US20090191353A1 - Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same - Google Patents

Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same Download PDF

Info

Publication number
US20090191353A1
US20090191353A1 US12/421,190 US42119009A US2009191353A1 US 20090191353 A1 US20090191353 A1 US 20090191353A1 US 42119009 A US42119009 A US 42119009A US 2009191353 A1 US2009191353 A1 US 2009191353A1
Authority
US
United States
Prior art keywords
ceramic
turbine
metal oxide
corrosion resistant
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/421,190
Inventor
Bangalore Aswatha Nagaraj
Brian Thomas Hazel
Jeffrey Allan Pfaendtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/421,190 priority Critical patent/US20090191353A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAGARAJ, BANGALORE ASWATHA, HAZEL, BRIAN THOMAS, PFAENDTNER, JEFFREY ALLAN
Publication of US20090191353A1 publication Critical patent/US20090191353A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/314Layer deposition by chemical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This invention broadly relates to turbine components other than airfoils, such as turbine disks, turbine seals and other static components, having thereon a ceramic corrosion resistant coating. This invention further broadly relates to methods for forming such coatings on the turbine component.
  • the compressors and turbines of the turbine engine can comprise turbine disks (sometimes termed “turbine rotors”) or turbine shafts, as well as a number of blades mounted to the turbine disks/shafts and extending radially outwardly therefrom into the gas flow path. Also included in the turbine engine are rotating, as well as static, seal elements that channel the airflow used for cooling certain components such as turbine blades and vanes. As the maximum operating temperature of the turbine engine increases, the turbine disks/shafts and seal elements are subjected to higher temperatures. As a result, oxidation and corrosion of the disks/shafts and seal elements have become of greater concern.
  • Metal salts such as alkaline sulfate, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc., are a major source of the corrosion, but other elements in the aggressive bleed gas environment (e.g., air extracted from the compressor to cool hotter components in the engine) can also accelerate the corrosion.
  • Alkaline sulfate corrosion in the temperature range and atmospheric region of interest results in pitting of the turbine disk/shaft and seal element substrate at temperatures typically starting around 1200° F. (649° C.). This pitting corrosion has been shown to occur on critical turbine disk/shaft and seal elements. The oxidation and corrosion damage can lead to premature removal and replacement of the disks/shafts and seal elements unless the damage is reduced or repaired.
  • Turbine disks/shafts and seal elements for use at the highest operating temperatures are typically made of nickel-base superalloys selected for good elevated temperature toughness and fatigue resistance. These superalloys have resistance to oxidation and corrosion damage, but that resistance is not sufficient to protect them at sustained operating temperatures now being reached in gas turbine engines. Disks and other rotor components made from newer generation alloys can also contain lower levels of aluminum and/or chromium, and can therefore be more susceptible to corrosion attack.
  • Corrosion resistant diffusion coatings can also be formed from aluminum or chromium, or from the respective oxides (i.e., alumina or chromia). See, for example, commonly assigned U.S. Pat. No. 5,368,888 (Rigney), issued Nov. 29, 1994 (aluminide diffusion coating); and commonly assigned U.S. Pat. No. 6,283,715 (Nagaraj et al), issued Sep. 4, 2001 (chromium diffusion coating). A number of corrosion-resistant coatings have also been considered for use on turbine disk/shaft and seal elements. See, for example, U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan.
  • MOCVD metal-organic chemical vapor deposition
  • These prior corrosion resistant coatings can have a number of disadvantages, including: (1) possibly adversely affecting the fatigue life of the turbine disks/shafts and seal elements because these prior coatings diffuse into the underlying metal substrate; (2) coefficient of thermal expansion (CTE) mismatches between the coating and the underlying metal substrate that can make the coating more prone to spalling; and (3) more complicated and expensive processes (e.g., chemical vapor deposition) for depositing the corrosion resistant coating on the metal substrate.
  • CTE coefficient of thermal expansion
  • An embodiment of this invention broadly relates to an article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate, wherein the ceramic corrosion resistant coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof.
  • Another embodiment of this invention broadly relates to a method for forming this ceramic corrosion resistant coating on the underlying metal substrate of the turbine component.
  • One embodiment of this method comprises the following steps:
  • the ceramic corrosion resistant coating of this invention provides a number of significant benefits and advantages. Because the ceramic corrosion resistant coating comprises a zirconia and/or hafnia as the ceramic metal oxide, it does not diffuse into the underlying metal substrate. As a result, the ceramic corrosion resistant coating does not adversely affect the fatigue properties of the coated turbine disk/shafts, seal elements and other turbine components.
  • the ceramic corrosion resistant coating of this invention provides greater adherence to the substrate and thus greater resistance to spalling. This increased adherence will also further improve the fatigue properties of the coated turbine disks/shafts, seal elements and other turbine components by resisting propagation ofcracks though the thickness of the coating into the metal substrate.
  • Ceramic corrosion resistant coating can be formed by embodiments of the method of this invention that are relatively uncomplicated and inexpensive.
  • the ceramic corrosion resistant coating can be formed by embodiments of the methods of this invention as a relatively thin layer on the metal substrate.
  • FIG. 1 is a schematic sectional view of a portion of the turbine section of a gas turbine engine.
  • FIG. 2 is a sectional view of an embodiment of the ceramic corrosion resistant coating of this invention deposited on the metal substrate of a turbine rotor component.
  • FIG. 3 is a frontal view of a turbine disk showing where the ceramic corrosion resistant coating of this invention is desirably located.
  • ceramic metal oxide refers to zirconia, hafnia or combinations of zirconia and hafnia (i.e., mixtures thereof). These ceramic metal oxides were previously used in thermal barrier coatings that are capable of reducing heat flow to the underlying metal substrate of the article, i.e., forming a thermal barrier, and which have a melting point that is typically at least about 2600° F. (1426° C.), and more typically in the range of from about from about 3450° to about 4980° F. (from about 1900° to about 2750° C.).
  • the ceramic metal oxide can comprise 100 mole % zirconia, 100 mole % hafnia, or any percentage combination of zirconia and hafnia that is desired. Typically, the ceramic metal oxide comprises from about 85 to 100 mole % zirconia and from 0 to about 15 mole % hafnia, more typically from about 95 to 100 mole % zirconia and from 0 to about 5 mole % hafnia.
  • ceramic metal oxide precursor refers to any composition, compound, molecule, etc., that is converted into or forms the ceramic metal oxide, for example, from the respective ceramic metal hydroxide, at any point up to and including the formation of the ceramic corrosion resistant coating.
  • ceramic corrosion resistant coating refers to coatings of this invention that provide resistance against corrosion caused by various corrodants, including metal (e.g., alkaline) sulfates, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc.; at temperatures typically of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and which comprise the ceramic metal oxide.
  • metal e.g., alkaline
  • the ceramic corrosion resistant coatings of this invention usually comprise at least about 60 mole % ceramic metal oxide, typically from about 60 to about 98 mole % ceramic metal oxide, and more typically from about 94 to about 97 mole % ceramic metal oxide.
  • the ceramic corrosion resistant coatings of this invention further typically comprise a stabilizing amount of a stabilizer metal oxide for the ceramic metal oxide.
  • stabilizer metal oxides can be selected from the group consisting of yttria, calcia, scandia, magnesia, india, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, lanthana, tantala, etc., and mixtures thereof.
  • this stabilizer metal oxide that is “stabilizing” will depend on a variety of factors, including the stabilizer metal oxide used, the ceramic metal oxide used, etc.
  • the stabilizer metal oxide comprises from about 2 about 40 mole %, more typically from about 3 to about 6 mole %, of the ceramic corrosion resistant coating.
  • the ceramic corrosion resistant coatings used herein typically comprise yttria as the stabilizer metal oxide. See, for example, Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 24, pp. 882-883 (1984) for a description of suitable yttria-stabilized zirconia-containing ceramic compositions that can be used in the ceramic corrosion resistant coatings of this invention.
  • ceramic composition refers to compositions used to form the ceramic corrosion resistant coatings of this invention, and which comprise the ceramic metal oxide, optionally but typically the stabilizer metal oxide, etc.
  • turbine component other than an airfoil refers to those turbine components that are not airfoils (e.g., blades, vanes, etc.) that are formed from metals or metal alloys, and include turbine disks (also referred to sometimes as “turbine rotors”), turbine shafts, turbine seal elements that are either rotating or static, including forward, interstage and aft turbine seals, turbine blade retainers, other static turbine components, etc.
  • turbine component for which the ceramic corrosion resistant coatings of this invention are particularly advantageous are those that experience a service operating temperature of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and typically in the range of from about 1000° to about 1600° F.
  • turbine bleed air e.g., air extracted from the compressor to cool hotter components in the engine
  • corrosive components typically metal sulfates, sulfites, chlorides, carbonates, etc.
  • the ceramic corrosion resistant coatings of this invention are particularly useful when formed on all or selected portions of the surfaces of the component, such as the surfaces of turbine disks/shafts and turbine seal elements.
  • the mid-to-outer portion of the hub of a turbine disk can have the ceramic corrosion resistant coating of this invention, while the bore region, inner portion of the hub, and blade slots mayor may not have this coating.
  • the contact points or mating surfaces between these components can be void or absent of the ceramic corrosion resistant coating so as to retain desired or specified as produced dimensions.
  • the term “comprising” means various coatings, compositions, metal oxides, components, layers, steps, etc., can be conjointly employed in the present invention. Accordingly, the term “comprising” encompasses the more restrictive terms “consisting essentially of” and “consisting of.”
  • a turbine engine rotor component 30 is provided that can be of any operable type, for example, a turbine disk 32 or a turbine seal element 34 .
  • FIG. 1 a turbine engine rotor component 30 is provided that can be of any operable type, for example, a turbine disk 32 or a turbine seal element 34 .
  • FIG. 1 schematically illustrates a stage 1 turbine disk 36 , a stage 1 turbine blade 38 mounted to the turbine disk 36 , a stage 2 turbine disk 40 , a stage 2 turbine blade 42 mounted to the turbine disk 40 , a forward turbine seal 44 that also functions as a forward blade retainer for blade 38 , an aft turbine seal 46 , and an interstage turbine seal 48 that also functions as a forward blade retainer for blade 42 , an aft blade retainer 50 for blade 38 that is held in place by seal 48 , and an aft blade retainer 52 for blade 42 .
  • turbine disks 32 e.g., stage 1 turbine disk 36 and a stage 2 turbine disk 40
  • turbine seal elements 34 e.g., forward turbine seal 44 , aft turbine seal 46 , and interstage turbine seal 48
  • blade retainers 50 / 52 can be provided with the ceramic corrosion resistant coating of this invention, depending upon whether corrosion is expected or observed.
  • the metal substrate 60 of the turbine engine rotor component 30 can comprise any of a variety of metals, or more typically metal alloys, including those based on nickel, cobalt and/or iron alloys.
  • Substrate 60 typically comprises a superalloy based on nickel, cobalt and/or iron.
  • superalloys are disclosed in various references, such as, for example, commonly assigned U.S. Pat. No. 4,957,567 (Krueger et al), issued Sep. 18, 1990, and U.S. Pat. No. 6,521,175 (Mourer et al), issued Feb. 18, 2003, the relevant portions of which are incorporated by reference.
  • Nickel-based superalloys are also generally described in Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 12, pp. 417-479 (1980), and Vol. 15, pp. 787-800 (1981).
  • Illustrative nickel-based superalloys are designated by the trade names Inconel®, Nimonic®, Rene® (e.g., Rene® 88, Rene® 104, Rene N5 alloys), and Udime®.
  • Substrate 60 more typically comprises a nickel-based alloy, and particularly a nickel-based superalloy, that has more nickel than any other element.
  • the nickel-based superalloy can be strengthened by the precipitation of gamma prime or a related phase.
  • a nickel-based superalloy for which the ceramic corrosion resistant coating of this invention is particularly useful is available by the trade name Rene 88, which has a nominal composition, by weight of 13% cobalt, 16% chromium, 4% molybdenum, 3.7% titanium, 2.1% aluminum, 4% tungsten, 0.70% niobium, 0.015% boron, 0.03% zirconium, and 0.03 percent carbon, with the balance nickel and minor impurities.
  • surface 62 is typically pretreated mechanically, chemically or both to make the surface more receptive for coating 64 .
  • Suitable pretreatment methods include grit blasting, with or without masking of surfaces that are not to be subjected to grit blasting (see U.S. Pat. No. 5,723,078 to Niagara et al, issued Mar. 3, 1998, especially col. 4, lines 46-66, which is incorporated by reference), micromachining, laser etching (see U.S. Pat. No. 5,723,078 to Nagaraj et al, issued Mar. 3, 1998, especially col. 4, line 67 to col.
  • the surface 62 of metal substrate 60 is pretreated by grit blasting where surface 62 is subjected to the abrasive action of silicon carbide particles, steel particles, alumina particles or other types of abrasive particles.
  • These particles used in grit blasting are typically alumina particles and typically have a particle size of from about 600 to about 35 mesh (from about 25 to about 500 micrometers), more typically from about 400 to about 300 mesh (from about 38 to about 50 micrometers).
  • An embodiment of the method of this invention for forming ceramic corrosion resistant coating 64 on metal substrate 60 is by use of a sol-gel process. See commonly assigned U.S. Patent Application No. 2004/0081767 (Pfaendtner et al), published Apr. 29, 2004, which is incorporated by reference.
  • Sol-gel processing is a chemical solution method to produce a ceramic oxide (e.g., zirconia).
  • a chemical gel-forming solution which typically comprises an alkoxide precursor or a metal salt is combined with ceramic metal oxide precursor materials, as well as any stabilizer metal oxide precursor materials, etc.
  • a gel is formed as the gel-forming solution is heated to slightly dry it at a first preselected temperature for a first preselected time. The gel is then applied over the surface 62 of metal substrate 60 .
  • the sol-gel can be applied to surface 62 of substrate 60 by any convenient technique.
  • the sol-gel can be applied by spraying at least one thin layer, e.g., a single thin layer, or more typically a plurality of thin layers to build up a film to the desired thickness for coating 64 .
  • the gel is then fired at a second elevated preselected temperature above the first elevated temperature for a second preselected time to form coating 64 .
  • the ceramic corrosion resistant coating 64 comprises a dense matrix that has a thickness of up to about 5 mils (127 microns) and typically from about 0.01 to about 1 mils (from about 0.2 to about 25 microns), more typically from about 0.04 to about 0.5 mils (from about 1 to about 13 microns).
  • inert oxide filler particles can be added to the sol-gel solution to enable a greater per-layer thickness to be applied to the substrate.
  • PVD physical vapor deposition
  • EB-PVD electron beam PVD
  • filtered arc deposition or by sputtering.
  • Suitable sputtering techniques for use herein include but are not limited to direct current diode sputtering, radio frequency sputtering, ion beam sputtering, reactive sputtering, magnetron sputtering and steered arc sputtering.
  • PVD techniques can form ceramic corrosion resistant coatings 64 having strain resistant or tolerant microstructures such as vertical microcracked structures.
  • EB-PVD techniques can form columnar structures that are highly strain resistant to further increase the coating adherence.
  • strain resistant or tolerant structures have direct paths between the coating surface 66 and the substrate 60 , the paths are sufficiently narrow that the partially molten or highly viscous corrodant salts do not infiltrate or minimally infiltrate the cracks of the vertically microcracked structures or column gaps of the columnar structures.
  • thermal spray refers to any method for spraying, applying or otherwise depositing the ceramic composition that involves heating and typically at least partial or complete thermal melting of the overlay coating material and depositing of the heated/melted material, typically by entrainment in a heated gas stream, onto the metal substrate to be coated.
  • Suitable thermal spray deposition techniques include plasma spray, such as air plasma spray (APS) and vacuum plasma spray (YPS), high velocity oxy-fuel (HYOF) spray, detonation spray, wire spray, etc., as well as combinations of these techniques.
  • a particularly suitable thermal spray deposition technique for use herein is plasma spray.
  • Suitable plasma spray techniques are well known to those skilled in the art. See, for example, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., Vol. 15, page 255, and references noted therein, as well as U.S. Pat. No. 5,332,598 (Kawasaki et al), issued Jul. 26, 1994; U.S. Pat. No. 5,047,612 (Savkar et al) issued Sep. 10, 1991; and U.S. Pat. No. 4,741,286 (Hoh et al), issued May 3, 1998 (herein incorporated by reference) which are instructive in regard to various aspects of plasma spraying suitable for use herein.
  • Suitable methods for carrying out chemical vapor deposition and/or pack cementation are disclosed in, for example, commonly assigned U.S. Pat. No. 3,540,878 (Levine et al), issued Nov. 17, 1970; commonly assigned U.S. Pat. No. 3,598,638 (Levine), issued Aug. 10, 1971; commonly assigned U.S. Pat. No. 3,667,985 (Levine et al), issued Jun. 6, 1972, the relevant disclosures of which are incorporated by reference.
  • Metal-organic chemical vapor phase deposition (MOCYD) processes can also be used herein. See commonly assigned U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan. 22, 2004, the relevant disclosures of which are incorporated by reference.
  • FIG. 3 shows a turbine disk 32 having an inner generally circular hub portion indicated as 74 and an outer generally circular perimeter or diameter indicated as 78 , and a periphery indicated as 82 that is provided with a plurality of circumferentially spaced slots indicated as 86 for receiving the root portion of turbine blades such as 38 , 42 . While the ceramic corrosion resistant coating 64 can be applied to the entire surface of disk 70 , it is typically needed only on the surface of outer diameter 78 .
  • this invention can be used to form a ceramic corrosion resistant coating 64 , as described above, on the surfaces of various turbine engine rotor components, including compressor disks, seals, and shafts, which can then be exposed to corrosive elements at elevated temperatures.
  • the ceramic corrosion resistant coatings of this invention can also be applied during original manufacture of the component (i.e., an OEM component), after the component has been in operation for a period of time, after other coatings have been removed from the component (e.g., a repair situation), while the component is assembled or after the component is disassembled, etc.
  • a one inch round sample of Rene N5 alloy is coated with an approximately 5 micron layer of a 7 wt. % yttria stabilized zirconia deposited from a sol gel.
  • a sulfate containing corrodant is applied to the surface of the coating and run through a 2 hour cycle at 1300° F. (704° C.).
  • the first hour of the 2 hour cycle uses a reducing atmosphere to try to cause a reaction between the corrodant and the surface of the coated sample, while the second hour uses air to cause corrosion scale growth.
  • the corrodant is removed by water washing and coated sample is then inspected for damage. This corrosion application, thermal exposure, cleaning and inspection cycle is repeated until the coated sample shows signs of damage.

Abstract

An article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate. This coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof. This coating can be formed by a method comprising the following steps: (a) providing a turbine component other than an airfoil comprising the metal substrate; (b) providing a gel-forming solution comprising a ceramic metal oxide precursor; (c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel; (d) depositing the gel on the metal substrate; and (e) firing the gel at a second preselected temperature above the first preselected temperature to form the ceramic corrosion resistant coating comprising the ceramic metal oxide. This coating can also be formed by alternative methods wherein a ceramic composition comprising the ceramic metal oxide is deposited by physical vapor deposition on the metal substrate to provide a strain-tolerant columnar structure, or is thermal sprayed on the metal substrate.

Description

    REFERENCE TO PREVIOUS APPLICATIONS
  • This application is a Division of co-pending U.S. patent application Ser. No. 11/094,351 filed Mar. 31, 2005.
  • BACKGROUND OF THE INVENTION
  • This invention broadly relates to turbine components other than airfoils, such as turbine disks, turbine seals and other static components, having thereon a ceramic corrosion resistant coating. This invention further broadly relates to methods for forming such coatings on the turbine component.
  • In an aircraft gas turbine engine, air is drawn into the front of the engine, compressed by a shaft-mounted compressor, and mixed with fuel. The mixture is burned, and the hot exhaust gases are passed through a turbine mounted on the same shaft. The flow of combustion gas turns the turbine by impingement against the airfoil section of the turbine blades, which turns the shaft and provides power to the compressor. The hot exhaust gases flow from the back of the engine, driving it and the aircraft forward. The hotter the combustion and exhaust gases, the more efficient is the operation of the jet engine. Thus, there is incentive to raise the combustion gas temperature.
  • The compressors and turbines of the turbine engine can comprise turbine disks (sometimes termed “turbine rotors”) or turbine shafts, as well as a number of blades mounted to the turbine disks/shafts and extending radially outwardly therefrom into the gas flow path. Also included in the turbine engine are rotating, as well as static, seal elements that channel the airflow used for cooling certain components such as turbine blades and vanes. As the maximum operating temperature of the turbine engine increases, the turbine disks/shafts and seal elements are subjected to higher temperatures. As a result, oxidation and corrosion of the disks/shafts and seal elements have become of greater concern.
  • Metal salts such as alkaline sulfate, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc., are a major source of the corrosion, but other elements in the aggressive bleed gas environment (e.g., air extracted from the compressor to cool hotter components in the engine) can also accelerate the corrosion. Alkaline sulfate corrosion in the temperature range and atmospheric region of interest results in pitting of the turbine disk/shaft and seal element substrate at temperatures typically starting around 1200° F. (649° C.). This pitting corrosion has been shown to occur on critical turbine disk/shaft and seal elements. The oxidation and corrosion damage can lead to premature removal and replacement of the disks/shafts and seal elements unless the damage is reduced or repaired.
  • Turbine disks/shafts and seal elements for use at the highest operating temperatures are typically made of nickel-base superalloys selected for good elevated temperature toughness and fatigue resistance. These superalloys have resistance to oxidation and corrosion damage, but that resistance is not sufficient to protect them at sustained operating temperatures now being reached in gas turbine engines. Disks and other rotor components made from newer generation alloys can also contain lower levels of aluminum and/or chromium, and can therefore be more susceptible to corrosion attack.
  • Corrosion resistant diffusion coatings can also be formed from aluminum or chromium, or from the respective oxides (i.e., alumina or chromia). See, for example, commonly assigned U.S. Pat. No. 5,368,888 (Rigney), issued Nov. 29, 1994 (aluminide diffusion coating); and commonly assigned U.S. Pat. No. 6,283,715 (Nagaraj et al), issued Sep. 4, 2001 (chromium diffusion coating). A number of corrosion-resistant coatings have also been considered for use on turbine disk/shaft and seal elements. See, for example, U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan. 22, 2004, which discloses metal-organic chemical vapor deposition (MOCVD) of aluminum, silicon, tantalum, titanium or chromium oxide on turbine disks and seal elements to provide a protective coating. These prior corrosion resistant coatings can have a number of disadvantages, including: (1) possibly adversely affecting the fatigue life of the turbine disks/shafts and seal elements because these prior coatings diffuse into the underlying metal substrate; (2) coefficient of thermal expansion (CTE) mismatches between the coating and the underlying metal substrate that can make the coating more prone to spalling; and (3) more complicated and expensive processes (e.g., chemical vapor deposition) for depositing the corrosion resistant coating on the metal substrate.
  • Accordingly, there is still a need for coatings for turbine disks, turbine shafts, turbine seal elements and other non-airfoil turbine components that: (1) provide corrosion resistance, especially at higher or elevated temperatures; (2) without affecting other mechanical properties of the underlying metal substrate or potentially causing other undesired effects such as spalling; and (3) can be formed by relatively uncomplicated and inexpensive methods.
  • BRIEF DESCRIPTION OF THE INVENTION
  • An embodiment of this invention broadly relates to an article comprising a turbine component other than an airfoil having a metal substrate and a ceramic corrosion resistant coating overlaying the metal substrate, wherein the ceramic corrosion resistant coating has a thickness up to about 5 mils (127 microns) and comprises a ceramic metal oxide selected from the group consisting of zirconia, hafnia and mixtures thereof.
  • Another embodiment of this invention broadly relates to a method for forming this ceramic corrosion resistant coating on the underlying metal substrate of the turbine component. One embodiment of this method comprises the following steps:
  • (a) providing a turbine component other than an airfoil comprising a metal substrate;
  • (b) providing a gel-forming solution comprising a ceramic metal oxide precursor;
  • (c) heating the gel-forming solution to a first preselected temperature for a first preselected time to form a gel;
  • (d) depositing the gel on the metal substrate; and
  • (e) firing the deposited gel at a second preselected temperature above the first preselected temperature to form a ceramic corrosion resistant coating comprising a ceramic metal oxide, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
  • An alternative embodiment of this method for forming this coating comprises the following steps:
  • (a) providing a turbine component other than an airfoil comprising a metal substrate; and
  • (b) depositing a ceramic composition comprising a ceramic metal oxide on the metal substrate by physical vapor deposition to form a ceramic corrosion resistant coating comprising the ceramic metal oxide and having a strain-tolerant columnar structure, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
  • Another alternative embodiment of this method for forming this coating comprises the following steps:
  • (a) providing a turbine component other than an airfoil comprising a metal substrate; and
  • (b) thermal spraying a ceramIC composition comprising a ceramic metal oxide on the metal substrate to form the ceramic corrosion resistant coating comprising the ceramic metal oxide, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
  • The ceramic corrosion resistant coating of this invention provides a number of significant benefits and advantages. Because the ceramic corrosion resistant coating comprises a zirconia and/or hafnia as the ceramic metal oxide, it does not diffuse into the underlying metal substrate. As a result, the ceramic corrosion resistant coating does not adversely affect the fatigue properties of the coated turbine disk/shafts, seal elements and other turbine components.
  • Because of the greater coefficient of thermal expansion match between the ceramic metal oxide and the underlying metal substrate, the ceramic corrosion resistant coating of this invention provides greater adherence to the substrate and thus greater resistance to spalling. This increased adherence will also further improve the fatigue properties of the coated turbine disks/shafts, seal elements and other turbine components by resisting propagation ofcracks though the thickness of the coating into the metal substrate.
  • These ceramic corrosion resistant coating can be formed by embodiments of the method of this invention that are relatively uncomplicated and inexpensive. In addition, the ceramic corrosion resistant coating can be formed by embodiments of the methods of this invention as a relatively thin layer on the metal substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic sectional view of a portion of the turbine section of a gas turbine engine.
  • FIG. 2 is a sectional view of an embodiment of the ceramic corrosion resistant coating of this invention deposited on the metal substrate of a turbine rotor component.
  • FIG. 3 is a frontal view of a turbine disk showing where the ceramic corrosion resistant coating of this invention is desirably located.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the term “ceramic metal oxide” refers to zirconia, hafnia or combinations of zirconia and hafnia (i.e., mixtures thereof). These ceramic metal oxides were previously used in thermal barrier coatings that are capable of reducing heat flow to the underlying metal substrate of the article, i.e., forming a thermal barrier, and which have a melting point that is typically at least about 2600° F. (1426° C.), and more typically in the range of from about from about 3450° to about 4980° F. (from about 1900° to about 2750° C.). The ceramic metal oxide can comprise 100 mole % zirconia, 100 mole % hafnia, or any percentage combination of zirconia and hafnia that is desired. Typically, the ceramic metal oxide comprises from about 85 to 100 mole % zirconia and from 0 to about 15 mole % hafnia, more typically from about 95 to 100 mole % zirconia and from 0 to about 5 mole % hafnia.
  • As used herein, the term “ceramic metal oxide precursor” refers to any composition, compound, molecule, etc., that is converted into or forms the ceramic metal oxide, for example, from the respective ceramic metal hydroxide, at any point up to and including the formation of the ceramic corrosion resistant coating.
  • As used herein, the term “ceramic corrosion resistant coating” refers to coatings of this invention that provide resistance against corrosion caused by various corrodants, including metal (e.g., alkaline) sulfates, sulfites, chlorides, carbonates, oxides, and other corrodant salt deposits resulting from ingested dirt, fly ash, concrete dust, sand, sea salt, etc.; at temperatures typically of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and which comprise the ceramic metal oxide. The ceramic corrosion resistant coatings of this invention usually comprise at least about 60 mole % ceramic metal oxide, typically from about 60 to about 98 mole % ceramic metal oxide, and more typically from about 94 to about 97 mole % ceramic metal oxide. The ceramic corrosion resistant coatings of this invention further typically comprise a stabilizing amount of a stabilizer metal oxide for the ceramic metal oxide. These stabilizer metal oxides can be selected from the group consisting of yttria, calcia, scandia, magnesia, india, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, lanthana, tantala, etc., and mixtures thereof. The particular amount of this stabilizer metal oxide that is “stabilizing” will depend on a variety of factors, including the stabilizer metal oxide used, the ceramic metal oxide used, etc. Typically, the stabilizer metal oxide comprises from about 2 about 40 mole %, more typically from about 3 to about 6 mole %, of the ceramic corrosion resistant coating. The ceramic corrosion resistant coatings used herein typically comprise yttria as the stabilizer metal oxide. See, for example, Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 24, pp. 882-883 (1984) for a description of suitable yttria-stabilized zirconia-containing ceramic compositions that can be used in the ceramic corrosion resistant coatings of this invention.
  • As used herein, the term “ceramic composition” refers to compositions used to form the ceramic corrosion resistant coatings of this invention, and which comprise the ceramic metal oxide, optionally but typically the stabilizer metal oxide, etc.
  • As used herein, the term “turbine component other than an airfoil” refers to those turbine components that are not airfoils (e.g., blades, vanes, etc.) that are formed from metals or metal alloys, and include turbine disks (also referred to sometimes as “turbine rotors”), turbine shafts, turbine seal elements that are either rotating or static, including forward, interstage and aft turbine seals, turbine blade retainers, other static turbine components, etc. The turbine component for which the ceramic corrosion resistant coatings of this invention are particularly advantageous are those that experience a service operating temperature of at least about 10000 p (538° C.), more typically at least about 12000 p (649° C.), and typically in the range of from about 1000° to about 1600° F. (from about 538° to about 871° C.). These components are usually exposed to turbine bleed air (e.g., air extracted from the compressor to cool hotter components in the engine) having ingested corrosive components, typically metal sulfates, sulfites, chlorides, carbonates, etc., that can deposit on the surface of the component. The ceramic corrosion resistant coatings of this invention are particularly useful when formed on all or selected portions of the surfaces of the component, such as the surfaces of turbine disks/shafts and turbine seal elements. For example, the mid-to-outer portion of the hub of a turbine disk can have the ceramic corrosion resistant coating of this invention, while the bore region, inner portion of the hub, and blade slots mayor may not have this coating. In addition, the contact points or mating surfaces between these components such as the disk post pressure faces (i.e., the mating surface between the disk post and the turbine blade dovetail), as well as the contact points between the disks and seals, can be void or absent of the ceramic corrosion resistant coating so as to retain desired or specified as produced dimensions.
  • As used herein, the term “comprising” means various coatings, compositions, metal oxides, components, layers, steps, etc., can be conjointly employed in the present invention. Accordingly, the term “comprising” encompasses the more restrictive terms “consisting essentially of” and “consisting of.”
  • All amounts, parts, ratios and percentages used herein are by mole % unless otherwise specified.
  • The various embodiments of the turbine components having the ceramic corrosion resistant coating of this invention are further illustrated by reference to the drawings as described hereafter. Referring to FIG. 1, a turbine engine rotor component 30 is provided that can be of any operable type, for example, a turbine disk 32 or a turbine seal element 34. FIG. 1 schematically illustrates a stage 1 turbine disk 36, a stage 1 turbine blade 38 mounted to the turbine disk 36, a stage 2 turbine disk 40, a stage 2 turbine blade 42 mounted to the turbine disk 40, a forward turbine seal 44 that also functions as a forward blade retainer for blade 38, an aft turbine seal 46, and an interstage turbine seal 48 that also functions as a forward blade retainer for blade 42, an aft blade retainer 50 for blade 38 that is held in place by seal 48, and an aft blade retainer 52 for blade 42. Any or all of these turbine disks 32 (e.g., stage 1 turbine disk 36 and a stage 2 turbine disk 40), turbine seal elements 34 (e.g., forward turbine seal 44, aft turbine seal 46, and interstage turbine seal 48) and/or blade retainers 50/52, or any selected portion thereof, can be provided with the ceramic corrosion resistant coating of this invention, depending upon whether corrosion is expected or observed.
  • Referring to FIG. 2, the metal substrate 60 of the turbine engine rotor component 30 can comprise any of a variety of metals, or more typically metal alloys, including those based on nickel, cobalt and/or iron alloys. Substrate 60 typically comprises a superalloy based on nickel, cobalt and/or iron. Such superalloys are disclosed in various references, such as, for example, commonly assigned U.S. Pat. No. 4,957,567 (Krueger et al), issued Sep. 18, 1990, and U.S. Pat. No. 6,521,175 (Mourer et al), issued Feb. 18, 2003, the relevant portions of which are incorporated by reference. Superalloys are also generally described in Kirk-Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 12, pp. 417-479 (1980), and Vol. 15, pp. 787-800 (1981). Illustrative nickel-based superalloys are designated by the trade names Inconel®, Nimonic®, Rene® (e.g., Rene® 88, Rene® 104, Rene N5 alloys), and Udime®.
  • Substrate 60 more typically comprises a nickel-based alloy, and particularly a nickel-based superalloy, that has more nickel than any other element. The nickel-based superalloy can be strengthened by the precipitation of gamma prime or a related phase. A nickel-based superalloy for which the ceramic corrosion resistant coating of this invention is particularly useful is available by the trade name Rene 88, which has a nominal composition, by weight of 13% cobalt, 16% chromium, 4% molybdenum, 3.7% titanium, 2.1% aluminum, 4% tungsten, 0.70% niobium, 0.015% boron, 0.03% zirconium, and 0.03 percent carbon, with the balance nickel and minor impurities.
  • In forming the ceramic corrosion resistant coating 64 of this invention on the surface 62 of metal substrate 60, surface 62 is typically pretreated mechanically, chemically or both to make the surface more receptive for coating 64. Suitable pretreatment methods include grit blasting, with or without masking of surfaces that are not to be subjected to grit blasting (see U.S. Pat. No. 5,723,078 to Niagara et al, issued Mar. 3, 1998, especially col. 4, lines 46-66, which is incorporated by reference), micromachining, laser etching (see U.S. Pat. No. 5,723,078 to Nagaraj et al, issued Mar. 3, 1998, especially col. 4, line 67 to col. 5, line 3 and 14-17, which is incorporated by reference), treatment with chemical etchants such as those containing hydrochloric acid, hydrofluoric acid, nitric acid, ammonium bifluorides and mixtures thereof (see, for example, U.S. Pat. No. 5,723,078 to Nagaraj et al, issued Mar. 3, 1998, especially col. 5, lines 3-10; U.S. Pat. No. 4,563,239 to Adinolfi et al, issued Jan. 7, 1986, especially col. 2, line 67 to col. 3, line 7; U.S. Pat. No. 4,353,780 to Fishter et al, issued Oct. 12, 1982, especially col. 1, lines 50-58; and U.S. Pat. No. 4,411,730 to Fishter et al, issued Oct. 25, 1983, especially col. 2, lines 40-51, all of which are incorporated by reference), treatment with water under pressure (i.e., water jet treatment), with or without loading with abrasive particles, as well as various combinations of these methods. Typically, the surface 62 of metal substrate 60 is pretreated by grit blasting where surface 62 is subjected to the abrasive action of silicon carbide particles, steel particles, alumina particles or other types of abrasive particles. These particles used in grit blasting are typically alumina particles and typically have a particle size of from about 600 to about 35 mesh (from about 25 to about 500 micrometers), more typically from about 400 to about 300 mesh (from about 38 to about 50 micrometers).
  • An embodiment of the method of this invention for forming ceramic corrosion resistant coating 64 on metal substrate 60 is by use of a sol-gel process. See commonly assigned U.S. Patent Application No. 2004/0081767 (Pfaendtner et al), published Apr. 29, 2004, which is incorporated by reference. Sol-gel processing is a chemical solution method to produce a ceramic oxide (e.g., zirconia). A chemical gel-forming solution which typically comprises an alkoxide precursor or a metal salt is combined with ceramic metal oxide precursor materials, as well as any stabilizer metal oxide precursor materials, etc. A gel is formed as the gel-forming solution is heated to slightly dry it at a first preselected temperature for a first preselected time. The gel is then applied over the surface 62 of metal substrate 60. Proper application of the ceramic metal oxide precursor materials and proper drying produce a continuous film over the surface 62. The sol-gel can be applied to surface 62 of substrate 60 by any convenient technique. For example, the sol-gel can be applied by spraying at least one thin layer, e.g., a single thin layer, or more typically a plurality of thin layers to build up a film to the desired thickness for coating 64. The gel is then fired at a second elevated preselected temperature above the first elevated temperature for a second preselected time to form coating 64. The ceramic corrosion resistant coating 64 comprises a dense matrix that has a thickness of up to about 5 mils (127 microns) and typically from about 0.01 to about 1 mils (from about 0.2 to about 25 microns), more typically from about 0.04 to about 0.5 mils (from about 1 to about 13 microns). Optionally, inert oxide filler particles can be added to the sol-gel solution to enable a greater per-layer thickness to be applied to the substrate.
  • An alternative method for forming ceramic corrosion resistant coating 64 is by physical vapor deposition (PVD), such as electron beam PVD (EB-PVD), filtered arc deposition, or by sputtering. Suitable sputtering techniques for use herein include but are not limited to direct current diode sputtering, radio frequency sputtering, ion beam sputtering, reactive sputtering, magnetron sputtering and steered arc sputtering. PVD techniques can form ceramic corrosion resistant coatings 64 having strain resistant or tolerant microstructures such as vertical microcracked structures. EB-PVD techniques can form columnar structures that are highly strain resistant to further increase the coating adherence. Although these strain resistant or tolerant structures have direct paths between the coating surface 66 and the substrate 60, the paths are sufficiently narrow that the partially molten or highly viscous corrodant salts do not infiltrate or minimally infiltrate the cracks of the vertically microcracked structures or column gaps of the columnar structures.
  • Other suitable alternative methods for forming these ceramic corrosion resistant coating include thermal spray, aerosol spray, chemical vapor deposition (CVD) and pack cementation. As used herein, the term “thermal spray” refers to any method for spraying, applying or otherwise depositing the ceramic composition that involves heating and typically at least partial or complete thermal melting of the overlay coating material and depositing of the heated/melted material, typically by entrainment in a heated gas stream, onto the metal substrate to be coated. Suitable thermal spray deposition techniques include plasma spray, such as air plasma spray (APS) and vacuum plasma spray (YPS), high velocity oxy-fuel (HYOF) spray, detonation spray, wire spray, etc., as well as combinations of these techniques. A particularly suitable thermal spray deposition technique for use herein is plasma spray. Suitable plasma spray techniques are well known to those skilled in the art. See, for example, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., Vol. 15, page 255, and references noted therein, as well as U.S. Pat. No. 5,332,598 (Kawasaki et al), issued Jul. 26, 1994; U.S. Pat. No. 5,047,612 (Savkar et al) issued Sep. 10, 1991; and U.S. Pat. No. 4,741,286 (Hoh et al), issued May 3, 1998 (herein incorporated by reference) which are instructive in regard to various aspects of plasma spraying suitable for use herein.
  • Suitable methods for carrying out chemical vapor deposition and/or pack cementation are disclosed in, for example, commonly assigned U.S. Pat. No. 3,540,878 (Levine et al), issued Nov. 17, 1970; commonly assigned U.S. Pat. No. 3,598,638 (Levine), issued Aug. 10, 1971; commonly assigned U.S. Pat. No. 3,667,985 (Levine et al), issued Jun. 6, 1972, the relevant disclosures of which are incorporated by reference. Metal-organic chemical vapor phase deposition (MOCYD) processes can also be used herein. See commonly assigned U.S. Patent Application No. 2004/0013802 (Ackerman et al), published Jan. 22, 2004, the relevant disclosures of which are incorporated by reference.
  • As illustrated in FIG. 3, typically only a portion of the surface of these turbine disks/shafts, seals and/or blade retainers are provided with the ceramic corrosion resistant coating 64 of this invention. FIG. 3 shows a turbine disk 32 having an inner generally circular hub portion indicated as 74 and an outer generally circular perimeter or diameter indicated as 78, and a periphery indicated as 82 that is provided with a plurality of circumferentially spaced slots indicated as 86 for receiving the root portion of turbine blades such as 38, 42. While the ceramic corrosion resistant coating 64 can be applied to the entire surface of disk 70, it is typically needed only on the surface of outer diameter 78.
  • While the above embodiments have been described in the context of coating turbine engine disks, this invention can be used to form a ceramic corrosion resistant coating 64, as described above, on the surfaces of various turbine engine rotor components, including compressor disks, seals, and shafts, which can then be exposed to corrosive elements at elevated temperatures. The ceramic corrosion resistant coatings of this invention can also be applied during original manufacture of the component (i.e., an OEM component), after the component has been in operation for a period of time, after other coatings have been removed from the component (e.g., a repair situation), while the component is assembled or after the component is disassembled, etc.
  • The following example illustrates an embodiment for forming the ceramic corrosion coating of this invention on a metal substrate by sol-gel processing and the benefits obtained thereby:
  • A one inch round sample of Rene N5 alloy is coated with an approximately 5 micron layer of a 7 wt. % yttria stabilized zirconia deposited from a sol gel. A sulfate containing corrodant is applied to the surface of the coating and run through a 2 hour cycle at 1300° F. (704° C.). The first hour of the 2 hour cycle uses a reducing atmosphere to try to cause a reaction between the corrodant and the surface of the coated sample, while the second hour uses air to cause corrosion scale growth. The corrodant is removed by water washing and coated sample is then inspected for damage. This corrosion application, thermal exposure, cleaning and inspection cycle is repeated until the coated sample shows signs of damage. After 8 cycles no appreciable damage is noted on the coated sample. After 10 cycles, the coating is still adherent to the a Hoy, but discoloration is noted and the coated sample is cross-sectioned for evaluation. After cross-sectioning, a corrosion production layer approximately 10 microns thick is found below the coating. For comparison, this is representative of a bare alloy sample (i.e., with no coating) after approximately 2 cycles of such testing.
  • While specific embodiments of this invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of this invention as defined in the appended claims.

Claims (8)

1. A method comprising the following steps:
(a) providing a turbine component comprising a metal substrate; and
(b) depositing a ceramic composition comprising a ceramic metal oxide on the metal substrate by physical vapor deposition to form a ceramic corrosion resistant coating comprising the ceramic metal oxide and having a strain-tolerant columnar structure, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
2. The method of claim 1 wherein step (b) is carried out by electron beam physical vapor deposition of the ceramic composition on the metal substrate.
3. The method of claim 1 wherein the turbine component provided during step (a) is a compressor or turbine disk.
4. The method of claim 1 wherein the turbine component provided during step (a) is a seal element.
5. A method comprising the following steps:
(a) providing a turbine component other than a turbine airfoil comprising a metal substrate; and
(b) thermal spraying a ceramic composition comprising a ceramic metal oxide on the metal substrate to form a ceramic corrosion resistant coating comprising the ceramic metal oxide, wherein the ceramic metal oxide is selected from the group consisting of zirconia, hafnia and mixtures thereof.
6. The method of claim 5 wherein step (b) is carried out by plasma spraying the ceramic composition on the metal substrate.
7. The method of claim 5 wherein the turbine component provided during step (a) is a compressor or turbine disk.
8. The method of claim 5 wherein the turbine component provided during step (a) is a seal element.
US12/421,190 2005-03-31 2009-04-09 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same Abandoned US20090191353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/421,190 US20090191353A1 (en) 2005-03-31 2009-04-09 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/094,351 US7666515B2 (en) 2005-03-31 2005-03-31 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same
US12/421,190 US20090191353A1 (en) 2005-03-31 2009-04-09 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/094,351 Division US7666515B2 (en) 2005-03-31 2005-03-31 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same

Publications (1)

Publication Number Publication Date
US20090191353A1 true US20090191353A1 (en) 2009-07-30

Family

ID=36570571

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/094,351 Active 2026-04-24 US7666515B2 (en) 2005-03-31 2005-03-31 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same
US12/421,149 Abandoned US20090191347A1 (en) 2005-03-31 2009-04-09 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same
US12/421,190 Abandoned US20090191353A1 (en) 2005-03-31 2009-04-09 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/094,351 Active 2026-04-24 US7666515B2 (en) 2005-03-31 2005-03-31 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same
US12/421,149 Abandoned US20090191347A1 (en) 2005-03-31 2009-04-09 Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same

Country Status (3)

Country Link
US (3) US7666515B2 (en)
EP (1) EP1710398A1 (en)
JP (1) JP5225551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764989B2 (en) 2013-03-13 2017-09-19 Rolls-Royce Corporation Reactive fiber interface coatings for improved environmental stability

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090239061A1 (en) * 2006-11-08 2009-09-24 General Electric Corporation Ceramic corrosion resistant coating for oxidation resistance
US9644273B2 (en) 2007-02-09 2017-05-09 Honeywell International Inc. Protective barrier coatings
EP2143884A1 (en) * 2008-07-11 2010-01-13 Siemens Aktiengesellschaft Rotor disc for a turbomachine
JP5610698B2 (en) * 2009-03-26 2014-10-22 三菱重工業株式会社 Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine
EP2233600B1 (en) * 2009-03-26 2020-04-29 Ansaldo Energia Switzerland AG Method for the protection of a thermal barrier coating system and a method for the renewal of such a protection
US9568108B2 (en) * 2009-03-30 2017-02-14 Eagle Industry Co., Ltd. Bellows type mechanical seal
EP2416037B1 (en) * 2009-03-30 2013-09-04 Eagle Industry Co., Ltd. Bellows type mechanical seal
GB0907278D0 (en) * 2009-04-29 2009-06-10 Rolls Royce Plc A seal arrangement and a method of repairing a seal arrangement
CA2715958A1 (en) * 2009-10-12 2011-04-12 General Electric Company Process of forming a coating system, coating system formed thereby, and components coated therewith
US20110280716A1 (en) * 2010-05-17 2011-11-17 Douglas Gerard Konitzer Gas turbine engine compressor components comprising thermal barriers, thermal barrier systems, and methods of using the same
US9719353B2 (en) 2011-04-13 2017-08-01 Rolls-Royce Corporation Interfacial diffusion barrier layer including iridium on a metallic substrate
GB2519047B (en) * 2012-08-14 2018-08-22 Snecma A method of measuring the temperature reached by a part, in particular a turbine engine part
US20140094356A1 (en) * 2012-09-28 2014-04-03 General Electric Company Treatment process, oxide-forming treatment composition, and treated component
CA2904185C (en) 2013-03-13 2021-02-23 General Electric Company Coatings for metallic substrates
EP2918705B1 (en) 2014-03-12 2017-05-03 Rolls-Royce Corporation Coating including diffusion barrier layer including iridium and oxide layer and method of coating
US10280770B2 (en) 2014-10-09 2019-05-07 Rolls-Royce Corporation Coating system including oxide nanoparticles in oxide matrix
US10047614B2 (en) 2014-10-09 2018-08-14 Rolls-Royce Corporation Coating system including alternating layers of amorphous silica and amorphous silicon nitride
US11085116B2 (en) * 2017-03-22 2021-08-10 The Boeing Company Engine shaft assembly and method
US11162457B2 (en) * 2017-08-11 2021-11-02 General Electric Company Turbine fan system and method
US11555241B2 (en) * 2018-07-03 2023-01-17 Raytheon Technologies Corporation Coating system having synthetic oxide layers
FR3111157B1 (en) * 2020-06-05 2022-07-22 Safran Aircraft Engines Motor comprising a sealing member between two rotor elements

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015502A (en) * 1988-11-03 1991-05-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5824423A (en) * 1996-02-07 1998-10-20 N.V. Interturbine Thermal barrier coating system and methods
US6057047A (en) * 1997-11-18 2000-05-02 United Technologies Corporation Ceramic coatings containing layered porosity
US6106959A (en) * 1998-08-11 2000-08-22 Siemens Westinghouse Power Corporation Multilayer thermal barrier coating systems
US6146692A (en) * 1998-12-14 2000-11-14 General Electric Company Caustic process for replacing a thermal barrier coating
US20030049470A1 (en) * 1996-12-12 2003-03-13 Maloney Michael J. Thermal barrier coating systems and materials
US20030077477A1 (en) * 2001-10-22 2003-04-24 Bruce Robert William Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
US6579567B1 (en) * 1999-08-11 2003-06-17 Nripendra N. Das Process for selectively masking turbine components during vapor phase diffusion coating
US20030118873A1 (en) * 2001-12-21 2003-06-26 Murphy Kenneth S. Stabilized zirconia thermal barrier coating with hafnia
US20030138658A1 (en) * 2002-01-22 2003-07-24 Taylor Thomas Alan Multilayer thermal barrier coating
US6641907B1 (en) * 1999-12-20 2003-11-04 Siemens Westinghouse Power Corporation High temperature erosion resistant coating and material containing compacted hollow geometric shapes
US20040081767A1 (en) * 2002-10-28 2004-04-29 General Electric Ceramic masking material and application method for protecting turbine airfoil component surfaces during vapor phase aluminiding
US20040115469A1 (en) * 2002-12-12 2004-06-17 Nagaraj Bangalore Aswatha Thermal barrier coating protected by alumina and method for preparing same
US20040115470A1 (en) * 2002-12-12 2004-06-17 Ackerman John Frederick Thermal barrier coating protected by infiltrated alumina and method for preparing same
US20040115406A1 (en) * 2002-12-12 2004-06-17 Nagaraj Bangalore Aswatha Thermal barrier coating protected by thermally glazed layer and method for preparing same
US6869703B1 (en) * 2003-12-30 2005-03-22 General Electric Company Thermal barrier coatings with improved impact and erosion resistance
US6887595B1 (en) * 2003-12-30 2005-05-03 General Electric Company Thermal barrier coatings having lower layer for improved adherence to bond coat
US20060250453A1 (en) * 2005-04-04 2006-11-09 Silverbrook Research Pty Ltd MEMS bubble generator

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248251A (en) 1963-06-28 1966-04-26 Teleflex Inc Inorganic coating and bonding composition
US3248250A (en) 1963-06-28 1966-04-26 Teleflex Inc Coating and bonding composition
US3248249A (en) 1963-06-28 1966-04-26 Telefiex Inc Inorganic coating and bonding composition
US3667985A (en) 1967-12-14 1972-06-06 Gen Electric Metallic surface treatment method
US3540878A (en) 1967-12-14 1970-11-17 Gen Electric Metallic surface treatment material
US3598638A (en) 1968-11-29 1971-08-10 Gen Electric Diffusion metallic coating method
US4353780A (en) 1980-10-01 1982-10-12 United Technologies Corporation Chemical milling of high tungsten content superalloys
US4411730A (en) 1980-10-01 1983-10-25 United Technologies Corporation Selective chemical milling of recast surfaces
US4563239A (en) 1984-10-16 1986-01-07 United Technologies Corporation Chemical milling using an inert particulate and moving vessel
JPS61259777A (en) 1985-05-13 1986-11-18 Onoda Cement Co Ltd Single-torch type plasma spraying method and apparatus
US4946710A (en) * 1987-06-02 1990-08-07 National Semiconductor Corporation Method for preparing PLZT, PZT and PLT sol-gels and fabricating ferroelectric thin films
US4957567A (en) 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
US5221354A (en) 1991-11-04 1993-06-22 General Electric Company Apparatus and method for gas phase coating of hollow articles
JPH0693404A (en) 1991-12-04 1994-04-05 Ngk Insulators Ltd Production of lanthanum chromite film and lanthanum chromite coating
DE4417405A1 (en) * 1994-05-18 1995-11-23 Inst Neue Mat Gemein Gmbh Process for the production of structured inorganic layers
US5660885A (en) 1995-04-03 1997-08-26 General Electric Company Protection of thermal barrier coating by a sacrificial surface coating
US5723078A (en) 1996-05-24 1998-03-03 General Electric Company Method for repairing a thermal barrier coating
US5753078A (en) * 1996-06-07 1998-05-19 Cartons St-Laurent, Inc./St. Laurent Paperboard, Inc. Method of making surface coated or impregnated paper or paperboard
JPH10195629A (en) * 1996-12-27 1998-07-28 Mitsubishi Heavy Ind Ltd Gas turbine blade and method for forming film thereon
US6521175B1 (en) 1998-02-09 2003-02-18 General Electric Co. Superalloy optimized for high-temperature performance in high-pressure turbine disks
US6296447B1 (en) 1999-08-11 2001-10-02 General Electric Company Gas turbine component having location-dependent protective coatings thereon
US6270318B1 (en) 1999-12-20 2001-08-07 United Technologies Corporation Article having corrosion resistant coating
JP2003075326A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Evaluation method and evaluation device for heat insulating coating film
US6682821B2 (en) 2001-12-28 2004-01-27 Kyocera Corporation Corrosion-resistant ceramics
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
US6616978B1 (en) 2002-05-09 2003-09-09 General Electric Company Protecting a substrate with a multilayer oxide/phosphate coating having a temperature-stepped cure
US6746783B2 (en) 2002-06-27 2004-06-08 General Electric Company High-temperature articles and method for making
US6926928B2 (en) 2002-07-19 2005-08-09 General Electric Company Protection of a gas turbine component by a vapor-deposited oxide coating
US6905730B2 (en) 2003-07-08 2005-06-14 General Electric Company Aluminide coating of turbine engine component
US7455890B2 (en) 2003-08-05 2008-11-25 General Electric Company Ion implantation of turbine engine rotor component

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015502A (en) * 1988-11-03 1991-05-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5824423A (en) * 1996-02-07 1998-10-20 N.V. Interturbine Thermal barrier coating system and methods
US20030049470A1 (en) * 1996-12-12 2003-03-13 Maloney Michael J. Thermal barrier coating systems and materials
US6057047A (en) * 1997-11-18 2000-05-02 United Technologies Corporation Ceramic coatings containing layered porosity
US6106959A (en) * 1998-08-11 2000-08-22 Siemens Westinghouse Power Corporation Multilayer thermal barrier coating systems
US6146692A (en) * 1998-12-14 2000-11-14 General Electric Company Caustic process for replacing a thermal barrier coating
US6579567B1 (en) * 1999-08-11 2003-06-17 Nripendra N. Das Process for selectively masking turbine components during vapor phase diffusion coating
US6641907B1 (en) * 1999-12-20 2003-11-04 Siemens Westinghouse Power Corporation High temperature erosion resistant coating and material containing compacted hollow geometric shapes
US20030077477A1 (en) * 2001-10-22 2003-04-24 Bruce Robert William Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
US20030118873A1 (en) * 2001-12-21 2003-06-26 Murphy Kenneth S. Stabilized zirconia thermal barrier coating with hafnia
US20030138658A1 (en) * 2002-01-22 2003-07-24 Taylor Thomas Alan Multilayer thermal barrier coating
US20040081767A1 (en) * 2002-10-28 2004-04-29 General Electric Ceramic masking material and application method for protecting turbine airfoil component surfaces during vapor phase aluminiding
US20040115469A1 (en) * 2002-12-12 2004-06-17 Nagaraj Bangalore Aswatha Thermal barrier coating protected by alumina and method for preparing same
US20040115470A1 (en) * 2002-12-12 2004-06-17 Ackerman John Frederick Thermal barrier coating protected by infiltrated alumina and method for preparing same
US20040115406A1 (en) * 2002-12-12 2004-06-17 Nagaraj Bangalore Aswatha Thermal barrier coating protected by thermally glazed layer and method for preparing same
US6869703B1 (en) * 2003-12-30 2005-03-22 General Electric Company Thermal barrier coatings with improved impact and erosion resistance
US6887595B1 (en) * 2003-12-30 2005-05-03 General Electric Company Thermal barrier coatings having lower layer for improved adherence to bond coat
US20060250453A1 (en) * 2005-04-04 2006-11-09 Silverbrook Research Pty Ltd MEMS bubble generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764989B2 (en) 2013-03-13 2017-09-19 Rolls-Royce Corporation Reactive fiber interface coatings for improved environmental stability

Also Published As

Publication number Publication date
JP2006283759A (en) 2006-10-19
US20090191347A1 (en) 2009-07-30
US20060222884A1 (en) 2006-10-05
US7666515B2 (en) 2010-02-23
JP5225551B2 (en) 2013-07-03
EP1710398A1 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US7666515B2 (en) Turbine component other than airfoil having ceramic corrosion resistant coating and methods for making same
JP5160194B2 (en) Ceramic corrosion resistant coating for oxidation resistance
JP4191427B2 (en) Improved plasma sprayed thermal bond coat system
US7604867B2 (en) Particulate corrosion resistant coating composition, coated turbine component and method for coating same
EP1595977B1 (en) Superalloy article having corrosion resistant coating thereon
US7666528B2 (en) Protection of thermal barrier coating by a sacrificial coating
US6365281B1 (en) Thermal barrier coatings for turbine components
US7311940B2 (en) Layered paint coating for turbine blade environmental protection
EP1627862A1 (en) Ceramic compositions for thermal barrier coatings with improved mechanical properties
EP1672174A1 (en) Corrosion resistant coating composition, coated turbine component and method for coating same
US20070039176A1 (en) Method for restoring portion of turbine component
JP2010126812A (en) Repair method for tbc coated turbine components
US20090123722A1 (en) Coating system
JP3579262B2 (en) Bonding coat for thermal barrier coating system
EP2431495A1 (en) A method for forming thermal barrier coating and device with the thermal barrier coating
US20100279148A1 (en) Nickel-based alloys and turbine components
US20110293963A1 (en) Coatings, turbine engine components, and methods for coating turbine engine components
Stolle Conventional and advanced coatings for turbine airfoils
EP2423347A1 (en) Method for forming a thermal barrier coating and a turbine component with the thermal barrier coating
US11274562B2 (en) Gas turbine components and methods of assembling the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAGARAJ, BANGALORE ASWATHA;HAZEL, BRIAN THOMAS;PFAENDTNER, JEFFREY ALLAN;REEL/FRAME:022536/0281;SIGNING DATES FROM 20050317 TO 20050324

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION