Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20090077204 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 12/272,059
Fecha de publicación19 Mar 2009
Fecha de presentación17 Nov 2008
Fecha de prioridad25 May 1995
También publicado comoUS6549942, US8423626, US20030176937, US20060271646
Número de publicación12272059, 272059, US 2009/0077204 A1, US 2009/077204 A1, US 20090077204 A1, US 20090077204A1, US 2009077204 A1, US 2009077204A1, US-A1-20090077204, US-A1-2009077204, US2009/0077204A1, US2009/077204A1, US20090077204 A1, US20090077204A1, US2009077204 A1, US2009077204A1
InventoresJames M. Janky, Nathan Schulhof
Cesionario originalSony Corporation
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Enhanced delivery of audio data for portable playback
US 20090077204 A1
Resumen
A system for selection by a user and delivery to the user over an internetwork transmission channel of selected audio data files at a delivery rate of at least twice the delivery rate for normal, audibly perceptible playback of an audio data file. The user registers the user's selection of audio material with a central library of audio and/or text data files, and a digitized and optionally compressed omnibus file containing the user's selections is prepared and transmitted to the user at a high data transfer rate. The user receives downloads the selected data files to a personal computer or to a portable storage and playback unit (SPU) that may store and play back digitized text or audio data, using a docking station. The user carries this SPU until the user has an opportunity to audio process and play back the text or audio data files in audibly perceptible form.
Imágenes(5)
Previous page
Next page
Reclamaciones(12)
1. An information distribution system comprising:
an audio file library;
a customer database including subscriber information regarding a subscriber to the distribution system, said subscriber information being registered in said customer database; and
a communication unit configured to provide a daily transmission of an audio file in said audio file library to a terminal apparatus of the subscriber in response to a request from the subscriber who is registered in the customer database, said audio file being periodically updated with new content.
2. The information distribution system according to claim 1, wherein said the audio file is digitized and compressed in MPEG format prior to being transmitted via said communication unit.
3. The information distribution system according to claim 1, wherein the audio file includes an audio program created for radio or television.
4. The information distribution system according to claim 1, wherein the audio file includes at least a portion of a daily news item.
5. The information distribution system according to claim 1, further comprising:
a text file library,
wherein said communication unit is configured to perform a daily transmission of a text file in said text file library to the terminal apparatus.
6. The information distribution system according to claim 1, further comprising:
a text file library stored in memory; and
a text-to-speech conversion unit configured to convert a text file into an audio file,
wherein said communication unit is configured to perform a daily transmission of the audio file converted by said text-to-speech conversion unit to the terminal apparatus.
7. The information distribution system according to claim 1, wherein the communication unit is configured to perform a wireless transmission of an audio file in said audio file library to the terminal apparatus.
8. A terminal apparatus, comprising:
a communication unit configured to wirelessly download an audio program via a remote server, in response to a selection by a user, said user being registered for downloading via said remote server in which the user is already registered,
a storage unit configured to store the downloaded audio program; and
a playback unit configured to play back the audio program.
9. The terminal apparatus according to claim 8, wherein said communication unit is configured to communicate with another terminal apparatus via peer to peer communication.
10. The terminal apparatus according to claim 8, wherein said communication unit is configured to download the audio program which is digitized and compressed in MPEG format.
11. The terminal apparatus according to claim 8, further comprising:
a phone function.
12. The terminal apparatus according to claim 8, further comprising:
a text-to-speech conversion unit configured to convert a text file into an audio file, the text file being downloaded from the remote server in response to a selection by the user by said communication unit,
wherein said playback unit being configured to play the audio file once converted by said text-to-speech conversion unit.
Descripción
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of prior application Ser. No. 11/431,695, filed May 9, 2006, which is a continuation of prior application Ser. No. 10/374,310, filed Feb. 25, 2003, which is a continuation of prior application Ser. No. 09/613,025, filed Jul. 10, 2000, which is a continuation of prior application Ser. No. 09/124,584, filed Jul. 29, 1998, which is a continuation-in-part of prior application Ser. No. 08/643,963, filed May 7, 1996, which is a continuation-in-part of prior application Ser. No. 08/450,818, filed May 25, 1995.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    This invention relates to delivery of compressed digital audio data, potentially at rates much faster than the real time rate, for conversion to speech for portable audible reception in recreational or educational activities.
  • [0004]
    2. Description of the Related Art
  • [0005]
    Available information that is relevant to operation of a business or of a household increases at an exponential growth rate. A user of such information must become concerned with how to find the time, in an already crowded workday, to absorb the most relevant of such information. A menu of such information can be provided on a subscription basis, for individual selection by each user, as discussed in U.S. Ser. No. 08/643,963. One useful medium for delivery and reception of such information is sound, which requires use of the ears and of a portion of the user's brain but does not require simultaneous use of other senses. Previous systems have usually provided this information as a combination of video and audio in which the audio information was often treated as an afterthought.
  • [0006]
    The approaches disclosed by previous workers in this field usually combine video and audio data so that the video requirements control the choice of transmission system, or the selection of audio information is limited to features closely associated with use of a telephone. These approaches do not provide transmission and storage of a wide variety of audio-only information in a format that takes advantage of unique features of audio format information.
  • [0007]
    Also, these approaches do not take advantage of the possibility of using an available transmission medium, such as an internet that already provides for inter-communication between millions of homes, offices and other facilities. Use of a particular internet may reduce the number of signal formats that must be recognized and dealt with, and it may be possible to optimize the audio signal processing for the limited number of (or one) formats in which the audio signals are received.
  • [0008]
    What is needed is a procedure for packaging, delivery, reception, storage and playback of audio files in a format that (1) allows for potential transmission of the audio files at transfer rates many times higher than the normal audio playback rates, (2) allows receipt and storage of the audio files in compressed formats that can store several hours of normal audio programming in a playback medium of modest size, (3) allows transmission of audio files to the user at times and manners that are convenient for both the sender and the recipient, and (4) allows the user to conveniently transport the stored audio files, for playback at a time chosen by the user.
  • [0009]
    Preferably, the procedure should be adjustable to receive and process the audio (or text data) files using a signal processing procedure that is optimizable or optimized for the format, or limited number of formats, in which the audio (or text data) files are delivered to audio playback apparatus.
  • SUMMARY OF THE INVENTION
  • [0010]
    The invention meets these needs by providing a portable digital audio playback module for digital audio file receipt and storage, D/A conversion and playback. The audio programming material (“audio data files” herein) are digitized and optionally compressed before transfer over a hardwired or wireless communication internetwork channel to the storage/playback module, using any suitable compression algorithm. The module is capable of receiving and recording compressed, digitized audio programming at a transfer rate that may be faster than the normal audible playback rate so that, for example, ten hours of playback material may be transferred in a time interval of between less than ten minutes and a few hours, optionally using transfer procedures and times that do not interfere with the user's normal workday. The rate of data transfer depends upon the communications link used and will depend upon the internet delivery rate vis-a-vis the playback rate. These communications links include POTS (plain old telephone service) lines, ISDN lines, cable television links, satellite broadcast links and other similar links that are suitable for internet communication. The audio data files are received by a user having a personal computer (notebook, laptop, desktop, etc.), modem, and docking station, and the audio data files are preferably processed and downloaded to a portable (e.g., handheld) storage and playback unit (“SPU”) at the docking station. Once an audio data file is received by the user, this file can be decompressed and converted to analog format (optional) for playback at a normal rate by the user. The audio data files are received by the user and stored digitally on a non-volatile medium in an SPU, or in a personal computer (“PC”) used to make an internet connection. The PC may also be used to play back or display the programming.
  • [0011]
    Alternatively, the PC or the SPU receives a text data file from the internetwork channel and either passes this file through a text-to-speech conversion process to convert this file to an audio data file, before the audio data file is received or stored or played back, or stores the file as a text file and converts this file to speech on the fly. Alternatively, the received data file can be processed and played back at the PC, rather than being downloaded to, and played back at, the SPU; most PCs have an audio sound system.
  • [0012]
    In contrast to a conventional digital audio storage system, such as Digital Audio Tape (DAT), the invention uses a different storage medium, provides random access search capability, rather than linear search capability, and optionally receives and stores information in a compressed format that uses a chosen data compression algorithm. In contrast to a writeable audio storage device, such as the Sony recordable mini-CD, the invention uses an SPU for download and playback and optionally may have intentionally limited audio bandwidth; stereo full fidelity is not needed for this programming.
  • [0013]
    The invention combines the remote data access capability resident in a personal computer, the portability of an SPU, and a set of tailored, streamlined control functions to simplify and automate a seamless process for selecting, receiving, storing and/or playing back audio data files, at times and places chosen by the user, with easily implemented control functions; and with a user interface that allows downloading of the compressed and digitized audio data files in a variety of formats. Storage for subsequent playback occurs first in the PC used to make an internet connection, but the files may be transferred automatically under software control, using a docking station, to the SPU.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    FIG. 1 illustrates a subscription/on-demand information delivery system, illustrating several embodiments of the invention.
  • [0015]
    FIG. 2 is a schematic view of a portable storage and playback unit (SPU) that can be used to practice the invention.
  • [0016]
    FIG. 3 illustrates a general procedure for user processing, data file(s) selection by the user, and downloading of the selected file(s) to a PC.
  • [0017]
    FIG. 4 illustrates a general procedure for playback processing of a data file at a PC, downloading of a data file to an SPU, and playback of the data file at the SPU.
  • [0018]
    FIG. 5 is a table illustrating processing options for a data file taken from various sources before the data file is played back as an audibly perceptible signal.
  • [0019]
    FIGS. 6 and 7 are flow charts illustrating the playback according to several embodiments.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0020]
    FIG. 1 is a schematic view of an on-demand information delivery system 10 according to an embodiment of the invention. The system 10 is disclosed in part in the following issued patents, both of which are assigned to Sony Corporation, the assignee of the present application: N. Schulhof, J. Janky, “System for Distributing Subscription and On-Demand Audio Programming,” U.S. Pat. No. 5,572,442; and N. Schulhof, J. Janky, “Apparatus for Distributing subscription and On-Demand Audio Programming,” U.S. Pat. No. 5,557,541.
  • [0021]
    An audio program distribution system 10 includes an internetwork server 11 that is connected to an internetwork channel 31, such as the well known Internet or an intra-net serving a smaller group of users. The server 11 is connected to a plurality of data sources, including an audio data file library 13, a text data file library 15, E-mail files 17 and other data files 19, and to a customer database 21 that contains relevant information on subscribers who use the distribution system 10. The server 11 also receives commands, data and other information from a user entry module 23, which may be a keyboard, light pen or other data/command entry device or may be an electronic terminal that communicates with a user terminal that may be nearby or remotely located. The server 11 also receives commands and other data from a control I/O module 25.
  • [0022]
    The audio data file library 13 and text data file library 15 may be implemented in any known digital storage technology, for example as a plurality of digital storage media, such as hard drives. Audio data material may be deposited in the library 13 from a variety of audio data sources using a variety of data communications media and formats from a plurality of locations, for example via modem transfer from a distributor, such as the Wall Street Journal. Sources for text data material are similarly voluminous. The audio data files and text data files are preferably digitized and optionally compressed and encrypted, using selected compression and encryption algorithms and formats, before such files are deposited in the data files libraries 13 and/or 15.
  • [0023]
    An analog audio intended for the internetwork channel 31 is passed through an audio conditioning module 27 (optional) for digitization, optional compression and/or optional encryption and is then passed through a first modem 28 to a first internetwork service provider (“ISP”; optional) 29 before being received by the internetwork channel 31. The internetwork channel 31 may be connected to, and receive data from, other data sources 33 as well. The data file(s) requested by a user are then received by a second ISP 41 (optional), by a second modem 43, by a telephone network 45 and by a third modem 47, before being received by a personal computer (“PC”) or other computer-based module 51 utilized by a user.
  • [0024]
    One important anticipated use of the invention is to provide or implement an audio subscription service, using an internetwork channel to deliver selected audio or text data files that can be downloaded and stored for present or subsequent playback. For example, an audio program, created for radio or television, could be digitized and stored in an audio data file library for subsequent download and playback. Alternatively, selected portions of a daily newspaper, such as the Wall Street Journal or the New York Times, may be scanned, in and digitized as an audio version, that is then delivered to the library. Used in this manner, the system 10 may provide daily delivery of a program in audio format that allows a subscriber to listen to the audio material without interruption by commercial breaks or other unwanted communications, that is not truncated to fit into a tight broadcast schedule, and that does not require dedication of the user's sense of sight, touch or other faculties, except for hearing. The user can, optionally, listen to the playback and simultaneously perform other tasks. During data transmission or downloading, audio program files can be transferred from the server 11 to the PC 51 at rates 2-100 times as large as the normal rates (6-32 kilobits/sec) for real time playback of an audio data file, depending upon the present number of internetwork users.
  • [0025]
    The data file transmission channel is preferably an internetwork channel 31 capable of connecting hundreds, thousands or even millions of computer sites, including many sources of audio data files. The internetwork channel may, for example, be the World Wide Web that is part of the well known worldwide Internet. This Internet uses TCP/IP (transmission control protocol/internet protocol) or PPP (point-to-point protocol) in access to a website on the Internet. However, any other internet channel or intra-net channel, possibly using a different, but known, protocol, can also be used to gain access to an audio file database, to transmit selections based on on-line menus, and to receive and download and automatically store audio data files corresponding to those selections.
  • [0026]
    The internetwork channel 31 of the audio data delivery system 10 may be chosen to take advantage of any of several existing data delivery infrastructures for an internetwork. The delivery system 10 is well suited for use with data transmission means, such as plain old telephone service (POTS) or ISDN. Compression of the audio data files may be implemented by use of the G.722 or Dolby AC-2 or AC-3 compression schemes or by other suitable audio compression schemes. Alternatively, the audio data files may be delivered and received using the Ricochet wireless modem offered by Metricom (Los Gatos, Calif.).
  • [0027]
    The Ricochet system uses a wireless modem with RS-232 serial format and can transfer information at rates up to 128 kbits/sec, using a specially designed, wireless LAN Access Modem. The present modem rate limit is 28.8 kbits/sec. A dynamic address, which can change with each new session, is assigned to a Ricochet user. The Ricochet system acts as a network service provider with its own user pool and with connections to the Internet. Ricochet divides the 902-928 MHz unlicensed band into 162 channels, each 160 kHz wide, for operation. Maximum connect time per subscriber is 100 hours per month and 4 hours per individual session. A Ricochet modem should be within 450 meters (about 0.3 miles) peer-to-peer (another Ricochet modem) or within about 1600 meters of a Ricochet pickup node (located, for example, on selected telephone poles in many communities). E-mail service is available, using POP3 protocol. E-mail file attachments up to 5 Mbytes in size (total message length) can be transferred using Ricochet. San Francisco, Los Angeles, Seattle, Wash., D.C., major airports and many universities and large corporations are now covered by the Ricochet network, with other communities to be added in the coming years. A high speed network service will be added in 1999.
  • [0028]
    In practice of the invention, information is loaded into the PC or SPU through a modem 31, stored, and thereafter played back at a real time rate. The compression algorithms used in the herein-described system are similar (or may be identical) to those developed by the Motion Picture Experts Group, referred to as MPEG-1 and MPEG-2. Other known compression algorithms include G.722, pioneered by AT&T. These compression techniques provide specific algorithms in which audio is digitized and then compressed a great deal. Maximum compression achieved to date that maintains adequate quality programming is about 6-6.5 kilobits/sec. Typical compressed but high-quality audio data rates lie somewhere between 16 and 32 kilobits per second.
  • [0029]
    The internetwork channel 31 routes the selected audio and/or text data file(s) to the microprocessor 51 using any suitable communication means, as discussed above.
  • [0030]
    Communications protocols for implementing this service are available and well known in the art. Two examples are point-to-point protocol (PPP) and transmission control protocol/internet protocol (TCP/IP), used for communications on the Internet. The data transmission control process is well understood and is available in software as part of the products offered by Netscape, NetCom, America OnLine and Compuserve, among others. Terminal emulators, such as a microphone and PC phone are available and well known to users of personal computers (PCs). The expansion of Internet activity has led to widespread development of many such communications packages for use on PCs. By design, the transmission protocol used in the transmission and/or downloading channel 29 is matched by a similar protocol that resides in the subscriber's PC. Matching of these two protocols allows connection to a Website source for audio data files.
  • [0031]
    The data files are received at the PC 51 and buffered by a first communications terminal 53 and by a buffer and data interface 54 (optional) before receipt by a microprocessor 55 and are preferably stored in a hard drive 57 associated with the microprocessor 55. The PC 51 optionally includes a floppy drive and includes ROM 61, RAM 63, a data command entry module 65 for user communication with the PC, an audio/visual display module 67 and a source of electrical power 69. The data interface 54 maybe configured to recognize only one or a few digital formats, such as those that would be presented by a connection to the Internet. Alternatively, the data interface 54 may be a universal data interface that recognizes any of a large number of digital formats that are used with various information packages (packets, frames, cells, etc.). A universal data interface is discussed in U.S. Ser. No. 08/643,963; this discussion is incorporated by reference herein.
  • [0032]
    Optionally, the microprocessor 55 is connected to, or includes, an audio processing module 73 and a loudspeaker or other audibly perceptible audio data file display 75. A text data file that arrives at the PC 51 must be converted to an audio data file before playback over the loudspeaker. If the data file is already in audio format, the audio processing module 73 and loudspeaker 75 may receive the converted audio data file (via a D/A converter) directly from the microprocessor 55, as shown. Optionally, software resident in the microprocessor 55 provides E-mail file interrogation and/or text-to-speech conversion for a received file.
  • [0033]
    An E-mail file will usually include a routing sub-message, appended as a header at the beginning (or as a trailer at the end) of the file, that specifies the route followed by the audio message in moving from the audio message source (the person or machine that left the message in E-mail form) to the intended recipient's telephone answering machine or service. These routing headers include specification of each bridge, router, gateway, etc. passed through by the E-mail message and can be quite long. In some instances, the length of a routing header can be many times the length of the useful part of the message. A routing header that requires 16 lines or more of text to print out is not unusual. The E-mail interrogation process examines the routing header, and any other header information that is specified by the user, is stripped from the message so that only the portion of the E-mail message that is of interest to the user is recorded in the computer hard drive 57 or on the storage and playback unit 81, discussed in the following.
  • [0034]
    The PC also includes a second communications module 77, connected to the hard drive 57 and to a docking station 79 that receives a portable, preferably handheld, storage and playback unit (“SPU”) 81. The SPU 81 receives a download of one or more selected audio and/or text data files from the PC, for storage and present or subsequent playback of the selection(s). The audio and/or text data files are downloaded and stored on the SPU 81, preferably on a PCMCIA card with flash memory (referred to collectively as an “SPU” for convenience here). The characteristics of a PCMCIA card are discussed below.
  • [0035]
    An SPU 81 is inserted into the SPU docking station 79, and audio and/or text data files, selected from commands to the host PC, are transferred, in compressed or decompressed format, with or without encryption, onto the SPU for present or future playback. The SPU 81 is carried by the user until the user has an opportunity to play back part or all of the audio and/or text data files on the SPU.
  • [0036]
    In one embodiment, the SPU 81, shown in more detail in FIG. 2, includes a docking interface connector 83, software to implement data transfer from the docking station 79, a data I/O module 85 connected to the docking connector 83 and to an on-board microprocessor 87. The microprocessor is connected to a memory unit 82, such as flash memory, and to a ROM 89 and a RAM 91 and optionally includes a hard drive 93 for additional storage. The transfer commands reside in the host PC, where transfer is activated. Optionally, a user activates a user data/command module 95 and visual or audible display 97 to download data file selections to the SPU 81 and to cause playback of one or more of these selections.
  • [0037]
    If the downloaded data file is in text format, the data file is first passed through a text-to-speech conversion process (optional), which is preferably implemented in software. The converted data file, now in audio format, is passed through an audio processing module 101 to a loudspeaker or other audibly perceptible display 103 for playback. If the data file received at the SPU 81 is already in audio format, the text-to-speech conversion process is not needed, and the audio data file is converted from digital to analog format and passed directly to the audio processing module 101 and loudspeaker 103 for playback. The SPU 81 can be carried around in the hand, pocket or other receptacle until the user has an opportunity to play back one or more selections that have been downloaded to and stored in the SPU.
  • [0038]
    FIG. 3 illustrates a general procedure for user processing, data file(s) selection by the user, and downloading of the selected file(s) to a PC. If the user is not already registered with the system, the system interacts with the user in block 111 to obtain registration and to set up a subscription for the (new) user. If a user is already registered and active, the system checks the registration in block 111. If this registration is confirmed, the system allows the user to proceed to block 113 and to browse and indicate one or more audio or text selections for downloading. After the user indicates one or more selections, the system proceeds to block 115 and downloads these selections to the user's PC, using an internetwork channel for transmission of the selected data files.
  • [0039]
    FIG. 4 illustrates a general procedure for playback processing of a data file at a PC, downloading of a data file to an SPU, and playback of the data file at the SPU, after the selected data files have been downloaded to the user's PC.
  • [0040]
    In block 121, the user has selected playback processing at the user's PC, and the selected data files are audio processed and playback at the PC for user-initiated playback at the PC. Alternatively, in block 123, the user has selected SPU playback, and the system transfers the selected data files to the SPU for storage. The selected (downloaded) data files are then audio processed at the SPU, in block 125, for user-initiated playback at the SPU.
  • [0041]
    FIG. 5 is a table illustrating processing options for a data file taken from various sources before the data file is played back as an audibly perceptible signal. In a first option, a selected data file is already in audio format. The data file is digitized (if this has not already been done) in a first processing step, then optionally compressed and/or encrypted for transmission to the user's PC as an audio format file. The received file is processed and played back by the user as an audio format file.
  • [0042]
    In a second format, the selected data file is in text format, and the file is passed through without further digitization and is optionally compressed and/or encrypted for transmission to the user's PC as a text format file. The received file is passed through a text-to-speech conversion process and is processed and played back by the user as an audio format file.
  • [0043]
    In a third format, the selected data file is available as a visual text file and is scanned, passed through optical character recognition (“OCR”) processing and digitized in a first processing step. This produces a text data file. The selected file is optionally compressed and/or encrypted for transmission to the user's PC as a text format file. The received file is passed through a text-to-speech conversion process and is processed and played back by the user as an audio format file.
  • [0044]
    In a fourth format, the selected data file is in text format, and the file is digitized and passed through a text-to-speech conversion process in a first processing step. The data file is then optionally compressed and/or encrypted for transmission to the user's PC as an audio format file. The received file is processed and played back by the user as an audio format file.
  • [0045]
    In a fifth format, the selected data file is available as a visual text file and is scanned, passed through optical character recognition (“OCR”) processing, digitized and passed through a text-to-speech conversion process in a first processing step. The selected file is optionally compressed and/or encrypted for transmission to the user's PC as an audio format file. The received file is processed and played back by the user as an audio format file.
  • [0046]
    FIG. 6 is a flow chart illustrating a playback procedure-according to the invention, where the received data file is already in audio format. In step 131, the operating program is loaded and activated. In step 133, one or more stored audio data files is selected for playback. In step 135, playback is activated, and the operating program begins reading an audio data file, in step 137, and performs D/A conversion, in step 139. In step 141, the audio data file is passed through audio processing, and the audio processed data file is delivered to the loudspeaker for audible display (playback) in step 143. The system then ends playback or recycles for another audio data file selection in step 145.
  • [0047]
    FIG. 7 is a flow chart illustrating a playback procedure according to the invention, where the received data file is in text format. In step 151, the operating program is loaded and activated. In step 153, one or more stored audio data files is selected for playback. In step 155, playback is activated, and the operating program begins reading a text data file, in step 157. In steps 159, 161 and 163, the system optionally performs E-mail file interrogation, text-to-speech conversion and D/A conversion. In step 165, the data file (now in audio format) is passed through audio processing, and the audio processed data file is delivered to the loudspeaker for audible display (playback) in step 167. The system then ends playback or recycles for another audio data file selection in step 169.
  • [0048]
    One embodiment of the SPU 81 and its memory unit 82 is a PCMCIA-type format card, with flash memory included in the PCMCIA card. The PCMCIA card, in its present design, is a 68-pin module, with plug-in being provided by pin-and-socket connectors, with the pins being arranged in two rows of 34 pins each. The card operates with a memory-only interface or with an input/output interface. In a memory-only configuration, the pin assignments include j ground pins (1_j4), k Vcc pins (1_k2), data bit pins 0-15, address bit pins 0-25, m card enable pins (1_m2), an output enable pin, a write enable pin, a card detect pin, a card reset pin, n programming supply voltage pins (1_n3), and 7 special purpose pin assignments, including ready/busy pin, write protect pin, register select pin, supply voltage detect pins, write protect pin and reserved pins. In an input/output configuration, the special purpose pins become interrupt request, I/O port bit count (16-bit; yes/no), input port acknowledge, register select, I/) enable, audio digital waveform, card status changed, I/O read and I/O write.
  • [0049]
    An Execute-In-Place option allows a computer connected to the card to execute programs directly from instructions and/or data provided on the card.
  • [0050]
    The card uses 3.3 volts or 5 volts supply for Vcc and provides 64 Mbytes of memory address space (SRAM, MaskPROM, OTPROM, EPROM, EEPROM or Flash Memory), with retrieval time of 100, 150, 200, 250 or 600 nsec. I/O registers for the PCMCIA card have either 8 bits or 16 bits width. The card thickness may be either 3.3 mm or 5 mm or 10 mm. Card length and width are approximately 85.6 mm and 54 mm, respectively.
  • [0051]
    The card has five layers of operation standardization. The lowest layer is physical and specifies electrical and card interface characteristics. The second layer, basic compatibility, specifies minimum memory size, minimum memory speed, data structures used, etc., optionally including specification of the Card Information Structure. The third layer, data recording format, specifies how card data are physically organized on the card (blocked vs. unblocked, with or without check sum included, etc.), analogous to format specifications of a floppy disk. The fourth layer, data organization, specifies how data are logically organized on the card, including the operating system used, whether the Execute-In-Place option is used, whether flash file memory is used, and application-specific information. The fifth layer specifies standards that are specific to a particular operating environment. Only compliance with the first two layers is required currently.
  • [0052]
    A Web page can be designed and implemented to allow a user to interact with the audio data file system and to download selections from an audio library. Design and implementation of a Web page is discussed, from different points of view, by Brian Pfaffenberger, Publish It On The Web, Academic Press, New York, Second Edition, 1997, by Roger C. Parker, Guide To Web Content And Design, MIS Press, Henry Holt & Co., New York, 1997, and by Andrew Sather et al in Creating Killer Interactive Web Sites, Adjacency, 1997. Design of an interactive server is discussed in detail by Stephen Walther in Active Server Pages Unleashed, Sams.net Publishing, Indianapolis, 1998, pp. 470-475 and elsewhere, and by Richard Wagner et al in Java Script Unleashed, Sams.net Publishing, Indianapolis, Second edition, 1997, pp. 338-359 and elsewhere.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US4287568 *6 Ago 19791 Sep 1981Lester Robert WSolid state music player using signals from a bubble-memory storage device
US4455651 *20 Oct 198019 Jun 1984Equatorial Communications CompanySatellite communications system and apparatus
US4499568 *13 Dic 198212 Feb 1985Jacques GremilletProcess for the teledistribution of recorded information and a system for performing this process
US4503421 *26 May 19825 Mar 1985Nippon Electric Co., Ltd.Digital to analog converter
US4567512 *28 Sep 198328 Ene 1986World Video Library, Inc.Recorded program communication system
US4590516 *1 Jun 198220 May 1986World Video Library, Inc.Recorded program communication system
US4639225 *22 Jun 198327 Ene 1987Sharp Kabushiki KaishaPortable audio-visual electronic apparatus
US4667088 *1 Nov 198219 May 1987Kramer Kane NPortable data processing and storage system
US4725977 *28 Feb 198616 Feb 1988Cpt, Ltd.Cartridge programming system and method using a central and local program library
US4737764 *30 May 198612 Abr 1988Collins & Aikman CorporationModular floor covering units with built-in lighting
US4761684 *14 Nov 19862 Ago 1988Video Jukebox NetworkTelephone access display system
US4800365 *15 Jun 198724 Ene 1989Burr-Brown CorporationCMOS digital-to-analog converter circuitry
US4827508 *14 Oct 19862 May 1989Personal Library Software, Inc.Database usage metering and protection system and method
US4829372 *20 Ago 19879 May 1989Telaction CorporationPresentation player
US4905094 *30 Jun 198827 Feb 1990Telaction CorporationSystem for audio/video presentation
US4914586 *6 Nov 19873 Abr 1990Xerox CorporationGarbage collector for hypermedia systems
US4995078 *10 Oct 198919 Feb 1991Monslow H VincentTelevision broadcast system for selective transmission of viewer-chosen programs at viewer-requested times
US5025412 *17 Feb 198818 Jun 1991Zilog, Inc.Universal bus interface
US5045327 *11 Jul 19903 Sep 1991Sound Memory CorporationDigital recording and playback module system
US5089885 *1 Ago 198818 Feb 1992Video Jukebox Network, Inc.Telephone access display system with remote monitoring
US5099422 *17 Mar 198924 Mar 1992Datavision Technologies Corporation (Formerly Excnet Corporation)Compiling system and method of producing individually customized recording media
US5119188 *4 Sep 19902 Jun 1992Telaction CorporationDigital audio-video presentation display system
US5131020 *29 Dic 198914 Jul 1992Smartroutes Systems Limited PartnershipMethod of and system for providing continually updated traffic or other information to telephonically and other communications-linked customers
US5132992 *7 Ene 199121 Jul 1992Paul YurtAudio and video transmission and receiving system
US5181107 *20 Sep 199119 Ene 1993Interactive Television Systems, Inc.Telephone access information service distribution system
US5191410 *5 Feb 19912 Mar 1993Telaction CorporationInteractive multimedia presentation and communications system
US5208665 *15 Feb 19914 May 1993Telaction CorporationPresentation player for an interactive digital communication system
US5212683 *5 Sep 199118 May 1993U.S. Philips CorporationCassette for storing and handling an information carrier, and scanning system comprising the cassette
US5222120 *23 Abr 199022 Jun 1993Mci Communications CorporationLong distance telephone switching system with enhanced subscriber services
US5233333 *21 May 19903 Ago 1993Borsuk Sherwin MPortable hand held reading unit with reading aid feature
US5239540 *27 Nov 199024 Ago 1993Scientific-Atlanta, Inc.Method and apparatus for transmitting, receiving and communicating digital data signals with corresponding program data signals which describe the digital data signals
US5247347 *27 Sep 199121 Sep 1993Bell Atlantic Network Services, Inc.Pstn architecture for video-on-demand services
US5327486 *22 Mar 19935 Jul 1994Bell Communications Research, Inc.Method and system for managing telecommunications such as telephone calls
US5339413 *21 Ago 199216 Ago 1994International Business Machines CorporationData stream protocol for multimedia data streaming data processing system
US5351276 *10 Feb 199227 Sep 1994Simpact Associates, Inc.Digital/audio interactive communication network
US5386493 *25 Sep 199231 Ene 1995Apple Computer, Inc.Apparatus and method for playing back audio at faster or slower rates without pitch distortion
US5406558 *3 May 199311 Abr 1995Scientific-Atlanta, Inc.Apparatus for communicating program information corresponding to digital data
US5420690 *20 Jul 199430 May 1995Matsushita Electric Industrial Co., Ltd.Optical information recording/reproducing apparatus
US5440334 *1 Feb 19938 Ago 1995Explore Technology, Inc.Broadcast video burst transmission cyclic distribution apparatus and method
US5440336 *23 Jul 19938 Ago 1995Electronic Data Systems CorporationSystem and method for storing and forwarding audio and/or visual information on demand
US5452180 *15 Jul 199319 Sep 1995Dell Usa, L.P.Docking apparatus for a portable data processing unit including an arcuate support member with a card extension pivotally mounted on a base member
US5485460 *19 Ago 199416 Ene 1996Microsoft CorporationSystem and method for running multiple incompatible network protocol stacks
US5491609 *28 Feb 199413 Feb 1996TelepadPortable electronic platform system
US5522089 *12 Sep 199428 May 1996Cordata, Inc.Personal digital assistant module adapted for initiating telephone communications through DTMF dialing
US5524051 *6 Abr 19944 Jun 1996Command Audio CorporationMethod and system for audio information dissemination using various modes of transmission
US5530235 *16 Feb 199525 Jun 1996Xerox CorporationInteractive contents revealing storage device
US5539658 *16 May 199523 Jul 1996Minnesota Mining And Manufacturing CompanyElectronic presentation system using portable storage media
US5541638 *28 Jun 199430 Jul 1996At&T Corp.User programmable entertainment method and apparatus
US5548510 *28 Oct 199420 Ago 1996Mcdonnell Douglas CorporationMethod and apparatus for providing a universal electrical interface between an aircraft and an associated store
US5550863 *8 Oct 199327 Ago 1996H. Lee BrowneAudio and video transmission and receiving system
US5557541 *21 Jul 199417 Sep 1996Information Highway Media CorporationApparatus for distributing subscription and on-demand audio programming
US5619499 *12 May 19958 Abr 1997Mitsubishi Denki Kabushiki KaishaProtocol processor in communication network transferring data in asynchronous transfer mode
US5625829 *18 Jul 199429 Abr 1997Advanced Micro Devices, Inc.Dockable computer system capable of symmetric multi-processing operations
US5629867 *25 Ene 199413 May 1997Goldman; Robert J.Selection and retrieval of music from a digital database
US5629980 *23 Nov 199413 May 1997Xerox CorporationSystem for controlling the distribution and use of digital works
US5631693 *25 Oct 199320 May 1997Antec CorporationMethod and apparatus for providing on demand services in a subscriber system
US5633891 *21 Ago 199527 May 1997Trans Video Electronics, Inc.Portable integrated satellite communications unit
US5634012 *23 Nov 199427 May 1997Xerox CorporationSystem for controlling the distribution and use of digital works having a fee reporting mechanism
US5634015 *4 Oct 199427 May 1997Ibm CorporationGeneric high bandwidth adapter providing data communications between diverse communication networks and computer system
US5636726 *13 Ene 199510 Jun 1997Diamond Automations, Inc.Method and apparatus for transferring eggs
US5638443 *23 Nov 199410 Jun 1997Xerox CorporationSystem for controlling the distribution and use of composite digital works
US5640444 *3 Oct 199417 Jun 1997Spectrum Information Technologies, Inc.Methods and apparatus for controlling data transmission using radio devices
US5644790 *16 Feb 19941 Jul 1997Ati Technologies, Inc.Universal CD ROM interface using single interface connection
US5715403 *23 Nov 19943 Feb 1998Xerox CorporationSystem for controlling the distribution and use of digital works having attached usage rights where the usage rights are defined by a usage rights grammar
US5745551 *27 Oct 199328 Abr 1998Tcsi CorporationTelecommunication apparatus for receiving, storing and forwarding a plurality of voice signals to a wireless network, in response to a control signal therefrom
US5748585 *17 Jun 19945 May 1998Mitsubishi Denki Kabushiki KaishaDisc apparatus for selectively outputting data from a disc and a memory
US5761485 *1 Dic 19952 Jun 1998Munyan; Daniel E.Personal electronic book system
US5790423 *14 Jun 19954 Ago 1998Audible, Inc.Interactive audio transmission receiving and playback system
US5790935 *30 Ene 19964 Ago 1998Hughes Aircraft CompanyVirtual on-demand digital information delivery system and method
US5793980 *30 Nov 199411 Ago 1998Realnetworks, Inc.Audio-on-demand communication system
US5799068 *26 Nov 199725 Ago 1998Elonex I.P. Holdings Ltd.Smart phone integration with computer systems
US5870710 *22 Ene 19979 Feb 1999Sony CorporationAudio transmission, recording and reproducing system
US5875448 *8 Oct 199623 Feb 1999Boys; Donald R.Data stream editing system including a hand-held voice-editing apparatus having a position-finding enunciator
US5892900 *30 Ago 19966 Abr 1999Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
US5914706 *22 May 199222 Jun 1999Seiko Epson CorporationCompact portable audio-display electronic apparatus with interactive inquirable and inquisitorial interfacing
US5914941 *25 May 199522 Jun 1999Information Highway Media CorporationPortable information storage/playback apparatus having a data interface
US5920861 *25 Feb 19976 Jul 1999Intertrust Technologies Corp.Techniques for defining using and manipulating rights management data structures
US5926624 *12 Sep 199620 Jul 1999Audible, Inc.Digital information library and delivery system with logic for generating files targeted to the playback device
US5933498 *5 Nov 19973 Ago 1999Mrj, Inc.System for controlling access and distribution of digital property
US5940504 *29 Jun 199217 Ago 1999Infologic Software, Inc.Licensing management system and method in which datagrams including an address of a licensee and indicative of use of a licensed product are sent from the licensee's site
US5943422 *12 Ago 199624 Ago 1999Intertrust Technologies Corp.Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
US6035336 *17 Oct 19977 Mar 2000International Business Machines CorporationAudio ticker system and method for presenting push information including pre-recorded audio
US6038199 *12 Nov 199814 Mar 2000Dictaphone CorporationPortable digital audio recorder with adaptive control configurations
US6038595 *2 Mar 199814 Mar 2000Emc CorporationInformation/communication device for network based services and a system for use of information/communication based services
US6055566 *12 Ene 199825 Abr 2000Lextron Systems, Inc.Customizable media player with online/offline capabilities
US6112181 *6 Nov 199729 Ago 2000Intertrust Technologies CorporationSystems and methods for matching, selecting, narrowcasting, and/or classifying based on rights management and/or other information
US6185683 *28 Dic 19986 Feb 2001Intertrust Technologies Corp.Trusted and secure techniques, systems and methods for item delivery and execution
US6233684 *10 Oct 199715 May 2001Contenaguard Holdings, Inc.System for controlling the distribution and use of rendered digital works through watermaking
US6236971 *10 Nov 199722 May 2001Contentguard Holdings, Inc.System for controlling the distribution and use of digital works using digital tickets
US6356287 *28 May 199812 Mar 2002Nuvomedia, Inc.Citation selection and routing feature for hand-held content display device
US6385596 *6 Feb 19987 May 2002Liquid Audio, Inc.Secure online music distribution system
US6389541 *15 May 199814 May 2002First Union National BankRegulating access to digital content
US6405049 *5 Ago 199711 Jun 2002Symbol Technologies, Inc.Portable data terminal and cradle
US6549942 *10 Jul 200015 Abr 2003Audiohighway.ComEnhanced delivery of audio data for portable playback
US6563769 *4 Jun 199913 May 2003Koninklijke Philips Electronics N.V.Virtual jukebox
US20020111825 *11 Feb 200215 Ago 2002Martin John R.Combination jukebox and game
US20020111912 *15 May 200115 Ago 2002Hunter Charles EricMusic distribution systems
US20020112171 *19 Ene 200115 Ago 2002Intertrust Technologies Corp.Systems and methods for secure transaction management and electronic rights protection
USD373121 *2 Mar 199427 Ago 1996Apple Computer, Inc.Cradle for a personal digital assistant
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US20060083364 *5 Oct 200520 Abr 2006Bossemeyer Robert W JrMethod and system for text-to-speech conversion of caller information
Clasificaciones
Clasificación de EE.UU.709/219, 704/E13.001, 704/235
Clasificación internacionalG10L13/04, G11B20/10, H04L29/06, G10L15/26, G06F15/16
Clasificación cooperativaG10L13/00, H04L69/04, G11B20/00086, G11B20/10, G11B20/10527, G11B2020/10546, H04L63/0428, G11B20/00797, G11B2020/00014, G10H2240/305, G11B20/00869, G11B20/0021, G11B20/00855, H04L63/04, H04L29/06
Clasificación europeaG10L13/04U, H04L29/06C5, H04L29/06, G11B20/00P12, G11B20/00P12B, G11B20/00P11B4, G11B20/10, G11B20/00P5, H04L63/04, G11B20/10C, G11B20/00P
Eventos legales
FechaCódigoEventoDescripción
21 Ene 2010ASAssignment
Owner name: SCA IPLA HOLDINGS INC.,NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONY CORPORATION;REEL/FRAME:023828/0473
Effective date: 20100108
Owner name: MOBILEMEDIA IDEAS LLC,MARYLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCA IPLA HOLDINGS INC;REEL/FRAME:023828/0504
Effective date: 20100111
Owner name: SCA IPLA HOLDINGS INC., NEW YORK
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONY CORPORATION;REEL/FRAME:023828/0473
Effective date: 20100108
Owner name: MOBILEMEDIA IDEAS LLC, MARYLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCA IPLA HOLDINGS INC;REEL/FRAME:023828/0504
Effective date: 20100111
28 Mar 2017ASAssignment
Owner name: IRONWORKS PATENTS LLC, ILLINOIS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOBILEMEDIA IDEAS LLC;REEL/FRAME:042107/0440
Effective date: 20170327