US20090156751A1 - Aromatic Organosulfur Functionalized 1,4-cis Polybutadiene - Google Patents

Aromatic Organosulfur Functionalized 1,4-cis Polybutadiene Download PDF

Info

Publication number
US20090156751A1
US20090156751A1 US12/254,505 US25450508A US2009156751A1 US 20090156751 A1 US20090156751 A1 US 20090156751A1 US 25450508 A US25450508 A US 25450508A US 2009156751 A1 US2009156751 A1 US 2009156751A1
Authority
US
United States
Prior art keywords
compound
weight
set forth
polybutadiene
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/254,505
Other versions
US8198378B2 (en
Inventor
Gwang Hoon Kwag
Pil Sung Kim
Seung Hwon Lee
Hyung Kyu Choi
Hyun Jin Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumho Petrochemical Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KOREA KUMHO PETROCHEMICAL CO., LTD. reassignment KOREA KUMHO PETROCHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, HYUNG KYU, KIM, HYUN JIN, KIM, PIL SUNG, KWAG, GWANG HOON, LEE, SEUNG HWON
Publication of US20090156751A1 publication Critical patent/US20090156751A1/en
Application granted granted Critical
Publication of US8198378B2 publication Critical patent/US8198378B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups

Definitions

  • the present invention relates to a preparation of 1,4-cis polybutadiene chemically functionalized by an aromatic organosulfur compound molecule. More specifically, the organosulfur functionalized 1,4-cis polybutadiene is obtained by first preparing 1,4-cis polybutadiene using a specific catalyst and reacting the resultant polybutadiene polymer with an aromatic organosulfur compound alone or with an aromatic organosulfur compound and an isocyanate compound to form a chemical bond.
  • the aromatic organosulfur functionalized 1,4-cis polybutadiene has narrow molecular weight distribution and is without an ultrahigh molecular weight region. Therefore, it has a uniform crosslinking density and, when used for a rubber composition, it improves blending processability, elasticity and mechanical properties.
  • 1,4-cis polybutadiene using a rare earth element are disclosed in European Patent Nos. 11,184 B1 and 652,240 and U.S. Pat. Nos. 4,260,707 and 5,017,539.
  • 1,4-cis polybutadiene is prepared in the presence of a nonpolar solvent by adding a neodymium carboxylate compound, an alkylaluminum compound and a Lewis acid.
  • Examples of modifying the terminal groups of polybutadiene, such as epoxy, siloxane, isocyanate, etc., utilizing the living property of neodymium catalyst include WO 02/36615, European Patent Nos. 713 885 and 267 675 and U.S. Pat. No. 6,624,256.
  • European Patent No. 386 808 B1 a catalyst comprising a neodymium carboxylate compound, an alkylaluminum compound and a halogen containing compound is utilized to polymerize 1,4-cis polybutadiene in a nonpolar solvent.
  • a trichlorophosphine compound (PCl 3 ) is added to improve processability by reducing low-temperature flowability.
  • Mooney viscosity increases remarkably, depending on the amount of PCl 3 .
  • Polybutadiene prepared using a catalyst comprising a rare earth metal such as neodymium has superior physical properties because of its linear molecular structure. However, it has a storage problem because of cold flow.
  • U.S. Pat. No. 5,557,784 presents a method for controlling cold flow.
  • 1,4-cis polybutadiene is prepared in a nonpolar solvent using a catalyst comprising a neodymium carboxylate compound, an alkylaluminum compound and a halogen containing compound. Then, after stopping the reaction using a reaction terminator and an antioxidant, sulfur chloride is added after removing unreacted 1,3-butadiene in order to reduce the odor caused by the addition of sulfur chloride.
  • U.S. Pat. Nos. 6,013,746 and 6,562,917 disclose a method for preparing 1,4-cis-polybutadiene in a nonpolar solvent using a catalyst comprising (1) a nickel carboxylate compound, (2) a fluorine compound and (3) an alkylaluminum compound.
  • U.S. Pat. No. 3,725,492 discloses a method of preparing 1,4-cis-polybutadiene having a very small molecular weight from polymerization of 1,3-butadiene using a catalyst comprising a nickel compound, a halogen compound and an organoaluminum compound.
  • a catalyst comprising a nickel compound, a halogen compound and an organoaluminum compound.
  • nickel carboxylate a polymerization terminator comprising an inorganic base and an amine compound or carboxylic acid is used to prevent gel-formation during polymerization of butadiene using a catalyst comprising a fluoroboron compound and an organometal compound of alkali metal.
  • Preparation of polybutadiene with high 1,4-cis content using cobalt carboxylate for example, using a catalyst comprising (1) a cobalt carboxylate compound and (2) an alkylaluminum compound, in a nonpolar solvent is disclosed in the followings.
  • U.S. Pat. Nos. 4,182,814, 5,397,851, 5,733,835 and 5,905,125 present a method of contacting butadiene and a catalyst in liquid phase.
  • a cocatalyst comprising an organometal compound, water, etc.
  • 1,4-Cis polybutadiene can also be prepared in a nonpolar solvent by reacting butadiene with an alkali metal catalyst.
  • polybutadiene with a cis content of 30% or higher is attained in general, although the cis content is affected by additives.
  • U.S. Pat. Nos. 7,288,612 and 6,984,706 disclose methods of polymerizing butadiene in liquid phase by contacting with an alkali metal catalyst.
  • an aromatic organosulfur compound is used to reduce rigidity and viscosity of natural rubber and synthetic butadiene-styrene rubber in order to provide better workability.
  • a halogenated sulfur compound, etc. are used as the aromatic organosulfur compound.
  • aromatic organosulfur compounds including the followings are presented: zinc bis(pentachlorothiophenol), fluorothiophenol, chlorothiophenol, bromothiophenol, iodothiophenol, difluorothiophenol, dichlorothiophenol, dibromothiophenol, diiodothiophenol, trifluorothiophenol, trichlorothiophenol, tribromothiophenol, triiodothiophenol, tetrafluorothiophenol, tetrachlorothiophenol, tetrabromothiophenol, tetraiodothiophenol, pentafluorothiophenol, pentachlorothiophenol, pentabromothiophenol, pentaiodothiophenol, bis(fluorophenyl)disulfide, bis(chlorophenyl)disulfide, bis(bromopheny
  • an aromatic organosulfur compound stabilizes polymer radicals formed by the cutting of polymer chains, thereby preventing reassembly, reducing molecular weight of the polymer, improving uniform distribution and blending, and increasing crosslinking density.
  • the present invention aims at maximizing the effect of the aromatic organosulfur compound by using polybutadiene in which aromatic organosulfur compounds are bound to the polymer chain at the molecular level. At the same time, the present invention aims at reducing polymer portion of the polybutadiene and narrowing molecular weight distribution, thereby improving processability and physical properties.
  • the present invention solves this problem through “molecular-level design” and maximizes the effect of aromatic organosulfur compound and physical properties of polymers.
  • the present invention provides aromatic organosulfur functionalized 1,4-cis polybutadiene represented by the following Chemical Formula 1 or Chemical Formula 2:
  • the present invention provides a preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene comprising: a first step of polymerizing 1,3-butadiene or butadiene derivative in the presence of an alkali metal catalyst or a catalyst comprising 1) 1 mol of a rare earth element compound or a transition metal compound, 2) 1 to 10 molar equivalents of a halogen containing compound, and 3) 10 to 100 molar equivalents of an organoaluminum compound in a nonpolar solvent to prepare 1,4-cis polybutadiene; and a second step of polymerizing 100 parts by weight of the resultant 1,4-cis polybutadiene with 0.05 to 5 parts by weight of an aromatic organosulfur compound to prepare aromatic organosulfur functionalized 1,4-cis polybutadiene represented by Chemical Formula 1 or Chemical Formula 2.
  • the aromatic organosulfur functionalized 1,4-cis polybutadiene prepared in accordance with the present invention has low molecular weight distribution, no ultrahigh molecular weight region and uniform crosslinking density. Therefore, when used for rubber composition, it improves processability, elasticity and mechanical properties. Thus, it is expected to be applied usefully in natural and synthetic rubber.
  • FIG. 1 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 1 obtained using a laser scattering detector. Blue curve is for NdBR, and red curve is for PCTP—NdBR;
  • FIG. 2 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 1 obtained using a UV detector. Blue curve is for NdBR, and red curve is for PCTP—NdBR;
  • FIG. 4 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 7 obtained using a UV detector. Red curve is for NdBR, and blue curve is for TCTP-NdBR;
  • FIG. 6 shows IR spectrum of the aromatic organosulfur functionalized 1,4-cis polybutadiene (TCTP-NdBR) of the present invention prepared in Example 7 obtained in CS 2 solution.
  • 1,3-butadiene or butadiene derivative is polymerized in the presence of an alkali metal catalyst or a catalyst comprising 1) 1 mol of a rare earth element compound or a transition metal compound, 2) 1 to 10 molar equivalents of a halogen containing compound, and 3) 10 to 100 molar equivalents of an organoaluminum compound in a nonpolar solvent to prepare 1,4-cis polybutadiene.
  • the resultant 1,4-cis polybutadiene has a cis content of at least 30%, more specifically from 30 to 99%.
  • the catalyst used in the present invention is either an alkali metal catalyst or a catalyst comprising 1) a rare earth element compound or a transition metal compound, 2) a halogen containing compound, and 3) an organoaluminum compound.
  • the rare earth element catalyst comprises 1) a rare earth element compound, 2) a halogen containing compound, and 3) an organoaluminum compound
  • the transition metal catalyst comprises 1) a transition metal compound, 2) a halogen containing compound, and 3) an organoaluminum compound.
  • the alkali metal catalyst comprises an alkali metal catalyst alone. Polymerization having “living property” such as one using a rare earth element catalyst or an alkali metal catalyst may be carried out using an isocyanate compound represented by the following Chemical Formula 3:
  • R 1 is C 4 -C 100 aryl or alkyl, and n is an integer from 2 to 10.
  • the isocyanate compound may be selected from C 4 -C 100 alkyl triisocyanate, C 4 -C 100 alkyl tetra isocyanate, aromatic triisocyanate and aromatic tetraisocyanate compounds. Specifically, hexyl diisocyanate, octyl diisocyanate, methylene diphenyl diisocyanate, hexyl triisocyanate, octyl triisocyanate, dodecyl tetraisocyanate, methylene triphenyl triisocyanate, naphthalene 1,2,5,7-tetraisocyanate, naphthalene 1,3,7-triisocyanate, tris-(p-isocyanatephenyl)-thiophosphate, carbodiimide-isocyanate cyclic derivative compound, methylene diphenyl diisocyanate, polystyryl isocyanate, and the like may be used.
  • the isocyanate compound is used in an amount of 0.05 to 2 parts by weight based on neodymium-polybutadiene.
  • content is less than 0.05 part by weight, number of coupling may be insufficient.
  • Mooney viscosity may vary a lot. Hence, it is preferred that the above range be maintained.
  • the rare earth element compound or the transition metal compound may be a rare earth element salt or a transition metal salt of an organic acid or an inorganic acid.
  • An organic acid salt having superior solubility in organic solvent is preferred.
  • a carboxylate is more preferred.
  • the carboxylate may have C 8 -C 20 saturated, unsaturated, cyclic or linear structure. Specifically, octoate, naphthenate, versatate, stearate, etc. may be used.
  • the rare earth element carboxylate may be neodymium versatate, neodymium octoate, neodymium naphthenate, and the like.
  • the transition metal carboxylate may be nickel octoate, nickel naphthenate, cobalt octoate, cobalt naphthenate, and the like.
  • the halogen containing compound may be a Lewis acid that contains a halogen or a halogen compound that can easily withdraw a halogen, and may be one represented by the following Chemical Formula 4:
  • R 2 is hydrogen, C 1 -C 10 alkyl or C 5 -C 10 aryl
  • A is aluminum or boron
  • n is an integer from 1 to 3
  • m is an integer from 0 to 2
  • n+m 3.
  • the halogen containing compound may be diethylchloroaluminum, trifluoroboron compound, or the like.
  • the organoaluminum compound may be a compound represented by the following Chemical Formula 5. Specifically, it may be trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, diisobutylaluminum hydride, and the like.
  • R 3 is hydrogen, C 1 -C 10 alkyl or C 5 -C 10 aryl.
  • the organoaluminum compound is used as a component of the rare earth element catalyst in an amount of 2 to 100 molar equivalents, preferably 10 to 100 molar equivalents, based on 1 mol of the rare earth element compound. If the content is lower than 10 molar equivalents, reactivity may decrease. And, if it exceeds 100 molar equivalents, it will result in overreactions. Hence, it is preferred that the above range be maintained.
  • the transition metal catalyst it is used in an amount of 2 to 10 molar equivalents based on 1 mol of the transition metal compound. If the content is lower than 2 molar equivalents or exceeds 10 molar equivalents, reactivity may decrease. Hence, it is preferred that the above range be maintained.
  • the alkali metal catalyst may be a compound represented by the following Chemical Formula 6:
  • M is an alkali metal selected from lithium, sodium, potassium, rhodium or cesium; and R 4 is hydrogen C 1 -C 10 alkyl or C 5 -C 10 aryl.
  • the solvent used for the preparation of the catalyst may be one commonly used in the art and is not particularly limited.
  • a nonpolar solvent without reactivity with the catalyst such as aliphatic hydrocarbon, cycloaliphatic butane, benzene, ethylbenzene or xylene may be used.
  • one selected from pentane, hexane, isopentane, heptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, benzene, toluene, ethyl benzene and xylene may be used.
  • the preparation solvent is used after removing oxygen and water.
  • the nonpolar solvent is used in an amount of 3 to 10 parts by weight based on 1 part by weight of 1,3-butadiene or butadiene derivative.
  • the content is below 3 parts by weight, transfer of polymerization solution may be difficult. And, when it exceeds 10 parts by weight, reactivity may decrease. Hence, it is preferred that the above range be maintained.
  • the reactant butadiene or butadiene derivative may be added during aging of the catalyst. This not only maintains activity of the catalyst but also prevents precipitation and affects physical properties of rubber. At that time, it is used in an amount of 1 to 10 parts by weight based on the rare earth element or transition metal compound.
  • Catalyst aging may be carried out as follows. A rare earth element or transition metal compound catalyst solution including butadiene or butadiene derivative is added in a catalyst reactor under nitrogen atmosphere. Then, the halogen containing compound and the organoaluminum compound are added. The sequence of addition may be different depending on processing conditions. Also, it is possible to directly add into the reactor without the aging process. Aging temperature and aging time also affect the properties of the product. Preferably, aging time ranges from 5 minutes to 2 hours, and aging temperature ranges from ⁇ 30 to 60° C. The alkali metal catalyst does not require such an aging process.
  • the catalyst is used in an amount of 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 5 molar equivalent based on 100 g of 1,3-butadiene or butadiene derivative.
  • the content is below 1 ⁇ 10 ⁇ 5 molar equivalent, reaction occurs slowly. And, when it exceeds 1 ⁇ 10 ⁇ 3 molar equivalent, control of temperature or physical properties may be difficult due to excessive reaction. Hence, it is preferred that the above range be maintained.
  • the reactant 1,3-butadiene or butadiene derivative may be specifically 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, myrcene, or the like.
  • Polymerization is initiated under highly pure nitrogen atmosphere.
  • polymerization temperature is from ⁇ 20 to 100° C. and polymerization time is from 30 minutes to 3 hours. A yield of 70% or better can be attained.
  • 1,4-cis polybutadiene having a cis content of at least 30% and a molecular weight ranging from 50,000 to 2,000,000 is prepared.
  • 1,4-cis polybutadiene is reacted with 0.05 to 5 parts by weight of an aromatic organosulfur compound based on 100 parts by weight of the polybutadiene to prepare aromatic organosulfur functionalized 1,4-cis polybutadiene represented by Chemical Formula 1.
  • the aromatic organosulfur compound may be selected from fluorothiophenol, chlorothiophenol, bromothiophenol, iodothiophenol, difluorothiophenol, dichlorothiophenol, dibromothiophenol, diiodothiophenol, trifluorothiophenol, trichlorothiophenol, tribromothiophenol, triiodothiophenol, tetrafluorothiophenol, tetrachlorothiophenol, tetrabromothiophenol, tetraiodothiophenol, pentafluorothiophenol, pentachlorothiophenol, pentabromothiophenol, pentaiodothiophenol, fluorothiopyridine, chlorothiopyridine, bromothiopyridine, iodothiopyridine, difluorothiopyridine, dichlorothiopyridine, dibromothiopyridine, diiodo
  • the aromatic organosulfur compound is used alone, without an isocyanate compound.
  • a radical initiator may be further added to facilitate reaction.
  • the radical initiator may be selected from dicumyl peroxide, dibenzoyl peroxide, t-butyl peroxybenzoate, 1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane, and the like.
  • aromatic organosulfur functionalized 1,4-cis polybutadiene in which the aromatic organosulfur compound is covalently bonded at the end of 1,4-cis polybutadiene, is prepared. This can be confirmed through gel permeation chromatography.
  • heating, light radiation or radical initiator addition may be carried out in order to facilitate bonding of the aromatic organic compound with polybutadiene.
  • the thiol group of aromatic organosulfur compound reacts readily with the vinyl group and double bond of polybutadiene. The reaction can be identified from the disappearance of the thiol peak around 2600 to 2550 cm ⁇ 1 , and the degree of reaction can be confirmed through gel permeation chromatography using a UV detector.
  • Ziegler-Natta catalyst used in the polymerization was composed of neodymium versatate (1.0 weight % cyclohexane solution), diethylaluminum chloride (1.0 M cyclohexane solution), diisobutylaluminum hydride (15 weight % cyclohexane solution) and triisobutylaluminum (1.0 M cyclohexane solution).
  • Molar ratio of the catalysts was 1:3:4:20, and 1.0 ⁇ 10 ⁇ 4 mol of neodymium catalyst was used per 100 g of monomer.
  • reaction was terminated by adding polyoxyethylene phosphate (1.2 g) and ethanol (10 mL) as reaction terminator. Then, molecular analysis was carried out through gel permeation chromatography. The result is given in Table 1, FIG. 1 and FIG. 2 . IR spectrum observed in CS 2 solution is shown in FIG. 5 .
  • FIG. 1 shows gel permeation chromatograms observed using a laser scattering detector. Good sensitivity was attained because difference in molecular weight resulted in distinct scattering patterns.
  • Blue curve is for neodymium-polybutadiene (NdBR, Mw: 394000, molecular weight distribution: 3.77) obtained from polymerization of butadiene in the first step, and red curve is for aromatic compound substituted polybutadiene (PCTP—NdBR, Mw: 302000 molecular weight distribution: 3.03) obtained in the second step. It was confirmed that the ultrahigh molecular weight region decreased and, as a result, molecular weight distribution decreased greatly.
  • FIG. 2 shows gel chromatograms obtained from UV absorbance measured using a UV detector.
  • Polybutadiene shows smaller UV absorption peak, whereas aromatic organosulfur functionalized polybutadiene shows larger peak.
  • Blue curve is for NdBR, and red curve is for PCTP—NdBR. It was confirmed that the aromatic organosulfur was bound from high molecular weight range to low molecular weight range.
  • FIG. 5 shows IR spectrum of PCTP—NdBR prepared above obtained in CS 2 solution. The disappearance of the thiol peak (2600 to 2550 cm ⁇ 1 ) was confirmed.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding polymethylene isocyanate (1.5 g) dissolved in tetrahydrofuran (10 mL) and pentachlorothiophenol (1.5 g) dissolved in tetrahydrofuran (10 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding pentafluorothiophenol (1.5 g) dissolved in tetrahydrofuran (10 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding glycidyl pentachlorothiophenyl ether (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding dibenzamidodiphenyl disulfide (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL) and adding dicumyl peroxide (0.15 g) as radical initiator. Analysis result is given in Table 1.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding glycidyl pentafluorothiophenyl ether (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding tetrachlorothipyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1, FIG. 3 and FIG. 4 . IR spectrum observed in CS 2 solution is shown in FIG. 6 .
  • FIG. 3 shows gel chromatograms observed using a laser scattering detector. Good sensitivity was attained because difference in molecular weight resulted in distinct scattering patterns.
  • Blue curve is for neodymium-polybutadiene (NdBR, Mw: 351000, molecular weight distribution: 2.07) obtained from polymerization of butadiene in the first step, and red curve is for aromatic compound substituted polybutadiene (TCTP-NdBR, Mw: 302000 molecular weight distribution: 3.03) obtained in the second step. It was confirmed that the ultrahigh molecular weight region decreased and, as a result, molecular weight distribution decreased greatly.
  • FIG. 4 shows gel chromatograms obtained from UV absorbance measured using a UV detector.
  • Polybutadiene shows smaller UV absorption peak, whereas aromatic organosulfur functionalized polybutadiene shows larger peak.
  • Red curve is for NdBR
  • blue curve is for TCTP-NdBR. It was confirmed that the aromatic organosulfur was bound from high molecular weight range to low molecular weight range.
  • FIG. 6 shows IR spectrum of TCTP-NdBR prepared above obtained in CS 2 solution. The disappearance of the thiol peak (2600 to 2550 cm ⁇ 1 ) was confirmed.
  • Ziegler-Natta catalyst used in the polymerization was composed of nickel octoate (0.05 weight % toluene solution), trifluoroboron ethyl ether (1.5 weight % toluene solution) and triethylaluminum (0.8 weight % toluene solution), and 7.0 ⁇ 10 ⁇ 5 mol of nickel catalyst was used per 100 g of monomer.
  • reaction catalysts were aged by sufficiently blowing in nitrogen, sequentially adding nickel octoate, trifluoroboron ethyl ether and triethylaluminum with a molar ratio of 1:10:6 in a 100 mL round flask sealed with a rubber stopper, and carrying out aging at 20° C. for 1 hour.
  • Polymerization was carried out by sufficiently blowing in nitrogen in a 5 L pressure reactor, adding heptane, the Ziegler-Natta catalyst aged above and 300 g of butadiene monomer, and carrying out reaction at 60° C. for 2 hours. Part of the polymer solution (30 g) was taken and mass analysis was carried out through gel permeation chromatography (Mw: 358000, MWD: 4.57).
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 8, except for adding tetrachlorothiopyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 2.
  • Ziegler-Natta catalyst used in the polymerization was composed of cobalt octorate (0.15 mmol) and (C 2 H 5 ) 3 Al 2 Cl 3 (1.5 mmol), and 1.5 kg of toluene and 300 g of butadiene were used. Polymerization was carried out by sufficiently blowing in nitrogen in a 5-L pressure reactor, adding toluene, the aforesaid cobalt and aluminum catalysts and 300 g of butadiene monomer, and carrying out reaction at 60° C. for 2 hours. Part of the polymer solution (30 g) was taken and mass analysis was carried out through gel permeation chromatography (Mw: 371000, MWD: 3.82).
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 8, except for adding tetrachlorothiopyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 2.
  • Polymerization was terminated by adding a small amount of methanol to the polymerization solution in order to completely remove activity of the living polymer, and then adding 1 g of Irganox 1076 (Aldrich) and 1.5 g of tris(nonylphenol) as antioxidant.
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 12, except for adding tetrachlorothiopyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 2.
  • Solid rubber (30 g) was taken from each polymer, and prepared into two samples (thickness: 0.8 cm, area: 5 cm ⁇ 5 cm) using a roller. The samples were attached at the front and back of a rotor. After mounting the rotor in a rotary viscometer (Alpha Technologies, Mooney MV2000) and pre-heating at 100° C. for 1 minute, change of viscosity of the solid rubber after operation of the rotor was observed for 4 minutes. Mooney viscosity was obtained as ML 1+4 (100° C.) value.
  • Cis content was measured by the Morero method. Test sample was prepared by completely melting 40 mg of solid rubber in 5 mL of CS 2 . The rubber solution was put in KBr cells spaced by 1 mm, and absorbance was measured using an IR spectrometer (FTS-60A, Bio-Rad).
  • IR peaks to be monitored were cis absorption (AC) at 739 cm ⁇ 1 , vinyl absorption (AV) at 912 cm ⁇ 1 , and trans absorption (AT) at 966 cm ⁇ 1 . From the absorbance measurement, cis content can be calculated by the following equations.
  • V (0.3746 AV ⁇ 0.0070 AC ) ⁇ circle around (2) ⁇
  • Cis (%) C/ ( C+V+T ) ⁇ 100 ⁇ circle around (4) ⁇

Abstract

The present invention relates to a preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene comprising: polymerizing 1,3-butadiene or butadiene derivative in the presence of a specific catalyst in a nonpolar solvent to prepare 1,4-cis polybutadiene; and reacting the resultant polybutadiene with an aromatic organosulfur compound. Such prepared aromatic organosulfur functionalized 1,4-cis polybutadiene is without ultrahigh molecular weight region and, thus, has narrow molecular weight distribution.

Description

    TECHNICAL FIELD
  • The present invention relates to a preparation of 1,4-cis polybutadiene chemically functionalized by an aromatic organosulfur compound molecule. More specifically, the organosulfur functionalized 1,4-cis polybutadiene is obtained by first preparing 1,4-cis polybutadiene using a specific catalyst and reacting the resultant polybutadiene polymer with an aromatic organosulfur compound alone or with an aromatic organosulfur compound and an isocyanate compound to form a chemical bond. The aromatic organosulfur functionalized 1,4-cis polybutadiene has narrow molecular weight distribution and is without an ultrahigh molecular weight region. Therefore, it has a uniform crosslinking density and, when used for a rubber composition, it improves blending processability, elasticity and mechanical properties.
  • BACKGROUND ART
  • Various preparation methods of 1,4-cis polybutadiene are available.
  • Preparation methods of 1,4-cis polybutadiene using a rare earth element are disclosed in European Patent Nos. 11,184 B1 and 652,240 and U.S. Pat. Nos. 4,260,707 and 5,017,539. In these methods, 1,4-cis polybutadiene is prepared in the presence of a nonpolar solvent by adding a neodymium carboxylate compound, an alkylaluminum compound and a Lewis acid.
  • U.K. Patent No. 2,002,003 and U.S. Pat. No. 4,429,089 disclose a method of preparing 1,4-cis polybutadiene by adding AlR2X (R=hydrogen or alkyl, X=hydrogen, alkoxy or thioalkoxy), an alkylaluminum compound and a neodymium compound.
  • In U.S. Pat. No. 4,699,962, a catalyst prepared by reacting neodymium hydride, a chloride compound and an electron donor ligand and then adding an organoaluminum compound is used to prepare high 1,4-cis polybutadiene.
  • In European Patent No. 375,421 and U.S. Pat. No. 5,017,539, a neodymium compound, an organic halogen compound and an organoaluminum compound are aged at a temperature below 0° C. and high 1,4-cis polybutadiene is prepared as a result.
  • Examples of modifying the terminal groups of polybutadiene, such as epoxy, siloxane, isocyanate, etc., utilizing the living property of neodymium catalyst include WO 02/36615, European Patent Nos. 713 885 and 267 675 and U.S. Pat. No. 6,624,256. In European Patent No. 386 808 B1, a catalyst comprising a neodymium carboxylate compound, an alkylaluminum compound and a halogen containing compound is utilized to polymerize 1,4-cis polybutadiene in a nonpolar solvent. Then, a trichlorophosphine compound (PCl3) is added to improve processability by reducing low-temperature flowability. Here, Mooney viscosity increases remarkably, depending on the amount of PCl3.
  • In U.S. Pat. No. 6,255,416, a catalyst comprising Nd(versatate)3, methylaluminoxane (MAO), Al(iBu)2H, a metal halide and a Lewis base is used, and a tin compound and an isocyanate compound are used to control physical properties.
  • In U.S. Pat. No. 7,247,695, an example of preparing a polybutadiene-polyurethane copolymer using a neodymium polybutadiene and an isocyanate compound, etc., are disclosed.
  • Polybutadiene prepared using a catalyst comprising a rare earth metal such as neodymium has superior physical properties because of its linear molecular structure. However, it has a storage problem because of cold flow. To solve this problem, U.S. Pat. No. 5,557,784 presents a method for controlling cold flow. In this patent, 1,4-cis polybutadiene is prepared in a nonpolar solvent using a catalyst comprising a neodymium carboxylate compound, an alkylaluminum compound and a halogen containing compound. Then, after stopping the reaction using a reaction terminator and an antioxidant, sulfur chloride is added after removing unreacted 1,3-butadiene in order to reduce the odor caused by the addition of sulfur chloride.
  • As examples of preparation of 1,4-cis polybutadiene using nickel carboxylate, U.S. Pat. Nos. 6,013,746 and 6,562,917 disclose a method for preparing 1,4-cis-polybutadiene in a nonpolar solvent using a catalyst comprising (1) a nickel carboxylate compound, (2) a fluorine compound and (3) an alkylaluminum compound.
  • In a method disclosed in U.S. Pat. No. 3,170,905, a catalyst comprising at least one compound selected from nickel carboxylate and an organonickel complex compound, at least one compound selected from a fluoroboron compound and a complex thereof, and at least one compound selected from an organometal compound of a group II or III metal and an alkali metal is used.
  • U.S. Pat. No. 3,725,492 discloses a method of preparing 1,4-cis-polybutadiene having a very small molecular weight from polymerization of 1,3-butadiene using a catalyst comprising a nickel compound, a halogen compound and an organoaluminum compound. In U.S. Pat. No. 6,727,330, nickel carboxylate, a polymerization terminator comprising an inorganic base and an amine compound or carboxylic acid is used to prevent gel-formation during polymerization of butadiene using a catalyst comprising a fluoroboron compound and an organometal compound of alkali metal.
  • Preparation of polybutadiene with high 1,4-cis content using cobalt carboxylate, for example, using a catalyst comprising (1) a cobalt carboxylate compound and (2) an alkylaluminum compound, in a nonpolar solvent is disclosed in the followings. U.S. Pat. Nos. 4,182,814, 5,397,851, 5,733,835 and 5,905,125 present a method of contacting butadiene and a catalyst in liquid phase. Along with a cobalt carboxylate catalyst, a cocatalyst comprising an organometal compound, water, etc., is are used.
  • 1,4-Cis polybutadiene can also be prepared in a nonpolar solvent by reacting butadiene with an alkali metal catalyst. In this case, polybutadiene with a cis content of 30% or higher is attained in general, although the cis content is affected by additives. For example, U.S. Pat. Nos. 7,288,612 and 6,984,706 disclose methods of polymerizing butadiene in liquid phase by contacting with an alkali metal catalyst.
  • In U.S. Pat. No. 4,129,538, an aromatic organosulfur compound is used to reduce rigidity and viscosity of natural rubber and synthetic butadiene-styrene rubber in order to provide better workability. Here, a halogenated sulfur compound, etc., are used as the aromatic organosulfur compound. By mixing rubber and the aromatic organosulfur compound in an open mill, it is possible to improve processability by reducing Mooney viscosity and to reduce work time. Specifically, for the aromatic organosulfur compound, pentachlorothiophenol, xylyl mercaptan, tetrachlorobenzenedithiol, mercaptobenzothiazole, dibenzoyl disulfide, dibenzamidodiphenyl disulfide, dibenzothiazyl disulfide, pentachlorophenyl disulfide, zinc pentachlorothiophenol, zinc xylyl mercaptan, zinc dibenzamidodiphenyl disulfide, and the like are used.
  • In U.S. Pat. No. 7,157,514, aromatic organosulfur compounds including the followings are presented: zinc bis(pentachlorothiophenol), fluorothiophenol, chlorothiophenol, bromothiophenol, iodothiophenol, difluorothiophenol, dichlorothiophenol, dibromothiophenol, diiodothiophenol, trifluorothiophenol, trichlorothiophenol, tribromothiophenol, triiodothiophenol, tetrafluorothiophenol, tetrachlorothiophenol, tetrabromothiophenol, tetraiodothiophenol, pentafluorothiophenol, pentachlorothiophenol, pentabromothiophenol, pentaiodothiophenol, bis(fluorophenyl)disulfide, bis(chlorophenyl)disulfide, bis(bromophenyl)disulfide, bis(iodophenyl)disulfide, bis(2-chloro-5-iodo)disulfide, bis(2-chloro-5-bromophenyl)disulfide, bis(2-chloro-5-fluoro)disulfide, bis(trifluorophenyl)disulfide, bis(trichlorophenyl)disulfide, bis(tribromophenyl)disulfide, bis(triiodophenyl)disulfide, bis(tetrafluorophenyl)disulfide, bis(tetrachlorophenyl)disulfide, bis(tetrabromophenyl)disulfide, bis(tetraiodophenyl)disulfide, bis(pentafluorophenyl)disulfide, bis(pentachlorophenyl)disulfide, bis(pentabromophenyl)disulfide, bis(pentaiodophenyl)disulfide, bis(acetylphenyl)disulfide, bis(3-aminophenyl)disulfide, tris(2,3,5,6-tetrachlorophenyl)methane, tris(2,3,5,6-tetrachloro-4-nitrophenyl)methane, di(pentachlorophenyl)phosphine chloride and di(pentafluorophenyl)phosphine chloride.
  • As described above, an aromatic organosulfur compound stabilizes polymer radicals formed by the cutting of polymer chains, thereby preventing reassembly, reducing molecular weight of the polymer, improving uniform distribution and blending, and increasing crosslinking density.
  • Disclosure [Technical Problem]
  • Unlike the conventional methods in which an aromatic organosulfur compound is added during blending, the present invention aims at maximizing the effect of the aromatic organosulfur compound by using polybutadiene in which aromatic organosulfur compounds are bound to the polymer chain at the molecular level. At the same time, the present invention aims at reducing polymer portion of the polybutadiene and narrowing molecular weight distribution, thereby improving processability and physical properties.
  • When the aromatic organosulfur compound is added during blending, a sufficient time for mixing is required because of its poor compatibility with rubber. And, the resultant rubber surface may be coarse. The present invention solves this problem through “molecular-level design” and maximizes the effect of aromatic organosulfur compound and physical properties of polymers.
  • [Technical Solution]
  • In an aspect, the present invention provides aromatic organosulfur functionalized 1,4-cis polybutadiene represented by the following Chemical Formula 1 or Chemical Formula 2:
  • Figure US20090156751A1-20090618-C00001
  • where l, m, n and o respectively represent the number of repeating units of polybutadiene main chain, with l ranging from 30 to 99 weight %, m ranging from 0.05 to 5 weight %, n ranging from 0 to 50 weight %, o ranging from 0 to 50 weight %, and (l+m+n+o)=100 weight %, SAr represents an aromatic organosulfur compound, and R1 represents an isocyanate compound.
  • In another aspect, the present invention provides a preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene comprising: a first step of polymerizing 1,3-butadiene or butadiene derivative in the presence of an alkali metal catalyst or a catalyst comprising 1) 1 mol of a rare earth element compound or a transition metal compound, 2) 1 to 10 molar equivalents of a halogen containing compound, and 3) 10 to 100 molar equivalents of an organoaluminum compound in a nonpolar solvent to prepare 1,4-cis polybutadiene; and a second step of polymerizing 100 parts by weight of the resultant 1,4-cis polybutadiene with 0.05 to 5 parts by weight of an aromatic organosulfur compound to prepare aromatic organosulfur functionalized 1,4-cis polybutadiene represented by Chemical Formula 1 or Chemical Formula 2.
  • [Advantageous Effects]
  • As described in detail above, the aromatic organosulfur functionalized 1,4-cis polybutadiene prepared in accordance with the present invention has low molecular weight distribution, no ultrahigh molecular weight region and uniform crosslinking density. Therefore, when used for rubber composition, it improves processability, elasticity and mechanical properties. Thus, it is expected to be applied usefully in natural and synthetic rubber.
  • DESCRIPTION OF DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 1 obtained using a laser scattering detector. Blue curve is for NdBR, and red curve is for PCTP—NdBR;
  • FIG. 2 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 1 obtained using a UV detector. Blue curve is for NdBR, and red curve is for PCTP—NdBR;
  • FIG. 3 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 7 obtained using a laser scattering detector. Red curve is for NdBR, and blue curve is for TCTP-NdBR;
  • FIG. 4 shows gel permeation chromatograms of the aromatic organosulfur functionalized 1,4-cis polybutadiene of the present invention prepared in Example 7 obtained using a UV detector. Red curve is for NdBR, and blue curve is for TCTP-NdBR;
  • FIG. 5 shows IR spectrum of the aromatic organosulfur functionalized 1,4-cis polybutadiene (PCTP—NdBR) of the present invention prepared in Example 1 obtained in CS2 solution; and
  • FIG. 6 shows IR spectrum of the aromatic organosulfur functionalized 1,4-cis polybutadiene (TCTP-NdBR) of the present invention prepared in Example 7 obtained in CS2 solution.
  • BEST MODE
  • Hereunder is given a more detailed description of the preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene according to the present invention.
  • First, 1,3-butadiene or butadiene derivative is polymerized in the presence of an alkali metal catalyst or a catalyst comprising 1) 1 mol of a rare earth element compound or a transition metal compound, 2) 1 to 10 molar equivalents of a halogen containing compound, and 3) 10 to 100 molar equivalents of an organoaluminum compound in a nonpolar solvent to prepare 1,4-cis polybutadiene. The resultant 1,4-cis polybutadiene has a cis content of at least 30%, more specifically from 30 to 99%.
  • The catalyst used in the present invention is either an alkali metal catalyst or a catalyst comprising 1) a rare earth element compound or a transition metal compound, 2) a halogen containing compound, and 3) an organoaluminum compound. The rare earth element catalyst comprises 1) a rare earth element compound, 2) a halogen containing compound, and 3) an organoaluminum compound, and the transition metal catalyst comprises 1) a transition metal compound, 2) a halogen containing compound, and 3) an organoaluminum compound. The alkali metal catalyst comprises an alkali metal catalyst alone. Polymerization having “living property” such as one using a rare earth element catalyst or an alkali metal catalyst may be carried out using an isocyanate compound represented by the following Chemical Formula 3:

  • R1—(NCO)n   [Chemical Formula 3]
  • where R1 is C4-C100 aryl or alkyl, and n is an integer from 2 to 10.
  • The isocyanate compound may be selected from C4-C100 alkyl triisocyanate, C4-C100 alkyl tetra isocyanate, aromatic triisocyanate and aromatic tetraisocyanate compounds. Specifically, hexyl diisocyanate, octyl diisocyanate, methylene diphenyl diisocyanate, hexyl triisocyanate, octyl triisocyanate, dodecyl tetraisocyanate, methylene triphenyl triisocyanate, naphthalene 1,2,5,7-tetraisocyanate, naphthalene 1,3,7-triisocyanate, tris-(p-isocyanatephenyl)-thiophosphate, carbodiimide-isocyanate cyclic derivative compound, methylene diphenyl diisocyanate, polystyryl isocyanate, and the like may be used.
  • The isocyanate compound is used in an amount of 0.05 to 2 parts by weight based on neodymium-polybutadiene. When the content is less than 0.05 part by weight, number of coupling may be insufficient. And, when it exceeds 2 parts by weight, Mooney viscosity may vary a lot. Hence, it is preferred that the above range be maintained.
  • The rare earth element compound or the transition metal compound may be a rare earth element salt or a transition metal salt of an organic acid or an inorganic acid. An organic acid salt having superior solubility in organic solvent is preferred. Particularly, a carboxylate is more preferred. The carboxylate may have C8-C20 saturated, unsaturated, cyclic or linear structure. Specifically, octoate, naphthenate, versatate, stearate, etc. may be used. Specifically, the rare earth element carboxylate may be neodymium versatate, neodymium octoate, neodymium naphthenate, and the like. Neodymium versatate in single molecular form is the most preferred in view of activity and polymer property. The transition metal carboxylate may be nickel octoate, nickel naphthenate, cobalt octoate, cobalt naphthenate, and the like.
  • The halogen containing compound may be a Lewis acid that contains a halogen or a halogen compound that can easily withdraw a halogen, and may be one represented by the following Chemical Formula 4:

  • AXnR2 m   [Chemical Formula 4]
  • where R2 is hydrogen, C1-C10 alkyl or C5-C10 aryl, A is aluminum or boron, n is an integer from 1 to 3, m is an integer from 0 to 2, and n+m=3.
  • Specifically, the halogen containing compound may be diethylchloroaluminum, trifluoroboron compound, or the like.
  • The organoaluminum compound may be a compound represented by the following Chemical Formula 5. Specifically, it may be trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum, diisobutylaluminum hydride, and the like.

  • AlR3 3   [Chemical Formula 5]
  • In Chemical Formula 5, R3 is hydrogen, C1-C10 alkyl or C5-C10aryl.
  • The organoaluminum compound is used as a component of the rare earth element catalyst in an amount of 2 to 100 molar equivalents, preferably 10 to 100 molar equivalents, based on 1 mol of the rare earth element compound. If the content is lower than 10 molar equivalents, reactivity may decrease. And, if it exceeds 100 molar equivalents, it will result in overreactions. Hence, it is preferred that the above range be maintained. In the transition metal catalyst, it is used in an amount of 2 to 10 molar equivalents based on 1 mol of the transition metal compound. If the content is lower than 2 molar equivalents or exceeds 10 molar equivalents, reactivity may decrease. Hence, it is preferred that the above range be maintained.
  • The alkali metal catalyst may be a compound represented by the following Chemical Formula 6:

  • MR4   [Chemical Formula 6]
  • where M is an alkali metal selected from lithium, sodium, potassium, rhodium or cesium; and R4 is hydrogen C1-C10 alkyl or C5-C10 aryl.
  • The solvent used for the preparation of the catalyst may be one commonly used in the art and is not particularly limited. A nonpolar solvent without reactivity with the catalyst, such as aliphatic hydrocarbon, cycloaliphatic butane, benzene, ethylbenzene or xylene may be used. Specifically, one selected from pentane, hexane, isopentane, heptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, benzene, toluene, ethyl benzene and xylene may be used. Preferably, the preparation solvent is used after removing oxygen and water.
  • The nonpolar solvent is used in an amount of 3 to 10 parts by weight based on 1 part by weight of 1,3-butadiene or butadiene derivative. When the content is below 3 parts by weight, transfer of polymerization solution may be difficult. And, when it exceeds 10 parts by weight, reactivity may decrease. Hence, it is preferred that the above range be maintained.
  • The reactant butadiene or butadiene derivative may be added during aging of the catalyst. This not only maintains activity of the catalyst but also prevents precipitation and affects physical properties of rubber. At that time, it is used in an amount of 1 to 10 parts by weight based on the rare earth element or transition metal compound.
  • Catalyst aging may be carried out as follows. A rare earth element or transition metal compound catalyst solution including butadiene or butadiene derivative is added in a catalyst reactor under nitrogen atmosphere. Then, the halogen containing compound and the organoaluminum compound are added. The sequence of addition may be different depending on processing conditions. Also, it is possible to directly add into the reactor without the aging process. Aging temperature and aging time also affect the properties of the product. Preferably, aging time ranges from 5 minutes to 2 hours, and aging temperature ranges from −30 to 60° C. The alkali metal catalyst does not require such an aging process.
  • The catalyst is used in an amount of 1×10−3 to 1×10−5 molar equivalent based on 100 g of 1,3-butadiene or butadiene derivative. When the content is below 1×10−5 molar equivalent, reaction occurs slowly. And, when it exceeds 1×10−3 molar equivalent, control of temperature or physical properties may be difficult due to excessive reaction. Hence, it is preferred that the above range be maintained.
  • The reactant 1,3-butadiene or butadiene derivative may be specifically 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, myrcene, or the like.
  • Polymerization is initiated under highly pure nitrogen atmosphere. Preferably, polymerization temperature is from −20 to 100° C. and polymerization time is from 30 minutes to 3 hours. A yield of 70% or better can be attained.
  • As a result of the polymerization, 1,4-cis polybutadiene having a cis content of at least 30% and a molecular weight ranging from 50,000 to 2,000,000 is prepared.
  • Next, thus prepared 1,4-cis polybutadiene is reacted with 0.05 to 5 parts by weight of an aromatic organosulfur compound based on 100 parts by weight of the polybutadiene to prepare aromatic organosulfur functionalized 1,4-cis polybutadiene represented by Chemical Formula 1.
  • When the aromatic organosulfur compound is used in an amount less than 0.05 part by weight, peptizer effect is insufficient. And, when it is used in excess of 5 parts by weight, blending viscosity may change greatly during processing. Hence, it is preferred that the above range be maintained.
  • The aromatic organosulfur compound may be selected from fluorothiophenol, chlorothiophenol, bromothiophenol, iodothiophenol, difluorothiophenol, dichlorothiophenol, dibromothiophenol, diiodothiophenol, trifluorothiophenol, trichlorothiophenol, tribromothiophenol, triiodothiophenol, tetrafluorothiophenol, tetrachlorothiophenol, tetrabromothiophenol, tetraiodothiophenol, pentafluorothiophenol, pentachlorothiophenol, pentabromothiophenol, pentaiodothiophenol, fluorothiopyridine, chlorothiopyridine, bromothiopyridine, iodothiopyridine, difluorothiopyridine, dichlorothiopyridine, dibromothiopyridine, diiodothiopyridine, trifluorothiopyridine, trichlorothiopyridine, tribromothiopyridine, triiodothiopyridine, tetrafluorothiopyridine, tetrachlorothiopyridine, tetrabromothiopyridine, tetraiodothiopyridine, xylylmercaptan, tetrachlorobenzenedithiol, mercaptobenzothiazole, glycidyl pentachlorothiophenyl ether, glycidyl pentafluorothiophenyl ether, dibenzamidodiphenyl disulfide and zinc pentachlorothiophenol.
  • In case of transition metal-polybutadiene, the aromatic organosulfur compound is used alone, without an isocyanate compound. A radical initiator may be further added to facilitate reaction.
  • The radical initiator may be selected from dicumyl peroxide, dibenzoyl peroxide, t-butyl peroxybenzoate, 1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane, and the like.
  • Then, after adding 2,6-di-t-butyl-p-cresol as antioxidant, methyl alcohol or ethyl alcohol is added to terminate reaction.
  • As a result, aromatic organosulfur functionalized 1,4-cis polybutadiene, in which the aromatic organosulfur compound is covalently bonded at the end of 1,4-cis polybutadiene, is prepared. This can be confirmed through gel permeation chromatography.
  • Further, heating, light radiation or radical initiator addition may be carried out in order to facilitate bonding of the aromatic organic compound with polybutadiene. The thiol group of aromatic organosulfur compound reacts readily with the vinyl group and double bond of polybutadiene. The reaction can be identified from the disappearance of the thiol peak around 2600 to 2550 cm−1, and the degree of reaction can be confirmed through gel permeation chromatography using a UV detector.
  • [Mode for Invention]
  • Hereinafter, the present invention is described in more detail referring to the following examples, but the examples are not intended to limit the scope of the present invention.
  • EXAMPLE 1
  • Ziegler-Natta catalyst used in the polymerization was composed of neodymium versatate (1.0 weight % cyclohexane solution), diethylaluminum chloride (1.0 M cyclohexane solution), diisobutylaluminum hydride (15 weight % cyclohexane solution) and triisobutylaluminum (1.0 M cyclohexane solution). Molar ratio of the catalysts was 1:3:4:20, and 1.0×10−4 mol of neodymium catalyst was used per 100 g of monomer. 1.5 kg of cyclohexane polymerization solvent and a predetermined quantity of the aforesaid catalysts were added to a 5-L polymerization reactor. After adding 300 g of butadiene monomer, reaction was carried out at 70° C. for 2 hours. Part of the polymer solution (30 g) was taken and mass analysis was carried out through gel permeation chromatography (Mw: 394000, MWD: 3.77). Then, after adding pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL), stirring was carried out at 100° C. for 1 hour. After adding 2,6-di-t-butyl-p-cresol (3.0 g) as antioxidant, reaction was terminated by adding polyoxyethylene phosphate (1.2 g) and ethanol (10 mL) as reaction terminator. Then, molecular analysis was carried out through gel permeation chromatography. The result is given in Table 1, FIG. 1 and FIG. 2. IR spectrum observed in CS2 solution is shown in FIG. 5.
  • FIG. 1 shows gel permeation chromatograms observed using a laser scattering detector. Good sensitivity was attained because difference in molecular weight resulted in distinct scattering patterns. Blue curve is for neodymium-polybutadiene (NdBR, Mw: 394000, molecular weight distribution: 3.77) obtained from polymerization of butadiene in the first step, and red curve is for aromatic compound substituted polybutadiene (PCTP—NdBR, Mw: 302000 molecular weight distribution: 3.03) obtained in the second step. It was confirmed that the ultrahigh molecular weight region decreased and, as a result, molecular weight distribution decreased greatly. FIG. 2 shows gel chromatograms obtained from UV absorbance measured using a UV detector. Polybutadiene shows smaller UV absorption peak, whereas aromatic organosulfur functionalized polybutadiene shows larger peak. Blue curve is for NdBR, and red curve is for PCTP—NdBR. It was confirmed that the aromatic organosulfur was bound from high molecular weight range to low molecular weight range.
  • FIG. 5 shows IR spectrum of PCTP—NdBR prepared above obtained in CS2 solution. The disappearance of the thiol peak (2600 to 2550 cm−1) was confirmed.
  • EXAMPLE 2
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding polymethylene isocyanate (1.5 g) dissolved in tetrahydrofuran (10 mL) and pentachlorothiophenol (1.5 g) dissolved in tetrahydrofuran (10 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • EXAMPLE 3
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding pentafluorothiophenol (1.5 g) dissolved in tetrahydrofuran (10 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • EXAMPLE 4
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding glycidyl pentachlorothiophenyl ether (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • EXAMPLE 5
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding dibenzamidodiphenyl disulfide (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL) and adding dicumyl peroxide (0.15 g) as radical initiator. Analysis result is given in Table 1.
  • EXAMPLE 6
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding glycidyl pentafluorothiophenyl ether (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1.
  • EXAMPLE 7
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 1, except for adding tetrachlorothipyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 1, FIG. 3 and FIG. 4. IR spectrum observed in CS2 solution is shown in FIG. 6.
  • FIG. 3 shows gel chromatograms observed using a laser scattering detector. Good sensitivity was attained because difference in molecular weight resulted in distinct scattering patterns. Blue curve is for neodymium-polybutadiene (NdBR, Mw: 351000, molecular weight distribution: 2.07) obtained from polymerization of butadiene in the first step, and red curve is for aromatic compound substituted polybutadiene (TCTP-NdBR, Mw: 302000 molecular weight distribution: 3.03) obtained in the second step. It was confirmed that the ultrahigh molecular weight region decreased and, as a result, molecular weight distribution decreased greatly. FIG. 4 shows gel chromatograms obtained from UV absorbance measured using a UV detector. Polybutadiene shows smaller UV absorption peak, whereas aromatic organosulfur functionalized polybutadiene shows larger peak. Red curve is for NdBR, and blue curve is for TCTP-NdBR. It was confirmed that the aromatic organosulfur was bound from high molecular weight range to low molecular weight range.
  • FIG. 6 shows IR spectrum of TCTP-NdBR prepared above obtained in CS2 solution. The disappearance of the thiol peak (2600 to 2550 cm−1) was confirmed.
  • EXAMPLE 8
  • Ziegler-Natta catalyst used in the polymerization was composed of nickel octoate (0.05 weight % toluene solution), trifluoroboron ethyl ether (1.5 weight % toluene solution) and triethylaluminum (0.8 weight % toluene solution), and 7.0×10−5 mol of nickel catalyst was used per 100 g of monomer.
  • The reaction catalysts were aged by sufficiently blowing in nitrogen, sequentially adding nickel octoate, trifluoroboron ethyl ether and triethylaluminum with a molar ratio of 1:10:6 in a 100 mL round flask sealed with a rubber stopper, and carrying out aging at 20° C. for 1 hour. Polymerization was carried out by sufficiently blowing in nitrogen in a 5 L pressure reactor, adding heptane, the Ziegler-Natta catalyst aged above and 300 g of butadiene monomer, and carrying out reaction at 60° C. for 2 hours. Part of the polymer solution (30 g) was taken and mass analysis was carried out through gel permeation chromatography (Mw: 358000, MWD: 4.57). Then, after adding pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL), stirring was carried out at 100° C. for 1 hour. After adding 2,6-di-t-butyl-p-cresol (3.0 g) as antioxidant, reaction was terminated by adding polyoxyethylene phosphate (1.2 g) and ethanol (10 mL) as reaction terminator. Then, molecular analysis was carried out through gel permeation chromatography. The result is given in Table 2.
  • EXAMPLE 9
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 8, except for adding tetrachlorothiopyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 2.
  • EXAMPLE 10
  • Ziegler-Natta catalyst used in the polymerization was composed of cobalt octorate (0.15 mmol) and (C2H5)3Al2Cl3(1.5 mmol), and 1.5 kg of toluene and 300 g of butadiene were used. Polymerization was carried out by sufficiently blowing in nitrogen in a 5-L pressure reactor, adding toluene, the aforesaid cobalt and aluminum catalysts and 300 g of butadiene monomer, and carrying out reaction at 60° C. for 2 hours. Part of the polymer solution (30 g) was taken and mass analysis was carried out through gel permeation chromatography (Mw: 371000, MWD: 3.82). Then, after adding pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL), stirring was carried out at 100° C. for 1 hour. After adding 2,6-di-t-butyl-p-cresol (3.0 g) as antioxidant, reaction was terminated by adding polyoxyethylene phosphate (1.2 g) and ethanol (10 mL) as reaction terminator. Then, molecular analysis was carried out through gel permeation chromatography. The result is given in Table 2.
  • EXAMPLE 11
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 8, except for adding tetrachlorothiopyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 2.
  • EXAMPLE 12
  • Inside of a 5L reactor was sufficiently substituted with argon gas. After adding 1500 g of purified cyclohexane and 300 g of butadiene, temperature was maintained at 60° C. Then, after adding 1.5 mL of n-butyllithium (BuLi, 2.0 M cyclohexane solution) as initiator, polymerization was carried out for 2 hours. Part of the polymer solution (30 g) was taken and mass analysis was carried out through gel permeation chromatography (Mw: 297000, MWD: 1.26). Then, after adding pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL), stirring was carried out at 100° C. for 1 hour. Polymerization was terminated by adding a small amount of methanol to the polymerization solution in order to completely remove activity of the living polymer, and then adding 1 g of Irganox 1076 (Aldrich) and 1.5 g of tris(nonylphenol) as antioxidant.
  • EXAMPLE 13
  • Aromatic organosulfur functionalized 1,4-cis polybutadiene was prepared in the same manner as in Example 12, except for adding tetrachlorothiopyridine (1.5 g) dissolved in tetrahydrofuran (20 mL) instead of pentachlorothiophenol (0.6 g) dissolved in tetrahydrofuran (10 mL). Analysis result is given in Table 2.
  • Physical properties of aromatic organosulfur functionalized 1,4-cis polybutadiene prepared in Examples 1 to 13 are summarized in the following Tables 1 to 3.
  • Physical Property Measurement
  • 1) Mooney Viscosity
  • Solid rubber (30 g) was taken from each polymer, and prepared into two samples (thickness: 0.8 cm, area: 5 cm×5 cm) using a roller. The samples were attached at the front and back of a rotor. After mounting the rotor in a rotary viscometer (Alpha Technologies, Mooney MV2000) and pre-heating at 100° C. for 1 minute, change of viscosity of the solid rubber after operation of the rotor was observed for 4 minutes. Mooney viscosity was obtained as ML1+4 (100° C.) value.
  • 2) Cis Content
  • Cis content was measured by the Morero method. Test sample was prepared by completely melting 40 mg of solid rubber in 5 mL of CS2. The rubber solution was put in KBr cells spaced by 1 mm, and absorbance was measured using an IR spectrometer (FTS-60A, Bio-Rad).
  • IR peaks to be monitored were cis absorption (AC) at 739 cm−1, vinyl absorption (AV) at 912 cm−1, and trans absorption (AT) at 966 cm−1. From the absorbance measurement, cis content can be calculated by the following equations.

  • C=(1.7455 AC−0.0151 AV)   {circle around (1)}

  • V=(0.3746 AV−0.0070 AC)   {circle around (2)}

  • T=(0.4292 AT−0.0129 AV−0.0454 AC)   {circle around (3)}

  • Cis (%)=C/(C+V+T)×100   {circle around (4)}

  • Trans (%)=T/(C+V+T)×100   {circle around (5)}

  • Vinyl (%)=V/(C+V+T)×100   {circle around (6)}
  • TABLE 1
    Aromatic
    Aromatic organosulfur Mooney Cis Trans Vinyl
    organosulfur content (phr)1) viscosity Mw2) MWD3) (%) (%) (%)
    Ex. 1 PCTP 0.2 40.5 302000 3.03 97.5 1.6 0.9
    Ex. 2 PCTP 0.5 35.5 272000 2.75 97.6 2.0 0.4
    Ex. 3 PFTP 0.5 38.5 297000 2.98 97.5 2.0 0.5
    Ex. 4 GPCTP 0.2 40.5 323000 3.20 97.3 1.5 1.2
    Ex. 5 DBD 0.2 42.0 339000 3.09 97.2 1.4 1.4
    Ex. 6 GPFTP 0.5 39.5 323000 2.85 97.3 2.4 0.3
    Ex. 7 TCTP 0.5 25.0 113000 2.07 97.4 2.2 0.4
    PCTP: pentachlorothiophenol
    GPCTP: glycidyl pentachlorothiophenyl ether
    GPFTP: glycidyl pentafluorothiophenyl ether
    DBD: dibenzamidodiphenyl sulfide
    ZnPCP: zinc tetrachlorothiophenol
    TCTP: tetrachlorothiophenol
    1)Parts by weight based on polybutadiene
    2)Mw: weight average molecular weight
    3)MWD: molecular weight distribution
    Polymerization catalysts in Ex. 1-7: rare earth metal (neodymium)
  • TABLE 2
    Mooney
    Aromatic viscosity
    Aromatic organosulfur (ML1+4, Cis Trans Vinyl
    Catalyst organosulfur content 100° C.) Mw MWD (%) (%) (%)
    Ex. 8 Ni PCTP 0.2 40.5 281000 3.50 95.3 2.5 2.2
    Ex. 9 Ni TCTP 0.5 37.0 275000 3.52 95.7 2.4 1.9
    Ex. 10 Co PCTP 0.2 39.5 319000 3.15 95.5 2.4 2.1
    Ex. 11 Co TCTP 0.5 38.0 275000 3.09 95.6 2.7 1.7
  • TABLE 3
    Mooney
    Aromatic viscosity
    Aromatic organosulfur (ML1+4, Cis Trans Vinyl
    Catalyst organosulfur content 100° C.) Mw MWD (%) (%) (%)
    Ex. Li PCTP 0.2 50.5 251000 1.15 34.8 53.0 12.2
    12
    Ex. Li TCTP 0.5 45.5 225000 1.07 35.0 53.5 11.5
    13
    Li: n-BuLi
  • Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (19)

1. Aromatic organosulfur functionalized 1,4-cis polybutadiene represented by the following Chemical Formula 1 or Chemical Formula 2:
Figure US20090156751A1-20090618-C00002
where l, m, n and o respectively represent the number of repeating units of polybutadiene main chain, with I ranging from 30 to 99 weight %, m ranging from 0.05 to 5 weight %, n ranging from 0 to 50 weight %, o ranging from 0 to 50 weight %, and l+m+n+o=100 weight %, SAr represents an aromatic organosulfur compound, and R1 represents an isocyanate compound.
2. The polybutadiene as set forth in claim 1, wherein the aromatic organosulfur compound is comprised in an amount of 0.05 to 5 parts by weight based on 100 parts by weight of the 1,4-cis polybutadiene.
3. The polybutadiene as set forth in claim 1, wherein the aromatic organosulfur compound is selected from fluorothiophenol, chlorothiophenol, bromothiophenol, iodothiophenol, difluorothiophenol, dichlorothiophenol, dibromothiophenol, diiodothiophenol, trifluorothiophenol, trichlorothiophenol, tribromothiophenol, triiodothiophenol, tetrafluorothiophenol, tetrachlorothiophenol, tetrabromothiophenol, tetraiodothiophenol, pentafluorothiophenol, pentachlorothiophenol, pentabromothiophenol, pentaiodothiophenol, fluorothiopyridine, chlorothiopyridine, bromothiopyridine, iodothiopyridine, difluorothiopyridine, dichlorothiopyridine, dibromothiopyridine, diiodothiopyridine, trifluorothiopyridine, trichlorothiopyridine, tribromothiopyridine, triiodothiopyridine, tetrafluorothiopyridine, tetrachlorothiopyridine, tetrabromothiopyridine, tetraiodothiopyridine, xylylmercaptan, tetrachlorobenzenedithiol, mercaptobenzothiazole, glycidyl pentachlorothiophenyl ether, glycidyl pentafluorothiophenyl ether, dibenzamidodiphenyl disulfide and zinc pentachlorothiophenol.
4. The polybutadiene as set forth in claim 1, which has a cis content of 30 to 99% and a molecular weight ranging from 50,000 to 2,000,000.
5. A preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene comprising:
a first step of polymerizing 1,3-butadiene or butadiene derivative in the presence of an alkali metal catalyst or a catalyst comprising 1) 1 mol of a rare earth element compound or a transition metal compound, 2) 1 to 10 molar equivalents of a halogen containing compound, and 3) 10 to 100 molar equivalents of an organoaluminum compound in a nonpolar solvent to prepare 1,4-cis polybutadiene; and
a second step of polymerizing 100 parts by weight of the resultant 1,4-cis polybutadiene with 0.05 to 5 parts by weight of an aromatic organosulfur compound to prepare aromatic organosulfur functionalized 1,4-cis polybutadiene represented by the following Chemical Formula 1 or Chemical Formula 2:
Figure US20090156751A1-20090618-C00003
where l, m, n and o represent the number of repeating units of polybutadiene main chain, with l ranging from 30 to 99 weight %, m ranging from 0.05 to 5 weight %, n ranging from 0 to 50 weight %, o ranging from 0 to 50 weight %, and l+m+n+o=100 weight %, SAr represents an aromatic organosulfur compound, and R1 represents an isocyanate compound.
6. The preparation method as set forth in claim 5, wherein the aromatic organosulfur compound is selected from fluorothiophenol, chlorothiophenol, bromothiophenol, iodothiophenol, difluorothiophenol, dichlorothiophenol, dibromothiophenol, diiodothiophenol, trifluorothiophenol, trichlorothiophenol, tribromothiophenol, triiodothiophenol, tetrafluorothiophenol, tetrachlorothiophenol, tetrabromothiophenol, tetraiodothiophenol, pentafluorothiophenol, pentachlorothiophenol, pentabromothiophenol, pentaiodothiophenol, fluorothiopyridine, chlorothiopyridine, bromothiopyridine, iodothiopyridine, difluorothiopyridine, dichlorothiopyridine, dibromothiopyridine, diiodothiopyridine, trifluorothiopyridine, trichlorothiopyridine, tribromothiopyridine, triiodothiopyridine, tetrafluorothiopyridine, tetrachlorothiopyridine, tetrabromothiopyridine, tetraiodothiopyridine, xylylmercaptan, tetrachlorobenzenedithiol, mercaptobenzothiazole, glycidyl pentachlorothiophenyl ether, glycidyl pentafluorothiophenyl ether, dibenzamidodiphenyl disulfide and zinc pentachlorothiophenol.
7. The preparation method as set forth in claim 5, wherein, in the second step, 0.05 to 2 parts by weight of an isocyanate compound represented by the Chemical Formula 3 is added based on 100 parts by weight of the polybutadiene:

R1—(NCO)n   [Chemical Formula 3]
where R1 is C4-C100 aryl or alkyl, and n is an integer from 2 to 10.
8. The preparation method as set forth in claim 7, wherein the isocyanate compound is selected from C4-C100 alkyl triisocyanate, C4-C100 alkyl tetra isocyanate, aromatic triisocyanate and aromatic tetraisocyanate.
9. The preparation method as set forth in claim 7, wherein the isocyanate compound is selected from hexyl diisocyanate, octyl diisocyanate, methylene diphenyl diisocyanate, hexyl triisocyanate, octyl triisocyanate, dodecyl tetraisocyanate, methylene triphenyl triisocyanate, naphthalene 1,2,5,7-tetraisocyanate, naphthalene 1,3,7-triisocyanate, tris-(p-isocyanatephenyl)-thiophosphate, carbodiimide-isocyanate, methylene diphenyl diisocyanate and polystyryl isocyanate.
10. The preparation method as set forth in claim 5, wherein the rare earth element compound is a carboxylate having C8-C20 saturated, unsaturated, cyclic or linear structure, selected from octoate, naphthenate, versatate and stearate.
11. The preparation method as set forth in claim 5, wherein the transition metal compound is a carboxylate having C8-C20 saturated, unsaturated, cyclic or linear structure, selected from octoate, naphthenate, versatate and stearate.
12. The preparation method as set forth in claim 5, wherein the halogen containing compound is represented by the following Chemical Formula 3:

AXnR2 m   [Chemical Formula 4]
where R2 is hydrogen, C1-C10 alkyl or C5-C10 aryl, A is aluminum or boron, n is an integer from 1 to 3, m is an integer from 0 to 2, and n+m=3.
13. The preparation method as set forth in claim 12, wherein the halogen containing compound is diethylchloroaluminum or trifluoroboron compound.
14. The preparation method as set forth in claim 5, wherein the organoaluminum compound is represented by the following Chemical Formula 5:

AlR3 3   [Chemical Formula 5]
where R3 is hydrogen, C1-C10 alkyl or C5-C10 aryl.
15. The preparation method as set forth in claim 14, wherein the organoaluminum compound is selected from trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum, trihexylaluminum and diisobutylaluminum hydride.
16. The preparation method as set forth in claim 5, wherein the alkali metal catalyst is a compound represented by the following Chemical Formula 6:

MR4   [Chemical Formula 6]
where M is an alkali metal selected from lithium, sodium, potassium, rhodium and cesium; and R4 is hydrogen, C1-C10 alkyl or C5-C10 aryl.
17. The preparation method as set forth in claim 5, wherein the nonpolar solvent is selected from butane, pentane, hexane, isopentane, heptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, benzene, toluene, ethylbenzene and xylene.
18. The preparation method as set forth in claim 5, wherein the nonpolar solvent is used in an amount of 3 to 10 parts by weight based on the total weight of the reactants of the first step.
19. The preparation method as set forth in claim 5, wherein the catalyst is used in an amount of 1×10−3 to 1×10−5 mol based on 100 g of 1,3-butadiene or butadiene derivative.
US12/254,505 2007-12-12 2008-10-20 Aromatic organosulfur functionalized 1,4-cis polybutadiene Active 2030-08-21 US8198378B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0129265 2007-12-12
KRKR10-2007-0129265 2007-12-12
KR1020070129265A KR100970767B1 (en) 2007-12-12 2007-12-12 Aromatic Organosulfur Functionalized 1,4-cis Polybutadiene

Publications (2)

Publication Number Publication Date
US20090156751A1 true US20090156751A1 (en) 2009-06-18
US8198378B2 US8198378B2 (en) 2012-06-12

Family

ID=40754107

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/254,505 Active 2030-08-21 US8198378B2 (en) 2007-12-12 2008-10-20 Aromatic organosulfur functionalized 1,4-cis polybutadiene

Country Status (4)

Country Link
US (1) US8198378B2 (en)
JP (1) JP5153602B2 (en)
KR (1) KR100970767B1 (en)
CN (1) CN101456928A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110136956A1 (en) * 2009-12-09 2011-06-09 Korea Kumho Petrochemical Co., Ltd. 1,4-cis-polybutadiene functionalized with organosulfur compound for preparation of golf ball core
WO2012041804A2 (en) 2010-09-30 2012-04-05 Styron Europe Gmbh Polymer compositions
WO2013127448A1 (en) * 2012-02-29 2013-09-06 Styron Europe Gmbh Process for producing diene polymers
KR20140129048A (en) * 2012-02-27 2014-11-06 가부시키가이샤 브리지스톤 Processes for the preparation of high-cis polydienes
EP2865540A1 (en) * 2013-10-24 2015-04-29 LANXESS Deutschland GmbH Rubber compound
US20150299367A1 (en) * 2012-12-20 2015-10-22 Michelin Recherche Et Technique, S.A. Process for radical grafting of a diene elastomer
RU2588136C2 (en) * 2012-02-29 2016-06-27 ТРИНСЕО ЮРОП ГмбХ Method of producing polydienes
JP2016534170A (en) * 2013-10-16 2016-11-04 アランセオ・ドイチュランド・ゲーエムベーハー Functionalized polymer composition
US10203319B2 (en) * 2013-10-16 2019-02-12 Arlanxeo Deutschland Gmbh Determination of the degree of branching
EP3875501A4 (en) * 2018-12-21 2021-12-01 LG Chem, Ltd. Modified conjugated diene-based polymer and rubber composition comprising same
EP3875502A4 (en) * 2018-12-21 2022-01-12 LG Chem, Ltd. Method for preparing modified conjugated diene-based polymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304489B1 (en) * 2013-10-16 2021-09-23 아란세오 도이치란드 게엠베하 NdBR WITH MOLAR MASS BREAKDOWN
EP3077455B1 (en) * 2013-12-03 2020-08-12 Bridgestone Corporation Process for preparing blends of cis-1,4-polybutadiene and syndiotactic 1,2-polybutadiene
CN114085300B (en) * 2021-12-24 2023-09-15 南亚新材料科技股份有限公司 Modified polybutadiene resin and preparation method and application thereof

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979488A (en) * 1957-09-30 1961-04-11 Phillips Petroleum Co Modification of linear rubbery polymers
US3170905A (en) * 1959-12-31 1965-02-23 Bridgestone Tire Co Ltd Production of cis-1, 4 polybutadiene with an organic complex compound of nickel-boron trifluoride etherate-aluminum trialkyl catalyst
US3725492A (en) * 1970-10-26 1973-04-03 Japanese Geon Co Ltd Process for the preparation of liquid polybutadiene
US4129538A (en) * 1977-05-20 1978-12-12 American Cyanamid Company Peptizing agent for natural rubber and synthetic butadiene-styrene rubber
US4182814A (en) * 1977-07-09 1980-01-08 Chemische Werke Huels, A.G. Process for the production of polybutadiene having a high cis-1,4-content
US4260707A (en) * 1978-07-08 1981-04-07 Bayer Aktiengesellschaft Solution polymerization of conjugated dienes
US4429089A (en) * 1977-08-01 1984-01-31 Anic, S.P.A. Polymerizing and copolymerizing diolefines, and means therefor
US4699962A (en) * 1984-01-30 1987-10-13 Phillips Petroleum Company Olefin polymerization
US5017539A (en) * 1988-12-22 1991-05-21 Enichem Elastomers Ltd. Polymerization of butadiene
US5397851A (en) * 1993-11-09 1995-03-14 Polysar Rubber Corporation Process for cis-1,4-polybutadiene production with reduced gel formation
US5557784A (en) * 1995-03-30 1996-09-17 International Business Machines Corporation Power on timer for a personal computer system
US5733835A (en) * 1996-08-05 1998-03-31 The Goodyear Tire & Rubber Company Cobalt containing catalyst system
US5905125A (en) * 1996-06-28 1999-05-18 Ube Industries, Ltd. Process for producing polybutadiene
US6013746A (en) * 1998-03-03 2000-01-11 Korea Kumho Petrochemical Co., Ltd. Process for controlling the molecular weight distribution of high 1,4-cis polybutadiene
US6255416B1 (en) * 1998-05-13 2001-07-03 Jsr Corporation Method of producing conjugated diene polymers
US6562917B2 (en) * 2000-08-28 2003-05-13 Korea Kumho Petrochemical Co., Ltd. Method for preparing polybutadiene having controlled molecular weight and high 1,4-cis content
US6624256B2 (en) * 2001-01-22 2003-09-23 Korea Kumho Petrochemical Co. Ltd. Method of preparation of siloxane-functionalized high 1,4-cis polybutadiene
US6727330B1 (en) * 2003-02-07 2004-04-27 Firestone Polymers, Llc Termination and reduced gel in high cis polybutadiene
US20040230010A1 (en) * 2003-05-15 2004-11-18 Korea Kumho Petrochemical Co., Ltd. High 1,4-cis polybutadiene-polyurethane copolymer and preparation method thereof
US6984706B2 (en) * 2002-03-15 2006-01-10 Zeon Corporation Diene rubber, process for production thereof, rubber compositions, process for producing the same, and crosslinked rubbers
US7157514B2 (en) * 2004-05-12 2007-01-02 Acushnet Company Golf ball core compositions
US7288612B2 (en) * 2002-04-23 2007-10-30 Basf Aktiengesellschaft Initiator composition and method for anionic polymerisation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51591A (en) * 1974-06-22 1976-01-06 Mitsuboshi Belting Ltd KINSHITSUKARY UKANONA HENSEIGO MUNOSEIZOHO
DE2848964A1 (en) 1978-11-11 1980-05-22 Bayer Ag CATALYST, THE PRODUCTION AND USE THEREOF FOR SOLUTION-POLYMERIZATION OF BUTADIENE
US4906706A (en) 1986-09-05 1990-03-06 Japan Synthetic Rubber Co., Ltd. Modified conjugated diene polymer and process for production thereof
US4843120A (en) * 1986-09-29 1989-06-27 The Goodyear Tire & Rubber Company Rubber composition
JP2624792B2 (en) * 1988-08-11 1997-06-25 株式会社ブリヂストン Vulcanizable rubber composition
IT1230756B (en) 1989-02-17 1991-10-29 Enichem Elastomers METHOD FOR THE PREPARATION OF POLYBUTADIENE FOR IMPROVED WORKABILITY.
US5070150A (en) * 1990-07-02 1991-12-03 The Goodyear Tire & Rubber Company Process for the solid state (solventless) hydroxylation of vinyl-containing rubbers using a hydroxymercaptan
JP3073509B2 (en) * 1990-07-26 2000-08-07 日本ゼオン株式会社 Method for producing cis 1,4-polybutadiene
BR9407351A (en) 1993-08-13 1996-10-08 Unilever Nv Foaming composition process to apply a 2-hydroxy alkanoate to the epidermis and use a substituted alkanoate
US5428119A (en) 1993-11-09 1995-06-27 Polysar Rubber Corporation Process for polybutadiene production using catalyst with high activity
EP0713121A4 (en) * 1994-06-07 1997-04-16 Tomey Techn Corp Ophthalmic lens material and process for producing the same
JPH0940801A (en) * 1995-07-26 1997-02-10 Mitsui Petrochem Ind Ltd Production of oily material by degradation of synthetic polymer
JPH10330541A (en) * 1997-05-29 1998-12-15 Yokohama Rubber Co Ltd:The Modified polybutadiene rubber and rubber composition containing the same
DE19961522A1 (en) * 1999-12-20 2001-06-21 Bayer Ag Solution rubbers with non-polar side groups
WO2002036615A2 (en) 2000-10-30 2002-05-10 Applied Molecular Evolution, Inc. Methods for producing and improving therapeutic potency of binding polypeptides
KR100462662B1 (en) * 2002-08-05 2004-12-20 금호석유화학 주식회사 Highly Branched High cis Polybutadiene
JP4075533B2 (en) * 2002-08-30 2008-04-16 日本ゼオン株式会社 Conjugated diene polymerization catalyst, production method thereof, and production method of conjugated diene polymer

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979488A (en) * 1957-09-30 1961-04-11 Phillips Petroleum Co Modification of linear rubbery polymers
US3170905A (en) * 1959-12-31 1965-02-23 Bridgestone Tire Co Ltd Production of cis-1, 4 polybutadiene with an organic complex compound of nickel-boron trifluoride etherate-aluminum trialkyl catalyst
US3725492A (en) * 1970-10-26 1973-04-03 Japanese Geon Co Ltd Process for the preparation of liquid polybutadiene
US4129538A (en) * 1977-05-20 1978-12-12 American Cyanamid Company Peptizing agent for natural rubber and synthetic butadiene-styrene rubber
US4182814A (en) * 1977-07-09 1980-01-08 Chemische Werke Huels, A.G. Process for the production of polybutadiene having a high cis-1,4-content
US4429089A (en) * 1977-08-01 1984-01-31 Anic, S.P.A. Polymerizing and copolymerizing diolefines, and means therefor
US4260707A (en) * 1978-07-08 1981-04-07 Bayer Aktiengesellschaft Solution polymerization of conjugated dienes
US4699962A (en) * 1984-01-30 1987-10-13 Phillips Petroleum Company Olefin polymerization
US5017539A (en) * 1988-12-22 1991-05-21 Enichem Elastomers Ltd. Polymerization of butadiene
US5397851A (en) * 1993-11-09 1995-03-14 Polysar Rubber Corporation Process for cis-1,4-polybutadiene production with reduced gel formation
US5557784A (en) * 1995-03-30 1996-09-17 International Business Machines Corporation Power on timer for a personal computer system
US5905125A (en) * 1996-06-28 1999-05-18 Ube Industries, Ltd. Process for producing polybutadiene
US5733835A (en) * 1996-08-05 1998-03-31 The Goodyear Tire & Rubber Company Cobalt containing catalyst system
US6013746A (en) * 1998-03-03 2000-01-11 Korea Kumho Petrochemical Co., Ltd. Process for controlling the molecular weight distribution of high 1,4-cis polybutadiene
US6255416B1 (en) * 1998-05-13 2001-07-03 Jsr Corporation Method of producing conjugated diene polymers
US6562917B2 (en) * 2000-08-28 2003-05-13 Korea Kumho Petrochemical Co., Ltd. Method for preparing polybutadiene having controlled molecular weight and high 1,4-cis content
US6624256B2 (en) * 2001-01-22 2003-09-23 Korea Kumho Petrochemical Co. Ltd. Method of preparation of siloxane-functionalized high 1,4-cis polybutadiene
US6984706B2 (en) * 2002-03-15 2006-01-10 Zeon Corporation Diene rubber, process for production thereof, rubber compositions, process for producing the same, and crosslinked rubbers
US7288612B2 (en) * 2002-04-23 2007-10-30 Basf Aktiengesellschaft Initiator composition and method for anionic polymerisation
US6727330B1 (en) * 2003-02-07 2004-04-27 Firestone Polymers, Llc Termination and reduced gel in high cis polybutadiene
US20040230010A1 (en) * 2003-05-15 2004-11-18 Korea Kumho Petrochemical Co., Ltd. High 1,4-cis polybutadiene-polyurethane copolymer and preparation method thereof
US7247695B2 (en) * 2003-05-15 2007-07-24 Korea Kumho Petrochemical Co., Ltd. High 1,4-cis polybutadiene-polyurethane copolymer and preparation method thereof
US7157514B2 (en) * 2004-05-12 2007-01-02 Acushnet Company Golf ball core compositions

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110136956A1 (en) * 2009-12-09 2011-06-09 Korea Kumho Petrochemical Co., Ltd. 1,4-cis-polybutadiene functionalized with organosulfur compound for preparation of golf ball core
WO2012041804A2 (en) 2010-09-30 2012-04-05 Styron Europe Gmbh Polymer compositions
US9868801B2 (en) 2012-02-27 2018-01-16 Bridgestone Corporation Processes for the preparation of high-cis polydienes
US9353205B2 (en) * 2012-02-27 2016-05-31 Bridgestone Corporation Processes for the preparation of high-cis polydienes
EP2820054A1 (en) * 2012-02-27 2015-01-07 Bridgestone Corporation Processes for the preparation of high-cis polydienes
KR101975074B1 (en) 2012-02-27 2019-05-03 가부시키가이샤 브리지스톤 Processes for the preparation of high-cis polydienes
KR20140129048A (en) * 2012-02-27 2014-11-06 가부시키가이샤 브리지스톤 Processes for the preparation of high-cis polydienes
EP2820054A4 (en) * 2012-02-27 2015-07-15 Bridgestone Corp Processes for the preparation of high-cis polydienes
US20150299350A1 (en) * 2012-02-27 2015-10-22 Bridgestone Corporation Processes For The Preparation Of High-Cis Polydienes
RU2588136C2 (en) * 2012-02-29 2016-06-27 ТРИНСЕО ЮРОП ГмбХ Method of producing polydienes
US9822195B2 (en) 2012-02-29 2017-11-21 Trinseo Europe Gmbh Process for producing diene polymers
WO2013127448A1 (en) * 2012-02-29 2013-09-06 Styron Europe Gmbh Process for producing diene polymers
US20150299367A1 (en) * 2012-12-20 2015-10-22 Michelin Recherche Et Technique, S.A. Process for radical grafting of a diene elastomer
US9487614B2 (en) * 2012-12-20 2016-11-08 Compagnie Generale Des Etablissements Michelin Process for radical grafting of a diene elastomer
JP2016534170A (en) * 2013-10-16 2016-11-04 アランセオ・ドイチュランド・ゲーエムベーハー Functionalized polymer composition
US10203319B2 (en) * 2013-10-16 2019-02-12 Arlanxeo Deutschland Gmbh Determination of the degree of branching
WO2015059237A1 (en) * 2013-10-24 2015-04-30 Lanxess Deutschland Gmbh Rubber composition
US9938398B2 (en) 2013-10-24 2018-04-10 Arlanxeo Deutschland Gmbh Rubber composition
EP2865540A1 (en) * 2013-10-24 2015-04-29 LANXESS Deutschland GmbH Rubber compound
EP3875501A4 (en) * 2018-12-21 2021-12-01 LG Chem, Ltd. Modified conjugated diene-based polymer and rubber composition comprising same
EP3875502A4 (en) * 2018-12-21 2022-01-12 LG Chem, Ltd. Method for preparing modified conjugated diene-based polymer
US11713365B2 (en) 2018-12-21 2023-08-01 Lg Chem, Ltd. Method for preparing modified conjugated diene-based polymer

Also Published As

Publication number Publication date
JP5153602B2 (en) 2013-02-27
JP2009144154A (en) 2009-07-02
US8198378B2 (en) 2012-06-12
CN101456928A (en) 2009-06-17
KR20090062154A (en) 2009-06-17
KR100970767B1 (en) 2010-07-16

Similar Documents

Publication Publication Date Title
US8198378B2 (en) Aromatic organosulfur functionalized 1,4-cis polybutadiene
US7396889B2 (en) Method for preparing a diene elastomer
US7691957B2 (en) Butadiene-based polymer and method of producing the same as well as rubber composition and tire using the same
EP0406920B1 (en) Modified conjugated diene polymer and process for production thereof
JP4965055B2 (en) Functionalized high cis-1,4-polybutadiene produced using a new functionalizing agent
US6506865B2 (en) Monomeric neodymium carboxylate and its use in polymerization of conjugated diene
CA2219715C (en) Synthesis of macrocyclic polymers having low hysteresis compounded properties
US8604136B2 (en) Process for making dendritic hydrocarbon polymers
US4340685A (en) Process for preparing polybutadiene having a 1,2-configuration content of 5-40% and a cis-1,4-configuration content of 60% or more
KR101111249B1 (en) Grafted and Functionalized high 1,4-trans Polybutadiene with Aromatic Organosulfur Compound
US6451934B1 (en) Process for preparation of high 1,4-CIS polybutadiene
JP2012097271A (en) Functionalized high cis-1,4-polybutadiene prepared using novel functionalizing agent
JPS63179908A (en) Myrcene polymer and production thereof
JP6144275B2 (en) Process for producing polydienes and polydiene copolymers having reduced cold flow
JP2712622B2 (en) Method for producing conjugated diene polymer
KR20040098437A (en) High 1,4-cis polybutadiene-co-polyurethane and manufacturing method thereof
CN110305240A (en) Polybutadiene oligomer, graft modification agent and rare-earth isoprene rubber preparation method
KR101169414B1 (en) Method for control of the degree of branch of polybutadiene with high 1,4-cis content
JP5513338B2 (en) Butadiene polymer, process for producing the same, rubber composition and tire
CN113754805A (en) Rare earth catalyst and preparation and application thereof
KR100780478B1 (en) Copolymerization of SBR and High cis Polybutadiene, and its Preparation
KR100295600B1 (en) Process for producing polybutadiene with high 1,4-cis content
JP2712612B2 (en) Method for producing conjugated diene polymer
KR101821698B1 (en) A method for preparing high-cis 1,4-polybutadiene having excellent workability
JP2759812B2 (en) Method for producing conjugated diene polymer and catalyst for conjugated diene polymerization

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA KUMHO PETROCHEMICAL CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KWAG, GWANG HOON;KIM, PIL SUNG;LEE, SEUNG HWON;AND OTHERS;REEL/FRAME:021708/0525

Effective date: 20080827

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12