US20090044954A1 - Method for Transporting Multiphase Fluids - Google Patents

Method for Transporting Multiphase Fluids Download PDF

Info

Publication number
US20090044954A1
US20090044954A1 US12/243,300 US24330008A US2009044954A1 US 20090044954 A1 US20090044954 A1 US 20090044954A1 US 24330008 A US24330008 A US 24330008A US 2009044954 A1 US2009044954 A1 US 2009044954A1
Authority
US
United States
Prior art keywords
tubing
helical
flow
fluids
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/243,300
Inventor
Colin G. Caro
Nicholas V. Watkins
Philip L. Birch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ip2ipo Innovations Ltd
Original Assignee
Imperial College Innovations Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0306179.3A external-priority patent/GB0306179D0/en
Priority claimed from GBGB0306176.9A external-priority patent/GB0306176D0/en
Priority claimed from GB0306180A external-priority patent/GB0306180D0/en
Application filed by Imperial College Innovations Ltd filed Critical Imperial College Innovations Ltd
Priority to US12/243,300 priority Critical patent/US20090044954A1/en
Assigned to IMPERIAL COLLEGE INNOVATIONS LIMITED reassignment IMPERIAL COLLEGE INNOVATIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIRCH, PHILIP L., CARO, COLIN G., WATKINS, NICHOLAS V.
Publication of US20090044954A1 publication Critical patent/US20090044954A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/121Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting specially profiled cross sections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/131Curved articles
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/18Pipes provided with plural fluid passages
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/22Rods or pipes with helical structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/068Modifying the blood flow model, e.g. by diffuser or deflector

Definitions

  • This invention relates to tubing and piping for use in multiphase flow.
  • Multiphase flow is of course well known, and occurs when the flow in a tube or pipe is not made up of a single homogenous fluid.
  • Examples of multiphase flow are gas/liquid, liquid/solid (such as suspensions and slurries), gas/solid (powders entrained in air), two immiscible liquids (such as oil and water), liquids at different temperatures, and so on.
  • Multiphase flow can lead to serious problems.
  • a principal problem is that the phases are often of differing densities.
  • gases being of a lower density than liquid
  • gases can accumulate in the upper part of a substantially horizontal pipe carrying a gas/liquid mixture, and this can cause problems if the pipe carrying the fluids is not perfectly horizontal along its length. If there are undulations along the length of the pipe, then gas can accumulate in the upper parts of the undulations and lead to airlocks.
  • the denser of two immiscible liquids can collect in the lower parts of a pipe, and lead to similar locks.
  • a typical reservoir may contain liquid hydrocarbon sitting over water.
  • the horizontal portion of the well extends along the liquid hydrocarbon layer. Fluids move from that layer into the well bore, via wall perforations provided at selected points, where they enter a lower pressure regime.
  • the liquid hydrocarbon segregates to gas and liquid hydrocarbon, and water is often included in the mixture entering the well.
  • the gas phase may predominate, with secondary phases of liquid hydrocarbon and water, or the liquid hydrocarbon may predominate, with secondary phases of gas and water. Either way, the well has to transport a multi-phase fluid, which will normally consist of gas and two immiscible liquids.
  • the horizontal well portion is rarely exactly horizontal over its length.
  • a generally undulating horizontal well tends to be created.
  • a submersible pump can be deployed into the well to extract the water. However, this takes time, and production can be halted for several days or even longer. Furthermore, as the hydrocarbon reservoir is drained the water content in the fluid may increase, leading to more frequent occurrences of well occlusion. Whilst the process is most common in horizontal wells, it can present a problem in any multiphase well. Also, the use of a submersible pump does not solve the problem of terrain-induced slugging.
  • a further problem in multiphase production wells occurs in the low-temperature and pressure upper reaches of the well, particularly in submarine risers connecting the sea-floor well-head to the production vessel or platform. Under these conditions, gas can form large bubbles which can lead to severe slugging. In addition, large bubbles will significantly increase pressure-loss within the well, thus inhibiting production.
  • Air can be entrained into the blood as it is withdrawn from the patient's heart, and can form bubbles in the tubing leading from the patient to the pump and the oxygenation unit. Bubbles of oxygen can also form in the blood during the oxygenation process.
  • tubing or piping having features which induce swirl flow in a multiphase flow, in such a manner that denser components of the multiphase flow tend to the outer wall of the tubing or piping, and less dense components of the multiphase flow tend to the center of the tubing or piping.
  • the horizontal portion of known well production tubing may undulate horizontally as well as vertically.
  • the curves in the well so created have such a low curvature as to have a negligible effect on the nature of fluid flow along the well.
  • the flow (providing of course that it is not occluded) may therefore be considered as having the characteristics of flow along a straight pipe.
  • the flow will normally be turbulent, although in accordance with known pipeline hydraulics, a thin laminar layer is present in proximity to a solid boundary, i.e. the tubing inner wall. For slower flow speeds, the flow may be laminar. In both cases, the axial velocity profile in straight tubing flow has a maximum at the center of the tubing, with slower velocities adjacent to the walls.
  • a further major benefit of swirl flow is the promotion of mixing in a multiphase flow.
  • gas, liquid hydrocarbon and water will tend to mix, and so the tendency for accumulation of liquids along the tubing will be reduced.
  • the better mixing and higher near-wall flow speeds will also reduce the opportunities for the sedimentation of solids to occur at low points along the well, or for minerals to precipitate.
  • the well production tubing as discussed here includes any multiphase transmission tubing. In the context of oil production, it includes inter alia the tubing below a well head, any surface flow lines, risers, and any tubing for transporting and/or processing multiphase petroleum.
  • the means for inducing swirl flow along the tubing or piping may consist of helical ridges or grooves in the tubing or piping Wall, or guide vanes extending inwardly from the wall.
  • this is not considered to be an optimum solution, since such devices may themselves form obstructions or create stagnant regions where material may accumulate.
  • the ratio of the wetted perimeter to the cross-sectional area of the tubing would be increased by the provision of ridges, grooves, vanes etc. This may lead to increased flow resistance and pressure-loss, or conversely, to a reduction in flow for a given head.
  • center line of the piping it is therefore preferred for the center line of the piping to follow a substantially helical path.
  • the center line of the tubing is also straight.
  • the use of tubing with a helical center line induces swirl and facilitates mixing between the fluid near the tubing wall and in the core in a better manner than where helical grooves or ridges are used in tubing with a straight center line.
  • tubing having a helical center line there is spatial reorganization of vortical structures, which results in motion of the core or cores of the axial flow across the section of the tubing portion, promoting mixing across the cross section.
  • the swirl inhibits the development of stagnation and flow separation regions and stabilizes flows, and as mentioned above leads to the “centrifuge” effect.
  • the tubing may have a circular cross-section and thus a small wetted perimeter to cross-sectional area ratio, and without obstructions to the flow.
  • the tubing will still have the necessary characteristics to induce helical or swirl flow.
  • Well production tubing normally fits inside an outer casing.
  • the tubing therefore has to occupy a swept width smaller than or equal to the internal diameter of the outer casing.
  • the preferred helical tubing i.e. tubing wherein the center line follows a substantially helical path
  • the amplitude of the helix is sufficiently large to induce swirl flow, but sufficiently small for the tubing to occupy as much as possible of the available cross-section. Optimization of the amplitude to meet the first of these criteria will depend on factors such as fluid viscosity, density and velocity.
  • the amplitude of the helix refers to the extent of displacement from a mean position to a lateral extreme. So, in the case of tubing having a helical center line, the amplitude is one half of the full lateral width of the helical center line.
  • the amplitude of the helix is less than or equal to one half of the internal diameter of the tubing.
  • there is a “line of sight” along the lumen of the tubing unlike in the case of a corkscrew configuration where in effect the helix is wound around a core (either solid, or “virtual” with a core of air). It has been found that the flow at the line of sight generally has a swirl component, even though it could potentially follow a straight path.
  • the tem “relative amplitude” of a helical tubing is regarded as the amplitude divided by the internal diameter. So, in the preferred embodiments in which the amplitude of the helical tubing is less than or equal to one half of the internal diameter of the tubing, this means that the relative amplitude is less than or equal to 0.5. Relative amplitudes less than or equal to 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.1 or 0.05 may be preferred.
  • the angle of the helix is also a relevant factor in balancing the space constraints on a well production string with the desirability of having a large cross-sectional area available for flow.
  • the helix angle is preferably less than or equal to 65°, more preferably less than or equal to 55°, 45°, 35°, 25°, 20°, 15°, 10° or 5°.
  • the helix angle may be optimized according to the conditions: viscosity, density and velocity of fluid.
  • the helix angle may be smaller whilst satisfactory swirl flow is achieved, whilst with lower Reynolds numbers a higher helix angle will be required to produce satisfactory swirl.
  • the use of higher helix angles for faster flows (higher Reynolds numbers) will generally be undesirable, as there may be near wall pockets of stagnant fluid. Therefore, for a given Reynolds number (or range of Reynolds numbers), the helix angle will preferably be chosen to be as low as possible to produce satisfactory swirl. In certain embodiments, the helix angle is less than 20°.
  • the tubing will have a plurality of turns of the helix. Repeated turns of the helix along the tubing will tend to ensure that the swirl flow is maintained.
  • a straight portion of pipe is provided downstream of a helical swirl-inducing section, it takes some distance for the swirl flow to die away, and so as an alternative to forming the entire pipe as a helical portion, it would be possible to provide a number of separate lengths of helical tubing or piping along the length of the pipe. These sections would then act as “repeaters”. Each portion will induce swirl flow in the fluid passing through it; however, this swirl flow will tend to die away as the fluid passes along the straight pipe. Providing a number of “repeaters” allows the swirl flow to be re-established, with its concomitant benefits.
  • helical portions can be provided before pipe fittings (such as elbow bends, T- or Y-junctions, valves and the like), so that swirl flow is established before the flow reaches these fittings.
  • Lengths of tubing will normally be made with substantially the same relative amplitude and helix angle along the length. There may be small variations when the tubing is deployed or in use, caused by elongation or contraction of the tubing due to tensile loading or caused by torsional loading. However, there may be circumstances in which the tubing has a variable helix angle and/or relative amplitude, either to suit space constraints or to optimise the flow conditions. For reasons of manufacturing simplicity, it will be preferred for the tubing to have a substantially constant cross-sectional area along its length. Again, there may be variations in use caused by loading on the tubing.
  • FIG. 1 is a schematic view of a long-reach horizontal well for hydrocarbon extraction, in accordance with the prior art
  • FIG. 2 is an enlarged view of part of the well of FIG. 1 ;
  • FIG. 3 is a view similar to FIG. 2 but showing the use of tubing in a well in accordance with the invention
  • FIG. 4 is an elevation view showing tubing used in an experiment and designed to induce swirl flow in accordance with the invention.
  • FIG. 5 is a view similar to FIG. 4 but showing another experiment.
  • FIGS. 1 and 2 show the use of a long-reach horizontal well for hydrocarbon extraction, in accordance with a known method.
  • a well production string 50 penetrates vertically into the ground from a well head 52 and at the required depth bends round to a generally horizontal orientation.
  • the formation into which the well string is drilled includes a reservoir formation 54 separated into different zones by faults 56 .
  • the reservoir formation includes a liquid hydrocarbon layer 60 , sitting on a water layer 62 .
  • the well production string 50 includes sections formed with perforations 66 (see FIG. 2 ) allowing entry of fluids into the well production string in the direction shown by arrows 64 .
  • a known process for drilling such a well is as follows. A first portion is drilled to a specific depth and a first outer casing section is run down the drilling and cemented into place. The next portion of the well is drilled and another casing section is fed down the previously installed section and this is also cemented into place. The process continues, such that the diameters of successive outer casing sections decrease as the length of the well increases. Eventually the desired total length of the well is drilled and lined by outer casing sections.
  • Tubing 68 with perforating guns 70 provided at appropriate points according to the geology of the site, is inserted down the well.
  • the perforating guns are fired, thereby creating the perforations 66 through the outer casing 72 .
  • This allows liquid hydrocarbon to pass from the reservoir 60 via the perforations 66 and into the well production string 50 .
  • the fluid in the well usually consists of a mixture of gas, oil and water.
  • the multiphase fluid flows along the well production string 50 towards the surface.
  • the horizontal portion of the well is not completely horizontal and has a series of gentle U-bends, both upwardly concave and upwardly convex.
  • FIG. 2 shows a pool of water 74 which has collected in an upwardly concave U-bend. Eventually, this will fill the U-bend and cause a blockage which occludes the flow along the well.
  • the tubing 1 shown in FIG. 4 has a circular cross-section, an external diameter D E , an internal diameter D I and a wall thickness T.
  • the tubing is coiled into a helix of constant amplitude A (as measured from mean to extreme), constant pitch P, constant helix angle ⁇ and a swept width W.
  • the tubing 1 is contained in an imaginary envelope 20 which extends longitudinally and has a width equal to the swept width W of the helix.
  • the envelope 20 may be regarded as having a central longitudinal axis 30 , which may also be referred to as an axis of helical rotation.
  • the illustrated tubing 1 has a straight axis 30 , but it will be appreciated that in well production tubing the central axis will often have a large radius curvature (hence creating the U-bends).
  • the tubing has a center line 40 which follows a helical path about the central longitudinal axis 30 .
  • the amplitude A is less than half the tubing internal diameter D I .
  • Example 5 shows the results of two experiments with near-wall ink release, with Reynolds numbers R E of 500 and 250 respectively. It will be seen that in both cases the ink filaments follow the helical tubing geometry, indicating near-wall swirl. Furthermore, mixing of the ink filaments with the water is promoted.
  • the experiments of this Example involved a comparison of multi-phase flows in helical tubing with that in tubing having a centerline following a generally sinusoidal path in a single plane.
  • the internal diameter was 8 mm
  • the external diameter was 12 mm
  • the swept width was 17 mm, giving a relative amplitude of 0.3125.
  • the pitch was 90 mm.
  • the internal diameter was 8 mm
  • the external diameter was 12 mm
  • the swept width measured in the plane of the wave shape, was 17 mm.
  • the pitch was 80 mm, not being significantly different from that of the 3D tubing case.
  • the 2D tubing was held with its generally sinusoidal centerline in a vertical plane, in effect creating upwardly convex and concave U-bends.
  • Both the 3D and 2D tubes were about 400 mm in length, giving 4-5 pitches in each case.
  • studies were performed with water flows of 450 and 900 ml per minute (Reynolds numbers of 1200 and 2400 respectively).
  • a needle was used to introduce in all cases a flow of air at a rate of 3 ml per minute, i.e. 0.66% of the water flow in the 450 ml per minute case and 0.33% in the 900 ml per minute case.
  • the air came from a compressed air line and was injected into the tubes just upstream of the start of the respective 3D and 2D geometries.
  • FIG. 3 shows a well having well production tubing in accordance with a preferred embodiment of the invention.
  • This tubing is helical and the helical configuration causes swirl (or generally helical flow) along the tubing.
  • swirl or generally helical flow
  • such flow has a centrifuge effect on the fluid in the pipe, such that denser material follows a helical path along the inside of the wall of the pipe, and less dense material flows along the centerline of the pipe. This tends to prevent pools of water from gathering in the upwardly concave U-bends of the well, thereby significantly reducing the chances of blockage.
  • the tubing also tends to prevent pockets of gas from gathering in the upwardly convex U-bends, again reducing the chances of blockage.
  • a further problem which can arise in multiphase flows during hydrocarbon extraction is that of “slugging”. This occurs when gas accumulates at the walls of the pipe, to such an extent as to block the flow. If the gas suddenly comes free from the walls, removing the blockage, then the flow will restart very suddenly, leading to impulse loads on the pipe and possible damage to the pipe and to ancillary equipment. Oil production platforms are routinely over-engineered to cope with such loads.
  • a reduction in gas concentration can also be of benefit in other situations, where the flow must pass through a fitting which functions better with single-phase flow.
  • a helical portion could be provided upstream of the fitting, to ensure that the fluid reaching the fitting is in a swirl flow condition, with the concentration of gas in the flow reduced.
  • a further beneficial effect obtained with multiphase swirl flow is a reduction in pressure drop; reductions of between ten and twenty percent, in comparison to the pressure drop in a straight tube, have been obtained in experiments with vertical pipes.
  • a reduction in pressure drop would also allow an increased flow for the same pressure difference, and so would reduce the amount of energy required to pump a fluid.
  • tubing and piping of the invention can be applied to any multiphase flow, to obtain the advantages of swirl flow described above.
  • the avoidance of gravitational effects such as phase separation is of particular relevance in the transport of slurries and suspensions of solids in liquids, as are frequently encountered in food processing, and in the transport of suspensions of powders in gas, as are frequently encountered in pharmaceutical production and processing.

Abstract

A method of transporting multiphase fluids during extraction of said fluids from a well. The method includes first providing a well production apparatus. The well production apparatus includes tubing for carrying a flow of well production fluids. A centre line of the tubing follows a substantially helical path, and the amplitude of the helix is less than or equal to one half of the internal diameter of the tubing. Then, the method includes transporting multiphase fluids along the tubing whilst inducing swirl flow thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of U.S. application Ser. No. 10/549,085, which itself constitutes the U.S. national stage of PCT/GB2004/001170, having an international filing date of Mar. 18, 2004, the international application claiming the benefit of priority of (1) GB 0306179.3, filed Mar. 18, 2003; (2) GB 0306180.1, filed Mar. 18, 2003; and (3) GB 0306176.9, filed Mar. 18, 2003. The contents of each of these applications are hereby incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to tubing and piping for use in multiphase flow.
  • 2. Related Technology
  • Multiphase flow is of course well known, and occurs when the flow in a tube or pipe is not made up of a single homogenous fluid. Examples of multiphase flow are gas/liquid, liquid/solid (such as suspensions and slurries), gas/solid (powders entrained in air), two immiscible liquids (such as oil and water), liquids at different temperatures, and so on.
  • Multiphase flow can lead to serious problems. A principal problem is that the phases are often of differing densities. For example, gases (being of a lower density than liquid) can accumulate in the upper part of a substantially horizontal pipe carrying a gas/liquid mixture, and this can cause problems if the pipe carrying the fluids is not perfectly horizontal along its length. If there are undulations along the length of the pipe, then gas can accumulate in the upper parts of the undulations and lead to airlocks. Similarly, the denser of two immiscible liquids can collect in the lower parts of a pipe, and lead to similar locks.
  • These problems can be particularly severe in the hydrocarbon (oil and gas) extraction industry. In this industry, it has become increasingly common to drill a well vertically, and then to navigate the drill to a generally horizontal orientation. A typical well may penetrate a few kilometres vertically down into the earth and then have a horizontal portion of many hundreds of metres. This type of well drilling enables a single surface location to be used to access reservoir formations over a wide area, rather than only immediately below the surface location. In addition, the horizontal portion of the well may be used to access horizontally spaced compartments of a hydrocarbon reservoir.
  • It has also become increasingly common to extract hydrocarbons from deep, high pressure/high temperature reservoirs, where low molecular weight hydrocarbons exist in a liquid form called gas condensate. Owing to their high cost, such reservoirs adapt themselves to be drained by horizontal production wells.
  • A typical reservoir may contain liquid hydrocarbon sitting over water. The horizontal portion of the well extends along the liquid hydrocarbon layer. Fluids move from that layer into the well bore, via wall perforations provided at selected points, where they enter a lower pressure regime. The liquid hydrocarbon segregates to gas and liquid hydrocarbon, and water is often included in the mixture entering the well. The gas phase may predominate, with secondary phases of liquid hydrocarbon and water, or the liquid hydrocarbon may predominate, with secondary phases of gas and water. Either way, the well has to transport a multi-phase fluid, which will normally consist of gas and two immiscible liquids.
  • In practice, the horizontal well portion is rarely exactly horizontal over its length. During the initial drilling process a generally undulating horizontal well tends to be created. This results, in effect, in the formation of gentle U-bends in the horizontal well portion. Viewing the well from the outside, these may take the form of upwardly convex U-bends and upwardly concave U-bends. As the multi-phase fluid flows along the well it is not uncommon for gravity separation of the phases to occur. Water gathers at the bottom of any upwardly concave U-bends, whilst gas may collect at the top of any upwardly convex U-bends.
  • If the water fills a U-bend the flow is occluded. Well production ceases when it builds up too much dense fluid. The accumulation of gas can lead to terrain-induced slugging. Slugging occurs when gas bubbles collect on the walls of the pipe to such an extent that they block the flow entirely. Liquid approaching this blockage will tend to raise the pressure of the gas, and when the pressure reaches a certain point the blockage will suddenly shift. This sudden restart of flow (or “explosion”) causes large shock loads on the pipe, and also on any downstream piping or equipment, which can cause serious damage.
  • A submersible pump can be deployed into the well to extract the water. However, this takes time, and production can be halted for several days or even longer. Furthermore, as the hydrocarbon reservoir is drained the water content in the fluid may increase, leading to more frequent occurrences of well occlusion. Whilst the process is most common in horizontal wells, it can present a problem in any multiphase well. Also, the use of a submersible pump does not solve the problem of terrain-induced slugging.
  • Another problem associated with water accumulation is the precipitation of minerals in the well which may also lead to occlusion or choking. Further, the presence of water can lead to turbulence, which may lead to stagnant or dead areas in the pipe. Precipitation (of minerals or of hydrocarbons) and sedimentation are more likely to occur in these areas.
  • A further problem in multiphase production wells occurs in the low-temperature and pressure upper reaches of the well, particularly in submarine risers connecting the sea-floor well-head to the production vessel or platform. Under these conditions, gas can form large bubbles which can lead to severe slugging. In addition, large bubbles will significantly increase pressure-loss within the well, thus inhibiting production.
  • A further specific situation where the formation of airlocks and so on would be extremely undesirable is in the tubing used during heart operations.
  • During open-heart surgery, the heart of the patient is stopped. In order to maintain circulation, blood is normally withdrawn from the right atrium, passed through a pump and an oxygenation unit, and then returned to the aorta for circulation around the patient's body.
  • Air can be entrained into the blood as it is withdrawn from the patient's heart, and can form bubbles in the tubing leading from the patient to the pump and the oxygenation unit. Bubbles of oxygen can also form in the blood during the oxygenation process.
  • Further, there is a trend in general surgery (not necessarily open-heart) to reduce the amount of donated blood used. The patient's own blood is recirculated, and the collection device used to collect the patient's blood can easily entrain air, which will form bubbles.
  • Obviously, these bubbles must be removed from the blood before it is returned to the patient, and bubble traps are routinely provided in the tubing to allow this removal.
  • However, there is a known problem regarding the bubbles, in that they can accumulate in the tubing connecting the patient, the pump and the oxygenation unit. Although the bubbles can be loosened from the tubing by tapping the tubing, an unnoticed build-up of bubbles can lead to blockages, and (if not dealt with) interruption of the blood supply, which can have extremely serious consequences.
  • GENERAL DESCRIPTION OF THE INVENTION
  • According to a first aspect of the invention, there is provided tubing or piping having features which induce swirl flow in a multiphase flow, in such a manner that denser components of the multiphase flow tend to the outer wall of the tubing or piping, and less dense components of the multiphase flow tend to the center of the tubing or piping.
  • It has been found experimentally that swirl flow provides considerable advantages in the context of multiphase flow. In multiphase swirl flow, it has been found that the lighter fractions of the flow (such as gases and less dense liquids) tend to flow along the center of the pipe, while the heavier fractions of the flow (denser liquids) flow along the walls of the pipe in a generally helical path. It is believed that this arises from the centrifugal effect of the swirling flow. As a result, there is much less tendency for lighter or heavier fractions to separate out under gravity.
  • Swirl flow provides considerable advantages in the context of multiphase flow. As there is less tendency for lighter or heavier fractions to separate out under gravity, the risk of airlocks occurring is greatly reduced. Similarly, denser liquids will not collect in the lower parts of the pipe, and so there is less risk of flow disruption arising in this way.
  • These advantages will be discussed further with reference to well production tubing. As mentioned above, the horizontal portion of known well production tubing may undulate horizontally as well as vertically. The curves in the well so created have such a low curvature as to have a negligible effect on the nature of fluid flow along the well. The flow (providing of course that it is not occluded) may therefore be considered as having the characteristics of flow along a straight pipe. The flow will normally be turbulent, although in accordance with known pipeline hydraulics, a thin laminar layer is present in proximity to a solid boundary, i.e. the tubing inner wall. For slower flow speeds, the flow may be laminar. In both cases, the axial velocity profile in straight tubing flow has a maximum at the center of the tubing, with slower velocities adjacent to the walls.
  • One effect of swirl flow is that the axial velocity profile of the flow across the tubing becomes more uniform or “blunter”, with the speed of flow near the tubing wall being faster than it would be in similar flow in a straight well production tubing. The flow at the center of the tubing is slower than would be the case in straight tubing. Because of the blunter velocity profile, fluid flowing in the tubing acts in the manner of a plunger. This will tend to reduce the accumulation of water or other dense fluids at low points of the tubing (upwardly concave U-bends) and the accumulation of gas at high points (upwardly convex U-bends).
  • A further major benefit of swirl flow is the promotion of mixing in a multiphase flow. In well production tubing, gas, liquid hydrocarbon and water will tend to mix, and so the tendency for accumulation of liquids along the tubing will be reduced. The better mixing and higher near-wall flow speeds will also reduce the opportunities for the sedimentation of solids to occur at low points along the well, or for minerals to precipitate.
  • This will also be of importance in higher portions of the well, where bubbles can coalesce. The mixing effects of swirl flow may enhance phase mixing and prevent large bubbles from forming. The promotion of swirl flow is of benefit in steep wells, e.g. vertical or 45° to the horizontal, and not just in horizontal well portions.
  • However, to the extent that the components of a multi-phase fluid flow do not mix, as the fluid flows axially along the tubing of this invention the denser components will tend to revolve around the tubing near the wall, with less dense components revolving nearer to the center. This “centrifuge” phenomenon assists reduction of accumulation of e.g. water at low points of the tubing and reduction of accumulation of gases at high points.
  • All of these three factors (blunter velocity profile, improved mixing and “centrifuge” effect) are believed to contribute to improved flow characteristics with multi-phase swirl flow.
  • The well production tubing as discussed here includes any multiphase transmission tubing. In the context of oil production, it includes inter alia the tubing below a well head, any surface flow lines, risers, and any tubing for transporting and/or processing multiphase petroleum.
  • The means for inducing swirl flow along the tubing or piping may consist of helical ridges or grooves in the tubing or piping Wall, or guide vanes extending inwardly from the wall. However, this is not considered to be an optimum solution, since such devices may themselves form obstructions or create stagnant regions where material may accumulate. In addition, the ratio of the wetted perimeter to the cross-sectional area of the tubing would be increased by the provision of ridges, grooves, vanes etc. This may lead to increased flow resistance and pressure-loss, or conversely, to a reduction in flow for a given head.
  • Further, experiment has shown that unless the Reynolds number is very low, ridges, grooves or vanes of this type only have an effect on the flow near the wall of the pipe. It may be necessary to provide a long pipe in order to be sure that the flow swirls across the entire width of the pipe. Swirl in the center of the pipe is only achieved through diffusional transfer of momentum from the flow at the wall of the pipe; the ridges, grooves or vanes do not facilitate mixing between fluid near the wall of the pipe and fluid at the center of the pipe. A further possibility would be for the tubing to have a non-circular cross-section which is twisted. However, a departure from circularity increases the ratio of the wetted perimeter to the cross-sectional area, which is undesirable. Further, this is not an efficient use of space.
  • It is therefore preferred for the center line of the piping to follow a substantially helical path.
  • In the above possible embodiments using grooves or ridges or non-circular sections, where the tubing is substantially straight, then the center line of the tubing is also straight. The use of tubing with a helical center line induces swirl and facilitates mixing between the fluid near the tubing wall and in the core in a better manner than where helical grooves or ridges are used in tubing with a straight center line. In the case of tubing having a helical center line, there is spatial reorganization of vortical structures, which results in motion of the core or cores of the axial flow across the section of the tubing portion, promoting mixing across the cross section. The swirl inhibits the development of stagnation and flow separation regions and stabilizes flows, and as mentioned above leads to the “centrifuge” effect.
  • Moreover, if the center line of the tubing follows a substantially helical path, in accordance with the preferred embodiment, the tubing may have a circular cross-section and thus a small wetted perimeter to cross-sectional area ratio, and without obstructions to the flow. The tubing will still have the necessary characteristics to induce helical or swirl flow. There may however be circumstances in which it is desirable for tubing with a helical center line to have a non-circular cross-section.
  • Well production tubing normally fits inside an outer casing. The tubing therefore has to occupy a swept width smaller than or equal to the internal diameter of the outer casing. In the case of the preferred helical tubing (i.e. tubing wherein the center line follows a substantially helical path), if the helix is to have a large amplitude then the cross-sectional area available for fluid flow is correspondingly small. It is therefore preferred for the amplitude of the helix to be sufficiently large to induce swirl flow, but sufficiently small for the tubing to occupy as much as possible of the available cross-section. Optimization of the amplitude to meet the first of these criteria will depend on factors such as fluid viscosity, density and velocity.
  • In this specification, the amplitude of the helix refers to the extent of displacement from a mean position to a lateral extreme. So, in the case of tubing having a helical center line, the amplitude is one half of the full lateral width of the helical center line.
  • Preferably, the amplitude of the helix is less than or equal to one half of the internal diameter of the tubing. In such circumstances, there is a “line of sight” along the lumen of the tubing, unlike in the case of a corkscrew configuration where in effect the helix is wound around a core (either solid, or “virtual” with a core of air). It has been found that the flow at the line of sight generally has a swirl component, even though it could potentially follow a straight path.
  • For the purposes of this specification, the tem “relative amplitude” of a helical tubing is regarded as the amplitude divided by the internal diameter. So, in the preferred embodiments in which the amplitude of the helical tubing is less than or equal to one half of the internal diameter of the tubing, this means that the relative amplitude is less than or equal to 0.5. Relative amplitudes less than or equal to 0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, 0.1 or 0.05 may be preferred. Smaller relative amplitudes provide a better use of the available lateral space, i.e in the case of a helical tubing in a cylindrical outer casing there will be less unused space between the tubing and the outer casing. Smaller relative amplitudes also result in a wider “line of sight”, providing more space for the insertion of pressure gauges or other equipment along the lumen of the tubing. With higher Reynolds numbers, smaller relative amplitudes may be used whilst swirl flow is induced to a satisfactory extent. This will generally mean that for a given tubing internal diameter where there is a high flow rate then a low relative amplitude can be used whilst being sufficient to induce swirl flow.
  • The angle of the helix is also a relevant factor in balancing the space constraints on a well production string with the desirability of having a large cross-sectional area available for flow. The helix angle is preferably less than or equal to 65°, more preferably less than or equal to 55°, 45°, 35°, 25°, 20°, 15°, 10° or 5°. As with relative amplitudes, the helix angle may be optimized according to the conditions: viscosity, density and velocity of fluid.
  • Generally speaking, for higher Reynolds numbers the helix angle may be smaller whilst satisfactory swirl flow is achieved, whilst with lower Reynolds numbers a higher helix angle will be required to produce satisfactory swirl. The use of higher helix angles for faster flows (higher Reynolds numbers) will generally be undesirable, as there may be near wall pockets of stagnant fluid. Therefore, for a given Reynolds number (or range of Reynolds numbers), the helix angle will preferably be chosen to be as low as possible to produce satisfactory swirl. In certain embodiments, the helix angle is less than 20°.
  • In general, the tubing will have a plurality of turns of the helix. Repeated turns of the helix along the tubing will tend to ensure that the swirl flow is maintained. However, even if a straight portion of pipe is provided downstream of a helical swirl-inducing section, it takes some distance for the swirl flow to die away, and so as an alternative to forming the entire pipe as a helical portion, it would be possible to provide a number of separate lengths of helical tubing or piping along the length of the pipe. These sections would then act as “repeaters”. Each portion will induce swirl flow in the fluid passing through it; however, this swirl flow will tend to die away as the fluid passes along the straight pipe. Providing a number of “repeaters” allows the swirl flow to be re-established, with its concomitant benefits.
  • Similarly, helical portions can be provided before pipe fittings (such as elbow bends, T- or Y-junctions, valves and the like), so that swirl flow is established before the flow reaches these fittings.
  • Lengths of tubing will normally be made with substantially the same relative amplitude and helix angle along the length. There may be small variations when the tubing is deployed or in use, caused by elongation or contraction of the tubing due to tensile loading or caused by torsional loading. However, there may be circumstances in which the tubing has a variable helix angle and/or relative amplitude, either to suit space constraints or to optimise the flow conditions. For reasons of manufacturing simplicity, it will be preferred for the tubing to have a substantially constant cross-sectional area along its length. Again, there may be variations in use caused by loading on the tubing.
  • Similarly, considerable advantages can be achieved by forming the tubing used in machinery for heart operations as discussed above such that the fluid flowing in the tube flows in a swirl flow. The centrifuge effect means that any air or oxygen bubbles in the blood will tend to stay near the center of the tubing, rather than accumulating at higher points of the tubing and leading to possible blockages. The bubbles will thus be carried along the tubing, and can be removed at bubble traps as discussed above.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic view of a long-reach horizontal well for hydrocarbon extraction, in accordance with the prior art;
  • FIG. 2 is an enlarged view of part of the well of FIG. 1;
  • FIG. 3 is a view similar to FIG. 2 but showing the use of tubing in a well in accordance with the invention;
  • FIG. 4 is an elevation view showing tubing used in an experiment and designed to induce swirl flow in accordance with the invention; and
  • FIG. 5 is a view similar to FIG. 4 but showing another experiment.
  • DETAILED DESCRIPTION
  • Although the following description concentrates on the use of multiphase swirl flow in the context of hydrocarbon extraction, it will be appreciated that the advantages provided by multiphase swirl flow can be obtained in many other situations where multiphase flow occurs.
  • FIGS. 1 and 2 show the use of a long-reach horizontal well for hydrocarbon extraction, in accordance with a known method. A well production string 50 penetrates vertically into the ground from a well head 52 and at the required depth bends round to a generally horizontal orientation. The formation into which the well string is drilled includes a reservoir formation 54 separated into different zones by faults 56. The reservoir formation includes a liquid hydrocarbon layer 60, sitting on a water layer 62.
  • The well production string 50 includes sections formed with perforations 66 (see FIG. 2) allowing entry of fluids into the well production string in the direction shown by arrows 64.
  • A known process for drilling such a well is as follows. A first portion is drilled to a specific depth and a first outer casing section is run down the drilling and cemented into place. The next portion of the well is drilled and another casing section is fed down the previously installed section and this is also cemented into place. The process continues, such that the diameters of successive outer casing sections decrease as the length of the well increases. Eventually the desired total length of the well is drilled and lined by outer casing sections.
  • Tubing 68, with perforating guns 70 provided at appropriate points according to the geology of the site, is inserted down the well. The perforating guns are fired, thereby creating the perforations 66 through the outer casing 72. This allows liquid hydrocarbon to pass from the reservoir 60 via the perforations 66 and into the well production string 50. The fluid in the well usually consists of a mixture of gas, oil and water. The multiphase fluid flows along the well production string 50 towards the surface. As seen in FIG. 2, the horizontal portion of the well is not completely horizontal and has a series of gentle U-bends, both upwardly concave and upwardly convex.
  • FIG. 2 shows a pool of water 74 which has collected in an upwardly concave U-bend. Eventually, this will fill the U-bend and cause a blockage which occludes the flow along the well.
  • As mentioned above, making the fluid in the string flow in a swirl flow can avoid this problem, by preventing gas and water accumulating in the string. The characteristics of swirl flow, and a particular way of achieving swirl flow, will now be discussed with reference to FIGS. 4 and 5.
  • The tubing 1 shown in FIG. 4 has a circular cross-section, an external diameter DE, an internal diameter DI and a wall thickness T. The tubing is coiled into a helix of constant amplitude A (as measured from mean to extreme), constant pitch P, constant helix angle θ and a swept width W. The tubing 1 is contained in an imaginary envelope 20 which extends longitudinally and has a width equal to the swept width W of the helix. The envelope 20 may be regarded as having a central longitudinal axis 30, which may also be referred to as an axis of helical rotation. The illustrated tubing 1 has a straight axis 30, but it will be appreciated that in well production tubing the central axis will often have a large radius curvature (hence creating the U-bends). The tubing has a center line 40 which follows a helical path about the central longitudinal axis 30.
  • It will be seen that the amplitude A is less than half the tubing internal diameter DI. By keeping the amplitude below this size, the lateral space occupied by the tubing and the overall length of the tubing can be kept relatively small, whilst at the same time the helical configuration of the tubing promotes swirl flow of fluid along the tubing. This also provides a relatively wide lumen along the tubing, which allows instruments, apparatus and the like to be passed down the tubing.
  • EXAMPLE 1
  • Experiments were carried out using polyvinyl chloride tubing with a circular cross-section. Referring to the parameters shown in FIG. 4 the tubing had an external diameter DE of 12 mm, an internal diameter DI of 8 mm and a wall thickness T of 2 mm. The tubing was coiled into a helix with a pitch P of 45 mm and a helix angle θ of 8°. The amplitude A was established by resting the tubing between two straight edges and measuring the space between the straight edges. The amplitude was determined by subtracting the external diameter DE from the swept width W:

  • 2A=W−D E

  • So:

  • A=(W−D E)/2
  • In this example the swept width W was 14 mm, so:

  • A=(W−D E)/2=(14−12)/2=1 mm
  • As discussed earlier, “relative amplitude” AR is defined as:

  • A R =A/D I
  • In the case of this Example, therefore:

  • A R =A/D I=⅛=0.125
  • Water was passed along the tube. In order to observe the flow characteristics, two needles 80 and 82 passing radially through the tube wall were used to inject visible dye into the flow. The injection sites were near to the central axis 30, i.e. at the “core” of the flow. One needle 80 injected red ink and the other needle 82 blue ink. It will be seen in FIG. 4 that the ink filaments 84 and 86 intertwine, indicating that in the core there is swirl flow, i.e. flow which is generally helical. The experiment shown in FIG. 4 was carried out at a Reynolds number RE of 500. In two further experiments, respectively using Reynolds numbers of 250 and 100, swirling core flow was also observed.
  • EXAMPLE 2
  • The parameters for this Example were the same as in Example 1, except that the needles 80 and 82 were arranged to release the ink filaments 84 and 86 near to the wall of the tubing. FIG. 5 shows the results of two experiments with near-wall ink release, with Reynolds numbers RE of 500 and 250 respectively. It will be seen that in both cases the ink filaments follow the helical tubing geometry, indicating near-wall swirl. Furthermore, mixing of the ink filaments with the water is promoted.
  • EXAMPLE 3
  • In a separate study, the flow was compared in a straight 8 mm internal diameter tube with that in a helical 8 mm internal diameter tube, where the relative amplitude AR was 0.45. In both cases the Reynolds number was 500 and 0.2 ml indicator was injected as a bolus through a thin tube at the upstream end. The flows were photographed together with a digital clock to indicate elapsed time after the injection of indicator. The indicator front arrived earlier at the downstream end of the straight tube than of the helical tube and cleared later from the walls of the straight tube than from those of the helical tube. Moreover, the indicator traveled in a more compact mass in the helical tube than in the straight tube. All these findings imply that there was mixing over the tube cross section and blunting of the velocity profile in the helical tube.
  • EXAMPLE 4
  • The experiments of this Example involved a comparison of multi-phase flows in helical tubing with that in tubing having a centerline following a generally sinusoidal path in a single plane. In the case of the helical tubing (3 dimensional, i.e. 3D tubing), the internal diameter was 8 mm, the external diameter was 12 mm and the swept width was 17 mm, giving a relative amplitude of 0.3125. The pitch was 90 mm. In the case of the planar, wave-shaped tubing (2 dimensional, i.e. 2D tubing), the internal diameter was 8 mm, the external diameter was 12 mm, and the swept width, measured in the plane of the wave shape, was 17 mm. The pitch was 80 mm, not being significantly different from that of the 3D tubing case. The 2D tubing was held with its generally sinusoidal centerline in a vertical plane, in effect creating upwardly convex and concave U-bends.
  • Both the 3D and 2D tubes were about 400 mm in length, giving 4-5 pitches in each case. With both tubes, studies were performed with water flows of 450 and 900 ml per minute (Reynolds numbers of 1200 and 2400 respectively). A needle was used to introduce in all cases a flow of air at a rate of 3 ml per minute, i.e. 0.66% of the water flow in the 450 ml per minute case and 0.33% in the 900 ml per minute case. The air came from a compressed air line and was injected into the tubes just upstream of the start of the respective 3D and 2D geometries.
  • In the case of the experiment with the 3D tubing at Reynolds number 1200, the air bubbles were about 2-3 mm in size and passed along the tube rapidly. At Reynolds number 2400, the bubbles were larger, about 5-7 mm but kept moving along the tube with no tendency to stick.
  • In the case of the 2D tubing at Reynolds numbers of 1200 and 2400, the bubbles were large, about 3-5 mm, and tended to stick in the upwardly convex curves (as viewed from outside the tubing).
  • The experiment shows that in a multi-phase flow the less dense fluid is carried along the 3D tubing, whereas in equivalent 2D tubing the less dense fluid tends to accumulate in the higher parts of the tubing.
  • FIG. 3 shows a well having well production tubing in accordance with a preferred embodiment of the invention. This tubing is helical and the helical configuration causes swirl (or generally helical flow) along the tubing. As described previously, such flow has a centrifuge effect on the fluid in the pipe, such that denser material follows a helical path along the inside of the wall of the pipe, and less dense material flows along the centerline of the pipe. This tends to prevent pools of water from gathering in the upwardly concave U-bends of the well, thereby significantly reducing the chances of blockage. The tubing also tends to prevent pockets of gas from gathering in the upwardly convex U-bends, again reducing the chances of blockage.
  • A further problem which can arise in multiphase flows during hydrocarbon extraction is that of “slugging”. This occurs when gas accumulates at the walls of the pipe, to such an extent as to block the flow. If the gas suddenly comes free from the walls, removing the blockage, then the flow will restart very suddenly, leading to impulse loads on the pipe and possible damage to the pipe and to ancillary equipment. Oil production platforms are routinely over-engineered to cope with such loads.
  • This problem can also be avoided by the use of swirl flow. As mentioned above, in multiphase swirl flow, the less dense fluids (such as gases) tend to the center of the pipe, and so are kept away from the walls. They thus cannot accumulate to such an extent that they block the flow.
  • A similar advantage is obtained with the blood flow tubing mentioned above. As the air and oxygen bubbles tend to remain near the center of the tubing, they are carried along with the rest of the flow, and do not accumulate and block the flow.
  • The fact that gas bubbles (or indeed any less dense fraction) will tend to the center of the helical pipe provides further advantages with regard to reduction of the gas content of the flow.
  • In gas/liquid multiphase flow in a helical pipe, it has been found that the gas occupies a very small cross-sectional area at the center of the pipe. In comparison to a straight pipe, the concentration of gas across the cross-section (usually referred to in the oil industry as the “cut”) is reduced, and this reduction can be up to twenty or thirty percent. (It should be noted that the gas flow rate is the same in both pipes; the flow of the gas is faster in the helical pipe than in the straight pipe, to compensate for the smaller cross-sectional area of flow.)
  • This reduction in gas concentration can be highly beneficial with, for example, pumps. Pumps for liquids are not normally designed to cope with multiphase flow, and do not usually work well with high concentrations of gases. Reducing the concentration of gas in the flow by use of a helical pipe in this way will improve the efficiency of the pump.
  • A reduction in gas concentration can also be of benefit in other situations, where the flow must pass through a fitting which functions better with single-phase flow. A helical portion could be provided upstream of the fitting, to ensure that the fluid reaching the fitting is in a swirl flow condition, with the concentration of gas in the flow reduced.
  • A further beneficial effect obtained with multiphase swirl flow is a reduction in pressure drop; reductions of between ten and twenty percent, in comparison to the pressure drop in a straight tube, have been obtained in experiments with vertical pipes. A reduction in pressure drop would also allow an increased flow for the same pressure difference, and so would reduce the amount of energy required to pump a fluid.
  • Although the above description has concentrated particularly on the advantages which can be obtained in hydrocarbon extraction and in blood flow tubing, it will be appreciated that the tubing and piping of the invention can be applied to any multiphase flow, to obtain the advantages of swirl flow described above. In particular, the avoidance of gravitational effects such as phase separation is of particular relevance in the transport of slurries and suspensions of solids in liquids, as are frequently encountered in food processing, and in the transport of suspensions of powders in gas, as are frequently encountered in pharmaceutical production and processing.

Claims (16)

1-57. (canceled)
58. A method of transporting multiphase fluids during extraction of said fluids from a well, comprising:
providing well production apparatus which comprises:
tubing for carrying a flow of well production fluids, wherein the centre line of the tubing follows a substantially helical path, and the amplitude of the helix is less than or equal to one half of the internal diameter of the tubing;
and transporting multiphase fluids along said tubing whilst inducing swirl flow of said fluids.
59. A method as claimed in claim 58, wherein the tubing has a wall, and wherein there are no helical ridges or grooves in the tubing wall, and no guide vanes extending inwardly from the wall.
60. A method as claimed in claim 58, wherein the well production apparatus comprises an outer casing, the tubing fitting inside the outer casing.
61. A method as claimed in claim 60, wherein the
outer casing has a central axis and an internal diameter, and wherein the tubing has an external diameter and is contained in an imaginary envelope which extends longitudinally and has a central longitudinal axis, the envelope having a width equal to the swept width of the tubing whereby the envelope defines the lateral space occupied by the tubing, and the width of the envelope being greater than the external diameter of the tubing and being smaller than or equal to the internal diameter of the outer casing.
62. A method as claimed in claim 58, wherein the amplitude of the helical centre line of the tubing is less than or equal to 0.25 of the internal diameter of the tubing.
63. A method as claimed in claim 58, wherein the amplitude of the helical centre line of the tubing is less than or equal to 0.15 of the internal diameter of the tubing.
64. A method as claimed in claim 58, wherein the helical centre line of the tubing has a helix angle which is less than or equal to 250.
65. A method as claimed in claim 58, wherein the helical centre line of the tubing has a helix angle which varies along the length of the apparatus.
66. A method as claimed in claim 58, wherein the helical centre line of the tubing has an amplitude which varies along the length of the apparatus.
67. A method as claimed in claim 58, comprising a number of separate lengths of tubing with a helical centre line along the length of the apparatus.
68. A method as claimed in claim 58, wherein the well production apparatus comprises said tubing used as a riser, and multiphase fluids are transported up the riser whilst having swirl flow of said fluids induced in the riser.
69. A method as claimed in claim 58, wherein the well production apparatus comprises said tubing used below a well head, and multiphase fluids are transported along said tubing whilst having swirl flow of said fluids induced in the tubing.
70. A method as claimed in claim 58, wherein the tubing is selected from the group consisting of a flow line, subsea tubing, and surface tubing.
71. A method as claimed in claim 58, wherein the tubing, the centre line of which follows a substantially helical path, is a helical first tubing portion, and wherein the well production apparatus has a second tubing portion downstream of the helical first tubing portion;
and the method further comprising:
continuing said swirl flow for a distance downstream of said helical first tubing portion in said second tubing portion whilst reducing said swirl flow.
72. A method as claimed in claim 71, comprising:
providing a plurality of separate helical tubing portions along the length of the apparatus, each helical tubing portion having a centre line which follows a substantially helical path; and
inducing swirl flow of the multiphase fluids in each of said separate helical tubing portions.
US12/243,300 2003-03-18 2008-10-01 Method for Transporting Multiphase Fluids Abandoned US20090044954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/243,300 US20090044954A1 (en) 2003-03-18 2008-10-01 Method for Transporting Multiphase Fluids

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GBGB0306179.3A GB0306179D0 (en) 2003-03-18 2003-03-18 Piping
GB0306179.3 2003-03-18
GB0306176.9 2003-03-18
GBGB0306176.9A GB0306176D0 (en) 2003-03-18 2003-03-18 Tubing
GB0306180.1 2003-03-18
GB0306180A GB0306180D0 (en) 2003-03-18 2003-03-18 Tubing
US10/549,085 US20070157985A1 (en) 2003-03-18 2004-03-18 Tubing and piping for multiphase flow
PCT/GB2004/001170 WO2004083706A1 (en) 2003-03-18 2004-03-18 Tubing and piping for multiphase flow
US12/243,300 US20090044954A1 (en) 2003-03-18 2008-10-01 Method for Transporting Multiphase Fluids

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/GB2004/001170 Division WO2004083706A1 (en) 2003-03-18 2004-03-18 Tubing and piping for multiphase flow
US11/549,085 Division US9565387B2 (en) 2006-09-11 2006-10-12 Perspective scale video with navigation menu

Publications (1)

Publication Number Publication Date
US20090044954A1 true US20090044954A1 (en) 2009-02-19

Family

ID=33032929

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/549,085 Abandoned US20070157985A1 (en) 2003-03-18 2004-03-18 Tubing and piping for multiphase flow
US12/243,300 Abandoned US20090044954A1 (en) 2003-03-18 2008-10-01 Method for Transporting Multiphase Fluids

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/549,085 Abandoned US20070157985A1 (en) 2003-03-18 2004-03-18 Tubing and piping for multiphase flow

Country Status (15)

Country Link
US (2) US20070157985A1 (en)
EP (3) EP1611385B8 (en)
JP (2) JP2006523291A (en)
KR (1) KR20050120653A (en)
AT (1) ATE382132T1 (en)
AU (2) AU2004221655B2 (en)
BR (1) BRPI0408429A (en)
CA (1) CA2519013A1 (en)
DE (1) DE602004010898T8 (en)
DK (1) DK1611385T3 (en)
ES (1) ES2299830T3 (en)
NO (1) NO20054352L (en)
PL (1) PL1611385T3 (en)
PT (1) PT1611385E (en)
WO (1) WO2004083706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024543A1 (en) * 2009-01-30 2012-02-02 Philip Head Electric submersible pump, tubing and method for borehole production
US20130115046A1 (en) * 2011-11-07 2013-05-09 I-Nan Kao High speed swirling type centrifugal revolving pipeline device
US20140246206A1 (en) * 2012-12-20 2014-09-04 Halliburton Energy Services, Inc. Rotational motion-inducing flow control devices and methods of use

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370230B2 (en) * 2004-09-08 2009-11-25 株式会社カネカメディックス Medical tubing and shunt system
GB0420971D0 (en) * 2004-09-21 2004-10-20 Imp College Innovations Ltd Piping
US7749462B2 (en) 2004-09-21 2010-07-06 Technip France S.A.S. Piping
US8029749B2 (en) 2004-09-21 2011-10-04 Technip France S.A.S. Cracking furnace
US20060196658A1 (en) * 2005-03-03 2006-09-07 Gary Belcher Tubular slug reducer
US8322430B2 (en) * 2005-06-03 2012-12-04 Shell Oil Company Pipes, systems, and methods for transporting fluids
DK1945902T3 (en) 2005-09-19 2009-11-02 Bp Exploration Operating Device for controlling plug formation
US7857059B2 (en) * 2007-04-27 2010-12-28 Chevron U.S.A. Inc. Apparatus for mitigating slugging in flowline systems
CA2700361C (en) * 2007-09-25 2015-02-17 Exxonmobil Upstream Research Company Method for managing hydrates in a subsea production line
US8376053B2 (en) * 2007-10-01 2013-02-19 Premium Artificial Lift Systems Ltd. Fluid flow conduit, method and use
EP2326786B1 (en) 2008-09-08 2018-04-11 Sinvent AS An apparatus and method for modifying the sidewalls of a borehole
GB0817219D0 (en) 2008-09-19 2008-10-29 Heliswirl Petrochemicals Ltd Cracking furnace
GB0822949D0 (en) * 2008-12-16 2009-01-21 Heliswirl Technologies Ltd Pipe liner
US8870746B2 (en) * 2011-07-07 2014-10-28 Courtney A. Carlson Female stimulation device
US9151415B2 (en) 2012-07-17 2015-10-06 Chevron U.S.A. Inc. Method and apparatus for reducing fluid flow friction in a pipe
CA2891477C (en) 2012-12-21 2017-12-05 Halliburton Energy Services, Inc. Injection well and method for drilling and completion
CN103587955A (en) * 2013-11-22 2014-02-19 裘尧云 Deepwater mining annular pipeline lifting and conveying device
US20160115743A1 (en) * 2014-10-23 2016-04-28 Chevron U.S.A. Inc. Modified Wellbore Casing Trajectories
US10737058B2 (en) 2016-12-28 2020-08-11 Ethicon Llc Rigid and flexible laparoscopic multiple component material dispensing devices and methods
USD893714S1 (en) 2018-02-14 2020-08-18 Ethicon Llc Laparoscopic adaptor
US11414273B2 (en) * 2018-03-19 2022-08-16 Cleantech Geomechanics Inc. System and method for compressed air energy storage
US11692418B2 (en) * 2021-06-18 2023-07-04 Baker Hughes Oilfield Operations Llc Inflow control device, method and system

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818082A (en) * 1928-08-10 1931-08-11 George T Mott Apparatus for heat exchanging
US1913417A (en) * 1930-02-22 1933-06-13 Vereinigte Stahlwerke Ag Undulated tube and method of making the same
US2246418A (en) * 1938-03-14 1941-06-17 Union Oil Co Art of well drilling
US2663321A (en) * 1947-07-19 1953-12-22 O F Gayton Tubular heat transfer apparatus
US2832374A (en) * 1955-03-10 1958-04-29 Breeze Corp Flexible tube assemblies
USRE24783E (en) * 1960-02-16 Apparatus and method for making spirally corrugated metal tubes
US3117821A (en) * 1962-02-06 1964-01-14 H Ind Inc As Apparatus for conveying powdered materials
US3227525A (en) * 1960-12-06 1966-01-04 Progil Apparatus for pyrolyzing vapors
US3606780A (en) * 1967-11-28 1971-09-21 Kichisaburo Nagahara Method for manufacturing helical pipe for heat exchangers
US3610289A (en) * 1967-03-03 1971-10-05 Trevor F Moss Air line fitted with internal coil springs
US3713784A (en) * 1969-01-15 1973-01-30 Vickers Zimmer Ag Reaction element for the conversion of hydrocarbons
US3719207A (en) * 1969-11-13 1973-03-06 Fuji Photo Film Co Ltd Apparatus for transporting fluid
US4317353A (en) * 1979-12-26 1982-03-02 Delta T Limited Tube twisting apparatus
US4595058A (en) * 1984-08-28 1986-06-17 Shell Oil Company Turbulence cementing sub
US4827074A (en) * 1988-04-08 1989-05-02 Idemitsu Petrochemical Co., Ltd. Method of thermally decomposing hydrocarbon and thermal decomposition tube
US5167483A (en) * 1990-12-24 1992-12-01 Gardiner Samuel W Method for utilizing angular momentum in energy conversion devices and an apparatus therefore
US5339908A (en) * 1990-10-02 1994-08-23 Ryobi Limited Power tool
US5553976A (en) * 1994-02-18 1996-09-10 Korsgaard; Jens Fluid riser between seabed and floating vessel
US5711744A (en) * 1996-06-05 1998-01-27 Soft Play, L.L.C Helical tube recreational component
US5799623A (en) * 1996-11-18 1998-09-01 Sidney L. Born Support system for feedstock coil within a pyrolysis furnace
US6039754A (en) * 1993-10-01 2000-03-21 Imperial College Of Science Technology & Medicine Vascular prostheses
US6343516B1 (en) * 1998-01-16 2002-02-05 Texaco Inc. Multiphase flow sampling using an autotraversing sample probe
US20020043022A1 (en) * 2000-10-16 2002-04-18 Warren David W. Compact endothermic catalytic reaction apparatus
US6419885B1 (en) * 1997-06-10 2002-07-16 Exxonmobil Chemical Patents, Inc. Pyrolysis furnace with an internally finned U shaped radiant coil
US20020179166A1 (en) * 2001-06-05 2002-12-05 Houston John Graeme Flow means
US20020179494A1 (en) * 2001-06-01 2002-12-05 Doerksen Brian Jay Alternate coke furnace tube arrangement
US20040000350A1 (en) * 2002-06-28 2004-01-01 Cymbalisty Lubomyr M. Hydro-dynamic static mixing apparatus and method for use thereof in transporting, conditioning and separating oil sands and the like
US20040134557A1 (en) * 2002-06-28 2004-07-15 Cymbalisty Lubomyr M. Hydrodynamic static mixing apparatus and method for use thereof in transporting, conditioning and separating oil sands and the like
US6997214B2 (en) * 2004-07-07 2006-02-14 Lin Lin Kuo Intake tubing for engines
US7114524B2 (en) * 2000-12-14 2006-10-03 Tayside Flow Technologies Limited Fluid flow in tubing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647187A (en) * 1970-08-03 1972-03-07 Technicon Instr Static mixer and method of making same
SU531993A1 (en) * 1973-07-13 1976-10-15 Предприятие П/Я А-3513 Pipe with screw flute
CA1328040C (en) * 1986-07-25 1994-03-29 Carl Gottlieb Langner Fabricating helical flowline bundles
US5167289A (en) * 1991-04-30 1992-12-01 Stevenson David L Air spring load monitoring system
JPH09248445A (en) * 1996-03-18 1997-09-22 Toshiba Corp Spiral fluid treatment apparatus and its production
GB2341695B (en) * 1998-09-17 2003-02-26 Petroleo Brasileiro Sa Device and method for eliminating severe slugging in multiphase-stream flow lines
GB9828696D0 (en) * 1998-12-29 1999-02-17 Houston J G Blood-flow tubing
WO2001073261A2 (en) * 2000-03-27 2001-10-04 Rockwater Limited Riser with retrievable internal services
WO2002093063A1 (en) * 2001-05-17 2002-11-21 Imperial College Innovations Limited Production and processing plant with a rigid pipe portion curving in three dimensions

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24783E (en) * 1960-02-16 Apparatus and method for making spirally corrugated metal tubes
US1818082A (en) * 1928-08-10 1931-08-11 George T Mott Apparatus for heat exchanging
US1913417A (en) * 1930-02-22 1933-06-13 Vereinigte Stahlwerke Ag Undulated tube and method of making the same
US2246418A (en) * 1938-03-14 1941-06-17 Union Oil Co Art of well drilling
US2663321A (en) * 1947-07-19 1953-12-22 O F Gayton Tubular heat transfer apparatus
US2832374A (en) * 1955-03-10 1958-04-29 Breeze Corp Flexible tube assemblies
US3227525A (en) * 1960-12-06 1966-01-04 Progil Apparatus for pyrolyzing vapors
US3117821A (en) * 1962-02-06 1964-01-14 H Ind Inc As Apparatus for conveying powdered materials
US3610289A (en) * 1967-03-03 1971-10-05 Trevor F Moss Air line fitted with internal coil springs
US3606780A (en) * 1967-11-28 1971-09-21 Kichisaburo Nagahara Method for manufacturing helical pipe for heat exchangers
US3713784A (en) * 1969-01-15 1973-01-30 Vickers Zimmer Ag Reaction element for the conversion of hydrocarbons
US3719207A (en) * 1969-11-13 1973-03-06 Fuji Photo Film Co Ltd Apparatus for transporting fluid
US4317353A (en) * 1979-12-26 1982-03-02 Delta T Limited Tube twisting apparatus
US4595058A (en) * 1984-08-28 1986-06-17 Shell Oil Company Turbulence cementing sub
US4827074A (en) * 1988-04-08 1989-05-02 Idemitsu Petrochemical Co., Ltd. Method of thermally decomposing hydrocarbon and thermal decomposition tube
US5339908A (en) * 1990-10-02 1994-08-23 Ryobi Limited Power tool
US5167483A (en) * 1990-12-24 1992-12-01 Gardiner Samuel W Method for utilizing angular momentum in energy conversion devices and an apparatus therefore
US6039754A (en) * 1993-10-01 2000-03-21 Imperial College Of Science Technology & Medicine Vascular prostheses
US5553976A (en) * 1994-02-18 1996-09-10 Korsgaard; Jens Fluid riser between seabed and floating vessel
US5711744A (en) * 1996-06-05 1998-01-27 Soft Play, L.L.C Helical tube recreational component
US5799623A (en) * 1996-11-18 1998-09-01 Sidney L. Born Support system for feedstock coil within a pyrolysis furnace
US6719953B2 (en) * 1997-06-10 2004-04-13 Exxonmobil Chemical Patents Inc. Process for the manufacture of olefins by a pyrolysis furnace with an internally finned U shaped radiant coil
US6419885B1 (en) * 1997-06-10 2002-07-16 Exxonmobil Chemical Patents, Inc. Pyrolysis furnace with an internally finned U shaped radiant coil
US6343516B1 (en) * 1998-01-16 2002-02-05 Texaco Inc. Multiphase flow sampling using an autotraversing sample probe
US20020043022A1 (en) * 2000-10-16 2002-04-18 Warren David W. Compact endothermic catalytic reaction apparatus
US7114524B2 (en) * 2000-12-14 2006-10-03 Tayside Flow Technologies Limited Fluid flow in tubing
US20020179494A1 (en) * 2001-06-01 2002-12-05 Doerksen Brian Jay Alternate coke furnace tube arrangement
US20020179166A1 (en) * 2001-06-05 2002-12-05 Houston John Graeme Flow means
US6776194B2 (en) * 2001-06-05 2004-08-17 Tayside Flow Technologies Limited Flow means
US20040134557A1 (en) * 2002-06-28 2004-07-15 Cymbalisty Lubomyr M. Hydrodynamic static mixing apparatus and method for use thereof in transporting, conditioning and separating oil sands and the like
US6896007B2 (en) * 2002-06-28 2005-05-24 Lmc Resources, Inc. Hydro-dynamic static mixing apparatus and method for use thereof in transporting, conditioning and separating oil sands and the like
US20040000350A1 (en) * 2002-06-28 2004-01-01 Cymbalisty Lubomyr M. Hydro-dynamic static mixing apparatus and method for use thereof in transporting, conditioning and separating oil sands and the like
US6997214B2 (en) * 2004-07-07 2006-02-14 Lin Lin Kuo Intake tubing for engines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120024543A1 (en) * 2009-01-30 2012-02-02 Philip Head Electric submersible pump, tubing and method for borehole production
US8985226B2 (en) * 2009-01-30 2015-03-24 Accessesp Uk Limited Electric submersible pump, tubing and method for borehole production
US20130115046A1 (en) * 2011-11-07 2013-05-09 I-Nan Kao High speed swirling type centrifugal revolving pipeline device
US8800647B2 (en) * 2011-11-07 2014-08-12 I-Nan Kao High speed swirling type centrifugal revolving pipeline device
US20140246206A1 (en) * 2012-12-20 2014-09-04 Halliburton Energy Services, Inc. Rotational motion-inducing flow control devices and methods of use
US8936094B2 (en) * 2012-12-20 2015-01-20 Halliburton Energy Services, Inc. Rotational motion-inducing flow control devices and methods of use

Also Published As

Publication number Publication date
EP1913898A2 (en) 2008-04-23
DE602004010898D1 (en) 2008-02-07
EP1955674A3 (en) 2010-03-24
CA2519013A1 (en) 2004-09-30
WO2004083706A1 (en) 2004-09-30
JP2006523291A (en) 2006-10-12
AU2004221655B2 (en) 2010-07-15
JP2011007331A (en) 2011-01-13
ATE382132T1 (en) 2008-01-15
DE602004010898T2 (en) 2008-12-11
AU2004221655A1 (en) 2004-09-30
DK1611385T3 (en) 2008-04-28
EP1913898A3 (en) 2008-06-04
NO20054352L (en) 2005-12-14
KR20050120653A (en) 2005-12-22
US20070157985A1 (en) 2007-07-12
EP1611385B8 (en) 2008-03-19
DE602004010898T8 (en) 2009-04-02
EP1611385B1 (en) 2007-12-26
EP1611385A1 (en) 2006-01-04
BRPI0408429A (en) 2006-03-21
ES2299830T3 (en) 2008-06-01
AU2010233044A1 (en) 2010-11-04
PL1611385T3 (en) 2009-01-30
NO20054352D0 (en) 2005-09-20
EP1955674A2 (en) 2008-08-13
PT1611385E (en) 2008-03-10

Similar Documents

Publication Publication Date Title
US20090044954A1 (en) Method for Transporting Multiphase Fluids
CN100535497C (en) Tubing and piping for multiphase flow
US7314559B2 (en) Separator
US7516794B2 (en) Pipe separator for the separation of fluids, particularly oil, gas and water
EP0699270B1 (en) Downhole gas-liquid separator for wells
US8261821B2 (en) Downhole multi-parallel hydrocyclone separator
CN105377401A (en) Apparatus and method for gas-liquid separation
BRPI0707546A2 (en) inline separator and, use of inline separator
US4708793A (en) System for separating gas-liquid flowstreams
WO2008134489A1 (en) Apparatus for mitigating slugging in flowline systems
NO20141019A1 (en) System, apparatus and method for deliquification of a well
CN105604536A (en) Underground oil-water separator and separation system
WO2010070289A2 (en) Processing apparatus for multiphase hydrocarbon flows
BR112018002687B1 (en) Underwater gas/liquid separation plant
CN105781517B (en) A kind of caisson formula gas-liquid separator and method
CN205591906U (en) Oil water separator and piece -rate system in pit
BR112018068651B1 (en) METHOD FOR ARTIFICIAL LIFTING
CN212743904U (en) Brine extraction well casing and brine extraction well structure
Wolf et al. Project Case Study: Online Sand Removal System for Water Tanks
CN113006767A (en) Underground oil-water separator and separation system thereof
MXPA00001538A (en) Improved helical separator

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMPERIAL COLLEGE INNOVATIONS LIMITED, UNITED KINGD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARO, COLIN G.;WATKINS, NICHOLAS V.;BIRCH, PHILIP L.;REEL/FRAME:021783/0019

Effective date: 20061206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION