US20090100775A1 - Self repairing roof membrane - Google Patents

Self repairing roof membrane Download PDF

Info

Publication number
US20090100775A1
US20090100775A1 US11/874,828 US87482807A US2009100775A1 US 20090100775 A1 US20090100775 A1 US 20090100775A1 US 87482807 A US87482807 A US 87482807A US 2009100775 A1 US2009100775 A1 US 2009100775A1
Authority
US
United States
Prior art keywords
water
layer
membrane
swellable polymer
water swellable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/874,828
Inventor
Thierry Timothy Trial
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlisle Intangible LLC
Original Assignee
Carlisle Intangible LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlisle Intangible LLC filed Critical Carlisle Intangible LLC
Priority to US11/874,828 priority Critical patent/US20090100775A1/en
Assigned to CARLISLE INTANGIBLE COMPANY reassignment CARLISLE INTANGIBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TRIAL, THIERRY TIMOTHY
Priority to CA002640911A priority patent/CA2640911A1/en
Publication of US20090100775A1 publication Critical patent/US20090100775A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/10Roof covering by making use of flexible material, e.g. supplied in roll form by making use of compounded or laminated materials, e.g. metal foils or plastic films coated with bitumen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B11/00Layered products comprising a layer of bituminous or tarry substances
    • B32B11/10Layered products comprising a layer of bituminous or tarry substances next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes

Definitions

  • Single ply membrane roofing utilizes a polymeric sheet as the exterior surface of a roof structure.
  • the sheets which can be 7-50 feet in width, are positioned on the roof.
  • multiple sheets are positioned side by side, and the overlapped edges are adhered together to form a seam. This forms a continuous membrane, covering the entire roof.
  • the membrane can be attached to the roof in a variety of different ways. Adhesive can be used, as well as ballast, i.e., gravel, as well as various types of mechanical fastening systems.
  • ballast i.e., gravel
  • the obvious purpose of the membrane is to prevent water from entering the building. If the membrane is damaged, and a tear forms through the membrane, water can leak into the building. Therefore, such tears must be repaired.
  • the present invention is based on the concept that damage to a roofing membrane can be repaired in-situ by the incorporation of a water swellable polymer layer in the membrane structure.
  • the water swellable polymer, or, super absorbent polymer forms a hydrogel when in contact with water. If a tear in the membrane forms, and water enters through the tear, and is absorbed by the water swellable polymer forming a hydrogel which expands and seals the tear, preventing water from entering the building.
  • the water swellable layer can be formed between two layers of the membrane sheeting, or, it can be adhered to the bottom surface of the membrane sheeting, as well as other locations, as long as it is not exposed to weather absent a tear in the membrane.
  • FIG. 1 is a cross sectional view of the present invention
  • FIG. 2 is a cross sectional view of an alternate embodiment of the present invention.
  • FIG. 3 is a cross sectional view of a second alternate embodiment of the present invention.
  • FIG. 4 is a cross sectional view of a third alternate embodiment of the present invention.
  • a self repairing membrane roofing material 10 includes an uppermost layer of a water insoluble polymeric sheeting 12 and a lower layer 14 which includes a water swellable, or super absorbent polymer. As shown, layer 14 is adhered to layer 12 by an adhesive layer 16 .
  • Membrane 12 can be any polymeric membrane typically used on a membrane roof. Typical membrane roofs are formed from, for example, ethylene propylene diene monomer rubber (EPDM), polyvinyl chloride (PVC), thermoplastic olefins (TPO), modified bitumen membranes, epichlorohydrin, as well as other polymers. Typically, when such membranes are formed, two plies of polymer are formed and laminated together to form the membrane 12 . This minimizes the possibility that a membrane will be formed with a perforation. For purposes of the present invention, the membrane 12 will preferably be a clean sheet. In other words, the surface 17 of membrane 12 will not include any talc or any other release agent.
  • EPDM ethylene propylene diene monomer rubber
  • PVC polyvinyl chloride
  • TPO thermoplastic olefins
  • modified bitumen membranes epichlorohydrin
  • Thermoplastic sheeting is normally formed without talc or release agents.
  • Thermoset sheeting such as EPDM is usually formed with talc.
  • a method of forming the clean EPDM sheet is disclosed, for example, in Venable U.S. Pat. No. 5,643,399, the disclosure of which is hereby incorporated by reference.
  • Water swellable polymers are not typically adhesive in nature. Therefore, the layer 14 may incorporate additional structure to bind the water swellable polymer.
  • the water swellable polymer layer can incorporate a thermoplastic adhesive layer to bind the water swellable polymer particles to the surface of a thermoset membrane. If the membrane is a thermoplastic, such as PVC or TPO, water swellable polymer particles can be pressed into the molten surface of the thermoplastic membrane as it is being manufactured. Alternately, a layer of a nonwoven web, or other fabric material, that physically incorporates the water swellable polymer can be adhesively bonded to the roofing membrane.
  • the water swellable polymers are polyacrylates, polyacrylamides, polyvinyl alcohols, copolymers of polyacrylate and polyacrylamide, hydrolyzed starch, poly(acrylonitrile), sodium carboxymethylcellulose, sodium alginate, copolymers of polyacrylate and polyvinyl alcohol, copolymers of polyacryamide and polyvinyl alcohol, and combinations thereof. These are partially cross-linked so that they are not water soluble, but merely water absorbent, forming a hydrogel when combined with water.
  • the layer 14 is a nonwoven web impregnated with the water swellable polymer.
  • a nonwoven web impregnated with the water swellable polymer.
  • Such a material can be obtained from Neptco, Inc.
  • This layer is adhered to surface 17 of membrane 12 with, for example, an adhesive layer 16 .
  • a polyethylene thermoplastic adhesive is suitable. If the membrane is a thermoplastic, a separate adhesive layer may not be required.
  • the amount of water swellable polymer loaded onto the surface will determine the amount of hydrogel formed and, thereby, determine the size of the tear that can be repaired with the hydrogel.
  • the loading of the dry polymer onto the substrate will be from about 10 to about 50 g/m 2 .
  • the membrane sheeting 10 is applied over a roof structure 20 , as indicated, with the water swellable polymer layer 14 , adjacent the roof surface 20 protected by water by the membrane 12 .
  • the roof surface may be metal, wood, concrete, or insulation.
  • the membrane 10 can be attached to the roof structure 20 by a variety of well known application methods, such as ballast, mechanical fasteners or an adhesive layer 18 , as shown in FIG. 1 .
  • the membrane 10 if the membrane 10 is damaged, water will pass through layer 12 and be absorbed by the water swellable polymer in layer 14 .
  • the water swellable polymer will expand, sealing or closing the tear and preventing further water from passing though the damaged area. Even after drying, the polymer in layer 14 will maintain its ability to absorb water and expand, thus providing a long term repair.
  • the membrane structure 22 includes first and second plies or layers 26 , 28 of a water insoluble membrane, such as EPDM, with an inner layer 30 of the water swellable polymer.
  • the water swellable polymer is impregnated into a nonwoven web.
  • the nonwoven web is incorporated into the membrane structure 22 by locating layer 30 between uncured EPDM layers 26 and 28 and compressing these together.
  • the structure is then heat cured, forming the composite structure 22 . This can be applied to a roof surface by using an adhesive, ballast or a mechanical fastening system.
  • Layers 26 and 28 can also be thermoplastic plies which are compressed together when in a partially molten state. Again, if damage forms through membrane 22 , water will be absorbed by the water swellable polymer in layer 30 and act to seal the hole. This will reduce or eliminate any water leaking through the tear.
  • a third embodiment of the present invention is a composite 32 which includes a water insoluble barrier layer such as EPDM 34 adhered by adhesive layer 36 to a layer 38 which includes a water swellable polymer.
  • the exterior surface of layer 38 is covered with a thin layer of water insoluble polymer 40 .
  • This can be, for example, polyethylene, or polypropylene, or the like.
  • the layer 34 of water insoluble polymer, i.e., EPDM would be attached directly to the roof surface with the layer 40 exposed to the surface.
  • the layer 40 protects the water swellable polymer from water, unless a tear forms.
  • a built-up roof 50 includes a roof deck surface 52 covered with a roofing felt layer 54 , in turn covered with a bituminous material or tar layer 56 and an optional gravel ballast layer 58 .
  • a layer of a water swellable polymer 60 is incorporated with the structure in this embodiment, between the roof deck 52 and the roofing felt 54 .
  • the water swellable polymer layer 60 is preferably a nonwoven web impregnated with the water swellable polymer, similar to the layer 30 in FIG. 2 .
  • the roof structure itself is formed in the same manner as any built-up roof with the layer 60 applied on the roof deck or between any layers of the roofing structure, i.e., between layers of roofing felt.
  • any penetration is formed through the outer surfaces, allowing water to contact the layer 60 , the water swellable polymer will absorb water and seal the penetration.
  • Samples of various grades of water swellable polymer (WSP) impregnated on a nonwoven fabric were obtained from Neptco, Inc. Laboratory samples (about 0.060-0.070 inches) were prepared by placing the WSP impregnated nonwoven fabric between two pieces of uncured EPDM rubber, as shown in FIG. 2 . Press-cure samples were obtained after heating at 320° F. for 35 minutes (2,000-5,000 psi). To simulate a cut in the membrane, a 1-inch gash was cut through the sample. A 3-inch ⁇ 2-inch cylinder was positioned over the gash and adhered to the sample with plumbers putty. The system was tested by dripping 25 ml of water from a burette over a 1-minute period.
  • WSP water swellable polymer
  • Samples were prepared by attaching the WSP impregnated nonwoven fabric to the bottom of a standard 0.045-inch EPDM membrane using a polyethylene hot melt adhesive (see FIG. 1 ).
  • control leaked about 89% of the water introduced in the system within the first 15 minutes, and 85% of the remaining water over the following 15 minutes.
  • experimental sample leaked only 1 ml of water (0.8%) before the system self-repaired.
  • self-repairing was somewhat slower, but the process was completed within 45 minutes. It should be noted that the samples were not supported, and the water applied did wick through the WSP material.
  • Samples were prepared by attaching the WSP nonwoven to the bottom of a membrane as previously described (see FIG. 1 ).
  • the membrane and nonwoven composite were adhered to two pieces of polyisocyanurate insulation with Carlisle Sure-Seal 90-8-30A Bonding Adhesive. Damage was introduced to the system with two 1 ⁇ 2-inch, 45° cuts into the membrane simulating a tear. In order to investigate a worst case scenario, the damage was inflicted over the void space between the two pieces of insulation.
  • the test assembly was prepared as previously described.
  • the present invention provides a self repairing roofing membrane that provides long term repairs of minor tears in a membrane structure. This will substantially reduce the risk of water damage caused by such tears and reduce and/or eliminate the need for repair of the tear. Further, many of the tears should be visible. This will allow for a secondary repair or patch over the tear.

Abstract

A self repairing roof membrane includes a water impervious layer such as EPDM covering a layer including a water swellable polymer. Preferably, the water swellable polymer is bound to a nonwoven web. If a tear is formed through the membrane, water that passes through the tear will be absorbed by the water swellable polymer, which will form a hydrogel and plug the tear.

Description

    BACKGROUND OF THE INVENTION
  • Single ply membrane roofing utilizes a polymeric sheet as the exterior surface of a roof structure. The sheets, which can be 7-50 feet in width, are positioned on the roof. In order to cover the entire roof, multiple sheets are positioned side by side, and the overlapped edges are adhered together to form a seam. This forms a continuous membrane, covering the entire roof.
  • The membrane can be attached to the roof in a variety of different ways. Adhesive can be used, as well as ballast, i.e., gravel, as well as various types of mechanical fastening systems. The obvious purpose of the membrane is to prevent water from entering the building. If the membrane is damaged, and a tear forms through the membrane, water can leak into the building. Therefore, such tears must be repaired.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the concept that damage to a roofing membrane can be repaired in-situ by the incorporation of a water swellable polymer layer in the membrane structure. The water swellable polymer, or, super absorbent polymer forms a hydrogel when in contact with water. If a tear in the membrane forms, and water enters through the tear, and is absorbed by the water swellable polymer forming a hydrogel which expands and seals the tear, preventing water from entering the building.
  • The water swellable layer can be formed between two layers of the membrane sheeting, or, it can be adhered to the bottom surface of the membrane sheeting, as well as other locations, as long as it is not exposed to weather absent a tear in the membrane.
  • The objects and advantages of the present invention will be further appreciated in light of the following detailed description and drawings in which
  • DESCRIPTION OF THE INVENTION
  • FIG. 1 is a cross sectional view of the present invention;
  • FIG. 2 is a cross sectional view of an alternate embodiment of the present invention; and
  • FIG. 3 is a cross sectional view of a second alternate embodiment of the present invention.
  • FIG. 4 is a cross sectional view of a third alternate embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A self repairing membrane roofing material 10, as shown in FIG. 1, includes an uppermost layer of a water insoluble polymeric sheeting 12 and a lower layer 14 which includes a water swellable, or super absorbent polymer. As shown, layer 14 is adhered to layer 12 by an adhesive layer 16.
  • Membrane 12 can be any polymeric membrane typically used on a membrane roof. Typical membrane roofs are formed from, for example, ethylene propylene diene monomer rubber (EPDM), polyvinyl chloride (PVC), thermoplastic olefins (TPO), modified bitumen membranes, epichlorohydrin, as well as other polymers. Typically, when such membranes are formed, two plies of polymer are formed and laminated together to form the membrane 12. This minimizes the possibility that a membrane will be formed with a perforation. For purposes of the present invention, the membrane 12 will preferably be a clean sheet. In other words, the surface 17 of membrane 12 will not include any talc or any other release agent. Thermoplastic sheeting is normally formed without talc or release agents. Thermoset sheeting such as EPDM is usually formed with talc. A method of forming the clean EPDM sheet is disclosed, for example, in Venable U.S. Pat. No. 5,643,399, the disclosure of which is hereby incorporated by reference.
  • Water swellable polymers are not typically adhesive in nature. Therefore, the layer 14 may incorporate additional structure to bind the water swellable polymer. The water swellable polymer layer can incorporate a thermoplastic adhesive layer to bind the water swellable polymer particles to the surface of a thermoset membrane. If the membrane is a thermoplastic, such as PVC or TPO, water swellable polymer particles can be pressed into the molten surface of the thermoplastic membrane as it is being manufactured. Alternately, a layer of a nonwoven web, or other fabric material, that physically incorporates the water swellable polymer can be adhesively bonded to the roofing membrane.
  • Typically, the water swellable polymers are polyacrylates, polyacrylamides, polyvinyl alcohols, copolymers of polyacrylate and polyacrylamide, hydrolyzed starch, poly(acrylonitrile), sodium carboxymethylcellulose, sodium alginate, copolymers of polyacrylate and polyvinyl alcohol, copolymers of polyacryamide and polyvinyl alcohol, and combinations thereof. These are partially cross-linked so that they are not water soluble, but merely water absorbent, forming a hydrogel when combined with water.
  • The method of forming the water swellable polymer-impregnated fabrics, as well as the method of forming adhesive coatings incorporating the water swellable polymers, are well known and are disclosed, for example, in Anton et al. U.S. Pat. No. 4,837,077; Fairgrieve U.S. Pat. No. 5,925,461; Fairgrieve U.S. Pat. No. 6,348,236; Bahlmann et al. U.S. Pat. No. 6,899,776; and Gruhn et al. U.S. Pat. No. 6,284,267, the disclosures of which are hereby incorporated by reference.
  • According to the preferred embodiment of the present invention, the layer 14 is a nonwoven web impregnated with the water swellable polymer. Such a material can be obtained from Neptco, Inc. This layer is adhered to surface 17 of membrane 12 with, for example, an adhesive layer 16. A polyethylene thermoplastic adhesive is suitable. If the membrane is a thermoplastic, a separate adhesive layer may not be required.
  • The amount of water swellable polymer loaded onto the surface will determine the amount of hydrogel formed and, thereby, determine the size of the tear that can be repaired with the hydrogel. Generally, the loading of the dry polymer onto the substrate will be from about 10 to about 50 g/m2.
  • To form a roof, the membrane sheeting 10 is applied over a roof structure 20, as indicated, with the water swellable polymer layer 14, adjacent the roof surface 20 protected by water by the membrane 12. The roof surface may be metal, wood, concrete, or insulation. The membrane 10 can be attached to the roof structure 20 by a variety of well known application methods, such as ballast, mechanical fasteners or an adhesive layer 18, as shown in FIG. 1.
  • As will be explained below, if the membrane 10 is damaged, water will pass through layer 12 and be absorbed by the water swellable polymer in layer 14. The water swellable polymer will expand, sealing or closing the tear and preventing further water from passing though the damaged area. Even after drying, the polymer in layer 14 will maintain its ability to absorb water and expand, thus providing a long term repair.
  • An alternate embodiment of the present invention is shown in FIG. 2. As shown in FIG. 2, the membrane structure 22 includes first and second plies or layers 26,28 of a water insoluble membrane, such as EPDM, with an inner layer 30 of the water swellable polymer. In this embodiment, the water swellable polymer is impregnated into a nonwoven web. The nonwoven web is incorporated into the membrane structure 22 by locating layer 30 between uncured EPDM layers 26 and 28 and compressing these together. The structure is then heat cured, forming the composite structure 22. This can be applied to a roof surface by using an adhesive, ballast or a mechanical fastening system. Layers 26 and 28 can also be thermoplastic plies which are compressed together when in a partially molten state. Again, if damage forms through membrane 22, water will be absorbed by the water swellable polymer in layer 30 and act to seal the hole. This will reduce or eliminate any water leaking through the tear.
  • A third embodiment of the present invention, as shown in FIG. 3, is a composite 32 which includes a water insoluble barrier layer such as EPDM 34 adhered by adhesive layer 36 to a layer 38 which includes a water swellable polymer. The exterior surface of layer 38 is covered with a thin layer of water insoluble polymer 40. This can be, for example, polyethylene, or polypropylene, or the like. In this embodiment, the layer 34 of water insoluble polymer, i.e., EPDM, would be attached directly to the roof surface with the layer 40 exposed to the surface. In this embodiment, the layer 40 protects the water swellable polymer from water, unless a tear forms.
  • The present invention can also be incorporated into a built-up roof. As shown in FIG. 4, a built-up roof 50 includes a roof deck surface 52 covered with a roofing felt layer 54, in turn covered with a bituminous material or tar layer 56 and an optional gravel ballast layer 58. Incorporated with the structure in this embodiment, between the roof deck 52 and the roofing felt 54 is a layer of a water swellable polymer 60. In this embodiment, the water swellable polymer layer 60 is preferably a nonwoven web impregnated with the water swellable polymer, similar to the layer 30 in FIG. 2. The roof structure itself is formed in the same manner as any built-up roof with the layer 60 applied on the roof deck or between any layers of the roofing structure, i.e., between layers of roofing felt. Thus, if any penetration is formed through the outer surfaces, allowing water to contact the layer 60, the water swellable polymer will absorb water and seal the penetration.
  • The present invention will be further appreciated in light of the following detailed example.
  • EXAMPLE 1
  • Samples of various grades of water swellable polymer (WSP) impregnated on a nonwoven fabric were obtained from Neptco, Inc. Laboratory samples (about 0.060-0.070 inches) were prepared by placing the WSP impregnated nonwoven fabric between two pieces of uncured EPDM rubber, as shown in FIG. 2. Press-cure samples were obtained after heating at 320° F. for 35 minutes (2,000-5,000 psi). To simulate a cut in the membrane, a 1-inch gash was cut through the sample. A 3-inch×2-inch cylinder was positioned over the gash and adhered to the sample with plumbers putty. The system was tested by dripping 25 ml of water from a burette over a 1-minute period. After the WSP had swelled, an additional 150 ml of water was added to the system in the same manner over a 3-minute period. The amount of water that had passed through the system was recorded every hour. Using this system, leakage was slowed by 26.0-93.0%.
  • EXAMPLE 2
  • Samples were prepared by attaching the WSP impregnated nonwoven fabric to the bottom of a standard 0.045-inch EPDM membrane using a polyethylene hot melt adhesive (see FIG. 1).
  • Samples were damaged by cutting a 1-inch gash through the entire sample. The test assembly was prepared as previously described. Samples were tested by dripping 125 ml of water over a 10-minute period. Results were recorded every 15 minutes for one hour, and then after an additional hour. The results of the experiment are shown in Table 1.
  • TABLE 1
    Self Repairing Membrane, WSP nonwoven on bottom of membrane
    Time (min) Control 1 2 3
    Water through sample (ml)
    15 111 (88.8%) 1 (0.8%)  2 (1.6%)  5 (4%)
    30  12 (85%) 0 10 (8%)  9 (7.5%)
    45  0 0 17 (15%) 30 (27.5%)
    60  0 0  0  0
    120   0 0  0  0
    Total 123 (98.4%) 1 (0.8%) 29 (23.2%) 39 (31.2%)
  • The control leaked about 89% of the water introduced in the system within the first 15 minutes, and 85% of the remaining water over the following 15 minutes. In one case, the experimental sample leaked only 1 ml of water (0.8%) before the system self-repaired. In the other two cases, self-repairing was somewhat slower, but the process was completed within 45 minutes. It should be noted that the samples were not supported, and the water applied did wick through the WSP material.
  • The performance of this system as compared to the system where the sample was fabricated with the WSP nonwoven between two cured layers was significantly improved.
  • EXAMPLE 3
  • Samples were prepared by attaching the WSP nonwoven to the bottom of a membrane as previously described (see FIG. 1). The membrane and nonwoven composite were adhered to two pieces of polyisocyanurate insulation with Carlisle Sure-Seal 90-8-30A Bonding Adhesive. Damage was introduced to the system with two ½-inch, 45° cuts into the membrane simulating a tear. In order to investigate a worst case scenario, the damage was inflicted over the void space between the two pieces of insulation. The test assembly was prepared as previously described.
  • Water was introduced to the system via a burette at the rate of 125 ml (volume of about 1.75 in) over a 15-minute period to simulate a heavy rainstorm. Results were recorded every 15 minutes for one hour, and then after an additional hour. The results of the experiment are shown in Table 2.
  • TABLE 2
    Prototype testing - Simulated Tear Results
    Time (min) Control 1 2 3
    Water through sample (ml)
    15 125 1 5 15
    30 0.5 0 16
    45 0.5 0 15
    60 0.5 0
    120  1 0
    Total 125 (100%) 2.5 (2%) 5 (4%) 75 (60%)
  • As can be seen from the results, two of the three experimental samples exhibited excellent self-repairing characteristics. Although leakage was observed in the third sample, it significantly outperformed the control. (It should be noted that the third sample was tested immediately after preparation.) In the case of the first two samples, they were allowed to sit overnight before testing was commenced. This behavior could be a result of an interaction between the WSP material and residual solvents from the bonding adhesive and has been observed with other samples tested immediately after preparation.
  • EXAMPLE 4
  • In order to examine the reversibility of the system, the samples were placed in an oven at 100° C. to dry overnight and retested the next day. The testing procedure was identical to that described above. The results of the experiment are shown in Table 3.
  • TABLE 3
    Prototype Testing - Simulated Tear - Reversibility demonstration
    Time (min) Control 1 2 3
    Water through sample (ml)
    15 125 0 1 3
    30 0 0 0
    45 0 0 0.5
    60 0 0.5 0
    120  0 0 0
    Total 125 (100%) 0 (0%) 1.5 (1.2%) 3.5 (2.8%)
  • The results demonstrate the reversibility of the system. Additionally, the self repairing ability of the third sample improved dramatically. The results suggest that if there is an interaction between residual solvent from the bonding adhesive and the WSP material, it does not permanently affect the self repairing characteristics of the system after the system has completely dried.
  • EXAMPLE 5
  • In order to test the ability of the system to repair a cut in the membrane, a 2-inch cut was made to the membrane system. The test assembly was prepared and tested as previously described. The results of the simulated cut damage are reported in Table 4.
  • TABLE 4
    Prototype testing - Simulated cut
    Time (min) Control 1 2 3
    Water through sample (ml)
    15 125 0 3 0
    30 0 0.5 0.5
    45 0 0 0
    60 0 0.5 0
    120  0 0 0
    Total 125 (100%) 0 (0%) 3.5 (1.2%)  .5 (0.4%)
  • As the results indicate, the system is capable of self-repair when subjected to damage of this type. The reversibility of the system was also investigated. The samples were dried as before, and tested the next day. The results are shown in Table 5.
  • TABLE 5
    Prototype Testing - Simulated Cut - Reversibility demonstration
    Time (min) Control 1 2 3
    Water through sample (ml)
    15 125  8 0 0
    30  3 0 0
    45  0.5 0 0
    60  2 0 0
    120   0.5 0 0
    Total 125 (100%) 14 (11.2%) 0 (0%) 0 (0%)
  • One experimental sample exhibited minor leakage. Initial leakage within the first few minutes is expected when the rate of water flowing into the system is greater than the rate of the WSP particles absorbing water and swelling to fill and repair the membrane damage. As can be seen from the results, the volume of water through the system decreased over time. The other two samples were observed to completely self-repair.
  • EXAMPLE 6
  • In order to determine the effects of heat aging on the ability to self-repair, samples were prepared and attached to insulation as previously described. The samples were aged for 14 days at 70° C. After 14 days the samples were damaged using the simulated tear technique, and then tested. After testing, the samples were returned to the 70° C. oven and tested weekly. The results of this study are summarized in Table 6 and Table 6A.
  • TABLE 6
    Prototype Testing - Aging Studies - Simulated tear
    Time (min) Control 1 2 3
    Water through sample (ml)
    15 125 0 1 3
    30 0 0 0
    45 0 0 0.5
    60 0 0.5 0
    120  0 0 0
    Total 125 (100%) 0 (0%) 1.5 (1.2%) 3.5 (2.8%)
  • TABLE 6A
    Prototype Testing - Simulated Tear - Aging Studies
    Control
    Time 2-5 weeks 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks
    (min) aging aging aging aging aging aging
    Water through sample (ml)
    15 125 0 0 0 0 0
    30 0 0 0 0 0
    45 0 0 0 0 0
    60 0 0 0 0 0
    120  0 0 0 0 0
    Total 125 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
  • The results clearly indicate that heat aging at modest temperatures does not impact the ability of the system to self-repair (attempts to age the samples at higher temperatures resulted in a degradation of the polyisocyanurate insulation and bonding adhesive). Additionally, the results also demonstrate the reversibility of the system. In this case, five cycles of swelling/drying/swelling were demonstrated.
  • EXAMPLE 7
  • Aging studies were also performed on samples with a simulated cut. Samples were aged, assembled and tested as described above. The results of this study are shown in Table 7. As with the simulated tear aging tests, the results indicate that aging has no effect on the ability of the system to self-repair and regenerate after drying.
  • TABLE 7
    Prototype Testing - Aging Studies - Simulated cut
    Control
    Time 2-6 weeks 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks
    (min) aging aging aging aging aging aging
    Water through sample (ml)
    15 125 0 0 0 0 0
    30 0 0 0 0 0
    45 0 0 0 0 0
    60 0 0 0 0 0
    120  0 0 0 0 0
    Total 125 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
  • EXAMPLE 8
  • To study the effect of ponding water on the system, an experimental sample was prepared with a simulated tear as described above. Water (about 150 ml, 2 inches volume) was introduced into the system, and the membrane was allowed to self-repair. The test was checked daily for any signs of leakage. Water was periodically added to the system in order to replace that lost to evaporation. The system held 2 inches of water without leakage for a period of three weeks. Theoretically, the sample should only leak when the hydrostatic pressure of the water above the damage is sufficient enough to force the WSP particles from the damaged area. Preliminary results indicate the simulated cut system can hold in excess of 12 inches of water without leaking.
  • EXAMPLE 9
  • Ruptures in roofing material can occur during the installation of heavy equipment on a rooftop. In order to investigate the ability of the system to repair damage of this type, a membrane rupture was simulated by the use of a dynamic puncture device as described in ASTM D 5635. A 3,000 g weight was used to create an impact energy of 15 J. The test assembly was prepared as previously described. The samples were aged for 14 days at 70° C. before being subjected to damage. The samples were tested as previously described. The amount of water that leaked through the system was recorded after two hours. The samples were dried at 70° C. overnight and retested. This cycle was repeated for 12 testing periods in order to demonstrate the reversibility of the system. The results of the simulated rupture are reported in Table 8.
  • TABLE 8
    Cycle Control Sample 1 Sample 2 Sample 3
    Water through sample (ml)
    Original 79 2 3 2
    2 125 5 2 4
    3 87 39 3 3
    4 125 86 3 3
    5 102 10 3 4
    6 102 2 3 4
    7 125 3 4 3
    8 125 3 3 2
    9 125 1 2 4
    10  125 3 3 3
    11  125 6 2 4
    12  125 3 2 3
  • As shown in the above examples, the present invention provides a self repairing roofing membrane that provides long term repairs of minor tears in a membrane structure. This will substantially reduce the risk of water damage caused by such tears and reduce and/or eliminate the need for repair of the tear. Further, many of the tears should be visible. This will allow for a secondary repair or patch over the tear.
  • This has been a description of the present invention along with the preferred method of practicing the invention. However, the invention itself should only be defined by the appended claims, wherein we claim:

Claims (13)

1. A roof structure comprising a roof surface covered with a water impervious membrane said membrane having an exposed waterproof layer and an inner layer including a water swellable polymer.
2. The roof structure claimed in claim 1 wherein said inner layer comprises a web impregnated with said water swellable polymer.
3. The roof structure claimed in claim 1 wherein said inner layer is adjacent said roof surface.
4. The roof structure claimed in claim 1 wherein said inner layer is located between upper and lower waterproof membrane layers.
5. The roof structure claimed in claim 4 wherein said upper waterproof membrane layer comprises a thin layer of a polymer selected from the group consisting of polyethylene and polypropylene, polyvinyl chloride and modified bitumen.
6. The roof structure claimed in claim 4 wherein said waterproof membrane layers comprise ethylene propylene diene monomer rubber.
7. The roof structure claimed in claim 1 wherein said inner layer is adhered to a bottom surface of said waterproof layer.
8. The roof structure claimed in claim 1 wherein said waterproof layer is selected from the group consisting of ethylene propylene diene rubber, polyvinyl chloride, thermoplastic olefin and modified bitumen.
9. A water impervious composite roofing membrane having an upper water impervious layer and an inner layer comprising a water swellable polymer layer.
10. The roofing membrane claimed in claim 9 wherein said water swellable polymer layer includes a nonwoven web impregnated with a water swellable polymer.
11. The roofing membrane claimed in claim 10 wherein said water swellable polymer layer is adhered to a bottom surface of said waterproof membrane.
12. A built up roof structure having at least one layer of roofing felt and an outer water impervious coating
and further including a water swellable polymer layer between a roof deck and said water impervious coat.
13. The built up roof claimed in claim 12 wherein said water swellable polymer layer comprises water swellable polymer bound to a nonwoven web.
US11/874,828 2007-10-18 2007-10-18 Self repairing roof membrane Abandoned US20090100775A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/874,828 US20090100775A1 (en) 2007-10-18 2007-10-18 Self repairing roof membrane
CA002640911A CA2640911A1 (en) 2007-10-18 2008-10-10 Self repairing roof membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/874,828 US20090100775A1 (en) 2007-10-18 2007-10-18 Self repairing roof membrane

Publications (1)

Publication Number Publication Date
US20090100775A1 true US20090100775A1 (en) 2009-04-23

Family

ID=40560125

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/874,828 Abandoned US20090100775A1 (en) 2007-10-18 2007-10-18 Self repairing roof membrane

Country Status (2)

Country Link
US (1) US20090100775A1 (en)
CA (1) CA2640911A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248959A1 (en) * 2009-05-05 2010-11-10 Adrian Blödt Device for liquid-tight covering a building, method for producing a liquid-tight cover and fluid-absorbent element
GB2482006A (en) * 2010-07-14 2012-01-18 Geoffrey Fleet Sealing or tracing a roof leak
US20140154449A1 (en) * 2012-12-05 2014-06-05 Johns Manville White and black ply laminate
US20150040503A1 (en) * 2013-08-09 2015-02-12 Firestone Building Products Co, Llc Roofing system and method for preparing the same
CN106183260A (en) * 2016-07-08 2016-12-07 袁洪山 There is concrete protection and reparation polymer compound film and the application of self-repair function
US20170218997A1 (en) * 2015-12-10 2017-08-03 Thomas R. Mathieson Waterproof nail and screw with enlarged head and protective gasket
US9909042B2 (en) * 2010-07-29 2018-03-06 Adco Products, Llc Two-part foamable adhesive with renewable content for fleece back membranes
US20180079186A1 (en) * 2015-03-17 2018-03-22 Volteco S.P.A. Self-repairing and self-sealing waterproof membrane, for insulating built structures subjected to hydrostatic pressure
US10151106B2 (en) 2011-06-03 2018-12-11 Hercutech, Inc. Insulated concrete composite wall system
US10214906B2 (en) * 2014-07-09 2019-02-26 Thomas L. Kelly Reverse ballasted roof system
US10252486B2 (en) * 2015-02-05 2019-04-09 B & Jfm Llc Utility mat
EP3751072A1 (en) * 2019-06-13 2020-12-16 K.L. Kaschier- und Laminier GmbH Flat material of a roof construction
CN112524389A (en) * 2020-11-17 2021-03-19 华霆(合肥)动力技术有限公司 Liquid cooling pipeline, liquid leakage detection device, liquid cooling pipeline system and battery pack
CN113668778A (en) * 2021-07-21 2021-11-19 安徽朗凯奇建材有限公司 Building roof waterproof layer and construction method thereof

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726754A (en) * 1971-09-08 1973-04-10 Millmaster Onyx Corp Laminated roof construction and method of making same
US4092376A (en) * 1974-02-19 1978-05-30 Avery Products Corporation Anaerobic pressure sensitive adhesive composition
US4172066A (en) * 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels
US4297410A (en) * 1978-10-12 1981-10-27 Kao Soap Co., Ltd. Absorbent material
US4392908A (en) * 1980-01-25 1983-07-12 Lever Brothers Company Process for making absorbent articles
US4565468A (en) * 1983-10-24 1986-01-21 Crawford Leslie A Moisture impervient barrier and method for making same
US4787780A (en) * 1982-11-22 1988-11-29 American Colloid Company Method of waterproofing with a self-healing bentonite sheet material composite article
US4810573A (en) * 1984-11-29 1989-03-07 American Colloid Company Self-healing bentonite sheet material composite article
US4837077A (en) * 1984-12-21 1989-06-06 Intissel Hydroexpansible composite material, the preparation thereof and a composition for its implementation as well as the uses thereof
US5049493A (en) * 1987-10-23 1991-09-17 California Institute Of Technology Enhancement of cell growth by expression of a cloned hemoglobin gene
US5059486A (en) * 1989-06-23 1991-10-22 Rochester Medical Devices, Inc. Self-healing rubber article and method
US5218011A (en) * 1986-03-26 1993-06-08 Waterguard Industries, Inc. Composition for protecting the contents of an enclosed space from damage by invasive water
US5306867A (en) * 1992-08-31 1994-04-26 At&T Bell Laboratories Cables which include waterblocking provisions
US5496615A (en) * 1991-03-01 1996-03-05 W. R. Grace & Co.-Conn. Waterproofing membrane
US5502268A (en) * 1990-10-22 1996-03-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of The Environment Method for sealing of a mass of waste
US5642452A (en) * 1995-02-21 1997-06-24 Sumitomo Electric Lightwave Corp. Water-blocked optical fiber communications cable
US5817974A (en) * 1993-09-06 1998-10-06 Lantor Bv Cable wrapping
US5922445A (en) * 1992-05-07 1999-07-13 Asahi Kasei Kogyo Kabushiki Kaisha Composite material and process for production of same
US5925461A (en) * 1994-06-02 1999-07-20 Neptco, Incorporated Water blocking composites and their use in cable manufacture
US5981030A (en) * 1996-09-26 1999-11-09 Famos Gmbh Roofing membrane
US6184473B1 (en) * 1999-01-11 2001-02-06 Southwire Company Electrical cable having a self-sealing agent and method for preventing water from contacting the conductor
US6190689B1 (en) * 1994-05-13 2001-02-20 Lts Lohmann Therapie-Systeme Gmbh Hydrophilic pressure sensitive hot-melt adhesives
US6284367B1 (en) * 1996-11-14 2001-09-04 Neptco, Inc. Process for the preparation of nonwoven water blocking tapes and their use in cable manufacture
US6348236B1 (en) * 1996-08-23 2002-02-19 Neptco, Inc. Process for the preparation of water blocking tapes and their use in cable manufacture
US6359231B2 (en) * 1999-01-11 2002-03-19 Southwire Company, A Delaware Corporation Electrical cable having a self-sealing agent and method for preventing water from contacting the conductor
US6455769B1 (en) * 1997-12-22 2002-09-24 Pirelli Cavi E Sistemi S.P.A. Electrical cable having a semiconductive water-blocking expanded layer
US6486285B2 (en) * 2000-01-24 2002-11-26 Kuraray Co., Ltd. Water-swellable polymer gel and process for preparing the same
US6544909B1 (en) * 2000-06-09 2003-04-08 Building Materials Investment Corporation Single ply reinforced roofing membrane
US6573456B2 (en) * 1999-01-11 2003-06-03 Southwire Company Self-sealing electrical cable having a finned inner layer
US6664476B2 (en) * 1998-03-04 2003-12-16 Pirelli Cavi E Sistemi S.P.A. Electrical cable with self-repairing protection
US6864194B2 (en) * 1999-06-24 2005-03-08 Johns Manville International, Inc. Reinforced membranes for roofing and other applications
US6864195B2 (en) * 2002-08-15 2005-03-08 Bfs Diversified Products, Llc Heat weldable roofing membrane
US6899776B2 (en) * 2003-05-16 2005-05-31 Neptco Incorporated Water blocking cable tape and methods for making same
US7022179B1 (en) * 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
US7049000B2 (en) * 2003-08-06 2006-05-23 The Procter & Gamble Company Water-swellable material comprising coated water-swellable polymers
US20080104917A1 (en) * 2006-11-02 2008-05-08 Whelan Brian J Self-adhering waterproofing membrane
US7618700B2 (en) * 2002-10-08 2009-11-17 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Film-bitumen combination
US7833599B1 (en) * 1998-11-06 2010-11-16 4P Folie Forchheim Zweigniederlassung Der Huhtamaki Van Leer Deutschland Gmbh & Co. Kg Method for producing a multilayer composite, and a composite produced in such a manner

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726754A (en) * 1971-09-08 1973-04-10 Millmaster Onyx Corp Laminated roof construction and method of making same
US4092376A (en) * 1974-02-19 1978-05-30 Avery Products Corporation Anaerobic pressure sensitive adhesive composition
US4172066A (en) * 1974-06-21 1979-10-23 The Dow Chemical Company Cross-linked, water-swellable polymer microgels
US4297410A (en) * 1978-10-12 1981-10-27 Kao Soap Co., Ltd. Absorbent material
US4392908A (en) * 1980-01-25 1983-07-12 Lever Brothers Company Process for making absorbent articles
US4787780A (en) * 1982-11-22 1988-11-29 American Colloid Company Method of waterproofing with a self-healing bentonite sheet material composite article
US4565468A (en) * 1983-10-24 1986-01-21 Crawford Leslie A Moisture impervient barrier and method for making same
US4810573A (en) * 1984-11-29 1989-03-07 American Colloid Company Self-healing bentonite sheet material composite article
US4837077A (en) * 1984-12-21 1989-06-06 Intissel Hydroexpansible composite material, the preparation thereof and a composition for its implementation as well as the uses thereof
US5218011A (en) * 1986-03-26 1993-06-08 Waterguard Industries, Inc. Composition for protecting the contents of an enclosed space from damage by invasive water
US5049493A (en) * 1987-10-23 1991-09-17 California Institute Of Technology Enhancement of cell growth by expression of a cloned hemoglobin gene
US5059486A (en) * 1989-06-23 1991-10-22 Rochester Medical Devices, Inc. Self-healing rubber article and method
US7022179B1 (en) * 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
US5502268A (en) * 1990-10-22 1996-03-26 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of The Environment Method for sealing of a mass of waste
US5496615A (en) * 1991-03-01 1996-03-05 W. R. Grace & Co.-Conn. Waterproofing membrane
US5922445A (en) * 1992-05-07 1999-07-13 Asahi Kasei Kogyo Kabushiki Kaisha Composite material and process for production of same
US5306867A (en) * 1992-08-31 1994-04-26 At&T Bell Laboratories Cables which include waterblocking provisions
US5817974A (en) * 1993-09-06 1998-10-06 Lantor Bv Cable wrapping
US6190689B1 (en) * 1994-05-13 2001-02-20 Lts Lohmann Therapie-Systeme Gmbh Hydrophilic pressure sensitive hot-melt adhesives
US5925461A (en) * 1994-06-02 1999-07-20 Neptco, Incorporated Water blocking composites and their use in cable manufacture
US5642452A (en) * 1995-02-21 1997-06-24 Sumitomo Electric Lightwave Corp. Water-blocked optical fiber communications cable
US6348236B1 (en) * 1996-08-23 2002-02-19 Neptco, Inc. Process for the preparation of water blocking tapes and their use in cable manufacture
US5981030A (en) * 1996-09-26 1999-11-09 Famos Gmbh Roofing membrane
US6284367B1 (en) * 1996-11-14 2001-09-04 Neptco, Inc. Process for the preparation of nonwoven water blocking tapes and their use in cable manufacture
US6455769B1 (en) * 1997-12-22 2002-09-24 Pirelli Cavi E Sistemi S.P.A. Electrical cable having a semiconductive water-blocking expanded layer
US6664476B2 (en) * 1998-03-04 2003-12-16 Pirelli Cavi E Sistemi S.P.A. Electrical cable with self-repairing protection
US7833599B1 (en) * 1998-11-06 2010-11-16 4P Folie Forchheim Zweigniederlassung Der Huhtamaki Van Leer Deutschland Gmbh & Co. Kg Method for producing a multilayer composite, and a composite produced in such a manner
US6573456B2 (en) * 1999-01-11 2003-06-03 Southwire Company Self-sealing electrical cable having a finned inner layer
US6184473B1 (en) * 1999-01-11 2001-02-06 Southwire Company Electrical cable having a self-sealing agent and method for preventing water from contacting the conductor
US6359231B2 (en) * 1999-01-11 2002-03-19 Southwire Company, A Delaware Corporation Electrical cable having a self-sealing agent and method for preventing water from contacting the conductor
US6864194B2 (en) * 1999-06-24 2005-03-08 Johns Manville International, Inc. Reinforced membranes for roofing and other applications
US6486285B2 (en) * 2000-01-24 2002-11-26 Kuraray Co., Ltd. Water-swellable polymer gel and process for preparing the same
US6544909B1 (en) * 2000-06-09 2003-04-08 Building Materials Investment Corporation Single ply reinforced roofing membrane
US6864195B2 (en) * 2002-08-15 2005-03-08 Bfs Diversified Products, Llc Heat weldable roofing membrane
US7618700B2 (en) * 2002-10-08 2009-11-17 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Film-bitumen combination
US6899776B2 (en) * 2003-05-16 2005-05-31 Neptco Incorporated Water blocking cable tape and methods for making same
US7049000B2 (en) * 2003-08-06 2006-05-23 The Procter & Gamble Company Water-swellable material comprising coated water-swellable polymers
US20080104917A1 (en) * 2006-11-02 2008-05-08 Whelan Brian J Self-adhering waterproofing membrane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248959A1 (en) * 2009-05-05 2010-11-10 Adrian Blödt Device for liquid-tight covering a building, method for producing a liquid-tight cover and fluid-absorbent element
GB2482006A (en) * 2010-07-14 2012-01-18 Geoffrey Fleet Sealing or tracing a roof leak
US9909042B2 (en) * 2010-07-29 2018-03-06 Adco Products, Llc Two-part foamable adhesive with renewable content for fleece back membranes
US10151106B2 (en) 2011-06-03 2018-12-11 Hercutech, Inc. Insulated concrete composite wall system
US20140154449A1 (en) * 2012-12-05 2014-06-05 Johns Manville White and black ply laminate
US10081945B2 (en) * 2012-12-05 2018-09-25 Johns Manville White and black ply laminate
US20150040503A1 (en) * 2013-08-09 2015-02-12 Firestone Building Products Co, Llc Roofing system and method for preparing the same
US10626616B2 (en) 2014-07-09 2020-04-21 Thomas L. Kelly Reverse ballasted roof system
US10214906B2 (en) * 2014-07-09 2019-02-26 Thomas L. Kelly Reverse ballasted roof system
US10252486B2 (en) * 2015-02-05 2019-04-09 B & Jfm Llc Utility mat
US20180079186A1 (en) * 2015-03-17 2018-03-22 Volteco S.P.A. Self-repairing and self-sealing waterproof membrane, for insulating built structures subjected to hydrostatic pressure
US11007755B2 (en) * 2015-03-17 2021-05-18 Volteco S.P.A. Self-repairing and self-sealing waterproof membrane, for insulating built structures subjected to hydrostatic pressure
US10138919B2 (en) * 2015-12-10 2018-11-27 Thomas R. Mathieson Waterproof nail and screw with enlarged head and protective gasket
US20170218997A1 (en) * 2015-12-10 2017-08-03 Thomas R. Mathieson Waterproof nail and screw with enlarged head and protective gasket
CN106183260A (en) * 2016-07-08 2016-12-07 袁洪山 There is concrete protection and reparation polymer compound film and the application of self-repair function
EP3751072A1 (en) * 2019-06-13 2020-12-16 K.L. Kaschier- und Laminier GmbH Flat material of a roof construction
CN112524389A (en) * 2020-11-17 2021-03-19 华霆(合肥)动力技术有限公司 Liquid cooling pipeline, liquid leakage detection device, liquid cooling pipeline system and battery pack
CN113668778A (en) * 2021-07-21 2021-11-19 安徽朗凯奇建材有限公司 Building roof waterproof layer and construction method thereof

Also Published As

Publication number Publication date
CA2640911A1 (en) 2009-04-18

Similar Documents

Publication Publication Date Title
US20090100775A1 (en) Self repairing roof membrane
AU756181B2 (en) Sealing sheet assembly for construction surfaces and methods of making and applying same
US8793862B2 (en) Water-tight membrane
US6479117B1 (en) Combined waterproofing sheet and protection course membrane
JP4716981B2 (en) Improved thermoplastic single layer protective coating
CN112313074A (en) Self-adhesive sealing device with adhesive sealing layer
ES2908402T3 (en) Adhesive composition and use thereof to provide self-healing adhered roofing systems
US4153748A (en) Weather-resistant vulcanizable covering
KR20090010907U (en) waterproof layer and waterproof method using a self-adhesion type composite sheet
KR101926735B1 (en) Multiple complex Sheet Membrane Waterproofing Construction Method for using those methods and manufacturer of the Sheet Membrane Waterproofing System
KR101431380B1 (en) Triple composite waterproofing method applied loose laying joint type
KR102280071B1 (en) Waterproof sheet for composite waterproofing
US20110000159A1 (en) Hail-resistant roofing membrane and method for making same
KR100949548B1 (en) Waterproofing method using pvc adiabatic waterproof sheet
WO2010070466A1 (en) Waterproof lamination roof underlay with nail-hole sealing property
JP6115852B2 (en) Roofing material and manufacturing method thereof
KR200455222Y1 (en) Composite waterproof sheet and waterproof structure using same
JP2007223046A (en) Moisture permeating waterproof sheet for building material
CA3038933A1 (en) Heavy glass mat impact resistant roofing
CN212219519U (en) Sound-insulation waterproof coiled material
JP2002316373A (en) Waterproof sheet for construction
US20220290434A1 (en) Roofing underlayment
KR101350666B1 (en) Waterproof structure same
RU2753045C1 (en) Insulation material
Delgado et al. Characteristics of membranes and insulations used for low-slope roofs

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARLISLE INTANGIBLE COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRIAL, THIERRY TIMOTHY;REEL/FRAME:019983/0895

Effective date: 20071012

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION