scalpels, Cobb elevators, Kerrison punch, various elevators (straight, angled, for example a Penfield), nerve probe hook, nerve retractor, curettes (angled, straight, ringed), rongeurs (straight or angulated, for example a Peapod), forceps, needle holders, nerve root retractors, scissors. This list is illustrative, but is not intended to be exhaustive or interpreted as limiting. It is anticipated that some of these tools and/or instruments could be used before, during, or after the use of the inventive methods, devices and tools described herein in order to access, probe (e.g., Penfield elevator), prepare (e.g., angled or ringed curette, rongeur, forceps), and/or generally assess (e.g., angled probe) treatment site or facilitate the manipulation (e.g., forceps, needle holder), introduction (e.g., forceps, needle holder, angled probe), or deployment (e.g., forceps, needle holder, angled probe) of the treatment device and/or it's components.
  • The are a variety of ways to affix a device to the wall of the annulus in addition to those discussed hereinabove. The following exemplary embodiments are introduced here to provide inventive illustrations of the types of techniques that can be employed to reduce the time and skill required to affix the patch to the annulus, versus suturing and tying a knot.
  • An exemplary embodiment of the enhanced method and device of a treatment delivery tool is the description of an enhanced delivery of the braided device as depicted in FIGS. 24 to 32, FIGS. 33 to 46, and FIGS. 57 to 64. As described previously in pending U.S. patent application Ser. No. 11/120,750, FIGS. 33-46 depict an illustrative method for the deployment of a treatment device into the intervertebral disc 200. As described previously, there are a variety of applications, approaches, techniques, tools, and methods for accessing and performing spinal disc surgery which may be dependent on physician preferences and could be arbitrary. Therefore, the following description and depiction of the method should be considered illustrative and not limiting. In the illustrative scenario which is used in the following descriptions, and with reference to FIG. 33, the disc 200, which is comprised of the annulus fibrosus 202 and the nucleus pulposus 204, is shown in a transverse cross section. The disc 200, as described above, is disposed anatomically between caudal and cephalad vertebral bodies, which a portion of a vertebral body (spinous process 206) seen in FIG. 30. The disc 200 may be accessed for treatment via a surgical incision 208 made in the paramedian region lateral of the spinal canal 210. A microdiscectomy procedure may precede the placement of a treatment device in order to remove disc fragments and to provide a subannular cavity 212. The subannular cavity 212, however, may be preexisting or may be created for the purpose of performing a nuclear augmentation An aperture 214 in the annulus provides a path for the mesh or treatment device delivery tool 500 to place treatment device 600. The treatment device 600 can take the form as described in the embodiments above, or as additionally described below with reference to FIGS. 63-64, as described in commonly-assigned copending U.S. patent application Ser. No. 10/352,981, filed on Jan. 29, 2003 and incorporated herein by reference, or any other appropriate form. Likewise, the anchor band delivery device 400 can take the form as described in the embodiments above, or as additionally described below with reference to FIGS. 47-52, as described in commonly-assigned copending U.S. patent application Ser. No. 10/327,106, filed on Dec. 24, 2002 and incorporated herein by reference or any other appropriate form.
  • As shown in FIG. 33, a delivery device 500 is introduced through surgical incision 208 to traverse aperture 214 and position treatment device 600 in subannular cavity 212. As depicted, treatment device 600 is in a first configuration sized to permit its passage to the subannular cavity 212. FIG. 42 shows a detail, sagittal view of mesh device 600 mounted on the distal portion 602 of delivery tool 500, introduced to the cavity. Also shown are sections of intervertebral disc tissues. As illustrated, treatment device 600 may have element 608 to latch the mesh device once deployed into its final deployed configuration. If required, there may be a variety of ways to latch, lock or otherwise secure the device in its final configuration, as described previously, or additionally depicted and described below in FIGS. 71A-E.
  • As depicted in FIG. 34, the treatment device delivery tool 500 can be manipulated by, for example, pulling a finger grip 502 in the direction of arrow 300 to deploy treatment device 600 in the subannular cavity 212. As illustrated here, this deployment involves a longitudinal shortening of the treatment device, drawing end 606 toward end 604, resulting in a lateral expansion of the treatment device 600. The pulling of the finger grip 502 may be preceded by the release of a safety lock 504 preventing deployment of the treatment device until intended by the surgeon. As illustrated here, the lock is released through rotation of handle member 504 in the direction of arrow 302. Also shown is a marking 538 on the delivery tool 500 that may visually assist the surgeon in assessing the degree to which the device has been placed in subannular space.
  • FIG. 35 shows the finger grip 502 reaching its intended limit, and the concomitant full intended deployment of treatment device 600, where end 606 reaches its intended design position for the deployed configuration of the device 600. In this illustrative depiction, end 606 is pulled adjacent to end 604, and device 600 has reached its maximum intended lateral expansion. As shown, the deployed device 600 may be pulled to internally engage and at least partially conform to the cavity 212. Naturally, the full travel of the finger grip 502 can be determined by the design of the delivery device, or informed by the judgment of the surgeon through visualization, tactile realization, or the like. Once the intended limit has been achieved and the device fully deployed, the delivery device 500 can lock finger pull 502 in place so as to maintain the treatment device 600 in the deployed configuration. It may also be advantageous for the delivery tool 500 to have a perceptible (i.e., audible, tactile, visual) indication that the treatment device has been fully deployed. The mesh/patch delivery tool 500 may be of the type described hereinabove, or as additionally described in FIGS. 57-62 below, or in other sections of this disclosure.
  • An enhancement to the delivery of the treatment device 600 with mesh delivery tool 500 may include delivery support elements that project from the mesh delivery tool 500 to further enhance the deployment shape and configuration of the treatment device during deployment and “seating” of the device against annular tissue. FIG. 65 shows a detail, sagittal view of mesh device 600 mounted on the distal portion 602 of delivery tool 500, introduced to the cavity having two delivery support elements 540 passing along the axis of the delivery tool 500 and attached to the treatment device 600. The delivery support elements 540 as shown in FIG. 65 may be of a variety of constructions and materials; although, as depicted in one embodiment of the invention in FIG. 65, they represent sutures or tethers used to support the delivery of the treatment device. Generally, each delivery support element in FIG. 65 is a suture line that follows a “looped” pathway from the proximal end of the delivery tool to the distal end of the delivery tool, through the treatment device, and returns back to the proximal end of the delivery tool, wherein each end of the suture is attached to a proximal actuating member of the delivery device, such as finger grip assembly 502. Distally, and in more detail as seen in FIG. 69, the suture line of delivery support element 540 passes: through a proximal portion of the mesh into a distal portion within the mesh (540′—the proximal detachable portion of 540), out of the mesh and back into the mesh in a distal portion of the treatment device, and then back out of a proximal portion of the mesh. Upon deployment of mesh delivery tool 500, delivery support elements assist in the deployment of the treatment device 600 and facilitate “seating” of treatment device 600, as may be required, to a final configuration that abuts, conforms, or otherwise is in proximity to the tissues in need of repair, as shown FIG. 66. FIG. 66 is similar to FIG. 43 except that the delivery tool is enhanced with delivery support elements 540. Delivery support elements 540 advantageously provide increased “leverage” by treatment delivery device 500 to controllably deliver, deploy and open a treatment device in a locale and configuration as desired. Additionally, the delivery support elements allow a surgeon to “pull back” and seat a treatment device against more rigid tissue, such as the outer layers of the annulus, while not buckling or otherwise deforming the treatment device during the seating process as it is pulled through softer tissues such as nucleus pulposus and the inner layers of the annulus fibrosus. Importantly, the delivery support elements allow a more reliable delivery of a treatment device which is extremely important for a surgeon since there is no easy way to visualize adequate delivery of the implant.
  • FIGS. 65 and 66 depict a mesh delivery tool 500 having two delivery support members 540 arranged in a caudal/cephalad arrangement, although the number of delivery support elements and their arrangement could be varied depending on the treatment device support needed and the final deployed configuration desired. For example, delivery tool 500 could be constructed to use only a single delivery support member 540 to direct the deployment of the treatment device in a single direction. Alternatively, multiple support elements can be used to control the mesh deployment in multiple directions, for example, in four directions—medial, lateral, cephalad and caudal, or any other arrangement that advantageously situates the treatment device in a desired configuration. FIGS. 65 and 66 depict an arrangement of the delivery support elements being located cephalad and caudal to an annular aperture, although this is for illustration purposes only and a medial/lateral arrangement could also be employed.
  • Controlled delivery, seating and deployment of the treatment device may also be beneficial in optimally opening the treatment device to accommodate the fixation of the device to annular tissue, with various means as described herein.
  • Although the previous description describes the deployment of the support elements as being attached to the same actuator as the treatment device, and delivered at the same time as the deployment of the treatment device, it is also possible that separate actuators could be employed to deliver the functioning of the support elements separately from the treatment. For example, support elements may be attached to a separate actuator to actuate the support elements before, during, or after the deployment of the treatment device.
  • FIG. 36 next depicts a fixation element or anchor band delivery device 400 introduced through surgical incision 208, where the distal end 402 is passed through the annulus fibrosus 202 adjacent to the aperture 214, and subsequently through treatment device 600, as illustrated by arrow 190. Fixation element delivery tool 400 may have features to provide tactile feedback once the delivery tool has been introduced into tissue to an acceptable extent, for example a feature like tissue-stop 432. As illustrated, delivery device 400 is passed distally until stop 432 and pledget member 309 of the fixation device 308 come in contact with the outer surface of the annulus. Alternatively, and without tissue stop 432 use, pledget member 309 could be of construction to similarly resist, or otherwise visually or tactilely indicate ceasing the passage of delivery device 400 through annular tissue. FIG. 44 shows a detail, sagittal view of a distal end of a fixation element delivery tool 400 introduced into disc tissue and through treatment patch 600. As shown in FIG. 44, one fixation element has been deployed and fixated. FIG. 44 also depicts an exemplary treatment device detection feature 442 on the outer surface of needle cannula 428, as more clearly illustrated in FIG. 48. The patch detection feature 442 on the distal end of needle cannula 428 may advantageously provide perceptible feedback (tactile and/or audible) to the surgeon that the anchor band delivery tool has accessed and penetrated the patch and it is therefore acceptable to deliver the band. Feature 442 is discussed in more detail below. In operation as illustrated in FIG. 36 and in FIG. 37, the delivery device 400 can be manipulated similarly to the treatment device delivery tool. For example, moving finger grip 404 in the direction of arrow 304 will withdraw a portion (for example, the slotted needle cannula 428) of distal end 402 of the device 400 and deploy a fixation element 308, as more described below, in the subannular cavity 212 to secure the treatment device 600. The pulling of the finger grip 404 may be preceded by the release of a safety lock 406 preventing deployment of the fixation element until intended by the surgeon. As illustrated here, the safety 406 is released through rotation of safety 406 in the direction of arrow 306. The fixation element delivery tool 400 may be of the type described hereinabove, or as additionally described in FIGS. 47-56 below, or in other areas of this disclosure
  • FIG. 37 depicts the deployment of a fixation element, 308 into disc tissue following the deployment of FIG. 36. The fixation device may be as described above, for instance a T-anchor, suture, tether, knot, pledget or barb. As illustrated here, the fixation element 308 is a T-anchor with suture bodies, knot, and pledget as more fully described below. During the pulling of finger grip 404 and retraction of slotted needle cannula 428, a knot pusher end 406 of inner cannula 426 is shown holding a proximal portion of the fixation device's 308 slip knot 440, while T-anchor 316 is drawn in tension proximally by tether or suture line 310, to adjust the length of the fixation element 308 to provide the proper tension to securely hold the treatment device 600 in situ. A proximal end of the fixation element, such as a pledget 309, is held or urged into engagement with a bearing surface on the exterior of the annulus. The proximal end of the fixation device can also include a T-anchor or knot or similar tissue locking element. FIG. 48 is a cross sectional view of the distal end of delivery tool 400 as it may be introduced in disc tissue. FIG. 55 shows the distal end of the delivery tool 400 after retraction of the slotted needle cannula 428 and tensioning and drawing T-anchor 316 proximally to a potential final state. The proximal drawing of T-anchor 316 is also illustrated in a detail, sagittal view in FIG. 45, with arrows 324 illustrating motion of the T-anchor. The construction of the locking element 316 is exemplary and is not intended to be limiting of alternative constructions of 316, such as one or more pledgets, knots, barbs or other forms to effect the same function.
  • FIG. 38 shows the partial withdrawal of the fixation element delivery device once the fixation element has been deployed. In the illustrations shown, the final step during the pulling of finger grip 404 proximally results in the release of the fixation element in situ. The release may be accompanied by visual or tactile or auditory confirmation, such as a click. Once released, the fixation element delivery tool can be completely withdrawn as shown in FIG. 39, leaving the suture body 310 of a fixation element extending through the surgical incision 208. The proximal portion of suture body 310 may be cut to a suitable length with readily available surgical tools such as a scalpel or surgical scissors and removed from the surgical site. FIG. 43 shows a detail, sagittal view of a single deployed anchor band assembly 308 with T-anchor 316, pledget 309, slip knot 440 and associated tether components 318 and 310 (after it has been cut in the epi-annular space). Also shown are portions or sections of intervertebral disc tissues. As shown, fixation element 308 is fixedly engaged with the disc tissue and the patch 600. FIG. 40 depicts the treatment device 600 after placement of 2 fixation devices 308, as does FIG. 46 shown in a detail, sagittal view Of course, any number of fixation devices appropriate to secure the treatment device 600 can be used. It is also anticipated that device 600 may be of a construction and design, as described herein, that does not necessitate anchor bands to effect securement of device 600 within the disc space and therefore, illustrations using fixation elements are to be exemplary, and not limiting. Once secured, the treatment device 600 is released from the delivery tool 500. As illustrated here, this is accomplished in a two-step process. First the release mechanism is enabled by rotating knob 506 in the direction of arrows 312. An indicator may then be activated as shown by arrow 320 of indicator 508 in FIG. 41, such as spring-loaded release indicator 508 to notify the surgeon that the treatment device has been released from the delivery tool 500. Accompanying the deployment of indicator 508 is the uncoupling of the treatment device 600 at the distal end 602, as will be described in greater detail below. The delivery tool 500 can then be withdrawn as depicted in the transverse view of FIG. 41, leaving treatment device 600 in situ.
  • FIGS. 47-53 depict illustrative embodiments of an fixation element delivery tool (or FEDT) as discussed above, which may be referred to alternatively as an anchor band delivery tool (or ABDT). The fixation element 308 is depicted as loaded in the distal end 402 of the ABDT, which will be discussed in greater detail with reference to FIG. 48. The ABDT 400 is comprised of a main body member 410 which may be fixedly attached distally to outer cannula 422, and also to inner cannula 426 at inner cannula anchor 438. Distally, inner cannula 426, as better illustrated in detail in FIG. 48, may comprise a knot pusher (or other means to effect securement of suture tethers 310 and 318 with locking element 440) and T-anchor stand-off 434. Proximally, main body 410 has disposed safety member 406 with an outside diameter telescopically and rotatably received in the inner diameter of a knob 408. Knob 408 and main body member 410 are rigidly attached to one another Slidably disposed within the lumen of the main body member 410 is suture retention block 414, depicted with suture body 310 threaded through its center hole. A spring 316 is also slidably disposed within the lumen of the main body member and can abut either suture retention block 414 or slider member 418. Slider member 418 can be integral with finger grip 404 (not shown) as depicted in FIGS. 36-38. Attached to the proximal end of slider member 418 is a suture cutting blade assembly 420. The blade assembly, as will be discussed in greater detail below, serves to sever the suture body after deployment of the fixation elements as described herein. A slot in the slider member 418 allows the slider member 418 to slide past the outer cannula anchor 426 and, as described previously, 426 may be stationary with respect to main body 410. A slotted needle cannula 428, slidably disposed in the lumen of the outer cannula 422, is secured the distal end of slider member 418 by needle cannula anchor 430, such that the translation of the slider member 418 within main body member 410 concomitantly translates the slotted hypotube 428 within the outer cannula 422.
  • FIG. 48 is a detailed view of the distal end 402 of the ABDT 400. As described above, the slotted hypotube 428 is slidably received in the outer cannula 422. A tether, consisting of a suture line 318 and a pledget body 309 is located in proximity to an optional tissue stop 432 on the outer cannula 422. It is also possible for pledget 309 to be held by an optional outer cannula pledget holder 433 until release of the anchor band. The suture line 318 is slidably knotted to suture body 310. The distal end of suture body 310 is attached to T-anchor 316, which is held by T-anchor stand-off 434. As described above, T-anchor stand-off 434 and knot pusher 436 may be components of inner cannula 426. In the initial configuration, needle hypotube 428 extends distally of outer cannula 422 and allows the point of slotted hypotube 428 to extend distally of the T-anchor holder 434.
  • FIGS. 47 and 48 depict the ABDT in its initial delivery configuration. The ABDT is locked in this configuration by the distal end of safety 406 engaging the finger grip 404 (not shown) as depicted in FIGS. 36-38. Turning now to FIG. 36, the rotation of handle member 406 in the direction of arrow 306 allows the finger grip 404 (not shown) to engage a slot on safety 406, and permits the surgeon to pull finger grip 404 proximally toward the proximal knob 408. Doing so results in the translation of the slider member 418 proximally, and concomitantly, the proximal translation of the slotted needle cannula 426 (as a result of slotted needle cannula anchor 430) in the direction of arrow 326 (illustrated in FIG. 45). The result, as discussed above, is the unsheathing by the needle 428 of T-anchor 316 held by T-anchor holder 434. The translation of the slide body 418 proximally also urges the spring 416 and suture retention block 414 proximally. The suture retention block 414 is attached to suture body 310, and therefore tension is leveraged onto the suture body 310 to hold it taught and, when appropriate, draw T-anchor 316 from within the delivery tool to a position proximally.
  • FIGS. 50 and 51 illustrate the partial deployment of anchor band assembly from ABDT, wherein slotted needle cannula 428 has been partially retracted to expose T-anchor 316. FIG. 49 is a detail, cross sectional view of the distal end of the handle of ABDT 400, illustratively showing the inter-relationships of delivery tool components in the initial configuration and FIG. 52 is a similar detail, cross sectional view showing the inter-relationships after at least a partial deployment of device 400. FIG. 53 is a detail of the suture retention body 414, suture body 310, spring 316 and cutting assembly blade 420, during partial deployment of delivery tool 400, as discussed above.
  • As depicted in FIG. 54 and detail drawings of FIGS. 55 and 56, as slider body 418 continues to slide proximally, in addition to continuing to draw T-anchor as shown in FIG. 55 with arrows, the tether retention block 414 reaches the limit of it's proximal translation (discussed further below), and the slider member engages and compresses spring 316. As the spring is compressed, the blade assembly 420, which is aligned with the hole of suture retention body 414 through which suture body 310 passes, comes into engagement with the suture body 310. FIG. 56 is a detail view of the blade 420 severing the suture body 310. Up to the limit of travel of the suture block 414 and the severing of tether 310, the suture body 310 continues to apply tension to the T-anchor, as shown in greater detail in FIG. 55. With knot pusher holding knot 440, pledget 309, and suture 318 in apposition, and in distally exerted fashion, to the tensioning of suture body 310, anchor band assembly 308 is advantageously cinched into a fixing and/or compressive relationship between ends 309 and 316, as well as any structures (e.g., nucleus, annulus, treatment device) between elements 309 and 316. After severing suture body 310, suture body 310 is still attached, to the anchor band, but has at this point been severed proximally. The suture body 310 will therefore be unthreaded from the interior of the ABDT as the ABDT is withdrawn. As discussed above the suture line 310 may be further cut to length with readily available surgical scissors. Alternatively, a severing mechanism similar to those described herein in the distal portion of tool 400 may be employed to avoid an additional step of trimming the end of body 310.
  • FIG. 53 is a detail of the suture retention body 414, suture body 310, spring 316 and cutting assembly blade 420, during partial deployment of delivery tool 400, as discussed above
  • Additionally inventive of the anchor band device (and its delivery and deployment tools) is the unique inter-relationship of the slide body, spring, and the tension delivered to the T-anchor and tissue during deployment. For example, T-anchor assembly can be designed to pass through softer, or otherwise more pliable tissues (e.g., nucleus pulposus, softer annular layers) while resisting, under the same tension, passage through tougher tissues and/or substrates (e.g., outer annular layers, treatment device construct). In further illustrative description, tension delivered to the suture line 310 can be limited by the interface between the slide body member 318 and the suture retention block 414, through spring 316 such that tension is exerted on T-anchor body 316 which may sufficiently allow movement of T-anchor 316 through softer tissue, but alternatively requires a greater force to pull T-anchor body through other materials or substrates such as the treatment device 600 or outer layers of the annulus 202. Spring 316 can be designed to sufficiently draw tissues and/or the patch together, while not overloading suture line 310 when the fixation has been effected. Spring 316 may also be advantageously designed to allow blade assembly 420, upon reaching an appropriate loading to effect the delivery, to sever the suture line 310. As illustrative example, but not intended to be limiting, T-anchor body and suture line may be constructed to require approximately 5 pounds of force to draw the T-anchor assembly through nuclear tissue, but substantially greater load to draw T-anchor through annular tissue and/or patch device. Spring may be designed to exert approximately 5 pounds, sufficiently pulling anchor through nuclear tissue, and in proximity to treatment device, as intended. Once sufficient load has been applied to move T-anchor to engage patch, the loading on the suture line is not allowed to substantially increase. Advantageously, additional loading would cause the final compression of spring between suture retention block and blade assembly to sever suture line. Preferably, the severing and the design of the tether elements are such that the ultimate strength of the suture line is greater than the load required to draw T-anchor through soft tissue, or the like, and less than the load inflicted to cause the severing by blade assembly. The description herein is intended to be illustrative and not limiting, in that other device and delivery tools could be derived to employ the inventive embodiments.
  • FIGS. 57-62 depict illustrative embodiments of a therapeutic device delivery tool (TDDT), or mesh delivery tool (or MDT) as discussed above. The treatment device (or mesh or patch) 600 is depicted as loaded in the distal end of the TDDT 500, which will be discussed in greater detail with reference to FIG. 58. The TDDT 500 is comprised of a main body housing 510 which may be fixedly attached distally to outer cannula 522, which in a lumen thereof slidably receives a holding tube assembly 526. Distally, holding tube 526, as better illustrated in detail in FIG. 58, may comprise a slotted end and accommodate an actuator rod or stylet 514 in an inner lumen. Proximally, main body 510 has disposed thereon safety member 504, and has an outside diameter telescopically and rotatably received in the inner diameter of cap 506. Cap 506 forms part of end cap assembly 524, which also comprises ball plunger assembly 536, which will be described in greater detail below. Slidably disposed within the lumen of the main body member 510 is actuator body assembly 518, which abuts at its distal end, optionally in mating fashion or via detents, against a proximal end of finger grip member 502, which his also slidably disposed in the lumen of main body 510. At the proximal end of the actuator body assembly 518 is formed device release indicator 508, which will be described in greater detail below. A spring 516 is also slidably disposed within the lumen of the main body member and can abut either actuator body assembly 518 or finger grip member 502. The finger grip member can optionally comprise finger members at a distal end, carrying detents to engage with tabs, slots, or other cooperative structure on the inner lumen of main body 510 to lock the finger grip member, aggressively or gently, in the undeployed (unused) or deployed (used) configuration. A holding tube assembly, in the form of a slotted hypotube needle cannula 526, is slidably disposed in the lumen of the outer cannula 522, and is secured to the distal end of actuator body assembly 518, such that the translation of the finger grip member 502 proximally within main body member 510 concomitantly translates the actuator body assembly 518, and thus holding tube assembly 526 within the outer cannula 522.
  • FIG. 58 is a detailed view of the distal end 602 of the TDDT 500. As described above, the holding tube assembly 526 is slidably received in the outer cannula 522. The TDDT is designed to releasably deploy the treatment device 600 after the distal end 602 is navigated by the surgeon to the intended deployment site. The treatment device 600, shown in cross section and discussed further below, comprises a proximal end, forming a collar or cuff 604, and a distal end, also forming a collar or cuff 606. The proximal end 604 is slidably disposed on holding tube assembly 526, and abuts and is held stationary by outer cannula 522. The distal end of the holding tube assembly 526 can be formed to carry treatment device latch 608. The device latch 608 is formed with a flange or other detent to engage the distal end of treatment device 600, preferable the distal most end of distal collar 606. The slotted end of holding tube assembly 526 is held radially rigid by actuation rod 514, such that the treatment device 600 is held firmly on the distal end 602 of the TDDT 500.
  • FIGS. 57 and 58 depict the TDDT in its initial delivery configuration. FIG. 67 depicts the treatment device delivery tool 500 of FIG. 57 with an additional inventive embodiment of delivery support elements 540. One end of each delivery support element 540 (illustratively FIG. 67 reveals two delivery support elements) may be fixedly attached to the proximal portion of the delivery tool 500 and may be actuated by, for example, finger grip 502. The other end of the delivery support element—540′—may be releasable attached to the proximal end of the delivery tool 500. For example, 540′ is temporarily affixed in between the junction of actuator body 518 and finger grip 502 in FIG. 67. Initially, with or without the additional use of delivery support members, the TDDT of FIGS. 57 and 58 is locked in this configuration by the distal end of safety 506 engaging the finger grip 502. Turning now to FIG. 59, the rotation of safety 506 in the direction of arrow 302 allows the finger grip 502 to engage a slot on safety 506, and permits the surgeon to pull finger grip 502 proximally in the direction of arrow 300 toward the proximal cap 506. Doing so results in the translation of the slider member 518 proximally, and concomitantly, the proximal translation of the holding tube assembly 526. The result, as further illustrated in FIG. 60, is the movement of the distal end 606 of treatment device 600 moving toward the proximal end 604, resulting in a bulging or lateral expansion of the treatment device 600. The translation of the actuator body assembly 518 proximally also urges the device release indicator 508 proximally, as will be discussed further below. As can be seen in FIG. 68, the delivery of treatment device may be enhanced with delivery support elements 540, which also move with slider member 518 and finger grip 502 and result in the delivery of the treatment device as seen in FIG. 69.
  • FIG. 60 depicts the distal end of the TDDT 500 after fully withdrawing the finger grip member 502 proximally, as discussed above (or FIG. 69 for enhanced delivery with delivery support members). When the finger grip has reached the limit of its intended travel upon being pulled by a surgeon, the treatment device 600 will be in its deployed configuration. In this configuration, detents on the proximal end of treatment device latch 608 will be poised to engage the proximal end 604 of treatment device 600 to hold it in the deployed state. As illustrated in FIG. 60, the actuation rod 514 can be seen to hold the distal end of the holding tube assembly 526 engaged with the distal end 606 of the treatment device 600, providing for maneuverability or removal until released.
  • FIGS. 61 and 62 illustrate the final deployment of the treatment device 600 just prior to withdrawal of the TDDT. As shown in FIG. 61, the rotation of cap 506 in the direction of arrow 312 releases actuator body assembly 518 from ball plunger 536, permitting its translation proximally under the bias of spring 516. Translation of the actuator body assembly 518 withdraws actuator rod 514 in the proximal direction, which permits the release of the treatment device 600 from the distal end of the TDDT, as further described with reference to FIG. 62. The translation proximally of actuator body assembly 518 permits indicator 508 to emerge from a hole in the cap 506, providing a perceptible indication to the surgeon that the TDDT can be removed and will leave the treatment device in situ. Turning to FIG. 62, the withdrawal of the actuation rod 514 is illustrated, which allows for inward radial compression of the tip of the holding tube assembly 526. Once the distal end of the holding tube assembly 526 is compressed radially inwardly, it can then pass through the inner diameter of the treatment device latch 608, and allow withdrawal of the entire TDDT from the treatment device 600. The final disengagement of the distal end of the outer cannula 522 can advantageously permit the engagement of detents on the treatment device latch 608 to engage the proximal collar 604 of the treatment device 600, locking it in a deployed configuration.
  • In an alternative embodiment utilizing an enhanced delivery of a treatment device, FIGS. 70 and 71 depict the final configurations of a delivery tool 500 with delivery support elements 540. FIG. 70 illustrates the release of the releasable end of support element 540′ from the juncture between the actuator body 518 and the finger grip 502 after rotation of knob 506. Free ends of support elements 540′ may now travel distally down along the shaft of the delivery tool, through the mesh implant, and be releasably detached from the delivered mesh. FIG. 71 shows the motion 542 of the end of support element 540′ passing distally through the mesh as the delivery tool is being withdrawn from the treatment device. In this embodiment, delivery support elements are removed from the treatment device after its acute placement.
  • Additionally inventive of the treatment device (and its delivery and deployment tools) is the unique inter-relationship of the actuator body, spring, and the holder tube assembly, allowing the device to be deployed while still holding the device firmly during deployment. The use of the actuator rod to stiffen the distal end of the small diameter outer cannula, and the use of a radially compact treatment device offers additional advantages, such as the ability to pass through softer, or otherwise more pliable tissues (e.g., nucleus pulposus, softer annular layers) while resisting columnar bending during navigation. As an illustrative embodiment, a mesh patch as described in FIGS. 63 and 64 can be employed, but such a device configuration is not intended to be limiting. Other devices that expand radially through linear actuation can also be used.
  • The spring may be designed to exert approximately 5 pounds, sufficient to provide tactile control while preventing inadvertent release of the treatment device. By requiring actuation of the device in a different direction for release (i.e., rotation of the proximal cap) than that required for initial deployment (i.e., proximal translation of the finger grip), each with tactile, auditory or visually perceptible confirmation, safe an affirmative deployment can be achieved.
  • FIGS. 63 and 64 depict anterior views of the distal end 602 of the TDDT and treatment device 600 following deployment. FIG. 63 shows the distal end of holding tube assembly 526 engaging the treatment device latch 608. FIG. 64 shows the distal end of 526′ disengaged, following withdrawal of the actuation rod 514 as discussed hereinabove.
  • FIG. 72 illustrates a further embodiment of an enhanced delivery of a treatment device 600 through the use of delivery support elements 540 and a support element collar 544. Support element collar 544 may act to hold the support elements distally and to guide elements' travel along the shaft of the treatment device delivery tool 500. The collar may be constructed to allow the support elements to movable pass through the collar, and thus the collar may remain relatively stationary along the TDDT shaft, or conversely, the collar may be affixed to the elements and be movable along the TDDT shaft. It is also contemplated that the collar could have a limited dimension along the shaft, serving principally as a guide for support elements 540; or conversely, collar 544 could extend along a significant portion of the shaft of delivery tool 500, resembling a tube along the outer shaft of delivery tool 500. The latter construction may provide increased leverage and support to the delivery support elements. It is contemplated that a variety of biocompatible materials may be used to construct the collar, such as, but not limited to: polymers, metals, ceramics, synthetics, engineered, shape memory, biodegradable/bioresorbable.
  • Exemplary delivery support elements 540 have been characterized previously, for exemplary reasons only, as sutures; although, it is contemplated that the construction of the support elements may take various forms such as rods, beams, bars, wires, bands, tubes or other actuating elements to assist in the deployment, opening, seating or otherwise delivery of a treatment device. For example, FIG. 73 depicts a device support element constructed of a tube and an attachment element 548 to releasably attach the support element 540 to the treatment device. The attachment element 548 is released after the delivery of the treatment device and the support element is removed with the TDDT 500. It is also anticipated that attachment element may take a variety of forms to allow attachment of support element 540 to treatment device 600, including but not limited to: hooks, latches, knots, clips, grips, fasteners, pins, staples, clasps, slides or other attachment means. Support elements and collars may be comprised of a variety of biocompatible materials, including, but not limiting: polymers, metals and metallic alloys, ceramics, synthetics, engineered, shape memory, biodegradable/bioresorbable.
  • In addition to delivery support elements that are releasably attached to the treatment device 600, and therefore may be removed with the delivery device 500, it is contemplated that some embodiments of the invention may include delivery support elements that may partially, or wholly, remain an integral part of the implanted treatment device. For example, FIG. 74 depicts an exemplary embodiment wherein a support element may be constructed of, for example, a suture with knots along its length. One end of the suture is affixed to a distal end of the treatment device. Proximally, the proximal end of treatment device may have delivery support element latch 546 configured to lockingly receive portions of a support element 540. When support element 540 of FIG. 74 is drawn proximally in a direction depicted by arrow 542, while the treatment device is deployed, elements along 540 may engage with the proximal portion of the treatment device to secure support elements when the treatment device is in an expanded configuration. As illustrated, a suture line with knots is depicted to illustrate the use of an embodiment of support elements that may remain with the treatment device after deployment, however there may be a variety of different constructions of a support element 540 as well as means to lockingly attach the support element to the treatment device, utilizing for example, hooks, latches, anchors, clips, grips, fasteners, pins, staples, clasps, slides, or other attachment means. These support elements may be formed from a variety of biocompatible materials including, but not limiting: polymers, metals, biodegradable/bioresorbable, natural, synthetic, genetically engineered.
  • An additional exemplary embodiment of a support element that may be an integral portion of treatment device can be seen in FIG. 75. Delivery support elements 540 assist in the opening, deployment, seating and otherwise delivery of treatment device 600. Support elements 540 may be constructed of an elastic material, allowing the device to obtain the configuration in FIG. 75 when the device is deployed. Elements 540 act as “tension bands” to support the opening of the device and provide tension when “seating” the device against tissue. Elements may be constructed of a variety of biocompatible materials, such as: polymers, metals, synthetic, natural, engineered, superelastic alloys, shape memory, biodegradable/bioresorbable, etc.
  • Since the surgeon's visualization of during discectomy procedures is typically limited to the epi-annular space and the aperture at the outside surface of the annulus, any tactile, visual or audible signals to assist, or otherwise enhance, the surgeon's ability to reliably deliver and deploy treatment devices may be advantageous. Assisting the delivery with the inventive enhanced delivery embodiments with delivery support elements described herein may allow for increased reliability of delivery and fixation of a treatment device for the repair of annular tissue. Exemplary materials that could be used to construct the various delivery support elements, collars, attachment elements include, but are not limited to: biocompatible polymeric materials (polyester, polypropylene, polyethylene, polyimides and derivatives thereof (e.g., polyetherimide), polyamide and derivatives thereof (e.g., polyphthalamide), polyketones and derivatives thereof (e.g., PEEK, PAEK, PEKK), PET, polycarbonate, acrylic, polyurethane, polycarbonate urethane, acetates and derivatives thereof (e.g., acetal copolymer), polysulfones and derivatives thereof (e.g., polyphenylsulfone), or biocompatible metallic materials (stainless steel, nickel titanium, titanium, cobalt chromium, platinum and its alloys, gold and it alloys), or biodegradeable/bioresorbable materials, or naturally or synthetically derived materials.
  • All patents referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification, including; U.S. Pat. No. 5,108,438 (Stone), U.S. Pat. No. 5,258,043 (Stone), U.S. Pat. No. 4,904,260 (Ray et al.), U.S. Pat. No. 5,964,807 (Gan et al.), U.S. Pat. No. 5,849,331 (Ducheyne et al.), U.S. Pat. No. 5,122,154 (Rhodes), U.S. Pat. No. 5,204,106 (Schepers at al.), U.S. Pat. No. 5,888,220 (Felt et al.),U.S. Pat. No. 5,376,120 (Sarver et al.) and U.S. Pat. No. 5,976,186 (Bao et al.).
  • Various materials know to those skilled in the art can be employed in practicing the present invention. By means of example only, the body portions of the stent could be made of NiTi alloy, plastics including polypropylene and polyethylene, polymethylmethacrylate, stainless steel and other biocompatible metals, chromium cobalt alloy, or collagen. Webbing materials can include silicone, collagen, ePTFE, DACRON, polyester, polypropylene, polyethylene, and other biocompatible materials and can be woven or non-woven. Membranes might be fashioned of silicone, polypropylene, polyester, SURLYN, PEBAX, polyethylene, polyurethane or other biocompatible materials. Inflation fluids for membranes can include gases, liquids, foams, emulsions, and can be or contain bioactive materials and can also be for mechanical, biochemical and medicinal purposes. The stent body, webbing and/or membrane can be drug eluting or bioabsorbable, as known in the medical implant arts.
  • Further, any of the devices or delivery tools described herein, or portions thereof, could be rendered visible or more visible via fluoroscopy, if desired, through the incorporation of radiopaque materials or markers. Preferably implantable devices are constructed with MRI compatible materials. In particular, devices and/or their components could be wholly or partially radiopaque, as result of, for example: compounding various radiopaque materials (e.g., barium sulphate) into device materials; affixing radiopaque materials to device structures (e.g., bands of platinum, gold, or their derivative alloys); deposition of radiopaque materials onto device structures (e.g., deposition of platinum, gold of their derivative alloys); processing radiopaque materials into device structures (e.g., braiding/weaving platinum or gold wires or its alloy derivatives). One inventive way to achieve radiopacity of a device described herein, for example treatment device 600, is placing one or more radiopaque marker bands onto filaments of braided device 600 before (or possibly after) creating end portions of the device.
  • Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (24)

1-134. (canceled)
135. A therapeutic device delivery tool for use in the treatment of intervertebral disc tissue comprising:
a longitudinal delivery tool comprising a proximal end and a distal end configured to carry a therapeutic device releasably attached to the distal end of said tool and at least one proximal actuating member; and
at least one delivery support element connected to a therapeutic device in a first, pre-deployment configuration, and adapted to facilitate lateral deployment of a therapeutic device from the longitudinal axis of the delivery tool;
said at least one delivery support element movable in the longitudinal direction under tension to facilitate lateral deployment of a therapeutic device in a second, post-deployment configuration.
136. The therapeutic device delivery tool according to claim 135, wherein said at least one delivery support element comprises a suture line having a first end and a second end.
137. The therapeutic device delivery tool according to claim 136, wherein the first end and the second end of said suture line are attached to the proximal actuating member of said delivery tool.
138. The therapeutic device delivery tool according to claim 136, wherein the first end is attached to the proximal actuating member of said delivery tool, and the second end is attached to the proximal end of said delivery tool.
139. The therapeutic device delivery tool according to claim 136, wherein the first end is attached to a first proximal actuating member and the second end is attached to a second proximal actuating member.
140. The therapeutic device delivery tool according to claim 136, further comprising a finger grip assembly, wherein said proximal actuating member abuts said finger grip assembly, and wherein the second end is releasably affixed to a juncture between the proximal actuating member and the finger grip assembly.
141. The therapeutic device delivery tool according to claim 136, wherein said suture line extends from said tool through a therapeutic device releasably attached to the distal end of said tool.
142. The therapeutic treatment delivery device according to claim 135, comprising two or more delivery support elements.
143. The therapeutic treatment delivery device according to claim 135, wherein said at least one delivery support element is releasable from said delivery tool.
144. The therapeutic treatment delivery device according to claim 136, wherein the second end of said suture line is releasable from said delivery tool.
145. The therapeutic treatment delivery device according to claim 135, wherein said at least one delivery support element is constructed from biocompatible polymeric materials, polyamide, polyamide derivatives, polyketones, polyketone derivatives, PET, polycarbonate, acrylic, polyurethane, polycarbonate urethane, acetates, acetate derivatives, polysulfones, polysulfone derivatives, biocompatible metallic materials, biodegradable/bioresorbable materials, naturally derived materials, or synthetically derived materials.
146. The therapeutic device delivery tool according to claim 135, further comprising at least one delivery support element collar configured to distally hold said at least one delivery support element.
147. The therapeutic device delivery tool according to claim 146, wherein said at least one delivery support element collar is configured to allow said at least one delivery support element to movably pass through said collar.
148. The therapeutic device delivery tool according to claim 146, wherein said at least one delivery support element collar is affixed to said delivery tool.
149. The therapeutic device delivery tool according to claim 146, wherein said at least one delivery support element collar is movable in the longitudinal direction.
150. The therapeutic device delivery tool according to claim 146, wherein said at least one delivery support element collar comprises a tube affixed to the shaft of said tool.
151. The therapeutic device delivery tool according to claim 146, wherein said at least one delivery support element collar is constructed from a biocompatible material.
152. The therapeutic device delivery tool according to claim 151, wherein said biocompatible material is a polymer, a metal, a metallic alloy, a ceramic, a synthetic material, an engineered material, a shape memory material, or a biodegradable/bioresorbable material.
153. The therapeutic device delivery tool according to claim 135, wherein said at least one delivery support element comprises a tether, a rod, beam, wire, band, tube, or actuating element.
154. The therapeutic device delivery tool according to claim 135, wherein said at least one delivery support element comprises a suture line having at least one knot along its length.
155. The therapeutic device delivery tool according to claim 135, wherein said at least one delivery support element is integrated with the therapeutic device.
156. The therapeutic device delivery tool according to claim 135, wherein at least a portion of said at least one delivery support element is exterior to said delivery tool.
157. The therapeutic device delivery tool according to claim 135, wherein the distal end of said tool comprises a latching element.
US12/255,839 1999-10-20 2008-10-22 Method and Apparatus for Enhanced Delivery of Treatment Device to the Intervertebral Disc Annulus Abandoned US20090043343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/255,839 US20090043343A1 (en) 1999-10-20 2008-10-22 Method and Apparatus for Enhanced Delivery of Treatment Device to the Intervertebral Disc Annulus

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US16071099P 1999-10-20 1999-10-20
US48470600A 2000-01-18 2000-01-18
US30910501P 2001-07-31 2001-07-31
US09/947,078 US6592625B2 (en) 1999-10-20 2001-09-05 Spinal disc annulus reconstruction method and spinal disc annulus stent
US10/133,339 US7052516B2 (en) 1999-10-20 2002-04-29 Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US10/327,106 US7004970B2 (en) 1999-10-20 2002-12-24 Methods and devices for spinal disc annulus reconstruction and repair
US10/352,981 US20030153976A1 (en) 1999-10-20 2003-01-29 Spinal disc annulus reconstruction method and spinal disc annulus stent
US11/120,750 US7615076B2 (en) 1999-10-20 2005-05-03 Method and apparatus for the treatment of the intervertebral disc annulus
US11/235,764 US7935147B2 (en) 1999-10-20 2005-09-26 Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US12/255,839 US20090043343A1 (en) 1999-10-20 2008-10-22 Method and Apparatus for Enhanced Delivery of Treatment Device to the Intervertebral Disc Annulus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/235,764 Division US7935147B2 (en) 1999-10-20 2005-09-26 Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus

Publications (1)

Publication Number Publication Date
US20090043343A1 true US20090043343A1 (en) 2009-02-12

Family

ID=46325071

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/235,764 Expired - Fee Related US7935147B2 (en) 1999-10-20 2005-09-26 Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US12/255,839 Abandoned US20090043343A1 (en) 1999-10-20 2008-10-22 Method and Apparatus for Enhanced Delivery of Treatment Device to the Intervertebral Disc Annulus
US13/086,695 Abandoned US20110190896A1 (en) 1999-10-20 2011-04-14 Apparatus for enhanced delivery of treatment device to the intervertebral disc annulus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/235,764 Expired - Fee Related US7935147B2 (en) 1999-10-20 2005-09-26 Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/086,695 Abandoned US20110190896A1 (en) 1999-10-20 2011-04-14 Apparatus for enhanced delivery of treatment device to the intervertebral disc annulus

Country Status (1)

Country Link
US (3) US7935147B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054548A1 (en) * 2009-09-03 2011-03-03 Zimmer Spine, Inc. Spinal implant delivery methods and devices
US20110077655A1 (en) * 2009-09-25 2011-03-31 Fisher Michael A Vertebral Body Spool Device
US20110153017A1 (en) * 2009-12-22 2011-06-23 Mcclellan William T Systems and methods for tissue expansion with fluid delivery and drainage system
US8425528B2 (en) 2008-12-19 2013-04-23 Amicus Design Group, Llc Insertion tool for inter-body vertebral prosthetic device with self-deploying screws
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328221B1 (en) * 1999-08-18 2009-03-25 Intrinsic Therapeutics, Inc. Devices for nucleus pulposus augmentation and retention
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US7220281B2 (en) 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
EP1624832A4 (en) 1999-08-18 2008-12-24 Intrinsic Therapeutics Inc Devices and method for augmenting a vertebral disc nucleus
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7615076B2 (en) 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
EP1814474B1 (en) 2004-11-24 2011-09-14 Samy Abdou Devices for inter-vertebral orthopedic device placement
US20070244562A1 (en) * 2005-08-26 2007-10-18 Magellan Spine Technologies, Inc. Spinal implants and methods of providing dynamic stability to the spine
US20070050028A1 (en) * 2005-08-26 2007-03-01 Conner E S Spinal implants and methods of providing dynamic stability to the spine
US7758598B2 (en) * 2006-05-19 2010-07-20 Ethicon Endo-Surgery, Inc. Combination knotting element and suture anchor applicator
US8702733B2 (en) 2006-05-26 2014-04-22 Anova Corporation Fastening assemblies for disc herniation repair and methods of use
US20110196492A1 (en) 2007-09-07 2011-08-11 Intrinsic Therapeutics, Inc. Bone anchoring systems
EP2219561A4 (en) * 2007-11-19 2012-02-08 Magellan Spine Technologies Inc Spinal implants and methods
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8470043B2 (en) 2008-12-23 2013-06-25 Benvenue Medical, Inc. Tissue removal tools and methods of use
US9161773B2 (en) 2008-12-23 2015-10-20 Benvenue Medical, Inc. Tissue removal tools and methods of use
US8182533B2 (en) * 2009-01-19 2012-05-22 Richard Perkins Annular repair device and method
US9138209B2 (en) * 2009-01-23 2015-09-22 Warsaw Orthopedic, Inc. Annulus repair system
WO2010089717A1 (en) * 2009-02-05 2010-08-12 Newvert Ltd Implantable device for sealing a spinal annular fissure tear and method for deploying the same
US8828053B2 (en) 2009-07-24 2014-09-09 Depuy Mitek, Llc Methods and devices for repairing and anchoring damaged tissue
US8814903B2 (en) 2009-07-24 2014-08-26 Depuy Mitek, Llc Methods and devices for repairing meniscal tissue
US8795335B1 (en) * 2009-11-06 2014-08-05 Samy Abdou Spinal fixation devices and methods of use
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8652153B2 (en) 2010-01-11 2014-02-18 Anulex Technologies, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
US9743919B2 (en) 2010-04-27 2017-08-29 DePuy Synthes Products, Inc. Stitch lock for attaching two or more structures
BR112012027242A2 (en) 2010-04-27 2017-07-18 Synthes Gmbh mounting bracket including an expandable anchor
US9451938B2 (en) 2010-04-27 2016-09-27 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
US9597064B2 (en) 2010-04-27 2017-03-21 DePuy Synthes Products, Inc. Methods for approximating a tissue defect using an anchor assembly
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US9204959B2 (en) * 2012-02-02 2015-12-08 Smith & Nephew, Inc. Implantable biologic holder
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US20130289389A1 (en) * 2012-04-26 2013-10-31 Focal Therapeutics Surgical implant for marking soft tissue
WO2013179277A1 (en) 2012-05-30 2013-12-05 Newvert Ltd. Spinal disc annulus closure device
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9433404B2 (en) 2012-10-31 2016-09-06 Suture Concepts Inc. Method and apparatus for closing fissures in the annulus fibrosus
US10786235B2 (en) 2012-10-31 2020-09-29 Anchor Innovation Medical, Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
EP2948068A4 (en) 2013-01-28 2016-09-28 Cartiva Inc Systems and methods for orthopedic repair
AU2014306454B2 (en) 2013-08-16 2019-06-13 Suture Concepts Inc. Method and apparatus for closing a fissure in the annulus of an intervertebral disc, and/or for effecting other anatomical repairs and/or fixations
US10314605B2 (en) 2014-07-08 2019-06-11 Benvenue Medical, Inc. Apparatus and methods for disrupting intervertebral disc tissue
US10022243B2 (en) 2015-02-06 2018-07-17 Benvenue Medical, Inc. Graft material injector system and method
US11602368B2 (en) 2015-09-04 2023-03-14 Jeffrey Scott Smith Posterior to lateral interbody fusion approach with associated instrumentation and implants
US10524819B2 (en) * 2015-09-04 2020-01-07 Jeffrey Scott Smith Posterior to lateral interbody fusion approach with associated instrumentation and implants
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10512545B2 (en) * 2016-10-24 2019-12-24 Corelink, Llc Interbody spacer for spinal fusion
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10758286B2 (en) 2017-03-22 2020-09-01 Benvenue Medical, Inc. Minimal impact access system to disc space
US11583327B2 (en) 2018-01-29 2023-02-21 Spinal Elements, Inc. Minimally invasive interbody fusion
WO2019178575A1 (en) 2018-03-16 2019-09-19 Benvenue Medical, Inc. Articulated instrumentation and methods of using the same
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405360A (en) * 1992-02-24 1995-04-11 United States Surgical Corporation Resilient arm mesh deployer

Family Cites Families (524)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1995970A (en) 1931-04-04 1935-03-26 Du Pont Polymeric lactide resin
US2609347A (en) 1948-05-27 1952-09-02 Wilson Christopher Lumley Method of making expanded polyvinyl alcohol-formaldehyde reaction product and product resulting therefrom
US2664366A (en) 1949-09-19 1953-12-29 Wilson Christopher Lumley Plasticized sponge material and method of making same
US2664367A (en) 1949-09-19 1953-12-29 Wilson Christopher Lumley Plasticized sponge material and method of making same
US2659935A (en) 1950-03-18 1953-11-24 Christopher L Wilson Method of making compressed sponges
US2653917A (en) 1950-06-15 1953-09-29 Christopher L Wilson Method of making an expanded material and the product resulting therefrom
US2676945A (en) 1950-10-18 1954-04-27 Du Pont Condensation polymers of hydroxyacetic acid
US2683136A (en) 1950-10-25 1954-07-06 Du Pont Copolymers of hydroxyacetic acid with other alcohol acids
US2703316A (en) 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US2758987A (en) 1952-06-05 1956-08-14 Du Pont Optically active homopolymers containing but one antipodal species of an alpha-monohydroxy monocarboxylic acid
US2846407A (en) 1954-01-13 1958-08-05 Wilson Christopher Lumley Method of making a detergent and solvent resistant sponge material
DE1228416B (en) 1957-03-04 1966-11-10 Boehringer Sohn Ingelheim Process for the production of polyesters
US3531561A (en) 1965-04-20 1970-09-29 Ethicon Inc Suture preparation
US3580256A (en) 1969-06-30 1971-05-25 Jack E Wilkinson Pre-tied suture and method of suturing
SE391122B (en) 1971-01-25 1977-02-07 Cutter Lab PROTESTS IN THE FORM OF A SPINE BONIC DISC AND PROCEDURES FOR MANUFACTURE THEREOF
US3895753A (en) 1971-06-30 1975-07-22 Dennison Mfg Co Fastener attachment system needle constructions
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3875595A (en) 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US4013078A (en) 1974-11-25 1977-03-22 Feild James Rodney Intervertebral protector means
US4006747A (en) 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
GB1525022A (en) 1975-05-21 1978-09-20 Beecham Group Ltd Cell culture method
US4007743A (en) 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US3990619A (en) 1975-11-12 1976-11-09 Dennison Manufacturing Company Fastener attachment needle
US4059115A (en) 1976-06-14 1977-11-22 Georgy Stepanovich Jumashev Surgical instrument for operation of anterior fenestrated spondylodessis in vertebral osteochondrosis
US4371430A (en) 1979-04-27 1983-02-01 Printing Developments, Inc. Electrodeposition of chromium on metal base lithographic sheet
GB2054383B (en) 1979-07-25 1983-08-03 Univ Exeter Plugs for the medullary canal of a bone
GB2058248B (en) 1979-09-12 1982-09-22 Butterworth System Inc Sealing arrangement
US4369788A (en) 1980-01-31 1983-01-25 Goald Harold J Reversed forceps for microdisc surgery
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4329574A (en) 1980-06-25 1982-05-11 International Business Machines Corp. Bar code candidate select circuit
EP0049978A1 (en) 1980-10-14 1982-04-21 Frank John Rowell Containers and method and machine for making them
JPS57144756A (en) 1981-03-04 1982-09-07 Koken Kk Impermeable laminated film
DE3110767A1 (en) 1981-03-19 1982-09-30 Basf Ag, 6700 Ludwigshafen FIGHTING MUSHROOMS WITH 1,2-OXAZOLYLALKYLPHOSPHATES
DE3113902A1 (en) 1981-04-07 1982-10-28 Basf Ag, 6700 Ludwigshafen 1,3,4-THIADIAZOLYLMETHYL-THIOLPHOSPHORSAEUR DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR CONTROLLING PESTS
US4502161A (en) 1981-09-21 1985-03-05 Wall W H Prosthetic meniscus for the repair of joints
IT8153659V0 (en) 1981-10-05 1981-10-05 Indesit DISHWASHER DOOR OPENING DEVICE
US4520821A (en) * 1982-04-30 1985-06-04 The Regents Of The University Of California Growing of long-term biological tissue correction structures in vivo
US4741330A (en) 1983-05-19 1988-05-03 Hayhurst John O Method and apparatus for anchoring and manipulating cartilage
US6656182B1 (en) 1982-05-20 2003-12-02 John O. Hayhurst Tissue manipulation
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
DE3244032A1 (en) 1982-11-27 1984-05-30 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING PYRIDINE
JPS59112748A (en) 1982-12-06 1984-06-29 Fujitsu Ltd Data transmission and reception system
US4512338A (en) 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
DE3311851A1 (en) 1983-03-31 1984-10-11 Computer Gesellschaft Konstanz Mbh, 7750 Konstanz TRANSPORT DEVICE IN THE AREA OF THE READING STATION OF A DOCUMENT PROCESSING DEVICE
FI74136B (en) 1983-04-19 1987-08-31 Tekma Oy GENOMKOERBAR KAMMARTORK FOER VIRKE.
US4513012A (en) 1983-05-13 1985-04-23 Warner-Lambert Company Powdered center-filled chewing gum compositions
US4532926A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with ratchet leg staple and sealable latching receiver
US4602635A (en) 1983-11-14 1986-07-29 Mulhollan James S Remote surgical knot tier and method of use
EP0145577B1 (en) 1983-12-12 1989-01-25 Hugues Lesourd Deep-drawable metal article of the sandwich type, method and apparatus for the manufacture thereof
US4873976A (en) 1984-02-28 1989-10-17 Schreiber Saul N Surgical fasteners and method
US4837285A (en) 1984-03-27 1989-06-06 Medimatrix Collagen matrix beads for soft tissue repair
US4678459A (en) 1984-07-23 1987-07-07 E-Z-Em, Inc. Irrigating, cutting and aspirating system for percutaneous surgery
CA1256938A (en) 1984-09-19 1989-07-04 Honeywell Inc. High rate metal oxyhalide cells
EP0193784A2 (en) 1985-03-04 1986-09-10 Siemens Aktiengesellschaft Connecting device for a high-tension machine
US4736746A (en) 1985-04-11 1988-04-12 Dennison Manufacturing Company Method of fastening tissues
JPH0678460B2 (en) 1985-05-01 1994-10-05 株式会社バイオマテリアル・ユニバース Porous transparent polyvinyl alcohol gel
US4743260A (en) 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4781190A (en) 1985-06-18 1988-11-01 Lee Wilson K C Method of arthroscopic repair of a limb joint
US4669473A (en) 1985-09-06 1987-06-02 Acufex Microsurgical, Inc. Surgical fastener
US4798205A (en) 1986-05-08 1989-01-17 Cox-Uphoff International Method of using a subperiosteal tissue expander
US4895148A (en) 1986-05-20 1990-01-23 Concept, Inc. Method of joining torn parts of bodily tissue in vivo with a biodegradable tack member
US4924865A (en) 1986-05-20 1990-05-15 Concept, Inc. Repair tack for bodily tissue
CH671691A5 (en) 1987-01-08 1989-09-29 Sulzer Ag
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US4890612A (en) 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4744364A (en) 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
US4852568A (en) 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US5437680A (en) 1987-05-14 1995-08-01 Yoon; Inbae Suturing method, apparatus and system for use in endoscopic procedures
CH672589A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
CH672588A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
US5306311A (en) 1987-07-20 1994-04-26 Regen Corporation Prosthetic articular cartilage
US5258043A (en) 1987-07-20 1993-11-02 Regen Corporation Method for making a prosthetic intervertebral disc
US5108438A (en) 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
GB8718627D0 (en) 1987-08-06 1987-09-09 Showell A W Sugicraft Ltd Spinal implants
US4772287A (en) 1987-08-20 1988-09-20 Cedar Surgical, Inc. Prosthetic disc and method of implanting
JPH01136655A (en) 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
US4874389A (en) 1987-12-07 1989-10-17 Downey Ernest L Replacement disc
US4844088A (en) 1987-12-11 1989-07-04 Parviz Kambin Surgical cutting device with reciprocating cutting member
DE8807485U1 (en) 1988-06-06 1989-08-10 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US4911718A (en) 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5397991A (en) 1988-07-13 1995-03-14 Electronic Development Inc. Multi-battery charging system for reduced fuel consumption and emissions in automotive vehicles
US5545229A (en) 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
AU624627B2 (en) 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5053046A (en) 1988-08-22 1991-10-01 Woodrow W. Janese Dural sealing needle and method of use
US4919667A (en) 1988-12-02 1990-04-24 Stryker Corporation Implant
CA1318469C (en) 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
US5059206A (en) 1989-04-12 1991-10-22 Winters Thomas F Method and apparatus for repairing a tear in a knee meniscus
FR2646084B1 (en) 1989-04-20 1994-09-16 Fbfc International Sa BIOREACTIVE MATERIAL FOR FILLING BONE CAVITES
US5015255A (en) 1989-05-10 1991-05-14 Spine-Tech, Inc. Spinal stabilization method
US5100422A (en) 1989-05-26 1992-03-31 Impra, Inc. Blood vessel patch
US5207695A (en) 1989-06-19 1993-05-04 Trout Iii Hugh H Aortic graft, implantation device, and method for repairing aortic aneurysm
US5354736A (en) 1989-08-14 1994-10-11 Regents Of The University Of California Synthetic compounds and compositions with enhanced cell binding
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5123913A (en) 1989-11-27 1992-06-23 Wilk Peter J Suture device
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US5242439A (en) 1990-01-12 1993-09-07 Laserscope Means for inserting instrumentation for a percutaneous diskectomy using a laser
US5492697A (en) 1990-03-05 1996-02-20 Board Of Regents, Univ. Of Texas System Biodegradable implant for fracture nonunions
DE69102515T2 (en) 1990-04-02 1994-10-20 Kanji Inoue DEVICE FOR CLOSING A SHUTTER OPENING BY MEANS OF A NON-OPERATIONAL METHOD.
US5062344A (en) 1990-04-12 1991-11-05 Sparton Corporation Bowline knot in a braided line
EP0453393B1 (en) 1990-04-20 1993-10-06 SULZER Medizinaltechnik AG Implant, particularly intervertebral prosthesis
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5342394A (en) 1990-05-16 1994-08-30 Olympus Optical Co., Ltd. Apparatus for blocking a vein branch and method of blocking a vein branch
US5593425A (en) 1990-06-28 1997-01-14 Peter M. Bonutti Surgical devices assembled using heat bonable materials
US6203565B1 (en) 1990-06-28 2001-03-20 Peter M. Bonutti Surgical devices assembled using heat bondable materials
US5041129A (en) 1990-07-02 1991-08-20 Acufex Microsurgical, Inc. Slotted suture anchor and method of anchoring a suture
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5176691A (en) 1990-09-11 1993-01-05 Pierce Instruments, Inc. Knot pusher
US5391183A (en) 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5116357A (en) 1990-10-11 1992-05-26 Eberbach Mark A Hernia plug and introducer apparatus
US5122155A (en) 1990-10-11 1992-06-16 Eberbach Mark A Hernia repair apparatus and method of use
US5141515A (en) 1990-10-11 1992-08-25 Eberbach Mark A Apparatus and methods for repairing hernias
US5085661A (en) 1990-10-29 1992-02-04 Gerald Moss Surgical fastener implantation device
US5047055A (en) 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5192326A (en) 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5129912B2 (en) 1991-01-07 2000-01-11 Urohealth Systems Inc Device and method for applying suture
US5320629B1 (en) 1991-01-07 2000-05-02 Advanced Surgical Inc Device and method for applying suture
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
WO1992013500A1 (en) 1991-02-08 1992-08-20 Surgical Innovations, Inc. Method and apparatus for repair of inguinal hernias
US5464407A (en) 1991-02-19 1995-11-07 Mcguire; David A. Flexible surgical screwdriver and methods of arthroscopic ligament reconstruction
US5390683A (en) 1991-02-22 1995-02-21 Pisharodi; Madhavan Spinal implantation methods utilizing a middle expandable implant
US5123926A (en) 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
US5171278A (en) 1991-02-22 1992-12-15 Madhavan Pisharodi Middle expandable intervertebral disk implants
US5405352A (en) 1991-04-09 1995-04-11 Weston; Peter V. Suture knot, method for its formation and use, and knot forming apparatus
US5254133A (en) 1991-04-24 1993-10-19 Seid Arnold S Surgical implantation device and related method of use
US5269783A (en) 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
RO110672B1 (en) 1991-05-16 1996-03-29 Mures Cardiovascular Research Heart valve
EP0525791A1 (en) 1991-08-02 1993-02-03 DeMatteis, Ralph A. Method and apparatus for laparoscopic repair of hernias
US5320644A (en) 1991-08-30 1994-06-14 Sulzer Brothers Limited Intervertebral disk prosthesis
CA2078530A1 (en) * 1991-09-23 1993-03-24 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5304194A (en) 1991-10-02 1994-04-19 Target Therapeutics Vasoocclusion coil with attached fibrous element(s)
US5313962A (en) 1991-10-18 1994-05-24 Obenchain Theodore G Method of performing laparoscopic lumbar discectomy
US5195541A (en) 1991-10-18 1993-03-23 Obenchain Theodore G Method of performing laparoscopic lumbar discectomy
US5222974A (en) 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5676689A (en) * 1991-11-08 1997-10-14 Kensey Nash Corporation Hemostatic puncture closure system including vessel location device and method of use
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5411520A (en) * 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5258000A (en) 1991-11-25 1993-11-02 Cook Incorporated Tissue aperture repair device
DK168419B1 (en) 1991-11-25 1994-03-28 Cook Inc A Cook Group Company Abdominal wall support device and apparatus for insertion thereof
ATE163528T1 (en) 1991-12-03 1998-03-15 Boston Scient Ireland Ltd IMPLANTATION DEVICE FOR A BONE ANCHOR
WO1993010715A2 (en) 1991-12-03 1993-06-10 Vesitec Medical, Inc. Surgical treatment of stress urinary incontinence
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5147374A (en) 1991-12-05 1992-09-15 Alfredo Fernandez Prosthetic mesh patch for hernia repair
US5176692A (en) 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5425773A (en) 1992-01-06 1995-06-20 Danek Medical, Inc. Intervertebral disk arthroplasty device
EP0566810B1 (en) 1992-04-21 1996-08-14 SULZER Medizinaltechnik AG Artificial spinal disc
US5222962A (en) 1992-04-23 1993-06-29 Burkhart Stephen S Endoscopic surgical instrument for releasably grasping a curved needle
US5766246A (en) 1992-05-20 1998-06-16 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
US5413571A (en) 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5342393A (en) 1992-08-27 1994-08-30 Duke University Method and device for vascular repair
US5540704A (en) 1992-09-04 1996-07-30 Laurus Medical Corporation Endoscopic suture system
CA2437773C (en) 1992-09-21 2005-02-22 United States Surgical Corporation Device for applying a meniscal staple
US5383905A (en) 1992-10-09 1995-01-24 United States Surgical Corporation Suture loop locking device
US5269791A (en) 1992-10-09 1993-12-14 Ilya Mayzels Surgical knot pushing appliance
US5263991A (en) 1992-10-21 1993-11-23 Biomet, Inc. Method for heating biocompatible implants in a thermal packaging line
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5972000A (en) 1992-11-13 1999-10-26 Influence Medical Technologies, Ltd. Non-linear anchor inserter device and bone anchors
US5383926A (en) 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
US5320633A (en) 1992-12-10 1994-06-14 William C. Allen Method and system for repairing a tear in the meniscus
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5725577A (en) 1993-01-13 1998-03-10 Saxon; Allen Prosthesis for the repair of soft tissue defects
US5743917A (en) 1993-01-13 1998-04-28 Saxon; Allen Prosthesis for the repair of soft tissue defects
US5676701A (en) 1993-01-14 1997-10-14 Smith & Nephew, Inc. Low wear artificial spinal disc
US5814073A (en) 1996-12-13 1998-09-29 Bonutti; Peter M. Method and apparatus for positioning a suture anchor
US5356432B1 (en) 1993-02-05 1997-02-04 Bard Inc C R Implantable mesh prosthesis and method for repairing muscle or tissue wall defects
EP0610837B1 (en) 1993-02-09 2001-09-05 Acromed Corporation Spine disc
AU683243B2 (en) 1993-02-10 1997-11-06 Zimmer Spine, Inc. Spinal stabilization surgical tool set
US5368602A (en) 1993-02-11 1994-11-29 De La Torre; Roger A. Surgical mesh with semi-rigid border members
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
DE4306850C1 (en) 1993-03-01 1994-08-18 Ethicon Gmbh Implant, especially for sealing trocar insertion points
US5439464A (en) 1993-03-09 1995-08-08 Shapiro Partners Limited Method and instruments for performing arthroscopic spinal surgery
US5397326A (en) 1993-04-15 1995-03-14 Mangum; William K. Knot pusher for videoendoscopic surgery
US5398861A (en) 1993-04-16 1995-03-21 United States Surgical Corporation Device for driving surgical fasteners
US5534028A (en) 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
EP0621020A1 (en) 1993-04-21 1994-10-26 SULZER Medizinaltechnik AG Intervertebral prosthesis and method of implanting such a prosthesis
US5549630A (en) 1993-05-14 1996-08-27 Bonutti; Peter M. Method and apparatus for anchoring a suture
US5403348A (en) 1993-05-14 1995-04-04 Bonutti; Peter M. Suture anchor
US5312435A (en) 1993-05-17 1994-05-17 Kensey Nash Corporation Fail predictable, reinforced anchor for hemostatic puncture closure
EP1093760B1 (en) 1993-06-10 2004-11-17 Karlin Technology, Inc. Spinal distractor
FR2707480B1 (en) 1993-06-28 1995-10-20 Bisserie Michel Intervertebral disc prosthesis.
US5500000A (en) 1993-07-01 1996-03-19 United States Surgical Corporation Soft tissue repair system and method
DE4323595C1 (en) 1993-07-15 1994-07-07 Eska Medical Gmbh & Co Partial spinal disc replacement
US5391182A (en) 1993-08-03 1995-02-21 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5507755A (en) 1993-08-03 1996-04-16 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
CA2124651C (en) 1993-08-20 2004-09-28 David T. Green Apparatus and method for applying and adjusting an anchoring device
US5507754A (en) 1993-08-20 1996-04-16 United States Surgical Corporation Apparatus and method for applying and adjusting an anchoring device
US5397332A (en) 1993-09-02 1995-03-14 Ethicon, Inc. Surgical mesh applicator
US5676698A (en) 1993-09-07 1997-10-14 Datascope Investment Corp. Soft tissue implant
FR2709947B1 (en) 1993-09-13 1995-11-10 Bard Sa Laboratoires Curved prosthetic mesh and its manufacturing process.
FR2709949B1 (en) 1993-09-14 1995-10-13 Commissariat Energie Atomique Intervertebral disc prosthesis.
US5425772A (en) 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
US5540718A (en) 1993-09-20 1996-07-30 Bartlett; Edwin C. Apparatus and method for anchoring sutures
US5769893A (en) 1993-09-29 1998-06-23 Shah; Mrugesh K. Apparatus and method for promoting growth and repair of soft tissue
US5556428A (en) 1993-09-29 1996-09-17 Shah; Mrugesh K. Apparatus and method for promoting growth and repair of soft tissue
US5370660A (en) 1993-11-01 1994-12-06 Cordis Corporation Apparatus and method for delivering a vessel plug into the body of a patient
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5536273A (en) 1993-12-09 1996-07-16 Lehrer; Theodor Apparatus and method of extracorporeally applying and locking laparoscopic suture and loop ligatures
US5514180A (en) 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US6716216B1 (en) 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
US5429598A (en) 1994-04-19 1995-07-04 Applied Medical Resources Corporation Surgical access device and procedure
US6113623A (en) 1994-04-20 2000-09-05 Cabinet Beau De Lomenie Prosthetic device and method for eventration repair
US5545178A (en) 1994-04-29 1996-08-13 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5531759A (en) 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
US5723331A (en) 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
US6248131B1 (en) 1994-05-06 2001-06-19 Advanced Bio Surfaces, Inc. Articulating joint repair
US5888220A (en) 1994-05-06 1999-03-30 Advanced Bio Surfaces, Inc. Articulating joint repair
US6140452A (en) 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5556429A (en) 1994-05-06 1996-09-17 Advanced Bio Surfaces, Inc. Joint resurfacing system
US5470337A (en) 1994-05-17 1995-11-28 Moss; Gerald Surgical fastener
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
AU2621295A (en) 1994-05-24 1995-12-18 Smith & Nephew Plc Intervertebral disc implant
WO1995032669A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Apparatus and method for advancing surgical knots
WO1995032671A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Method and device for providing vascular hemostasis
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
EP0692227A1 (en) 1994-07-11 1996-01-17 SULZER Medizinaltechnik AG Sheet implant
US5681310A (en) 1994-07-20 1997-10-28 Yuan; Hansen A. Vertebral auxiliary fixation device having holding capability
US5817327A (en) 1994-07-27 1998-10-06 The Trustees Of The University Of Pennsylvania Incorporation of biologically active molecules into bioactive glasses
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
EP0700671B1 (en) 1994-09-08 2001-08-08 Stryker Technologies Corporation Hydrogel intervertebral disc nucleus
US5531699A (en) 1994-09-19 1996-07-02 Abbott Laboratories Spring-loaded reciprocable stylet holder
JPH08196538A (en) 1994-09-26 1996-08-06 Ethicon Inc Tissue sticking apparatus for surgery with elastomer component and method of attaching mesh for surgery to said tissue
US5569252A (en) 1994-09-27 1996-10-29 Justin; Daniel F. Device for repairing a meniscal tear in a knee and method
US5730744A (en) 1994-09-27 1998-03-24 Justin; Daniel F. Soft tissue screw, delivery device, and method
US5769864A (en) 1994-09-29 1998-06-23 Surgical Sense, Inc. Hernia mesh patch
US5916225A (en) 1994-09-29 1999-06-29 Surgical Sense, Inc. Hernia mesh patch
US6280453B1 (en) 1994-09-29 2001-08-28 Bard Asdi Inc. Hernia mesh patch with stiffener line segment
US6176863B1 (en) 1994-09-29 2001-01-23 Bard Asdi Inc. Hernia mesh patch with I-shaped filament
US5634931A (en) 1994-09-29 1997-06-03 Surgical Sense, Inc. Hernia mesh patches and methods of their use
US6171318B1 (en) 1994-09-29 2001-01-09 Bard Asdi Inc. Hernia mesh patch with stiffening layer
US5562684A (en) 1994-10-11 1996-10-08 Ethicon, Inc. Surgical knot pusher device and improved method of forming knots
US5785705A (en) 1994-10-11 1998-07-28 Oratec Interventions, Inc. RF method for controlled depth ablation of soft tissue
US5562736A (en) 1994-10-17 1996-10-08 Raymedica, Inc. Method for surgical implantation of a prosthetic spinal disc nucleus
US5824093A (en) 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5649945A (en) 1994-10-17 1997-07-22 Raymedica, Inc. Spinal anulus cutter
US5681351A (en) 1994-10-21 1997-10-28 Ethicon, Inc. Suture clip suitable for use on monofilament sutures
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US6344057B1 (en) 1994-11-22 2002-02-05 Sdgi Holdings, Inc. Adjustable vertebral body replacement
US5716404A (en) 1994-12-16 1998-02-10 Massachusetts Institute Of Technology Breast tissue engineering
US6171329B1 (en) 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5879366A (en) 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
DE19504867C1 (en) 1995-02-14 1996-02-29 Harms Juergen Position retainer for spine
US5634944A (en) 1995-02-23 1997-06-03 The Nemours Foundation Body membrane prosthesis
US5573286A (en) 1995-03-15 1996-11-12 Rogozinski; Chaim Knot
US5645084A (en) 1995-06-07 1997-07-08 Danek Medical, Inc. Method for spinal fusion without decortication
US5733337A (en) 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5626613A (en) 1995-05-04 1997-05-06 Arthrex, Inc. Corkscrew suture anchor and driver
US5702449A (en) 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US6039762A (en) 1995-06-07 2000-03-21 Sdgi Holdings, Inc. Reinforced bone graft substitutes
US5669935A (en) 1995-07-28 1997-09-23 Ethicon, Inc. One-way suture retaining device for braided sutures
US5662683A (en) 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
US6562052B2 (en) 1995-08-24 2003-05-13 Sutura, Inc. Suturing device and method
US5736746A (en) 1995-08-31 1998-04-07 Fuji Photo Film Co.,Ltd. Radiation image read-out apparatus
US5704943A (en) 1995-09-25 1998-01-06 Yoon; Inbae Ligating instrument with multiple loop ligature supply and methods therefor
US5716413A (en) 1995-10-11 1998-02-10 Osteobiologics, Inc. Moldable, hand-shapable biodegradable implant material
US5888222A (en) 1995-10-16 1999-03-30 Sdgi Holding, Inc. Intervertebral spacers
US6122549A (en) 1996-08-13 2000-09-19 Oratec Interventions, Inc. Apparatus for treating intervertebral discs with resistive energy
US6007570A (en) 1996-08-13 1999-12-28 Oratec Interventions, Inc. Apparatus with functional element for performing function upon intervertebral discs
ES2278091T3 (en) 1995-11-08 2007-08-01 Zimmer Gmbh DEVICE FOR INTRODUCING AN IMPLANT, IN PARTICULAR AN INTERVERTEBRAL PROTESIS.
US5843084A (en) 1995-11-17 1998-12-01 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5626614A (en) 1995-12-22 1997-05-06 Applied Medical Resources Corporation T-anchor suturing device and method for using same
US5645597A (en) 1995-12-29 1997-07-08 Krapiva; Pavel I. Disc replacement method and apparatus
US5749894A (en) 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5702462A (en) 1996-01-24 1997-12-30 Oberlander; Michael Method of meniscal repair
US6168622B1 (en) * 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US5697950A (en) 1996-02-07 1997-12-16 Linvatec Corporation Pre-loaded suture anchor
DE19604817C2 (en) 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Device for closing defect openings in the human or animal body
US5842477A (en) 1996-02-21 1998-12-01 Advanced Tissue Sciences, Inc. Method for repairing cartilage
US5782844A (en) 1996-03-05 1998-07-21 Inbae Yoon Suture spring device applicator
US5865845A (en) 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US5810851A (en) 1996-03-05 1998-09-22 Yoon; Inbae Suture spring device
US5800550A (en) 1996-03-13 1998-09-01 Sertich; Mario M. Interbody fusion cage
US5823994A (en) 1996-03-15 1998-10-20 Oratec Interventions, Inc. Method and apparatus for soft tissue fixation
US5683465A (en) 1996-03-18 1997-11-04 Shinn; Gary Lee Artificial intervertebral disk prosthesis
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5788625A (en) 1996-04-05 1998-08-04 Depuy Orthopaedics, Inc. Method of making reconstructive SIS structure for cartilaginous elements in situ
US5752964A (en) 1996-04-16 1998-05-19 Mericle; Robert W. Surgical knot pusher with flattened spatulated tip
US5662681A (en) 1996-04-23 1997-09-02 Kensey Nash Corporation Self locking closure for sealing percutaneous punctures
WO1997041778A1 (en) 1996-05-08 1997-11-13 Salviac Limited An occluder device
US5716408A (en) 1996-05-31 1998-02-10 C.R. Bard, Inc. Prosthesis for hernia repair and soft tissue reconstruction
US6835207B2 (en) 1996-07-22 2004-12-28 Fred Zacouto Skeletal implant
US5728150A (en) 1996-07-29 1998-03-17 Cardiovascular Dynamics, Inc. Expandable microporous prosthesis
US5964807A (en) 1996-08-08 1999-10-12 Trustees Of The University Of Pennsylvania Compositions and methods for intervertebral disc reformation
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US7069087B2 (en) 2000-02-25 2006-06-27 Oratec Interventions, Inc. Apparatus and method for accessing and performing a function within an intervertebral disc
US5683417A (en) 1996-08-14 1997-11-04 Cooper; William I. Suture and method for endoscopic surgery
US5718717A (en) 1996-08-19 1998-02-17 Bonutti; Peter M. Suture anchor
US6007567A (en) 1996-08-19 1999-12-28 Bonutti; Peter M. Suture anchor
US5810848A (en) 1996-08-21 1998-09-22 Hayhurst; John O. Suturing system
US5776183A (en) 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5895426A (en) 1996-09-06 1999-04-20 Osteotech, Inc. Fusion implant device and method of use
US5716416A (en) 1996-09-10 1998-02-10 Lin; Chih-I Artificial intervertebral disk and method for implanting the same
US5948001A (en) 1996-10-03 1999-09-07 United States Surgical Corporation System for suture anchor placement
US5716409A (en) 1996-10-16 1998-02-10 Debbas; Elie Reinforcement sheet for use in surgical repair
US6019793A (en) 1996-10-21 2000-02-01 Synthes Surgical prosthetic device
EP1230902A1 (en) 1996-11-15 2002-08-14 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US5948002A (en) 1996-11-15 1999-09-07 Bonutti; Peter M. Apparatus and method for use in positioning a suture anchor
US5827328A (en) 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
US6027527A (en) 1996-12-06 2000-02-22 Piolax Inc. Stent
US5860977A (en) 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5782860A (en) 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US6464712B1 (en) 1997-02-11 2002-10-15 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and method
US6039761A (en) 1997-02-12 2000-03-21 Li Medical Technologies, Inc. Intervertebral spacer and tool and method for emplacement thereof
US5954716A (en) 1997-02-19 1999-09-21 Oratec Interventions, Inc Method for modifying the length of a ligament
US5759189A (en) 1997-02-25 1998-06-02 Smith & Nephew Inc. Knot pusher
US5893592A (en) 1997-04-08 1999-04-13 Ethicon Endo-Surgery, Inc. Partially tied surgical knot
US5728109A (en) 1997-04-08 1998-03-17 Ethicon Endo-Surgery, Inc. Surgical knot and method for its formation
US5984948A (en) 1997-04-14 1999-11-16 Hasson; Harrith M. Device for closing an opening in tissue and method of closing a tissue opening using the device
US5800549A (en) 1997-04-30 1998-09-01 Howmedica Inc. Method and apparatus for injecting an elastic spinal implant
US5922026A (en) 1997-05-01 1999-07-13 Origin Medsystems, Inc. Surgical method and prosthetic strip therefor
US5941439A (en) 1997-05-14 1999-08-24 Mitek Surgical Products, Inc. Applicator and method for deploying a surgical fastener in tissue
US6409739B1 (en) 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
US6007575A (en) 1997-06-06 1999-12-28 Samuels; Shaun Laurence Wilkie Inflatable intraluminal stent and method for affixing same within the human body
US5893889A (en) 1997-06-20 1999-04-13 Harrington; Michael Artificial disc
GB9713330D0 (en) 1997-06-25 1997-08-27 Bridport Gundry Plc Surgical implant
GB9714580D0 (en) 1997-07-10 1997-09-17 Wardlaw Douglas Prosthetic intervertebral disc nucleus
US5824082A (en) 1997-07-14 1998-10-20 Brown; Roderick B. Patch for endoscopic repair of hernias
US6066776A (en) 1997-07-16 2000-05-23 Atrium Medical Corporation Self-forming prosthesis for repair of soft tissue defects
US5957939A (en) 1997-07-31 1999-09-28 Imagyn Medical Technologies, Inc. Medical device for deploying surgical fabrics
US6159234A (en) 1997-08-01 2000-12-12 Peter M. Bonutti Method and apparatus for securing a suture
US6174322B1 (en) 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6048346A (en) 1997-08-13 2000-04-11 Kyphon Inc. Systems and methods for injecting flowable materials into bones
US6511958B1 (en) 1997-08-14 2003-01-28 Sulzer Biologics, Inc. Compositions for regeneration and repair of cartilage lesions
EP0896825B1 (en) 1997-08-14 2002-07-17 Sulzer Innotec Ag Composition and device for in vivo cartilage repair comprising nanocapsules with osteoinductive and/or chondroinductive factors
US6063378A (en) 1997-08-22 2000-05-16 Seikagaku Corporation Therapeutic agent for herniated intervertebral disc
US6241768B1 (en) 1997-08-27 2001-06-05 Ethicon, Inc. Prosthetic device for the repair of a hernia
US5868762A (en) 1997-09-25 1999-02-09 Sub-Q, Inc. Percutaneous hemostatic suturing device and method
US6309420B1 (en) 1997-10-14 2001-10-30 Parallax Medical, Inc. Enhanced visibility materials for implantation in hard tissue
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
FR2769825B1 (en) 1997-10-22 1999-12-03 Cogent Sarl PROSTHETIC IMPLANT, ANATOMIC CHANNEL SHUTTER, AND SHUTTER ASSEMBLY COMPRISING SAME
US5972007A (en) 1997-10-31 1999-10-26 Ethicon Endo-Surgery, Inc. Energy-base method applied to prosthetics for repairing tissue defects
US5964783A (en) 1997-11-07 1999-10-12 Arthrex, Inc. Suture anchor with insert-molded suture
US6272127B1 (en) 1997-11-10 2001-08-07 Ehron Warpspeed Services, Inc. Network for providing switched broadband multipoint/multimedia intercommunication
US5888226A (en) 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US5976174A (en) 1997-12-15 1999-11-02 Ruiz; Carlos E. Medical hole closure device and methods of use
FR2772594B1 (en) 1997-12-19 2000-05-05 Henry Graf REAR PARTIAL DISCAL PROSTHESIS
US6146380A (en) 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
FR2774277B1 (en) 1998-02-03 2000-06-30 Cogent Sarl RESORBABLE PROSTHETIC FASTENING CLIP
FR2774580B1 (en) 1998-02-06 2000-09-08 Laurent Fumex BONE ANCHORING SURGICAL DEVICE
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
JP2002502626A (en) 1998-02-10 2002-01-29 アーテミス・メディカル・インコーポレイテッド Supplementary device and method of using the same
US6024758A (en) 1998-02-23 2000-02-15 Thal; Raymond Two-part captured-loop knotless suture anchor assembly
US6053909A (en) 1998-03-27 2000-04-25 Shadduck; John H. Ionothermal delivery system and technique for medical procedures
JP3799810B2 (en) 1998-03-30 2006-07-19 ニプロ株式会社 Transcatheter surgery closure plug and catheter assembly
US6835208B2 (en) 1998-03-30 2004-12-28 J. Alexander Marchosky Prosthetic system
US6106545A (en) 1998-04-16 2000-08-22 Axya Medical, Inc. Suture tensioning and fixation device
US6143006A (en) 1998-04-18 2000-11-07 Chan; Kwan-Ho Apparatus and method for tying and tensioning knots
US6019792A (en) 1998-04-23 2000-02-01 Cauthen Research Group, Inc. Articulating spinal implant
JP2002512079A (en) 1998-04-23 2002-04-23 コーゼン リサーチ グループ インク. Articulated spinal implant
US6024096A (en) 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
US6113609A (en) 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US6224630B1 (en) 1998-05-29 2001-05-01 Advanced Bio Surfaces, Inc. Implantable tissue repair device
US6719773B1 (en) 1998-06-01 2004-04-13 Kyphon Inc. Expandable structures for deployment in interior body regions
US6607541B1 (en) 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6045561A (en) 1998-06-23 2000-04-04 Orthopaedic Biosystems Ltd., Inc. Surgical knot manipulator
US6066146A (en) 1998-06-24 2000-05-23 Carroll; Brendan J. Laparascopic incision closure device
US6488691B1 (en) 1998-06-24 2002-12-03 Brendan J. Carroll Laparascopic incision closure device
US5928284A (en) 1998-07-09 1999-07-27 Mehdizadeh; Hamid M. Disc replacement prosthesis
US6669707B1 (en) 1998-07-21 2003-12-30 Lee L. Swanstrom Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall
US6200329B1 (en) 1998-08-31 2001-03-13 Smith & Nephew, Inc. Suture collet
US6723133B1 (en) 1998-09-11 2004-04-20 C. R. Bard, Inc. Performed curved prosthesis having a reduced incidence of developing wrinkles or folds
US6193757B1 (en) 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
JP3906475B2 (en) 1998-12-22 2007-04-18 ニプロ株式会社 Transcatheter surgery closure plug and catheter assembly
US6306159B1 (en) 1998-12-23 2001-10-23 Depuy Orthopaedics, Inc. Meniscal repair device
ATE324072T1 (en) 1998-12-30 2006-05-15 Ethicon Inc THREAD SECURING DEVICE
US6530933B1 (en) 1998-12-31 2003-03-11 Teresa T. Yeung Methods and devices for fastening bulging or herniated intervertebral discs
US6162203A (en) 1999-01-11 2000-12-19 Haaga; John R. Cargo delivery needle
US6146422A (en) 1999-01-25 2000-11-14 Lawson; Kevin Jon Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method
US6206921B1 (en) 1999-02-22 2001-03-27 Peter A. Guagliano Method of replacing nucleus pulposus and repairing the intervertebral disk
US6436143B1 (en) 1999-02-22 2002-08-20 Anthony C. Ross Method and apparatus for treating intervertebral disks
US6183518B1 (en) 1999-02-22 2001-02-06 Anthony C. Ross Method of replacing nucleus pulposus and repairing the intervertebral disk
US6696073B2 (en) 1999-02-23 2004-02-24 Osteotech, Inc. Shaped load-bearing osteoimplant and methods of making same
US6113639A (en) 1999-03-23 2000-09-05 Raymedica, Inc. Trial implant and trial implant kit for evaluating an intradiscal space
US6179879B1 (en) 1999-03-24 2001-01-30 Acushnet Company Leather impregnated with temperature stabilizing material and method for producing such leather
US6602291B1 (en) 1999-04-05 2003-08-05 Raymedica, Inc. Prosthetic spinal disc nucleus having a shape change characteristic
US6428576B1 (en) 1999-04-16 2002-08-06 Endospine, Ltd. System for repairing inter-vertebral discs
US6723107B1 (en) 1999-04-19 2004-04-20 Orthopaedic Biosystems Ltd. Method and apparatus for suturing
US6764514B1 (en) 1999-04-26 2004-07-20 Sdgi Holdings, Inc. Prosthetic apparatus and method
US6533799B1 (en) 1999-04-27 2003-03-18 Ams Research Corporation Cavity measurement device and method of assembly
US6805697B1 (en) 1999-05-07 2004-10-19 University Of Virginia Patent Foundation Method and system for fusing a spinal region
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US6673088B1 (en) 1999-05-18 2004-01-06 Cardica, Inc. Tissue punch
US6419704B1 (en) 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
US6969404B2 (en) 1999-10-08 2005-11-29 Ferree Bret A Annulus fibrosis augmentation methods and apparatus
US6491724B1 (en) 1999-08-13 2002-12-10 Bret Ferree Spinal fusion cage with lordosis correction
US6245107B1 (en) * 1999-05-28 2001-06-12 Bret A. Ferree Methods and apparatus for treating disc herniation
US7273497B2 (en) 1999-05-28 2007-09-25 Anova Corp. Methods for treating a defect in the annulus fibrosis
US6419702B1 (en) 1999-08-13 2002-07-16 Bret A. Ferree Treating degenerative disc disease through transplantation of the nucleus pulposis
US6371990B1 (en) 1999-10-08 2002-04-16 Bret A. Ferree Annulus fibrosis augmentation methods and apparatus
US6340369B1 (en) 1999-08-13 2002-01-22 Bret A. Ferree Treating degenerative disc disease with harvested disc cells and analogues of the extracellular matrix
EP1185221B1 (en) 1999-06-04 2005-03-23 SDGI Holdings, Inc. Artificial disc implant
WO2000078226A1 (en) 1999-06-18 2000-12-28 Radi Medical Systems Ab A tool, a sealing device, a system and a method for closing a wound
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
DE60044531D1 (en) 1999-06-25 2010-07-22 Vahid Saadat TISSUE TREATMENT DEVICE
US6245080B1 (en) 1999-07-13 2001-06-12 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6206895B1 (en) 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6610071B1 (en) 1999-07-26 2003-08-26 Beth Israel Deaconess Medical Center Suture system
US6592609B1 (en) 1999-08-09 2003-07-15 Bonutti 2003 Trust-A Method and apparatus for securing tissue
US6648918B2 (en) 1999-08-13 2003-11-18 Bret A. Ferree Treating degenerative disc disease through the transplantation of dehydrated tissue
US6454804B1 (en) 1999-10-08 2002-09-24 Bret A. Ferree Engineered tissue annulus fibrosis augmentation methods and apparatus
US6685695B2 (en) 1999-08-13 2004-02-03 Bret A. Ferree Method and apparatus for providing nutrition to intervertebral disc tissue
US6719797B1 (en) 1999-08-13 2004-04-13 Bret A. Ferree Nucleus augmentation with in situ formed hydrogels
US6352557B1 (en) 1999-08-13 2002-03-05 Bret A. Ferree Treating degenerative disc disease through transplantion of extracellular nucleus pulposus matrix and autograft nucleus pulposus cells
US6344058B1 (en) 1999-08-13 2002-02-05 Bret A. Ferree Treating degenerative disc disease through transplantation of allograft disc and vertebral endplates
US6508839B1 (en) 1999-08-18 2003-01-21 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6821276B2 (en) 1999-08-18 2004-11-23 Intrinsic Therapeutics, Inc. Intervertebral diagnostic and manipulation device
US6936072B2 (en) 1999-08-18 2005-08-30 Intrinsic Therapeutics, Inc. Encapsulated intervertebral disc prosthesis and methods of manufacture
EP1328221B1 (en) 1999-08-18 2009-03-25 Intrinsic Therapeutics, Inc. Devices for nucleus pulposus augmentation and retention
US7220281B2 (en) 1999-08-18 2007-05-22 Intrinsic Therapeutics, Inc. Implant for reinforcing and annulus fibrosis
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6429013B1 (en) 1999-08-19 2002-08-06 Artecel Science, Inc. Use of adipose tissue-derived stromal cells for chondrocyte differentiation and cartilage repair
US6783546B2 (en) * 1999-09-13 2004-08-31 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6371984B1 (en) 1999-09-13 2002-04-16 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6171317B1 (en) 1999-09-14 2001-01-09 Perclose, Inc. Knot tying device and method
US6221109B1 (en) 1999-09-15 2001-04-24 Ed. Geistlich Söhne AG fur Chemische Industrie Method of protecting spinal area
US6964674B1 (en) 1999-09-20 2005-11-15 Nuvasive, Inc. Annulotomy closure device
US6264695B1 (en) 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US6494883B1 (en) 2000-05-26 2002-12-17 Bret A. Ferree Bone reinforcers
US6432107B1 (en) 2000-01-15 2002-08-13 Bret A. Ferree Enhanced surface area spinal fusion devices
US6645247B2 (en) 1999-10-08 2003-11-11 Bret A. Ferree Supplementing engineered annulus tissues with autograft of allograft tendons
US6648920B2 (en) 1999-10-08 2003-11-18 Bret A. Ferree Natural and synthetic supplements to engineered annulus and disc tissues
US20030040796A1 (en) * 1999-10-08 2003-02-27 Ferree Bret A. Devices used to treat disc herniation and attachment mechanisms therefore
US6878167B2 (en) 2002-04-24 2005-04-12 Bret A. Ferree Methods and apparatus for placing intradiscal devices
US6648919B2 (en) 1999-10-14 2003-11-18 Bret A. Ferree Transplantation of engineered meniscus tissue to the intervertebral disc
FR2799640B1 (en) 1999-10-15 2002-01-25 Spine Next Sa IMPLANT INTERVETEBRAL
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US20030153976A1 (en) 1999-10-20 2003-08-14 Cauthen Joseph C. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US6830570B1 (en) 1999-10-21 2004-12-14 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
EP1223872B2 (en) 1999-10-22 2007-09-26 Archus Orthopedics Inc. Facet arthroplasty devices
US6610666B1 (en) 1999-11-08 2003-08-26 Bio-Hyos Ab Hyaluronan product and process for manufacturing thereof
US6203554B1 (en) 1999-11-23 2001-03-20 William Roberts Apparatus, kit and methods for puncture site closure
US6610079B1 (en) 1999-12-14 2003-08-26 Linvatec Corporation Fixation system and method
US6893462B2 (en) 2000-01-11 2005-05-17 Regeneration Technologies, Inc. Soft and calcified tissue implants
US6635073B2 (en) 2000-05-03 2003-10-21 Peter M. Bonutti Method of securing body tissue
US6684886B1 (en) 2000-01-21 2004-02-03 Prospine, Inc. Intervertebral disc repair methods and apparatus
US6623492B1 (en) 2000-01-25 2003-09-23 Smith & Nephew, Inc. Tissue fastener
US6547806B1 (en) 2000-02-04 2003-04-15 Ni Ding Vascular sealing device and method of use
US6575979B1 (en) 2000-02-16 2003-06-10 Axiamed, Inc. Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US6558386B1 (en) 2000-02-16 2003-05-06 Trans1 Inc. Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine
US6248106B1 (en) 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US6423065B2 (en) 2000-02-25 2002-07-23 Bret A. Ferree Cross-coupled vertebral stabilizers including cam-operated cable connectors
US6514255B1 (en) 2000-02-25 2003-02-04 Bret Ferree Sublaminar spinal fixation apparatus
US6740093B2 (en) 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6296659B1 (en) 2000-02-29 2001-10-02 Opus Medical, Inc. Single-tailed suturing method and apparatus
US6332894B1 (en) 2000-03-07 2001-12-25 Zimmer, Inc. Polymer filled spinal fusion cage
US6425924B1 (en) 2000-03-31 2002-07-30 Ethicon, Inc. Hernia repair prosthesis
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US6689125B1 (en) 2000-04-04 2004-02-10 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6579291B1 (en) 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6723335B1 (en) 2000-04-07 2004-04-20 Jeffrey William Moehlenbruck Methods and compositions for treating intervertebral disc degeneration
JP3844661B2 (en) 2000-04-19 2006-11-15 ラディ・メディカル・システムズ・アクチェボラーグ Intra-arterial embolus
US6533817B1 (en) 2000-06-05 2003-03-18 Raymedica, Inc. Packaged, partially hydrated prosthetic disc nucleus
US6620185B1 (en) 2000-06-27 2003-09-16 Smith & Nephew, Inc. Surgical procedures and instruments
US6500132B1 (en) 2000-06-30 2002-12-31 Sdgi Holdings, Inc. Device and method for determining parameters of blind voids
US6610006B1 (en) 2000-07-25 2003-08-26 C. R. Bard, Inc. Implantable prosthesis
AU2001284857B2 (en) 2000-08-11 2005-09-29 Warsaw Orthopedic, Inc. Surgical instrumentation and method for treatment of the spine
US6620196B1 (en) 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
EP1582166B1 (en) 2000-09-07 2007-06-27 Sherwood Services AG Apparatus for the treatment of the intervertebral disc
AU9459501A (en) 2000-09-18 2002-03-26 Organogenesis Inc Method for treating a patient using a cultured connective tissue construct
CA2323252C (en) 2000-10-12 2007-12-11 Biorthex Inc. Artificial disc
US6733531B1 (en) 2000-10-20 2004-05-11 Sdgi Holdings, Inc. Anchoring devices and implants for intervertebral disc augmentation
JP2004515311A (en) 2000-10-25 2004-05-27 エスディージーアイ・ホールディングス・インコーポレーテッド Vertically expanding intervertebral fusion device
ES2238500T3 (en) 2000-10-27 2005-09-01 Sdgi Holdings, Inc. RING REPAIR SYSTEM.
US6613044B2 (en) 2000-10-30 2003-09-02 Allen Carl Selective delivery of cryogenic energy to intervertebral disc tissue and related methods of intradiscal hypothermia therapy
US6508828B1 (en) 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US6679914B1 (en) 2000-11-14 2004-01-20 Shlomo Gabbay Implantable orthopedic support apparatus
US6752831B2 (en) 2000-12-08 2004-06-22 Osteotech, Inc. Biocompatible osteogenic band for repair of spinal disorders
US6419703B1 (en) 2001-03-01 2002-07-16 T. Wade Fallin Prosthesis for the replacement of a posterior element of a vertebra
US6712853B2 (en) 2000-12-15 2004-03-30 Spineology, Inc. Annulus-reinforcing band
US6936070B1 (en) 2001-01-17 2005-08-30 Nabil L. Muhanna Intervertebral disc prosthesis and methods of implantation
US6500184B1 (en) 2001-01-31 2002-12-31 Yung C. Chan Suturing apparatus and method of suturing
US6576017B2 (en) 2001-02-06 2003-06-10 Sdgi Holdings, Inc. Spinal implant with attached ligament and methods
US6652585B2 (en) 2001-02-28 2003-11-25 Sdgi Holdings, Inc. Flexible spine stabilization system
US6827743B2 (en) 2001-02-28 2004-12-07 Sdgi Holdings, Inc. Woven orthopedic implants
US20020147461A1 (en) 2001-04-06 2002-10-10 Aldrich William N. Apparatus and methods for closing openings in spinal discs
US6726696B1 (en) * 2001-04-24 2004-04-27 Advanced Catheter Engineering, Inc. Patches and collars for medical applications and methods of use
US7037334B1 (en) 2001-04-24 2006-05-02 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
JP4267867B2 (en) 2001-05-03 2009-05-27 ラディ・メディカル・システムズ・アクチェボラーグ Wound occlusion element guide device
US6605096B1 (en) 2001-07-20 2003-08-12 Opus Medical Inc, Percutaneous suturing apparatus and method
US6592608B2 (en) 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
EP1437989A2 (en) 2001-08-27 2004-07-21 James C. Thomas, Jr. Expandable implant for partial disc replacement and reinforcement of a disc partially removed in a discectomy and for reduction and maintenance of alignment of cancellous bone fractures and methods and apparatuses for same.
US6736815B2 (en) 2001-09-06 2004-05-18 Core Medical, Inc. Apparatus and methods for treating spinal discs
US6767037B2 (en) 2001-09-27 2004-07-27 Depuy Mitek, Inc. Sliding and locking surgical knot
US6805715B2 (en) 2001-10-09 2004-10-19 Pmt Corporation Method and device for treating intervertebral disc herniations
US6773699B1 (en) 2001-10-09 2004-08-10 Tissue Adhesive Technologies, Inc. Light energized tissue adhesive conformal patch
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US6572653B1 (en) 2001-12-07 2003-06-03 Rush E. Simonson Vertebral implant adapted for posterior insertion
US6723095B2 (en) 2001-12-28 2004-04-20 Hemodynamics, Inc. Method of spinal fixation using adhesive media
US6733534B2 (en) 2002-01-29 2004-05-11 Sdgi Holdings, Inc. System and method for spine spacing
US6896675B2 (en) 2002-03-05 2005-05-24 Baylis Medical Company Inc. Intradiscal lesioning device
US6669729B2 (en) 2002-03-08 2003-12-30 Kingsley Richard Chin Apparatus and method for the replacement of posterior vertebral elements
US6812211B2 (en) 2002-03-19 2004-11-02 Michael Andrew Slivka Method for nonsurgical treatment of the intervertebral disc and kit therefor
US6932833B1 (en) 2002-04-01 2005-08-23 Bobby W. Presley Method and barrier for limiting fluid movement through a tissue rent
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US6699263B2 (en) 2002-04-05 2004-03-02 Cook Incorporated Sliding suture anchor
US7223289B2 (en) 2002-04-16 2007-05-29 Warsaw Orthopedic, Inc. Annulus repair systems and techniques
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US6960215B2 (en) 2002-05-08 2005-11-01 Boston Scientific Scimed, Inc. Tactical detachable anatomic containment device and therapeutic treatment system
US6972027B2 (en) 2002-06-26 2005-12-06 Stryker Endoscopy Soft tissue repair system
US7033393B2 (en) * 2002-06-27 2006-04-25 Raymedica, Inc. Self-transitioning spinal disc anulus occulsion device and method of use
US6723097B2 (en) 2002-07-23 2004-04-20 Depuy Spine, Inc. Surgical trial implant
WO2004021866A2 (en) * 2002-09-06 2004-03-18 Alleyne Neville D Seal for posterior lateral vertebral disk cavity
US20040054414A1 (en) 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US6966916B2 (en) * 2002-09-26 2005-11-22 Kumar Sarbjeet S Device and method for surgical repair of abdominal wall hernias
US6827716B2 (en) 2002-09-30 2004-12-07 Depuy Spine, Inc. Method of identifying and treating a pathologic region of an intervertebral disc
US20040210310A1 (en) * 2002-12-10 2004-10-21 Trieu Hai H. Implant system and method for intervertebral disc augmentation
US6974479B2 (en) 2002-12-10 2005-12-13 Sdgi Holdings, Inc. System and method for blocking and/or retaining a prosthetic spinal implant
US6966931B2 (en) 2003-05-21 2005-11-22 Tain-Yew Shi Artificial intervertebral disc with reliable maneuverability
DE10340150A1 (en) * 2003-08-26 2005-03-31 Aesculap Ag & Co. Kg Implant for closing an opening of the annulus fibrosus
US20060247776A1 (en) * 2005-05-02 2006-11-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for augmenting intervertebral discs
US20070067040A1 (en) * 2005-09-02 2007-03-22 Anova Corporation Methods and apparatus for reconstructing the anulus fibrosus
US8197545B2 (en) * 2005-10-27 2012-06-12 Depuy Spine, Inc. Nucleus augmentation delivery device and technique

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405360A (en) * 1992-02-24 1995-04-11 United States Surgical Corporation Resilient arm mesh deployer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8998920B2 (en) 2008-12-19 2015-04-07 Amicus Design Group, Llc Insertion tool for inter-body vertebral prosthetic device with self-deploying screws
US8425528B2 (en) 2008-12-19 2013-04-23 Amicus Design Group, Llc Insertion tool for inter-body vertebral prosthetic device with self-deploying screws
US8382840B2 (en) * 2009-09-03 2013-02-26 Zimmer Spine, Inc. Spinal implant delivery methods and devices
US20110054548A1 (en) * 2009-09-03 2011-03-03 Zimmer Spine, Inc. Spinal implant delivery methods and devices
US20110077655A1 (en) * 2009-09-25 2011-03-31 Fisher Michael A Vertebral Body Spool Device
US20110153017A1 (en) * 2009-12-22 2011-06-23 Mcclellan William T Systems and methods for tissue expansion with fluid delivery and drainage system
US8454690B2 (en) 2009-12-22 2013-06-04 William T. MCCLELLAN Systems and methods for tissue expansion with fluid delivery and drainage system
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US8906101B2 (en) 2012-03-19 2014-12-09 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9107761B2 (en) 2012-03-19 2015-08-18 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9283087B2 (en) 2012-03-19 2016-03-15 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9757252B2 (en) 2012-03-19 2017-09-12 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US10058435B2 (en) 2012-03-19 2018-08-28 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors

Also Published As

Publication number Publication date
US20070198021A1 (en) 2007-08-23
US20110190896A1 (en) 2011-08-04
US7935147B2 (en) 2011-05-03

Similar Documents

Publication Publication Date Title
US7935147B2 (en) Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US9192372B2 (en) Method for the treatment of tissue
US9675347B2 (en) Apparatus for the treatment of tissue
US8128698B2 (en) Method and apparatus for the treatment of the intervertebral disc annulus
US9095442B2 (en) Method and apparatus for the treatment of the intervertebral disc annulus
US7951201B2 (en) Method and apparatus for the treatment of the intervertebral disc annulus
US20090149959A1 (en) Spinal implants and methods
WO2011109363A1 (en) System for intervertebral disc bulge reduction

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION