Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20090207759 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 12/371,524
Fecha de publicación20 Ago 2009
Fecha de presentación13 Feb 2009
Fecha de prioridad15 Feb 2008
También publicado comoUS7899039, US8711847, US8942112, US20090207757, US20090207823, US20090207843, US20110103266
Número de publicación12371524, 371524, US 2009/0207759 A1, US 2009/207759 A1, US 20090207759 A1, US 20090207759A1, US 2009207759 A1, US 2009207759A1, US-A1-20090207759, US-A1-2009207759, US2009/0207759A1, US2009/207759A1, US20090207759 A1, US20090207759A1, US2009207759 A1, US2009207759A1
InventoresFlemming S. Andreasen, Frank Brockners, Vojislav Vucetic
Cesionario originalAndreasen Flemming S, Frank Brockners, Vojislav Vucetic
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
System and method for providing a converged wireline and wireless network environment
US 20090207759 A1
Resumen
A method is provided in one example embodiment and includes receiving packets for a communications flow from an end user that can conduct the flow through a wireless network and through a wireline network. The method also includes providing policy control for the end user at a network element that receives packets and resolves admission control decisions for the flow for the end user in both the wireless network and the wireline network. The network element providing Internet Protocol (IP) address assignment for the end user in both networks. In more specific embodiments, the method includes providing policy peering in both home and visited networks for the flow, providing access network information that indicates the type of access network being used by the end user, and network address translation (NAT) control for the user.
Imágenes(5)
Previous page
Next page
Reclamaciones(24)
1. A method, comprising:
receiving packets for a communications flow from an end user that can conduct the flow through a wireless network and through a wireline network, a network element receiving the packets if the flow is initiated in the wireless network and the wireline network and the network element providing Internet Protocol (IP) address assignment for the end user in both networks; and
providing policy control for the end user at the network element that resolves admission control decisions for the flow for the end user in both the wireless network and the wireline network.
2. The method of claim 1, further comprising:
providing policy peering in both home and visited networks for the flow.
3. The method of claim 1, further comprising:
providing access network information that indicates the type of access network being used by the end user.
4. The method of claim 1, wherein the network element is an edge gateway that is coupled to a packet data network gateway and the gateways exchange packets during one or more communication sessions involving the end user.
5. The method of claim 1, wherein the end user uses a Wi-Fi access point for the flow in the wireline network.
6. The method of claim 5, wherein the end user uses a femto-cell for the flow in the wireline network.
7. The method of claim 1, wherein policy enforcement is provided for the end user at the network element, the policy enforcement including a quality of service application and a bandwidth reservation for the end user in both the wireless and the wireline networks.
8. An apparatus, comprising:
a network element operable to receive packets for a communications flow from an end user that can conduct the flow through a wireless network and through a wireline network, wherein policy control for the end user is executed at the network element, which resolves admission control decisions for the flow for the end user in both the wireless network and the wireline network, the network element providing Internet Protocol (IP) address assignment for the end user in both networks.
9. The apparatus of claim 8, wherein the network element provides policy peering in both home and visited networks for the flow.
10. The apparatus of claim 8, wherein the network element provides access network information that indicates the type of access network being used by the end user.
11. The apparatus of claim 8, wherein the network element is an edge gateway that is coupled to a packet data network gateway and the gateways exchange packets during one or more communication sessions involving the end user.
12. The apparatus of claim 8, wherein the network element provides policy enforcement at the network element for the end user for the communications flow.
13. The apparatus of claim 12, wherein the policy enforcement includes billing data for the end user in both the wireless and the wireline networks.
14. The apparatus of claim 12, wherein the policy enforcement includes a quality of service application and a bandwidth reservation for the end user in both the wireless and the wireline networks.
15. Logic encoded in one or more tangible media for execution and when executed by a processor operable to:
receive packets for a communications flow from an end user that can conduct the flow through a wireless network and through a wireline network; and
provide policy control for the end user at a network element that receives the packets and resolves admission control decisions for the flow for the end user in both the wireless network and the wireline network, the network element providing Internet Protocol (IP) address assignment for the end user in both networks.
16. The logic of claim 15, wherein the code is further operable to:
provide policy peering in both home and visited networks for the flow.
17. The logic of claim 15, wherein the code is further operable to:
provide access network information that indicates the type of access network being used by the end user.
18. The logic of claim 15, wherein the code is further operable to:
provide policy enforcement at the network element for the end user for the communications flow, wherein the policy enforcement includes billing data for the end user in both the wireless and the wireline networks.
19. A system, comprising:
means for receiving packets for a communications flow from an end user that can conduct the flow through a wireless network and through a wireline network; and
means for providing policy control for the end user at a single network node that resolves admission control decisions for the flow for the end user in both the wireless network and the wireline network, the network node providing Internet Protocol (IP) address assignment for the end user in both networks.
20. The system of claim 19, further comprising:
means for providing policy peering in both home and visited networks for the flow.
21. The system of claim 19, further comprising:
means for providing access network information that indicates the type of access network being used by the end user.
22. The system of claim 19, further comprising:
means for providing policy enforcement at the network node for the end user for the communications flow.
23. The system of claim 22, wherein the policy enforcement includes billing data for the end user in both the wireless and the wireline networks.
24. The system of claim 22, wherein the policy enforcement includes a quality of service application and a bandwidth reservation for the end user in both the wireless and the wireline networks.
Descripción
    CLAIMING PRIORITY ON A PROVISIONAL
  • [0001]
    This application claims priority under 35 U.S.C. §119 of provisional application Ser. No. 61/029,177, filed Feb. 15, 2008 and entitled System and Method for Providing Telecommunication and Internet Converged Services and Protocols for Advanced Networking.
  • TECHNICAL FIELD OF THE INVENTION
  • [0002]
    This invention relates in general to the field of communications and, more particularly, to providing a converged wireline and wireless network environment.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Networking architectures have grown increasingly complex in communications environments. In addition, the augmentation of clients or end users wishing to communicate in a network environment has caused many networking configurations and systems to respond by adding elements to accommodate the increase in networking traffic. As the subscriber base of end users increases, proper routing and efficient management of communication sessions and data flows become even more critical.
  • [0004]
    As service providers increasingly move towards fixed-mobile convergence, there is a significant challenge in having a single architecture and associated infrastructure defined that can optimally support wireless and wireline networks.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0005]
    To provide a more complete understanding of example embodiments and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:
  • [0006]
    FIG. 1 is a simplified block diagram of a communication system in a network environment in accordance with one embodiment;
  • [0007]
    FIG. 2 is a simplified block diagram of an alternative example of the communication system, where roaming occurs in accordance with one embodiment;
  • [0008]
    FIG. 3 is a simplified block diagram of another alternative example of the communication system, where roaming occurs in accordance with one embodiment; and
  • [0009]
    FIG. 4 is a simplified flowchart illustrating an example authentication flow in accordance with one embodiment.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS Overview
  • [0010]
    A method is provided in one example embodiment and includes receiving packets for a communications flow from an end user that can conduct the flow through a wireless network and through a wireline network. A network element receives the packets if the flow is initiated in the wireless network and the wireline network and the network element provides Internet Protocol (IP) address assignment for the end user in both networks. The method also includes providing policy control for the end user at a network element that resolves admission control decisions for the flow for the end user in both the wireless network and the wireline network. In more specific embodiments, the method includes providing policy peering in both home and visited networks for the flow and providing access network information that indicates the type of access network being used by the end user. In still other embodiments, the network element is an edge gateway that is coupled to a packet data network gateway and the gateways exchange packets during one or more communication sessions involving the end user.
  • [0011]
    Turning to FIG. 1, FIG. 1 is a simplified block diagram of a communication system 10 that can provide a unified way of supporting wireless and wireline networks. This particular configuration may be tied to the 3rd Generation Partnership Project (3GPP) Evolved Packet System architecture, but may also be applicable to other environments equally.
  • [0012]
    Note that before proceeding, it is important to identify some of the acronyms that may be used herein in this Specification. These include: Terminal Equipment (TE), Profile Database Function (PDBF), User Access Authentication Function (UAAF), Network Access Control Function (NACF), Customer Network Gateway (CNG), Connectivity Session Location and Repository Function (CSLRF), Access Management Function (AMF), Resource Control Enforcement Function (RCEF), Border Gateway Function (BGF), Interconnect-BGF (I-BGF), Core-BGF (C-BGF), Service Policy Decision Function (SPDF), Proxy Call Session Control Function (PCSCF), Serving Call Session Control Function (SCSCF), User Profile Serving Function (UPSF), Basic Transport Function (BTF), Packet Data Network (PDN), Authentication, Authorization, and Accounting (AAA), Application Function (AF), Home Subscriber Server (HSS), Mobile Access Gateway (MAG), and a Policy and Charging Rules Function (PCRF).
  • [0013]
    Each of the elements of FIG. 1 may couple to one another through simple interfaces (as illustrated) or through any other suitable connection (wired or wireless), which provides a viable pathway for network communications. Additionally, any one or more of these elements may be combined or removed from the architecture based on particular configuration needs.
  • [0014]
    Communication system 10 may include a configuration capable of transmission control protocol/internet protocol (TCP/IP) communications for the transmission or reception of packets in a network. Communication system 10 may also operate in conjunction with a user datagram protocol/IP (UDP/IP) or any other suitable protocol where appropriate and based on particular needs.
  • [0015]
    The example architecture of FIG. 1 includes a TE element 12, a network element 14, a PCRF 18, a PDN gateway 20, a 3GPP AAA server 24, a AAA server 26, a serving gateway 28, an AF 30, an interconnect-BGF 32 [I-BGF], and an HSS 36. Note that many of the functions inherent in these devices are explained in detail below. In terms of the components within network element 14, a MAG function is provided for deployment and device dependent network-based mobility support. A Foreign Agent (FA) can support client-based MIPv4. An RCEF is also provided, which can be integrated with the C-BGF for non-mobile data, where the deployment tied to NAT support in network element 14. Coupled to network element 14 is AAA server 26, which obtains user profile data. If the user is authorized for mobility, then a Proxy Mobile IP (PMIP) service can be invoked from the MAG (in the case of no local IP). Otherwise, the local IP address assignment can be from a Dynamic Host Configuration Protocol (DHCP) server or any other suitable function.
  • [0016]
    Also provided in the architecture of FIG. 1 is the integrated S7a, Rq, Ia, location and access interface, which offers an integrated policy control and charging interface for network element 14. This interface can be used to exchange location and access data for one or more end users. Resource and NAT control can be done using DIAMETER (or other suitable protocols), along with location and access network information. For PDN gateway 20, there could be an integrated C-BGF for mobility. PCRF 18 can be enhanced to relay location information, access network information, support NAT/NAPT-traversal, Rx+/Gq′-operations, etc. I-BGF 32 can reside between PDNs and alternatively be integrated with other elements within the architecture. For the S9 interface, there is policy peering to support NAT control, location-information, and access network information transfer.
  • [0017]
    In accordance with the techniques and teachings of example embodiments, the tendered system defines a converged and consolidated architecture that covers the requirements provided by both wireless and wireline access networks with further enhancements to cover femto-cells and Wi-Fi access. The Telecommunication and Internet converged Services and Protocols for Advanced Networking (TISPAN) is a body of the European Telecommunication Standards Institute (ETSI). In one example embodiment, the architecture is based on 3GPP Evolved Packet System and the ETSI TISPAN with various functional and interface enhancements.
  • [0018]
    In particular, the proffered architecture provides for a consolidated and enhanced policy infrastructure based on 3GPP Policy and Charging Control (PCC) and ETSI TISPAN, where the PCRF and SPDF functions can be merged and the Access Resource and Admission Control Function (A-RACF) function is kept in a single element (e.g., an edge router). Further policy enhancements involve universal support for location, access network information, and NAT control and definition of network element 14 to include the conditionally invoked evolved packet system (EPS) MAG function, as well as the TISPAN Connectivity Session Location and Repository Function (CLF) and the BGF functions.
  • [0019]
    Note that 3GPP (e.g., Release 8) defines the Evolved Packet System (EPS) as specified in TS 23.401, TS 23.402, TS 23.203, etc. The EPS consists of IP access networks and an Evolved Packet Core (EPC). Access networks may be 3GPP access networks, such a GERAN, UTRAN, and E-UTRAN (LTE) or they may be non-3GPP IP access networks such as eHRPD, DSL, Cable, or the Internet. Non-3GPP IP access networks can be divided into trusted and untrusted segments. Trusted IP access networks support mobility, policy, and AAA interfaces to the EPC, whereas untrusted do not. Instead, access from untrusted networks is done via the evolved Packet Data Gateway (ePDG), which provides for IPSec security associations to the user equipment over the untrusted IP access network. The ePDG in turn supports mobility, policy, and AAA interfaces to the EPC, similar to the trusted IP access networks.
  • [0020]
    The EPC provides several services of general use to IP access networks such as mobility, policy and charging control, authentication and authorization, accounting, lawful Intercept, secure access over untrusted network, etc. 3GPP does not specify any details with respect to the non-3GPP IP access networks and, in particular, 3GPP does not specify any details for wireline IP access networks. ETSI TISPAN has defined a next generation network (NGN) architecture for wireline networks, which addresses many of the same issues the 3GPP EPC is addressing, namely: policy and charging control, authentication and authorization, accounting, and lawful intercept. ETSI TISPAN does not address all the services and features provided by the EPC (e.g. mobility and secure access), but conversely, TISPAN defines a few services and features not covered by the EPC, namely: network address translation (NAT) traversal and location information.
  • [0021]
    As service providers increasingly move toward fixed-mobile convergence, it is desirable to have a single architecture and associated infrastructure defined that can support both wireless and wireline networks. To date, NGN architectures have focused on either the wireless or the wireline side. Although these NGN architectures generally allow both wireless and wireline networks to be supported, they tend to focus on the features required by the primary type of access network they are developed for and, hence, these NGN architectures do not provide a single comprehensive architecture that fully address both wireline and wireless networks.
  • [0022]
    An example embodiment provides a unified architecture with a common core infrastructure that supports both wireline and wireless access networks. This infrastructure includes addressing relevant wireline requirements in the wireless access network portion and relevant wireless requirements in the wireline access network portion. At a high level, the combined architecture provides a single converged policy and charging infrastructure, and a single AAA infrastructure for the wireline and the wireless access network. Mobility services are supported on the wireline side, location information is provided for both the wireline and wireless access networks, and NAT traversal functionality in the form of the ETSI TISPAN BGF functions are provided for the wireless networks as well. [Roaming aspects and peering interface enhancements are also considered and are further detailed below.] Part of the architecture combines functions and interfaces of the 3GPP wireless architecture with elements from the ETSI TISPAN wireline architecture to form a single consolidated architecture that service providers (having both wireline and wireless infrastructure) can use. The architecture provides a unified and single solution to the combined requirements from wireline and wireless.
  • [0023]
    Additionally, the enhanced architecture covers femto-cells and Wi-Fi access points and can potentially use the same interfaces and functional elements as provided by the combined wireless/wireline architecture. In addition, there can be a merger of the 3GPP Policy and Charging Control (PCC) architecture and the ETSI TISPAN policy model, whereby the 3GPP PCRF function incorporates the ETSI TISPAN Service Policy Decision Function (SPDF). The A-RACF function can be placed in an edge element (e.g., network element 14) to align the wireline access network policy infrastructure with the wireless access network. The admission control decision can be handled by the PDN gateway (in its capacity as a Policy and Charging Enforcement Function (PCEF)) for both the wireline and wireless mobility network services, by the serving gateway for the wireless network, by network element 14 for the wireline network, and/or other elements, but not necessarily the PCRF. This provides for a consistent and distributed policy management solution to all access networks in the architecture. An alternative solution would be to keep the A-RACF with the PCRF, however this may imply inconsistent behavior between the wireless and wireline networks from a PCC point of view. In a general sense, the proffered architecture can offer an evolved broadband network gateway (eBNG) (e.g., network element 14), which includes a mobile access gateway that can be invoked conditionally so that only devices or services that actually need mobility services incur the associated cost and overhead of providing mobility services. Associated with this are:
  • [0024]
    a) Enhancements to both the 3GPP PCC and ETSI TISPAN policy model by universally providing location and access network information on all policy interfaces, and incorporating the TISPAN Connectivity Session Location and Repository Function (CLF) into the eBNG to enable this universal consolidation. This provides for distributed session state management in the wireline access network in a manner that is consistent with the wireless access network.
  • [0025]
    b) Enhancements to the 3GPP PCC architecture to include TISPAN Border Gateway Function (BGF) functionality, and an integrated and consolidated approach to enable BGF control for NAT traversal using the policy infrastructure for both wireless and wireline access.
  • [0026]
    In an example flow, network element 14 can receive packets for a communications flow from an end user, who can conduct the flow through a wireless network and a wireline network (network element 14 is used for the wireline network). The end user can elect either network option and yet have packets for the flow processed at a single location. More specifically, PDN Gateway 20 can provide IP communications with policy control for the end user at a single node in the network with network element 14 being used in the case of a wireline network. This can include policy-based resource control, which provides mediation between applications and the underlying network layer to intelligently manage network resources (e.g., dynamically and in real time). For operators, policy control is important for delivering a wide variety of high-value services with guaranteed quality of service across fixed, wireless, and cable access technologies. This policy control could further involve resource reservation requests (QoS and bandwidth reservations/allocations) to the appropriate gateway function for a session admission control decision based on defined policies for the subscriber and network resource limits. Then, based on the response received, resources can be assured and bandwidth guaranteed (e.g., on a per session basis).
  • [0027]
    Network element 14 can resolve admission control decisions for the end user in the wireline network. Subscriber specific policy decisions can be executed by the PCRF (or other elements in FIG. 1), where policy enforcement for the wireline network can be done by network element 14. This could include, for example, billing and quality of service (QoS) applications for the end user. Network element 14 can also provide access network information that indicates the type of access network being used by the end user. For example, if an end user is on a DSL connection, then it would be acceptable to allow the end user to download video, but this may not be the case with all access networks.
  • [0028]
    In terms of advantages, such a solution satisfies both the requirements from the wireless and the wireline side by having each side add the missing pieces to the other (e.g., NAT control for wireless and mobility for wireline). It also provides for consistent interfaces and operations to the elements in both the wireless and the wireline access network. Further, such a solution supports these consistent interfaces in both roaming and non-roaming scenarios: some of which are discussed in detail below with reference to FIGS. 2 and 3. The system also supports an efficient and scalable implementation of a converged wireline/wireless architecture by distributing key functions into network elements (and defining the concepts and associated interface enhancements, which support such a distribution).
  • [0029]
    In terms of some of the operational aspects of the proposed architecture, the following features are subsequently detailed: 1) session handling; 2) service insertion; 3) flexible service layer; 4) network address translation (NAT); 5) location information and network attachment sub-system (NASS) bundled authentication; and 6) charging. Turning first to session handling, access session AAA and address assignment can be handled by the AMF in conjunction with the NACF (e.g., the DHCP-server) and the UAAF (e.g., the AAA-Server) with corresponding enforcement functions for authorization data (e.g., the A-RACF and the RCEF). In one example, several access session types are supported (e.g., PPP, IP-Sessions, etc.). In addition, models such as PPP/L2TP model are enabled. The access session establishment also includes distribution of service layer access point/application manager (e.g., proxy-call session control function (P-CSCF) address). Note that the AMF, RCEF, A-RACF, and CLF could be supplied as a single physical device (potentially even including DHCP-Server (NACF)). The configuration could also be simplified to a new gateway function in the converged architecture (e.g., network element 14 of FIG. 1).
  • [0030]
    In one example, the BGF serves as an anchor point for service-layer (e.g., IMS) controlled services in the access/aggregation network. NAT can be used as “anchoring technology,” where traffic to be controlled is directed/routed to the BGF, rather than tunneled to the BGF. In some implementations, not all traffic needs to go through the BGF (e.g., non-service-layer-controlled traffic, multicast traffic, traffic that does not require NAT-traversal operations, etc.). The BGF fulfills additional service layer functions (e.g., service-layer QoS, but is not necessarily involved in endpoint address assignment and authentication). At a concept level, the BGF and the PDN-gateway can fulfill similar roles in the network architecture, though individual functions could differ.
  • [0031]
    In regards to service insertion, multiple service insertion points can be driven by service economics (e.g., aggregation density, bandwidth, session counts, addressing requirements, traffic management (e.g. shaping) requirements, etc.). In such configurations, different PoPs/locations exist for different applications. Note that there is an evolution from one gateway to potentially multiple (i.e., not every packet is required to go through the same gateway). This can result in different service edges/service anchors. TISPAN allows for distributed service control points and even chained service control points, where there are multiple RCEFs and the RCEF placement is not restricted.
  • [0032]
    For the next mechanism, which is the flexible service layer feature, unicast and multicast is equally supported by TISPAN functional elements. The BTF is added in R2 to represent traffic forwarding and the interaction with policy enforcement (e.g., RCEF). TISPAN supports “push” and “pull” models for resource reservation and admission control. In terms of “push,” the connection admission control (CAC) request is originated from the service layer (e.g., P-CSCF originated request during SIP call setup). For “pull,” the CAC request is originated from the transport layer. The request could be originated from a network element within the network. The request could also be originated from the user equipment. There could also be combined models (service layer triggered transport signaling) in TISPAN. The SPDF is not necessarily involved in the pull-mode. For enhanced performance, co-location of the RCEF and the A-RACF on a single device is possible.
  • [0033]
    For the network address translation (NAT) mechanism, NAT on the customer premise equipment (CPE) (called the CNG in TISPAN) is often used in wireline deployments. The TE can be deployed behind a routed CNG, where local addressing of the TE is handled by the CNG. NAT traversal can (for example) use the application layer gateway (ALG) in the P-CSCF. The NAT could be incorporated into RCEF (i.e., the PCEF), when combined with the C-BGF. Note that S7 and S7a have been replaced by Gx and Gxa and, thus, can be thought of as interchangeable as used herein.
  • [0034]
    For location information and network attachment sub-system (NASS) bundled authentication (NBA), one objective is to support SIP-endpoints that do not necessarily support authentication (SIP-digest) and to provide location information for emergency calls. During registration or call-setup, the P-CSCF can query the access network to retrieve location information on the access session. The P-CSCF inserts the information into SIP P-A-N-I (P-Access-Network-Info) header. Information can be leveraged to skip authentication for the TE (at the SIP-level), or to provide location information in case of an emergency call.
  • [0035]
    Location information and event notification service can be offered via the e2 Interface to the CLF. The CLF represents a database of currently active access sessions: data typically available on a BNG. The CLF does not have an immediate counterpart in 3GPP. NASS services available at the e2 reference point can be provided to the AF and to the Customer Network Gateway Configuration Function (CNGCF).
  • [0036]
    For information query service, the AF can query the access network to receive information on the state of a particular access session. The AF can register to receive a particular event occurring within the access network (e.g., subscriber logs onto the access network). If a particular event occurs, the access network sends a notification message to all AFs, which registered to receive the event.
  • [0037]
    In certain embodiments, the subscriber has a bundled subscription for network access and application/IMS services (e.g., voice). In some instances, the user's handheld does not support IMS authentication procedures. A provider trusts the authentication/authorization of the access session. Once the access session is established, the user can register for application services as well, without additional authentication requirements. For simplicity reasons, the use-case assumes that the access provider trusts the physical line towards the subscriber (i.e., no explicit authentication used in the example). There can be two different user data repositories (AAA databases): one for the access user profile and one for the application user profile. The access provider trusts the physical line towards the subscriber (i.e., no explicit authentication used in the example). Addresses can be assigned using DHCP or other means.
  • [0038]
    Note that in many implementations, the HSS knows the current MME, SGSN, or AAA server, the serving gateway (for 3GPP access), and the PDN gateway. Also, the MME/SGSN knows the initial location information/cell-ID (upon attach or handover), the tracking area, the serving gateway, and PDN gateway. The PCRF knows the initial location information/cell-ID (upon attach or handover) (e.g., provided via S7). The AAA server knows the PDN gateway assigned and [potentially] the initial location information from non-3GPP IP access.
  • [0039]
    In terms of design choices, the AMF, A-RACF, RCEF, and CLF are typically co-located in a single physical platform. For a multi-edge wireline architecture, with multiple A-RACF (where the A-RACF function resides on the network elements), this allows for multiple gateways and, further, allows traffic to bypass the PDN gateway for sessions that do not need its services (i.e., add a direct link from a wireline access at network element 14 of FIG. 1 to the core network). The PCRF and SPDF functionality can also be merged such that the PCRF includes service policy management (network policies), at a single point of contact for policy and control of BGF functions. The subscriber specific application-aware policy decisions can be done by the PCRF.
  • [0040]
    In TISPAN, the user profile information can be handled by the A-RACF and not the SPDF. The PCRF function still includes user profile information, although network element 14 of FIG. 1 can contain the A-RACF functionality (static and application-unaware policies). Resource admission control can be supported in “push” and “pull” mode. “Pull” operations mainly involve A-RACF and RCEF for TISPAN. NAT support is added for both wireless and wireline cases.
  • [0041]
    In one example implementation, the BGF functional concept is a service gateway (service session anchor) and the C-BGF is a superset of the RCEF (i.e., RCEF plus NAT). The C-BGF and RCEF are integrated and are request dependent. For Mobility Services, the C-BGF can be used upstream of the mobility anchor (PDN gateway), where the C-BGF is configured on the PDN gateway as well. Alternatively, the C-BGF function can be kept separate. Also, a separate I-BGF function can be provided for inter-provider peering. Alternatively, the I-BGF function can be part of the PDN gateway. A single consolidated policy and NAT control interface can be used that is DIAMETER based, which enables optimized message flows when the BGF is integrated with the gateway(s). Note that with this flow, as with the others detailed herein, RADIUS, TACACS, and DIAMETER protocols can be implemented or substituted with other protocols that can achieve the intended communications.
  • [0042]
    Note that the TISPAN architecture differentiates devices in the home network. The CNG is usually fixed to an access network, where no mobility is assumed for the CNG. Example embodiments include terminal equipment that is assumed to be mobile. It is desired to do handover between different access networks (e.g., to provide seamless connectivity throughout a house, handover between a macro radio network and a Wi-Fi access point in a house, etc.). A routed CNG typically does NAT operations and is generally represented by a single IP address in the access network. Multiple TEs can be “hidden” behind a single IP address. TE addressing can be subscriber controlled (e.g., where the CNG serves as a local DHCP server). One approach is to assume a bridged CNG/CPE for TEs that require mobility. Note that the CNG could be a hybrid (i.e., routed for some services, bridged for others). Alternatively, endpoint MIP support (host-based mobility) could be used.
  • [0043]
    In terms of the C-BGF and I-BGF functions, these represent packet-to-packet gateway elements (e.g., controlled by the SPDF; SPDF may be relaying AF instructions (from service layer)). These elements can also provide usage metering, allocation and translation of IP addresses and port numbers (network address port translation (NAPT)), and interworking between IPv4 and IPv6 networks (NAPT-PT). For the RCEF functions, these may include gate control (open/close gates), packet marking, resource allocation (per flow), policing of uplink/downlink traffic, and transcoding (optional). For C-BGF specific functions, these elements sit at boundaries between the access network and the core network and can offer hosted NAT traversal (latching).
  • [0044]
    For the I-BGF specific functions, these sit at a boundary between core networks and, further, may behave autonomously or under the control of the service layer (e.g., via RACS). The BGF functions can include packet marking, usage metering, and policing functions, which benefit from being provided by the I-BGF in the downlink direction, and the C-BGF in the uplink direction. Hosted NAT traversal can be provided by C-BGF. Functions that can be provided by either the C-BGF or the I-BGF include gate control, IPv4, and IPv6 interworking, transcoding (optional). While the home provider network can use BGF functions in the visited network (and ask the visited network to use them), the visited network could decide when to actually use these (and which C-BGF and I-BGF) for a flow (e.g., depending on where a flow originates and terminates (which networks)).
  • [0045]
    The CLF in the visited network (e.g., part of network element 14) could convey location information to the home network. The policy peering interface can be used for this. Peering can include the business relationship where ISPs reciprocally provide connectivity to each other's transit customers. The access network information can also easily be provided in this manner. Alternatively, the existing DIAMETER based e2 interface (TISPAN) can be used, however this could require an additional peering interface and infrastructure.
  • [0046]
    As noted earlier, network element 14 of FIG. 1 is enhanced to provide optional mobility and handover support. The MAG function can be added to this network element for network-based mobility (PMIPv6). Also, the MIPv4 foreign agent function is added to the network element for MIPv4 FA CoA operation. The client-based mobile IPv6 can be supported by IPv6 Home Agent (e.g., PDN gateway). The system can also acknowledge a multi-edge wireline architecture with multiple ARACFs, where the A-RACF function can reside on network elements. The system can allow for multiple gateways and, further, allow traffic to bypass the PDN gateway (i.e., add a direct link from a wireline access network element to the core network) when mobility services are not needed. For network-based mobility, this can be invoked for devices (users) that subscribe to it (otherwise, allocate a non-mobile IP address on the network element). The BGF functionality can be enabled in the visited network to be used by the AF or policy function in the home network. In addition, policy peering can be extended with BGF control.
  • [0047]
    In terms of interfaces in the architecture, for the AF to PCRF interface, there is an Rx+Gq′ harmonization. For policy peering (PCRF to PCRF), the S9 (Gx/Rx and Ri′) interface is enhanced. For policy enforcement and delegation (PCRF to gateway), the S7 and S7a (Gx and Gxa) interface is enhanced. For location and access network information between the AF/P-CSCF and PCRF, the Rx+Gq′ interface is enhanced.
  • [0048]
    The main additions to the Rx interface include binding information (NAT), latching indication (NAT), authorization lifetime support, IPTV package authorization, location Information transfer, and access network information transfer. In regards to the PCRF to PCRF [S9->S9+NAT+Location+Access], the S9 is an evolution of the Gx and/or Rx interface. There is a transfer of PCC information at the session level and the service data flow (SDF) level for the local breakout. There is also a transfer of QoS parameters and related packet filters for all other cases. There is also a transfer of control information. For the main additions to the S9 interface, there is NAT control (binding information and latching), transfer of location information, and transfer of access network information.
  • [0049]
    For the PCRF to PDN-gateway [S7->S7+NAT], the S7 interface is based on the Gx interface. There is also a transfer of PCC information at the session and SDF level and a transfer of access network and location information. The main additions to S7 include NAT control (binding information and latching). For the PCRF to the evolved broadband network gateway (eBNG) (e.g., network element 14), there is an S7a->S7a+NAT+events+location+access. The S7a/b/c interface is based on the Gx interface. There is also a transfer of QoS parameters and related packet filters and a transfer of control information. The additions may include a transfer of network access and location information, location information query/response, and event notification (for P-CSCF interaction optimization for NASS bundled authentication and compatibility with e2). Also included are binding information (NAT) and related addressing information and address latching (NAT).
  • [0050]
    For the PCRF to I-BGF exchanges, there is a new S7d reference point similar to the evolved S7 interface (PCRF-PDN gateway). This can be based on the Gx interface and there is a transfer of PCC information at the SDF level. Also provided is NAT control (binding information and latching). Contrary to S7 and S7a, there is no need for a transfer of access network and location information.
  • [0051]
    For AAA interactions [Ta* considerations], the Ta* connects the trusted non-3GPP IP access with the 3GPP AAA server/proxy and transports access authentication, authorization, mobility parameters and charging-related information in a secure manner. The Ta* resembles the TISPAN e5 (UAAF to UAAF) reference point from a functional point of view (AAA-proxy interface).
  • [0052]
    Typically, the PCRF may use the subscription information as a basis for the policy and charging control decisions. The subscription information may apply for both session-based and non-session based services. The PCRF can maintain session linking to the sessions where the assigned care of address (CoA) and user equipment (UE) identity (if available over Gxx) are equal. The AF can be an element offering applications that require dynamic policy and/or charging control. The AF can communicate with the PCRF to transfer dynamic session information. The AF may receive an indication that the service information is not accepted by the PCRF together with service information that the PCRF would accept. In that case, the AF can reject the service establishment towards the UE. If possible, the AF forwards the service information to the UE that the PCRF would accept.
  • [0053]
    An AF may communicate with multiple PCRFs. The AF can contact the appropriate PCRF based on either: 1) the end user IP address; and/or 2) a user equipment (UE) identity for which the AF is aware. In case of a private IP address being used for the end user, the AF may send additional PDN information (e.g., PDN ID) over the Rx interface. This PDN information can be used by the PCRF for session binding, and it can be used to help select the correct PCRF. For certain events related to policy control, the AF could be able to give instructions to the PCRF to act on its own. The AF may use bearer level information in the AF session signaling or adjust the bearer level event reporting. The AF may request the PCRF to report on the signaling path status for the AF session. The AF can cancel the request when the AF ceases handling the user.
  • [0054]
    Both network element 14 and PCRF 18 are network elements that facilitate sessions and service flows between endpoints and a given network (e.g., for networks such as those illustrated in FIGS. 1-3). As used herein in this Specification, the term ‘network element’ is meant to encompass routers, switches, gateways, bridges, loadbalancers, firewalls, servers, or any other suitable device, component, element, or object operable to exchange information in a network environment. Moreover, these network elements may include any suitable hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof. This may be inclusive of appropriate algorithms and communication protocols that allow for the effective exchange of data or information.
  • [0055]
    In one example implementation, network element 14 is an edge gateway that includes software for achieving some or all of the functionalities outlined herein. Network element 14 may include A-RACF and, further, provide the control and general processing mechanisms as outlined herein. The SPDF, which can reside in PCRF 18, can send instructions to network element 14 (C-BGF) for setting up the NAT traversal. The C-BGF informs the PCRF about the NAT binding to use and the PCRF can tell the AF about this activity. From an enforcement perspective, network element 14 can control those activities. In one example, PCRF 18 is a network element that includes software to achieve the control and general processing mechanisms outlined herein in this document. In other embodiments, this feature may be provided external to the network elements or included in some other network device to achieve these intended functionalities. Alternatively, both network element 14 and PCRF 18 include this software (or reciprocating software) that can coordinate in order to achieve the operations outlined herein. In still other embodiments, one or both of these devices may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.
  • [0056]
    Each of these components (network element 14 and PCRF 18) can also include memory elements for storing information to be used in achieving the control and general processing mechanisms outlined herein. Additionally, each of these devices may include a processor that can execute software (e.g., logic) or an algorithm to perform the activities discussed in this Specification. These components may further keep information in any suitable memory element such as a random access memory (RAM), read only memory (ROM), erasable programmable ROM (EPROM), electronically erasable PROM (EEPROM), application specific integrated circuit (ASIC), software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs.
  • [0057]
    FIG. 2 is a simplified block diagram of an alternative example 50 of communication system 10, where roaming occurs in accordance with one embodiment. This example includes a local breakout for a Home Public Land Mobile Network (HPLMN) for 3GPP and a Visited Public Land Mobile Network (VPLMN) for TISPAN. The architecture further includes a network element 48, a PDN gateway 52, a 3GPP AAA server 54, an AAA Proxy (UAAF) 56, a set of PCRFs 58, 60, an AF 62, and an HSS 64. FIG. 3 is a simplified block diagram of another alternative example 70 of communication system 10, where roaming occurs in a home routed case for one embodiment. The architecture includes a network element 68, a PDN gateway 72, a 3GPP AAA server 74, an AAA Proxy (UAAF) 76, a set of PCRFs 78, 80, an AF 82, and an HSS 84. Note in this example, the PDN gateway has shifted its location.
  • [0058]
    FIG. 4 is a simplified example flow 100 that highlights some of the operational aspects of the proffered architecture. On the 3GPP access side, nominal changes are made, and the focus of this flow is on the wireline segment of the configuration. Consider an example where an end-user initiates a flow and asks for an IP address. This could be in the form of a DHCP request. The authentication can be integrated with DHCP: DHCP-AUTH. Note that for many IP-sessions, DHCP is chosen over PPP because of multiple gateway support (PPP's nature of providing an integrated solution [transport, authentication, etc.] imposes too many restrictions on the architecture). Note that there is a desire to authenticate the end device prior to assigning an IP address. For DHCP-AUTH, a first alternative is based on an existing DHCP message set (it provides PPP such as authorization (PAP/CHAP)). For a second alternative, this supports advanced authentication types (e.g., extensible authentication protocol (EAP)) using an expanded DHCP message set.
  • [0059]
    Returning to the flow of FIG. 4, a number of components are illustrated and they include user equipment (UE)/terminal equipment (TE) 150, a customer premise equipment/customer network gateway (CNG) 160, an access relay function (ARF) element 170 [which could include a switch, DSLAM, etc.], a network element 180, and an AAA server 190. The flow begins at step 102, where a DHCP Discover message is sent from the terminal equipment to network element 180. At step 104, network element 180 returns an ID request to the user equipment. At step 106, the user equipment sends an ID response to network element 180. A number of RADIUS messages are subsequently exchanged at steps 108 and 110. EAP messages are then exchanged in subsequent steps (112 and 114). At steps 116 and 118, RADIUS messages are once again exchanged until there is a success or a failure. Upon EAP success, at step 120, network element 180 returns a response to the user equipment. From this point, normal DHCP operations would continue. At step 122, a DHCP offer is made from network element 180 to the user equipment. At step 124, there is a DHCP request that propagates to network element 180. Finally, at step 124. There is an acknowledged message sent back to the terminal equipment.
  • [0060]
    The CLF function typically provides location and access network information. Queries for location and access network information may use the IP address as the query key. In implementations, the CLF function is typically provided by multiple elements, each of which manages a portion of the end user devices. With multiple CLF instances in a network, the question is which CLF instance to query for location and access information for a particular IP address. The proffered architecture solves this problem by first providing the CLF function as part of the eBNG, where the IP session state is already maintained. Secondly, location and access network information is incorporated into the policy infrastructure, which is already able to communicate with the right eBNG for policy instructions related to particular IP sessions (the PCRF may for example be informed about the assigned IP address when the IP address assignment is performed). Alternatively, IP-based discovery mechanism such as Control Point Discovery, or IP-based information distribution in the form of routing protocol updates can be used when the CLF is included as part of the eBNG.
  • [0061]
    Note that with the examples provided herein, interaction may be described in terms of two, three, four, or more network elements. However, this has been done for purposes of clarity and example only. In certain cases, it may be easier to describe one or more of the functionalities of a given set of flows by only referencing a limited number of network elements. It should be appreciated that communication system 10 (and its teachings) are readily scalable and can accommodate a large number of components, as well as more complicated or sophisticated arrangements and configurations. Accordingly, the examples provided should not limit the scope or inhibit the broad teachings of communication system 10 as potentially applied to a myriad of other architectures. Note also that the teachings discussed herein can readily be applied to Wi-Fi and femto access points and their respective environments.
  • [0062]
    It is also important to note that the steps described with reference to the preceding FIGURES illustrate only some of the possible scenarios that may be executed by, or within, communication system 10. Some of these steps may be deleted or removed where appropriate, or these steps may be modified or changed considerably without departing from the scope of the discussed concepts. In addition, a number of these operations have been described as being executed concurrently with, or in parallel to, one or more additional operations. However, the timing of these operations may be altered considerably. The preceding operational flows have been offered for purposes of example and discussion. Substantial flexibility is provided by communication system 10 in that any suitable arrangements, chronologies, configurations, and timing mechanisms may be provided without departing from the teachings of the discussed concepts.
  • [0063]
    Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it can be intended that the discussed concept encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims. In order to assist the United States Patent and Trademark Office (USPTO) and, additionally, any readers of any patent issued on this application in interpreting the claims appended hereto, Applicant wishes to note that the Applicant: (a) does not intend any of the appended claims to invoke paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless the words “means for” or “step for” are specifically used in the particular claims; and (b) does not intend, by any statement in the specification, to limit this invention in any way that is not otherwise reflected in the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US6403567 *22 Jun 199911 Jun 2002Cv Therapeutics, Inc.N-pyrazole A2A adenosine receptor agonists
US6587882 *3 Ago 19981 Jul 2003Kabushiki Kaisha ToshibaMobile IP communication scheme using visited site or nearby network as temporal home network
US6603761 *7 Ene 20005 Ago 2003Lucent Technologies Inc.Using internet and internet protocols to bypass PSTN, GSM map, and ANSI-41 networks for wireless telephone call delivery
US6910074 *24 Jul 200021 Jun 2005Nortel Networks LimitedSystem and method for service session management in an IP centric distributed network
US6934274 *1 Jul 200223 Ago 2005Kabushiki Kaisha ToshibaMobile IP communication scheme using dynamic address allocation protocol
US6937597 *26 Feb 199930 Ago 2005Lucent Technologies Inc.Signaling method for internet telephony
US6970909 *11 Oct 200129 Nov 2005The Trustees Of Columbia University In The City Of New YorkMulti-protocol data communication system supporting wireless telephony and content delivery
US7020090 *21 Jun 200428 Mar 2006Cisco Technology, Inc.System and method for loadbalancing in a network environment using feedback information
US7079499 *7 Sep 200018 Jul 2006Nortel Networks LimitedInternet protocol mobility architecture framework
US7170863 *21 Dic 200130 Ene 2007Nortel Networks LimitedPush-to-talk wireless telecommunications system utilizing a voice-over-IP network
US7170887 *16 Oct 200130 Ene 2007Lucent Technologies Inc.Methods and apparatus for providing voice communications through a packet network
US7548756 *8 Ago 200616 Jun 2009Cellco PartnershipMethod and system for mobile instant messaging using multiple interfaces
US7606191 *1 May 200620 Oct 2009Sprint Spectrum L.P.Methods and systems for secure mobile-IP traffic traversing network address translation
US7710923 *28 Mar 20054 May 2010Interdigital Technology CorporationSystem and method for implementing a media independent handover
US7831701 *27 Oct 20079 Nov 2010At&T Mobility Ii LlcCascading policy management deployment architecture
US7835275 *8 Sep 200616 Nov 2010Sprint Communications Company L.P.Dynamic assignment of quality of service (QoS) to an active session in an ipsec tunnel
US7881262 *7 Jul 20051 Feb 2011Alvarion Ltd.Method and apparatus for enabling mobility in mobile IP based wireless communication systems
US7886027 *14 Abr 20068 Feb 2011International Business Machines CorporationMethods and arrangements for activating IP configurations
US7899039 *13 Feb 20091 Mar 2011Cisco Technology, Inc.System and method for providing location and access network information support in a network environment
US8036191 *6 Dic 200611 Oct 2011Siemens AktiengesellschaftMobile station as a gateway for mobile terminals to an access network, and method for registering the mobile station and the mobile terminals in a network
US8150366 *1 May 20073 Abr 2012Ntt Docomo, Inc.Mobile terminal and mobile communication system
US8195778 *19 Dic 20095 Jun 2012Cisco Technology, Inc.System and method for providing mobility across access technologies in a network environment
US8223635 *28 Abr 200817 Jul 2012Zte CorporationMetropolitan area network resource control system and method, access resource admission and control device
US8379519 *20 Dic 200719 Feb 2013Zte CorporationMethod for realizing resource admission control at push mode in nomadism scene of NGN
US20030091013 *7 May 200215 May 2003Samsung Electronics Co., Ltd.Authentication method between mobile node and home agent in a wireless communication system
US20030165145 *3 Mar 20034 Sep 2003Sung-Kwan ChoApparatus and method for compulsively receiving multi-calls over internet protocol phones in internet protocol telephony system
US20040003241 *27 Jun 20021 Ene 2004Nokia, Inc.Authentication of remotely originating network messages
US20040008627 *30 Sep 200215 Ene 2004Sachin GargMethod and apparatus for performing admission control in a communication network
US20040057458 *22 Ago 200325 Mar 2004Tae-Young KilApparatus for providing inter-processor communication using TCP/IP in communication system
US20040077341 *2 Jul 200322 Abr 2004Chandranmenon Girish P.Multi-interface mobility client
US20040208187 *16 Abr 200321 Oct 2004Jerry MizellHome agent redirection for mobile IP
US20040213260 *28 Abr 200328 Oct 2004Cisco Technology, Inc.Methods and apparatus for securing proxy Mobile IP
US20040219905 *30 Abr 20044 Nov 2004Steven BlumenthalAuthentication of mobile devices via proxy device
US20040225895 *5 May 200311 Nov 2004Lucent Technologies Inc.Method and apparatus for providing adaptive VPN to enable different security levels in virtual private networks (VPNs)
US20050135375 *26 Mar 200423 Jun 2005Nokia CorporationControl decisions in a communication system
US20050159181 *20 Ene 200421 Jul 2005Lucent Technologies Inc.Method and apparatus for interconnecting wireless and wireline networks
US20050238002 *21 Jun 200527 Oct 2005Rasanen Juha AMobile network having IP multimedia subsystem (IMS) entities and solutions for providing simplification of operations and compatibility between different IMS entities
US20050278532 *28 May 200415 Dic 2005Zhi FuMethod and apparatus for mutual authentication at handoff in a mobile wireless communication network
US20060041761 *17 Ago 200423 Feb 2006Neumann William CSystem for secure computing using defense-in-depth architecture
US20060063517 *28 Jul 200523 Mar 2006Yeonjoo OhIntelligent system for identifying visitor and providing communication service using mobile terminal and method thereof
US20060092963 *28 Oct 20044 May 2006Ajay BakreArchitecture and method for efficient application of QoS in a WLAN
US20060104308 *14 Ene 200518 May 2006Microsoft CorporationMethod and apparatus for secure internet protocol (IPSEC) offloading with integrated host protocol stack management
US20060250956 *4 Abr 20059 Nov 2006Alfano Frank MTelecommunication network support for service based policy in roaming configurations
US20060251043 *19 Abr 20059 Nov 2006Lila MadourMethod for controlling the quality of service in an IP multimedia system
US20060251229 *3 May 20059 Nov 2006Sbc Knowledge Ventures, L.P.System and method for configuring and operating a network based telephone system
US20060268845 *31 May 200630 Nov 2006Santera Systems, Inc.Methods and systems for unlicensed mobile access realization in a media gateway
US20060268901 *6 Ene 200630 Nov 2006Choyi Vinod KMethod and apparatus for providing low-latency secure session continuity between mobile nodes
US20070127500 *6 Feb 20077 Jun 2007Joon MaengSystem, device, method and software for providing a visitor access to a public network
US20070133574 *1 Dic 200514 Jun 2007TekelecMethods, systems, and computer program products for using an E.164 number (ENUM) database for message service message routing resolution among 2G and subsequent generation network systems
US20070140255 *21 Dic 200521 Jun 2007Motorola, Inc.Method and system for communication across different wireless technologies using a multimode mobile device
US20070160034 *6 Ene 200612 Jul 2007D.S.P. Group LtdDual-protocol dual port telephone and method to connect another dual-protocol dual port telephone via IP network directly and without installation
US20070189255 *11 Ene 200716 Ago 2007Mruthyunjaya NavaliSystems and methods for mobility management on wireless networks
US20070202871 *27 Feb 200630 Ago 2007Alvarion Ltd.Method of paging a mobile terminal
US20070207818 *6 Mar 20076 Sep 2007Rosenberg Jonathan DSystem and method for exchanging policy information in a roaming communications environment
US20070266174 *12 May 200615 Nov 2007Caitlin BestlerMethod and system for reliable multicast datagrams and barriers
US20070291733 *7 Jun 200720 Dic 2007Outsmart Ltd.Integration of Packet and Cellular Telephone Networks
US20080026692 *29 Jun 200731 Ene 2008Fujitsu LimitedRelay apparatus and relay method
US20080046963 *17 Ago 200721 Feb 2008Cisco Technology, Inc.System and method for implementing policy server based application interaction manager
US20080046979 *24 Jun 200521 Feb 2008Rachid OulahalSystem for Controlled Access to Information Contained in a Terminal
US20080049648 *4 Jun 200728 Feb 2008Motorola, Inc.Method and apparatus for policy management for an internet protocol multimedia subsystem based wireless communication system
US20080049781 *22 Ago 200628 Feb 2008Embarq Company Holdings LlcSystem and method for integrated service access
US20080070619 *28 Jul 200520 Mar 2008Jun YuCommunication Network System Converging Wireless Mobile Network and Wired Discontinuous Mobile Network and Method Thereof
US20080075114 *24 Sep 200727 Mar 2008Zte CorporationSystem and Method for IPv4 and IPv6 Migration
US20080089251 *31 Ene 200617 Abr 2008Motorola, Inc.Packet Data Transmission
US20080101291 *7 Ago 20071 May 2008James JiangInterworking Mechanism Between Wireless Wide Area Network and Wireless Local Area Network
US20080127297 *29 Nov 200629 May 2008Red Hat, Inc.Method and system for sharing labeled information between different security realms
US20080137541 *7 Dic 200712 Jun 2008Kaitki AgarwalProviding dynamic changes to packet flows
US20080144615 *14 Dic 200619 Jun 2008Nortel Networks LimitedPinning the route of ip bearer flows in a next generation network
US20080176582 *7 Dic 200724 Jul 2008Rajat GhaiProviding location based services for mobile devices
US20080207206 *11 Ene 200828 Ago 2008Kenichi TaniuchiMEDIA INDEPENDENT PRE-AUTHENTICATION SUPPORTING FAST-HANDOFF IN PROXY MIPv6 ENVIRONMENT
US20080225806 *15 Mar 200718 Sep 2008Adc Telecommunication Israel Ltd.System and method for enabling mobility in internet protocol networks
US20080229403 *16 Mar 200718 Sep 2008Redback Networks Inc.Method and apparatus for providing wireless services to mobile subscribers using existing broadband infrastructure
US20080256237 *27 Feb 200616 Oct 2008Huawei Technologies Co., Ltd.Method for Implementing Resources Reservation in a Proxy-Requested Mode in Next Generation Network
US20080256251 *13 Abr 200716 Oct 2008Nokia CorporationMechanism for executing server discovery
US20080285492 *15 May 200820 Nov 2008Seppo VesterinenSystem and Method for Providing Local IP Breakout Services Employing Access Point Names
US20080307487 *7 Jun 200711 Dic 2008Alcatel LucentSystem and method of network access security policy management for multimodal device
US20090016334 *9 Jul 200715 Ene 2009Nokia CorporationSecured transmission with low overhead
US20090016364 *12 Jul 200715 Ene 2009Telefonaktiebolaget Lm Ericsson (Publ)Proxy Mobility Optimization
US20090061869 *30 Ago 20075 Mar 2009Sprint Spectrum L.P.Policy Based Mobile-IP Address Selection and Assignment
US20090067417 *13 Jul 200812 Mar 2009Tatara Systems, Inc.Method and apparatus for supporting SIP/IMS-based femtocells
US20090129380 *20 Nov 200721 May 2009Arindam PaulDetermining packet forwarding information for packets sent from a protocol offload engine in a packet switching device
US20090198996 *4 Feb 20086 Ago 2009Contineo SystemsSystem and method for providing cellular access points
US20090207808 *2 Feb 200920 Ago 2009Motorola, Inc.Method and apparatus for inter-technology handoff of a multi-mode mobile station
US20090207823 *13 Feb 200920 Ago 2009Andreasen Flemming SSystem and method for providing selective mobility invocation in a network environment
US20090207843 *13 Feb 200920 Ago 2009Andreasen Flemming SSystem and method for providing network address translation control in a network environment
US20090219946 *10 Abr 20093 Sep 2009Huawei Technologies Co., Ltd.System and method for resource admission and control
US20090270064 *4 Ene 200729 Oct 2009Motorola, Inc.Method and system architecture for establishing a specific communication session in a communication network
US20100027509 *9 Nov 20074 Feb 2010Genadi VelevLocal mobility anchor relocation and route optimization during handover of a mobile node to another network area
US20100061309 *16 Nov 200911 Mar 2010Buddhikot Milind MMethod and system for mobility across heterogeneous address spaces
US20100071055 *24 Nov 200918 Mar 2010Advanced Micro Devices, Inc.Two Parallel Engines for High Speed Transmit IPSEC Processing
US20100131621 *10 Dic 200527 May 2010Jerker ZetterlundSession Controller and Method of Operating a Session Controller
US20100135279 *25 Oct 20073 Jun 2010Telefonaktiebolaget Lm Ericsson (Publ)Method and Arrangement for Remotely Controlling Multimedia Communication Across Local Networks
US20100191829 *28 Jun 200729 Jul 2010Cagenius TorbjoernMethod and apparatus for remote access to a home network
US20100235620 *17 Oct 200716 Sep 2010Tomas NylanderMethod and Arrangement for Deciding a Security Setting
US20100250753 *6 Ene 200930 Sep 2010Lg Electronics Inc.Partial session transfer method and user equipment for the same
US20100260105 *8 Dic 200814 Oct 2010Ralf KellerDomain transfer service continuity provision to a mobile terminal
US20100272053 *20 Dic 200728 Oct 2010Jianjie YouMethod for Realizing Resource Admission Control at Push Mode in Nomadism Scene of NGN
US20100309846 *26 Nov 20079 Dic 2010Johan RuneMethod and apparatus for use in a communications network
US20110069673 *21 Sep 200924 Mar 2011Starent Networks, CorpLocal routing of voice calls by a femto gateway
US20110103266 *10 Ene 20115 May 2011Cisco Technology, Inc., A California CorporationSystem and method for providing location and access network information support in a network environment
US20110214166 *29 Oct 20081 Sep 2011Nokia CorporationConnection management
US20120046037 *2 Nov 201123 Feb 2012John DiachinaSystem and method for providing voice service in a multimedia mobile network
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US819577819 Dic 20095 Jun 2012Cisco Technology, Inc.System and method for providing mobility across access technologies in a network environment
US835964417 Nov 200822 Ene 2013At&T Intellectual Property I, L.P.Seamless data networking
US84777304 Ene 20112 Jul 2013Cisco Technology, Inc.Distributed load management on network devices
US8665793 *8 Jul 20104 Mar 2014Zte CorporationMethod and system for implementing single radio voice call continuity
US8693367 *27 Sep 20108 Abr 2014Cisco Technology, Inc.Providing offloads in a communication network
US871184710 Ene 201129 Abr 2014Cisco Technology, Inc.System and method for providing location and access network information support in a network environment
US873722114 Jun 201127 May 2014Cisco Technology, Inc.Accelerated processing of aggregate data flows in a network environment
US874369014 Jun 20113 Jun 2014Cisco Technology, Inc.Selective packet sequence acceleration in a network environment
US8743696 *9 Ago 20103 Jun 2014Cisco Technology, Inc.Mobile transport solution for offloading to an alternate network
US876310928 Nov 201224 Jun 2014At&T Intellectual Property I, L.P.Seamless data networking
US878730320 May 201122 Jul 2014Cisco Technology, Inc.Methods and apparatus for data traffic offloading at a router
US879235314 Jun 201129 Jul 2014Cisco Technology, Inc.Preserving sequencing during selective packet acceleration in a network environment
US879249519 Dic 200929 Jul 2014Cisco Technology, Inc.System and method for managing out of order packets in a network environment
US883101427 Sep 20109 Sep 2014Cisco Technology, Inc.Providing services at a communication network edge
US889718310 Jul 201125 Nov 2014Cisco Technology, Inc.System and method for offloading data in a communication system
US8942088 *20 Dic 201127 Ene 2015Telefonaktiebolaget L M Ericsson (Publ)BNG to PCRF mediation entity for BBF and 3GPP access interworking
US894211213 Feb 200927 Ene 2015Cisco Technology, Inc.System and method for providing selective mobility invocation in a network environment
US894801314 Jun 20113 Feb 2015Cisco Technology, Inc.Selective packet sequence acceleration in a network environment
US90030574 Ene 20117 Abr 2015Cisco Technology, Inc.System and method for exchanging information in a mobile wireless network environment
US900929318 Nov 200914 Abr 2015Cisco Technology, Inc.System and method for reporting packet characteristics in a network environment
US901415810 Jul 201121 Abr 2015Cisco Technology, Inc.System and method for offloading data in a communication system
US901531818 Nov 200921 Abr 2015Cisco Technology, Inc.System and method for inspecting domain name system flows in a network environment
US903099110 Jul 201112 May 2015Cisco Technology, Inc.System and method for offloading data in a communication system
US903103810 Jul 201112 May 2015Cisco Technology, Inc.System and method for offloading data in a communication system
US904904610 Jul 20112 Jun 2015Cisco Technology, IncSystem and method for offloading data in a communication system
US911336522 Abr 201118 Ago 2015Zte CorporationMethod and apparatus for offloading Internet data in access network
US914838023 Nov 200929 Sep 2015Cisco Technology, Inc.System and method for providing a sequence numbering mechanism in a network environment
US916692121 Abr 201420 Oct 2015Cisco Technology, Inc.Selective packet sequence acceleration in a network environment
US921558830 Abr 201015 Dic 2015Cisco Technology, Inc.System and method for providing selective bearer security in a network environment
US924682521 Abr 201426 Ene 2016Cisco Technology, Inc.Accelerated processing of aggregate data flows in a network environment
US924683724 Abr 201426 Ene 2016Cisco Technology, Inc.System and method for managing out of order packets in a network environment
US92949817 Jun 201322 Mar 2016Cisco Technology, Inc.Distributed load management on network devices
US9537821 *1 Feb 20113 Ene 2017Telefonaktiebolaget Lm Ericsson (Publ)Method for PCC support for scenarios with NAT in the GW
US956511722 Dic 20107 Feb 2017Cisco Technology, Inc.Adaptive intelligent routing in a communication system
US97229332 Feb 20151 Ago 2017Cisco Technology, Inc.Selective packet sequence acceleration in a network environment
US980109415 Mar 201624 Oct 2017Cisco Technology, Inc.Distributed load management on network devices
US20090207823 *13 Feb 200920 Ago 2009Andreasen Flemming SSystem and method for providing selective mobility invocation in a network environment
US20090207843 *13 Feb 200920 Ago 2009Andreasen Flemming SSystem and method for providing network address translation control in a network environment
US20100125902 *17 Nov 200820 May 2010At&T Intellectual Property I, L.P.Seamless data networking
US20110058479 *9 Ago 201010 Mar 2011Kuntal ChowdhuryMobile transport solution for offloading to an alternate network
US20110075557 *27 Sep 201031 Mar 2011Kuntal ChowdhuryProviding offloads in a communication network
US20110075675 *27 Sep 201031 Mar 2011Rajeev KoodliProviding services at a communication network edge
US20110103266 *10 Ene 20115 May 2011Cisco Technology, Inc., A California CorporationSystem and method for providing location and access network information support in a network environment
US20130039267 *8 Jul 201014 Feb 2013Zte CorporationMethod and System for Implementing Single Radio Voice Call Continuity
US20130089013 *20 Dic 201111 Abr 2013Roberto David Carnero RosBng to pcrf mediation entity for bbf and 3gpp access interworking
US20140241153 *2 May 201428 Ago 2014Cicso Technology, Inc.Apparatus, systems, and methods for providing offloading to an alternate network
US20140269740 *1 Feb 201118 Sep 2014Telefonaktiebolaget L M Ericsson (Publ)Method for pcc support for scenarios with nat in the gw
CN102244899A *13 May 201016 Nov 2011中兴通讯股份有限公司Method and device for offloading internet access data in access network
WO2011038352A1 *27 Sep 201031 Mar 2011Cisco Technology, Inc.Providing offloads in a communication network
WO2016160058A1 *30 Sep 20156 Oct 2016Intel IP CorporationLocation information for voice over wlan emergency calling
Clasificaciones
Clasificación de EE.UU.370/259, 370/328, 455/433, 370/352
Clasificación internacionalH04L12/66, H04W4/00, H04L12/16
Clasificación cooperativaH04L65/1016, H04W4/24, H04L47/14, H04L47/20, H04L12/1403
Clasificación europeaH04L12/14A, H04L47/14, H04L47/20, H04W4/24
Eventos legales
FechaCódigoEventoDescripción
4 Mar 2009ASAssignment
Owner name: CISCO TECHNOLOGY, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDREASEN, FLEMMING S.;BROCKNERS, FRANK;VUCETIC, VOJISLAV;REEL/FRAME:022342/0246;SIGNING DATES FROM 20090211 TO 20090213