Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20090216226 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 12/435,536
Fecha de publicación27 Ago 2009
Fecha de presentación5 May 2009
Fecha de prioridad6 Ene 2006
También publicado comoUS7691101, US8636685, US8663152, US8663153, US8663154, US20070213700, US20090216222, US20090216223, US20090216224, US20090216227, US20090222004
Número de publicación12435536, 435536, US 2009/0216226 A1, US 2009/216226 A1, US 20090216226 A1, US 20090216226A1, US 2009216226 A1, US 2009216226A1, US-A1-20090216226, US-A1-2009216226, US2009/0216226A1, US2009/216226A1, US20090216226 A1, US20090216226A1, US2009216226 A1, US2009216226A1
InventoresTerry S. Davison, Brian Warne
Cesionario originalArthrocare Corporation
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Electrosurgical method and system for treating foot ulcer
US 20090216226 A1
Resumen
An electrosurgical method for treating foot ulcer, including diabetic foot ulcer, comprising: positioning an active electrode in close proximity to the ulcer, the active electrode being disposed on a distal end of an electrosurgical shaft; applying a high-frequency voltage potential difference across the active electrode and a return electrode in the presence of an electrically conductive fluid, the voltage potential being sufficient to generate plasma at the active electrode; and stimulating the ulcer with the active electrode to increase blood flow, remove unhealthy tissue and induce the body's natural healing response.
Imágenes(5)
Previous page
Next page
Reclamaciones(28)
1. An electrosurgical method of treating ulcer tissue, comprising:
positioning an active electrode in close proximity to the ulcer, the active electrode disposed on a distal end of a shaft;
delivering an electrically conductive liquid proximate the active electrode; and
applying a high-frequency voltage potential difference across the active electrode and a return electrode in the presence of the electrically conductive liquid sufficient to form a plasma at the active electrode, whereby the plasma formed at the active electrode modifies the ulcer tissue and promotes the healing of the ulcer tissue.
2. The method of claim 1, wherein the voltage potential difference is sufficient to vaporize the electrically conductive liquid.
3. The method of claim 1, wherein the ulcer tissue comprises skin ulcer tissue.
4. The method of claim 1, wherein the ulcer tissue comprises mucus membrane ulcer tissue.
5. The method of claim 1, wherein the ulcer tissue comprises foot ulcer tissue.
6. The method of claim 1, wherein the ulcer tissue comprises diabetic foot ulcer tissue.
7. The method of claim 1, wherein the ulcer tissue comprises cellulitic tissue.
8. The method of claim 1, whereby modifying the ulcer tissue comprises directing the plasma to the ulcer tissue.
9. The method of claim 1, wherein modifying the ulcer tissue is selected from the group consisting of debriding, perforating, inducing blood-flow to, coagulating, and volumetrically removing at least a portion of the ulcer tissue.
10. The method of claim 9, further comprising debriding, perforating, inducing blood-flow to, coagulating, and volumetrically removing at least a portion of the tissue in the vicinity of the ulcer tissue.
11. The method of claim 1, whereby positioning the active electrode comprises translating the active electrode across the ulcer tissue.
12. The method of claim 1, wherein the active electrode and the return electrode are disposed on the shaft.
13. The method of claim 2, wherein the plasma is generated from the vaporized electrically conductive liquid.
14. The method of claim 1, wherein the electrically conductive liquid forms a conductive bridge between the active electrode and the return electrode.
15. The method of claim 1, wherein the electrically conductive liquid is selected from the group consisting of body fluid, conductive gel, isotonic saline, and Ringer's lactate.
16. The method of claim 1, including contacting at least a portion of the ulcer tissue with the active electrode.
17. The method of claim 1, further comprising submerging the ulcer tissue with the conductive liquid.
18. The method of claim 1, further comprising limiting the application of the high-frequency voltage potential difference for a selected time period.
19. The method of claim 9, wherein perforating the ulcer tissue comprises forming a plurality of perforations in the ulcer tissue and in the vicinity of the ulcer tissue, the plurality of perforations spaced less than 5 mm apart.
20. The method of claim 9, wherein perforating the ulcer tissue comprises forming a plurality of perforations with diameters of up to about 3 mm in the ulcer tissue and in the vicinity of the ulcer tissue.
21. The method of claim 9, wherein perforating the ulcer tissue comprises forming a plurality of perforations up to about 3 mm in depth in the in the ulcer tissue and in the vicinity of the ulcer tissue.
22. The method of claim 9, wherein perforating the ulcer tissue comprises forming a plurality of perforations up to about 5 mm in depth in the ulcer tissue and in the vicinity of the ulcer tissue.
23. The method of claim 1, further comprising adjusting the voltage to cause coagulation of at least portions of ulcer tissue and at least portions of tissue in the vicinity of the ulcer tissue.
24. The method of claim 1, wherein the active electrode is attached to a high-frequency voltage supply and a conductive liquid supply.
25. The method of claim 1, wherein the active electrode is selected from the group consisting of an electrode having a pointed tip, a wire electrode, a screen electrode, and a suction electrode.
26. The method of claim 1, wherein the shaft comprises a suction lumen.
27. The method of claim 1, wherein the shaft comprises a liquid delivery lumen.
28. An electrosurgical method of treating ulcer tissue, comprising:
positioning an active electrode in close proximity to the ulcer tissue, the active electrode disposed on a distal end of a shaft;
delivering a non-gaseous electrically conductive fluid in proximity to the active electrode; and
applying a high-frequency voltage potential difference across the active electrode and a return electrode in the presence of the non-gaseous electrically conductive fluid sufficient to form a plasma at the active electrode, whereby the plasma formed at the active electrode modifies the ulcer tissue and promotes the healing of the ulcer tissue.
Descripción
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation of prior application Ser. No. 11/327,089, filed Jan. 6, 2006, and entitled “Electrosurgical Method and System for Treating Foot Ulcer,” hereby incorporated herein by reference.
  • FIELD OF INVENTION
  • [0002]
    This invention pertains to electrosurgical systems for treating of ulcer, in particular, an electrosurgical method of treating diabetic foot ulcer whereby an active electrode in the presence of plasma is directed to debride tissue, induce blood flow, and leverage the body's cytokine response to promote healing.
  • BACKGROUND AND PRIOR ART
  • [0003]
    An ulcer is a break in a skin or a mucus membrane evident by a loss of surface tissue, tissue disintegration, necrosis of epithelial tissue, nerve damage and pus. On patients with long-standing diabetes and with poor glycemic control, a common condition is diabetic foot ulcer, symptoms of which include surface lesions with peripheral neuropathy, arterial insufficiency, and ischemia of surrounding tissue, deformities, cellulitis tissue formation and inflammation. Cellulitis tissue includes callous and fibrotic tissue. If left untreated a diabetic foot ulcer can become infected and gangrenous which can result in disfiguring scars, foot deformity, and/or amputation.
  • [0004]
    As illustrated in FIG. 1A, a diabetic foot ulcer may develop on areas of the foot subjected to pressure or injury such as on the dorsal portion of the toes, the pad of the foot, and the heel. Depending on its severity, the condition can vary in size, as illustrated in FIG. 1B, from a small inflammation on the toe with cellulitis and unhealthy tissue that extends up to about 10 mm from the center of the inflammation, to a larger neuropathic lesion on the ball of the foot characterized by cellulitis and unhealthy tissue that extends beyond 2 cm of the perimeter of the perimeter. If the ulcer is accompanied by asteomeylitis, deep abscess or critical ischema, the condition may trigger amputation.
  • [0005]
    To assist in procedures for treating diabetic foot ulcers, one of several available grading systems such as the Wagner Ulcer Classification System shown in Table 1, below, is used to assess the severity of the ulcer and prescribe treatment. In making the assessment, the ulcer is examined to establish its location, size, depth, and appearance to determine whether it is neuropathic, ischemic, or neuro-ischemic. Depending on the diagnosis, an antibiotic is administered and if further treatment is necessary, the symptomatic area is treated more aggressively, for example, by debridement of unhealthy tissue to induce blood flow and to expose healthy underlying tendons and bone. If warranted, post-debridement treatment such as dressings, foams, hydrocolloids, genetically engineered platelet-derived growth factor becaplermin and bio-engineered skins and the like are applied.
  • [0000]
    TABLE 1
    Wagner Ulcer Classification System
    Grade
    Classification Type of Lesion
    0 No open lesion (may have some cellulitis)
    1 Superficial (partial or full thickness cellulitis)
    2 Ulcer extension to ligament, tendon, joint capsule
    without abscess or osteomyelitis
    3 Deep ulcer with abscess, osteomyelitis, or joint sepsis
    4 Gangrene localized to portion of forefoot or heel
    5 Extensive gangrenous involvement of the entire foot
  • [0006]
    In treating ulcers including diabetic foot ulcers, it has been recognized that early intervention to treat affected tissue before a lesion breaks out is beneficial, particularly to debride tissue, increase blood flow and stimulate healthy tissue growth. Topical debriding enzymes are sometime used but are expensive and have not been conclusively shown to be beneficial. After the condition has progressed to a lesion with extensive cellulitis, later stage intervention is also beneficial if the treatment involves removal of unhealthy tissue, increasing blood flow, and stimulating healthy tissue growth. It is therefore an objective to provide methods and systems to facilitate these goals.
  • SUMMARY OF THE INVENTION
  • [0007]
    In one embodiment, the method is an electrosurgical procedure for treating ulcer, in particular diabetic foot ulcer, comprising: positioning an active electrode in close proximity to the ulcer, the active electrode disposed on a distal end of an electrosurgical probe or shaft; and applying a high-frequency voltage potential difference across the active electrode and a return electrode sufficient to generate plasma at the active electrode, and to modify the ulcer. In one embodiment, an electrically conductive fluid is provided at the active electrode. Modification of the ulcer in accordance with the present method include perforating tissue in the vicinity of the ulcer, debriding tissue to increase blood flow, and applying plasma to leverage the body's natural healing response.
  • [0008]
    In one embodiment, current is conducted into the ulcer to perforate and remove unhealthy tissue, restore blood flow and promote healing.
  • [0009]
    In using plasma to modify ulcer, the present method removes unhealthy tissue and improve blood flow, and also leverages the body's cytokine role in coordinating inflammatory response and repairing tissue as described in “Percutaneous Plasma Discetomy Stimulates Repair In Injured Inter-vertebral Discs”, Conor W. O'Neill, et al, Department of Orthopedic Surgery, Department of Radiology, University of California, San Francisco, Calif. (2004) herein incorporated by reference.
  • [0010]
    As noted in the O'Neil reference, plasma alters the expression of inflammatory response in tissue, leading to a decrease in interlukin-1 (IL-1) and an increase in interlukin-8 (IL-8). While both IL-1 and IL-8 have hyperalgesic properties, Il-1 is likely to be the more important pathophysiologic factor in pain disorders than IL-8. Also, as described in the O'Neil reference, cytokines play an important role in coordinating inflammatory and repair response to tissue injury. For example, IL-1 is a catabolic mediator that induces proteases and inhibits extra-cellular matrix synthesis. On the other hand, IL-8 is anabolic as it promotes a number of tissue repair functions including angiogenesis, fibroblast proliferation and differentiation, stem cell mobilization, and maturation and remodeling of matrix. Thus a decrease in IL-1 and an increase in IL-8 suggest that plasma has a role in stimulating a healing response mediated by IL-8 to mediate tissue degeneration, resulting in overall tissue healing, an a decrease in inflammation and pain.
  • [0011]
    Since the method can be applied at any stage of the condition, the method can therefore be used to treat ulcerated tissue both before and after a lesion forms. Hence, both the early stages of the condition before extensive tissue damage have occurred, and at a later stage when there is extensive tissue damage and cellulitis can be treated.
  • [0012]
    Embodiments of the present methods and system are described and illustrated in the following detailed specification.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    FIG. 1A is an illustration of ulcer locations on a foot.
  • [0014]
    FIG. 1B is an illustration of a diabetic foot ulcer on the pad of the foot.
  • [0015]
    FIG. 2 is an illustration of an electrosurgical system adaptable for use with the present method.
  • [0016]
    FIG. 3A is an illustration of an electrode configuration for debriding ulcerated tissue in accordance with the present method.
  • [0017]
    FIG. 3B is an illustration of an electrode configuration for perforating ulcerated tissue in accordance with the present method.
  • [0018]
    FIG. 4 is an algorithm of an embodiment of the present method.
  • DETAILED DESCRIPTION
  • [0019]
    Electrosurgical apparatus and systems adaptable for use with the present method are illustrated and described in commonly owned U.S. Pat. Nos. 6,296,638, 6,602,248 and 6,805,130 the disclosure of which is herein incorporated by reference. In one exemplary embodiment illustrated in FIG. 2, the electrosurgical system (8) includes a probe (10) comprising an elongated shaft (12) and a connector (14) at its proximal end, and one or more active electrodes (16A) disposed on the distal end of the shaft. Also disposed on the shaft but spaced from the active electrode is a return electrode (16B). A handle (20) with connecting power cable (18) and cable connector (22) can be removably connected to the power supply (26).
  • [0020]
    As used herein, an active electrode is an electrode that is adapted to generate a higher charge density, and hence generate more plasma, relative to a return electrode when a high-frequency voltage potential is applied across the electrodes, as described herein. Typically, a higher charge density is obtained by making the active electrode surface area smaller relative to the surface area of the return electrode.
  • [0021]
    Power supply (26) comprises selection means (28) to change the applied voltage level. The power supply (26) can also include a foot pedal (32) positioned close to the user for energizing the electrodes (16A, 16B). The foot pedal (32) may also include a second pedal (not shown) for remotely adjusting the voltage level applied to electrodes (16A, 16B). Also included in the system is an electrically conductive fluid supply (36) with tubing (34) for supplying the probe (10) and the electrodes with electrically conductive fluid. Details of a power supply that may be used with the electrosurgical probe of the present invention is described in commonly owned U.S. Pat. No. 5,697,909 which is hereby incorporated by reference herein.
  • [0022]
    As illustrated in FIG. 2, the return electrode (16B) is connected to power supply (26) via cable connectors (18), to a point slightly proximal of active electrode. Typically the return electrode is spaced at about 0.5 mm to 10 mm, and more preferably about 1 mm to 10 mm from the active electrode. Shaft (12) is disposed within an electrically insulative jacket, which is typically formed as one or more electrically insulative sheaths or coatings, such as polyester, polytetrafluoroethylene, polyimide, and the like. The provision of the electrically insulative jacket over shaft (12) prevents direct electrical contact between shaft (12) and any adjacent body structure or the surgeon. Such direct electrical contact between a body structure and an exposed return electrode (16B) could result in unwanted heating of the structure at the point of contact causing necrosis.
  • [0023]
    As will be appreciated, the above-described systems and apparatus can applied equally well to a wide range of electrosurgical procedures including open procedures, intravascular procedures, urological, laparoscopic, arthroscopic, thoracoscopic or other cardiac procedures, as well as dermatological, orthopedic, gynecological, otorhinolaryngological, spinal, and neurologic procedures, oncology and the like. However, for the present purposes the system described herein is directed to treat various forms of ulcer, including skin ulcer, mucus membrane ulcer, foot ulcer, cellulitic tissue, and diabetic foot ulcer.
  • [0024]
    In accordance with the present method, the system of FIG. 2 is adaptable to apply a high frequency (RF) voltage/current to the active electrode(s) in the presence of electrically conductive fluid to modify the structure of tissue on and in the vicinity of the ulcer. Thus, with the present method, the system of FIG. 2 can be used to modify tissue by: (1) creating perforations in the vicinity of the ulcer; (2) volumetrically removing tissue, including bone and cartilage in the vicinity of the ulcer (i.e., ablate or effect molecular dissociation of the tissue structure) from on and around the ulcer; (3) forming holes, channels, divots, or other spaces on the ulcer; (4) cutting or resect tissues of the ulcer; (5) shrinking or contracting collagen-containing connective tissue in and around the ulcer and/or (6) coagulate severed blood vessels in and around the ulcer.
  • [0025]
    In accordance with the present method, the applied current can be used to modify tissue in several ways, e.g., the current can be passed directly into the target site by direct contact with the electrodes such to heat the target site; or the current can be passed indirectly into the target site through an electrically conductive fluid located between the electrode and the target site also to heat the target site; or current can be passed into an electrically conductive fluid disposed between the electrodes to generate plasma for treating the target site.
  • [0026]
    In accordance with the present method, the high frequency voltage difference applied between one or more active electrode(s) and one or more return electrode(s) develop high electric field intensities in the vicinity of the target tissue. The high electric field intensities adjacent to the active electrode(s) induces molecular breakdown of target tissue by molecular dissociation of tissue components (rather than by thermal evaporation or carbonization). In this procedure it is believed that the tissue structure is volumetrically removed through molecular disintegration of larger organic molecules into smaller molecules and/or atoms, such as hydrogen, oxygen, oxides of carbon, hydrocarbons and nitrogen compounds. This molecular disintegration completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of water from within the cells of the tissue.
  • [0027]
    The high electric field intensities is generated, in accordance with the present method, by applying a high frequency voltage that sufficient to vaporize electrically conductive fluid disposed over at least a portion of the active electrode(s) in the region between the distal tip of the active electrode(s) and the target tissue. The electrically conductive fluid may be a liquid, such as isotonic saline, Ringer's lactate solution, blood and other body fluids delivered to the target site, or a viscous fluid, such as a conductive gel, applied to the target site. Since the vapor layer or vaporized region has relatively high electrical impedance, it minimizes current flow into the electrically conductive fluid. This ionization, under these conditions, induces the discharge of plasma comprised of energetic electrons and photons from the vapor layer and to the surface of the target tissue. A more detailed description of this phenomenon, termed Coblation™, can be found in commonly assigned U.S. Pat. No. 5,683,366 the complete disclosure of which is incorporated herein by reference.
  • [0028]
    In various embodiments of the present method, the electrically conductive fluid possesses an electrical conductivity value above a minimum threshold level, in order to provide a suitable conductive path between the return electrode and the active electrode(s). The electrical conductivity of the fluid (in units of milliSiemens per centimeter or mS/cm) is usually be greater than about 0.2 mS/cm, typically greater than about 2 mS/cm and more typically greater than about 10 mS/cm. In an exemplary embodiment, the electrically conductive fluid is isotonic saline, which has a conductivity of about 17 mS/cm.
  • [0029]
    Also in various embodiments of the preset method, it may be necessary to remove, e.g., aspirate, any excess electrically conductive fluid and/or ablation by-products from the surgical site. In addition, it may be desirable to aspirate small pieces of tissue that are not completely disintegrated by the high frequency energy, or other fluids at the target site, such as blood, mucus, and other body fluids.
  • [0030]
    Accordingly, in various embodiments the present system includes one or more suction lumen(s) in the shaft, or on another instrument, coupled to a suitable vacuum source for aspirating fluids from the target site. In various embodiments, the instrument also includes one or more aspiration electrode(s) coupled to the aspiration lumen for inhibiting clogging during aspiration of tissue fragments from the surgical site. A more complete description of these embodiments can be found in commonly owned U.S. Pat. No. 6,190,381, the complete disclosure of which is incorporated herein by reference for all purposes.
  • [0031]
    In the present method a single electrode or an electrode array may be disposed over a distal end of the shaft of the electrosurgical instrument to generate and apply the plasma to the tissue. In both configurations, the circumscribed area of the electrode or electrode array will generally depend on the desired diameter of the perforations and amount of debriding to be performed. In one embodiment, the area of the electrode array is in the range of from about 0.25 mm2 to 20 mm2, preferably from about 0.5 mm2 to 10 mm2, and more preferably from about 0.5 mm2 to 5.0 mm2.
  • [0032]
    In addition, the shape of the electrode at the distal end of the instrument shaft will also depend on the size of the surface area to be treated. For example, the electrode may take the form of a pointed tip, a solid round wire, or a wire having other solid cross-sectional shapes such as squares, rectangles, hexagons, triangles, star-shaped, or the like, to provide a plurality of edges around the distal perimeter of the electrodes. Alternatively, the electrode may be in the form of a hollow metal tube having a cross-sectional shape that is round, square, hexagonal, rectangular or the like. The envelope or effective diameter of the individual electrode(s) ranges from about 0.05 mm to 3 mm, preferably from about 0.1 mm to 2 mm.
  • [0033]
    Examples of an electrosurgical apparatus that can be used to modify tissue in accordance with the present method are illustrated in FIGS. 3A and 3B. With reference to FIG. 3A, in one embodiment the apparatus comprises an active electrode (34) disposed on the distal end of a shaft (36). Spaced from the active electrode is a return electrode (38) also disposed on the shaft. Both the active and return electrodes are connected to a high frequency voltage supply (not shown). Disposed in contact with the active and return electrodes is an electrically conductive fluid (40). In one embodiment the electrically conductive fluid forms an electrically conductive fluid bridge (42) between the electrodes. On application of a high frequency voltage across the electrode, plasma is generated as described above, for use in treating tissue in accordance with the present method. A more detailed description of this phenomenon, termed Coblation™, and the operation of the electrode illustrated in FIG. 3A can be found in commonly assigned U.S. Pat. No. 6,296,638 the complete disclosure of which is incorporated herein by reference. Advantageously, as the tip of the electrode (34) presents a relatively broad surface area, the electrode tip illustrated in FIG. 3A is beneficially used for treating larger ulcers including debriding large amounts of dead or necrotic tissue, in accordance with the present method.
  • [0034]
    Similarly, with reference to FIG. 3B, in one embodiment the apparatus comprises an active electrode (44) disposed on the distal end of a shaft (46) Spaced from the active electrode is a return electrode (48) also disposed on the shaft. Both the active and return electrodes are connected to a high frequency voltage supply (not shown). On application of a high frequency voltage across the electrode in the presence of a conductive fluid plasma id generated for use in treating tissue in accordance with the present method. A more detailed description of this phenomenon, termed Coblation™, and the operation of the electrode illustrated in FIG. 3B can be found in commonly assigned U.S. Pat. No. 6,602,248 the complete disclosure of which is incorporated herein by reference. Advantageously, as the tip of the electrode (34) presents a pointed, the electrode tip of FIG. 3B is beneficially used for perforating smaller areas of tissue in the vicinity of the ulcer to induce blood flow to the tissue.
  • [0035]
    In a typical procedure involving treatment of diabetic foot ulcer, it may be necessary to use one or more shapes of electrodes. For example, in a first step, an electrode of the type illustrated in FIG. 3A may be employed to debride large area of unhealthy tissue surrounding the ulcer. Thereafter, an electrode as shown in FIG. 3B can be used to perforate the debrided area to induce blood flow.
  • [0036]
    The area of the tissue treatment surface can vary widely, and the tissue treatment surface can assume a variety of geometries, with particular areas and geometries being selected for specific applications. The active electrode surface(s) can have area(s) in the range from about 0.25 mm2 to 75 mm2, usually being from about 0.5 mm2 to 40 mm2. The geometries can be planar, concave, convex, hemispherical, conical, linear “in-line” array, or virtually any other regular or irregular shape.
  • [0037]
    Most commonly, the active electrode(s) or active electrode array(s) will be formed at the distal tip of the electrosurgical instrument shaft, frequently being planar, disk-shaped, pointed or hemispherical surfaces for use in reshaping procedures, or being linear arrays for use in cutting. Alternatively or additionally, the active electrode(s) may be formed on lateral surfaces of the electrosurgical instrument shaft (e.g., in the manner of a spatula).
  • [0038]
    The voltage difference applied between the return electrode(s) and the return electrode is high or radio frequency, typically between about 5 kHz and 20 MHz, usually being between about 30 kHz and 2.5 MHz, preferably being between about 50 kHz and 500 kHz, more preferably less than 350 kHz, and most preferably between about 100 kHz and 200 kHz. The RMS (root mean square) voltage applied will usually be in the range from about 5 volts to 1000 volts, preferably being in the range from about 10 volts to 500 volts depending on the active electrode size, the operating frequency and the operation mode of the particular procedure or desired effect on the tissue (e.g., contraction, coagulation, cutting or ablation).
  • [0039]
    Typically, the peak-to-peak voltage for ablation or cutting of tissue will be in the range of from about 10 volts to 2000 volts, usually in the range of 200 volts to 1800 volts, and more typically in the range of about 300 volts to 1500 volts, often in the range of about 500 volts to 900 volts peak to peak (again, depending on the electrode size, the operating frequency and the operation mode). Lower peak-to-peak voltages will be used for tissue coagulation or collagen contraction and will typically be in the range from 50 to 1500, preferably from about 100 to 1000, and more preferably from about 120 to 600 volts peak-to-peak
  • [0040]
    The power source may be current limited or otherwise controlled so that undesired heating of the target tissue or surrounding (non-target) tissue does not occur. In a preferred embodiments, current limiting inductors are placed in series with each independent active electrode, where the inductance of the inductor is in the range of 10 uH to 50,000 uH, depending on the electrical properties of the target tissue, the desired tissue heating rate and the operating frequency. Alternatively, capacitor-inductor (LC) circuit structures may be employed, as described previously in U.S. Pat. No. 5,697,909, the complete disclosure of which is incorporated herein by reference. A more detailed description of this phenomenon, termed Coblation™, can be found in commonly assigned U.S. Pat. No. 5,683,366 the complete disclosure of which is incorporated herein by reference.
  • [0041]
    The current flow path between the active electrodes and the return electrode(s) may be generated by submerging the tissue site in an electrically conductive fluid (e.g., a viscous fluid, such as an electrically conductive gel), or by directing an electrically conductive fluid through a fluid outlet along a fluid path to the target site (i.e., a liquid, such as isotonic saline, or a gas, such as argon). The conductive gel may also be delivered to the target site to achieve a slower more controlled delivery rate of conductive fluid. In addition, the viscous nature of the gel may allow the surgeon to more easily contain the gel around the target site (e.g., as compared with containment of a liquid, such as isotonic saline). A more complete description of an exemplary method of directing electrically conductive fluid between active and return electrodes is described in U.S. Pat. No. 5,697,281, the contents of which are incorporated by reference herein in their entirety.
  • [0042]
    With reference to FIG. 4, the present method in one embodiment is a procedure for treating ulcers, including skin ulcer, mucus membrane ulcers, foot ulcers, a diabetic foot ulcer to promote healing. In particular embodiments, the method (50) includes the steps of: (52) positioning an active electrode in close proximity to the ulcer, the active electrode disposed on a distal end of a shaft; and (54) applying a high-frequency voltage potential difference across the active electrode and a return electrode sufficient to generate plasma at the active electrode, whereby the ulcer is modified by the active electrode.
  • [0043]
    In one embodiment, a conductive fluid such as isotonic saline, a conductive gel, Ringer's solution and body fluid such as blood and body plasma is preset and is in contact with the active electrode. As noted above, the conductive fluid in the presence of a sufficiently high-frequency voltage will generate plasma as used in the present method.
  • [0044]
    In one embodiment, the conductive fluid forms a conductive bridge between the active electrode and the return electrode. In this embodiment, the active and return electrodes are disposed on the distal end of an electrosurgical shaft as described above. Thus in this embodiment, since current does not pass into the tissue, plasma generated in the conductive fluid is used to modify the tissue as described above.
  • [0045]
    In an alternative embodiment, an electrically conductive fluid layer is provided in between the active electrode and the tissue, in the vicinity of the tissue. In this embodiment, in addition to plasma generated in the fluid, current from the applied high frequency voltage is applied into the tissue. Thus with this embodiment, both current and plasma are used to modify the tissue. In one embodiment the applied high frequency voltage is adjusted to provide sufficient current for coagulating and sealing the tissue and stop bleeding.
  • [0046]
    In various embodiments of the method, a suitably configured active electrode is used to treat the ulcer, for example, by debriding, perforating, inducing blood-flow to tissue, coagulating tissue and volumetrically removing tissue in the vicinity of the ulcer. Thus, for example, an active electrode as schematically illustrated in FIG. 3A and comprised of a relatively wide distal end can be used to debride and volumetrically remove unhealthy tissue in the vicinity of the ulcer. Thereafter, in accordance with the present method, the smaller active electrode schematically illustrated in FIG. 3B can be used to perforate the tissue in the debrided area to cause blood flow for healing.
  • [0047]
    In use, the active electrode is translated axially and radially over the tissue in the proximity of the ulcer to modify the tissue. Depending on the size of the debrided area and the lesion, small wounds can be treated by a needle-type active electrode as illustrated in FIG. 3B wherein many perforations are applied on the ulcer in a random manner, whereas for cellulitis in the vicinity of the ulcer, the perforations may be applied in a grid-like manner. For larger and more complicated ulcers, an electrode with a wider tip as illustrated in FIG. 3A can be used for more aggressive treatment.
  • [0048]
    In various embodiments, the tissue in the vicinity of the ulcer is treated with the active electrode for about 0.5 seconds at a time. Depending on the size of the area to be treated the method in one embodiment involves perforating the tissue at about 2 to 5 mm apart in the vicinity of the ulcer to form perforations with diameters of up to about 3 mm, and about 3 mm to 5 mm in depth.
  • [0049]
    In both types of electrode configurations, an electrically conductive fluid is provided to generate plasma. Depending on the apparatus used, the conductive fluid is provided by a lumen that discharges the fluid in the vicinity of the tissue. Similarly, in alternate embodiments, a suction lumen is provided to suction fluid and body tissue from the vicinity of the ulcer.
  • [0050]
    While the invention is described with reference to the Figures and method herein, it will be appreciate by one ordinarily skilled in the art that the invention can also be practiced with modifications within the scope of the claims. The scope of the invention therefore should not be limited to the embodiments as described herein, but is limited only by the scope of the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2611365 *3 Ene 194923 Sep 1952Nat Electric Instr Company IncHigh-frequency therapeutic apparatus
US3718617 *29 Jul 197027 Feb 1973Texas Instruments IncMinimum irritation potential potting compound
US3963030 *1 Nov 197415 Jun 1976Valleylab, Inc.Signal generating device and method for producing coagulation electrosurgical current
US4114623 *29 Jul 197619 Sep 1978Karl Storz Endoscopy-America, Inc.Cutting and coagulation apparatus for surgery
US4363324 *25 Ago 198014 Dic 1982Siemens AktiengesellschaftElectromedical apparatus
US4378801 *10 Dic 19805 Abr 1983Medical Research Associates Ltd. #2Electrosurgical generator
US4509532 *29 Jul 19829 Abr 1985Dlp, Inc.Cardioplegia temperature indicator
US4750902 *19 May 198614 Jun 1988Sonomed Technology, Inc.Endoscopic ultrasonic aspirators
US5282799 *11 Jul 19911 Feb 1994Everest Medical CorporationBipolar electrosurgical scalpel with paired loop electrodes
US5449356 *18 Oct 199112 Sep 1995Birtcher Medical Systems, Inc.Multifunctional probe for minimally invasive surgery
US5540683 *12 Jul 199430 Jul 1996Olympus Optical Co., Ltd.High frequency cauterizing apparatus
US5697927 *16 Mar 199416 Dic 1997Cardiac Pathways CorporationCatheter for RF ablation with cooled electrode and apparatus for use therewith
US5749914 *28 May 199612 May 1998Advanced Coronary InterventionCatheter for obstructed stent
US6090107 *20 Oct 199818 Jul 2000Megadyne Medical Products, Inc.Resposable electrosurgical instrument
US6238393 *6 Jul 199929 May 2001Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6241723 *21 Abr 19995 Jun 2001Team Medical LlcElectrosurgical system
US6346104 *30 Abr 199712 Feb 2002Western Sydney Area Health ServiceSystem for simultaneous unipolar multi-electrode ablation
US6346107 *21 Nov 199712 Feb 2002Robert L. CucinPower-assisted liposuction instrument with cauterizing cannual assembly
US6514250 *27 Abr 20004 Feb 2003Medtronic, Inc.Suction stabilized epicardial ablation devices
US6602248 *28 Sep 20005 Ago 2003Arthro Care Corp.Methods for repairing damaged intervertebral discs
US6640128 *13 Abr 200128 Oct 2003Brainlab AgMethod and device for the navigation-assisted dental treatment
US6656177 *19 Feb 20022 Dic 2003Csaba TruckaiElectrosurgical systems and techniques for sealing tissue
US6730080 *14 Ago 20014 May 2004Olympus CorporationElectric operation apparatus
US6915806 *25 Ene 200112 Jul 2005Arthrocare CorporationMethod for harvesting graft vessel
US6921398 *3 Jun 200226 Jul 2005Electrosurgery Associates, LlcVibrating electrosurgical ablator
US6986770 *7 Oct 200317 Ene 2006Refractec, Inc.Thermokeratoplasty system with a power supply that can determine a wet or dry cornea
US7001382 *14 Ene 200221 Feb 2006Conmed CorporationElectrosurgical coagulating and cutting instrument
US7094231 *22 Ene 200422 Ago 2006Ellman Alan GDual-mode electrosurgical instrument
US7282048 *2 Jun 200416 Oct 2007Gyrus Medical LimitedElectrosurgical generator and system
US7344532 *8 Dic 200418 Mar 2008Gyrus Medical LimitedElectrosurgical generator and system
US7678069 *2 Jun 200016 Mar 2010Arthrocare CorporationSystem for electrosurgical tissue treatment in the presence of electrically conductive fluid
US7691101 *6 Ene 20066 Abr 2010Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US7722601 *30 Abr 200425 May 2010Covidien AgMethod and system for programming and controlling an electrosurgical generator system
US7862560 *23 Mar 20074 Ene 2011Arthrocare CorporationAblation apparatus having reduced nerve stimulation and related methods
US7985072 *29 Sep 200526 Jul 2011Rejuvedent LlcMethod and apparatus for tooth rejuvenation and hard tissue modification
US20020190136 *7 Ago 200219 Dic 2002Eilaz BabaevUltrasonic method and device for wound treatment
US20030130655 *9 Ene 200310 Jul 2003Arthrocare CorporationElectrosurgical systems and methods for removing and modifying tissue
US20040186470 *5 Mar 200423 Sep 2004Gyrus Medical LimitedTissue resurfacing
US20050273091 *28 Oct 20038 Dic 2005CathrxptyltdSystem for, and method of, heating a biological site in a patient's body
US20060161148 *10 Ene 200620 Jul 2006Robert BehnkeCircuit and method for controlling an electrosurgical generator using a full bridge topology
US20080004621 *17 Sep 20073 Ene 2008Arthrocare CorporationElectrosurgical apparatus and methods for treatment and removal of tissue
US20080077128 *19 Nov 200727 Mar 2008Arthrocare CorporationTemperature indicating electrosurgical apparatus and methods
US20080138761 *6 Dic 200612 Jun 2008Pond Gary JApparatus and methods for treating tooth root canals
US20080154255 *7 Nov 200726 Jun 2008James PanosHeat treating a biological site in a patient's body
US20080167645 *4 Ene 200810 Jul 2008Jean WoloszkoElectrosurgical system with suction control apparatus, system and method
US20080234671 *23 Mar 200725 Sep 2008Marion Duane WAblation apparatus having reduced nerve stimulation and related methods
US20080300590 *6 Dic 20074 Dic 2008Cierra, Inc.Apparatus and methods for multipolar tissue welding
US20090209956 *14 Feb 200820 Ago 2009Marion Duane WAblation performance indicator for electrosurgical devices
US20090209958 *27 Abr 200920 Ago 2009Arthrocare CorporationElectrosurgical system and method for treating chronic wound tissue
US20090216222 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090216223 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090216224 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090216227 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090222004 *5 May 20093 Sep 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20100087812 *9 Dic 20098 Abr 2010Arthrocare CorporationElectrosurgical system and method for sterilizing chronic wound tissue
US20100152726 *16 Dic 200817 Jun 2010Arthrocare CorporationElectrosurgical system with selective control of active and return electrodes
US20100228246 *9 Mar 20099 Sep 2010Marion Duane WSystem and method of an electrosurgical controller with output rf energy control
US20100292689 *28 Jul 201018 Nov 2010Arthrocare CorporationElectrosurgical system and method for treating chronic wound tissue
US20100318083 *28 Jul 201016 Dic 2010Arthrocare CorporationElectrosurgical system and method for sterilizing chronic wound tissue
US20100324549 *17 Jun 200923 Dic 2010Marion Duane WMethod and system of an electrosurgical controller with wave-shaping
USD249549 *22 Oct 197619 Sep 1978Aspen Laboratories, Inc.Electrosurgical handle
USD493530 *4 Feb 200327 Jul 2004Sherwood Services AgElectrosurgical pencil with slide activator
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US82519955 Ago 200928 Ago 2012Covidien AgArticulating ionizable gas coagulator
US86366855 May 200928 Ene 2014Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US86631525 May 20094 Mar 2014Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US86631535 May 20094 Mar 2014Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US86631545 May 20094 Mar 2014Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US866868729 Jul 201011 Mar 2014Covidien LpSystem and method for removing medical implants
US887674627 Abr 20094 Nov 2014Arthrocare CorporationElectrosurgical system and method for treating chronic wound tissue
US899427027 Sep 201031 Mar 2015Colorado State University Research FoundationSystem and methods for plasma application
US902865631 Mar 201012 May 2015Colorado State University Research FoundationLiquid-gas interface plasma device
US916808728 Jul 201027 Oct 2015Arthrocare CorporationElectrosurgical system and method for sterilizing chronic wound tissue
US92541679 Dic 20099 Feb 2016Arthrocare CorporationElectrosurgical system and method for sterilizing chronic wound tissue
US927235931 Mar 20101 Mar 2016Colorado State University Research FoundationLiquid-gas interface plasma device
US928709126 Mar 201515 Mar 2016Colorado State University Research FoundationSystem and methods for plasma application
US953282621 Ene 20143 Ene 2017Covidien LpSystem and method for sinus surgery
US955514513 Ene 201431 Ene 2017Covidien LpSystem and method for biofilm remediation
US20090216222 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090216223 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090216227 *5 May 200927 Ago 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20090222004 *5 May 20093 Sep 2009Arthrocare CorporationElectrosurgical method and system for treating foot ulcer
US20100016856 *5 Ago 200921 Ene 2010Platt Jr Robert CArticulating Ionizable Gas Coagulator
Clasificaciones
Clasificación de EE.UU.606/45
Clasificación internacionalA61B18/14
Clasificación cooperativaA61B2018/1472, A61B2018/1213, A61B2018/00452, A61B18/1402, A61B2218/007
Clasificación europeaA61B18/14B
Eventos legales
FechaCódigoEventoDescripción
5 May 2009ASAssignment
Owner name: ARTHROCARE CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVISON, TERRY S.;WARNE, BRIAN, M.D.;REEL/FRAME:022640/0465;SIGNING DATES FROM 20060522 TO 20060822
Owner name: ARTHROCARE CORPORATION, TEXAS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVISON, TERRY S.;WARNE, BRIAN, M.D.;SIGNING DATES FROM 20060522 TO 20060822;REEL/FRAME:022640/0465