US20090277273A1 - Apparatus for measuring pressure in a vessel using acoustic impedance matching layers - Google Patents

Apparatus for measuring pressure in a vessel using acoustic impedance matching layers Download PDF

Info

Publication number
US20090277273A1
US20090277273A1 US12/190,350 US19035008A US2009277273A1 US 20090277273 A1 US20090277273 A1 US 20090277273A1 US 19035008 A US19035008 A US 19035008A US 2009277273 A1 US2009277273 A1 US 2009277273A1
Authority
US
United States
Prior art keywords
vessel
acoustic impedance
impedance matching
ultrasound
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/190,350
Inventor
Seung Soo Hong
Yong Hyeon Shin
Bongyoung AHN
Seung Hyun Cho
Ki-bok Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Research Institute of Standards and Science KRISS
Original Assignee
Korea Research Institute of Standards and Science KRISS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Research Institute of Standards and Science KRISS filed Critical Korea Research Institute of Standards and Science KRISS
Assigned to KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE reassignment KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHN, BONGYOUNG, CHO, SEUNG HYUN, HONG, SEUNG SOO, KIM, KI-BOK, SHIN, YONG HYEON
Publication of US20090277273A1 publication Critical patent/US20090277273A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/04Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by acoustic means
    • G01L11/06Ultrasonic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to an apparatus for measuring pressure inside a vessel using acoustic impedance matching layers and, more particularly, to an apparatus which has acoustic impedance matching layers attached to the inner surface of the wall inside a vessel whose pressure is desired to be measured, thereby increasing the transmitting efficiency of ultrasonic waves necessary for pressure measurement to thereby improve accuracy, and which can measure pressure in a low or high vacuum state and even in a high pressure state.
  • CDG capacitance diaphragm gauge
  • This capacitance diaphragm gauge adopts a method of disposing the gauge inside a vessel to be measured and measuring the pressure of the vessel.
  • this method using the capacitance diaphragm gauge was complicated in that, before the degree of vacuum (pressure) inside the vessel is measured, the degree of leakage of vacuum must be checked and, after the capacitance diaphragm gauge is disposed, the inside of the vessel must be made vacuum-tight. Further, the capacitance diaphragm gauge has limits that it is efficient for a low vacuum state.
  • the ionization gauge is based on the principle that, when pressure is changed, a probability that electrons may collide against gas molecules increases, and the number of generated positive ions changes when the electrons collide against the gas molecules.
  • the ionization gauge can measure pressure in the range of high vacuum regions of 10 ⁇ 1 Pa to 10 ⁇ 10 Pa, but has a problem that linearity cannot be guaranteed below 10 ⁇ 6 Pa.
  • An apparatus for minimizing the leakage of a vessel and obviating inconvenience in checking the degree of leakage includes a pressure measuring apparatus having an ultrasonic transducer disposed outside a vessel.
  • a vessel is made of metal, such as stainless steel, so as to withstand the pressure difference between the inside and the outside of the vessel.
  • the present invention has been made in view of the above problems occurring in the prior art, and an object of the present invention is to increase the transmitting efficiency of ultrasonic waves, from outside toward the inside of a vessel by using acoustic impedance matching layers. Further, the present invention provides a pressure measuring apparatus which can expect high resolution and improved accuracy and measure pressure inside a vessel even in a high vacuum, by increasing the transmitting efficiency of ultrasonic waves into the inside of the vessel. Furthermore, the present invention provides an apparatus that is able to measure pressure inside a vessel in a low vacuum state and even in a high pressure state over atmospheric pressure using one pressure measuring apparatus.
  • the preset invention provides a pressure measuring apparatus using acoustic impedance matching layers including: an ultrasound exciting unit attached to the outer surface of the vessel wall for generating ultrasonic waves to an inside of the vessel; a first acoustic impedance matching layer attached to an inner surface of the vessel wall for increasing a transmitting efficiency of the ultrasonic waves generated from the ultrasound exciting unit into the inside of the vessel; an ultrasound receiving unit attached to the outer surface of the vessel wall for receiving the ultrasonic waves transmitted from the inside of the vessel; a second acoustic impedance matching layer attached to an inner surface of the vessel wall for increasing transmitting efficiency of the ultrasonic waves received by the ultrasound receiving unit; a control unit connected to the ultrasound exciting unit for controlling the excitation signal transmitted into the ultrasound exciting unit; and a pressure measuring unit connected to the control unit for measuring an internal pressure of the vessel based on the excitation signal, which are transmitted into the ultrasound exciting unit, and an ultrasonic waves received by the ultrasound receiving unit.
  • the ultrasound exciting unit and the ultrasound receiving unit are preferably placed on the same axial line.
  • first acoustic impedance matching layer or the second acoustic impedance matching layer comprises a single layer or a plurality of layers with different acoustic impedance.
  • the first acoustic impedance matching layer or the second acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
  • control unit can control the excitation signal transmitted into the ultrasound exciting unit such that the ultrasonic waves generated from the ultrasound exciting unit resonate between the first acoustic impedance matching layer and the second acoustic impedance matching layer.
  • each of the ultrasound exciting unit and the ultrasound receiving unit comprises a piezoelectric ultrasonic transducer, a magnetostrictive ultrasonic transducer, an electromagnetic ultrasonic transducer or an electrostrictive ultrasonic transducer.
  • the present invention provides a pressure measuring apparatus using an acoustic impedance matching layer including: an ultrasound exciting/receiving unit attached to the outer surface of the vessel wall, wherein the ultrasound exciting/receiving unit generates ultrasonic waves to an inside of the vessel and receives the ultrasonic waves, which are reflected from an inner wall of the vessel and then return back thereto; an acoustic impedance matching layer attached to the inner surface of the vessel wall for increasing a transmitting efficiency of the ultrasonic waves when ultrasonic waves are transmitted into or received from the inside of the vessel; a control unit coupled to the ultrasound exciting/receiving unit for controlling the excitation signal transmitted into the ultrasound exciting/receiving unit; and a pressure measuring unit connected to the control unit for measuring an internal pressure of the vessel based on the excitation signal transmitted into the ultrasound exciting/receiving unit and an ultrasonic waves received by the ultrasound exciting/receiving unit.
  • a reflection plate for reflecting the ultrasonic waves generated from the ultrasound exciting/receiving unit is further included inside the vessel.
  • the ultrasound exciting/receiving unit comprises a piezoelectric ultrasonic transducer, a magnetostrictive ultrasonic transducer, an electromagnetic ultrasonic transducer or an electrostrictive ultrasonic transducer.
  • the acoustic impedance matching layer can include a single layer or a plurality of layers with different acoustic impedance.
  • the acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
  • the control unit can control the excitation signal transmitted into the ultrasound exciting/receiving unit such that the ultrasonic waves generated from the ultrasound exciting/receiving unit resonate between the acoustic impedance matching layer and the inner wall of the vessel or such that the ultrasonic waves generated from the ultrasound exciting/receiving unit resonate between the acoustic impedance matching layer and the reflection plate.
  • FIG. 1 shows the construction of a pressure measuring apparatus using acoustic impedance matching layers in accordance with a first embodiment of the present invention
  • FIG. 2 shows the construction of a pressure measuring apparatus using an acoustic impedance matching layer in accordance with a second embodiment of the present invention
  • FIG. 3 shows a construction in which a reflection plate is disposed in the pressure measuring apparatus using the acoustic impedance matching layers in accordance with a third embodiment of the present invention.
  • reference numeral U denotes ultrasonic waves traveling inside a vessel 10
  • reference numeral P denotes a path along which ultrasonic waves are reflected from an inner wall of the vessel 10 and travels.
  • FIG. 1 shows the construction of a pressure measuring apparatus using acoustic impedance matching layers in accordance with a first embodiment of the present invention.
  • an ultrasound exciting unit 20 and an ultrasound receiving unit 30 are disposed at the outer surface of the vessel wall 10 .
  • the ultrasound exciting unit 20 and the ultrasound receiving unit 30 can employ an ultrasonic transducer comprised of a piezoelectric vibrator using a piezoelectric effect, an electrostrictive vibrator using electrostriction, a magnetostrictive acoustic vibrator, an electromagnetic vibrator or the like.
  • the ultrasonic transducer comprised of a piezoelectric vibrator (hereinafter referred to as a ‘piezoelectric ultrasonic transducer’) is configured to change electric field to mechanical deformation and thus generate ultrasonic waves, when an oscillating electric voltage is applied to a crystalline structure such as crystal, Rochell salt or ammonium dihydrogen phosphate (ADP), and can be used even in solid, liquid and gas media.
  • a piezoelectric vibrator hereinafter referred to as a ‘piezoelectric ultrasonic transducer’
  • ADP ammonium dihydrogen phosphate
  • the ultrasonic transducer comprised of an electrostrictive vibrator (hereinafter referred to as an ‘electrostrictive ultrasonic transducer’) employs electrostriction, which is generated when an electric field is applied to dielectric material such as barium titanate (BaTiO 3 ), and is mainly useful for liquid media.
  • electrostrictive vibrator hereinafter referred to as an ‘electrostrictive ultrasonic transducer’
  • electrostriction which is generated when an electric field is applied to dielectric material such as barium titanate (BaTiO 3 ), and is mainly useful for liquid media.
  • the ultrasonic transducer comprised of a magnetostrictive acoustic vibrator (hereinafter referred to as a ‘magnetostrictive ultrasonic transducer’) employs a phenomenon in which, when a magnetic field is applied to ferromagnetic material, such as nickel, Terfenol-D, or iron-cobalt, the ferromagnetic material is magnetized, and therefore ultrasonic waves are generated by the deformation of the ferromagnetic material, and it is useful in solid, liquid, and gas media.
  • ferromagnetic material such as nickel, Terfenol-D, or iron-cobalt
  • the ultrasonic transducer comprised of an electromagnetic vibrator (hereinafter referred to as an ‘electromagnetic ultrasonic transducer’) uses a voice coil type vibrator, such as a dynamic speaker, and is configured to vibrate surrounding media using an AC oscillator of a high frequency.
  • an electromagnetic vibrator hereinafter referred to as an ‘electromagnetic ultrasonic transducer’
  • uses a voice coil type vibrator such as a dynamic speaker, and is configured to vibrate surrounding media using an AC oscillator of a high frequency.
  • the ultrasound receiving unit 30 is preferably placed on the same axial line (A-A′) as that of the ultrasound exciting unit 20 . Moreover, the ultrasound receiving unit 30 is driven in a reverse manner to the ultrasound exciting unit 20 , and receives ultrasonic waves and converts the received ultrasonic waves into an electrical signal. Description of the ultrasound receiving unit 30 is identical to that of the ultrasound exciting unit 20 .
  • First and second acoustic impedance matching layers 50 a, 50 b are attached to an inner surface of the vessel wall 10 . That is, as shown in FIG. 1 , the first and second acoustic impedance matching layers 50 a, 50 b are attached to the inner surface of the vessel wall 10 , and the first acoustic impedance matching layer 50 a is attached to face the ultrasound exciting unit 20 .
  • the second acoustic impedance matching layer 50 b is further attached to the inner surface of the vessel wall 10 in such a way as to face the ultrasound receiving unit 30 .
  • Each of the first and second acoustic impedance matching layers 50 a, 50 b has a predetermined thickness and can include a single layer or a plurality of layer with different acoustic impedance.
  • the acoustic impedance of each of the first and second acoustic impedance matching layers 50 a, 50 b has a value between an acoustic impedance value of material of the vessel 10 and an acoustic impedance value of gas inside the vessel 10 .
  • the first acoustic impedance matching layer 50 a functions to effectively transmit ultrasonic waves from the wall of the vessel 10 into gas inside the vessel
  • the second acoustic impedance matching layer 50 b functions to increase the transmitting efficiency of ultrasonic waves from gas inside the vessel into the wall of the vessel 10 .
  • the first and second acoustic impedance matching layers 50 a, 50 b function to increase transmittance of the ultrasonic wave by acoustic impedance matching between the wall of the vessel 10 , and gas in inside the vessel. This is because, in general, when an acoustic impedance difference between two media increases, the transmitting efficiency of ultrasonic waves decreases.
  • the first and second acoustic impedance matching layers 50 a, 50 b can be fabricated in consideration of material of the vessel 10 , the degree of vacuum or the range of pressure of the vessel 10 to be measured, a thickness of the vessel 10 and/or the like.
  • design parameters of the first and second acoustic impedance matching layers 50 a, 50 b can include acoustic impedance, a thickness, the attenuation ratio of ultrasonic energy, etc. of a single layer or each of a plurality of layers, which constitute each of the first and second acoustic impedance matching layers 50 a, 50 b, the number of layers constituting each of the first and second acoustic impedance matching layers 50 a, 50 b, and so on.
  • the thickness of each of the plurality of layers can be decided by taking the frequency of ultrasonic waves into consideration.
  • the plurality of layers constituting each of the first and second acoustic impedance matching layers 50 a, 50 b can be fixed to an inner wall using adhesives, a press method employing a tool or the like.
  • adhesives or a tool it is necessary to consider the acoustic impedance of the adhesives, a change in the thickness of each of a plurality of layers when the plurality of layers is pressed using the tool, etc.
  • a filter unit (not shown) is for removing various noise signals included in measured ultrasonic wave signals.
  • the filter unit can be preferably added before an ultrasonic signal received by the ultrasound receiving unit 30 is applied to a pressure measuring unit 60 .
  • the filter unit may employ a highpass filter (HPF) or a bandpass filter (BPF).
  • the pressure measuring unit 60 measures an internal pressure of the vessel 10 based on the excitation signal, which are transmitted into the ultrasound exciting unit 20 , and an ultrasonic waves received by the ultrasound receiving unit 30 or/and the filter unit (not shown).
  • the present invention is based on the principle that acoustic impedance of gas inside the vessel is changed according to an internal pressure. Accordingly, the pressure measuring unit 60 analyzes the received ultrasonic signal, calculates a change in the acoustic impedance of gas based on the amplitude, waveform and time of flight of the ultrasonic waves traveling inside the vessel 10 , etc., and measures an internal pressure of the vessel 10 according to the acoustic impedance variation.
  • FIG. 2 shows the construction of a pressure measuring apparatus using an acoustic impedance matching layer in accordance with a second embodiment of the present invention.
  • the pressure measuring apparatus using an acoustic impedance matching layer in accordance with a second embodiment of the present invention includes, as shown in FIG. 2 , an ultrasound exciting/receiving unit 40 , an acoustic impedance matching layer 50 , and a pressure measuring unit 60 .
  • the ultrasound exciting/receiving unit 40 is disposed at the outer surface of a vessel wall 10 .
  • the ultrasound exciting/receiving unit 40 is one device serving as the ultrasound exciting unit 20 and the ultrasound receiving unit 30 of the above first embodiment as described above, and can employ the piezoelectric ultrasonic transducer, the electrostrictive ultrasonic transducer, the magnetostrictive ultrasonic transducer, the electromagnetic ultrasonic transducer or the like.
  • Ultrasonic waves, generated from the ultrasound exciting/receiving unit 40 into the inside of the vessel 10 travel inside the vessel 10 .
  • the traveling ultrasonic waves are reflected from an inner wall of the vessel 10 and then return back to the ultrasound exciting/receiving unit 40 according to a pulse-echo method.
  • the acoustic impedance matching layer 50 has the same construction as that of each of the first and second acoustic impedance matching layers 50 a, 50 b described in connection with the first embodiment, and the pressure measuring unit 60 is also identical to that of the first embodiment. Thus, description of the acoustic impedance matching layer 50 and the pressure measuring unit 60 is omitted for simplicity.
  • FIG. 3 shows a construction in which a reflection plate is disposed in the pressure measuring apparatus using the acoustic impedance matching layers in accordance with a third embodiment of the present invention.
  • a reflection plate 70 can be further disposed at a place close to an ultrasound exciting/receiving unit 40 in order to reduce attenuation of ultrasonic wave inside the vessel 10 .
  • Unexplained reference numeral 22 denotes a control unit and functions to control ultrasonic waves, which are generated from the ultrasound exciting unit 20 of the first embodiment or the ultrasound exciting/receiving unit 40 of the second and third embodiments.
  • ultrasonic waves traveling inside the vessel 10 resonate between the first acoustic impedance matching layer 50 a and the second acoustic impedance matching layer 50 b (the first embodiment), between the acoustic impedance matching layer 50 and the inner wall of the vessel 10 (the second embodiment), and between the acoustic impedance matching layer 50 and the reflection plate 70 (the third embodiment), the transmitting efficiency of the ultrasonic waves increases.
  • the control unit 22 applies a predetermined controlled excitation signal to the ultrasound exciting unit 20 or the ultrasound exciting/receiving unit 40 in order to induce resonance.
  • Such resonance is useful when it is necessary to generate an ultrasonic signal of a high output, such as high-vacuum measurement.
  • unexplained reference numeral 110 denotes a vacuum pump for making the inside of the vessel 10 in a vacuum state
  • unexplained reference numeral 100 denotes a valve used to produce vacuum.
  • the above auxiliary devices are for making the inside of the vessel 10 in a vacuum state and are not indispensable constituent elements of the pressure measuring apparatus of the present invention.
  • a method of measuring an internal pressure of the vessel 10 using the pressure measuring apparatus of the present invention is described below.
  • the pressure measuring apparatus is installed (S 10 ). The following steps are described per on an embodiment basis.
  • the ultrasound exciting unit 20 and the ultrasound receiving unit 30 are adhered to the surface of the outer wall of the vessel 10 .
  • the ultrasound exciting unit 20 , the ultrasound receiving unit 30 , the first acoustic impedance matching layer 50 a, and the second acoustic impedance matching layer 50 b are placed, as shown in FIG. 1 , on the same axial line (A-A′).
  • the control unit 22 is installed in order to control the excitation signal transmitted into the ultrasound exciting unit 20 (S 20 ′).
  • the ultrasonic waves be controlled to resonate between the first acoustic impedance matching layer 50 a and the second acoustic impedance matching layer 50 b.
  • the ultrasonic waves generated from the ultrasound exciting unit 20 have its transmitting efficiency increased by the first acoustic impedance matching layer 50 a attached to the inner surface of the vessel wall 10 and then travel inside the vessel 10 (S 30 ′).
  • Gas inside the vessel 10 has its acoustic impedance changed according to an internal pressure (that is, the density of the gas) of the vessel 10 .
  • the amplitude, waveform, etc. of the ultrasonic waves are also changed according to the acoustic impedance of the gas.
  • the ultrasonic waves traveling inside the vessel 10 are received by the ultrasound receiving unit 30 (S 40 ′).
  • the transmitting efficiency of the ultrasonic waves, which are received by the second acoustic impedance matching layer 50 b attached to the inner surface of the vessel wall 10 increases, so that the ultrasonic wave is sufficiently transmitted to the ultrasound receiving unit 30 disposed outside the vessel 10 .
  • the ultrasonic signal received by the ultrasound receiving unit 30 is applied to the pressure measuring unit 60 .
  • the pressure measuring unit 60 compares the amplitude, waveform, frequency, etc. between the excitation signal, which is transmitted into the ultrasound exciting unit 20 , and the ultrasonic signal received by the ultrasound receiving unit 30 , and measures an internal pressure of the vessel 10 based on the amplitude, waveform and time of flight of the ultrasonic waves traveling inside the vessel 10 (S 50 ′).
  • the ultrasound exciting/receiving unit 40 is adhered to the outer surface of the vessel wall 10 as shown in FIG. 2 .
  • the ultrasound exciting/receiving unit 40 and the acoustic impedance matching layer 50 are preferably placed on the same axial line (A-A′) in the same manner as the first embodiment.
  • control unit 22 is installed in order to control the excitation signal transmitted into the ultrasound exciting/receiving unit 40 (S 20 ′′). This is for the purpose of increasing the transmitting efficiency by inducing resonance of the ultrasonic waves between the acoustic impedance matching layer 50 and the inner wall of the vessel 10 .
  • the ultrasonic waves generated from the ultrasound exciting/receiving unit 40 have its transmitting efficiency increased by the acoustic impedance matching layer 50 , which is attached to the inner surface of the vessel wall 10 , and then travel inside the vessel 10 (S 30 ′′).
  • gas inside the vessel 10 has its acoustic impedance changed according to an internal pressure (that is, the density of the gas) of the vessel 10 .
  • the amplitude, waveform and time of flight, etc. of the ultrasonic waves are also changed according to the acoustic impedance of the gas.
  • the pulse-echo method is adopted in the second embodiment.
  • the ultrasonic waves traveling inside the vessel 10 are reflected from the inner wall of the vessel 10 and are then received by the ultrasound exciting/receiving unit 40 (S 40 ′′). If the ultrasonic waves are received by the ultrasound exciting/receiving unit 40 , the transmitting efficiency of the ultrasonic waves is increased by the acoustic impedance matching layer 50 as described above.
  • a next step is a pressure measurement step (S 50 ′′), which is identical to that of the first embodiment, and description thereof is omitted.
  • a step (S 10 ) of installing the pressure measuring apparatus a step (S 20 ′′′) of controlling the ultrasound exciting/receiving unit 40 using the control unit 22 , a step (S 40 ′′′) of receiving ultrasonic waves, and a step (S 50 ′′′) of measuring pressure are identical to those of the previous embodiment, and description thereof is omitted.
  • a difference between the first and second embodiments lies in that, as shown in FIG. 3 , the reflection plate 70 is further installed on the inner wall of the vessel 10 .
  • the propagation distance of ultrasonic waves becomes short, resulting in a difference in the amplitude and time of flight of received ultrasonic waves.
  • the reflection plate 70 since the reflection plate 70 is installed, attenuation of the ultrasonic wave decreases and accuracy in measuring pressure can be further improved.
  • the reflection plate 70 is installed in consideration of resonance conditions.
  • a place where the reflection plate 70 is installed can be a position where the wavelength ⁇ of ultrasonic waves transmitted into the inside of the vessel 10 is 1 ⁇ 2 or a position where the wavelength ⁇ of ultrasonic waves transmitted into the inside of the vessel 10 is a multiple
  • the present invention can also be applied to a case where the vessel 10 has a high vacuum state of 10 ⁇ 5 to 10 ⁇ 9 Pa as well as a case where the vessel 10 has a low vacuum state of 1 to 10 ⁇ 5 Pa.
  • the present invention can also be applied to a case where the vessel 10 has an atmospheric pressure state or higher.
  • the present invention can be applied to a case where an internal pressure of a specific vessel which does not has a vacuum state is to be measured. Further, the present invention can also be applied to a case where a vessel is filled with not gas, but solid or liquid.
  • the pressure measuring apparatus and method of the present invention have been described in relation to a vessel used in the semiconductor process or the LCD fabrication process, they can also be applied to all the industry fields in which the degree of vacuum, that is, the degree of pressure inside a specific vessel is to be measured.
  • the acoustic impedance matching layer(s) is fixed to an inner surface of the vessel wall in order to increase the transmitting efficiency of ultrasonic waves for pressure measurement. Accordingly, there is an advantage in that accuracy can be improved even when pressure is measured without deformation of a vessel, such as punching.
  • the degree of vacuum that is, pressure inside a vessel can be measured even in a high pressure or high vacuum state using one pressure measuring apparatus.

Abstract

The apparatus for measuring pressure inside a vessel using acoustic impedance matching layers may include an ultrasound exciting unit attached to the outer surface of the vessel wall that generates ultrasonic waves inside of the vessel. A first acoustic impedance matching layer attached to the inner surface of the vessel wall increases the transmitting efficiency of the ultrasonic waves. An ultrasound receiving unit attached to the outer surface of the vessel wall receives an ultrasonic signal traveling inside the vessel. A second acoustic impedance matching layer attached to the inner surface of the vessel wall increases the transmitting efficiency of the ultrasonic waves. A control unit connected to the ultrasound exciting unit controls the excitation signal transmitted into the ultrasound exciting unit. A pressure measuring unit connected to the control unit measures an internal pressure of the vessel based on the excitation signal and the received ultrasonic waves.

Description

  • The application claims the benefit of Korean Patent Application No. 10-2008-41716 filed May 6, 2008.
  • FIELD OF THE INVENTION
  • The present invention relates to an apparatus for measuring pressure inside a vessel using acoustic impedance matching layers and, more particularly, to an apparatus which has acoustic impedance matching layers attached to the inner surface of the wall inside a vessel whose pressure is desired to be measured, thereby increasing the transmitting efficiency of ultrasonic waves necessary for pressure measurement to thereby improve accuracy, and which can measure pressure in a low or high vacuum state and even in a high pressure state.
  • BACKGROUND OF THE RELATED ART
  • In general, in various manufacturing process such as the semiconductor and LCD fabrication, the measurement of the internal pressure of a vessel plays an important role in parameter control in process. When it is sought to measure the degree of vacuum, that is, the pressure of a vessel, a capacitance diaphragm gauge (CDG) is generally used.
  • This capacitance diaphragm gauge adopts a method of disposing the gauge inside a vessel to be measured and measuring the pressure of the vessel. However, this method using the capacitance diaphragm gauge was complicated in that, before the degree of vacuum (pressure) inside the vessel is measured, the degree of leakage of vacuum must be checked and, after the capacitance diaphragm gauge is disposed, the inside of the vessel must be made vacuum-tight. Further, the capacitance diaphragm gauge has limits that it is efficient for a low vacuum state.
  • To measure pressure in a high vacuum region an ionization gauge is usually employed. The ionization gauge is based on the principle that, when pressure is changed, a probability that electrons may collide against gas molecules increases, and the number of generated positive ions changes when the electrons collide against the gas molecules. The ionization gauge can measure pressure in the range of high vacuum regions of 10−1 Pa to 10−10 Pa, but has a problem that linearity cannot be guaranteed below 10−6 Pa.
  • As for high pressure gauges, pressure in a limited small pressure chamber of various ultra-high pressure generators must be measured directly. An ultra-high pressure is generated by compressing a sample by application of a force to a sample compression device, such as a piston-cylinder type, using a hydraulic pressure device. Accordingly, an average pressure of the sample can be found by dividing the magnitude of applied force by a cross section of the sample chamber cross section. However, if this method is used, pressure distributions inside a gasket for sealing a sample are not constant, loss of a force due to friction is increased, and therefore pressure values are only approximately estimated.
  • As described above, there is a problem in that a pressure measuring apparatus in which an approximate degree of vacuum of a vessel is taken into consideration has to be selected and installed every time. Further, measurement methods are changed, resulting in inconvenience in use.
  • An apparatus for minimizing the leakage of a vessel and obviating inconvenience in checking the degree of leakage includes a pressure measuring apparatus having an ultrasonic transducer disposed outside a vessel. In general, a vessel is made of metal, such as stainless steel, so as to withstand the pressure difference between the inside and the outside of the vessel. Thus, if it is sought to transmit ultrasonic waves from the outside into the inside of the vessel in order to measure pressure inside the vessel, there is a problem in that ultrasound cannot be transmitted to gas inside the vessel since the difference of acoustic impedance between the vessel wall and the internal gas is relatively large. For a similar reason, there is also a problem in that the ultrasonic waves traveling in the gas inside the vessel, can hardly be transmitted to the vessel wall due to the difference of acoustic impedance. Therefore, there is a disadvantage in that the transmitting efficiency of ultrasonic waves from the outside into the inside or from the inside to the outside of a vessel is very low, which makes it difficult to measure pressure of a gas inside the vessel using ultrasonic waves. Accordingly, there is a need for an apparatus which is able to effectively transmit ultrasonic waves into the inside of a vessel in order to measure pressure of a gas in the vessel using the ultrasonic waves.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention has been made in view of the above problems occurring in the prior art, and an object of the present invention is to increase the transmitting efficiency of ultrasonic waves, from outside toward the inside of a vessel by using acoustic impedance matching layers. Further, the present invention provides a pressure measuring apparatus which can expect high resolution and improved accuracy and measure pressure inside a vessel even in a high vacuum, by increasing the transmitting efficiency of ultrasonic waves into the inside of the vessel. Furthermore, the present invention provides an apparatus that is able to measure pressure inside a vessel in a low vacuum state and even in a high pressure state over atmospheric pressure using one pressure measuring apparatus.
  • To accomplish the above object, in one aspect, the preset invention provides a pressure measuring apparatus using acoustic impedance matching layers including: an ultrasound exciting unit attached to the outer surface of the vessel wall for generating ultrasonic waves to an inside of the vessel; a first acoustic impedance matching layer attached to an inner surface of the vessel wall for increasing a transmitting efficiency of the ultrasonic waves generated from the ultrasound exciting unit into the inside of the vessel; an ultrasound receiving unit attached to the outer surface of the vessel wall for receiving the ultrasonic waves transmitted from the inside of the vessel; a second acoustic impedance matching layer attached to an inner surface of the vessel wall for increasing transmitting efficiency of the ultrasonic waves received by the ultrasound receiving unit; a control unit connected to the ultrasound exciting unit for controlling the excitation signal transmitted into the ultrasound exciting unit; and a pressure measuring unit connected to the control unit for measuring an internal pressure of the vessel based on the excitation signal, which are transmitted into the ultrasound exciting unit, and an ultrasonic waves received by the ultrasound receiving unit.
  • Further, the ultrasound exciting unit and the ultrasound receiving unit are preferably placed on the same axial line.
  • In addition, the first acoustic impedance matching layer or the second acoustic impedance matching layer comprises a single layer or a plurality of layers with different acoustic impedance.
  • Further, the first acoustic impedance matching layer or the second acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
  • Further, the control unit can control the excitation signal transmitted into the ultrasound exciting unit such that the ultrasonic waves generated from the ultrasound exciting unit resonate between the first acoustic impedance matching layer and the second acoustic impedance matching layer.
  • Moreover, each of the ultrasound exciting unit and the ultrasound receiving unit comprises a piezoelectric ultrasonic transducer, a magnetostrictive ultrasonic transducer, an electromagnetic ultrasonic transducer or an electrostrictive ultrasonic transducer.
  • In another aspect, the present invention provides a pressure measuring apparatus using an acoustic impedance matching layer including: an ultrasound exciting/receiving unit attached to the outer surface of the vessel wall, wherein the ultrasound exciting/receiving unit generates ultrasonic waves to an inside of the vessel and receives the ultrasonic waves, which are reflected from an inner wall of the vessel and then return back thereto; an acoustic impedance matching layer attached to the inner surface of the vessel wall for increasing a transmitting efficiency of the ultrasonic waves when ultrasonic waves are transmitted into or received from the inside of the vessel; a control unit coupled to the ultrasound exciting/receiving unit for controlling the excitation signal transmitted into the ultrasound exciting/receiving unit; and a pressure measuring unit connected to the control unit for measuring an internal pressure of the vessel based on the excitation signal transmitted into the ultrasound exciting/receiving unit and an ultrasonic waves received by the ultrasound exciting/receiving unit.
  • A reflection plate for reflecting the ultrasonic waves generated from the ultrasound exciting/receiving unit is further included inside the vessel.
  • Further, the ultrasound exciting/receiving unit comprises a piezoelectric ultrasonic transducer, a magnetostrictive ultrasonic transducer, an electromagnetic ultrasonic transducer or an electrostrictive ultrasonic transducer.
  • Further, the acoustic impedance matching layer can include a single layer or a plurality of layers with different acoustic impedance.
  • Further, the acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
  • The control unit can control the excitation signal transmitted into the ultrasound exciting/receiving unit such that the ultrasonic waves generated from the ultrasound exciting/receiving unit resonate between the acoustic impedance matching layer and the inner wall of the vessel or such that the ultrasonic waves generated from the ultrasound exciting/receiving unit resonate between the acoustic impedance matching layer and the reflection plate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further objects and advantages of the invention can be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIG. 1 shows the construction of a pressure measuring apparatus using acoustic impedance matching layers in accordance with a first embodiment of the present invention;
  • FIG. 2 shows the construction of a pressure measuring apparatus using an acoustic impedance matching layer in accordance with a second embodiment of the present invention, and
  • FIG. 3 shows a construction in which a reflection plate is disposed in the pressure measuring apparatus using the acoustic impedance matching layers in accordance with a third embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will now be described in detail in connection with specific embodiments with reference to the accompanying drawings. In FIGS. 1 to 3, reference numeral U denotes ultrasonic waves traveling inside a vessel 10, and reference numeral P denotes a path along which ultrasonic waves are reflected from an inner wall of the vessel 10 and travels.
  • Construction of Pressure Measuring Apparatus
  • FIG. 1 shows the construction of a pressure measuring apparatus using acoustic impedance matching layers in accordance with a first embodiment of the present invention. As shown in FIG. 1, an ultrasound exciting unit 20 and an ultrasound receiving unit 30 are disposed at the outer surface of the vessel wall 10. The ultrasound exciting unit 20 and the ultrasound receiving unit 30 can employ an ultrasonic transducer comprised of a piezoelectric vibrator using a piezoelectric effect, an electrostrictive vibrator using electrostriction, a magnetostrictive acoustic vibrator, an electromagnetic vibrator or the like.
  • The ultrasonic transducer comprised of a piezoelectric vibrator (hereinafter referred to as a ‘piezoelectric ultrasonic transducer’) is configured to change electric field to mechanical deformation and thus generate ultrasonic waves, when an oscillating electric voltage is applied to a crystalline structure such as crystal, Rochell salt or ammonium dihydrogen phosphate (ADP), and can be used even in solid, liquid and gas media.
  • The ultrasonic transducer comprised of an electrostrictive vibrator (hereinafter referred to as an ‘electrostrictive ultrasonic transducer’) employs electrostriction, which is generated when an electric field is applied to dielectric material such as barium titanate (BaTiO3), and is mainly useful for liquid media. The ultrasonic transducer comprised of a magnetostrictive acoustic vibrator (hereinafter referred to as a ‘magnetostrictive ultrasonic transducer’) employs a phenomenon in which, when a magnetic field is applied to ferromagnetic material, such as nickel, Terfenol-D, or iron-cobalt, the ferromagnetic material is magnetized, and therefore ultrasonic waves are generated by the deformation of the ferromagnetic material, and it is useful in solid, liquid, and gas media.
  • The ultrasonic transducer comprised of an electromagnetic vibrator (hereinafter referred to as an ‘electromagnetic ultrasonic transducer’) uses a voice coil type vibrator, such as a dynamic speaker, and is configured to vibrate surrounding media using an AC oscillator of a high frequency.
  • The ultrasound receiving unit 30 is preferably placed on the same axial line (A-A′) as that of the ultrasound exciting unit 20. Moreover, the ultrasound receiving unit 30 is driven in a reverse manner to the ultrasound exciting unit 20, and receives ultrasonic waves and converts the received ultrasonic waves into an electrical signal. Description of the ultrasound receiving unit 30 is identical to that of the ultrasound exciting unit 20.
  • First and second acoustic impedance matching layers 50 a, 50 b are attached to an inner surface of the vessel wall 10. That is, as shown in FIG. 1, the first and second acoustic impedance matching layers 50 a, 50 b are attached to the inner surface of the vessel wall 10, and the first acoustic impedance matching layer 50 a is attached to face the ultrasound exciting unit 20. The second acoustic impedance matching layer 50 b is further attached to the inner surface of the vessel wall 10 in such a way as to face the ultrasound receiving unit 30.
  • Each of the first and second acoustic impedance matching layers 50 a, 50 b has a predetermined thickness and can include a single layer or a plurality of layer with different acoustic impedance. The acoustic impedance of each of the first and second acoustic impedance matching layers 50 a, 50 b has a value between an acoustic impedance value of material of the vessel 10 and an acoustic impedance value of gas inside the vessel 10. The first acoustic impedance matching layer 50 a functions to effectively transmit ultrasonic waves from the wall of the vessel 10 into gas inside the vessel, and the second acoustic impedance matching layer 50 b functions to increase the transmitting efficiency of ultrasonic waves from gas inside the vessel into the wall of the vessel 10.
  • The first and second acoustic impedance matching layers 50 a, 50 b function to increase transmittance of the ultrasonic wave by acoustic impedance matching between the wall of the vessel 10, and gas in inside the vessel. This is because, in general, when an acoustic impedance difference between two media increases, the transmitting efficiency of ultrasonic waves decreases. The first and second acoustic impedance matching layers 50 a, 50 b can be fabricated in consideration of material of the vessel 10, the degree of vacuum or the range of pressure of the vessel 10 to be measured, a thickness of the vessel 10 and/or the like. That is, design parameters of the first and second acoustic impedance matching layers 50 a, 50 b can include acoustic impedance, a thickness, the attenuation ratio of ultrasonic energy, etc. of a single layer or each of a plurality of layers, which constitute each of the first and second acoustic impedance matching layers 50 a, 50 b, the number of layers constituting each of the first and second acoustic impedance matching layers 50 a, 50 b, and so on. Here, the thickness of each of the plurality of layers can be decided by taking the frequency of ultrasonic waves into consideration. The plurality of layers constituting each of the first and second acoustic impedance matching layers 50 a, 50 b can be fixed to an inner wall using adhesives, a press method employing a tool or the like. In the case in which adhesives or a tool is used, it is necessary to consider the acoustic impedance of the adhesives, a change in the thickness of each of a plurality of layers when the plurality of layers is pressed using the tool, etc.
  • A filter unit (not shown) is for removing various noise signals included in measured ultrasonic wave signals. The filter unit can be preferably added before an ultrasonic signal received by the ultrasound receiving unit 30 is applied to a pressure measuring unit 60. For example, the filter unit may employ a highpass filter (HPF) or a bandpass filter (BPF).
  • The pressure measuring unit 60 measures an internal pressure of the vessel 10 based on the excitation signal, which are transmitted into the ultrasound exciting unit 20, and an ultrasonic waves received by the ultrasound receiving unit 30 or/and the filter unit (not shown). The present invention is based on the principle that acoustic impedance of gas inside the vessel is changed according to an internal pressure. Accordingly, the pressure measuring unit 60 analyzes the received ultrasonic signal, calculates a change in the acoustic impedance of gas based on the amplitude, waveform and time of flight of the ultrasonic waves traveling inside the vessel 10, etc., and measures an internal pressure of the vessel 10 according to the acoustic impedance variation.
  • FIG. 2 shows the construction of a pressure measuring apparatus using an acoustic impedance matching layer in accordance with a second embodiment of the present invention. The pressure measuring apparatus using an acoustic impedance matching layer in accordance with a second embodiment of the present invention includes, as shown in FIG. 2, an ultrasound exciting/receiving unit 40, an acoustic impedance matching layer 50, and a pressure measuring unit 60.
  • The ultrasound exciting/receiving unit 40 is disposed at the outer surface of a vessel wall 10. The ultrasound exciting/receiving unit 40 is one device serving as the ultrasound exciting unit 20 and the ultrasound receiving unit 30 of the above first embodiment as described above, and can employ the piezoelectric ultrasonic transducer, the electrostrictive ultrasonic transducer, the magnetostrictive ultrasonic transducer, the electromagnetic ultrasonic transducer or the like. Ultrasonic waves, generated from the ultrasound exciting/receiving unit 40 into the inside of the vessel 10, travel inside the vessel 10. The traveling ultrasonic waves are reflected from an inner wall of the vessel 10 and then return back to the ultrasound exciting/receiving unit 40 according to a pulse-echo method.
  • The acoustic impedance matching layer 50 has the same construction as that of each of the first and second acoustic impedance matching layers 50 a, 50 b described in connection with the first embodiment, and the pressure measuring unit 60 is also identical to that of the first embodiment. Thus, description of the acoustic impedance matching layer 50 and the pressure measuring unit 60 is omitted for simplicity.
  • FIG. 3 shows a construction in which a reflection plate is disposed in the pressure measuring apparatus using the acoustic impedance matching layers in accordance with a third embodiment of the present invention. In the case in which an ultrasonic signal is received according to the pulse-echo method as shown in FIG. 3 like the second embodiment, a reflection plate 70 can be further disposed at a place close to an ultrasound exciting/receiving unit 40 in order to reduce attenuation of ultrasonic wave inside the vessel 10.
  • Unexplained reference numeral 22 denotes a control unit and functions to control ultrasonic waves, which are generated from the ultrasound exciting unit 20 of the first embodiment or the ultrasound exciting/receiving unit 40 of the second and third embodiments. When ultrasonic waves traveling inside the vessel 10 resonate between the first acoustic impedance matching layer 50 a and the second acoustic impedance matching layer 50 b (the first embodiment), between the acoustic impedance matching layer 50 and the inner wall of the vessel 10 (the second embodiment), and between the acoustic impedance matching layer 50 and the reflection plate 70 (the third embodiment), the transmitting efficiency of the ultrasonic waves increases. What the transmitting efficiency increases is meant that accuracy and resolution can be improved in measuring the internal pressure of the vessel 10. The control unit 22 applies a predetermined controlled excitation signal to the ultrasound exciting unit 20 or the ultrasound exciting/receiving unit 40 in order to induce resonance. Such resonance is useful when it is necessary to generate an ultrasonic signal of a high output, such as high-vacuum measurement.
  • Furthermore, unexplained reference numeral 110 denotes a vacuum pump for making the inside of the vessel 10 in a vacuum state, and unexplained reference numeral 100 denotes a valve used to produce vacuum. The above auxiliary devices are for making the inside of the vessel 10 in a vacuum state and are not indispensable constituent elements of the pressure measuring apparatus of the present invention.
  • Pressure Measuring Method
  • A method of measuring an internal pressure of the vessel 10 using the pressure measuring apparatus of the present invention is described below.
  • First, as shown in FIGS. 1 to 3, the pressure measuring apparatus is installed (S10). The following steps are described per on an embodiment basis.
  • First Exemplary Embodiment
  • The ultrasound exciting unit 20 and the ultrasound receiving unit 30 are adhered to the surface of the outer wall of the vessel 10. The ultrasound exciting unit 20, the ultrasound receiving unit 30, the first acoustic impedance matching layer 50 a, and the second acoustic impedance matching layer 50 b are placed, as shown in FIG. 1, on the same axial line (A-A′).
  • After the pressure measuring apparatus is installed, the control unit 22 is installed in order to control the excitation signal transmitted into the ultrasound exciting unit 20 (S20′). In order to increase the transmitting efficiency of the ultrasound receiving unit 30, it is preferred that the ultrasonic waves be controlled to resonate between the first acoustic impedance matching layer 50 a and the second acoustic impedance matching layer 50 b.
  • The ultrasonic waves generated from the ultrasound exciting unit 20 have its transmitting efficiency increased by the first acoustic impedance matching layer 50 a attached to the inner surface of the vessel wall 10 and then travel inside the vessel 10 (S30′). Gas inside the vessel 10 has its acoustic impedance changed according to an internal pressure (that is, the density of the gas) of the vessel 10. Moreover, the amplitude, waveform, etc. of the ultrasonic waves are also changed according to the acoustic impedance of the gas.
  • The ultrasonic waves traveling inside the vessel 10 are received by the ultrasound receiving unit 30 (S40′). The transmitting efficiency of the ultrasonic waves, which are received by the second acoustic impedance matching layer 50 b attached to the inner surface of the vessel wall 10, increases, so that the ultrasonic wave is sufficiently transmitted to the ultrasound receiving unit 30 disposed outside the vessel 10.
  • As a pressure measurement step, the ultrasonic signal received by the ultrasound receiving unit 30 is applied to the pressure measuring unit 60. The pressure measuring unit 60 compares the amplitude, waveform, frequency, etc. between the excitation signal, which is transmitted into the ultrasound exciting unit 20, and the ultrasonic signal received by the ultrasound receiving unit 30, and measures an internal pressure of the vessel 10 based on the amplitude, waveform and time of flight of the ultrasonic waves traveling inside the vessel 10 (S50′).
  • Second Exemplary Embodiment
  • The ultrasound exciting/receiving unit 40 is adhered to the outer surface of the vessel wall 10 as shown in FIG. 2. The ultrasound exciting/receiving unit 40 and the acoustic impedance matching layer 50 are preferably placed on the same axial line (A-A′) in the same manner as the first embodiment.
  • After the pressure measuring apparatus is installed, the control unit 22 is installed in order to control the excitation signal transmitted into the ultrasound exciting/receiving unit 40 (S20″). This is for the purpose of increasing the transmitting efficiency by inducing resonance of the ultrasonic waves between the acoustic impedance matching layer 50 and the inner wall of the vessel 10.
  • The ultrasonic waves generated from the ultrasound exciting/receiving unit 40 have its transmitting efficiency increased by the acoustic impedance matching layer 50, which is attached to the inner surface of the vessel wall 10, and then travel inside the vessel 10 (S30″). Even in this case, in the same manner as the first embodiment, gas inside the vessel 10 has its acoustic impedance changed according to an internal pressure (that is, the density of the gas) of the vessel 10. The amplitude, waveform and time of flight, etc. of the ultrasonic waves are also changed according to the acoustic impedance of the gas.
  • However, the pulse-echo method is adopted in the second embodiment. Thus, the ultrasonic waves traveling inside the vessel 10 are reflected from the inner wall of the vessel 10 and are then received by the ultrasound exciting/receiving unit 40 (S40″). If the ultrasonic waves are received by the ultrasound exciting/receiving unit 40, the transmitting efficiency of the ultrasonic waves is increased by the acoustic impedance matching layer 50 as described above.
  • A next step is a pressure measurement step (S50″), which is identical to that of the first embodiment, and description thereof is omitted.
  • Third Exemplary Embodiment
  • In the third embodiment, a step (S10) of installing the pressure measuring apparatus, a step (S20′″) of controlling the ultrasound exciting/receiving unit 40 using the control unit 22, a step (S40′″) of receiving ultrasonic waves, and a step (S50′″) of measuring pressure are identical to those of the previous embodiment, and description thereof is omitted.
  • A difference between the first and second embodiments lies in that, as shown in FIG. 3, the reflection plate 70 is further installed on the inner wall of the vessel 10. In this case, unlike the second embodiment, the propagation distance of ultrasonic waves becomes short, resulting in a difference in the amplitude and time of flight of received ultrasonic waves. However, since the reflection plate 70 is installed, attenuation of the ultrasonic wave decreases and accuracy in measuring pressure can be further improved.
  • Moreover, when the pressure measuring apparatus is installed (S10), the reflection plate 70 is installed in consideration of resonance conditions. For example, a place where the reflection plate 70 is installed can be a position where the wavelength λ of ultrasonic waves transmitted into the inside of the vessel 10 is ½ or a position where the wavelength λ of ultrasonic waves transmitted into the inside of the vessel 10 is a multiple
  • ( λ 2 n ) .
  • This is only an exemplary installation position of the reflection plate 70, but the construction of the present invention is not limited thereto.
  • As another embodiment of the present invention, the present invention can also be applied to a case where the vessel 10 has a high vacuum state of 10−5 to 10−9 Pa as well as a case where the vessel 10 has a low vacuum state of 1 to 10−5 Pa. The present invention can also be applied to a case where the vessel 10 has an atmospheric pressure state or higher.
  • As still another embodiment of the present invention, although the vessel 10 has been described above, the present invention can be applied to a case where an internal pressure of a specific vessel which does not has a vacuum state is to be measured. Further, the present invention can also be applied to a case where a vessel is filled with not gas, but solid or liquid.
  • As further still embodiment of the present invention, although the pressure measuring apparatus and method of the present invention have been described in relation to a vessel used in the semiconductor process or the LCD fabrication process, they can also be applied to all the industry fields in which the degree of vacuum, that is, the degree of pressure inside a specific vessel is to be measured.
  • In accordance with the pressure measuring apparatus using the acoustic impedance matching layer(s) according to the present invention, the acoustic impedance matching layer(s) is fixed to an inner surface of the vessel wall in order to increase the transmitting efficiency of ultrasonic waves for pressure measurement. Accordingly, there is an advantage in that accuracy can be improved even when pressure is measured without deformation of a vessel, such as punching.
  • Moreover, not only the acoustic impedance matching layer(s), but also the reflection plate are installed or resonance of ultrasonic waves is induced so as to increase the transmitting efficiency of ultrasonic waves. Accordingly, there is an advantage in that the degree of vacuum, that is, pressure inside a vessel can be measured even in a high pressure or high vacuum state using one pressure measuring apparatus.
  • While the present invention has been described with reference to the particular illustrative embodiments, it is not to be restricted by the embodiments but only by the appended claims. It is to be appreciated that those skilled in the art can change or modify the embodiments without departing from the scope and spirit of the present invention.

Claims (15)

1. An apparatus for measuring pressure inside a vessel using acoustic impedance matching layers by employing ultrasonic waves, the apparatus comprising:
an ultrasound exciting unit attached to the outer surface of the vessel wall for generating ultrasonic waves to an inside of the vessel;
a first acoustic impedance matching layer attached to an inner surface of the vessel wall for increasing a transmitting efficiency of the ultrasonic waves from the vessel wall into gas inside the vessel;
an ultrasound receiving unit attached to the outer surface of the vessel wall for receiving the ultrasonic waves traveling inside the vessel;
a second acoustic impedance matching layer attached to the inner surface of the vessel wall for increasing transmitting efficiency of the ultrasonic waves from the gas inside the vessel into the vessel wall;
a control unit connected to the ultrasound exciting unit for controlling the excitation signal transmitted into the ultrasound exciting unit; and
a pressure measuring unit connected to the control unit for measuring an internal pressure of the vessel based on the excitation signal, which are transmitted into the ultrasound exciting unit, and an ultrasonic waves received by the ultrasound receiving unit.
2. The apparatus as claimed in claim 1, wherein the ultrasound exciting unit and the ultrasound receiving unit are placed on the same axial line.
3. The apparatus as claimed in claim 1, wherein the first acoustic impedance matching layer or the second acoustic impedance matching layer comprises a single layer or a plurality of layers with different acoustic impedance.
4. The apparatus as claimed in claim 1, wherein the first acoustic impedance matching layer or the second acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
5. The apparatus as claimed in claim 3, wherein the first acoustic impedance matching layer or the second acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
6. The apparatus as claimed in claim 1, wherein the control unit controls the excitation signal transmitted into the ultrasound exciting unit such that the ultrasonic waves generated from the ultrasound exciting unit resonate between the first acoustic impedance matching layer and the second acoustic impedance matching layer.
7. The apparatus as claimed in claim 1, wherein each of the ultrasound exciting unit and the ultrasound receiving unit comprises a piezoelectric ultrasonic transducer, a magnetostrictive ultrasonic transducer, an electromagnetic ultrasonic transducer or an electrostrictive ultrasonic transducer.
8. An apparatus for measuring pressure inside a vessel using an acoustic impedance matching layer by employing ultrasonic waves, the apparatus comprising:
an ultrasound exciting/receiving unit attached to the outer surface of the vessel wall, wherein the ultrasound exciting/receiving unit generates ultrasonic waves to an inside of the vessel and receives the ultrasonic waves, which are reflected from an inner wall of the vessel and then return back thereto;
an acoustic impedance matching layer attached to the inner surface of the vessel wall for increasing a transmitting efficiency of the ultrasonic waves between the vessel wall and gas inside the vessel;
a control unit coupled to the ultrasound exciting/receiving unit for controlling the excitation signal transmitted into the ultrasound exciting/receiving unit; and
a pressure measuring unit connected to the control unit for measuring an internal pressure of the vessel based on the excitation signal transmitted into the ultrasound exciting/receiving unit and an ultrasonic waves received by the ultrasound exciting/receiving unit.
9. The apparatus as claimed in claim 8, further comprising a reflection plate for reflecting the ultrasonic waves generated from the ultrasound exciting/receiving unit inside the vessel.
10. The apparatus as claimed in claim 8, wherein the ultrasound exciting/receiving unit comprises a piezoelectric ultrasonic transducer, a magnetostrictive ultrasonic transducer, an electromagnetic ultrasonic transducer or an electrostrictive ultrasonic transducer.
11. The apparatus as claimed in claim 8, wherein the acoustic impedance matching layer comprises a single layer or a plurality of layers with different acoustic impedance.
12. The apparatus as claimed in claim 8, wherein the acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
13. The apparatus as claimed in claim 11, wherein the acoustic impedance matching layer has an acoustic impedance value between an acoustic impedance value of the vessel and an acoustic impedance value of gas inside the vessel.
14. The apparatus as claimed in claim 8, wherein the control unit controls the excitation signal transmitted into the ultrasound exciting/receiving unit such that the ultrasonic waves generated from the ultrasound exciting/receiving unit resonate between the acoustic impedance matching layer and the inner wall of the vessel.
15. The apparatus as claimed in claim 9, wherein the control unit controls the excitation signal transmitted into the ultrasound exciting/receiving unit such that the ultrasonic waves generated from the ultrasound exciting/receiving unit resonate between the acoustic impedance matching layer and the reflection plate.
US12/190,350 2008-05-06 2008-08-12 Apparatus for measuring pressure in a vessel using acoustic impedance matching layers Abandoned US20090277273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-41716 2008-05-06
KR1020080041716A KR20090116040A (en) 2008-05-06 2008-05-06 Pressure measuring apparatus inside a vessel using acoustic impedance matching layers

Publications (1)

Publication Number Publication Date
US20090277273A1 true US20090277273A1 (en) 2009-11-12

Family

ID=41265783

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/190,350 Abandoned US20090277273A1 (en) 2008-05-06 2008-08-12 Apparatus for measuring pressure in a vessel using acoustic impedance matching layers

Country Status (4)

Country Link
US (1) US20090277273A1 (en)
JP (1) JP2009271051A (en)
KR (1) KR20090116040A (en)
TW (1) TW200946887A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561157A (en) * 2016-06-30 2018-01-09 重庆医科大学 Water quality testing meter and its method
CN110987286A (en) * 2019-12-18 2020-04-10 吉林大学 Ultrasonic air pressure detection device, method and system for low oxygen chamber
US20210041404A1 (en) * 2020-04-24 2021-02-11 Harbin Institute Of Technology Control Method of Probe with Ultrasonic Phased Array Transducers in Hinge array
CN112985544A (en) * 2019-12-13 2021-06-18 西安定华电子股份有限公司 External measuring liquid level system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148879B2 (en) 2000-07-06 2006-12-12 At&T Corp. Bioacoustic control system, method and apparatus
KR101229622B1 (en) * 2010-08-30 2013-02-04 (주)엘지하우시스 Apparatus and method for evaluating internal vacuum level of vacuum insulation panel using frequency response method
US8908894B2 (en) 2011-12-01 2014-12-09 At&T Intellectual Property I, L.P. Devices and methods for transferring data through a human body
JP2014081269A (en) * 2012-10-16 2014-05-08 Seiko Epson Corp Pressure measuring device
CN103728083A (en) * 2012-10-16 2014-04-16 精工爱普生株式会社 Pressure measurement device and liquid treatment device
US10108984B2 (en) 2013-10-29 2018-10-23 At&T Intellectual Property I, L.P. Detecting body language via bone conduction
US9594433B2 (en) 2013-11-05 2017-03-14 At&T Intellectual Property I, L.P. Gesture-based controls via bone conduction
US10678322B2 (en) 2013-11-18 2020-06-09 At&T Intellectual Property I, L.P. Pressure sensing via bone conduction
US9349280B2 (en) 2013-11-18 2016-05-24 At&T Intellectual Property I, L.P. Disrupting bone conduction signals
US9715774B2 (en) 2013-11-19 2017-07-25 At&T Intellectual Property I, L.P. Authenticating a user on behalf of another user based upon a unique body signature determined through bone conduction signals
US9405892B2 (en) 2013-11-26 2016-08-02 At&T Intellectual Property I, L.P. Preventing spoofing attacks for bone conduction applications
US9582071B2 (en) 2014-09-10 2017-02-28 At&T Intellectual Property I, L.P. Device hold determination using bone conduction
US9882992B2 (en) 2014-09-10 2018-01-30 At&T Intellectual Property I, L.P. Data session handoff using bone conduction
US10045732B2 (en) 2014-09-10 2018-08-14 At&T Intellectual Property I, L.P. Measuring muscle exertion using bone conduction
US9589482B2 (en) 2014-09-10 2017-03-07 At&T Intellectual Property I, L.P. Bone conduction tags
US9600079B2 (en) 2014-10-15 2017-03-21 At&T Intellectual Property I, L.P. Surface determination via bone conduction
US10831316B2 (en) 2018-07-26 2020-11-10 At&T Intellectual Property I, L.P. Surface interface

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938386A (en) * 1957-04-08 1960-05-31 Bell Telephone Labor Inc Method and apparatus for measuring predetermined pressures
US3942381A (en) * 1974-01-29 1976-03-09 Brown William G Ultrasonic pressure test method and apparatus
US3977252A (en) * 1974-11-21 1976-08-31 Eleonora Dmitrievna Krylova Method and apparatus for controlling liquid pressure in pipelines
US4009616A (en) * 1975-01-29 1977-03-01 Westinghouse Electric Corporation Acoustic method for measuring gas pressure
US5869745A (en) * 1996-12-20 1999-02-09 Morton International, Inc. Ultrasonic gas pressure measurement for inflators of vehicular airbag systems
US6032535A (en) * 1997-01-14 2000-03-07 Contitech Luftfedersystem Gmbh Arrangement for making contactless distance and pressure measurements within an air spring
US6330831B1 (en) * 1998-10-20 2001-12-18 Panametrics, Inc. Stream-cleaned differential reflection coefficient sensor
US20070068260A1 (en) * 2005-09-26 2007-03-29 Korea Research Institute Of Standards And Science Pressure measuring system for vacuum chamber using ultrasonic wave

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK163451C (en) * 1987-08-05 1992-07-20 Eskofot As METHOD FOR DETECTING ISAER THIN FILMS
JP2000304581A (en) * 1999-04-22 2000-11-02 Fuji Electric Co Ltd Ultrasonic flowmeter
JP2006030142A (en) * 2004-07-21 2006-02-02 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2006284523A (en) * 2005-04-05 2006-10-19 Toyota Motor Corp Device for measuring pressure of pressurized container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938386A (en) * 1957-04-08 1960-05-31 Bell Telephone Labor Inc Method and apparatus for measuring predetermined pressures
US3942381A (en) * 1974-01-29 1976-03-09 Brown William G Ultrasonic pressure test method and apparatus
US3977252A (en) * 1974-11-21 1976-08-31 Eleonora Dmitrievna Krylova Method and apparatus for controlling liquid pressure in pipelines
US4009616A (en) * 1975-01-29 1977-03-01 Westinghouse Electric Corporation Acoustic method for measuring gas pressure
US5869745A (en) * 1996-12-20 1999-02-09 Morton International, Inc. Ultrasonic gas pressure measurement for inflators of vehicular airbag systems
US6032535A (en) * 1997-01-14 2000-03-07 Contitech Luftfedersystem Gmbh Arrangement for making contactless distance and pressure measurements within an air spring
US6330831B1 (en) * 1998-10-20 2001-12-18 Panametrics, Inc. Stream-cleaned differential reflection coefficient sensor
US20070068260A1 (en) * 2005-09-26 2007-03-29 Korea Research Institute Of Standards And Science Pressure measuring system for vacuum chamber using ultrasonic wave

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561157A (en) * 2016-06-30 2018-01-09 重庆医科大学 Water quality testing meter and its method
CN112985544A (en) * 2019-12-13 2021-06-18 西安定华电子股份有限公司 External measuring liquid level system
CN110987286A (en) * 2019-12-18 2020-04-10 吉林大学 Ultrasonic air pressure detection device, method and system for low oxygen chamber
US20210041404A1 (en) * 2020-04-24 2021-02-11 Harbin Institute Of Technology Control Method of Probe with Ultrasonic Phased Array Transducers in Hinge array
US11536700B2 (en) * 2020-04-24 2022-12-27 Harbin Institute Of Technology Control method of probe with ultrasonic phased array transducers in hinge array

Also Published As

Publication number Publication date
TW200946887A (en) 2009-11-16
KR20090116040A (en) 2009-11-11
JP2009271051A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
US20090277273A1 (en) Apparatus for measuring pressure in a vessel using acoustic impedance matching layers
US7735373B2 (en) Apparatus for measuring pressure in a vessel using magnetostrictive acoustic transducer
US8008835B2 (en) Multiple element electrode cMUT devices and fabrication methods
US5668303A (en) Sensor having a membrane as part of an electromechanical resonance circuit forming receiver and transmitter converter with interdigital structures spaced apart from one another
US20080013405A1 (en) Ultrasonic transducer for ranging measurement with high directionality using parametric transmitting array in air and a method for manufacturing same
KR20190082115A (en) Mems component and mobile device comprising the mems component
US20050203397A1 (en) Asymetric membrane cMUT devices and fabrication methods
US20050166672A1 (en) Acoustic devices and fluid gauging
CN114422923B (en) Resonant MEMS microphone, acoustic imager and photoacoustic spectrum detector
Miao et al. A variable-frequency bidirectional shear horizontal (SH) wave transducer based on dual face-shear (d24) piezoelectric wafers
CN112871613A (en) Piezoelectric micromachined ultrasonic transducer with support posts
Pallav et al. Elliptical-Tukey chirp signal for high-resolution, air-coupled ultrasonic imaging
US7716991B2 (en) Apparatus for measuring pressure using acoustic impedance variation
RU169297U1 (en) ELECTRO-ACOUSTIC OPTICAL TRANSMITTER TO ULTRASONIC FLOW METERS
Toda Phase-matched air ultrasonic transducers using corrugated PVDF film with half wavelength depth
US6070468A (en) Micromachined ultrasonic leaky wave air transducers
CN108889589B (en) Ultrasonic transducer and ultrasonic device
CN109211338B (en) Method and measuring device for determining a fluid quantity
Allin et al. Design and construction of a low frequency wide band non-resonant transducer
Hay et al. Flexible piezopolymer ultrasonic guided wave arrays
Kang et al. Wideband Electromagnetic Dynamic Acoustic Transducer as a Standard Acoustic Source for Air-coupled Ultrasonic Sensors
RU2471155C1 (en) Ultrasonic flowmeter transducer
Hamid FLAUT: A mutual sensitivity improvement through matched pipe, cavity and thin plate resonance
RU2159427C2 (en) Sensitive element for ultrasonic piezoelectric receiving converter
Wang et al. Effect of shared cavity on electromechanical performance of piezoelectric based micro-machined ultrasonic transducer array

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONG, SEUNG SOO;SHIN, YONG HYEON;AHN, BONGYOUNG;AND OTHERS;REEL/FRAME:021722/0218

Effective date: 20080807

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION