US20100000957A1 - Containers comprising a closed cell foam layer - Google Patents

Containers comprising a closed cell foam layer Download PDF

Info

Publication number
US20100000957A1
US20100000957A1 US12/559,393 US55939309A US2010000957A1 US 20100000957 A1 US20100000957 A1 US 20100000957A1 US 55939309 A US55939309 A US 55939309A US 2010000957 A1 US2010000957 A1 US 2010000957A1
Authority
US
United States
Prior art keywords
preform
layer
container
closure
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/559,393
Inventor
Gerald A. Hutchinson
Robert A. Lee
Said K. Farha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Concentrate Manufacturing Company of Ireland
Original Assignee
Advanced Plastics Technologies Luxembourg SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Plastics Technologies Luxembourg SA filed Critical Advanced Plastics Technologies Luxembourg SA
Priority to US12/559,393 priority Critical patent/US20100000957A1/en
Publication of US20100000957A1 publication Critical patent/US20100000957A1/en
Assigned to HUTCHINSON, SHARON reassignment HUTCHINSON, SHARON PATENT ASSIGNMENT AND REDACTED ORDERS AND FINDINGS OF FACT Assignors: HUTCHINSON, GERALD A.
Assigned to THE CONCENTRATE MANUFACTURING COMPANY OF IRELAND reassignment THE CONCENTRATE MANUFACTURING COMPANY OF IRELAND ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED PLASTICS TECHNOLOGIES LUXEMBOURG SA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1684Injecting parison-like articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/60Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres comprising a combination of distinct filler types incorporated in matrix material, forming one or more layers, and with or without non-filled layers
    • B29C70/603Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres comprising a combination of distinct filler types incorporated in matrix material, forming one or more layers, and with or without non-filled layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/66Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler comprising hollow constituents, e.g. syntactic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses
    • F16L55/115Caps
    • F16L55/1152Caps fixed by screwing or by means of a screw-threaded ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses
    • F16L55/115Caps
    • F16L55/1157Caps using hooks, pawls, or other movable or insertable locking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/079Auxiliary parts or inserts
    • B29C2949/08Preforms made of several individual parts, e.g. by welding or gluing parts together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/081Specified dimensions, e.g. values or ranges
    • B29C2949/0811Wall thickness
    • B29C2949/0819Wall thickness of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • B29C2949/3009Preforms or parisons made of several components at neck portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3066Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 having two or more components being applied using said techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3066Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 having two or more components being applied using said techniques
    • B29C2949/3068Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 having two or more components being applied using said techniques having three or more components being applied using said techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3066Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 having two or more components being applied using said techniques
    • B29C2949/3068Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 having two or more components being applied using said techniques having three or more components being applied using said techniques
    • B29C2949/307Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 having two or more components being applied using said techniques having three or more components being applied using said techniques having more than three components being applied using said techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3074Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating
    • B29C2949/3078Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating by spray coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3064Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062
    • B29C2949/3074Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating
    • B29C2949/308Preforms or parisons made of several components having at least one components being applied using techniques not covered by B29C2949/3032 - B29C2949/3062 said at least one component obtained by coating by dip coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0076Microcapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/258Tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2623/00Use of polyalkenes or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2623/10Polymers of propylene
    • B29K2623/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/46Knobs or handles, push-buttons, grips
    • B29L2031/463Grips, handles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • B29L2031/716Bottles of the wide mouth type, i.e. the diameters of the bottle opening and its body are substantially identical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0264Polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/60Bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • This invention relates to articles having foamable material, more specifically for mono and multi-layer articles having foamable materials and methods of making such articles.
  • PET polyethylene terephthalate
  • Virgin PET has been approved by the FDA for use in contact with foodstuffs.
  • Containers made of PET are generally transparent, thin-walled, lightweight, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by pressurized contents, such as carbonated beverages. PET resins are also fairly inexpensive and easy to process.
  • PET bottles are made by a process that includes the blow-molding of plastic preforms, which have been made by processes including injection molding or extrusion process.
  • the PET bottle may not provide a suitable thermal barrier for limiting thermal communication through the walls of the PET bottles. It may be desirable to reduce the heat transfer between the liquid within the bottle and the environment surrounding the bottle to maintain the temperature of the liquid within the bottles.
  • most inexpensive containers for holding foodstuffs do not provide an effective thermal barrier to reduce heat transfer through the container. It may be desirable to reduce the heat transfer through containers or packaging.
  • articles in the form of conduits, food packaging, and the like may have unsuitable structural, barrier, or other characteristics. Many times fluids, foods, or beverages, such as carbonated soda, are stored in a container that may undesirably affect its contents. Unfortunately, when the food contacts the surface of some materials of the known articles, the taste of the food may be adversely altered. It may be desirable to maintain the taste of the foodstuffs in contact with the article.
  • a method for forming a preform comprising expandable material that can expand to form a thermal barrier or desired finish.
  • the preform is heated to a temperature suitable for blow molding and at least a portion of the expandable material expands.
  • the preform is blow molded into a container.
  • the preform is a monolayer preform. In another arrangement, the preform is a multi-layer preform.
  • a process for making a foam coated polymer article comprising the acts of providing a foam coated polymer preform and blow molding the preform to a desired container shape.
  • the process comprises preheating the foam coated polymer preform before blow molding, causing the foam coating, which comprises microspheres, to initiate expansion of the microspheres.
  • the microspheres can expand before blow molding, during blow molding, and/or after blow molding.
  • a foam coated polymer article comprises at least one layer of foam surrounding at least a portion of another layer substantially comprising polyester.
  • the foam comprises a polymer carrier material and a foaming agent.
  • a process for making an article comprising foam.
  • the foam can have a first component and a second component.
  • the first component can expand when thermally activated.
  • the first component comprises microspheres that are generally in a first state of expansion.
  • the second component is a carrier material mixed with the first component. When the mixture is heated, the mixture is expanded to form a generally closed cell foam.
  • the mixture is formed into a preform having microspheres that are expanded from the first state of expansion to a second state of expansion.
  • the preform is molded into a container having the microspheres which are expanded from the second state of expansion to a third state of expansion.
  • a substantial portion of the microspheres are generally unexpanded in the first position.
  • a substantial portion of the microspheres are generally partially expanded in the second position.
  • a substantial portion of the microspheres are generally expanded in the third position.
  • the preform comprises a plurality of layers and one of the layers comprises an expandable material.
  • the preform is optionally formed into a container.
  • an inner layer of the preform or container comprises material suitable for contacting foodstuff and/or liquid and defines a holding chamber of the preform or container.
  • the inner layer comprises thermoplastic material.
  • a second layer of the preform or container comprises expandable material including a polymer and microspheres.
  • the expandable material can form an inner layer or liner of the preform or container.
  • the expandable material comprises a carrier material and a foaming agent.
  • the carrier material is preferably a material that can be mixed with the microspheres to form an expandable material.
  • the carrier material can be a thermoplastic or polymeric material, including, but not limited to, ethylene acrylic acid (“EAA”), ethylene vinyl acetate (“EVA”), linear low density polyethylene (“LLDPE”), poly(hydroxyamino ethers) (“PHAE”), polyethylene terephtalate (“PET”) and other copolymers including polyethylene terephtalate glycol (PETG), polyethylene (“PE”), polypropylene (“PP”), polystyrene (“PS”), cellulose material, pulp, mixtures thereof, and the like.
  • the foaming agent comprises microspheres that expand when heated and cooperate with the carrier material to produce foam.
  • the foaming agent comprises EXPANCEL® micropheres.
  • the expandable material has insulating properties to inhibit heat transfer through the walls of the container comprising the expandable material.
  • the expandable material can therefore be used to maintain the temperature of food, fluids, or the like.
  • the expandable material of the container when liquid is in the container, reduces heat transfer between liquid within the container and the environment surrounding the container.
  • the container can hold a chilled liquid and the expandable material of the container is a thermal barrier that inhibits heat transfer from the environment to the chilled fluid.
  • a heated liquid can be within the container and the expandable material of the container is a thermal barrier that reduces heat transfer from the liquid to the environment surrounding the container.
  • the foam material is extruded to produce sheets that are formed into containers for holding food, trays, bottles, and the like.
  • the sheets are formed into clamshells that are adapted to hold food.
  • the foam sheets can be pre-cut and configured to form a container for holding foodstuff.
  • the sheets may be formed into a container by one or more processes, e.g., a thermomolding or thermoforming process.
  • an article comprising foam material that forms a coating on a paper or wood pulp based material or container.
  • the foam material is mixed with pulp.
  • the foam material and pulp can be mixed to form a generally homogeneous mixture which can be formed into a desired shape.
  • the mixture may be heated before, during, and/or after the mixture is shaped to cause expansion of at least a portion of the foam material component of the mixture.
  • a preform comprises at least a first layer comprising material suitable for contacting foodstuff and a second layer comprising a thermoplastic, such as polypropylene.
  • the first layer comprises a thermoplastic material, such as PET
  • the second layer comprises foam material having polypropylene and microspheres.
  • the first layer comprises PET and the second layer contains mostly or entirely polypropylene.
  • the first layer comprises phenoxy type thermoplastic and the second layer contains another material, such as polypropylene.
  • the preform may be formed into a container by one or more processes, e.g., a blow molding process.
  • a method of producing a bottle comprises providing a preform comprising an inner layer of PET and an outer layer comprising PP.
  • the preform is heated to a temperature not typically suitable for processing PP.
  • the preform is blow molded into a bottle after heating the preform.
  • the outer layer comprises foam material.
  • the outer layer contains mostly or entirely PP.
  • a preform comprises an inner layer that has a flange that defines at least a portion of an opening of the preform.
  • An outer layer surrounds the inner layer and defines a substantial portion of a neck finish of a preform and forms an outer surface of a body portion of the preform.
  • a tube comprising a first layer and a second layer.
  • the first layer comprises a thermoplastic material, such as PET
  • the second layer comprises the same or different thermoplastic material, such as PP, and a foaming agent.
  • the first layer comprises primarily PET and the second layer comprises PP based foam material.
  • the tube is formed by a co-extrusion process.
  • the tube can be blow molded into a container.
  • the tube can be used as a fluid line to deliver ingestible liquids.
  • a preform in another embodiment, comprises an inner layer and an outer layer.
  • the outer layer surrounds the inner layer and defines a substantial portion of a neck finish of a preform.
  • the outer layer also forms an outer surface of a body portion of the preform
  • an apparatus for molding preforms comprises a mold core section and a mold cavity section.
  • the mold cavity section has a delivery system.
  • the mold core section and mold cavity section cooperate to define a void when the mold core section and mold cavity section are in a closed position.
  • the delivery system is configured to deliver tying material into the void.
  • the apparatus also comprises an exhaust system in fluid communication with the void.
  • a method of forming a preform comprises positioning a portion of a preform on a mandrel of a mold. Tie material is delivered from an outlet of a delivery system formed within a cavity section defining a cavity. At least a portion of the preform is coated with the tie material.
  • a preform comprises a neck portion and a body portion.
  • the body portion has a wall portion and an end cap and comprises a first layer and a second layer, the first layer comprising an expandable material.
  • the expandable material is adapted to expand by heat treatment.
  • a preform comprises a threaded neck portion and a body portion.
  • the body portion includes a wall portion and an end cap.
  • the body portion comprises expandable material forming less than about 40% by weight of the preform. In some embodiments, the expandable material comprises less than 20% by weight of the preform.
  • the expandable material can optionally comprise microspheres and a preferably thermoplastic carrier material including those selected from the group consisting of polypropylene, PET, and combinations thereof.
  • a method of producing a preform comprises forming a first layer of the preform.
  • a second layer of the preform is formed and comprises a controllable, expandable material.
  • the first layer is formed by injecting a first material preferably comprising polyester through a gate into a space defined by a cavity mold half and a core mold half to form an article.
  • the article comprises an inner surface and an outer surface.
  • the second layer is formed by injecting expandable material into a second space defined by the outer surface of the article formed by the first injected material and a second cavity mold half to form the second layer of the preform.
  • a method of producing a bottle comprises providing a preform having a neck portion and a body portion.
  • the preform is heated so that a portion of the preform at least partially expands to form foam.
  • the preform is blow molded into a bottle comprising foam material.
  • an article comprises a neck portion having threads and a body portion.
  • the body portion comprises a first layer and a second layer.
  • the first layer has an upper end that terminates below the threads of the neck portion and comprises foam material.
  • the second layer is positioned interior to the first layer.
  • the article is a preform, bottle, container, or the like.
  • the second layer can optionally comprise a material suitable for contacting foodstuffs.
  • the second layer can comprise a material including at least one material selected from a group consisting of polyester, polypropylene, phenoxy-type thermoplastic, and combinations thereof.
  • a bottle comprises a neck portion and a body portion.
  • the body portion comprises an inner layer comprising polyester and an outer layer comprising foam material.
  • the foam material comprises polypropylene.
  • the inner layer and the outer layer define at least a portion of a wall of the body portion.
  • a method of making a multilayer preform comprises providing a substrate preform which has been made by any of a variety of methods as are known in the art.
  • the substrate preform is positioned within a cavity defined between a first mold portion and a second mold portion.
  • First material is injected from an outlet of the first mold portion into the cavity onto the substrate preform.
  • the first material is adapted to form a layer on the substrate preform.
  • a second material is injected from a melt gate of the first mold portion onto the substrate preform.
  • the first material comprises a tie material.
  • the first material coats at least a portion, preferably a substantial portion of a body portion of the substrate preform.
  • the second material can be injected directly onto the first material to form an outer layer.
  • the unused portion of the first material can be removed from the cavity by an exhaust system.
  • the first mold portion is a cavity section and the second mold portion is a core section.
  • a method of injecting material into a mold for molding an article comprises providing an injection mold being movable between an open position and a closed position.
  • the mold comprises a core section and a cavity section.
  • Material is delivered through a first gate of the cavity section.
  • Melt is delivered through a second gate of the cavity section.
  • the article is a preform or closure.
  • the material delivered through the first gate can optionally comprise a fluid comprising a tie material.
  • a mold for molding preforms or containers comprises a core section and a cavity section movable between an open position and a closed position.
  • the core section and cavity section define a cavity when the core section and the cavity section are in the closed position.
  • a gate in the cavity section is configured to inject melt into the cavity.
  • An outlet in the cavity section is positioned and configured to inject a first material from an inlet line into the cavity.
  • An inlet in the cavity section is positioned and configured to draw in material within the cavity and deliver the material to an output line.
  • the gate is positioned in the area of the cavity section for molding an end cap of a preform.
  • the gate, the outlet, and the inlet are spaced from each other and are formed in a molding surface of the cavity section.
  • a mold for molding articles comprises a first mold section that defines a first molding surface.
  • a second mold section defines a second molding surface.
  • the first mold section and the second mold section cooperate to form a cavity in the shape of an article.
  • a delivery system of the mold has a source of fluid and a feed line.
  • the feed line is in fluid communication with the source of fluid and an output.
  • the output is positioned along one of the first mold section and the second mold section.
  • An exhaust system has an inlet positioned along one of the first mold section and the second mold section.
  • the exhaust system comprises an exhaust line in fluid communication with the cavity.
  • a melt injection gate is positioned along the second mold section and is configured to deliver melt into the cavity.
  • the delivery system further comprises a valve system configured to selectively control the amount of fluid delivered into the cavity.
  • the cavity is in the shape of a preform or closure.
  • a mold for producing an article comprises a core half and a cavity half that are configured to mate to form a cavity for molding a preform.
  • the cavity half has a gate.
  • the mold has means for delivering coating material into the cavity and means for removing coating material delivered by the means for delivering coating material from the cavity.
  • the article can be a preform or closure.
  • the gate can be spaced from the means for delivering coating material and the means for removing coating material.
  • polypropylene may be grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion.
  • polypropylene further comprises “nanoparticles” or “nanoparticular material.”
  • polypropylene comprises nanoparticles and is grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds.
  • Preferred articles, preforms, containers, and articles can be made using various techniques.
  • laminates, preforms, containers, and articles can be formed through injection molding, overmolding, blow molding, injection blow molding, extrusion, co-extrusion, and injection stretch blow molding, and other methods disclosed herein and/or known to those of skill in the art.
  • the articles may comprise one or more layers or portions having one or more of the following advantageous characteristics: an insulating layer, a gas barrier layer, UV protection layers, protective layer (e.g., a vitamin protective layer, scuff resistance layer, etc.), a foodstuff contacting layer, a non-flavor scalping layer, non-color scalping layer, a high strength layer, a compliant layer, a tie layer, a gas scavenging layer (e.g., oxygen, carbon dioxide, etc), a layer or portion suitable for hot fill applications, a layer having a melt strength suitable for extrusion, strength, recyclable (post consumer and/or post-industrial), clarity, etc.
  • a gas barrier layer e.g., UV protection layers, protective layer (e.g., a vitamin protective layer, scuff resistance layer, etc.), a foodstuff contacting layer, a non-flavor scalping layer, non-color scalping layer, a high strength layer, a compliant layer, a tie layer,
  • the monolayer or multi-layer material comprises one or more of the following materials: PET (including recycled and/or virgin PET), PETG, foam, polypropylene, phenoxy type thermoplastics, polyolefins, phenoxy-polyolefin thermoplastic blends, and/or combinations thereof.
  • FIG. 1 is a preform used as a starting material for forming containers.
  • FIG. 2 is a cross-section of the preform of FIG. 1 .
  • FIG. 3 is a cross-section of a blow-molding apparatus of a type that may be used to make a preferred container.
  • FIG. 4 is a side view of a container formed from a preform.
  • FIG. 5 is a cross-section of a multilayer preform.
  • FIG. 6 is a cross-section of a multilayer container formed from the multilayer preform of FIG. 5 .
  • FIG. 7 is an enlarged view of the container of FIG. 6 taken along 7 .
  • FIG. 8 is a cross-section of a multilayer preform.
  • FIG. 8A is an enlarged view of the preform of FIG. 8 taken along 8 A.
  • FIG. 9 is a cross-section of a multilayer preform having a multilayer neck portion.
  • FIG. 10 is a cross-section of a multilayer preform in accordance with another embodiment.
  • FIG. 11 is a cross-section of a multi-layer preform having an inner layer defining an interior of the preform.
  • FIG. 12 is a cross-section of a multi-layer preform having an inner layer and an outer layer that define a neck portion.
  • FIG. 12A is a cross-section of a multi-layer preform having an inner layer and an outer layer that define a neck portion.
  • FIG. 12B is a cross-section of a multi-layer preform having an inner layer and an outer layer that define a neck portion.
  • FIG. 13 is a cross-section of a multi-layer preform having an inner layer with a flange.
  • FIGS. 13A and 13B are enlarged cross-sections of portions of multi-layer preforms in accordance with some embodiments.
  • FIG. 14 is a cross-section of a multi-layer preform having an outer layer with a coupling structure.
  • FIG. 14A is a cross-section of a container made from the preform of FIG. 14 , a closure is attached to the container.
  • FIG. 14B is an enlarged view of a portion of the container and closure of FIG. 14A taken along 14 B.
  • FIG. 14C is an enlarged view of a portion of the container and closure in accordance with another embodiment.
  • FIG. 15A is a cross-section of a portion of a preform having a neck portion without threads.
  • FIG. 15B is a cross-section of the preform of FIG. 15A .
  • FIG. 15C is a cross-section of a portion a multi-piece preform.
  • FIG. 16 is a cross-section of a preform in accordance with another embodiment.
  • FIG. 17 is a cross-section of a preform in accordance with another embodiment.
  • FIG. 18 is a perspective view of a closure suitable for closing a container.
  • FIG. 19 is a cross-section of a multilayer closure having an inner layer.
  • FIG. 20 is a cross-section of a multilayer closure having an inner layer extending along the sides of the closure.
  • FIGS. 21A-21E are cross-sections of multilayer closures.
  • FIGS. 22A-22B are cross-sections of sheets.
  • FIG. 23 is a perspective view of one preferred embodiment of a profile.
  • FIG. 24 is a side view of one preferred embodiment of packaging including a container having a label and a closure.
  • FIG. 25 is side view of a container and a closure in accordance with another embodiment.
  • FIG. 26A is perspective view of a container.
  • FIG. 26B is a perspective view of a tray.
  • FIG. 27 is a schematic view of an embodiment of a lamellar meltstream generation system.
  • FIG. 27A is a cross-section of lamellar material made from the lamellar meltstream generation system of FIG. 27 .
  • FIG. 28 is a cross-section of a mold of a type that may be used to make the preform of FIG. 1 .
  • FIG. 29 is a cross-section of a mold that may be used to make an outer layer of the preform of FIG. 5 .
  • FIG. 30 is a cross-section of a mold of a type that may be used to make an inner layer of the preform of FIG. 11 .
  • FIG. 31 is a cross-section of a mold of a type that may be used to make an outer layer of the preform of FIG. 11 .
  • FIG. 32 is a cross-section of a mold of a type that may be used to make a closure.
  • FIG. 33 is a cross-section of a mold of a type that may be used to make an outer layer of the closure of FIG. 20 .
  • FIG. 34 is a mold system configured to make multi-layer preforms having tie layers.
  • FIG. 35 is a cross-section a mold of the mold system of FIG. 34 .
  • FIG. 36 is a cross-section of the mold of FIG. 35 taken along lines 36 - 36 .
  • FIG. 37 is a cutaway close up view of the area of FIG. 35 along 37 - 37 .
  • FIG. 38 is a cross-section of a modified mold of FIG. 35 taken along lines 36 - 36 .
  • FIG. 39 is a cutaway close up view of a modified mold of FIG. 35 along 37 - 37 .
  • FIG. 40 is a cross sectional view of lamellar material.
  • articles may comprise one or more foamable materials.
  • Articles described herein may be mono-layer or multi-layer (i.e., two or more layers).
  • the articles can be packaging, such as drinkware (including preforms, containers, bottles, closures, etc.), boxes, cartons, and the like.
  • the multi-layer articles may comprise an inner layer (e.g., the layer that is in contact with the contents of the container) of a material approved by a regulatory agency (e.g., the U.S. Food and Drug Association) or material having regulatory approval to be in contact with food (including beverages), drugs, cosmetics, etc.
  • a regulatory agency e.g., the U.S. Food and Drug Association
  • an inner layer comprises material(s) that are not approved by a regulatory scheme to be in contact with food.
  • a second layer may comprise a second material, which can be similar to or different than the material forming the inner layer.
  • the articles can have as many layers as desired. It is contemplated that the articles may comprise one or more materials that form various portions that are not “layers.”
  • a preferred monolayer preform 30 is illustrated.
  • the preform 30 has a neck portion 32 and a body portion 34 .
  • the illustrated preform 30 can have a single layer formed of a material that can be blow-molded.
  • the preform 30 is preferably blow molded into a container for holding liquids, such as non-carbonated liquids such as fruit juice, water, and the like.
  • the preform 30 can be formed into a container to hold other liquids, such as carbonated liquids.
  • the illustrated preform 30 can be suitable for forming a 16 oz. beverage bottle that is especially well suited for holding carbonated beverage.
  • bottle is a broad term and is used in accordance with its ordinary meaning and may include, without limitation a container (typically of glass and/or plastic having a comparatively narrow neck or mouth), a bottle-shaped container for storing fluid (preferably a liquid), etc.
  • the bottle may or may not have a handle.
  • the illustrated preform 30 has a neck portion 32 which begins at an opening 36 ( FIG. 2 ) to the interior of the preform 30 and extends to and includes the support ring 38 .
  • neck portion is a broad term and is used in accordance with its ordinary meaning and may include, without limitation a portion of a preform attached to a body portion.
  • the neck portion may include a neck finish.
  • the neck finish together with the neck cylinder may form what is referred to herein as the “neck portion.”
  • the neck portion 32 in the illustrated embodiment is further characterized by the presence of the threads 40 , which provide a way to fasten a cap or closure member to the bottle produced from the preform 30 .
  • the neck portion 32 may not be configured to engage a closure or may have means other than threads to engage a closure.
  • the body portion 34 is an elongated and generally cylindrically shaped structure extending down from the neck portion 32 and culminating in an end cap 42 .
  • the illustrated end cap 42 is rounded; however, the end cap can have other suitable shapes.
  • the preform thickness 44 will depend upon the overall length of the preform 30 and the desired wall thickness and overall size of the resulting container.
  • the preform 30 is placed in a mold having a cavity corresponding to the desired container shape.
  • the preform 30 is then heated and expanded by forcing air or other suitable fluid into the interior of the preform to stretch the preform so that it fills the cavity, thus creating a container 37 ( FIG. 4 ).
  • This blow-molding process is described in detail below.
  • a stretched rod or similar means may also be used to aid in the blow molding process, as is known in the art.
  • a blow molding machine can receive warm articles (e.g., profiles such as sleeves, preforms, etc.) to aid in the blow molding process, as is known in the art.
  • the mold 28 can receive warm preforms from an injection molding machine, such as the injection molding machines described herein.
  • the preforms manufactured by the injection molding machine can be quickly transported to the mold 28 via a delivery system.
  • the inherent heat of the preforms may provide one or more of the following: reduced blow molding time, reduced energy required to heat preforms to a temperature suitable for blow molding, and/or the like.
  • a delivery system may comprise a shuttle system (e.g., a linear or rotary shuttle system) for transporting preforms to and/or away from the mold 28 .
  • the shuttle system can batch feed preforms to or remove blow molded bottles from the mold 28 .
  • the delivery system can comprise a reciprocating and/or wheel delivery system.
  • a wheel delivery system is used to rapidly deliver preforms to or remove bottles from the mold 28 .
  • wheel delivery systems can continuously transport articles to and from the mold 28 thereby increasing output.
  • a delivery system can be used in combination with molding machine suitable for blow molding preforms, extrusion blow molding, extruding profiles and the like. Additionally, a delivery system may comprise a plurality of systems, such a wheel delivery system and a shuttle system that cooperate to transport articles.
  • a container 37 that can be formed from the preform 30 .
  • the container 37 has a neck portion 32 and a body portion 34 corresponding to the neck and body portions of the preform 30 .
  • the neck portion 32 can be adapted to engage with closures.
  • the illustrated neck portion 32 is characterized by the presence of the threads 40 which provide a way to fasten a cap onto the container.
  • the wall of the container 37 may inhibit, preferably substantially prevent, migration of gas (e.g. CO 2 ) through the wall of the container 37 .
  • the container 37 comprises substantially closed cell foam that may inhibit the migration of fluid through the foam.
  • the blow molding operation normally is restricted to the body portion 34 of the preform with the neck portion 32 including any threads, pilfer ring, and/or support ring retaining the original configuration as in the preform.
  • any portion(s) of the preform 30 can be stretch blow-molded.
  • the container 37 can also be formed by other processes, such as through an extrusion process or combinations of process (e.g., injection over an extruded portion).
  • the container 37 can be formed through an extrusion blow molding process.
  • the containers described herein may be formed from preforms, extruded profiles, etc.
  • the preform 50 preferably comprises an uncoated (monolayer) preform 39 coated with an outer layer 52 .
  • the uncoated preform 39 comprises a polymer material, such as polypropylene, polyester, and/or other thermoplastic materials, preferably suitable for contacting food.
  • the uncoated preform 39 comprises substantially polypropylene.
  • the uncoated preform 39 comprises substantially polyester, such as PET.
  • the multilayer preform 50 has a neck portion 32 and a body portion 34 similar to the preform 30 of FIGS. 1 and 2 .
  • the outer layer 52 is disposed about at least a portion of the body portion 34 .
  • the outer layer 52 is disposed about a substantial portion, preferably the entire portion, of the surface of the body portion 34 of the inner layer (illustrated as the preform 39 of FIG. 1 ), terminating at the bottom of the support ring 38 .
  • the outer layer 52 in the illustrated embodiment does not extend to the neck portion 32 , nor is it present on the interior surface of the inner layer 39 which is preferably made of a material suitable for contact with the contents of the resulting container.
  • the outer layer 52 may comprise either a single material or several layers (e.g., microlayers) of one or more materials. Further, the outer layer 52 can be generally homogenous, generally heterogeneous, or somewhere inbetween. Although not illustrated, the outer layer 52 can form other portions of the preform 50 . For example, the outer layer 52 can form at least a portion of the inner surface of the preform 50 (such as when the outer layer is injected over a tube or profile that is open on both ends), or a portion of the neck portion 32 . The outer layer 52 may or may not be suitable for contacting foodstuffs.
  • the overall thickness 56 of the preform is equal to the thickness of the initial uncoated preform 39 (i.e., the inner layer 54 ) plus the thickness 58 of the outer layer 52 , and is dependent upon the overall size and desired coating thickness of the resulting container.
  • the preform 50 may have any thickness depending on the desired thermal, optical, barrier, and/or structural properties of the container formed from the preform 50 . If a tie layer is included, the overall thickness will include any thickness of the tie layer.
  • the preforms and containers can have layers which have a wide variety of relative thicknesses.
  • the thicknesses of a given layer and of the overall preform or container can be chosen to fit a manufacturing process or a particular end use for the container.
  • the outer layer 52 has a generally uniform thickness.
  • the outer layer 52 and/or inner layer 54 need not to be uniform and they may have, for example, a thickness that varies along the longitudinal axis of the preform 50 .
  • the multilayer preforms can be used to produce the containers.
  • the preform 50 can be used to form a container 180 ( FIG. 6 ).
  • the outer layer 52 cooperates with the inner layer 54 so as to provide a layer or space 85 therebetween, as shown in FIGS. 6 and 7 .
  • the layer 85 can permit the passage of air between the layers 52 , 54 and can advantageously further insulate the container 83 .
  • the passages can be formed between the layer 52 which loosely surrounds the inner layer 54 .
  • the outer layer 52 can be sized and configured to snuggly hold the inner layer 54 and so that inner surface of the layer 52 contacts the outer surface of the layer 54 .
  • the layer 85 can be a foam layer that is similar, or dissimilar, to one or more of the layers 52 , 54 .
  • the layer 85 can be a layer that couples the layer 52 to the inner layer 54 .
  • the layer 85 can be crafting or a tie layer that inhibits, preferably that substantially prevents, relative movement between the layers 52 , 54 .
  • the layer 85 can be an adhesive layer that limits relative movement between the layers 52 , 54 . It is contemplated that some or none of the layers of the embodiments disclosed herein can be coupled together with a tie layer or the like.
  • At least one of the layers 52 , 54 can be treated to promote or reduce adhesion between the layers 52 , 54 .
  • the outer surface of the inner layer 54 can be chemically treated so that the outer layer 52 adheres to the inner layer 54 .
  • a tie material can be applied to react and chemically treat one or more of the layers 52 , 54 .
  • any of the layer(s) can be modified to achieve the desired interaction between the layers of the preform.
  • the layers 52 , 54 can be directly adhered together.
  • a container comprises foam material that preferably has insulating properties to inhibit thermal transfer through the walls of the container.
  • the foam material forming a wall 84 of the container 83 can reduce heat transfer between the liquid contents and the environment surrounding the container 83 .
  • the container 83 can hold chilled contents, such as a carbonated beverage, and the foam insulates the container 83 to inhibit temperature changes of the chilled fluid.
  • the contents can remain chilled for a desired duration of time despite an exterior ambient temperature that is greater than the temperature of the liquid.
  • a heated material such as a hot beverage
  • the wall 84 can insulate the container 83 to inhibit heat transfer from the liquid to the environment surrounding the container 83 .
  • the foam material of the container 83 can result in a surface temperature of the container 83 that is within a desired temperature range so that a person can comfortably grip the container 83 holding a heated or chilled liquid.
  • the thickness of the foam layer and the size and configuration of the foam portion of the container can be varied in order to obtain the desired thermal properties of the container.
  • a preferred embodiment of a multilayer preform 60 is shown in cross-section.
  • One difference between the coated preform 60 and the preform 50 in FIG. 5 is the relative thickness of the two layers in the area of the end cap.
  • the outer layer 52 is generally thinner than the thickness of the initial preform throughout the entire body portion of the preform.
  • the outer layer 52 is thicker at 62 near the end cap 42 than it is at 64 in the wall portion 66 , and conversely, the thickness of the inner layer 54 is greater at 68 in the wall portion 66 than it is at 70 , in the region of the end cap 42 .
  • This preform design is especially useful when an outer coating is applied to the initial preform in an overmolding process to make a multilayer preform, as described below, where it presents certain advantages including that relating to reducing molding cycle time.
  • Either layer may be homogeneous or may be comprised of a plurality of microlayers.
  • the outer layer 52 is thinner at 62 near the end cap 42 than it is at 64 in the wall portion 66 , and conversely, the thickness of the inner layer 54 is less at 68 in the wall portion 66 than it is at 70 , in the region of the end cap 42 . At least one of the layers 52 , 54 can optionally compromise a barrier material.
  • FIG. 8A is an enlargement of a wall section of the preform showing the makeup of the layers in a LIM-over-inject embodiment.
  • the layer 54 is the inner layer of the preform and layer 52 is the outer layer of the preform.
  • the outer layer 52 comprises a plurality of microlayers (i.e., lamellar material) of material as will be made when a LIM system is used.
  • microlayers i.e., lamellar material
  • FIG. 9 another embodiment of a multilayer preform is shown in cross-section.
  • the preforms and containers can have layers which have a wide variety of relative thicknesses.
  • the thickness of a given layer and of the overall preform or container, whether at a given point or over the entire container, can be chosen to fit a coating process or a particular end use for the container.
  • the layers in the preform and container embodiments disclosed herein may comprise a single material, more than one materials, or several materials.
  • FIG. 10 there is shown a three-layer embodiment of a preform 132 .
  • the preform shown therein has two coating layers, a middle layer 134 and an outer layer 136 .
  • the relative thickness of the layers shown in FIG. 10 may be varied to suit a particular combination of materials or to allow for the making of different sized bottles.
  • a procedure analogous to that disclosed herein would be followed, except that the initial preform would be one which had already been coated, as by one of the methods for making coated preforms described herein, including overmolding.
  • FIG. 11 illustrates a cross-section of one type of multi-layer preform 160 having features in accordance with a preferred embodiment.
  • the preform 160 preferably comprises an outer layer 162 and an inner layer 164 .
  • the multi-layer preform 160 has a neck portion 132 and a body portion 134 similar to the preforms described above.
  • the outer layer 162 forms the outer surface 165 of the body portion 134 and the outer surface 166 of the neck portion 132 .
  • the outer surface 166 can be configured to engage a closure.
  • the outer layer 162 is disposed about a substantial portion, preferably the entire portion, of the inner layer 164 .
  • the illustrated outer layer 162 extends from the upper end 168 of the inner layer 164 to an opening 169 of the preform 160 .
  • the inner layer 164 in the illustrated embodiment does not extend along the neck portion 132 .
  • the outer layer 162 can form substantially the entire neck portion 132 , as shown in FIG. 11 .
  • the upper end 168 of the inner layer 164 can be disposed at some point along the neck portion 132 .
  • the inner layer 164 and outer layer 162 may both define the neck portion.
  • the outer layer 162 comprises at least about 70% of neck portion (or neck finish) of the neck portion 132 by weight.
  • the outer layer 62 comprises at least about 50% of the neck portion 132 by weight.
  • the outer layer 162 comprises more than about 30% of the neck portion 132 by weight.
  • the overall thickness 171 of the preform 160 is equal to the thickness 172 of the outer layer 162 plus the thickness 174 of the inner layer 164 , and is dependent upon the overall size of the resulting container. In one embodiment, the thickness 172 of the outer layer 162 is substantially greater than the thickness 174 of the inner layer 164 .
  • the outer layer 162 and inner layer 164 as illustrated, have generally uniform thicknesses. However, the outer layer 162 and inner layer 164 may not have uniform thicknesses. For example, one or both of the layers 162 , 164 may have a thickness that varies along the length of the preform 160 .
  • the outer layer 162 comprises a first material and the inner layer 164 preferably comprises another material.
  • the outer layer 162 can comprise foam material and the inner layer 164 can comprise an unfoamed polymer material, such as PET (e.g., virgin or post-consumer/recycled PET), phenoxy, etc.
  • PET e.g., virgin or post-consumer/recycled PET
  • phenoxy e.g., phenoxy
  • a substantial portion of the outer layer 162 comprises a first material and a substantial portion of the inner layer 164 comprises a second material.
  • the first and the second materials can be different or similar to each other.
  • FIG. 12 is a cross-section view of a multi-layer preform 180 .
  • the preform 180 is generally similar to the preform 160 , and thus, many aspects of preform 180 will not be described in detail.
  • the preform 180 comprises an inner layer 184 and an outer layer 183 .
  • the inner layer 184 defines a substantial portion of the interior surface 173 of the preform 180 .
  • the inner layer 184 has an end 188 that is proximate to an opening 191 of the preform 180 .
  • the outer layer 183 defines an outer surface 186 of the neck portion 132
  • the inner layer 184 defines the inner surface 187 of the neck portion 132 .
  • the outer layer 183 can be configured to engage a closure.
  • the outer surface 86 defines threads 189 adapted to receive a threaded cap (e.g., a screw cap).
  • preforms 160 and 180 can include more than two layers.
  • the outer layer 162 of the preform 160 can comprise a plurality of layers comprising one or more of the following: lamellar material, foam material, PP, PET, and/or the like.
  • the inner layer 164 can comprise a plurality of layers.
  • the layers 183 , 184 can be made of similar or different materials as the layers 162 , 164 described above.
  • a layer can be coated over at least a portion of the preform to prevent abrasion or wearing, especially if at least a portion of the preform is made of foam material.
  • a coating layer can surround the threads of a neck portion made of foam and can comprise PET, PP, combinations thereof, or other thermoplastic materials.
  • FIG. 13 is a cross-sectional view of a preform 190 .
  • the preform 190 is similar to the preform 180 illustrated in FIG. 12 , except as further detailed below.
  • the preform 190 comprises an inner layer 194 that extends downwardly from the opening 191 and defines the interior of the preform.
  • the inner layer 194 comprises a flange 193 .
  • the term “flange” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, one or more of the following: a lip, an elongated portion, rim, projection edge, a protrusion, and combinations thereof.
  • the flange can function as a locking structure.
  • the preform may optionally include a plurality of flanges.
  • the flange 193 defines a portion of an inner surface 201 and at least a portion of an upper surface 195 of the preform.
  • the flange 193 can have a constant or varying thickness F depending on the desired properties of the neck portion 132 .
  • the flange 193 is positioned above structure(s) (e.g., threads 192 ) for receiving a closure.
  • the flange 193 defines a portion of one or more threads, protrusions, recesses, and/or other structures for engaging a closure.
  • the flange 193 extends about at least a portion of the periphery of the opening 191 and defines a layer of material.
  • the flange 193 preferably extends about the entire periphery of the opening 191 .
  • the flange 193 can be a generally annular flange.
  • One or more locking structures 197 of FIG. 13 can inhibit relative movement between the inner layer 194 and an outer layer 199 .
  • the term “locking structure” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, one or more of the following: protrusions, surface treatments (e.g., roughened surface), prongs, protuberances, barbs, flanges, recesses, projections, textured pattern, or the like, preferably for inhibiting or reducing movement between the layers 194 and 199 .
  • the locking structure 197 can be formed by the inner layer 194 and/or the outer layer 199 .
  • the locking structure 197 is a protrusion extending from and about the outer surface of the inner layer 194 .
  • the locking structure 197 is an annular protrusion extending circumferentially about the outer surface of the inner layer 194 .
  • the locking structure 197 can be continuous or discontinuous structure.
  • the inner layer 194 can have one or more locking structures, such as a textured pattern (e.g., a series of grooves, protuberances, and the like).
  • the locking structure 197 can be configured to provide positive or negative draft.
  • the inner layer 194 can comprise a somewhat flexible material (e.g., PET) and a locking structure 197 that can provide positive draft during mold removal.
  • the outer layer 199 comprises a somewhat rigid material (e.g., olefins) that can provide positive or negative draft during mold removal.
  • the outer layer 199 is configured to receive the locking structure 197 .
  • the locking structure 197 effectively locks the outer layer 199 to the inner layer 194 .
  • a plurality of locking structures 197 can be defined by the layers 194 , 199 and may be disposed within the neck portion 132 and/or the body portion 134 of preform 190 .
  • a tie layer can be used to couple the inner layer 194 to the outer layer 199 .
  • the inner layer 194 and the outer layer 199 are formed of materials that bond or adhere to each other directly.
  • the inner layer 194 is tied to the outer layer 199 , so that the layers 194 and 199 can be easily separated during, e.g., a recycling process. However, an article comprising a tie layer can be recycled in some embodiments.
  • the upper end of the outer layer 199 is spaced from the upper surface 195 of the preform.
  • a skilled artisan can select the thicknesses of the layers 194 , 199 to achieve the desired structural properties, thermal properties, durability, and/or other properties of the preform.
  • FIGS. 13A and 13B illustrate modified embodiments of a portion of the preform 190 of FIG. 13 .
  • the preform 190 of FIG. 13A has a flange 193 that extends along a portion of the upper surface 195 of the preform.
  • the length LF of the flange 193 is less than about 95% of the wall thickness T of the neck portion 132 .
  • the length LF of the flange 193 is about 50% to 90% of the wall thickness T of the neck portion.
  • the length LF of the flange 193 is about 60%, 70%, 75%, or 80%, or ranges encompassing such percentages of the wall thickness T of the neck portion.
  • the length LF of the flange 193 is about 40% to 60% of the wall thickness T of the neck portion. In yet another embodiment, the length LF of the flange 193 is less than about 40% of the wall thickness T of the neck portion.
  • FIG. 13B illustrates a portion of a preform having an outer layer 203 that defines a flange 223 .
  • the flange 223 extends inwardly and defines an upper surface 225 .
  • the flange 223 can define the interior surface of the preform, or be spaced therefrom.
  • the flange 223 can have a length similar to or different than the length of the flange 193 .
  • the neck portion 132 has threads for receiving a closure. However, the neck portion can have other structures (e.g., recesses, ridges, grooves, etc.) for engaging a closure.
  • the preforms described above can be modified by adding one or more layers to achieve desired properties. For example, a barrier layer can be formed on the body portions of the preforms.
  • FIG. 14 illustrates a modified embodiment of a preform 202 .
  • the preform 202 has a neck portion 132 that defines a coupling structure 207 configured to receive a closure.
  • the term “coupling structure” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation a feature, such as a positive (e.g., a projection, protuberance, and the like) or negative feature (e.g., an indentation, recess, and the like).
  • a coupling structure may be configured to engage a closure to hold the closure in a desired position.
  • the illustrated coupling structure 207 is in the form of a recess adapted to receive a portion of a closure device.
  • the coupling structure 207 can extend about one or more portions of the preform 202 . In other embodiments, the coupling structure 207 extends about the entire periphery or circumference of the preform 202 .
  • the coupling structure 207 can have a curved (e.g., semi-circular), v-shaped, u-shaped, or any other suitable cross-sectional profile.
  • the structure 207 can be a protrusion, such as an annular protrusion, defined by an outer layer 203 .
  • the preform 202 can have a plurality of coupling structures 207 so that the closures of various configurations can be attached to a container made from the preform.
  • the distance between an upper surface 205 and the structures 207 and the shape of the structure 207 is determined by the geometry of closure used to seal and close the container made from the preform 202 .
  • FIG. 14A illustrates a container 211 produced from a preform 202 of FIG. 14 .
  • a closure 213 is attached to the neck portion 132 of the container 111 .
  • the closure 213 can be a one-piece or multi-piece closure.
  • the closure 213 can be temporarily or permanently attached to the container 211 .
  • the entire closure 213 can be removed from the container 211 when the liquid is consumed. In other embodiments, a portion of the closure 213 can be removed while another portion of the closure 213 remains attached to the container 211 during consumption.
  • the closure 213 can be semi-permanently or permanently attached to the container. If the closure 213 is semi-permanently attached to the container 211 , the closure 213 can be pulled off the container 211 .
  • the closure 213 and container 211 can form a generally unitary body.
  • the upper surface 205 of the preform and the closure 213 can form a seal 231 , preferably forming either a hermetic seal or other seal that inhibits or prevents liquid from escaping between the container 211 and the closure 213 .
  • the container 211 can have a gasket or removable seal.
  • the container 211 can have a removable seal, such as a membrane adhered to the upper lip of the container, or a portion of the closure 213 that can be removed.
  • the removable seal can have a tab or ring for convenient gripping and removal of the seal.
  • the seal 231 can be formed by a membrane or sheet that can be broken or pieced in order open the container 211 .
  • an outer layer 203 of the container 211 is formed of a generally high strength material or rigid material (e.g., PP), so that the flange 209 can be compressed between the closure 213 and the outer layer 203 to ensure that the integrity of the seal 231 is maintained.
  • a generally high strength material or rigid material e.g., PP
  • the closure 213 has a body 215 and a cover 218 .
  • the body 215 can be connected to the cover 218 by a hinge 221 (e.g., a molded material acting as a living hinge or other structure to permit movement).
  • a latch or tang 217 ( FIG. 14A ) can fasten the cover 218 to the body 215 .
  • the latch 217 can be moved to release the cover 218 in order to open the closure 213 .
  • the cover 218 and body 215 can be separate pieces so that the cover 218 can be removed from the body 215 .
  • contents can be delivered out of the container 211 , preferably delivered while the body 215 remains attached to the neck finish.
  • the cover 218 can be returned to the closed position to reseal the container.
  • the body 215 of the closure 213 can be releasably coupled to the neck portion.
  • the body 215 can be snapped onto the neck portion 132 .
  • the body 215 can be permanently coupled to the neck portion 132 .
  • the neck portion 132 comprises one or more closure attaching structures 227 , so that the closure 213 can be snapped onto and off of the container.
  • the neck portion 132 in the illustrated embodiment has a closure attaching structure 227 in the form of a negative feature, such as a recess or indentation.
  • the body 215 can be permanently coupled to outer layer 203 by a welding or fusing process (e.g., induction welding), an adhesive, frictional interaction, and/or the like.
  • the container 211 can be configured to receive various types of closures, such as BAP® closures produced by Bapco Closures Limited (England) (or similar closures), screw caps, snap closures, and/or the like.
  • BAP® closures produced by Bapco Closures Limited (England) (or similar closures), screw caps, snap closures, and/or the like.
  • a skilled artisan can design the neck finish of the container 211 to receive closures of different configurations.
  • the container 211 is particularly well suited for hot-fill applications.
  • the container 211 can generally maintain its shape during hot-fill processes. After blow molding or hot-filling, final dimensions of the neck portion of the container 211 are preferably substantially identical to the initial dimensions of the preform. Additionally, this results in reduced dimensions variations of the threads on the neck finish.
  • the inner layer 284 can be formed of a material for contacting foodstuffs, such as PET.
  • the outer layer 203 can comprise moldable materials (e.g., PP, foam material, crystalline or semi-crystalline material, lamellar material, homopolymers, copolymers, combinations thereof, and other heat resistant materials described herein) suitable for hot-filling.
  • the outer layer 203 provides dimensional stability to the neck portion 132 even during and/or after hot-filling.
  • the width of the outer layer 203 can be increased or decreased to increase or decrease, respectively, the dimensional stability of the neck portion 132 .
  • one of the layers forming the neck portion 132 comprises a material having high thermal stability; however, the neck portion 132 can also be made of materials having low temperature stability, especially for non hot-fill applications.
  • the dimensional stability of the outer layer 203 ensures that the closure 213 remains attached to the container 211 .
  • the outer layer 203 may comprise a high strength material (e.g., PP) and can maintain its shape thereby preventing the closure 213 from unintentionally decoupling from the container 211 .
  • the container has a neck portion that comprises closure attaching structures for a snap fit.
  • the neck portion in the illustrated embodiment has a closure attaching structure 227 in the form of a positive feature, such as a protrusion, flange, or the like suitable for engaging the closure 213 .
  • the closure attaching structure 227 can form an annular protrusion that extends circumferentially about the neck portion.
  • the closure 213 can have a one-piece or multi-piece construction.
  • the illustrated container 211 has an upwardly tapered wall forming the neck finish. The tapered portion of the neck finish can bear against the closure 213 to form a seal.
  • FIG. 15A illustrates a portion of a preform 220 in accordance with another embodiment.
  • the preform 220 has a support ring 222 and a body portion 224 extending downwardly therefrom.
  • the preform 220 has an opening 226 at its upper end.
  • the neck finish of the preform may or may not have threads. In some embodiments, threads are attached to the neck region 225 of the preform. It is contemplated that the preform 220 can be formed without a support ring. A support ring and/or threads may optionally be formed on the preform 220 in subsequent processes.
  • FIG. 15B illustrates the preform 220 after closure attaching structures 228 have been attached to the neck region 225 .
  • the threads, structures engaging a snap cap, or other type of mounting or attaching structure can be attached to the neck region 225 before or after the preform 220 has been made into a container.
  • the closure mounting structures 228 can be attached to the preform 220 after the preform has been molded, preferably blow molded into a container.
  • FIG. 15C illustrates a preform 234 that has at least a portion of the neck finish 240 that is coupled to a body 242 of the preform.
  • the illustrated preform 234 has a portion 238 that is coupled to the upper end 250 of the lower portion 252 of the preform 234 .
  • the portion 238 may comprise different materials and/or microstructures than the lower portion 252 .
  • the portion 238 comprises crystalline material.
  • the lower portion 252 may be amorphous to facilitate the blow molding process.
  • the upper portion 238 comprises a different material than the lower portion 252 .
  • a skilled artisan can select the material that forms the preform.
  • the upper end 250 is positioned below or at the support ring.
  • the preforms illustrated in FIGS. 15A to 15C can have monolayer or multilayer walls.
  • FIG. 16 illustrates a preform 270 having a tapered body portion 272 and a neck finish 274 .
  • the preform 270 can be blow molded to form a container in the form of a jar, for example.
  • a jar or other similar container can have a mouth or opening that is larger than the opening of a bottle.
  • the preform 270 has a support ring 278 and one or more closure attaching structures 279 , preferably configured to interact with a snap closure or other type of closure.
  • FIG. 17 illustrates an embodiment of a preform with a neck finish without threads.
  • the preform 280 comprises a body portion 281 , which has an end cap 283 , and a neck finish 282 .
  • the preform 280 may be suitable for blow molding into a container.
  • the preforms illustrated in FIGS. 16 and 17 can be monolayer or multilayer preforms (e.g., having layers described above). The preforms described above can be formed without a neck finish.
  • the preforms can be subjected to a stretch blow-molding process.
  • the blow molding process is described primarily for the monolayer preform 30 , although the multi-layer preforms (e.g., preforms 50 , 60 , 76 , 80 , 132 , 160 , 180 , 290 , and 216 ) can be processed in a similar manner.
  • the containers described above can be formed by various molding process (including extrusion blow molding), for example.
  • closures can be employed to seal containers.
  • closure is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a cap (including snap cap, flip cap, bottle cap, threaded bottle cap, pilfer-proof cap), a crown closure, cork (natural or artificial), punctured seal, a lid (e.g., a lid for a cup), multi-piece closure (e.g., BAP® closures produced by Bapco Closures Limited (England) or similar closure), snap closures, and/or the like.
  • closures can have one or more features that provide further advantages.
  • Some closures can have one or more of the following: tamper evident feature, tamper resistant feature, sealing enhancer, compartment for storage, gripping structures to facilitate removal/placement of the closure, non-spill feature, and combinations thereof.
  • Closures can have a one-piece or multi-piece construction and may be configured for permanently or temporarily coupling to a container.
  • the closure illustrated in FIG. 14A has a multi-piece construction.
  • the closure illustrated in FIG. 18 has a one-piece construction.
  • the terms “closure” and “cap” may be used interchangeably herein. It is contemplated that closures can be used with bottles, boxes (especially boxes used to hold foodstuff, such as juices, for example), cartons, and other packaging or articles.
  • bottle cap is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a cap suitable for being attached to a bottle, such as a glass or plastic bottle (e.g., bottle typically configured to hold alcoholic beverages or juices) and may or may not have threads.
  • Bottle caps are typically removed by using a bottle opener, as in known in the art.
  • threaded bottle cap is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a cap (e.g., a screw cap) suitable for being attached to bottle having threads.
  • embodiments of closures having threads may be modified to form bottle caps, or other types of closures for containers of different configurations.
  • closures can threadably engage a container or be attached to a container by various methods, such as sonic welding, induction welding, a multi-step molding process, adhesives, thermoforming, and the like.
  • FIG. 18 illustrates one embodiment of a closure 302 that can be coupled to an article, such as the neck portion of a container.
  • the closure 302 has internal threads 306 ( FIG. 19 ) that are configured to mate with the threads of a neck portion so that the closure 302 can be removably coupled to a container.
  • the closure 302 can be fastened to the container (e.g., a bottle) to close the opening or mouth of the bottle.
  • the closure 302 includes a main body 310 , and an optional tamper evidence structure or anti-tamper structure, such as a band 313 (or skirt) coupled to the body 310 by one or more connectors 312 .
  • the connectors 312 can be sized and adapted so that when the closure 302 is removed from a container, the connectors 312 will break, thus separating the body 310 and the band 313 indicating that the closure 302 has been removed from the associated container.
  • a surface 316 of the body 310 can have a surface treatment, such as grooves, ridges, texture treatment, and/or the like to facilitate frictional interaction with the closure 302 .
  • the closure 302 comprises the body 310 and may or may not have a liner.
  • the illustrated closure 302 comprises an optional inner closure layer 314 .
  • the illustrated closure inner layer 314 is in the form of a liner contained within an outer portion 311 of the body 310 .
  • the liner 314 can be adapted to be in contact with foodstuff or liquid and may form a seal with the lip that forms the opening of the bottle.
  • the liner 314 forms a substantial portion, or the entire portion, of a contact area of the closure 304 .
  • the liner 314 can be a barrier liner, such as an active or passive barrier liner.
  • the liner 314 can function as a fluid barrier (e.g., a liquid or gas), flavor barrier, and combinations thereof.
  • the liner 314 can be a gas barrier that inhibits or prevents the passage of oxygen, carbon dioxide, and the like therethrough.
  • the liner 314 can have scalping capabilities, such as gas scalping (e.g., oxygen scalping).
  • the liner 314 can be pressed against a lip of a bottle to prevent liquid from escaping from the container that is sealed by the closure 302 .
  • the liner 314 is a gas barrier that prevents or inhibits gas from escaping from the container.
  • the liner 314 is a flavor barrier that can prevent or limit the change of the taste of the fluid within the container.
  • the liner 314 can be formed of a polymer (e.g., a thermoplastic material) that can act as a flavor barrier to ensure that foodstuff in the container maintains a desirable flavor.
  • the liner 314 can help to ensure that the body 310 does not impart flavor and/or odor to foodstuff in the container.
  • a somewhat flavor imparting material and/or flavor reducing or scalping material e.g., polyolefins such as polypropylene or polyethylene
  • a container or closure such as a cap of a bottle
  • polypropylene may exhibit one or more physical properties which are preferred to the physical properties of polymers such as PET.
  • polypropylene has a tendency to reduce or scalp the flavor of the contents of the bottle or to remove desired flavors or aromatic components from the contents. Thus, a person consuming the food previously in contact with the PP may be able to recognize a change in flavor.
  • the liner 314 can comprise a flavor preserving material so that the food stuff in the container is not generally affected when the foodstuff contacts the liner 314 .
  • the flavor preserving material is a material approved by the FDA for contacting foodstuff.
  • the flavor preserving material comprises PET (such as virgin PET), phenoxy type-thermoplastic, and/or the like.
  • the body 310 can therefore be made of a flavor scalping material, such as polypropylene, to provide desired physical properties and the liner 314 comprises PET for an effective flavor barrier to ensure that the contents of container maintain a desirable taste.
  • the liner 314 can be formed of any material suitable for contacting the food stuff in the container.
  • the liners 314 can be formed of foam material described herein that may or may not substantially alter the taste of the contents of the container.
  • the thickness of the liner 314 can be increased to inhibit gas or other fluids from passing through the liner.
  • the liner 314 can be a monolayer or multilayer structure.
  • the liner 314 can comprise an inner layer of PET (i.e., the layer in contact with the container contents) and an outer layer of foam material.
  • the liner 314 can have a layer suitable for contacting foodstuffs and one or more layers acting as a barrier, similar to the preforms described herein.
  • the liner 314 can comprise a first layer and a second layer wherein the first layer comprises a foam material and the second layer comprises a barrier material.
  • a second layer can reduce or inhibit the migration of fluid through the liner 314 and the first layer insulates the closure 302 .
  • the liner 314 comprises a layer of PET and a layer comprising a second material.
  • the PET layer preferably is the lowermost layer so that it forms a seal with the lip of a container.
  • the second material can be EVA or other suitable material for forming a portion of a liner.
  • the liner 314 of FIG. 19 can be pre-formed and inserted into the body 310 .
  • the body 310 can be shaped like a typical screw cap used to seal a bottle.
  • the liner 314 is formed by cutting out a portion of the sheet, which is described below.
  • the pre-cut liner 314 can then be inserted into the body 310 and positioned as shown in FIG. 19 .
  • the liner 314 can be formed within the body 310 .
  • the liner 314 can be formed through a molding process, such as over-molding.
  • At least a portion of the liner 314 can be formed by a spray coating process.
  • a monolayer liner can be sprayed and coated with a polymer (e.g., PET, phenoxy type thermoplastic, or other materials described herein) resulting in a multilayer liner.
  • a polymer e.g., PET, phenoxy type thermoplastic, or other materials described herein
  • the liner 314 can be retained in the body 310 or can be attached to the container.
  • the liner 314 can be attached to the body 310 such that the liner 314 remains coupled to the body 310 after the body has been separated from the container.
  • the liner 314 can be coupled to the container so that the body 310 and liner are separable.
  • the liner 314 can be transferred to the body 310 to the opening of a container by a welding process, such as an induction welding process.
  • a further advantage is optionally provided where at least a portion of the closure 302 is formed of material to provide a comfortable gripping surface so that a user can comfortably grip the closure 302 .
  • the body 310 may comprise a material for sufficient rigidity, (e.g., PP), compressibility for a comfortable grip (e.g., foam material), and/or the like.
  • the outer portion 311 of the body 310 can comprise foam to increase the space occupied by the outer portion 311 and can provide the user with greater leverage for easy opening and closing of the closure 302 .
  • the closure 302 can have an internally threaded surface that is configured to threadably mate with an externally threaded surface of the container.
  • the enlarged outer portion 311 can provide increased leverage such that the user can easily rotate the closure 302 onto and off of a container.
  • a similar, or same, amount of material that forms a conventional cap can be used to form the enlarged diameter closure.
  • At least a portion of one of the portions 311 and liner 314 can be formed of foam material to achieve a very lightweight closure due to the low density of the foam material.
  • the reduced weight of the closure 302 can desirably reduce the transportation cost of the closure 302 .
  • a foam material of the closure 302 can reduce the amount of material that is used to form the closure, since the foam material may have a substantial number of voids.
  • the closure 330 has a body 331 that comprises an inner portion 332 and an outer portion 334 .
  • the illustrated wall 335 comprises the portions 332 , 334 .
  • the inner portion 332 may define at least a portion of the interior of the closure 330 and can optionally define one or more of the threads 336 .
  • the inner portion 332 can be formed by an injection molding process, spray coating process, or other process described herein for forming a portion of an article.
  • the inner portion 332 comprises polyolefin (e.g., PET), phenoxy type thermoplastics, and/or other materials described herein.
  • FIG. 21A to 21E illustrate non-limiting embodiments of closures.
  • FIG. 21A illustrates a closure 340 that has an outer portion 342 and an inner portion 344 that forms at least a portion of the interior of the closure 340 . That is, the outer portion 342 and the inner portion 344 each can define a portion (e.g., the threads) of the interior surface of the closure 340 .
  • the inner portion 344 is set into the outer portion 342 ; however, in other embodiments the inner portion 344 is not set into the outer 342 .
  • FIG. 21B illustrates a closure 350 that comprises an inner portion 354 comprising a plurality of layers 356 , 358 .
  • FIG. 21C illustrates a closure 360 comprising a plurality of layers.
  • An outer layer 362 forms the outer surface (including the top and wall) of the closure 360 .
  • An intermediate layer 364 can comprise one or more layers.
  • An inner layer 366 defines a threaded contact surface 368 .
  • the closures can have portions or layers of varying thicknesses. As shown in FIG. 21D , at least one of the portions or layers of a closure 370 comprises a thickened portion.
  • the illustrated closure 370 has an inner portion 374 with an upper thickened portion 372 that has a thickness greater than the thickness of the wall portion 376 .
  • FIG. 21E illustrates a multilayer closure 380 that comprises a band 382 connected to an inner portion 383 of the closure 380 by one or more connectors 384 .
  • the closures illustrated in FIGS. 18 to 21E may have any suitable structure(s) or design for coupling to containers.
  • the closures of FIGS. 18 to 21E may have a similar configuration as the closure 213 ( FIG. 14A ). It is contemplated that the closures of FIGS. 18-21E described herein can be attached to containers by threadable engagement, welding or fusing process (e.g., induction welding), an adhesive, by frictional interaction, or the like.
  • the closures of FIGS. 18-21E are illustrated with bands.
  • closures may not have bands, or they may have other anti-tamper indicators or structures.
  • closures of FIGS. 18-21E are illustrated as screw closures, other types of closures (e.g., closures of a multi-piece construction, such as closures with a lid that opens and closes, a closure with a nipple, and or the like) have similar constructions.
  • the closures can have one or more compartments configured for storage.
  • the compartments can contain additives that can be added to the contents of the associated container.
  • the additives can affect the characteristics of the container's contents and can be in a solid, gas, and/or liquid state.
  • the additives can affect one or more of the following: aroma (e.g., additives can comprise scented gases/liquids), flavor, color (e.g., additives can comprise dies, pigments, etc.), nutrient content (e.g., additives can comprise vitamins, protein, carbohydrates, etc.), and combinations thereof.
  • the additives can be delivered from the closure into the contents within the container for subsequent ingestion and preferably enhance the desirability of the contents and the consumption experience.
  • the compartment can release the additives during removal of the closure so that the mixture is fresh. However, the compartment can be opened before or after the closure is removed from the container.
  • the closure has a compartment that can be broken (e.g., punctured) after the closure has been separated from a container.
  • the compartment can be broken by a puncturing process, tearing, and the like.
  • the compartment can have a structure for releasing its contents.
  • the structure can be a pull plug, snap cap or other suitable structure for releasing the compartment's contents.
  • the containers can also be closed with a seal that is separate from the closure.
  • the seal can be applied to the container before the closure is attached.
  • a sealing process can be employed to attach the seal to the neck finish of a container after the container has been filled.
  • the seal can be similar to or different than the liners that are attached to the closures.
  • the seals can be hermetic seals (preferably spill proof) that ensure the integrity of the containers' contents.
  • the seal can comprise foil (preferably comprising metal, such as aluminum foil) and is applied to a container by a welding process, such as induction welding.
  • the seal can be attached to a container using other suitable attachment processes, for example an adhesive may be used.
  • the closures can have an inner surface suitable for engaging closuring mounting structures (e.g., threads, snap cap fittings, and the like).
  • the inner surface can provide a somewhat lubricious surface to facilitate removal of the closure from a container.
  • the closures can have a lubricious or low friction material (e.g. olefin polymers) to engage the material forming the container.
  • a closure is formed of PET, for example, the closure may stick or lock with a PET container.
  • the closure including snap caps, twist caps, and the like
  • a closure with a lubricious or low friction material can reduce the removal torque in order to facilitate removal of the closure.
  • the lubricious or low friction material preferably provides enough friction such that closure can remain coupled to an associated container while also permitting convenient closure removal.
  • the lubricious or low friction material can be selected to achieve the desired removal torque.
  • the closure 330 can include an inner portion 332 comprising a lubricious or low friction material (e.g., an olefin or other material having a low coefficient of friction) and an outer portion 334 comprising a polymer, such as an olefin polymer, foam material, PET, and other materials described herein.
  • the closures described herein can comprise lubricious or low friction material that can interface with a container and achieve a desired removal torque.
  • the lubricious or low friction material forming the closure can be selected based on the material forming the container in order to produce the desired frictional interaction. It is contemplated that the molds described herein can be modified with an edge gate to form the inner most layer of the closure for engaging a container.
  • FIGS. 22A and 22B are cross-sectional views of sheets.
  • the sheets can have a somewhat uniform thickness or varying thickness.
  • the sheet of FIG. 22A is a monolayer sheet 389 .
  • the sheet of FIG. 22B is a multilayer sheet 390 comprising two layers.
  • the sheets can have any number of layers of any desired thickness based, for example, on the use of the sheets.
  • the sheets 389 , 390 can be used to form packaging, such as a label. At least a portion of the sheets 389 , 390 may comprise foam material.
  • the sheets 389 , 390 may comprise foam material to provide insulation to the packaging to which the label is attached.
  • the sheet 390 can comprise one or more tie layers.
  • the sheet 390 may comprise a tie layer between the layers 392 , 394 .
  • the sheets can be used in various applications and may be formed into various shapes.
  • the sheets can be cut, molded (e.g., by thermoforming or casting), and/or the like into a desired shape.
  • a skilled artisan can select the desired shape, size, and/or configuration of the sheets based on a desired application.
  • FIG. 23 illustrates a multilayer profile 402 .
  • the profile 402 is in the form of a conduit having a substantially tubular shape.
  • the shape of the profile 402 can be generally circular, elliptical, polygonal (including rounded polygonal), combinations thereof, and the like.
  • the illustrated profile 402 has a generally circular cross sectional profile.
  • the profile 402 can be a conduit adapted for delivering fluids, preferably adapted for drinking liquids.
  • the profile 402 can have an inner layer 404 and an outer layer 406 .
  • at least one of the layers 404 , 406 can comprise a plurality of layers (e.g., lamellar material).
  • the profile 402 can be a conduit that comprises a material suitable for contacting foodstuff and one or more additional materials having desirable physical properties (e.g., structural and thermal properties).
  • the inner layer 404 that is in direct contact with the fluid preferably does not substantially change the flavor of the foodstuff in which it contacts. For example, many times fluid transfer lines of beverage dispensing systems have flavor scalping polyolefins.
  • the inner layer 404 preferably does not substantially change the flavor of the fluid passing through a lumen 408 of the profile 402 .
  • the outer layer 406 can provide improved physical characteristics of the profile 402 .
  • the outer layer 406 can provide increased insulation and/or structural properties of the profile 402 .
  • the outer layer 406 can provide increased impact resistance.
  • the outer layer 406 can reduce heat transfer through the walls of the profile 402 .
  • the outer layer 406 can have a high tensile strength so that highly pressurized fluid can be passed through the profile 402 .
  • the inner layer serves as a substantially inert food contact surface while the outer layer(s) serve as an insulator and/or withstand external influences.
  • the profile 402 can be employed in various other applications.
  • the profile 402 can be used in hospitals (e.g., as a delivery line for medicinal fluids, manufacturing processes, equipment, fluid systems (e.g., ingestible fluid dispensing systems), and/or the like.
  • FIG. 24 illustrates a packaging system 416 comprising a container 420 that can be made from the preforms described herein.
  • a closure 422 can be attached to a neck finish 432 of the container 420 to close the container.
  • FIG. 24 also illustrates a label 440 attached to the container 420 in the form of a bottle.
  • the label 440 can engage the bottle 420 and can be a monolayer or multilayer.
  • the label 440 can optionally comprise foam material.
  • the label 440 is preferably coupled to the outer surface 442 of the container 420 .
  • the label 440 can be removably attached the outer surface 442 .
  • the label 440 can be attached during and/or after the formation of the container 420 .
  • the label 440 is a generally tubular sleeve that surrounds at least a portion of the bottle 420 .
  • the label 440 can have any shape or configuration suitable for being attached to the bottle and displaying information.
  • the label 440 can be attached to glass bottles, metal cans, or the like. Further, the label 440 can be attached to other structures or packages.
  • the label 440 can be attached to a box, carton, bottle (plastic bottle, glass bottle, and the like), can, and other items discussed herein. Additionally, the label 440 can be printed upon. Optionally, an outer surface 446 of the label 440 can be treated to achieve a suitable printing surface.
  • An adhesive can be used to attach the label 440 to an article.
  • foam material of the label 440 may be expanded to achieve a thermal barrier, a fluid barrier, a protective layer, and/or desired structural properties.
  • the foam material is preferably expanded by heating the label 440 .
  • the material of the label 440 can be foamed before and/or after the label 440 is placed on the container 420 .
  • the foam material of the label 440 can be directly adhered to an article without the use of adhesives.
  • FIG. 25 illustrates another embodiment of a container comprising a foamable material.
  • the container 450 can be similar or different than the containers described above.
  • the container 450 comprises a closure 452 , a body 454 , and a handle 456 attached to the body 454 .
  • the body 454 can be substantially rigid or flexible.
  • the handle 456 is preferably configured and sized to be comfortably gripped by a user.
  • the wall of the body 454 can be a mono-layer or multi-layer wall.
  • the container 450 can have any shape, including a shape similar to typical containers used for holding ingestible liquids.
  • the container 450 can be formed by an extrusion blow-molding process.
  • container 460 is packaging (e.g., food packaging) that preferably comprises foam material.
  • a sheet e.g., the sheets 389 or 390
  • the container 460 can be in the form of a flexible pouch, food container, or any other suitable structure.
  • the sheets are formed into clamshell packages that are adapted to hold food, such as hamburgers.
  • the sheets are configured to form boxes (e.g., pizza boxes).
  • the material and the dimensions of the container 460 can be determined based on the desired structural properties, thermal properties, and/or other characteristics.
  • the container 460 may comprise foam material for effective thermal insulation of the container 460 .
  • the container 460 can have thick walls so that the container 460 is generally rigid.
  • FIG. 26B illustrates another article comprising foamable material.
  • the article 462 is in the form of a tray that is configured to receive foodstuff.
  • the tray 462 can be formed from a sheet through thermoforming.
  • the tray 462 can be adapted to fit within a container or box.
  • the tray 462 (or other articles described herein) can be configured for thermal processing.
  • the tray 462 can be used for heating and reheating.
  • the tray 462 can hold foodstuffs so that the foodstuffs can be heated by, for example, a heat lamp, microwave oven, oven, toaster, heated water, and the like.
  • the microstructure of the tray 462 can be adapted based on the type and method of thermal processing.
  • the tray 462 may comprise crystalline material (e.g., crystalline PET) to enhance thermal stability.
  • crystalline material e.g., crystalline PET
  • one or more layers of the tray can be heated above a predetermined temperature to cause crystallization of at least a portion of one of the layers.
  • the tray 462 can be crystallized during the manufacturing process.
  • the tray 462 can comprise a mono or multilayer sheet.
  • the tray 462 can have a first layer of thermoplastic material and a second layer (e.g., a foam layer).
  • the first layer can comprise crystalline material (e.g., amorphous, partially crystallized, or fully crystallized).
  • the tray 462 can be used to hold food for use in a microwave oven.
  • other articles, such as containers like pizza boxes can have a similar configuration.
  • Articles can also be in the form of a can.
  • the can may comprise polymer materials as disclosed herein.
  • the can may comprise a metal layer and one or more layers of another material.
  • a metal can e.g., aluminum can
  • foam material such as a thermoplastic material. At least a portion of the exterior and/or the interior of the can may be coated with foam material.
  • Plastic bottles and containers in some embodiments, preferably comprise one or more materials in the neck, neck finish and/or neck cylinder that are at least partially in the crystalline state. Such bottles and preforms can also comprise one or more layers of materials.
  • bottles are made by a process which includes the blow-molding of plastic preforms.
  • the material in the plastic preforms is in an amorphous or semi-crystalline state because materials in this state can be readily blow-molded where fully crystalline materials generally cannot.
  • bottles made entirely of amorphous or semi-crystalline material may not have enough dimensional stability during a standard hot-fill process. In these circumstances, a bottle comprising crystalline material would be preferred, as it would hold its shape during hot-fill processes.
  • a plastic bottle has the advantages of both a crystalline bottle and an amorphous or semi-crystalline bottle.
  • amorphous or semi-crystalline sometimes referred to herein as “non-crystalline”
  • Some embodiments have both crystalline and amorphous or semi-crystalline regions. This results in a preform which has sufficient strength to be used in widespread commercial applications.
  • One or more embodiments described herein generally produce preforms with a crystalline neck, which are typically then blow-molded into beverage containers.
  • the preforms may be monolayer; that is, comprised of a single layer of a base material, or they may be multilayer.
  • the material in such layers may be a single material or it may be a blend of one or more materials.
  • an article is provided which comprises a neck portion and a body portion.
  • the neck portion and the body portion are a monolithic first layer of material.
  • the body portion is primarily amorphous or semi-crystalline, and the neck portion is primarily crystalline.
  • the preform 30 may be made by injection molding as is known in the art or by methods disclosed herein.
  • the preform 30 has the neck portion 32 and a body portion 34 , formed monolithically (i.e., as a single, or unitary, structure).
  • the monolithic arrangement of the preform when blow-molded into a bottle, provides greater dimensional stability and improved physical properties in comparison to a preform constructed of separate neck and body portions, which are bonded together.
  • the final dimensions are substantially identical to the initial dimensions, unlike when additional heating steps are used. Therefore, dimensional variations are minimized and dimensional stability is achieved. This results in more consistent performance with regard to closures, such as the threads on the neck finish and reduces the scrap rate of the molding process.
  • a preform constructed according to some embodiments has a generally non-crystalline body portion and a generally crystalline neck portion.
  • the different levels of heating and/or cooling may be maintained by thermal isolation of the regions having different temperatures. This thermal isolation between the thread split, core and/or cavity interface can be accomplished utilizing a combination of low and high thermal conduct materials as inserts or separate components at the mating surfaces of these portions.
  • Some preferred processes accomplish the making of a preform within the preferred cycle times for uncoated preforms of similar size by standard methods currently used in preform production. Further, the preferred processes are enabled by tooling design and process techniques to allow for the simultaneous production of crystalline and amorphous regions in particular locations on the same preform.
  • a mold for making a preform comprising a neck portion having a first mold temperature control system (e.g., cooling/heating channels), a body portion having a second temperature control system, and a core having a third temperature control system, wherein the first temperature control system is independent of the second and third temperature control systems and the neck portion is thermally isolated from the body portion and core.
  • a first mold temperature control system e.g., cooling/heating channels
  • the body portion having a second temperature control system
  • a core having a third temperature control system
  • the cooling of the mold in regions which form preform surfaces for which it is preferred that the material be generally amorphous or semi-crystalline can be accomplished by chilled fluid circulating through the mold cavity and core.
  • a mold set-up similar to conventional injection molding applications is used, except that there is an independent fluid circuit or electric heating system for the portions of the mold from which crystalline portions of the preform will be formed.
  • Thermal isolation of the body mold, neck finish mold and core section can be achieved by use of inserts having low thermal conductivity.
  • the neck, neck finish, and/or neck cylinder portions of the mold preferably are maintained at a higher temperature to achieve slower cooling, which promotes crystallinity of the material during cooling.
  • thermoplastics including those of the of the polyester and polyolefin types.
  • suitable materials include, but are not limited to, foam materials, various polymers and thermosets, thermoplastic materials such as polyesters, polyolefins, including polypropylene and polyethylene, polycarbonate, polyamides, including nylons (e.g.
  • More specific material examples include, but are not limited to, ethylene vinyl alcohol copolymer (“EVOH”), ethylene vinyl acetate (“EVA”), ethylene acrylic acid (“EAA”), linear low density polyethylene (“LLDPE”), polyethylene 2,6- and 1,5-naphthalate (PEN), polyethylene terephthalate glycol (PETG), poly(cyclohexylenedimethylene terephthalate), polystryrene, cycloolefin, copolymer, poly-4-methylpentene-1, poly(methyl methacrylate), acrylonitrile, polyvinyl chloride, polyvinylidine chloride, styrene acrylonitrile, acrylonitrile-butadiene-styrene, polyacetal, polybutylene terephthalate, ionomer, polysulfone, polytetra-fluoroethylene, polytetramethylene 1,2-dioxybenzoate and copolymers of ethylene terephthalate and ethylene is
  • PETG polyethylene terephthalate glycol
  • CHDM cyclohexane di-methanol
  • preferred PETG material is essentially amorphous.
  • Suitable PETG materials may be purchased from various sources. One suitable source is Voridian, a division of Eastman Chemical Company. Other PET copolymers include CHDM at lower levels such that the resulting material remains crystallizable or semi-crystalline.
  • One example of PET copolymer containing low levels of CHDM is Voridian 9921 resin.
  • polymers that have been grafted or modified may be used.
  • polypropylene or other polymers may be grafted or modified with polar groups including, but not limited to, maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion.
  • polypropylene also refers to clarified polypropylene.
  • clarified polypropylene is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a polypropylene that includes nucleation inhibitors and/or clarifying additives. Clarified polypropylene is a generally transparent material as compared to the homopolymer or block copolymer of polypropylene.
  • nucleation inhibitors helps prevent and/or reduce crystallinity, which contributes to the haziness of polypropylene, within the polypropylene.
  • Clarified polypropylene may be purchased from various sources such as Dow Chemical Co.
  • nucleation inhibitors may be added to polypropylene.
  • One suitable source of nucleation inhibitor additives is Schulman.
  • the materials may comprise microstructures such as microlayers, microspheres, and combinations thereof.
  • preferred materials may be virgin, pre-consumer, post-consumer, regrind, recycled, and/or combinations thereof.
  • PET includes, but is not limited to, modified PET as well as PET blended with other materials.
  • a modified PET is “high IPA PET” or IPA-modified PET, which refer to PET in which the IPA content is preferably more than about 2% by weight, including about 2-10% IPA by weight, also including about 5-10% IPA by weight.
  • PET can be virgin, pre or post-consumer, recycled, or regrind PET, PET copolymers and combinations thereof.
  • one or more layers may comprise barrier layers, UV protection layers, oxygen scavenging layers, oxygen barrier layers, carbon dioxide scavenging layers, carbon dioxide barrier layers, and other layers as needed for the particular application.
  • barrier material broad terms and are used in their ordinary sense and refer, without limitation, to materials which, when used in preferred methods and processes, have a lower permeability to oxygen and carbon dioxide than the one or more of the layers.
  • UV protection and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which have a higher UV absorption rate than one or more layers of the article.
  • oxygen scavenging and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which have a higher oxygen absorption rate than one or more layers of the article.
  • oxygen barrier and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which are passive or active in nature and slow the transmission of oxygen into and/or out of an article.
  • carbon dioxide scavenging and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which have a higher carbon dioxide absorption rate than one or more layers of the article.
  • carbon dioxide barrier and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which are passive or active in nature and slow the transmission of carbon dioxide into and/or out of an article.
  • a carbonated product e.g. a soft-drink beverage
  • the inclusion of a carbon dioxide scavenger in one or more layers of the article allows the excess carbonation to saturate the layer which contains the carbon dioxide scavenger. Therefore, as carbon dioxide escapes to the atmosphere from the article it first leaves the article layer rather than the product contained therein.
  • crosslink As used herein, the terms “crosslink,” “crosslinked,” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials and coatings which vary in degree from a very small degree of crosslinking up to and including fully cross linked materials such as a thermoset epoxy. The degree of crosslinking can be adjusted to provide the appropriate degree of chemical or mechanical abuse resistance for the particular circumstances.
  • thermoset epoxy As used herein, the term “tie material” is a broad term and is used in its ordinary sense and refers, without limitation, to a gas, liquid, or suspension comprising a material that aids in binding two materials together physically and/or chemically, including but not limited to adhesives, surface modification agents, reactive materials, and the like.
  • materials comprise thermoplastic materials.
  • a further preferred embodiment includes “Phenoxy-Type Thermoplastics.”
  • Phenoxy-Type Thermoplastics include a wide variety of materials including those discussed in WO 99/20462.
  • materials comprise thermoplastic epoxy resins (TPEs), a subset of Phenoxy-Type Thermoplastics.
  • TPEs thermoplastic epoxy resins
  • a further subset of Phenoxy-Type Thermoplastics, and thermoplastic materials are preferred hydroxy-phenoxyether polymers, of which polyhydroxyaminoether copolymers (PHAE) is a further preferred material. See for example, U.S. Pat. Nos.
  • PHAEs are TPEs.
  • the Phenoxy-Type Thermoplastics used in preferred embodiments comprise one of the following types:
  • each Ar individually represents a divalent aromatic moiety, substituted divalent aromatic moiety or heteroaromatic moiety, or a combination of different divalent aromatic moieties, substituted aromatic moieties or heteroaromatic moieties;
  • R is individually hydrogen or a monovalent hydrocarbyl moiety;
  • each Ar 1 is a divalent aromatic moiety or combination of divalent aromatic moieties bearing amide or hydroxymethyl groups;
  • each Ar 2 is the same or different than Ar and is individually a divalent aromatic moiety, substituted aromatic moiety or heteroaromatic moiety or a combination of different divalent aromatic moieties, substituted aromatic moieties or heteroaromatic moieties;
  • R 1 is individually a predominantly hydrocarbylene moiety, such as a divalent aromatic moiety, substituted divalent aromatic moiety, divalent heteroaromatic moiety, divalent alkylene moiety, divalent substituted alkylene moiety or divalent heteroalkylene moiety or a combination of such moieties;
  • R 2 is individually a
  • Y is nil, a covalent bond, or a linking group, wherein suitable linking groups include, for example, an oxygen atom, a sulfur atom, a carbonyl atom, a sulfonyl group, or a methylene group or similar linkage; n is an integer from about 10 to about 1000; x is 0.01 to 1.0; and y is 0 to 0.5.
  • prodominantly hydrocarbylene means a divalent radical that is predominantly hydrocarbon, but which optionally contains a small quantity of a heteroatomic moiety such as oxygen, sulfur, imino, sulfonyl, sulfoxyl, and the like.
  • the hydroxy-functional poly(amide ethers) represented by Formula I are preferably prepared by contacting an N,N′-bis(hydroxyphenylamido)alkane or arene with a diglycidyl ether as described in U.S. Pat. Nos. 5,089,588 and 5,143,998.
  • the poly(hydroxy amide ethers) represented by Formula II are prepared by contacting a bis(hydroxyphenylamido)alkane or arene, or a combination of 2 or more of these compounds, such as N,N′-bis(3-hydroxyphenyl) adipamide or N,N′-bis(3-hydroxyphenyl)glutaramide, with an epihalohydrin as described in U.S. Pat. No. 5,134,218.
  • the amide- and hydroxymethyl-functionalized polyethers represented by Formula III can be prepared, for example, by reacting the diglycidyl ethers, such as the diglycidyl ether of bisphenol A, with a dihydric phenol having pendant amido, N-substituted amido and/or hydroxyalkyl moieties, such as 2,2-bis(4-hydroxyphenyl)acetamide and 3,5-dihydroxybenzamide.
  • diglycidyl ethers such as the diglycidyl ether of bisphenol A
  • a dihydric phenol having pendant amido, N-substituted amido and/or hydroxyalkyl moieties such as 2,2-bis(4-hydroxyphenyl)acetamide and 3,5-dihydroxybenzamide.
  • the hydroxy-functional polyethers represented by Formula IV can be prepared, for example, by allowing a diglycidyl ether or combination of diglycidyl ethers to react with a dihydric phenol or a combination of dihydric phenols using the process described in U.S. Pat. No. 5,164,472.
  • the hydroxy-functional polyethers are obtained by allowing a dihydric phenol or combination of dihydric phenols to react with an epihalohydrin by the process described by Reinking, Barnabeo and Hale in the Journal of Applied Polymer Science, Vol. 7, p. 2135 (1963).
  • the hydroxy-functional poly(ether sulfonamides) represented by Formula V are prepared, for example, by polymerizing an N,N′-dialkyl or N,N′-diaryldisulfonamide with a diglycidyl ether as described in U.S. Pat. No. 5,149,768.
  • the poly(hydroxy ester ethers) represented by Formula VI are prepared by reacting diglycidyl ethers of aliphatic or aromatic diacids, such as diglycidyl terephthalate, or diglycidyl ethers of dihydric phenols with, aliphatic or aromatic diacids such as adipic acid or isophthalic acid. These polyesters are described in U.S. Pat. No. 5,171,820.
  • the hydroxy-phenoxyether polymers represented by Formula VII are prepared, for example, by contacting at least one dinucleophilic monomer with at least one diglycidyl ether of a cardo bisphenol, such as 9,9-bis(4-hydroxyphenyl)fluorene, phenolphthalein, or phenolphthalimidine or a substituted cardo bisphenol, such as a substituted bis(hydroxyphenyl)fluorene, a substituted phenolphthalein or a substituted phenolphthalimidine under conditions sufficient to cause the nucleophilic moieties of the dinucleophilic monomer to react with epoxy moieties to form a polymer backbone containing pendant hydroxy moieties and ether, imino, amino, sulfonamido or ester linkages.
  • a cardo bisphenol such as 9,9-bis(4-hydroxyphenyl)fluorene, phenolphthalein, or phenolphthalimidine
  • a substituted cardo bisphenol such as a substituted bis(hydroxyphen
  • poly(hydroxyamino ethers) (“PHAE” or polyetheramines) represented by Formula VIII are prepared by contacting one or more of the diglycidyl ethers of a dihydric phenol with an amine having two amine hydrogens under conditions sufficient to cause the amine moieties to react with epoxy moieties to form a polymer backbone having amine linkages, ether linkages and pendant hydroxyl moieties.
  • PHAE poly(hydroxyamino ethers)
  • polyetheramines represented by Formula VIII are prepared by contacting one or more of the diglycidyl ethers of a dihydric phenol with an amine having two amine hydrogens under conditions sufficient to cause the amine moieties to react with epoxy moieties to form a polymer backbone having amine linkages, ether linkages and pendant hydroxyl moieties.
  • polyhydroxyaminoether copolymers can be made from resorcinol diglycidyl ether, hydroquinone diglycidyl ether, bis
  • the hydroxy-phenoxyether polymers are the condensation reaction products of a dihydric polynuclear phenol, such as bisphenol A, and an epihalohydrin and have the repeating units represented by Formula IV wherein Ar is an isopropylidene diphenylene moiety.
  • a dihydric polynuclear phenol such as bisphenol A
  • an epihalohydrin have the repeating units represented by Formula IV wherein Ar is an isopropylidene diphenylene moiety.
  • PAPHEN 25068-38-6 is commercially available from Phenoxy Associates, Inc.
  • Other preferred phenoxy resins are available from InChem® (Rock Hill, S.C.), these materials include, but are not limited to, the INCHEMREZTM PKHH and PKHW product lines.
  • preferred phenoxy-type materials form stable aqueous based solutions or dispersions.
  • the properties of the solutions/dispersions are not adversely affected by contact with water.
  • Preferred materials range from about 10% solids to about 50% solids, including about 15%, 20%, 25%, 30%, 35%, 40% and 45%, and ranges encompassing such percentages.
  • the material used dissolves or disperses in polar solvents. These polar solvents include, but are not limited to, water, alcohols, and glycol ethers. See, for example, U.S. Pat. Nos. 6,455,116, 6,180,715, and 5,834,078 which describe some preferred phenoxy-type solutions and/or dispersions.
  • One preferred phenoxy-type material is a polyhydroxyaminoether copolymer (PHAE), represented by Formula VIII, dispersion or solution.
  • PHAE polyhydroxyaminoether copolymer
  • the dispersion or solution when applied to a container or preform, greatly reduces the permeation rate of a variety of gases through the container walls in a predictable and well known manner.
  • One dispersion or latex made thereof comprises 10-30 percent solids.
  • a PHAE solution/dispersion may be prepared by stirring or otherwise agitating the PHAE in a solution of water with an organic acid, preferably acetic or phosphoric acid, but also including lactic, malic, citric, or glycolic acid and/or mixtures thereof.
  • organic acid preferably acetic or phosphoric acid, but also including lactic, malic, citric, or glycolic acid and/or mixtures thereof.
  • These PHAE solution/dispersions also include organic acid salts produced by the reaction of the polyhydroxyaminoethers with these
  • phenoxy-type thermoplastics are mixed or blended with other materials using methods known to those of skill in the art.
  • a compatibilizer may be added to the blend.
  • one or more properties of the blends are improved, such properties including, but not limited to, color, haze, and adhesion between a layer comprising a blend and other layers.
  • One preferred blend comprises one or more phenoxy-type thermoplastics and one or more polyolefins.
  • a preferred polyolefin comprises polypropylene.
  • polypropylene or other polyolefins may be grafted or modified with a polar molecule or monomer, including, but not limited to, maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to increase compatibility.
  • a polar molecule or monomer including, but not limited to, maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to increase compatibility.
  • PHAE solutions or dispersions are examples of suitable phenoxy-type solutions or dispersions which may be used if one or more layers of resin are applied as a liquid such as by dip, flow, or spray coating, such as described in WO 04/004929 and U.S. Pat. No. 6,676,883.
  • One suitable material is BLOX® experimental barrier resin, for example XU-19061.00 made with phosphoric acid manufactured by Dow Chemical Corporation.
  • This particular PHAE dispersion is said to have the following typical characteristics: 30% percent solids, a specific gravity of 1.30, a pH of 4, a viscosity of 24 centipoise (Brookfield, 60 rpm, LVI, 22° C.), and a particle size of between 1,400 and 1,800 angstroms.
  • Other suitable materials include BLOX® 588-29 resins based on resorcinol have also provided superior results as a barrier material.
  • This particular dispersion is said to have the following typical characteristics: 30% percent solids, a specific gravity of 1.2, a pH of 4.0, a viscosity of 20 centipoise (Brookfield, 60 rpm, LVI, 22° C.), and a particle size of between 1500 and 2000 angstroms.
  • Other variations of the polyhydroxyaminoether chemistry may prove useful such as crystalline versions based on hydroquinone diglycidylethers.
  • Other suitable materials include polyhydroxyaminoether solutions/dispersions by Imperial Chemical Industries (“ICI,” Ohio, USA) available under the name OXYBLOK.
  • PHAE solutions or dispersions can be crosslinked partially (semi-cross linked), fully, or to the exact desired degree as appropriate for the application by adding an appropriate cross linker material.
  • the benefits of cross linking include, but are not limited to, one or more of the following: improved chemical resistance, improved abrasion resistance, low blushing, low surface tension.
  • Examples of cross linker materials include, but are not limited to, formaldehyde, acetaldehyde or other members of the aldehyde family of materials. Suitable cross linkers can also enable changes to the T g of the material, which can facilitate formation of specific containers.
  • suitable materials include BLOX® 5000 resin dispersion intermediate, BLOX® XUR 588-29, BLOX® 0000 and 4000 series resins.
  • the solvents used to dissolve these materials include, but are not limited to, polar solvents such as alcohols, water, glycol ethers or blends thereof.
  • Other suitable materials include, but are not limited to, BLOX® R1.
  • preferred phenoxy-type thermoplastics are soluble in aqueous acid.
  • a polymer solution/dispersion may be prepared by stirring or otherwise agitating the thermoplastic epoxy in a solution of water with an organic acid, preferably acetic or phosphoric acid, but also including lactic, malic, citric, or glycolic acid and/or mixtures thereof.
  • the acid concentration in the polymer solution is preferably in the range of about 5%-20%, including about 5%-10% by weight based on total weight. In other preferred embodiments, the acid concentration may be below about 5% or above about 20%; and may vary depending on factors such as the type of polymer and its molecular weight. In other preferred embodiments, the acid concentration ranges from about 2.5 to about 5% by weight.
  • the amount of dissolved polymer in a preferred embodiment ranges from about 0.1% to about 40%.
  • a uniform and free flowing polymer solution is preferred.
  • a 10% polymer solution is prepared by dissolving the polymer in a 10% acetic acid solution at 90° C. Then while still hot the solution is diluted with 20% distilled water to give an 8% polymer solution. At higher concentrations of polymer, the polymer solution tends to be more viscous.
  • copolyester materials examples include but are not limited to, butyl-ethylene glycol.
  • They are generally prepared by heating a mixture of at least one reactant selected from isophthalic acid, terephthalic acid and their C 1 to C 4 alkyl esters with 1,3 bis(2-hydroxyethoxy)benzene and ethylene glycol.
  • the mixture may further comprise one or more ester-forming dihydroxy hydrocarbon and/or bis(4- ⁇ -hydroxyethoxyphenyl)sulfone.
  • Especially preferred copolyester materials are available from Mitsui Petrochemical Ind. Ltd. (Japan) as B-010, B-030 and others of this family.
  • preferred polyamide materials include MXD-6 from Mitsubishi Gas Chemical (Japan). Other preferred polyamide materials include Nylon 6, and Nylon 66. Other preferred polyamide materials are blends of polyamide and polyester, including those comprising about 1-20% polyester by weight, more preferably about 1-10% polyester by weight, where the polyester is preferably PET or a modified PET. In another embodiment, preferred polyamide materials are blends of polyamide and polyester, including those comprising about 1-20% polyamide by weight, more preferably about 1-10% polyamide by weight, where the polyester is preferably PET or a modified PET. The blends may be ordinary blends or they may be compatibilized with an antioxidant or other material. Examples of such materials include those described in U.S. Patent Publication No. 2004/0013833, filed Mar. 21, 2003, which is hereby incorporated by reference in its entirety. Other preferred polyesters include, but are not limited to, PEN and PET/PEN copolymers.
  • foam material is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a foaming agent, a mixture of foaming agent and a binder or carrier material, an expandable cellular material, and/or a material having voids.
  • foam material and “expandable material” are used interchangeably herein.
  • Preferred foam materials may exhibit one or more physical characteristics that improve the thermal and/or structural characteristics of articles (e.g., containers) and may enable the preferred embodiments to be able to withstand processing and physical stresses typically experienced by containers.
  • the foam material provides structural support to the container.
  • the foam material forms a protective layer that can reduce damage to the container during processing.
  • the foam material can provide abrasion resistance which can reduce damage to the container during transport.
  • a protective layer of foam may increase the shock or impact resistance of the container and thus prevent or reduce breakage of the container.
  • foam can provide a comfortable gripping surface and/or enhance the aesthetics or appeal of the container.
  • foam material comprises a foaming or blowing agent and a carrier material.
  • the foaming agent comprises expandable structures (e.g., microspheres) that can be expanded and cooperate with the carrier material to produce foam.
  • the foaming agent can be thermoplastic microspheres, such as EXPANCEL® microspheres sold by Akzo Nobel.
  • microspheres can be thermoplastic hollow spheres comprising thermoplastic shells that encapsulate gas.
  • the thermoplastic shell softens and the gas increases its pressure causing the expansion of the microspheres from an initial position to an expanded position.
  • the expanded microspheres and at least a portion of the carrier material can form the foam portion of the articles described herein.
  • the foam material can form a layer that comprises a single material (e.g., a generally homogenous mixture of the foaming agent and the carrier material), a mix or blend of materials, a matrix formed of two or more materials, two or more layers, or a plurality of microlayers (lamellae) preferably including at least two different materials.
  • the microspheres can be any other suitable controllably expandable material.
  • the microspheres can be structures comprising materials that can produce gas within or from the structures.
  • the microspheres are hollow structures containing chemicals which produce or contain gas wherein an increase in gas pressure causes the structures to expand and/or burst.
  • the microspheres are structures made from and/or containing one or more materials which decompose or react to produce gas thereby expanding and/or bursting the microspheres.
  • the microsphere may be generally solid structures.
  • the microspheres can be shells filled with solids, liquids, and/or gases.
  • the microspheres can have any configuration and shape suitable for forming foam.
  • the microspheres can be generally spherical.
  • the microspheres can be elongated or oblique spheroids.
  • the microspheres can comprise any gas or blends of gases suitable for expanding the microspheres.
  • the gas can comprise an inert gas, such as nitrogen.
  • the gas is generally non-flammable.
  • non-inert gas and/or flammable gas can fill the shells of the microspheres.
  • the foam material may comprise foaming or blowing agents as are known in the art. Additionally, the foam material may be mostly or entirely foaming agent.
  • microspheres that generally do not break or burst
  • other embodiments comprise microspheres that may break, burst, fracture, and/or the like.
  • a portion of the microspheres may break while the remaining portion of the microspheres do not break.
  • a substantial portion of the microspheres may burst and/or fracture when they are expanded.
  • various blends and mixtures of microspheres can be used to form foam material.
  • the microspheres can be formed of any material suitable for causing expansion.
  • the microspheres can have a shell comprising a polymer, resin, thermoplastic, thermoset, or the like as described herein.
  • the microsphere shell may comprise a single material or a blend of two or more different materials.
  • the microspheres can have an outer shell comprising ethylene vinyl acetate (“EVA”), polyethylene terephthalate (“PET”), polyamides (e.g. Nylon 6 and Nylon 66) polyethylene terephthalate glycol (PETG), PEN, PET copolymers, and combinations thereof.
  • EVA ethylene vinyl acetate
  • PET polyethylene terephthalate
  • PET polyamides
  • PET copolymers polyethylene terephthalate glycol
  • PEN PET copolymers, and combinations thereof.
  • a PET copolymer comprises CHDM comonomer at a level between what is commonly called PETG and PET.
  • the microspheres comprise shells formed of a high temperature material (e.g., PETG or similar material) that is capable of expanding when subject to high temperatures, preferably without causing the microspheres to burst. If the microspheres have a shell made of low temperature material (e.g., as EVA), the microspheres may break when subjected to high temperatures that are suitable for processing certain carrier materials (e.g., PET or polypropylene having a high melt point).
  • a high temperature material e.g., PETG or similar material
  • EVA low temperature material
  • the microspheres may break when subjected to high temperatures that are suitable for processing certain carrier materials (e.g., PET or polypropylene having a high melt point).
  • EXPANCEL® microspheres may be break when processed at relatively high temperatures.
  • mid or high temperature microspheres can be used with a carrier material having a relatively high melt point to produce controllably, expandable foam material without breaking the microspheres.
  • microspheres can comprise a mid temperature material (e.g., PETG) or a high temperature material (e.g., acrylonitrile) and may be suitable for relatively high temperature applications.
  • a blowing agent for foaming polymers can be selected based on the processing temperatures employed.
  • the foam material can be a matrix comprising a carrier material, preferably a material that can be mixed with a blowing agent (e.g., microspheres) to form an expandable material.
  • the carrier material can be a thermoplastic, thermoset, or polymeric material, such as ethylene acrylic acid (“EAA”), ethylene vinyl acetate (“EVA”), linear low density polyethylene (“LLDPE”), polyethylene terephthalate glycol (PETG), poly(hydroxyamino ethers) (“PHAE”), PET, polyethylene, polypropylene, polystyrene (“PS”), pulp (e.g., wood or paper pulp of fibers, or pulp mixed with one or more polymers), mixtures thereof, and the like.
  • EAA ethylene acrylic acid
  • EVA ethylene vinyl acetate
  • LLDPE linear low density polyethylene
  • PETG polyethylene terephthalate glycol
  • PHAE poly(hydroxyamino ethers)
  • PET polyethylene, polypropylene, polystyrene
  • the carrier material has properties (e.g., a high melt index) for easier and rapid expansion of the microspheres, thus reducing cycle time thereby resulting in increased production.
  • the foamable material may comprise two or more components including a plurality of components each having different processing windows and/or physical properties.
  • the components can be combined such that the foamable material has one or more desired characteristics.
  • the proportion of components can be varied to produce a desired processing window and/or physical properties.
  • the first material may have a processing window that is similar to or different than the processing window of the second material.
  • the processing window may be based on, for example, pressure, temperature, viscosity, or the like.
  • components of the foamable material can be mixed to achieve a desired, for example, pressure or temperature range for shaping the material.
  • the combination of a first material and a second material may result in a material having a processing window that is more desirable than the processing window of the second material.
  • the first material may be suitable for processing over a wide range of temperatures
  • the second material may be suitable for processing over a narrow range of temperatures.
  • a material having a portion formed of the first material and another portion formed of the second material may be suitable for processing over a range of temperatures that is wider than the narrow range of processing temperatures of the second material.
  • the processing window of a multi-component material is similar to the processing window of the first material.
  • the foamable material comprises a multilayer sheet or tube comprising a layer comprising PET and a layer comprising polypropylene.
  • the material formed from both PET and polypropylene can be processed (e.g., extruded) within a wide temperature range similar to the processing temperature range suitable for PET.
  • the processing window may be for one or more parameters, such as pressure, temperature, viscosity, and/or the like.
  • the amount of each component of the material can be varied to achieve the desired processing window.
  • the materials can be combined to produce a foamable material suitable for processing over a desired range of pressure, temperature, viscosity, and/or the like.
  • the proportion of the material having a more desirable processing window can be increased and the proportion of material having a less undesirable processing window can be decreased to result in a material having a processing window that is very similar to or is substantially the same as the processing window of the first material.
  • the proportion of the first and the second material can be chosen to achieve a desired processing window of the foamable material.
  • a plurality of materials each having similar or different processing windows can be combined to obtain a desired processing window for the resultant material.
  • the rheological characteristics of a foamable material can be altered by varying one or more of its components having different rheological characteristics.
  • a substrate e.g., PP
  • PP can be combined with another material, such as PET which has a low melt strength making it difficult to extrude, to form a material suitable for extrusion processes.
  • a layer of PP or other strong material may support a layer of PET during co-extrusion (e.g., horizontal or vertical co-extrusion).
  • foamable material formed of PET and polypropylene can be processed, e.g., extruded, in a temperature range generally suitable for PP and not generally suitable for PET.
  • the composition of the foamable material may be selected to affect one or more properties of the articles.
  • the thermal properties, structural properties, barrier properties, optical properties, rheology properties, favorable flavor properties, and/or other properties or characteristics disclosed herein can be obtained by using foamable materials described herein.
  • An advantage of preferred methods disclosed herein are their flexibility allowing for the use of multiple functional additives. Additives known by those of ordinary skill in the art for their ability to provide enhanced CO 2 barriers, O 2 barriers, UV protection, scuff resistance, blush resistance, impact resistance and/or chemical resistance may be used.
  • Preferred additives may be prepared by methods known to those of skill in the art.
  • the additives may be mixed directly with a particular material, they may be dissolved/dispersed separately and then added to a particular material, or they may be combined with a particular material to addition of the solvent that forms the material solution/dispersion.
  • preferred additives may be used alone as a single layer.
  • the barrier properties of a layer may be enhanced by the addition of different additives.
  • Additives are preferably present in an amount up to about 40% of the material, also including up to about 30%, 20%, 10%, 5%, 2% and 1% by weight of the material.
  • additives are preferably present in an amount less than or equal to 1% by weight, preferred ranges of materials include, but are not limited to, about 0.01% to about 1%, about 0.01% to about 0.1%, and about 0.1% to about 1% by weight.
  • additives are preferably stable in aqueous conditions.
  • derivatives of resorcinol may be used in conjunction with various preferred materials as blends or as additives or monomers in the formation of the material.
  • resorcinol content the greater the barrier properties of the material.
  • resorcinol diglycidyl ether can be used in PHAE
  • hydroxyethyl ether resorcinol can be used in PET and other polyesters and Copolyester Barrier Materials.
  • nanoparticles or “nanoparticulate material.”
  • nanoparticles are tiny, micron or sub-micron size (diameter), particles of materials which enhance the barrier properties of a material by creating a more tortuous path for migrating gas molecules, e.g. oxygen or carbon dioxide, to take as they permeate a material.
  • nanoparticulate material is present in amounts ranging from 0.05 to 1% by weight, including 0.1%, 0.5% by weight and ranges encompassing these amounts.
  • nanoparticulate material is a microparticular clay based product available from Southern Clay Products.
  • One preferred line of products available from Southern Clay products is Cloisite® nanoparticles.
  • preferred nanoparticles comprise monmorillonite modified with a quaternary ammonium salt.
  • nanoparticles comprise monmorillonite modified with a ternary ammonium salt.
  • nanoparticles comprise natural monmorillonite.
  • nanoparticles comprise organoclays as described in U.S. Pat. No. 5,780,376, the entire disclosure of which is hereby incorporated by reference and forms part of the disclosure of this application.
  • Other suitable organic and inorganic microparticular clay based products may also be used. Both man-made and natural products are also suitable.
  • nanoparticulate material comprises a composite material of a metal.
  • a suitable composite is a water based dispersion of aluminum oxide in nanoparticulate form available from BYK Chemie (Germany). It is believed that this type of nanoparticular material may provide one or more of the following advantages: increased abrasion resistance, increased scratch resistance, increased T g , and thermal stability.
  • nanoparticulate material comprises a polymer-silicate composite.
  • the silicate comprises montmorillonite.
  • Suitable polymer-silicate nanoparticulate material are available from Nanocor and RTP Company.
  • the UV protection properties of the material may be enhanced by the addition of different additives.
  • the UV protection material used provides UV protection up to about 350 nm or less, preferably about 370 nm or less, more preferably about 400 nm or less.
  • the UV protection material may be used as an additive with layers providing additional functionality or applied separately as a single layer.
  • additives providing enhanced UV protection are present in the material from about 0.05 to 20% by weight, but also including about 0.1%, 0.5%, 1%, 2%, 3%, 5%, 10%, and 15% by weight, and ranges encompassing these amounts.
  • the UV protection material is added in a form that is compatible with the other materials.
  • a preferred UV protection material is Milliken UV390A ClearShield®.
  • UV390A is an oily liquid for which mixing is aided by first blending the liquid with water, preferably in roughly equal parts by volume. This blend is then added to the material solution, for example, BLOX® 599-29, and agitated. The resulting solution contains about 10% UV390A and provides UV protection up to 390 nm when applied to a PET preform.
  • the UV390A solution is applied as a single layer.
  • a preferred UV protection material comprises a polymer grafted or modified with a UV absorber that is added as a concentrate.
  • UV protection materials include, but are not limited to, benzotriazoles, phenothiazines, and azaphenothiazines. UV protection materials may be added during the melt phase process prior to use, e.g. prior to injection molding or extrusion, or added directly to a coating material that is in the form of a solution or dispersion. Suitable UV protection materials are available from Milliken, Ciba and Clariant.
  • CO 2 scavenging properties can be added to the materials.
  • such properties are achieved by including an active amine which will react with CO 2 forming a high gas barrier salt. This salt will then act as a passive CO 2 barrier.
  • the active amine may be an additive or it may be one or more moieties in the thermoplastic resin material of one or more layers.
  • O 2 scavenging properties can be added to preferred materials by including O 2 scavengers such as anthroquinone and others known in the art.
  • O 2 scavengers such as anthroquinone and others known in the art.
  • one suitable O 2 scavenger is AMOSORB® O 2 scavenger available from BP Amoco Corporation and ColorMatrix Corporation which is disclosed in U.S. Pat. No. 6,083,585 to Cahill et al., the disclosure of which is hereby incorporated in its entirety.
  • O 2 scavenging properties are added to preferred phenoxy-type materials, or other materials, by including O 2 scavengers in the phenoxy-type material, with different activating mechanisms.
  • Preferred O 2 scavengers can act either spontaneously, gradually or with delayed action until initiated by a specific trigger.
  • the O 2 scavengers are activated via exposure to either UV or water (e.g., present in the contents of the container), or a combination of both.
  • the O 2 scavenger is preferably present in an amount of from about 0.1 to about 20 percent by weight, more preferably in an amount of from about 0.5 to about 10 percent by weight, and, most preferably, in an amount of from about 1 to about 5 percent by weight, based on the total weight of the coating layer.
  • a top coat or layer is applied to provide chemical resistance to harsher chemicals than what is provided by the outer layer.
  • these top coats or layers are aqueous based or non-aqueous based polyesters or acrylics which are optionally partially or fully cross linked.
  • a preferred aqueous based polyester is polyethylene terephthalate, however other polyesters may also be used.
  • the process of applying the top coat or layer is that disclosed in U.S. Patent Pub. No. 2004/0071885, entitled Dip, Spray, And Flow Coating Process For Forming Coated Articles, the entire disclosure of which is hereby incorporated by reference in its entirety.
  • a preferred aqueous based polyester resin is described in U.S. Pat. No. 4,977,191 (Salsman), incorporated herein by reference. More specifically, U.S. Pat. No. 4,977,191 describes an aqueous based polyester resin, comprising a reaction product of 20-50% by weight of waste terephthalate polymer, 10-40% by weight of at least one glycol an 5-25% by weight of at least one oxyalkylated polyol.
  • aqueous based polymer is a sulfonated aqueous based polyester resin composition as described in U.S. Pat. No. 5,281,630 (Salsman), herein incorporated by reference. Specifically, U.S. Pat. No. 5,281,630 (Salsman), herein incorporated by reference. Specifically, U.S. Pat. No. 5,281,630 (Salsman), herein incorporated by reference. Specifically, U.S. Pat. No.
  • 5,281,630 describes an aqueous suspension of a sulfonated water-soluble or water dispersible polyester resin comprising a reaction product of 20-50% by weight terephthalate polymer, 10-40% by weight at least one glycol and 5-25% by weight of at least one oxyalkylated polyol to produce a prepolymer resin having hydroxyalkyl functionality where the prepolymer resin is further reacted with about 0.10 mole to about 0.50 mole of alpha, beta-ethylenically unsaturated dicarboxylic acid per 100 g of prepolymer resin and a thus produced resin, terminated by a residue of an alpha, beta-ethylenically unsaturated dicarboxylic acid, is reacted with about 0.5 mole to about 1.5 mole of a sulfite per mole of alpha, beta-ethylenically unsaturated dicarboxylic acid residue to produce a sulfonated-terminated resin.
  • U.S. Pat. No. 5,726,277 (Salsman), incorporated herein by reference.
  • U.S. Pat. No. 5,726,277 describes coating compositions comprising a reaction product of at least 50% by weight of waste terephthalate polymer and a mixture of glycols including an oxyalkylated polyol in the presence of a glycolysis catalyst wherein the reaction product is further reacted with a difunctional, organic acid and wherein the weight ratio of acid to glycols in is the range of 6:1 to 1:2.
  • 4,104,222 describes a dispersion of a linear polyester resin obtained by mixing a linear polyester resin with a higher alcohol/ethylene oxide addition type surface-active agent, melting the mixture and dispersing the resulting melt by pouring it into an aqueous solution of an alkali under stirring Specifically, this dispersion is obtained by mixing a linear polyester resin with a surface-active agent of the higher alcohol/ethylene oxide addition type, melting the mixture, and dispersing the resulting melt by pouring it into an aqueous solution of an alkanolamine under stirring at a temperature of 70-95° C., said alkanolamine being selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, monomethylethanolamine, monoethylethanolamine, diethylethanolamine, propanolamine, butanolamine, pentanolamine, N-phenylethanolamine, and an alkanolamine of glycerin, said alkanolamine being present in the aqueous solution in an amount of 0.2 to
  • U.S. Pat. No. 4,528,321 discloses a dispersion in a water immiscible liquid of water soluble or water swellable polymer particles and which has been made by reverse phase polymerization in the water immiscible liquid and which includes a non-ionic compound selected from C 4-12 alkylene glycol monoethers, their C 1-4 alkanoates, C 6-12 polyakylene glycol monoethers and their C 1-4 alkanoates.
  • inner layers may comprise low-cross linking materials while outer layers may comprise high crosslinking materials or other suitable combinations.
  • an inner coating on a PET surface may utilize non or low cross-linked material, such as the BLOX® 588-29, and the outer coat may utilize another material, such as EXP 12468-4B from ICI, capable of cross linking to ensure maximum adhesion to the PET.
  • Suitable additives capable of cross linking may be added to one or more layers.
  • Suitable cross linkers can be chosen depending upon the chemistry and functionality of the resin or material to which they are added. For example, amine cross linkers may be useful for crosslinking resins comprising epoxide groups.
  • cross linking additives are present in an amount of about 1% to 10% by weight of the coating solution/dispersion, preferably about 1% to 5%, more preferably about 0.01% to 0.1% by weight, also including 2%, 3%, 4%, 6%, 7%, 8%, and 9% by weight.
  • a thermoplastic epoxy TPE
  • agents e.g. carbon black
  • the TPE material can form part of the articles disclosed herein. It is contemplated that carbon black or similar additives can be employed in other polymers to enhance material properties.
  • the materials of certain embodiments may optionally comprise a curing enhancer.
  • curing enhancer is a broad term and is used in its ordinary meaning and includes, without limitation, chemical cross-linking catalyst, thermal enhancer, and the like.
  • thermal enhancer is a broad term and is used in its ordinary meaning and includes, without limitation, transition metals, transition metal compounds, radiation absorbing additives (e.g., carbon black). Suitable transition metals include, but are not limited to, cobalt, rhodium, and copper. Suitable transition metal compounds include, but are not limited to, metal carboxylates. Preferred carboxylates include, but are not limited to, neodecanoate, octoate, and acetate. Thermal enhancers may be used alone or in combination with one or more other thermal enhancers.
  • the thermal enhancer can be added to a material and may significantly increase the temperature of the material during a curing process, as compared to the material without the thermal enhancer.
  • the thermal enhancer e.g., carbon black
  • a curing process e.g., IR radiation
  • the increased temperature of the polymer caused by the thermal enhancer can increase the rate of curing and therefore increase production rates.
  • the thermal enhancer generally has a higher temperature than at least one of the layers of an article when the thermal enhancer and the article are heated with a heating device (e.g., infrared heating device).
  • the thermal enhancer is present in an amount of about 5 to 800 ppm, preferably about 20 to about 150 ppm, preferably about 50 to 125 ppm, preferably about 75 to 100 ppm, also including about 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, and 700 ppm and ranges encompassing these amounts.
  • the amount of thermal enhancer may be calculated based on the weight of layer which comprises the thermal enhancer or the total weight of all layers comprising the article.
  • a preferred thermal enhancer comprises carbon black.
  • carbon black can be applied as a component of a coating material in order to enhance the curing of the coating material.
  • carbon black is added to one or more of the coating materials before, during, and/or after the coating material is applied (e.g., impregnated, coated, etc.) to the article.
  • Preferably carbon black is added to the coating material and agitated to ensure thorough mixing.
  • the thermal enhancer may comprise additional materials to achieve the desire material properties of the article.
  • the carbon black may be added to the polymer blend in the melt phase process.
  • the polymer comprises about 5 to 800 ppm, preferably about 20 to about 150 ppm, preferably about 50 to 125 ppm, preferably about 75 to 100 ppm, also including about 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, and 700 ppm thermal enhancer and ranges encompassing these amounts.
  • the coating material is cured using radiation, such as infrared (IR) heating.
  • IR heating provides a more effective coating than curing using other methods.
  • Other thermal and curing enhancers and methods of using same are disclosed in U.S.
  • anti-foam/bubble agents are desirable.
  • the solutions or dispersions form foam and/or bubbles which can interfere with preferred processes.
  • One way to avoid this interference is to add anti-foam/bubble agents to the solution/dispersion.
  • Suitable anti-foam agents include, but are not limited to, nonionic surfactants, alkylene oxide based materials, siloxane based materials, and ionic surfactants.
  • anti-foam agents if present, are present in an amount of about 0.01% to about 0.3% of the solution/dispersion, preferably about 0.01% to about 0.2%, but also including about 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.25%, and ranges encompassing these amounts.
  • foaming agents may be added to the coating materials in order to foam the coating layer.
  • a reaction product of a foaming agent is used.
  • Useful foaming agents include, but are not limited to azobisformamide, azobisisobutyronitrile, diazoaminobenzene, N,N-dimethyl-N,N-dinitroso terephthalamide, N,N-dinitrosopentamethylene-tetramine, benzenesulfonyl-hydrazide, benzene-1,3-disulfonyl hydrazide, diphenylsulfon-3-3, disulfonyl hydrazide, 4,4′-oxybis benzene sulfonyl hydrazide, p-toluene sulfonyl semicarbizide, barium azodicarboxylate, butylamine nitrile, nitroureas, trihydrazino triazine,
  • the foaming agent is preferably present in the coating material in an amount from about 1 up to about 20 percent by weight, more preferably from about 1 to about 10 percent by weight, and, most preferably, from about 1 to about 5 percent by weight, based on the weight of the coating layer.
  • Newer foaming technologies known to those of skill in the art using compressed gas could also be used as an alternate means to generate foam in place of conventional blowing agents listed above.
  • the tie-layer is preferably a polymer having functional groups, such as anhydrides and epoxies that react with the carboxyl and/or hydroxyl groups on the PET polymer chains.
  • useful tie-layer materials include, but are not limited to, DuPont BYNEL®, Mitsui ADMER®, Eastman's EPOLINE, Arkema's LOTADER and ExxonMobil's EVELOY®.
  • a multi component layer or article can also be made from a lamellar meltstream that preferably comprises at least two components.
  • a lamellar meltstream includes without limitation, a meltstream comprising at least two layers in which the layers in the meltstream are generally parallel. Although a lamellar meltstream may have as few as two layers, a lamellar meltstream may comprise, and preferably comprises, a plurality of thin layers. Where the lamellar meltstream is made from two materials, the meltstream is preferably comprised of generally alternating thin layers of the two materials.
  • the materials used to form the lamellar meltstream are preferably polymers, such as thermoplastics, including polyester, polyolefin, phenoxy-type materials and other materials as described herein.
  • the layer materials may also include blends of two or more materials.
  • the layer materials may also incorporate additives such as nanoparticles, oxygen scavengers, UV absorbers, compatibilizers, and the like.
  • the lamellar meltstream comprises recycled polyester such as recycled PET and a barrier material.
  • FIG. 27 a schematic of an embodiment of a lamellar meltstream generation system 482 is shown.
  • the system in FIG. 27 illustrates one embodiment of a two material system, but it will be understood that a system for three or more materials will operate in a similar fashion.
  • the two materials which are to form the layers are placed in separate hoppers or inlets 484 and 485 , which feed two separate extruders, 486 and 487 respectively.
  • the extruders 486 and 487 are screw-type extruders that can apply a combination of heat and pressure to turn raw materials into a melt.
  • the materials are extruded at rates and thicknesses to provide the desired relative amounts of each material and the meltstreams of the extruders combined to form a two layer meltstream 488 comprised of a layer from each cylinder preferably arranged so that one layer lies on top of the other layer
  • the two layer meltstream 488 output from combined cylinders is then preferably applied to a layer multiplication system 490 .
  • the two layer meltstream 488 is multiplied into a multi-layer meltstream 492 , which has 10 layers in the illustrated embodiment as shown in FIG. 27A .
  • the illustration in FIG. 27A is schematic and somewhat idealistic in that although the layers of the lamellar material on average are preferably generally parallel to each other, the lamellar material may include layers that are not parallel to each other and/or layers may be generally parallel at some points and not parallel at others.
  • Layer multiplication may be done by any of a number of ways.
  • meltstream may be multiplied by performing the dividing, flattening and recombining a number of times to produce a single melt stream consisting of a plurality of sublayers of the component materials.
  • composition of the layers will alternate between the two materials.
  • Other methods of layer generation include performing steps similar to those outlined above, but flattening the meltstream prior to dividing or following recombination. Alternatively, in any of these embodiments one may fold the meltstream back onto itself rather than dividing it into sections.
  • the output from the layer multiplication system passes out an opening 494 such as a nozzle or valve, and is used to form an article or a multi-component layer in an article, such as by injecting or placing the lamellar meltstream into a mold.
  • the composition of the layers generally alternates between the two materials.
  • any suitable number of materials can be combined into a component meltstream and then fed to layer multiplication system 490 which can produce a lamellar meltstream with any desired number and/or size of repeating blocks or stacks of materials.
  • the system 482 comprises three extruders that simultaneously deliver material to the layer multiplication system 490 .
  • the layer multiplication system 490 can form a stack of layers formed of the three materials.
  • a lamellar meltstream includes one or more materials which provide gas barrier properties
  • the lamellar meltstream be used in a manner which orients it such that the layers of the meltstream are generally parallel to one or more broad surfaces of the article.
  • the layers are preferably generally parallel to the length of the wall section or body portion.
  • parallel is preferred, other orientations may be used and are within the scope of this disclosure.
  • one or more portions of the wall of a container can have layers that are parallel to each other and the surface of the wall while one or more other portions have layers that are not parallel to each other.
  • the desired tortuous path through the wall of a container is determined by the orientation and configuration of the layers of which form the container.
  • layers that are generally parallel to each other and the wall section can increase substantially the length of the path through the wall to be traversed by a gas molecule.
  • layers that are generally parallel to each other and transverse to the wall result in a shorter or reduced tortuous fluid path through the wall and would thus have lower barrier properties than the same meltstream oriented in a parallel fashion.
  • the lamellar melt comprises materials that have generally similar melt temperatures, T m , for convenient processing and molding.
  • the lamellar melt may comprise materials that have substantially different T m s.
  • the lamellar material can comprise materials which have T m s within a range of about 500° F. (about 260° C.).
  • the materials of the lamellar material can be selected based on the material's thermal properties, structural properties, barrier properties, rheology properties, processing properties, and/or other properties.
  • the lamellar melt can be formed and cooled, preferably before one or more of its components substantially degrade. A skilled artisan can select materials to form the lamellar material to achieve the desired material stability suitable for the processing characteristics and chosen end use.
  • the monolayer and multilayer articles can be formed by a molding process (e.g., injection molding including co-injection molding).
  • a molding process e.g., injection molding including co-injection molding.
  • One method of producing multi-layered articles is referred to herein generally as overmolding, and sometimes as inject-over-inject (“IOI”).
  • IOI inject-over-inject
  • the name refers to a procedure which uses injection molding to inject one or more layers of material over an existing layer, which preferably was itself made by injection molding.
  • overinjecting and “overmolding” are used herein to describe the coating process whereby a layer of material is injected over an existing layer or preform.
  • One overmolding method for making preforms involves using an injection molding machine in conjunction with a mold comprising a mandrel or core and a cavity.
  • a first layer of a preform is molded between the mandrel and a first cavity of the mold by injecting a molten polymer (i.e. polymer melt) into the void space in the mold.
  • the first layer remains on the mandrel when the mandrel is pulled out of the cavity, moved, and inserted into a second mold cavity.
  • a second layer of a material is then injected over the existing first preform layer.
  • the mandrel and accompanying preform are then removed from the second cavity and the preform is removed from the mandrel.
  • the overinjecting process is performed while the underlying layer has not yet fully cooled.
  • the underlying layer may have retained inherent heat from an injection molding process that formed the underlying layer.
  • the underlying layer can be at room temperature or any other temperature suitable for overmolding.
  • articles at room temperature can be overmolded with one or more layers of material. These articles may have been stored for an extended period of time before being overmolded.
  • Overinjecting may be used to place one or more layers of material(s) such as those comprising PP, expandable/foam material, PET (including recycled PET, virgin PET), lamellar material, barrier materials, combinations thereof, and/or other materials described herein over a substrate (i.e., the underlying layer).
  • the substrate is in the form of a preform, preferably having an interior surface for contacting foodstuff.
  • the substrate preform comprises PET (such as virgin PET), phenoxy type thermoplastic, combinations thereof, and/or the like.
  • Articles may comprises one or more layers or portions having one or more of the following advantageous characteristics: an insulating layer, a barrier layer, a foodstuff contacting layer, a non-flavor scalping layer, a high strength layer, a compliant layer, a tie layer, a gas scavenging layer, a layer or portion suitable for hot-fill applications, a layer having a melt strength suitable for extrusion.
  • monolayer or multi-layer material comprises one or more of the following materials: PET (including recycled and/or virgin PET), PETG, foam, polypropylene, phenoxy type thermoplastics, polyolefins, phenoxy-polyolefin thermoplastic blends, and/or combinations thereof.
  • PET including recycled and/or virgin PET
  • PETG PETG
  • foam polypropylene
  • phenoxy type thermoplastics polyolefins
  • phenoxy-polyolefin thermoplastic blends and/or combinations thereof.
  • articles can comprise foam material.
  • Foam material can be prepared by combining a foaming agent and a carrier material.
  • the carrier material and the foaming agent are co-extruded for a preferably generally homogenous mixture of foam material.
  • the amount of carrier material and the foaming agent can be varied depending on the desired amount of one or more of the following: expansion properties, structural properties, thermal properties, feed pressure, and the like.
  • the expandable/foam material comprises less than about 10% by weight, also including less than about 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% by weight, of the foaming agent.
  • the expandable/foam material comprises about 1-6% by weight of the foaming agent. In another non-limiting embodiment, the expandable/foam material comprises about 3-6% by weight of the foaming agent. In another non-limiting embodiment, the expandable/foam material comprises about 2-8% by weight of the foaming agent. It is contemplated that the expandable/foam material may comprise any suitable amount of foaming agent including those above and below the particular percentages recited above, depending on the desired properties of the foam material.
  • carrier material e.g., polypropylene pellets
  • a foaming agent in the form of microspheres preferably EXPANCEL® microspheres or similar material
  • the carrier material and the microspheres are heated to melt the carrier material for effective mixing of the materials.
  • the microspheres may expand or become enlarged.
  • the temperature of the mixture is in a temperature range to not cause full expansion or bursting of a substantial portion of the microspheres. For example, if the temperature of the mixture reaches a sufficiently high temperature, the gas within the microspheres may expand such that microspheres break or collapse.
  • the melted foam material can be co-extruded and is preferably rapidly quenched to limit the amount of expansion of the microspheres.
  • the microspheres may partially expand from their initial generally unexpanded position. When such microspheres are partially expanded, they retain the ability to undergo further expansion to increase the size of the microspheres.
  • the pressure and temperature are such that the microspheres are not fully expanded during extrusion in order to allow further expansion of the microspheres during blow molding, for example.
  • the pressure of the foam material can be increased to reduce, or substantially prevent, the expansion of the microspheres.
  • the pressure and the temperature of the foam material can be varied to obtain the desired amount of expansion of the microspheres. Partially expanded microspheres can undergo further expansion when they are reheated (e.g., during the blow molding cycle) as described herein.
  • articles described herein can be prepared or modified by any suitable method, including but not limited to (1) dip or flow coating, (2) spray coating, (3) flame spraying, (4) fluidized bed dipping, (5) electrostatic powder spray, (6) overmolding (e.g., inject-over-inject), and/or (7) injection molding (including co-injection).
  • suitable methods and apparatuses for performing the methods are disclosed in U.S. Pat. No. 6,352,426 and U.S. Publication No. 2004-0071885 which are incorporated by reference in their entirety and form part of the disclosure of this application. It is also contemplated that these methods and apparatuses can be used to form other articles described herein.
  • the preforms disclosed herein can be blow molded using methods and apparatus disclosed in the references (e.g., U.S. Pat. No. 6,352,426) incorporated by reference into the present application.
  • a article, such as the preform 30 can be formed through injecting molding by utilizing an injection mold.
  • FIG. 28 illustrates a mold 501 which has a cavity 500 defined by the core 499 and the mold cavity section 504 .
  • the mold 501 can form an article that comprises expandable/foam material.
  • the foam material is passed along a line 509 and passes through a gate 508 and into the cavity 500 .
  • the foam material can fill the cavity 500 to form the preform 30 .
  • the foam material within the cavity 500 can be rapidly cooled or quenched to limit expansion of the foaming agent and can reduce cycle times to increase production.
  • the mold can have a gate or needle valve 511 to prevent backflow of the expanding foam.
  • the back pressure of the melt may not be high enough to cause the foaming agent in the form of microspheres to break. However, the back pressure should prevent the microspheres from over expanding in order to allow for blow molding the preform into the desired shape and/or to allow for further expansion of the microspheres.
  • the temperature of the melt can be varied depending on the back pressure of the melt. For example, a melt at a high temperature can cause the microspheres to expand. To inhibit or prevent the expansion of the microspheres, the back pressure can be increased to account for the increased pressure within each of the microspheres. However, if the pressure of the melt is too high, the microspheres may break or collapse.
  • the pressure of the melt is preferably maintained in a range so that a substantial portion of the microspheres do not fully expand or break. In other embodiments, however, some or all of the spheres may break upon full expansion to form the foam (e.g., open celled foam).
  • the melt may undergo at least partial expansion before it is injected into the mold cavity 500 .
  • the screw of the extruder can be retracted to accumulate melt for the next shot. After recovery, the screw can be decompressed to reduce the pressure of the melt to achieve controllable expansion of the microspheres in the melt.
  • the melt is not under pressure so that the microspheres can freely expand. However, pressure can be applied to the melt to selectively control the expansion of the microspheres. Accordingly, the microspheres in the melt can be partially or fully expanded before the melt is injected into the cavity 500 .
  • the microspheres are in a state of expansion such that the microspheres can undergo further expansion during, e.g., the preheat process for blow molding.
  • the melt having microspheres may be injected into the cavity 500 to form a preform having expanded microspheres.
  • the preform having expanded microspheres can then be formed into the container having generally evenly distributed microspheres.
  • the cavity 500 can be heated to result in a generally even distribution of the microspheres of the preform.
  • the heat can cause generally uniform expansion of the foam material.
  • the melt may comprises polypropylene and microspheres and is injected into the cavity 500 , which can be at a temperature of about 100° F. (37.8° C.) to about 250° F. (121.1° C.).
  • the heated cavity 500 can ensure that the microspheres are generally evenly distributed throughout the preform.
  • the cavity 500 can be maintained at a temperature of about 150° F. (65.6° C.) to about 225° F. (107.2° C.).
  • the cavity 500 can be maintained at a temperature of less than about 200° F. (93.3° C.).
  • the cavity 500 can be cooled at any suitable time to achieve the desired distribution of the microspheres.
  • the melt comprises polyethylene and microspheres.
  • the cavity 500 can be at a temperature of about 75° F. (23.9° C.) to about 125° F. (51.7° C.) to form a preform, preferably generally evenly distributed microspheres.
  • the preform may have evenly distributed microspheres can then be molded into a container which, in turn, has evenly distributed microspheres.
  • the temperatures noted above are dependent upon the particular materials used. In view of the present disclosure, a skilled artisan can select material(s), processing parameters, and design to the mold to produce various types of articles.
  • the speed of the melt passing through the line 509 and the cavity 500 can cause frictional heat and thus cause expansion of the microspheres in addition to the heat of the melt.
  • the illustrated mold of FIG. 28 has high heat transfer material 507 that can rapidly cool the melt passing through the cavity 500 to retard the expansion of the microspheres.
  • the high heat transfer material 507 can form a portion or the entire mold cavity section 504 .
  • operating parameters e.g., the flow speed, pressure, temperature, mixture ratios, viscosity, and the like
  • the preform in the cavity 500 can be rapidly cooled or quenched to retard, or even to stop, the expansion of the microspheres. This allows that the microspheres, which may be partially expanded, to form a tight structure that can be expanded during blow molding. After the preform is sufficiently cooled, it can be conveniently handled without further expansion of the microspheres.
  • the cavity 500 is maintained at a temperature suitable for controlling the expansion rate of the microspheres during the molding process. In one non-limiting embodiment, the cavity 500 is maintained at a temperature of about 40° F. (4.4° C.) to about 180° F. (82.2° C.) to reduce or stop the expansion of the microspheres.
  • the temperature of the cavity 500 can be selected based on, e.g., the molding materials, the size and configuration of the preform, the size of the space filled by the foam material, and/or processing parameters.
  • the processing temperature of the material can be chosen or determined by a skilled artisan given the composition of foam (carrier material, foaming agent, microspheres), degree of expansion desired, and/or other parameters.
  • Articles comprising form can be produced by blow-molding processes.
  • An article in the form of the preform 30 can be stretch blow-molded to form a container, such as the container 37 ( FIG. 4 ), and preferably cause expansion of the microspheres.
  • the preform 30 can be subjected to a stretch blow-molding process in the mold illustrated in FIG. 3 .
  • the preform 30 comprising expandable material is placed in the mold 28 having a cavity corresponding to the desired container shape.
  • the preform 30 is then heated and expanded by stretching the preform 30 to fill the cavity within the mold 28 , thus creating a container.
  • the stretching can be accomplished by, e.g., forcing air into the interior portion of the preform 30 .
  • the blow molding operation normally is restricted to the body portion 34 .
  • the preform 30 Before the preform 30 is stretched, the preform 30 is preferably preheated to the blow temperature range for the blow molding process. If the temperature of the preform 30 reaches the expansion temperature range, the microspheres of the preform 30 may expand.
  • the expansion temperature range can be achieved before, during, or after the stretching of the preform 30 .
  • the microspheres of the preform 30 are heated to their expansion temperature range to cause at least partial expansion of the microspheres before the preform 30 is blow molded.
  • the expansion temperature range is preferably generally similar to the blow temperature range such that the microspheres can expand during the heating or reheating for blow molding.
  • the expandable material is expanded as the air forces the preform to stretch and mold to the desired shape.
  • the preform 30 can be blow molded into the desired shape and then the temperature of the container 37 can reach the expansion temperature range so as to cause expansion of the foam material of the container 37 .
  • the temperature during the blow molding cycle can be increased and/or the blow pressure can be reduced.
  • the temperature during the blow molding cycle can be decreased and/or the blow pressure can be increased.
  • the preform can be heated/chilled and the pressure can be set as desired.
  • the walls 33 of the mold 28 can be temperature controlled to achieve the desired expansion of the foam material of the preform 30 /container 37 .
  • the mold 28 has a temperature control system to control the temperature of the walls 33 .
  • the temperature control system can have heating/cooling channels or any suitable system for effectively controlling the temperature of the walls 33 .
  • the walls 33 are heated to cause expansion of the microspheres of the container 37 .
  • the heated walls 33 continue the expansion of the microspheres in the wall of the container 37 , thereby reducing the density of the wall. In this manner, the microspheres in the walls of the container 37 can be expanded or enlarged to provide a more effective thermal barrier due to the highly expanded microspheres.
  • the walls 33 of the mold 28 can be cooled to retard, or prevent, the expansion or further expansion of the microspheres.
  • the walls 33 may be heated during one or more portions and cooled during one or more portions of the production cycle.
  • the walls 33 can be heated during a heat cycle to promote expansion of the microspheres as discussed above.
  • the mold walls 33 are preferably cooled to decrease, or preferably stop, the further expansion of the microspheres.
  • the walls 33 can be heated during a first portion and cooled during a second portion of the blow-molding process.
  • the walls 33 can be heated and/or cooled at any suitable time during the blow-molding process.
  • the walls 33 of the mold 28 are cooled during the stretching of the preform 30 from its initial position to the desired container shape.
  • the preform 30 can be heated, blown, and stretched until the wall of the preform contacts the chilled walls 33 .
  • the expandable material forming the preform 30 undergoes localized expansion as the preform is stretched.
  • heat is transferred from the stretched preform 30 to the mold 28 to cool the wall 84 of the shaped preform.
  • the expansion of the microspheres can be reduced or stopped.
  • the pressure within the mold 28 can be increased to decrease the rate of expansion of the microspheres.
  • the pressure within the mold 28 can be decreased to increase the rate of expansion of the microspheres.
  • the walls 33 of the mold 28 can have a surface treatment or structures for achieving a desired foaming reaction during the blow molding process which may result in a textured surface of the container 37 .
  • the surface of the walls 33 can be rough or gritty so that when the outer surface of container 37 contacts the wall 33 during blow molding, the outer surface of the container 37 will have a textured foam surface.
  • the textured surface of the wall 33 can promote further expansion of the microspheres after at least a portion of the container contacts the wall 33 of the mold 28 .
  • the surface of the wall 33 can have any treatment to achieve a suitable outer surface texture of the container 82 .
  • the wall 33 of the mold 28 can have a reduced friction finish, such as a vapor honed finish, for easy release of the container 37 from the mold 28 .
  • the reduced friction finish can be a substantially smooth surface to facilitate release of the container.
  • the mold 28 can be used to produce multilayer containers, such as the container 82 of FIG. 6 .
  • Articles having mono or multilayers can be formed through injection molding processes, such as by co-injection, overmolding, and the like. It is contemplated that combinations of injection molding can be performed to produce different configurations of articles.
  • FIG. 28 illustrates the mold 501 that can be used to inject or co-inject to form monolayer or multilayer, respectively, articles.
  • Multilayer preforms can be formed by a co-injection procedure in which a plurality of materials are co-injected into the cavity 500 .
  • a first material and a second material are co-injected into the cavity 500 to form a multilayer preform.
  • a first material that forms the inner layer 164 and a second material that forms the outer layer 162 can be co-injected through the gate 508 .
  • the flow of the first material forming the inner layer 164 can be stopped before the melt stream comprising the first material proceeds throughout the entire cavity 500 .
  • one or more materials can be delivered through the gate 508 at different flow rates, simultaneously or at different times, in various amounts, and the like to form a desired article.
  • the preform 160 can have a thin inner layer 164 relative to the outer layer 162 . This is especially advantageous if the material forming the inner layer 164 is substantially more expensive than the material forming the outer layer 162 .
  • some types of phenoxy type thermoplastics may be more expensive than readily available materials, such as PET, so that the amount of phenoxy type thermoplastics can be used in minimal amounts to reduce the material cost of the preform 160 .
  • the preform 180 of FIG. 12 also can be formed through a co-injection process using the mold 501 .
  • FIGS. 12A and 12B illustrate alternative embodiments of multilayer preforms.
  • FIG. 12B illustrates a preform 180 B that comprises an inner layer 184 B and/or outer layer 182 B that may have a varying thickness.
  • the illustrated layers 182 B, 184 B comprise a thickened portion in the body portion of the preform.
  • the inner layer 184 B has a slightly thickened body portion relative to the neck finish.
  • the thickness of the outer layer 182 B is generally greater than the thickness of the inner layer 184 B.
  • the preform 190 of FIG. 13 also can have the inner layer 194 and the outer layer 199 of varying thicknesses.
  • the preforms of FIGS. 11-14 can be overmolded with a material (e.g., barrier material), preferably to form a layer that extends from the support ring along the body portion of the preform.
  • a material e.g., barrier material
  • U.S. Pat. No. 6,312,641 is hereby incorporated by reference in its entirety and describes methods, systems and articles formed by one or more molding processes. In view of the present disclosure, various combinations of systems can be used to produce a wide variety of articles by employing a co-injection processes.
  • FIG. 29 illustrates an example of a mold 520 for overmolding.
  • the mold 520 has a core half 522 and a cavity half 524 illustrated in the closed position prior to overinjecting.
  • the cavity half 524 comprises a cavity in which the uncoated article in the form of a substrate (e.g., the preform 528 ) is placed.
  • the overmolding process is can be used to deposit one or more layers on the substrate.
  • the preform 528 can be a mono or multilayer preform.
  • the illustrated preform is a monolayer preform that may comprise one or more of the following: PET (e.g., virgin PET and/or recycled PET), polyester, PP, phenoxy type thermoplastics, thermoplastics and/or the like.
  • PET e.g., virgin PET and/or recycled PET
  • polyester e.g
  • a support ring 538 of the preform 528 can rest on a ledge 536 and is held in place by the core half 522 , which exerts pressure on the support ring 538 , thus sealing the neck portion off from the body portion of the substrate preform.
  • the core half 522 of the mold comprises a core 540 .
  • the core 540 selectively heats/cools the interior of the preform 528 , while channels 544 can heat/cool the cavity half 524 .
  • the cooling is done by fluid circulating through channels 546 in the core half 522 of the mold 520 .
  • the body portion of the preform is substantially centered within the cavity and is preferably completely surrounded by a void space or cavity 550 .
  • the preform thus positioned, acts as an interior die mandrel in the subsequent injection procedure.
  • the melt of the overmolding material is then introduced into the mold cavity 550 from an injector via gate 554 and flows around the preform 528 , preferably surrounding at least the body portion of the preform 528 .
  • the overmolded layer will take the approximate size and shape of the cavity 550 .
  • the coating material may be heated to form a melt of a viscosity compatible with use in an injection molding apparatus.
  • the temperature for this, the inject temperature will differ among materials, as melting ranges in polymers and viscosities of melts may vary due to the history, chemical character, molecular weight, degree of branching and other characteristics of a material.
  • the mold 520 can be used to form the coated preforms disclosed herein such as the preform 50 .
  • the preform 50 of FIG. 5 can have one of the layers 52 , 54 comprising substantially PET, phenoxy type thermoplastics (including phenoxy and polyoletin-phenoxyblends), polypropylene, lamellar material, and/or other thermoplastics.
  • the other of the layers 52 , 54 of the preform 50 can comprise another material, such as foam.
  • the expandable/foam material can comprise a carrier material (e.g., PP, PET, and/or ethylene acrylic acid) that mixed with a foaming agent (e.g., microspheres, such as EXPANCEL® microspheres) for producing a foam material.
  • a foaming agent e.g., microspheres, such as EXPANCEL® microspheres
  • the inner layer 54 can comprise PET and the outer layer 52 can comprise expandable/foam material.
  • the substrate preform can comprise PET.
  • Foam material can be delivered through a line 552 and the gate 554 into the cavity 550 . The injected expandable/foam material is then cooled for subsequent removal.
  • a skilled artisan can select material(s) based on the material(s)' properties and desired articles made therefrom.
  • Multilayer articles can be blow molded in a similar manner as monolayer articles, except as described in further detail below. For the sake of convenience, blow molding of multilayer articles will be described with respect to the preform 50 . Of course, other multilayer preforms can be blow molded in a similar manner, especially multilayer preforms comprising foam material.
  • the preform 50 is placed in a mold (e.g., the mold 28 of FIG. 3 ) having a cavity corresponding to the desired container shape.
  • the preform 50 is then heated and expanded by forcing air into the interior of the preform to stretch the preform so that it fills the cavity, thus creating a multilayer container.
  • the preform 50 can be stretched with a stretch rod or other means of stretching the preform.
  • the preform 50 comprises material having similar or different processing windows.
  • the preform may comprise an inner layer 54 comprising PET and an outer layer 52 comprising another material, such as PP (including foamed and non-foamed PP).
  • the outer layer 52 can be made of mostly or entirely of PP.
  • the inner layer 54 and the outer layer 52 can be blow molded within a processing window that is dramatically wider than the processing window of preforms made entirely of PP.
  • the processing window may be widened irrespective of the thicknesses of the inner layer 54 and outer layer 52 .
  • a layer 85 can be used to enhance adhesion between the inner layer 54 and the outer layer 52 .
  • a coupling agent or crafting forms the layer 85 and provides adhesion between the inner layer 54 and the outer layer 52 .
  • the layer 52 can be expandable material formed through overmolding by using injection molding to inject at least one layer of expandable material over an existing preform (e.g., a preform comprising PET, phenoxy type thermoplastics, etc.).
  • the inner layer 54 and the carrier material of the foam layer 52 may have a similar T g so that both layers 52 , 54 can be processed within their preferred blowing temperature ranges.
  • the expansion temperature range may be the temperature range that causes expansion of the microspheres.
  • the expansion temperature range can be varied by changing the pressure applied to the expandable material.
  • the expansion temperature range is similar or within the blowing temperature range of the layers 52 , 54 .
  • the temperature of the preform can be within the expansion temperature range to cause at least partial expansion of the microspheres.
  • the foaming agent of the foam layer 52 can expand (1) during the reheat of the preform for blow molding, (2) during the stretching of the preform to the shape of the container, (3) after the container is generally formed, and/or (4) combinations of (1), (2), and/or (3).
  • a multi-layer preform can be blow-molded into a container that has an inner layer suitable for engaging with liquid within the container.
  • a preform or container can have an inner layer or coating (e.g., as a plasma layer of silicon oxide, certain types of phenoxy, and the like) which is suitable for use in contact with drinking liquids, foodstuff, or the like.
  • This layer can be applied to the container (e.g., a container 37 or container 83 ) at any suitable time during the production of the containers.
  • the plasma layer can be applied to the preform or to the shaped container.
  • FIG. 30 illustrates a mold that can be used to form an underlying layer of a substrate preform, prior to injecting material.
  • the preform may or may not have a neck finish.
  • the preform can be a neckless preform.
  • a mold 560 has a core section 561 and a cavity section 566 having a cavity section surface 568 .
  • the mold 560 comprises a cavity 570 defined by a core 562 of the core section 561 and the cavity section 566 .
  • a line 572 can feed melt through a gate 574 and into the cavity 570 .
  • the cavity 570 has a shape corresponding to the desired shape of a portion of a preform.
  • the cavity 570 is configured and sized to mold the inner layer 164 of the preform 160 of FIG. 11 .
  • the cavity 570 can be sized and configured for forming any desired article.
  • the cavity 570 can have a shape corresponding to the shape of an inner layer, such as the inner layers of any of the preforms described above.
  • Melt can be injected into the cavity 570 in the manner described above to form a molded article.
  • the molded article can be removed from the cavity section 566 and then inserted into another cavity section (e.g., a cavity section 580 of FIG. 31 ) for an overmolding process.
  • the overmolding is carried out by using an injection molding process using equipment similar to that used to form the inner layer 164 .
  • the core 562 can be inserted into the cavity section 580 .
  • the layer 164 and the cavity section 580 can define a void or cavity 582 corresponding to the shape of the outer layer 162 of the preform 160 of FIG. 11 .
  • the melt is passed along a line 584 and passes through a gate 586 and into the cavity 582 .
  • the melt can fill the cavity 582 to form the outer layer 162 .
  • the preform 160 After the preform 160 has cooled a sufficient amount, it can be removed from the mold cavity 582 . Following overinjection, the overmolded outer layer 162 will take the approximate size and shape of the cavity 582 .
  • that temperature is preferably about 100 to 200° C., more preferably about 180° C. to about 225° C.
  • a temperature at or above the temperature of crystallization for PET which is about 120° C.
  • the cooling should be sufficient to minimize crystallization of the PET in the preform, especially in the body portion, so that the PET is in the preferred amorphous and/or semi-crystalline state.
  • the initial inner layer 164 may be very recently injection molded and not fully cooled, as to be at an elevated temperature as is sometimes preferred for the overmolding process.
  • the overmolding material is heated to form a melt of a viscosity compatible with use in an injection molding apparatus.
  • the inject temperature is preferably in the range of about 375° F. to 550° F.
  • the multilayer preform is preferably cooled at least to the point where it can be displaced from the mold or handled without being damaged, and removed from the mold where further cooling may take place. If the body portion of the preform has been heated to a temperature near or above the temperature of crystallization for the material forming the body portion, the cooling should be fairly rapid and sufficient to ensure that the material is primarily in the semi-crystalline state when the preform is fully cooled. As a result of this process, a strong and effective bonding takes place between the initial layer 164 and the subsequently applied outer layer 162 material.
  • the neck finish may have a greater proportion of crystalline material for increased dimensional stability, especially during subsequent process (e.g., blow molding, hot filling, and the like).
  • a closure such as the closures illustrated in FIGS. 18-21E can be formed by utilizing an injection mold.
  • the molds of FIGS. 31 and 32 are generally similar to the molds illustrated in FIGS. 28 to 31 , except as further detailed below.
  • FIG. 31 illustrates a mold 700 that is configured to form at least a portion of a closure.
  • the mold 700 is defined by a core section 702 having a core 704 and a cavity section 706 .
  • the material e.g., PET including virgin and/or recycled PET, PP, phenoxy type thermoplastic, expandable/foam material, PP, and/or other suitable material(s)
  • PET including virgin and/or recycled PET, PP, phenoxy type thermoplastic, expandable/foam material, PP, and/or other suitable material(s)
  • the material can fill the cavity 710 to form at least a portion of a closure.
  • the illustrated cavity 710 is sized and configured in the shape of the inner layer of a body of a closure. However, the cavity 710 can be configured to form the entire closure.
  • the cavity 710 also optionally includes a portion 711 for forming a band and connectors between the body and band of the closure.
  • FIG. 33 illustrates a mold 730 for overmolding.
  • the underlying layer or substrate 732 formed by the mold 700 ( FIG. 32 ) can be positioned in the mold 730 ( FIG. 33 ).
  • the mold 730 has a core section 734 and a cavity section 736 illustrated in the closed position prior to overinjecting.
  • a split ring 740 can engage a portion of the body 742 and a band 744 of the substrate 732 .
  • the cavity section 736 comprises a cavity 738 in which the uncoated substrate 732 is placed.
  • the illustrated substrate 732 is a monolayer portion of a closure; however, the substrate 732 can be a multilayer substrate.
  • the substrate 732 can comprise one or more of the following: PET (e.g., virgin PET and/or recycled PET), polyester, PP, phenoxy, thermoplastics (including phenoxy type thermoplastics, lamellar materials, combinations thereof, and/or the like.
  • PET e.g., virgin PET and/or recycled PET
  • polyester e.g., polyester
  • PP e.g., phenoxy, thermoplastics (including phenoxy type thermoplastics, lamellar materials, combinations thereof, and/or the like.
  • the substrate 732 can also be a standard closure that is used to close bottles. A skilled artisan can select the size and configuration of the substrate 732 based on the desired end use of the closure.
  • the body 742 of the substrate 732 is preferably centered within the cavity and is completely surrounded by a void space 750 .
  • the substrate 732 thus positioned, acts as an interior die in the subsequent injection procedure.
  • the melt of the overmolding material is then introduced into the mold cavity from the injector via gate 752 and flows around the substrate 732 , preferably surrounding at least the body portion of the substrate 732 .
  • the overmolded layer will take the approximate size and shape of the void space 750 .
  • the mold 730 can be used to form the coated or multilayer closures disclosed herein.
  • the closures of FIGS. 18-21E and 24 can have one or more layers comprising substantially PET, phenoxy type thermoplastics, polypropylene, foam material, and/or other thermoplastics.
  • at least one of the layers of the closure can comprise a expandable/foam material.
  • the closure 302 ( FIG. 19 ) can have the layer 314 of a first material (e.g., PET) and an outer layer of PP (e.g., foamed or non-foamed PP).
  • the methods and apparatuses disclosed in the references incorporated by reference into the present application can be modified to produce closures.
  • the molding machines, apparatuses, and methods disclosed in U.S. Pat. No. 6,352,426 can modified to produce closures.
  • the molds can comprise high heat transfer material, cooling channels, tie layer systems, gas insertion systems, and/or the like.
  • Systems for making articles can have one or more apparatuses or systems for depositing a plurality of materials.
  • the molds described above can have one or more delivery systems for depositing material on a substrate, such as an article in the form of a preform, closure, and the like.
  • the deposited material can form at least portion of a tie layer or other layer (e.g., barrier layer).
  • a tie layer or other layer e.g., barrier layer
  • the delivery systems described herein are primarily discussed with respect to molding apparatuses, such as injection molding machines for producing preforms.
  • delivery systems can be used to delivery other materials (e.g., barrier materials, plastics including thermoplastics, foam material, and the like) onto substrates in the form of closures, containers (e.g., bottles), sheet, tubes, etc.
  • a delivery system 1004 of molding system 1008 can be used in different types of molding systems, such as injection molding system or compression molding system, for example. Molding apparatuses may have a delivery system 1004 for enhancing adhesion between materials and/or to aid in the release of the molded article.
  • FIG. 33 illustrates a molding system 1000 for producing mono and/or multilayer preforms.
  • the molding system 1000 has the delivery system 1004 and a mold 1002 that is similar to the mold 501 illustrated in FIG. 28 , except as further detailed below.
  • the mold 1002 of FIGS. 34 and 35 is adapted for an overmolding process.
  • the illustrated mold 1002 is configured to overmold a plurality of preforms and comprises a core section 1052 and the cavity section 1054 that cooperate to define a cavity 1008 when the mold 1002 is in the illustrated closed position of FIG. 35 .
  • the mold 1002 comprises the fluid delivery system 1004 for inserting material, preferably tie material, into the cavity 1008 .
  • the fluid delivery system 1004 has a feed line 1010 that receives fluid, preferably pressurized fluid, from a fluid source.
  • An exhaust system 1012 comprises an exhaust line 1016 that is connected to the mold cavity 1008 and a vent 1020 ( FIG. 33 ).
  • the fluid delivery system 1004 injects fluid, preferably tie fluid, through the feed line 1010 and into the cavity 1008 to coat at least a portion of a substrate 1022 ( FIG. 35 ).
  • the illustrated substrate 1022 is in the form of a preform.
  • the preform is then overmolded with a layer of material.
  • the tie fluid preferably forms a tie layer that adheres an overmolded layer to the substrate preform 1022 .
  • the fluid can be removed from the cavity 1008 by passing the fluid through the exhaust line 1016 and out of the vent 1020 ( FIG. 34 ).
  • a flow or pressurization device e.g., a pump
  • a flow or pressurization device can be disposed at some point along the exhaust line 1016 to create a low pressure or vacuum (i.e., suction) to promote the flow of the tie fluid.
  • the suction can be applied with pressurized or non-pressurized tie fluid.
  • the pressurized tie fluid provided by the feed line 1010 and the vacuum can result in selectively controlled flow rates within the cavity 1008 .
  • the tie fluid is delivered into the cavity 1008 and then a vacuum is drawn to remove unused tie fluid.
  • the exhaust system 1012 may not have device for creating a vacuum.
  • the exhaust system 1012 may be vented to the atmosphere directly, or through a scrubber to remove any potentially ecologically harmful materials such as VOCs.
  • the delivery system 1004 can be used to deliver material, preferably coating material, into the mold 1002 .
  • the material is a non tie coating material.
  • coating material is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, tie fluid or material, polymer melt, adhesives, and the like which form a layer on all or part of the surface of the article or layer in the mold.
  • the coating material can provide desired properties to a substrate.
  • the coating material being adapted to form a structural layer (e.g., a tie layer, polymer layer, barrier layer) on a surface.
  • tie fluid is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a fluid that can be deposited on the preform to form a tie, adhesive, or crafting layer and may promote adhesion between materials.
  • the tie fluid can be chemical substance that may promote adhesion between thermoplastic polymers, foams, plastics, other materials described herein, and combinations thereof.
  • the tie fluid can comprise one or more anhydride polymers (e.g., maleic anhydride), acrylate group containing polymers, epoxy group containing polymers, acids, bases, organic solvents, chemical etchants, adhesives, cross-linking agents, and/or other substances for promoting adhesion, phenoxy, and/or phenoxy/polyolefin blends.
  • the tie fluid can comprise one or more of the following: a mist, gas, plasma, particles, liquid, and/or combinations thereof.
  • the tie fluid can be selected based on the materials contacted by the tie fluid.
  • the tie fluid forms a tie layer adapted or configured to adhere a foam layer to a PET layer.
  • the tie fluid forms a tie layer which causes a PP layer to adhere more strongly to a PET layer.
  • Additives e.g., chemicals, microparticles, binders, or the like
  • the tie fluid can form a tie layer, such as the tie layer of the container 83 of FIG. 6 .
  • the tie fluid comprises one or more of the tie materials described above.
  • the terms “tie fluid” and “tie material” are used interchangeably herein.
  • the delivery system 1004 may be formed at a joint 1024 between members of the mold cavity surface 1018 .
  • An outlet or outlet 1028 is positioned along the mold cavity surface 1018 and preferably spaced from a gate 1040 .
  • the gate 1040 can be configured to inject material (e.g., melt, molten polymer, and the like) into the cavity 1008 .
  • the illustrated outlet 1028 is formed circumferentially around at least a portion the cavity 1008 .
  • the outlet 1028 is sufficiently small that substantially no molten material will enter during melt injection.
  • the outlet 1028 may comprise one or more individual openings or apertures.
  • the feed line 1010 has a valve system 1030 ( FIG.
  • the valve system 1030 for selectively controlling the flow of fluid through the feed line 1010 .
  • the valve system 1030 can be located at any point along the feed line 1010 .
  • a valve system 1030 is positioned upstream of a plurality of cavities 1008 .
  • the valves selectively permit or inhibit flow through the feed line 1010 to the cavities.
  • the valve system 1030 is preferably embedded in the material forming the cavity section 1054 .
  • the valve system 1030 can be located proximate to an outlet (e.g., the outlet 1028 ) of the feed line 1010 .
  • the valve system 1030 can be operated in response to pressure, such as positive or negative pressures and can comprise one or more valves, such as a lift type check valve.
  • the lift type check valve is a ball check valve having a ball and seat arrangement. Pressure within the feed line 1010 may lift the ball away from the seat, but pressure in the opposite direction will force the ball against the seat and prevent flow in the reverse direction. Typically there is also a spring to bias the ball into contact with the seat. When the pressure within the feed line 1010 overcomes the bias of the spring, the ball can be displaced from the seat allowing flow to the cavity 1008 ( FIG. 35 ). In some embodiments, negative pressure can cause fluid to flow through the valve system 1030 .
  • valve system 1030 can be mechanically controlled independent of pressure.
  • the valve system 1030 can comprise one or more valves (e.g., gate valves, globe valves, and the like).
  • the valve system 130 can be operated to deliver a determined amount of tie fluid to the cavity 1008 .
  • the outlet 1028 of FIG. 35 can be located at any point along the mold cavity surface 1018 .
  • the position of the outlet 1028 can be determined on the desired fluid flow about the preform.
  • the illustrated mold 1002 of FIG. 35 has the outlet 1028 positioned near or at the portion of the mold cavity 1008 corresponding to the end cap of the preform.
  • the fluid provided by the feed line 1010 can flow around the end cap of the preform and proceeds upwardly along the cavity 1008 to the exhaust line 1016 , thereby depositing material on at least a portion of the preform.
  • the illustrated mold 1002 is configured to deposit tie fluid on the body portion of the preform. As shown in FIG.
  • the outlet 1028 is preferably formed by a step 1036 of between about 0.05 mm (0.002 inches) and about 0.127 mm (0.005 inches) and most preferably about 0.076 mm (0.003 inches) in depth. Because of its small size, the outlet 1028 generally will not fill with melt during injection but will enable fluid (tie fluid, air, and/or other fluids) to be delivered out of the outlet 1028 . In some embodiments, fluid (e.g., air, tie fluid, etc.) can pass through the outlet 1028 to clear out any material within the outlet 1028 . Although not illustrated, the outlet 1028 can be positioned at other locations along the surface 1018 .
  • the outlet 1028 can be position at a location along the surface 1018 corresponding to the body, neck finish, and/or support ring of the preform.
  • the outlet 1028 can be positioned near the end cap region of the mold, below the support ring of the preform, at the neck finish of the preform, or at body portion of the preform.
  • a plurality of outlets 1028 can be positioned along the surface 1018 .
  • the outlets 1028 can be positioned on the same or opposing side of the preform as an inlet configured to receive unused tie fluid.
  • an outlet 1028 can be diametrically spaced from an inlet.
  • the inlet 1029 and the outlet 1028 are positioned on the same side of the preform.
  • the exhaust line 1016 is configured to draw in fluid from the cavity 1008 ( FIG. 35 ).
  • the exhaust line 1016 then delivers the tie fluid to the vent 1020 , or recirculation system so that fluid can be passed through the cavity 1008 again.
  • the exhaust line 1016 can have a valve system 1038 that can be similar to the valve system 1030 and therefore will not be described in further detail.
  • the valve system 1030 permits fluid to flow through the feed line 1010 and into the cavity 1008 .
  • the tie fluid TF can flow through the cavity 1008 and coat at least a portion of the exterior surface of the preform.
  • the tie fluid TF coats a substantial portion of the preform forming the interior surface defining the cavity 1008 .
  • the tie fluid TF forms a thin layer of material on most of the body portion of the preform, or a generally uniform continuous or discontinuous coating.
  • the tie fluid TF can coat any portion of the preform exposed to the fluid.
  • the thread finish and the body portion can be coated with the tie fluid, if the cavity 1008 is defined by both the thread finish and the body portion of the preform.
  • the mold 1002 can selectively control the temperature of the preform.
  • the core 1040 of FIG. 35 heats or cools the preform to promote coating of the preform.
  • the preforms can be electrostatically charged to promote coating of the preform.
  • the preform can be physically or chemically roughened or textured to enhance coating of the preform.
  • the mold cavity surfaces 1018 can be thermally controlled to enhance coating of the preform.
  • the mold cavity surface 1018 can be chilled to ensure that gases in the cavity 1008 generally remain in gas phase.
  • the temperature of the tie material can be selectively controlled.
  • the tie material may include tie fluid that is heated to reduce the viscosity of the tie fluid to facilitate spreading of the tie fluid. Heaters and/or chillers can be employed to control the temperature of the tie material.
  • the tie fluid coats the preform and may flow out of the cavity 1008 and into the exhaust system 1012 .
  • the delivery system 1004 can reduce, or preferably stop the flow of fluid into the cavity 1008 .
  • the coating on the preform can form a tie layer for tying the substrate preform 1022 to a material that is subsequently injected through the gate 1040 into the cavity 1008 . If the tie material is a solvent/solute, the flow can be reduced or stopped and the cavity 1008 can be vented.
  • the feed line 1010 can deliver a gas or vapor (e.g., air, inert gases such as nitrogen, or other gases) to purge the cavity 1008 .
  • a gas or vapor e.g., air, inert gases such as nitrogen, or other gases
  • the exhaust system 1012 can optionally provide a negative pressure causing gas or vapor in the cavity 1008 to be removed. In this manner, one or more solvents can be removed in order to achieve desirable characteristics of the tie layer and/or overmolded material.
  • the valve system 1030 is preferably closed.
  • the melt injected through the gate 1040 proceeds up along and fills the cavity 1008 .
  • excess tie fluid is pushed out of the mold cavity 1008 by the injected melt stream.
  • the melt stream can cause tie fluid to be removed from the cavity 1008 .
  • the tie fluid is a gas
  • the gas can be forced out of the cavity 1008 by the advancing melt stream.
  • the tie coating formed on the preform can be spread on the preform by the melt stream.
  • the melt stream can push and spread the tie material about the surface of the preform to ensure that at least a portion of the body portion, preferably most or all of the body portion, is coated with a tie material.
  • a skilled artisan can determine the appropriate location of the outlet 1028 based on the properties of the tie layer and melt stream to achieve the desired tie layer in the container produced from the preform.
  • the valve system 1038 can be opened to allow tie fluid to escape from the cavity 1008 .
  • the valve system 1038 can be closed after a predetermined amount of melt stream has been injected to prevent or inhibit melt from entering the exhaust line 1016 .
  • the inlet 1029 of the exhaust line 1016 can have a small size so that melt will not substantially enter therein, but will enable fluid (tie fluid, air, and/or other fluids) to be delivered into the exhaust line 1016 .
  • pressurized fluid preferably air
  • the supply of air is delivered to the outlet 1028 at a pressure between about 75 psi (about 0.52 MPa) and 150 psi (about 1.03 MPa) and most preferably about 100 psi (about 0.69 MPa).
  • the preform is removed from the mold cavity 1018 without the aid of pressurized fluid from the feed line 1010 .
  • similar delivery systems may be utilized in other portions of the mold, such as the thread area, for example but without limitation.
  • the core section 1052 and the cavity section 1054 can cooperate to form a seal to inhibit or prevent the tie fluid from escaping into the environment surrounding the mold 1002 illustrated in FIG. 35 .
  • the tie fluid has volatile organic compounds (VOCs) or other substances undesirable for inhalation or the environment
  • the tie fluid can be contained within the mold 1002 .
  • the mold 1002 can circulate and reuse the tie fluid to also reduce waste.
  • the tie fluid can be vented via the exhaust system 1012 or by another means. If the tie fluid is suitable for release into the atmosphere, the tie fluid can be vented to the atmosphere. For example, the tie fluid can escape between the preform and the ledge 1056 and then may proceed between the core section 1052 and the cavity section 1054 and out into the atmosphere.
  • the preform can be coated with a tie material before the mold 1002 is in the fully closed position.
  • the tie material can be deposited on the substrate preform as the preform is inserted and advanced into the cavity section 1054 .
  • the preform is coated with tie material when the preform is proximate to or at least partially within the cavity section 1054 .
  • the delivery system 1004 outputs fluid when the mold 1002 is in a partially or fully opened position.
  • the delivery system 1004 injects tie fluid into the cavity 1008 as the mold 1002 is moved from an open position to the illustrated closed position of FIG. 35 . As the preform is advanced into the cavity section 1054 , the tie fluid flows upwardly through the cavity 1008 and coats at least a portion of the preform.
  • the mold 1002 Before the mold 1002 is in the closed position, the tie fluid can escape into the atmosphere.
  • the mold 1002 may or may not have an exhaust system 1012 .
  • the mold 1002 if the tie material is deposited before the mold 1002 is in the closed position, the mold 1002 preferably does not have the exhaust system 1012 . If the tie material is deposited after the mold 1002 is in the closed position, the mold 1002 preferably has an exhaust system 1012 , especially when the tie fluid is not suitable for venting directly to the atmosphere.
  • FIG. 38 illustrates another embodiment of the delivery system 1004 .
  • the delivery system 1004 has a plurality of inlets 1060 for injecting or delivering fluid (e.g., tie fluid, air, etc.) into the cavity 1008 .
  • the fluid can be delivered in response to positive pressure in the feed line 1010 , or drawn into the cavity 1008 under a negative pressure.
  • the mold 1002 has a feed line 1010 connected to each inlet.
  • the delivery system 1004 having a plurality of outlets 1060 may promote more uniform coating of the preform 1022 .
  • the delivery system 1004 of FIG. 39 has an inlet 1061 defined by the end cap region.
  • the position of the inlet 1061 results in generally uniform unidirectional flow through the cavity 1008 .
  • the feed line 1010 delivers tie fluid in the form of a liquid that douses the end cap of the preform. After an amount of tie fluid has been delivered, melt can be delivered into the cavity 1008 through the gate 1040 . The melt spreads the tie material on the surface of the preform.
  • FIGS. 28 , 30 , 31 can be modified to deposit tie material on the inner layer or underlying substrate.
  • the delivery system 1004 can be connected to the line that delivers melt into a cavity.
  • the feed line 1010 can feed tie fluid into a line through a gate to coat a substrate. After the substrate is coated, the melt can be injected through the same line and gate to form an outer layer.
  • the insertion system of the mold can inject tie fluid to both coat a preform and aid in the release of the preform.
  • the coated substrate preform can then be overmolded.
  • the delivery system (or insertion systems) can be used to delivery other materials (e.g., one or more of the materials discloses herein) onto articles.
  • the apparatuses were described delivering a tie fluid.
  • the tie material or fluid can be replaced with colorant, chemical, melt, polymer, powder, coating material, barrier material, and/or any other material suitable for coating at least a portion of a substrate.
  • preferred articles described herein include articles comprising one or more materials.
  • the material(s) may form one or more layers of the articles.
  • the layers of the articles may preferably provide some functionality and may be applied as multiple layers, each layer having one or more functional characteristics, or as a single layer containing one or more functional components.
  • the articles may be in the form of packaging, such as preforms, closures, containers, etc.
  • the materials, methods, ranges, and embodiments disclosed herein are given by way of example only and are not intended to limit the scope of the disclosure in any way.
  • the articles disclosed herein can be formed with any suitable material disclosed herein. Nevertheless, some articles and materials are discussed below. In view of the present disclosure, embodiments and materials can be modified by a skilled artisan to produce other alternative embodiments and/or uses and obvious modifications and equivalents thereof.
  • Articles may comprise foam material.
  • foam material can form a portion of an article, such as the body or neck finish of a preform.
  • foam material comprises less than about 90% by weight, also including less than about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% by weight, of the article (such as a preform, closures, container, sheet, etc.).
  • the foam material comprises about 5-30% by weight of the article.
  • the foam material comprises about 20%-60% by weight of the article.
  • the foam material comprises about 10%-30% by weight of the article.
  • the foam material comprises more than about 90% by weight of the article.
  • the foam material can form most or all of the article.
  • the foam material may result in reduced weight articles as compared to conventional articles and therefore may desirably reduce the transportation cost of the articles. Additionally, foam material can reduce the amount of material that is used to form the articles, since the foam material may have a substantial number of voids.
  • the foam material can be made from expandable material.
  • at least a portion of an article can comprise expandable that has a first density that is reduced when the expandable material is expanded.
  • a first material, preferably expandable material has a first density
  • the second material, preferably foam material, made from the first material has a second density.
  • the second density is less than about 95%, 90%, 80%, 70%, 50%, 30%, 20%, 10%, 5%, 2%, 1%, and ranges encompassing such percentages of the first density.
  • the second density is in the range of about 30% to 60% of the first density.
  • articles may comprise any suitable amount of foaming agent including those above and below the particular percentages recited above, depending on the desired use of the articles.
  • Articles may comprise phenoxy type thermoplastics, such as phenoxy and blends (e.g., polyolefin-phenoxy blend), PET-phenoxy, and combinations thereof).
  • the phenoxy type thermoplastic can form a portion of the article, such as at least a portion of the interior surface of the preform, closure, container, etc.
  • the phenoxy type thermoplastic comprises less than about 30% by weight, also including less than about 1%, 2%, 5%, 7.5%, 10%, 12%, 15%, 20%, 25%, 50% by weight, of the article.
  • the phenoxy type thermoplastic comprises about 1-4% by weight of the article.
  • the phenoxy type thermoplastic comprises about 1-15% by weight of the article. In another non-limiting embodiment, the phenoxy type thermoplastic comprises about 7-25% by weight of the article. In another non-limiting embodiment, the phenoxy type thermoplastic material comprises about 5-30% by weight of the article. In some embodiments, the phenoxy type thermoplastic forms a discrete layer or a layer blended with another material. In some embodiments, a discrete layer comprises phenoxy type thermoplastic that forms about 0.1% to 1% by weight of the article. In some embodiments, a discrete layer comprise phenoxy type thermoplastic that forms about 0.1% to 1% by weight of the article.
  • the phenoxy type thermoplastic is blended with a polymer material (e.g., PET, polyolefin, combinations thereof) and can comprise more than about 0.5%, 1%, 2%, 5%, 7.5%, 10%, 12%, 15%, 20%, 25%, 50%, 70% by weight of the article. It is contemplated that these percentages can be by volume in certain embodiments.
  • the phenoxy type thermoplastic may result in articles having one or more of the following properties: desirable flavor scalping, color scalping, oxygen barrier, recyclable, and/or other properties especially well suited for food contact. These percentages may result in effective desirable characteristics while minimizing the amount of phenoxy type thermoplastic used, thus providing a cost effective article.
  • Phenoxy type thermoplastics can provide desirable adhesive between a layer comprising PET and a layer comprising PP.
  • articles may comprise any suitable amount of phenoxy type thermoplastics including those above and below the particular percentages recited above, depending on the desired use of the articles.
  • Foam material may form one or more portions of layers of the articles (such as packaging including preforms and containers).
  • the preform 30 of FIG. 1 can comprise a foam material.
  • the preform 30 comprises mostly foam material.
  • the preform 30 can comprise a phenoxy type thermoplastic formed through a molding process.
  • the preform 30 may comprise mostly a phenoxy type thermoplastic.
  • the preform 30 may be formed by a co-injection process, wherein the interior portion and exterior portions of the preform 30 comprise different materials. The co-injected material can be compressed into a desired shape.
  • the preform 30 may have an interior portion that comprises one or more of the following: phenoxy type thermoplastic, PET, PETG, expandable/foam materials or the like.
  • the outer portion of the preform 30 can comprise one or more of the following: polyethylene, polypropylene (including clarified polypropylene), PET, combinations thereof, and the like.
  • a portion of the preform 30 may comprise foam material.
  • the preform 30 can be coated with a layer to enhance its barrier characteristics.
  • the preform 30 can be coated with a barrier material.
  • U.S. application Ser. No. 10/614,731 Publication No. 2004-0071885), which is incorporated in its entirety and describes systems and methods of coating preforms. This system and other systems disclosed or incorporated herein can be employed to form a barrier layers described herein. The coated preform can then be overmolded with another material to form an outer layer.
  • the preform 50 can comprises an uncoated preform 39 coated with a foam layer 52 .
  • the uncoated preform 39 comprises a polymer material, such as polypropylene, polyester, PET, PETG, phenoxy type thermoplastics, and/or other thermoplastic materials.
  • the uncoated preform 39 substantially comprises polypropylene.
  • the uncoated preform 39 substantially comprises polyester.
  • the foam layer 52 may comprise either a single material or several materials (such as several microlayers of at least two materials). In some non-limiting embodiments, the foam layer 52 can comprise about 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and ranges encompassing such percentages of the preform. In some embodiments, the foam layer 52 comprises about 2% to about 90% of the preform. In some non-limiting embodiments, the foam layer 52 can comprise about 5% to about 50% of the preform. In some embodiments, the foam layer 52 comprises about 10% to about 30% of the preform. In some non-limiting embodiments, the foam layer 52 can comprise about 5% to about 25% of the preform.
  • the foam layer 52 can comprise less than about 20% of the preform. It is contemplated that these percentages can be by weight or by volume in different embodiments.
  • the foam layer 52 may comprise foam material that is not expanded.
  • the outer layer 52 of the preform 50 may have a thickness, preferably the average wall thickness, of about 0.2 mm (0.008 inches) to about 0.5 mm (0.02 inches). In another non-limiting embodiment, the outer layer 52 has a thickness of about 0.3 mm (0.012 inches). In some embodiments, the average wall thickness is taken only along the body portion of the preform 50 .
  • the outer layer 52 comprises less than about 90% of the average thickness of a wall of the preform 50 , also including less than about 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5% of the average thickness of a wall of the preform 50 .
  • the foam layer 52 may comprise microspheres that are either not expanded or partially expanded, for example. Further, the foam layer 52 can be generally homogenous or generally heterogeneous. Although not illustrated, the foam layer 52 can form other portions of the preform 50 . For example, the foam layer 52 can form at least a portion of the inner surface of the preform 50 or a portion of the neck portion 32 .
  • the inner layer 54 can comprise one or more of the following: polyethylene, PET, polypropylene (e.g., foamed polypropylene, non foamed polypropylene, clarified polypropylene), combinations thereof, and the like.
  • the preform 50 can comprise an outer layer 52 of polypropylene (preferably foamed) and an inner layer 54 comprising PET.
  • a tie layer can be interposed between the layers 52 , 54 and may comprise a phenoxy type thermoplastic.
  • a barrier layer can be interposed between the layers 52 , 54 .
  • the barrier layer can inhibit or prevent egress and/or ingress of one or more gases, UV rays, and the like through the walls of a container made from the preform 50 .
  • second layer 54 comprises polypropylene.
  • the polypropylene may be grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion.
  • the polypropylene further comprises nanoparticles.
  • the polypropylene comprises nanoparticles and is grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds.
  • the container 83 can be used as a carbonated beverage container, the thickness 44 , preferably the average wall thickness, of the outer layer 52 of the container 83 that is about 0.76 mm (0.030 inch), 1.52 mm (0.060 inch), 2.54 mm (0.10 inch), 3.81 mm (0.15 inch), 5.08 mm (0.2 inch), 6.35 mm (0.25 inch), and ranges encompassing such thicknesses.
  • the outer layer is preferably less than about 7.62 mm (0.3 inch), more preferably about 1.27 mm (0.05 inch) to 5.08 mm (0.2 inch).
  • the outer layer 52 may comprise foam material having a thickness more than about 3.81 mm (0.15 inch).
  • the outer layer 52 has a thickness in the range of about 0.127 mm (0.005 inch) to about 0.635 mm (0.025 inch).
  • the thickness 46 of the inner layer 54 preferably the average thickness, of the inner layer 54 is preferably about 0.127 mm (0.005 inch), 0.635 mm (0.025 inch), 1.07 mm (0.040 inch), 1.52 mm (0.060 inch), 2.03 mm (0.080 inch), 2.54 mm (0.100 inch), 3.05 mm (0.120 inch), 3.56 mm (0.140 inch), 4.07 mm (0.160 inch), and ranges encompassing such thicknesses.
  • the inner layer 54 of the container 83 has a thickness of less than about 2.54 mm (0.1 inch) to provide a cost effective food barrier.
  • the inner layer 54 has a thickness in the range of about 0.127 mm (0.005 inch) to about 0.635 mm (0.025 inch).
  • the overall thickness 48 of the wall of the container can be selected to achieve the desired properties of the container 83 .
  • the container 83 can have a barrier layer.
  • On or more barrier layers can be formed on the interior surface of the inner layer 54 , between the layers 52 , 54 , on the exterior of the outer layer 52 , and the like.
  • the outer layer 52 of the container (or the preform that makes the container 83 ) can be coated with barrier material by using methods disclosed herein.
  • the barrier layer can be formed by using apparatuses, methods, and systems disclosed in U.S. application Ser. No. 10/614,731 (Publication No. 2004-0071885), which is incorporated in its entirety.
  • the container 82 comprises substantially closed cell foam that may inhibit the migration of fluid through the foam.
  • the foam can be a barrier that inhibits, preferably prevents, migration of CO 2 gas through the wall 84 of the container 83 formed from the preform.
  • the preform 60 of FIG. 11 has an inner layer 164 that comprises a first material and the outer layer 162 preferably comprises another material.
  • the layer 162 can comprise about 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and ranges encompassing such percentages of the preform.
  • the foam layer 162 comprises less than about 97% of the preform.
  • the layer 162 comprises about 5% to about 99% of the preform.
  • the layer 162 can comprise less than about 90% of the preform.
  • the layer 162 can comprise about 40% to 80% of the preform.
  • the layer 162 can comprise about 60% to 90% of the preform. In some non-limiting embodiments, the layer 162 can comprise more than about 60% of the preform. It is contemplated that these percentages can be by weight or by volume in different embodiments.
  • the outer layer 162 can comprise foam material and the inner layer 164 can comprise a polymer material, such as PET (e.g., virgin or post-consumer/recycled PET).
  • the foam layer 162 may comprise foam material that is not expanded.
  • the foam layer 162 may comprise microspheres that are either not expanded or partially expanded, for example.
  • the foam layer 162 may provide a desirable insulating layer when the preform 160 is molded into a container.
  • a substantial portion of the outer layer 162 comprises foam material and a substantial portion of the inner layer 164 comprises PET or other material for contacting foodstuffs.
  • the foam material comprises PP and expandable microspheres.
  • the outer layer 162 comprises PP and the inner layer 164 can comprise PET.
  • a substantial portion of the outer layer 162 comprises PP and a substantial portion of the inner layer 164 comprises PET.
  • the outer layer 162 comprises generally entirely PP.
  • substantial portions of the inner layer 164 and outer layer 162 can comprise foam material.
  • the preforms 76 , 132 may similarly comprise foam material and material suitable for contacting foodstuffs.
  • the inner layer 164 may comprise one or more of the following: PET, phenoxy type thermoplastic (including blends), foam material (e.g., foamed PET), and/or other coating/layer suitable for contacting foodstuff.
  • the outer layer 162 may comprise one or more of the following: foam material (including foamed PP, foamed PET, etc.), non foamed material (e.g., phenoxy type-thermoplastics, PET, PP), or other material suitable for forming the outer portion of a preform.
  • the preform 160 comprises a phenoxy type thermoplastic.
  • the phenoxy type thermoplastic can comprise less than about 1%, 2.5%, 5%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90%, and ranges encompassing such percentages of the preform. In some embodiments, the phenoxy type thermoplastic material comprises about 10% to 30% by weight of the preform. In some embodiments, the phenoxy type thermoplastic material comprises most of or all of the preform. The weight is for phenoxy type thermoplastic in a discrete or blend form. It is contemplated that these percentages can be by weight or by volume in different embodiments. For example, in some embodiments the layer 164 comprises phenoxy type thermoplastic that forms less than 10% of the preform.
  • the layer 164 can have a thickness suitable for forming a food contacting layer.
  • the thickness 174 of the inner layer 164 is preferably less than about 3.81 mm (0.150 inch) to form a cost effective food contacting layer.
  • the thickness 174 of the inner layer 164 may be less than about 0.01 mm (0.0004 inch), 0.02 mm (0.0007 inch), 0.05 mm (0.002 inch), 0.10 mm (0.004 inch), 0.15 mm (0.006 inch), 0.20 mm (0.008 inch), 0.30 mm (0.01 inch), 0.5 mm (0.019 inch), and ranges encompassing such thicknesses.
  • the inner layer 174 comprising phenoxy type thermoplastic having a thickness in the range of about 0.01 mm (0.0004 inches) to about 0.05 mm (0.002 inches).
  • the preform 160 may be formed by an molding process, wherein the interior portion and exterior portions of the preform comprise different materials.
  • the outer layer 162 comprises a first material and the inner layer 164 preferably comprises another material.
  • the outer layer 162 can comprise polypropylene and the inner layer 64 can comprise PETG.
  • the polypropylene may be grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion.
  • the polypropylene further comprises nanoparticles.
  • the polypropylene comprises nanoparticles and is grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds.
  • the preform 180 may have the inner layer 184 that is similar or identical to the inner layer 164 and the outer layer 182 that is similar or identical to the outer layer 162 .
  • the preform 190 ( FIG. 13 ) may have the inner layer 194 that is similar or identical to the inner layer 164 and the outer layer 199 that is similar or identical to the outer layer 162 .
  • the materials forming the inner layer 194 and the outer layer 199 can be selected to provide desirable interaction with the locking structure 197 .
  • the preform 202 ( FIG. 14 ) may have layers formed of similar or identical materials as the preform 160 .
  • the preforms and resulting containers may be particularly well suited for thermal applications, such as hot-fill processes.
  • the container 211 of FIG. 14A can generally maintain its shape during hot-fill processes. After blow molding or hot-filling, the final dimensions of the neck portion 132 of the container 211 are substantially identical to the initial dimensions of the preform. Additionally, this results in reduced dimension variations of the threads on the neck finish.
  • the inner layer 283 can be formed of a material for contacting foodstuffs, such as PET.
  • the outer layer 203 can comprise moldable materials (e.g., mostly or entirely of PP, PP and a foaming agent, crystalline PET, lamellar material, homopolymers, copolymers, and other materials described herein) suitable for hot-filling.
  • the outer layer 203 provides dimensional stability to the neck finish 132 even during and after hot-filling.
  • the width of the outer layer 203 can be increased or decreased to increase or decrease, respectively, the dimensional stability of the neck finish 132 .
  • one of the layers forming the neck finish 132 comprises a material having high thermal stability; however, the neck finish 132 can also be made of materials having low temperature stability, especially for non hot-fill applications.
  • the dimensional stability of the outer layer 203 ensures that the closure 213 remains attached to the container 211 of FIG. 14A .
  • the outer layer 203 of PP can maintain its shape thereby preventing the closure 213 from unintentionally decoupling from the container 211 .
  • the preforms described above can be modified by adding one or more layers to achieve desired properties.
  • a barrier layer can be formed on the body portions of the preforms.
  • Closures may comprise foam material.
  • the foam material comprises less than about 95% by weight, also including less than about 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, and ranges encompassing such percentages of the closure. It is contemplated that these percentages can be by weight or by volume in different embodiments.
  • foam material comprising ranges encompassing these percentages by weight of the closure.
  • the foam material comprises about 45-60% by weight of the closure.
  • the foam material comprises about 15-70% by weight of the closure.
  • the closure comprises mostly or entirely of foam material.
  • the closure can be a monolayer closure that is made from foam material.
  • the closure 302 comprises a foam material.
  • the layer 314 and/or the outer portion 311 may comprise foam material (e.g., foamed PET, foamed PP, etc.).
  • the outer portion 311 comprises foam material and the layer 314 comprises non-foamed material (such as PP, PET, etc.).
  • the inner portion of the closures may comprise foam material.
  • the outer portions of closures may or may not comprise foam material.
  • the closures of FIGS. 21A to 21E may have similar or different inner and outer layers (or outer portions).
  • FIG. 21C illustrates the closure 360 that may have an intermediate layer 364 formed of materials that have desired structural, thermal, optical, barrier and/or characteristics.
  • the layer 364 can be formed of PET, PP, PET, PETG, and/or the like.
  • the outer portion of the closure is formed of foam material to provide a comfortable gripping surface so that a user can comfortably remove the closure from a container.
  • the outer portion 311 of FIG. 19 can be foam to increase the space occupied by the outer portion 311 and can provide the user with greater leverage for easy opening and closing of the closure device.
  • the closures can have an internally threaded surface that is configured to threadably mate with an externally threaded surface of the container.
  • the enlarged outer portion 311 of FIG. 19 can provide increased leverage such that the user can easily rotate the closure 302 onto and off of the container.
  • the similar, or same, amount of material that forms a conventional cap can be used to form the enlarged diameter closure device.
  • the cost of materials for producing the closure 302 can be reduced.
  • Closures may comprise phenoxy type thermoplastic materials.
  • the phenoxy type thermoplastic material comprises less than about 25% by weight, also including less than about 1%, 2%, 4%, 5%, 10%, 15%, 20% by weight, of the closure.
  • phenoxy type thermoplastic material comprising ranges encompassing these percentages by weight of the closure. The weight is for phenoxy type thermoplastic in discrete or blend form.
  • the phenoxy type thermoplastic material comprises about 0.5 to 5% by weight of the closure.
  • the phenoxy type thermoplastic material comprises about 1 to 6% by weight of the closure.
  • the phenoxy type thermoplastic can form at least a portion of the interior surface of the closure.
  • a phenoxy type thermoplastic layer can be deposited on the interior surface 309 of the layer 314 ( FIG. 19 ).
  • the layer 314 can be made of a phenoxy type thermoplastic.
  • the phenoxy type thermoplastic can form at least a portion of the layer 344 of the closure 340 ( FIG. 21A ), the layer 356 of the closure 350 ( FIG. 21B ), the layer 366 and/or layer 364 of the closure 360 ( FIG. 21C ), the layer 374 of the closure 370 ( FIG. 21D ), the layer 383 of the closure 380 ( FIG. 21E ), for example.
  • these layers may comprise material (e.g., lamellar material, PET, PP, and/or the like) that is coated with a phenoxy type thermoplastic, such a phenoxy or polyolefin-phenoxy blend.
  • the closures described above can have one or more barrier layers to enhance its barrier characteristics.
  • an inner layer, one or more intermediate layers, and/or exterior barrier layers can be formed by using systems and methods disclosed in U.S. application Ser. No. 10/614,731 (Publication No. 2004-0071885), which is incorporated in its entirety and describes systems and methods of forming barrier layers.
  • the materials of the closures can be modified to enhance barrier characteristics.
  • foam material may have additives (e.g., microparticulates) that improve the barrier characteristics of the foam material.
  • additives e.g., microparticulates
  • Exemplary articles can be multilayer articles.
  • a tie layer can be disposed between one or more portions or layers of the articles.
  • articles can have a tie layer interposed between layers of materials.
  • Articles can have a plurality of tie layers, preferably one of the tie layers is positioned between a pair of adjacent layers. In some embodiments, a plurality of pairs of adjacent layers each have interposed therebetween one of the tie layers.
  • the container 83 of FIG. 6 can have a tie layer 85 ( FIG. 7 ) between the layer 52 and the layer 54 .
  • the layer 52 comprises one or more of the following: foam material (including foamed PP, foamed PET, etc.), non foamed material (e.g., phenoxy type-thermoplastics, PET, PP), combinations thereof, or other material suitable for forming the outer portion of a preform.
  • the layer 54 comprises one or more of the following: PET, phenoxy, polyolefin-phenoxy blend, combinations thereof, or other suitable materials suitable for forming a portion of the wall of a container.
  • outer layer 52 comprises PP (foamed or unfoamed) and the inner layer 54 comprises PET.
  • the tie layer 85 may comprise adhesives, phenoxy type thermoplastics, polyolefins, or combinations thereof (e.g., polyolefin-phenoxy blend). The tie layer 85 can advantageously adhere to both of the layers 52 , 54 . Phenoxy may provide desirable adhesion between an inner layer 54 comprising PET and an outer layer 52 comprising PP, for example.
  • the multilayer articles illustrated in FIGS. 8-14B and 18 - 21 E can have one or more tie layers, preferably one tie layer, is between at least two of the layers of the articles.
  • a tie layer can be interposed between the layers 52 , 54 of the preform 76 ( FIG. 9 ).
  • a tie layer can be interposed between the layers 134 , 136 and/or the preform 30 and the layer 134 of FIG. 10 .
  • the preform 160 ( FIG. 11 ) can have a tie layer interposed between the layer 164 and the layer 162 .
  • the preform 180 ( FIG. 12 ) can have a tie layer interposed between the layer 184 and the layer 183 .
  • the preform 190 ( FIG. 13 ) can have a tie layer interposed between the layer 194 and the layer 199 .
  • the preform 202 ( FIG. 14 ) can have a tie layer interposed between the layer 203 and the layer 283 .
  • the closure 302 can have a tie layer between the layer 314 and the outer portion 311 .
  • the outer portion 311 comprises one or more of the following: foam material (including foamed PP, foamed PET, etc.), non-foamed material (e.g., phenoxy type-thermoplastics, PET, PP), combinations thereof, or other materials suitable for forming the outer portion of a closure.
  • the layer 314 comprises one or more of the following: PET, phenoxy, polyolefin-phenoxy blend, combinations thereof, or other suitable materials suitable for forming a portion of the closure.
  • the tie layer may comprise adhesives, phenoxy, polyolefin, combinations thereof (e.g., polyolefin-phenoxy blend).
  • the closures illustrated in FIGS. 21A-21E can likewise have one or more tie layers, preferably at least one tie layer is between a pair of adjacent layers.
  • a tie layer comprising a phenoxy type thermoplastic, such as a phenoxy blend, which can help compatibilization of a somewhat pure phenoxy layer and another layer. Phenoxy can effectively compatibilize with polypropylene, polyethylene, and the like.
  • Lamellar material may form one or more portions of layers of the articles (such as packaging including preforms, closures, and containers).
  • the preform 30 may comprise lamellar material.
  • FIG. 40 is an enlarged cross-sectional view of the wall section 43 of the preform 30 .
  • the wall section 43 comprises lamellar material that includes one or more layers.
  • the lamellar material is made up of a plurality of microlayers.
  • the layers of the lamellar material can have any suitable size based on the desired properties and characteristics of the preform, and the resulting container formed from the preform.
  • the layers of wall section 43 can comprise generally similar or different materials to one another.
  • One or more of the layers forming the wall section 43 can be made from materials disclosed herein, or other materials known in the art.
  • the wall section 43 has an inner layer 47 , an outer layer 45 , and one or more intermediate layers 41 therebetween.
  • the inner layer 47 is suitable for contacting foodstuffs, such as virgin polyethylene terephtalate (“PET”), or other suitable material that can form the inner chamber of the bottle made from the preform 30 .
  • PET polyethylene terephtalate
  • the wall section 43 can have at least one layer of a material with good gas barrier characteristics.
  • the wall section 43 of the preform 30 has a plurality of layers having good gas barrier characteristics.
  • one or more layers of the wall section 43 that comprise a barrier material can inhibit or prevent ingress and/or egress of fluid through the wall of a container made from the preform 30 .
  • the wall section 43 can comprise a plurality of layers that do not have good barrier characteristics.
  • the wall section 43 of the preform 30 can have at least one layer formed from recycled or post-consumer PET (“RPET”).
  • RPET recycled or post-consumer PET
  • the wall section 43 can have the plurality of layers formed from RPET.
  • the inner layer 47 can be formed from virgin PET and other layers from the wall section 43 can be formed from virgin PET or RPET.
  • the preform 30 can comprise alternating thin layers of PET, RPET, barrier material, and combinations thereof. Additionally, other materials can be used to obtain the desired characteristics and physical properties of the preform 30 , or resulting container made from the preform 30 .
  • Each of the layers of the wall section 43 can have generally the same thickness.
  • the layers of the wall section 43 can have thicknesses that are generally different from each other.
  • a skilled artisan can determine the desired number of layers, thickness of each layer, and composition of each layer of the wall section 43 .
  • the preform 30 can have a wall section 43 including more than two layers. In some preferred embodiments, the wall section 43 has more than three layers.
  • the layers of the lamellar material forming the wall section 43 can be generally parallel to one of an inner surface 49 and an outer surface 51 of the preform 30 .
  • Portions of the lamellar material forming the body portion 34 can comprise layers that are generally parallel to the longitudinal axis of the preform 30 .
  • the distance and/or orientation of the layers of the walls section 45 can vary or remain generally constant along the wall section 43 . Additionally, the thicknesses of one or more layers of the wall section 43 also may vary, or they may be substantially constant along the preform 30 . It is contemplated that one or more of the layers may have holes, openings, or diffuse into an adjacent layer.
  • Lamellar material can also form other monolayer and multilayer articles.
  • the preform 50 can comprise an outer layer 52 and an inner layer 54 defining an interior surface of the preform 50 .
  • the outer layer 52 preferably does not extend to the neck portion 32 , nor is it present on the interior surface of the preform 50 at least one of the outer layer 52 and the inner layer 54 can comprise lamellar material.
  • the outer layer 52 comprises lamellar material and the inner layer 54 comprises another material.
  • the inner layer 54 comprises PET, preferably virgin PET, so that the interior surface of the preform 50 is suitable for contacting foodstuffs.
  • the inner layer 54 comprises lamellar material and the outer layer 52 comprises another material.
  • the inner layer 54 comprises PET that forms the interior surface.
  • the inner layer 54 can comprise other materials described herein (e.g., foam material, PET including virgin PET and RPET, PP, etc.).
  • both the inner layer 54 and the outer layer 52 can comprise lamellar material.
  • various combinations of materials can be used to form the preforms disclosed herein.
  • the articles illustrated in FIGS. 6-17 may comprises multiple layers.
  • One or more of the layers of these articles can comprise lamellar material.
  • the preform 60 illustrated in FIG. 8A comprises an outer layer 52 formed of lamellar material.
  • the outer layer 52 covers the bottom surface of the support ring 38 and extends along the body portion 34 .
  • one or more of the layers 134 and 136 may comprise lamellar material.
  • substantially the entire preform 132 is formed of different lamellar layers 134 and 136 that are adhered together.
  • at least one of the layers 134 and 136 comprises a lamellar material, foam material, phenoxy type thermoplastics, PET, PP (including foamed and non-foamed), and the like.
  • only one of the layers 134 and 136 may be formed of lamellar material.
  • Closures may also comprise lamellar material.
  • the lamellar material can form a substantial portion of the closure or only a portion thereof.
  • the lamellar material comprises less than about 95% by weight, also including less than about 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85% by weight, of the closure.
  • lamellar material comprising ranges encompassing these percentages by weight of the closure.
  • the closure 302 comprises a lamellar material.
  • the layer 314 and/or the outer portion 311 may comprise lamellar material.
  • the outer portion 311 comprises lamellar material and the layer 314 comprises lamellar material (such as PP, PET, etc.).
  • the inner portion of the closures may comprise lamellar material.
  • the outer portions of closures may or may not comprise lamellar material.
  • the closures of FIGS. 21A to 21E may have similar or different inner and outer layers (or outer portions).
  • FIG. 21C illustrates a closure 360 has the intermediate layer 364 that is formed of materials that have desired structural, thermal, optical, barrier and/or characteristics.
  • the layer 364 can be formed of lamellar material.
  • the lamellar material can form at least a portion of the layer 344 of the closure 340 ( FIG. 21A ), layer 356 of the closure 350 ( FIG. 21B ), layer 366 and/or layer 364 of the closure 360 ( FIG. 21C ), layer 374 of the closure 370 ( FIG. 21D ), layer 383 of the closure 380 ( FIG. 21E ), for example.
  • the other portions of the closures can be formed of a similar material or different material. In some embodiments, the majority of or the entire closure comprises lamellar material.
  • Articles described herein can comprise one or more heat resistant materials.
  • the phrase “heat resistant materials” is a broad phrase and is used in its ordinary meaning and includes, without limitation, materials that may be suitable for hot-fill or warm-fill applications.
  • the heat resistant material may include high heat resistant material that has dimensional stability during a hot-fill process.
  • the heat resistant material may include a mid heat resistant material that has dimensional stability during a warm-fill process.
  • Heat resistant materials may include, but are not limited to, polypropylene, crystalline material, polyester, and the like. In some embodiments, heat resistant material has greater thermal dimensional stability then amorphous PET.
  • Heat resistant material can form a portion of articles (e.g., one or more layers of a preform, container, closure, sheet, and other articles described herein.)
  • a container comprises an inner layer, comprising a thermoplastic polyester, an outer layer, comprising a thermoplastic material (e.g., a polymer heat resistant material) having a heat resistance greater than that of the thermoplastic polyester of the inner layer, and an intermediate tie layer, providing adhesion between the inner layer and the outer layer, where the layers are co extruded prior to blow molding.
  • a thermoplastic polyester of the inner layer is PET, and may further comprise at least one of an oxygen scavenger and a passive barrier material blended with the thermoplastic polyester.
  • the passive barrier material is a polyamide, such as MXD 6.
  • lamellar material(s) can be selected various types to achieve the desired properties of an article made therefrom.
  • the articles disclosed herein may be formed through any suitable means.
  • the articles can be formed through injection molding, blow molding, injection blow molding, extrusion, co-extrusion, and injection stretch blow molding, and other methods disclosed herein.
  • the various methods and techniques described above provide a number of ways to carry out the invention.
  • it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein.
  • those skilled in the art will recognize that the methods may be performed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
  • the skilled artisan will recognize the interchangeability of various features from different embodiments disclosed herein. Similarly, the various features and steps discussed above, as well as other known equivalents for each such feature or step, can be mixed and matched by one of ordinary skill in this art to perform methods in accordance with principles described herein. Additionally, the methods which are described and illustrated herein are not limited to the exact sequence of acts described, nor a skilled artisan can select various types of lamellar material(s) to achieve the desired properties of an article made therefrom.
  • the articles disclosed herein may be formed through any suitable means. For example, the articles can be formed through injection molding, blow molding, injection blow molding, extrusion, co-extrusion, and injection stretch blow molding, and other methods disclosed herein.

Abstract

In preferred embodiments there are provided containers such as bottles comprising at least one layer made from a foamable material comprising a polymeric carrier material and microspheres which expand during heat treatment to form the foam. The articles may be mono and multilayer. The articles can be formed by various methods.

Description

    RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 11/108,345, filed Apr. 18, 2005 which claims the priority benefit under 35 U.S.C. § 119(e) of the provisional applications 60/563,021, filed Apr. 16, 2004, 60/575,231, filed May 28, 2004, 60/586,399, filed Jul. 7, 2004, 60/620,160, filed Oct. 18, 2004, and 60/643,008, filed Jan. 11, 2005, which are hereby incorporated by reference in their entireties.
  • BACKGROUND OF THE INVENTIONS
  • 1. Field of the Inventions
  • This invention relates to articles having foamable material, more specifically for mono and multi-layer articles having foamable materials and methods of making such articles.
  • 2. Description of the Related Art
  • Articles have been commonly used for holding beverages and foodstuffs. The use of articles, such as plastic containers, as a replacement for entirely glass or metal containers in the packaging of beverages has become increasingly popular. The advantages of plastic packaging include lighter weight, decreased breakage as compared to glass, and potentially lower costs. The most common plastic used in making beverage containers today is polyethylene terephthalate (“PET”). Virgin PET has been approved by the FDA for use in contact with foodstuffs. Containers made of PET are generally transparent, thin-walled, lightweight, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by pressurized contents, such as carbonated beverages. PET resins are also fairly inexpensive and easy to process.
  • Most PET bottles are made by a process that includes the blow-molding of plastic preforms, which have been made by processes including injection molding or extrusion process. The PET bottle may not provide a suitable thermal barrier for limiting thermal communication through the walls of the PET bottles. It may be desirable to reduce the heat transfer between the liquid within the bottle and the environment surrounding the bottle to maintain the temperature of the liquid within the bottles. Similarly, most inexpensive containers for holding foodstuffs do not provide an effective thermal barrier to reduce heat transfer through the container. It may be desirable to reduce the heat transfer through containers or packaging.
  • Additionally, articles in the form of conduits, food packaging, and the like may have unsuitable structural, barrier, or other characteristics. Many times fluids, foods, or beverages, such as carbonated soda, are stored in a container that may undesirably affect its contents. Unfortunately, when the food contacts the surface of some materials of the known articles, the taste of the food may be adversely altered. It may be desirable to maintain the taste of the foodstuffs in contact with the article.
  • SUMMARY OF THE INVENTIONS
  • In a preferred embodiment, there is provided a method for forming a preform. At least a portion of the preform comprises expandable material that can expand to form a thermal barrier or desired finish. The preform is heated to a temperature suitable for blow molding and at least a portion of the expandable material expands. The preform is blow molded into a container. In one arrangement, the preform is a monolayer preform. In another arrangement, the preform is a multi-layer preform.
  • In another embodiment, there is provided a process for making a foam coated polymer article comprising the acts of providing a foam coated polymer preform and blow molding the preform to a desired container shape. In one arrangement, the process comprises preheating the foam coated polymer preform before blow molding, causing the foam coating, which comprises microspheres, to initiate expansion of the microspheres. The microspheres can expand before blow molding, during blow molding, and/or after blow molding.
  • In one embodiment, a foam coated polymer article comprises at least one layer of foam surrounding at least a portion of another layer substantially comprising polyester. The foam comprises a polymer carrier material and a foaming agent.
  • In another embodiment, there is provided a process for making an article comprising foam. The foam can have a first component and a second component. The first component can expand when thermally activated. Optionally, the first component comprises microspheres that are generally in a first state of expansion. In one arrangement, the second component is a carrier material mixed with the first component. When the mixture is heated, the mixture is expanded to form a generally closed cell foam.
  • In one embodiment, the mixture is formed into a preform having microspheres that are expanded from the first state of expansion to a second state of expansion. The preform is molded into a container having the microspheres which are expanded from the second state of expansion to a third state of expansion. In one arrangement, a substantial portion of the microspheres are generally unexpanded in the first position. Optionally, a substantial portion of the microspheres are generally partially expanded in the second position. Optionally, a substantial portion of the microspheres are generally expanded in the third position.
  • In one embodiment, the preform comprises a plurality of layers and one of the layers comprises an expandable material. The preform is optionally formed into a container. In one embodiment, an inner layer of the preform or container comprises material suitable for contacting foodstuff and/or liquid and defines a holding chamber of the preform or container. In one arrangement, the inner layer comprises thermoplastic material. A second layer of the preform or container comprises expandable material including a polymer and microspheres. Alternatively, the expandable material can form an inner layer or liner of the preform or container.
  • In one embodiment, the expandable material comprises a carrier material and a foaming agent. The carrier material is preferably a material that can be mixed with the microspheres to form an expandable material. The carrier material can be a thermoplastic or polymeric material, including, but not limited to, ethylene acrylic acid (“EAA”), ethylene vinyl acetate (“EVA”), linear low density polyethylene (“LLDPE”), poly(hydroxyamino ethers) (“PHAE”), polyethylene terephtalate (“PET”) and other copolymers including polyethylene terephtalate glycol (PETG), polyethylene (“PE”), polypropylene (“PP”), polystyrene (“PS”), cellulose material, pulp, mixtures thereof, and the like. In one embodiment, the foaming agent comprises microspheres that expand when heated and cooperate with the carrier material to produce foam. In one arrangement, the foaming agent comprises EXPANCEL® micropheres.
  • In preferred embodiments, the expandable material has insulating properties to inhibit heat transfer through the walls of the container comprising the expandable material. The expandable material can therefore be used to maintain the temperature of food, fluids, or the like. In one embodiment, when liquid is in the container, the expandable material of the container reduces heat transfer between liquid within the container and the environment surrounding the container. In one arrangement, the container can hold a chilled liquid and the expandable material of the container is a thermal barrier that inhibits heat transfer from the environment to the chilled fluid. Alternatively, a heated liquid can be within the container and the expandable material of the container is a thermal barrier that reduces heat transfer from the liquid to the environment surrounding the container. Although use in connection with food and beverages is one preferred use, these containers may also be used with non-food items.
  • In one embodiment, the foam material is extruded to produce sheets that are formed into containers for holding food, trays, bottles, and the like. Optionally, the sheets are formed into clamshells that are adapted to hold food. The foam sheets can be pre-cut and configured to form a container for holding foodstuff. The sheets may be formed into a container by one or more processes, e.g., a thermomolding or thermoforming process.
  • In another embodiment, an article is provided comprising foam material that forms a coating on a paper or wood pulp based material or container. In one arrangement, the foam material is mixed with pulp. Optionally, the foam material and pulp can be mixed to form a generally homogeneous mixture which can be formed into a desired shape. The mixture may be heated before, during, and/or after the mixture is shaped to cause expansion of at least a portion of the foam material component of the mixture.
  • In another embodiment, a preform comprises at least a first layer comprising material suitable for contacting foodstuff and a second layer comprising a thermoplastic, such as polypropylene. Optionally, the first layer comprises a thermoplastic material, such as PET, and the second layer comprises foam material having polypropylene and microspheres. Optionally, the first layer comprises PET and the second layer contains mostly or entirely polypropylene. Optionally, the first layer comprises phenoxy type thermoplastic and the second layer contains another material, such as polypropylene. The preform may be formed into a container by one or more processes, e.g., a blow molding process.
  • In one embodiment, a method of producing a bottle comprises providing a preform comprising an inner layer of PET and an outer layer comprising PP. The preform is heated to a temperature not typically suitable for processing PP. The preform is blow molded into a bottle after heating the preform. In one arrangement, the outer layer comprises foam material. In one arrangement, the outer layer contains mostly or entirely PP.
  • In another embodiment, a preform comprises an inner layer that has a flange that defines at least a portion of an opening of the preform. An outer layer surrounds the inner layer and defines a substantial portion of a neck finish of a preform and forms an outer surface of a body portion of the preform.
  • In another embodiment, there is a tube comprising a first layer and a second layer. In one embodiment, the first layer comprises a thermoplastic material, such as PET, and the second layer comprises the same or different thermoplastic material, such as PP, and a foaming agent. Optionally, the first layer comprises primarily PET and the second layer comprises PP based foam material. In one arrangement, the tube is formed by a co-extrusion process. Optionally, the tube can be blow molded into a container. Optionally, the tube can be used as a fluid line to deliver ingestible liquids.
  • In another embodiment, a preform comprises an inner layer and an outer layer. The outer layer surrounds the inner layer and defines a substantial portion of a neck finish of a preform. The outer layer also forms an outer surface of a body portion of the preform
  • In another embodiment, an apparatus for molding preforms comprises a mold core section and a mold cavity section. The mold cavity section has a delivery system. The mold core section and mold cavity section cooperate to define a void when the mold core section and mold cavity section are in a closed position. The delivery system is configured to deliver tying material into the void. Optionally, the apparatus also comprises an exhaust system in fluid communication with the void.
  • In another embodiment, a method of forming a preform comprises positioning a portion of a preform on a mandrel of a mold. Tie material is delivered from an outlet of a delivery system formed within a cavity section defining a cavity. At least a portion of the preform is coated with the tie material.
  • In some embodiments, a preform comprises a neck portion and a body portion. The body portion has a wall portion and an end cap and comprises a first layer and a second layer, the first layer comprising an expandable material. In some arrangements, the expandable material is adapted to expand by heat treatment.
  • In some embodiments, a preform comprises a threaded neck portion and a body portion. The body portion includes a wall portion and an end cap. The body portion comprises expandable material forming less than about 40% by weight of the preform. In some embodiments, the expandable material comprises less than 20% by weight of the preform. The expandable material can optionally comprise microspheres and a preferably thermoplastic carrier material including those selected from the group consisting of polypropylene, PET, and combinations thereof.
  • In some embodiments, a method of producing a preform comprises forming a first layer of the preform. A second layer of the preform is formed and comprises a controllable, expandable material. In some arrangements, the first layer is formed by injecting a first material preferably comprising polyester through a gate into a space defined by a cavity mold half and a core mold half to form an article. The article comprises an inner surface and an outer surface. The second layer is formed by injecting expandable material into a second space defined by the outer surface of the article formed by the first injected material and a second cavity mold half to form the second layer of the preform.
  • In some embodiments, a method of producing a bottle comprises providing a preform having a neck portion and a body portion. The preform is heated so that a portion of the preform at least partially expands to form foam. The preform is blow molded into a bottle comprising foam material.
  • In some embodiments, an article comprises a neck portion having threads and a body portion. The body portion comprises a first layer and a second layer. The first layer has an upper end that terminates below the threads of the neck portion and comprises foam material. The second layer is positioned interior to the first layer. In some embodiments, the article is a preform, bottle, container, or the like. The second layer can optionally comprise a material suitable for contacting foodstuffs. For example, the second layer can comprise a material including at least one material selected from a group consisting of polyester, polypropylene, phenoxy-type thermoplastic, and combinations thereof.
  • In some embodiments, a bottle comprises a neck portion and a body portion. The body portion comprises an inner layer comprising polyester and an outer layer comprising foam material. The foam material comprises polypropylene. The inner layer and the outer layer define at least a portion of a wall of the body portion.
  • In some embodiments, a method of making a multilayer preform comprises providing a substrate preform which has been made by any of a variety of methods as are known in the art. The substrate preform is positioned within a cavity defined between a first mold portion and a second mold portion. First material is injected from an outlet of the first mold portion into the cavity onto the substrate preform. The first material is adapted to form a layer on the substrate preform. A second material is injected from a melt gate of the first mold portion onto the substrate preform. In some arrangements, the first material comprises a tie material. In some embodiments, the first material coats at least a portion, preferably a substantial portion of a body portion of the substrate preform. The second material can be injected directly onto the first material to form an outer layer. Optionally, the unused portion of the first material can be removed from the cavity by an exhaust system. In some arrangements, the first mold portion is a cavity section and the second mold portion is a core section.
  • In some embodiments, a method of injecting material into a mold for molding an article comprises providing an injection mold being movable between an open position and a closed position. The mold comprises a core section and a cavity section. Material is delivered through a first gate of the cavity section. Melt is delivered through a second gate of the cavity section. In some arrangements, the article is a preform or closure. The material delivered through the first gate can optionally comprise a fluid comprising a tie material.
  • In some embodiments, a mold for molding preforms or containers comprises a core section and a cavity section movable between an open position and a closed position. The core section and cavity section define a cavity when the core section and the cavity section are in the closed position. A gate in the cavity section is configured to inject melt into the cavity. An outlet in the cavity section is positioned and configured to inject a first material from an inlet line into the cavity. An inlet in the cavity section is positioned and configured to draw in material within the cavity and deliver the material to an output line. In some arrangements, the gate is positioned in the area of the cavity section for molding an end cap of a preform. Optionally, the gate, the outlet, and the inlet are spaced from each other and are formed in a molding surface of the cavity section.
  • In some embodiments, a mold for molding articles comprises a first mold section that defines a first molding surface. A second mold section defines a second molding surface. The first mold section and the second mold section cooperate to form a cavity in the shape of an article. A delivery system of the mold has a source of fluid and a feed line. The feed line is in fluid communication with the source of fluid and an output. The output is positioned along one of the first mold section and the second mold section. An exhaust system has an inlet positioned along one of the first mold section and the second mold section. The exhaust system comprises an exhaust line in fluid communication with the cavity. A melt injection gate is positioned along the second mold section and is configured to deliver melt into the cavity. In some arrangements, the delivery system further comprises a valve system configured to selectively control the amount of fluid delivered into the cavity. Optionally, the cavity is in the shape of a preform or closure.
  • In some embodiments, a mold for producing an article comprises a core half and a cavity half that are configured to mate to form a cavity for molding a preform. The cavity half has a gate. The mold has means for delivering coating material into the cavity and means for removing coating material delivered by the means for delivering coating material from the cavity. Optionally, the article can be a preform or closure. The gate can be spaced from the means for delivering coating material and the means for removing coating material.
  • In preferred embodiments laminates, preforms, containers, and articles comprising PETG and polypropylene, and methods of making the same, are disclosed. In one embodiment polypropylene may be grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion. In another embodiment polypropylene further comprises “nanoparticles” or “nanoparticular material.” In another embodiment polypropylene comprises nanoparticles and is grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds.
  • Preferred articles, preforms, containers, and articles can be made using various techniques. For example, laminates, preforms, containers, and articles can be formed through injection molding, overmolding, blow molding, injection blow molding, extrusion, co-extrusion, and injection stretch blow molding, and other methods disclosed herein and/or known to those of skill in the art.
  • In some non-limiting embodiments, the articles may comprise one or more layers or portions having one or more of the following advantageous characteristics: an insulating layer, a gas barrier layer, UV protection layers, protective layer (e.g., a vitamin protective layer, scuff resistance layer, etc.), a foodstuff contacting layer, a non-flavor scalping layer, non-color scalping layer, a high strength layer, a compliant layer, a tie layer, a gas scavenging layer (e.g., oxygen, carbon dioxide, etc), a layer or portion suitable for hot fill applications, a layer having a melt strength suitable for extrusion, strength, recyclable (post consumer and/or post-industrial), clarity, etc. In one embodiment, the monolayer or multi-layer material comprises one or more of the following materials: PET (including recycled and/or virgin PET), PETG, foam, polypropylene, phenoxy type thermoplastics, polyolefins, phenoxy-polyolefin thermoplastic blends, and/or combinations thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a preform used as a starting material for forming containers.
  • FIG. 2 is a cross-section of the preform of FIG. 1.
  • FIG. 3 is a cross-section of a blow-molding apparatus of a type that may be used to make a preferred container.
  • FIG. 4 is a side view of a container formed from a preform.
  • FIG. 5 is a cross-section of a multilayer preform.
  • FIG. 6 is a cross-section of a multilayer container formed from the multilayer preform of FIG. 5.
  • FIG. 7 is an enlarged view of the container of FIG. 6 taken along 7.
  • FIG. 8 is a cross-section of a multilayer preform.
  • FIG. 8A is an enlarged view of the preform of FIG. 8 taken along 8A.
  • FIG. 9 is a cross-section of a multilayer preform having a multilayer neck portion.
  • FIG. 10 is a cross-section of a multilayer preform in accordance with another embodiment.
  • FIG. 11 is a cross-section of a multi-layer preform having an inner layer defining an interior of the preform.
  • FIG. 12 is a cross-section of a multi-layer preform having an inner layer and an outer layer that define a neck portion.
  • FIG. 12A is a cross-section of a multi-layer preform having an inner layer and an outer layer that define a neck portion.
  • FIG. 12B is a cross-section of a multi-layer preform having an inner layer and an outer layer that define a neck portion.
  • FIG. 13 is a cross-section of a multi-layer preform having an inner layer with a flange.
  • FIGS. 13A and 13B are enlarged cross-sections of portions of multi-layer preforms in accordance with some embodiments.
  • FIG. 14 is a cross-section of a multi-layer preform having an outer layer with a coupling structure.
  • FIG. 14A is a cross-section of a container made from the preform of FIG. 14, a closure is attached to the container.
  • FIG. 14B is an enlarged view of a portion of the container and closure of FIG. 14A taken along 14B.
  • FIG. 14C is an enlarged view of a portion of the container and closure in accordance with another embodiment.
  • FIG. 15A is a cross-section of a portion of a preform having a neck portion without threads.
  • FIG. 15B is a cross-section of the preform of FIG. 15A.
  • FIG. 15C is a cross-section of a portion a multi-piece preform.
  • FIG. 16 is a cross-section of a preform in accordance with another embodiment.
  • FIG. 17 is a cross-section of a preform in accordance with another embodiment.
  • FIG. 18 is a perspective view of a closure suitable for closing a container.
  • FIG. 19 is a cross-section of a multilayer closure having an inner layer.
  • FIG. 20 is a cross-section of a multilayer closure having an inner layer extending along the sides of the closure.
  • FIGS. 21A-21E are cross-sections of multilayer closures.
  • FIGS. 22A-22B are cross-sections of sheets.
  • FIG. 23 is a perspective view of one preferred embodiment of a profile.
  • FIG. 24 is a side view of one preferred embodiment of packaging including a container having a label and a closure.
  • FIG. 25 is side view of a container and a closure in accordance with another embodiment.
  • FIG. 26A is perspective view of a container.
  • FIG. 26B is a perspective view of a tray.
  • FIG. 27 is a schematic view of an embodiment of a lamellar meltstream generation system.
  • FIG. 27A is a cross-section of lamellar material made from the lamellar meltstream generation system of FIG. 27.
  • FIG. 28 is a cross-section of a mold of a type that may be used to make the preform of FIG. 1.
  • FIG. 29 is a cross-section of a mold that may be used to make an outer layer of the preform of FIG. 5.
  • FIG. 30 is a cross-section of a mold of a type that may be used to make an inner layer of the preform of FIG. 11.
  • FIG. 31 is a cross-section of a mold of a type that may be used to make an outer layer of the preform of FIG. 11.
  • FIG. 32 is a cross-section of a mold of a type that may be used to make a closure.
  • FIG. 33 is a cross-section of a mold of a type that may be used to make an outer layer of the closure of FIG. 20.
  • FIG. 34 is a mold system configured to make multi-layer preforms having tie layers.
  • FIG. 35 is a cross-section a mold of the mold system of FIG. 34.
  • FIG. 36 is a cross-section of the mold of FIG. 35 taken along lines 36-36.
  • FIG. 37 is a cutaway close up view of the area of FIG. 35 along 37-37.
  • FIG. 38 is a cross-section of a modified mold of FIG. 35 taken along lines 36-36.
  • FIG. 39 is a cutaway close up view of a modified mold of FIG. 35 along 37-37.
  • FIG. 40 is a cross sectional view of lamellar material.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • All patents and publications mentioned herein are hereby incorporated by reference in their entireties. Except as further described herein, certain embodiments, features, systems, devices, materials, methods and techniques described herein may, in some embodiments, be similar to any one or more of the embodiments, features, systems, devices, materials, methods and techniques described in U.S. Pat. Nos. 6,109,006; 6,808,820; 6,528,546; 6,312,641; 6,391,408; 6,352,426; 6,676,883; U.S. patent application Ser. Nos. 09/745,013 (Publication No. 2002-0100566); 10/168,496 (Publication No. 2003-0220036); 09/844,820 (2003-0031814); 10/090,471 (Publication No. 2003-0012904); 10/395,899 (Publication No. 2004-0013833); 10/614,731 (Publication No. 2004-0071885), provisional application 60/563,021, filed Apr. 16, 2004, provisional application 60/575,231, filed May 28, 2004, provisional application 60/586,399, filed Jul. 7, 2004, provisional application 60/620,160, filed Oct. 18, 2004, provisional application 60/621,511, filed Oct. 22, 2004, and provisional application 60/643,008, filed Jan. 11, 2005, U.S. patent application Attorney Docket No. APTPEP1.090A entitled MONO AND MULTI-LAYER ARTICLES AND COMPRESSION METHODS OF MAKING THE SAME, filed on the same day as the present application, patent application Attorney Docket No. APTPEP1.089A entitled MONO AND MULTI-LAYER ARTICLES AND EXTRUSION METHODS OF MAKING THE SAME, filed on the same day as the present application, which are hereby incorporated by reference in their entireties. In addition, the embodiments, features, systems, devices, materials, methods and techniques described herein may, in certain embodiments, be applied to or used in connection with any one or more of the embodiments, features, systems, devices, materials, methods and techniques disclosed in the above-mentioned patents and applications.
  • A. Articles
  • In preferred embodiments articles may comprise one or more foamable materials. Articles described herein may be mono-layer or multi-layer (i.e., two or more layers). In some embodiments, the articles can be packaging, such as drinkware (including preforms, containers, bottles, closures, etc.), boxes, cartons, and the like.
  • The multi-layer articles may comprise an inner layer (e.g., the layer that is in contact with the contents of the container) of a material approved by a regulatory agency (e.g., the U.S. Food and Drug Association) or material having regulatory approval to be in contact with food (including beverages), drugs, cosmetics, etc. In other embodiments, an inner layer comprises material(s) that are not approved by a regulatory scheme to be in contact with food. A second layer may comprise a second material, which can be similar to or different than the material forming the inner layer. The articles can have as many layers as desired. It is contemplated that the articles may comprise one or more materials that form various portions that are not “layers.”
  • 1. Detailed Description of Drawings
  • With reference to FIGS. 1 and 2, a preferred monolayer preform 30 is illustrated. Generally, the preform 30 has a neck portion 32 and a body portion 34. The illustrated preform 30 can have a single layer formed of a material that can be blow-molded. The preform 30 is preferably blow molded into a container for holding liquids, such as non-carbonated liquids such as fruit juice, water, and the like. Optionally, the preform 30 can be formed into a container to hold other liquids, such as carbonated liquids. The illustrated preform 30 can be suitable for forming a 16 oz. beverage bottle that is especially well suited for holding carbonated beverage. As used herein, the term “bottle” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation a container (typically of glass and/or plastic having a comparatively narrow neck or mouth), a bottle-shaped container for storing fluid (preferably a liquid), etc. The bottle may or may not have a handle.
  • The illustrated preform 30 has a neck portion 32 which begins at an opening 36 (FIG. 2) to the interior of the preform 30 and extends to and includes the support ring 38. As used herein, the term “neck portion” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation a portion of a preform attached to a body portion. The neck portion may include a neck finish. The neck finish together with the neck cylinder may form what is referred to herein as the “neck portion.” The neck portion 32 in the illustrated embodiment is further characterized by the presence of the threads 40, which provide a way to fasten a cap or closure member to the bottle produced from the preform 30. Alternatively, the neck portion 32 may not be configured to engage a closure or may have means other than threads to engage a closure. The body portion 34 is an elongated and generally cylindrically shaped structure extending down from the neck portion 32 and culminating in an end cap 42. The illustrated end cap 42 is rounded; however, the end cap can have other suitable shapes. The preform thickness 44 will depend upon the overall length of the preform 30 and the desired wall thickness and overall size of the resulting container.
  • Referring to FIG. 3, in this blow molding process the preform 30 is placed in a mold having a cavity corresponding to the desired container shape. The preform 30 is then heated and expanded by forcing air or other suitable fluid into the interior of the preform to stretch the preform so that it fills the cavity, thus creating a container 37 (FIG. 4). This blow-molding process is described in detail below. A stretched rod or similar means may also be used to aid in the blow molding process, as is known in the art.
  • In some embodiments, a blow molding machine can receive warm articles (e.g., profiles such as sleeves, preforms, etc.) to aid in the blow molding process, as is known in the art. The mold 28 can receive warm preforms from an injection molding machine, such as the injection molding machines described herein. The preforms manufactured by the injection molding machine can be quickly transported to the mold 28 via a delivery system. The inherent heat of the preforms may provide one or more of the following: reduced blow molding time, reduced energy required to heat preforms to a temperature suitable for blow molding, and/or the like.
  • Optionally, one or more delivery systems can be employed to transport preforms to and/or bottles away from a mold. For example, a delivery system may comprise a shuttle system (e.g., a linear or rotary shuttle system) for transporting preforms to and/or away from the mold 28. The shuttle system can batch feed preforms to or remove blow molded bottles from the mold 28. Alternatively, the delivery system can comprise a reciprocating and/or wheel delivery system. In some embodiments, a wheel delivery system is used to rapidly deliver preforms to or remove bottles from the mold 28. Advantageously, wheel delivery systems can continuously transport articles to and from the mold 28 thereby increasing output.
  • It is contemplated that a delivery system can be used in combination with molding machine suitable for blow molding preforms, extrusion blow molding, extruding profiles and the like. Additionally, a delivery system may comprise a plurality of systems, such a wheel delivery system and a shuttle system that cooperate to transport articles.
  • Referring to FIG. 4, there is disclosed an embodiment of a container 37 that can be formed from the preform 30. The container 37 has a neck portion 32 and a body portion 34 corresponding to the neck and body portions of the preform 30. As described above with respect to preforms, the neck portion 32 can be adapted to engage with closures. The illustrated neck portion 32 is characterized by the presence of the threads 40 which provide a way to fasten a cap onto the container. Optionally, the wall of the container 37 may inhibit, preferably substantially prevent, migration of gas (e.g. CO2) through the wall of the container 37. In some embodiments, the container 37 comprises substantially closed cell foam that may inhibit the migration of fluid through the foam.
  • The blow molding operation normally is restricted to the body portion 34 of the preform with the neck portion 32 including any threads, pilfer ring, and/or support ring retaining the original configuration as in the preform. However, any portion(s) of the preform 30 can be stretch blow-molded. The container 37 can also be formed by other processes, such as through an extrusion process or combinations of process (e.g., injection over an extruded portion). For example, the container 37 can be formed through an extrusion blow molding process. Thus, the containers described herein may be formed from preforms, extruded profiles, etc.
  • Referring to FIG. 5, a cross-section of one type of multilayer preform 50 having features in accordance with a preferred embodiment is disclosed. The preform 50 preferably comprises an uncoated (monolayer) preform 39 coated with an outer layer 52. Preferably, the uncoated preform 39 comprises a polymer material, such as polypropylene, polyester, and/or other thermoplastic materials, preferably suitable for contacting food. In one embodiment, for example, the uncoated preform 39 comprises substantially polypropylene. In another embodiment, the uncoated preform 39 comprises substantially polyester, such as PET.
  • The multilayer preform 50 has a neck portion 32 and a body portion 34 similar to the preform 30 of FIGS. 1 and 2. In the illustrated embodiment, the outer layer 52 is disposed about at least a portion of the body portion 34. In one embodiment, the outer layer 52 is disposed about a substantial portion, preferably the entire portion, of the surface of the body portion 34 of the inner layer (illustrated as the preform 39 of FIG. 1), terminating at the bottom of the support ring 38. The outer layer 52 in the illustrated embodiment does not extend to the neck portion 32, nor is it present on the interior surface of the inner layer 39 which is preferably made of a material suitable for contact with the contents of the resulting container. The outer layer 52 may comprise either a single material or several layers (e.g., microlayers) of one or more materials. Further, the outer layer 52 can be generally homogenous, generally heterogeneous, or somewhere inbetween. Although not illustrated, the outer layer 52 can form other portions of the preform 50. For example, the outer layer 52 can form at least a portion of the inner surface of the preform 50 (such as when the outer layer is injected over a tube or profile that is open on both ends), or a portion of the neck portion 32. The outer layer 52 may or may not be suitable for contacting foodstuffs.
  • The overall thickness 56 of the preform is equal to the thickness of the initial uncoated preform 39 (i.e., the inner layer 54) plus the thickness 58 of the outer layer 52, and is dependent upon the overall size and desired coating thickness of the resulting container. However, the preform 50 may have any thickness depending on the desired thermal, optical, barrier, and/or structural properties of the container formed from the preform 50. If a tie layer is included, the overall thickness will include any thickness of the tie layer. The preforms and containers can have layers which have a wide variety of relative thicknesses. In view of the present disclosure, the thicknesses of a given layer and of the overall preform or container, whether at a given point or over the entire container, can be chosen to fit a manufacturing process or a particular end use for the container. In the illustrated embodiment, the outer layer 52 has a generally uniform thickness. However, the outer layer 52 and/or inner layer 54 need not to be uniform and they may have, for example, a thickness that varies along the longitudinal axis of the preform 50.
  • The multilayer preforms can be used to produce the containers. For example, the preform 50 can be used to form a container 180 (FIG. 6). In one embodiment, the outer layer 52 cooperates with the inner layer 54 so as to provide a layer or space 85 therebetween, as shown in FIGS. 6 and 7. The layer 85 can permit the passage of air between the layers 52, 54 and can advantageously further insulate the container 83. The passages can be formed between the layer 52 which loosely surrounds the inner layer 54. Alternatively, the outer layer 52 can be sized and configured to snuggly hold the inner layer 54 and so that inner surface of the layer 52 contacts the outer surface of the layer 54. In some embodiments, the layer 85 can be a foam layer that is similar, or dissimilar, to one or more of the layers 52, 54. In yet another embodiment, the layer 85 can be a layer that couples the layer 52 to the inner layer 54. For example, the layer 85 can be crafting or a tie layer that inhibits, preferably that substantially prevents, relative movement between the layers 52, 54. For example, the layer 85 can be an adhesive layer that limits relative movement between the layers 52, 54. It is contemplated that some or none of the layers of the embodiments disclosed herein can be coupled together with a tie layer or the like.
  • In one embodiment, at least one of the layers 52, 54 can be treated to promote or reduce adhesion between the layers 52, 54. For example, the outer surface of the inner layer 54 can be chemically treated so that the outer layer 52 adheres to the inner layer 54. For example, a tie material can be applied to react and chemically treat one or more of the layers 52, 54. However, it is contemplated that any of the layer(s) can be modified to achieve the desired interaction between the layers of the preform. Optionally, the layers 52, 54 can be directly adhered together.
  • In some embodiments, a container comprises foam material that preferably has insulating properties to inhibit thermal transfer through the walls of the container. When liquid is in the container, such as container 83 of FIG. 6, for example, the foam material forming a wall 84 of the container 83 can reduce heat transfer between the liquid contents and the environment surrounding the container 83. For example, the container 83 can hold chilled contents, such as a carbonated beverage, and the foam insulates the container 83 to inhibit temperature changes of the chilled fluid. Thus, the contents can remain chilled for a desired duration of time despite an exterior ambient temperature that is greater than the temperature of the liquid. Alternatively, a heated material, such as a hot beverage, can be within the container 83 and the wall 84 can insulate the container 83 to inhibit heat transfer from the liquid to the environment surrounding the container 83. Further, the foam material of the container 83 can result in a surface temperature of the container 83 that is within a desired temperature range so that a person can comfortably grip the container 83 holding a heated or chilled liquid. The thickness of the foam layer and the size and configuration of the foam portion of the container can be varied in order to obtain the desired thermal properties of the container.
  • Referring to FIG. 8, a preferred embodiment of a multilayer preform 60 is shown in cross-section. One difference between the coated preform 60 and the preform 50 in FIG. 5 is the relative thickness of the two layers in the area of the end cap. In the preform 50, the outer layer 52 is generally thinner than the thickness of the initial preform throughout the entire body portion of the preform. In the preform 60, however, the outer layer 52 is thicker at 62 near the end cap 42 than it is at 64 in the wall portion 66, and conversely, the thickness of the inner layer 54 is greater at 68 in the wall portion 66 than it is at 70, in the region of the end cap 42. This preform design is especially useful when an outer coating is applied to the initial preform in an overmolding process to make a multilayer preform, as described below, where it presents certain advantages including that relating to reducing molding cycle time. Either layer may be homogeneous or may be comprised of a plurality of microlayers. In other embodiments of the preform 60 which are not illustrate, the outer layer 52 is thinner at 62 near the end cap 42 than it is at 64 in the wall portion 66, and conversely, the thickness of the inner layer 54 is less at 68 in the wall portion 66 than it is at 70, in the region of the end cap 42. At least one of the layers 52, 54 can optionally compromise a barrier material.
  • FIG. 8A is an enlargement of a wall section of the preform showing the makeup of the layers in a LIM-over-inject embodiment. The layer 54 is the inner layer of the preform and layer 52 is the outer layer of the preform. The outer layer 52 comprises a plurality of microlayers (i.e., lamellar material) of material as will be made when a LIM system is used. Of course, not all preforms of FIG. 8 will be of this type.
  • Referring to FIG. 9, another embodiment of a multilayer preform is shown in cross-section. The primary difference between the coated preform 76 and the preforms 50 and 60 in FIGS. 5 and 8, respectively, is that the outer layer 52 is disposed on the neck portion 32 as well as the body portion 34.
  • The preforms and containers can have layers which have a wide variety of relative thicknesses. In view of the present disclosure, the thickness of a given layer and of the overall preform or container, whether at a given point or over the entire container, can be chosen to fit a coating process or a particular end use for the container. Furthermore, as discussed above in regard to the layer(s) in FIG. 8, the layers in the preform and container embodiments disclosed herein may comprise a single material, more than one materials, or several materials.
  • The apparatuses and methods disclosed herein can be also used to create preforms with three or more layers. In FIG. 10, there is shown a three-layer embodiment of a preform 132. The preform shown therein has two coating layers, a middle layer 134 and an outer layer 136. The relative thickness of the layers shown in FIG. 10 may be varied to suit a particular combination of materials or to allow for the making of different sized bottles. As will be understood by one skilled in the art, a procedure analogous to that disclosed herein would be followed, except that the initial preform would be one which had already been coated, as by one of the methods for making coated preforms described herein, including overmolding.
  • FIG. 11 illustrates a cross-section of one type of multi-layer preform 160 having features in accordance with a preferred embodiment. The preform 160 preferably comprises an outer layer 162 and an inner layer 164.
  • The multi-layer preform 160 has a neck portion 132 and a body portion 134 similar to the preforms described above. Preferably, the outer layer 162 forms the outer surface 165 of the body portion 134 and the outer surface 166 of the neck portion 132. The outer surface 166 can be configured to engage a closure. The outer layer 162 is disposed about a substantial portion, preferably the entire portion, of the inner layer 164.
  • The illustrated outer layer 162 extends from the upper end 168 of the inner layer 164 to an opening 169 of the preform 160. The inner layer 164 in the illustrated embodiment does not extend along the neck portion 132. Thus, the outer layer 162 can form substantially the entire neck portion 132, as shown in FIG. 11. In other embodiments, the upper end 168 of the inner layer 164 can be disposed at some point along the neck portion 132. Thus, the inner layer 164 and outer layer 162 may both define the neck portion. In one non-limiting embodiment, the outer layer 162 comprises at least about 70% of neck portion (or neck finish) of the neck portion 132 by weight. In another non-limiting embodiment, the outer layer 62 comprises at least about 50% of the neck portion 132 by weight. In yet another non-limiting embodiment, the outer layer 162 comprises more than about 30% of the neck portion 132 by weight.
  • The overall thickness 171 of the preform 160 is equal to the thickness 172 of the outer layer 162 plus the thickness 174 of the inner layer 164, and is dependent upon the overall size of the resulting container. In one embodiment, the thickness 172 of the outer layer 162 is substantially greater than the thickness 174 of the inner layer 164. The outer layer 162 and inner layer 164, as illustrated, have generally uniform thicknesses. However, the outer layer 162 and inner layer 164 may not have uniform thicknesses. For example, one or both of the layers 162, 164 may have a thickness that varies along the length of the preform 160.
  • The outer layer 162 comprises a first material and the inner layer 164 preferably comprises another material. For example, the outer layer 162 can comprise foam material and the inner layer 164 can comprise an unfoamed polymer material, such as PET (e.g., virgin or post-consumer/recycled PET), phenoxy, etc. Preferably, a substantial portion of the outer layer 162 comprises a first material and a substantial portion of the inner layer 164 comprises a second material. The first and the second materials can be different or similar to each other.
  • FIG. 12 is a cross-section view of a multi-layer preform 180. The preform 180 is generally similar to the preform 160, and thus, many aspects of preform 180 will not be described in detail. The preform 180 comprises an inner layer 184 and an outer layer 183. The inner layer 184 defines a substantial portion of the interior surface 173 of the preform 180. The inner layer 184 has an end 188 that is proximate to an opening 191 of the preform 180. In the illustrated embodiment, the outer layer 183 defines an outer surface 186 of the neck portion 132, and the inner layer 184 defines the inner surface 187 of the neck portion 132. Of course, the outer layer 183 can be configured to engage a closure. In the illustrated embodiment, the outer surface 86 defines threads 189 adapted to receive a threaded cap (e.g., a screw cap).
  • Although not illustrated, preforms 160 and 180 can include more than two layers. For example, the outer layer 162 of the preform 160 can comprise a plurality of layers comprising one or more of the following: lamellar material, foam material, PP, PET, and/or the like. Similarly, the inner layer 164 can comprise a plurality of layers. One of ordinary skill in the art can determine the dimensions and number of layers that form the preform described herein. The layers 183, 184 can be made of similar or different materials as the layers 162, 164 described above.
  • Optionally, a layer can be coated over at least a portion of the preform to prevent abrasion or wearing, especially if at least a portion of the preform is made of foam material. For example, a coating layer can surround the threads of a neck portion made of foam and can comprise PET, PP, combinations thereof, or other thermoplastic materials.
  • FIG. 13 is a cross-sectional view of a preform 190. The preform 190 is similar to the preform 180 illustrated in FIG. 12, except as further detailed below.
  • The preform 190 comprises an inner layer 194 that extends downwardly from the opening 191 and defines the interior of the preform. The inner layer 194 comprises a flange 193. As used herein, the term “flange” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, one or more of the following: a lip, an elongated portion, rim, projection edge, a protrusion, and combinations thereof. The flange can function as a locking structure. Additionally, the preform may optionally include a plurality of flanges.
  • The flange 193 defines a portion of an inner surface 201 and at least a portion of an upper surface 195 of the preform. The flange 193 can have a constant or varying thickness F depending on the desired properties of the neck portion 132. In some embodiments, including the illustrated embodiment, the flange 193 is positioned above structure(s) (e.g., threads 192) for receiving a closure. In some embodiments, the flange 193 defines a portion of one or more threads, protrusions, recesses, and/or other structures for engaging a closure.
  • With continued reference to FIG. 13, the flange 193 extends about at least a portion of the periphery of the opening 191 and defines a layer of material. The flange 193 preferably extends about the entire periphery of the opening 191. Thus, the flange 193 can be a generally annular flange. When a closure is attached to the neck portion 132 of a container made from the preform 190, the upper surface 195 of the flange 193 can form a seal with the closure to inhibit or prevent foodstuffs from escaping from the container. The flange 193 can inhibit or prevent separation between the inner layer 194 and the outer layer 199.
  • One or more locking structures 197 of FIG. 13 can inhibit relative movement between the inner layer 194 and an outer layer 199. As used herein, the term “locking structure” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, one or more of the following: protrusions, surface treatments (e.g., roughened surface), prongs, protuberances, barbs, flanges, recesses, projections, textured pattern, or the like, preferably for inhibiting or reducing movement between the layers 194 and 199. The locking structure 197 can be formed by the inner layer 194 and/or the outer layer 199. In the illustrated embodiment, the locking structure 197 is a protrusion extending from and about the outer surface of the inner layer 194. In some embodiments, the locking structure 197 is an annular protrusion extending circumferentially about the outer surface of the inner layer 194. The locking structure 197 can be continuous or discontinuous structure. The inner layer 194 can have one or more locking structures, such as a textured pattern (e.g., a series of grooves, protuberances, and the like).
  • Additionally, the locking structure 197 can be configured to provide positive or negative draft. For example, the inner layer 194 can comprise a somewhat flexible material (e.g., PET) and a locking structure 197 that can provide positive draft during mold removal. In some embodiments, the outer layer 199 comprises a somewhat rigid material (e.g., olefins) that can provide positive or negative draft during mold removal.
  • The outer layer 199 is configured to receive the locking structure 197. The locking structure 197 effectively locks the outer layer 199 to the inner layer 194. Although not illustrated, a plurality of locking structures 197 can be defined by the layers 194, 199 and may be disposed within the neck portion 132 and/or the body portion 134 of preform 190. In some embodiments, a tie layer can be used to couple the inner layer 194 to the outer layer 199. In one embodiment, the inner layer 194 and the outer layer 199 are formed of materials that bond or adhere to each other directly. In other embodiments, the inner layer 194 is tied to the outer layer 199, so that the layers 194 and 199 can be easily separated during, e.g., a recycling process. However, an article comprising a tie layer can be recycled in some embodiments.
  • The upper end of the outer layer 199 is spaced from the upper surface 195 of the preform. A skilled artisan can select the thicknesses of the layers 194, 199 to achieve the desired structural properties, thermal properties, durability, and/or other properties of the preform.
  • FIGS. 13A and 13B illustrate modified embodiments of a portion of the preform 190 of FIG. 13. The preform 190 of FIG. 13A has a flange 193 that extends along a portion of the upper surface 195 of the preform. In some non-limiting embodiments, the length LF of the flange 193 is less than about 95% of the wall thickness T of the neck portion 132. In one non-limiting embodiment, the length LF of the flange 193 is about 50% to 90% of the wall thickness T of the neck portion. In certain non-limiting embodiments, the length LF of the flange 193 is about 60%, 70%, 75%, or 80%, or ranges encompassing such percentages of the wall thickness T of the neck portion. In another non-limiting embodiment, the length LF of the flange 193 is about 40% to 60% of the wall thickness T of the neck portion. In yet another embodiment, the length LF of the flange 193 is less than about 40% of the wall thickness T of the neck portion.
  • FIG. 13B illustrates a portion of a preform having an outer layer 203 that defines a flange 223. The flange 223 extends inwardly and defines an upper surface 225. The flange 223 can define the interior surface of the preform, or be spaced therefrom. The flange 223 can have a length similar to or different than the length of the flange 193. The neck portion 132 has threads for receiving a closure. However, the neck portion can have other structures (e.g., recesses, ridges, grooves, etc.) for engaging a closure. The preforms described above can be modified by adding one or more layers to achieve desired properties. For example, a barrier layer can be formed on the body portions of the preforms.
  • FIG. 14 illustrates a modified embodiment of a preform 202. The preform 202 has a neck portion 132 that defines a coupling structure 207 configured to receive a closure. As used herein, the term “coupling structure” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation a feature, such as a positive (e.g., a projection, protuberance, and the like) or negative feature (e.g., an indentation, recess, and the like). A coupling structure may be configured to engage a closure to hold the closure in a desired position.
  • The illustrated coupling structure 207 is in the form of a recess adapted to receive a portion of a closure device. The coupling structure 207 can extend about one or more portions of the preform 202. In other embodiments, the coupling structure 207 extends about the entire periphery or circumference of the preform 202. The coupling structure 207 can have a curved (e.g., semi-circular), v-shaped, u-shaped, or any other suitable cross-sectional profile. Although not illustrated, the structure 207 can be a protrusion, such as an annular protrusion, defined by an outer layer 203. Optionally, the preform 202 can have a plurality of coupling structures 207 so that the closures of various configurations can be attached to a container made from the preform. The distance between an upper surface 205 and the structures 207 and the shape of the structure 207 is determined by the geometry of closure used to seal and close the container made from the preform 202.
  • FIG. 14A illustrates a container 211 produced from a preform 202 of FIG. 14. A closure 213 is attached to the neck portion 132 of the container 111. The closure 213 can be a one-piece or multi-piece closure. The closure 213 can be temporarily or permanently attached to the container 211. The entire closure 213 can be removed from the container 211 when the liquid is consumed. In other embodiments, a portion of the closure 213 can be removed while another portion of the closure 213 remains attached to the container 211 during consumption. The closure 213 can be semi-permanently or permanently attached to the container. If the closure 213 is semi-permanently attached to the container 211, the closure 213 can be pulled off the container 211. In one embodiment, if the closure 213 is permanently attached to the container 211, the closure 213 and container 211 can form a generally unitary body.
  • As shown in FIG. 14B, the upper surface 205 of the preform and the closure 213 can form a seal 231, preferably forming either a hermetic seal or other seal that inhibits or prevents liquid from escaping between the container 211 and the closure 213. Optionally, the container 211 can have a gasket or removable seal. For example, the container 211 can have a removable seal, such as a membrane adhered to the upper lip of the container, or a portion of the closure 213 that can be removed. The removable seal can have a tab or ring for convenient gripping and removal of the seal. Alternatively, the seal 231 can be formed by a membrane or sheet that can be broken or pieced in order open the container 211. In some embodiments, an outer layer 203 of the container 211 is formed of a generally high strength material or rigid material (e.g., PP), so that the flange 209 can be compressed between the closure 213 and the outer layer 203 to ensure that the integrity of the seal 231 is maintained.
  • As shown in FIGS. 14A and 14B, the closure 213 has a body 215 and a cover 218. The body 215 can be connected to the cover 218 by a hinge 221 (e.g., a molded material acting as a living hinge or other structure to permit movement). A latch or tang 217 (FIG. 14A) can fasten the cover 218 to the body 215. The latch 217 can be moved to release the cover 218 in order to open the closure 213. Alternatively, the cover 218 and body 215 can be separate pieces so that the cover 218 can be removed from the body 215. When the closure 213 is in the opened position, contents can be delivered out of the container 211, preferably delivered while the body 215 remains attached to the neck finish. After the desired amount of foodstuff has been removed from the container 211, the cover 218 can be returned to the closed position to reseal the container.
  • The body 215 of the closure 213 can be releasably coupled to the neck portion. For example, the body 215 can be snapped onto the neck portion 132. Alternatively, the body 215 can be permanently coupled to the neck portion 132. The neck portion 132 comprises one or more closure attaching structures 227, so that the closure 213 can be snapped onto and off of the container. The neck portion 132 in the illustrated embodiment has a closure attaching structure 227 in the form of a negative feature, such as a recess or indentation. The body 215 can be permanently coupled to outer layer 203 by a welding or fusing process (e.g., induction welding), an adhesive, frictional interaction, and/or the like. The container 211 can be configured to receive various types of closures, such as BAP® closures produced by Bapco Closures Limited (England) (or similar closures), screw caps, snap closures, and/or the like. A skilled artisan can design the neck finish of the container 211 to receive closures of different configurations.
  • With continued reference to FIG. 14A, the container 211 is particularly well suited for hot-fill applications. The container 211 can generally maintain its shape during hot-fill processes. After blow molding or hot-filling, final dimensions of the neck portion of the container 211 are preferably substantially identical to the initial dimensions of the preform. Additionally, this results in reduced dimensions variations of the threads on the neck finish. For example, the inner layer 284 can be formed of a material for contacting foodstuffs, such as PET. The outer layer 203 can comprise moldable materials (e.g., PP, foam material, crystalline or semi-crystalline material, lamellar material, homopolymers, copolymers, combinations thereof, and other heat resistant materials described herein) suitable for hot-filling. The outer layer 203 provides dimensional stability to the neck portion 132 even during and/or after hot-filling. The width of the outer layer 203 can be increased or decreased to increase or decrease, respectively, the dimensional stability of the neck portion 132. Preferably, one of the layers forming the neck portion 132 comprises a material having high thermal stability; however, the neck portion 132 can also be made of materials having low temperature stability, especially for non hot-fill applications.
  • Additionally, the dimensional stability of the outer layer 203 ensures that the closure 213 remains attached to the container 211. For example, the outer layer 203 may comprise a high strength material (e.g., PP) and can maintain its shape thereby preventing the closure 213 from unintentionally decoupling from the container 211.
  • With reference to FIG. 14C, the container has a neck portion that comprises closure attaching structures for a snap fit. The neck portion in the illustrated embodiment has a closure attaching structure 227 in the form of a positive feature, such as a protrusion, flange, or the like suitable for engaging the closure 213. The closure attaching structure 227 can form an annular protrusion that extends circumferentially about the neck portion. The closure 213 can have a one-piece or multi-piece construction. The illustrated container 211 has an upwardly tapered wall forming the neck finish. The tapered portion of the neck finish can bear against the closure 213 to form a seal.
  • FIG. 15A illustrates a portion of a preform 220 in accordance with another embodiment. The preform 220 has a support ring 222 and a body portion 224 extending downwardly therefrom. The preform 220 has an opening 226 at its upper end. The neck finish of the preform may or may not have threads. In some embodiments, threads are attached to the neck region 225 of the preform. It is contemplated that the preform 220 can be formed without a support ring. A support ring and/or threads may optionally be formed on the preform 220 in subsequent processes.
  • FIG. 15B illustrates the preform 220 after closure attaching structures 228 have been attached to the neck region 225. It is contemplated that the threads, structures engaging a snap cap, or other type of mounting or attaching structure can be attached to the neck region 225 before or after the preform 220 has been made into a container. For example, the closure mounting structures 228 can be attached to the preform 220 after the preform has been molded, preferably blow molded into a container.
  • Preforms can have other portions that are attached or coupled to each other. FIG. 15C illustrates a preform 234 that has at least a portion of the neck finish 240 that is coupled to a body 242 of the preform. The illustrated preform 234 has a portion 238 that is coupled to the upper end 250 of the lower portion 252 of the preform 234. The portion 238 may comprise different materials and/or microstructures than the lower portion 252. In some embodiments, the portion 238 comprises crystalline material. Thus, the preform 230 may be suitable for hot fill applications. The lower portion 252 may be amorphous to facilitate the blow molding process. In some embodiments, the upper portion 238 comprises a different material than the lower portion 252. A skilled artisan can select the material that forms the preform. In some embodiments, the upper end 250 is positioned below or at the support ring. The preforms illustrated in FIGS. 15A to 15C can have monolayer or multilayer walls.
  • The preforms, including the monolayer and multiplayer preforms, described above can have other shapes and configurations. FIG. 16 illustrates a preform 270 having a tapered body portion 272 and a neck finish 274. The preform 270 can be blow molded to form a container in the form of a jar, for example. A jar or other similar container can have a mouth or opening that is larger than the opening of a bottle. The preform 270 has a support ring 278 and one or more closure attaching structures 279, preferably configured to interact with a snap closure or other type of closure. FIG. 17 illustrates an embodiment of a preform with a neck finish without threads. The preform 280 comprises a body portion 281, which has an end cap 283, and a neck finish 282. The preform 280 may be suitable for blow molding into a container. The preforms illustrated in FIGS. 16 and 17 can be monolayer or multilayer preforms (e.g., having layers described above). The preforms described above can be formed without a neck finish.
  • The preforms, such as those depicted in FIGS. 1-18, can be subjected to a stretch blow-molding process. The blow molding process is described primarily for the monolayer preform 30, although the multi-layer preforms (e.g., preforms 50, 60, 76, 80, 132, 160, 180, 290, and 216) can be processed in a similar manner. The containers described above can be formed by various molding process (including extrusion blow molding), for example.
  • 2. Detailed Description of Closures
  • As described above, closures can be employed to seal containers. As used herein, the term “closure” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a cap (including snap cap, flip cap, bottle cap, threaded bottle cap, pilfer-proof cap), a crown closure, cork (natural or artificial), punctured seal, a lid (e.g., a lid for a cup), multi-piece closure (e.g., BAP® closures produced by Bapco Closures Limited (England) or similar closure), snap closures, and/or the like.
  • Generally, the closures can have one or more features that provide further advantages. Some closures can have one or more of the following: tamper evident feature, tamper resistant feature, sealing enhancer, compartment for storage, gripping structures to facilitate removal/placement of the closure, non-spill feature, and combinations thereof.
  • Closures can have a one-piece or multi-piece construction and may be configured for permanently or temporarily coupling to a container. For example, the closure illustrated in FIG. 14A has a multi-piece construction. The closure illustrated in FIG. 18 has a one-piece construction. The terms “closure” and “cap” may be used interchangeably herein. It is contemplated that closures can be used with bottles, boxes (especially boxes used to hold foodstuff, such as juices, for example), cartons, and other packaging or articles. As used herein, the term “bottle cap” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a cap suitable for being attached to a bottle, such as a glass or plastic bottle (e.g., bottle typically configured to hold alcoholic beverages or juices) and may or may not have threads. Bottle caps are typically removed by using a bottle opener, as in known in the art. The term “threaded bottle cap” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a cap (e.g., a screw cap) suitable for being attached to bottle having threads. In view of the present disclosure, embodiments of closures having threads may be modified to form bottle caps, or other types of closures for containers of different configurations. In some embodiments, closures can threadably engage a container or be attached to a container by various methods, such as sonic welding, induction welding, a multi-step molding process, adhesives, thermoforming, and the like.
  • FIG. 18 illustrates one embodiment of a closure 302 that can be coupled to an article, such as the neck portion of a container. In the illustrated embodiment, the closure 302 has internal threads 306 (FIG. 19) that are configured to mate with the threads of a neck portion so that the closure 302 can be removably coupled to a container. The closure 302 can be fastened to the container (e.g., a bottle) to close the opening or mouth of the bottle. The closure 302 includes a main body 310, and an optional tamper evidence structure or anti-tamper structure, such as a band 313 (or skirt) coupled to the body 310 by one or more connectors 312. The connectors 312 can be sized and adapted so that when the closure 302 is removed from a container, the connectors 312 will break, thus separating the body 310 and the band 313 indicating that the closure 302 has been removed from the associated container. Although not illustrated, other types of temper evidence structures can be employed. A surface 316 of the body 310 can have a surface treatment, such as grooves, ridges, texture treatment, and/or the like to facilitate frictional interaction with the closure 302.
  • With respect to FIG. 19, the closure 302 comprises the body 310 and may or may not have a liner. The illustrated closure 302 comprises an optional inner closure layer 314. The illustrated closure inner layer 314 is in the form of a liner contained within an outer portion 311 of the body 310. The liner 314 can be adapted to be in contact with foodstuff or liquid and may form a seal with the lip that forms the opening of the bottle. Thus, the liner 314 forms a substantial portion, or the entire portion, of a contact area of the closure 304.
  • The liner 314 can be a barrier liner, such as an active or passive barrier liner. The liner 314 can function as a fluid barrier (e.g., a liquid or gas), flavor barrier, and combinations thereof. For example, the liner 314 can be a gas barrier that inhibits or prevents the passage of oxygen, carbon dioxide, and the like therethrough. In some embodiments, the liner 314 can have scalping capabilities, such as gas scalping (e.g., oxygen scalping).
  • The liner 314 can be pressed against a lip of a bottle to prevent liquid from escaping from the container that is sealed by the closure 302. In one embodiment, the liner 314 is a gas barrier that prevents or inhibits gas from escaping from the container. In another embodiment, the liner 314 is a flavor barrier that can prevent or limit the change of the taste of the fluid within the container. For example, the liner 314 can be formed of a polymer (e.g., a thermoplastic material) that can act as a flavor barrier to ensure that foodstuff in the container maintains a desirable flavor. Thus, the liner 314 can help to ensure that the body 310 does not impart flavor and/or odor to foodstuff in the container.
  • Many times, a somewhat flavor imparting material and/or flavor reducing or scalping material (e.g., polyolefins such as polypropylene or polyethylene) is used to form a container or closure, such as a cap of a bottle, due to its physical properties (e.g., durability, toughness, impact resistance, and/or strength). In certain embodiments polypropylene may exhibit one or more physical properties which are preferred to the physical properties of polymers such as PET. Unfortunately, in certain circumstances polypropylene has a tendency to reduce or scalp the flavor of the contents of the bottle or to remove desired flavors or aromatic components from the contents. Thus, a person consuming the food previously in contact with the PP may be able to recognize a change in flavor. Advantageously, the liner 314 can comprise a flavor preserving material so that the food stuff in the container is not generally affected when the foodstuff contacts the liner 314. Preferably, the flavor preserving material is a material approved by the FDA for contacting foodstuff.
  • In some non-limiting embodiments, the flavor preserving material comprises PET (such as virgin PET), phenoxy type-thermoplastic, and/or the like. The body 310 can therefore be made of a flavor scalping material, such as polypropylene, to provide desired physical properties and the liner 314 comprises PET for an effective flavor barrier to ensure that the contents of container maintain a desirable taste. It is contemplated that the liner 314 can be formed of any material suitable for contacting the food stuff in the container. In some embodiments, the liners 314 can be formed of foam material described herein that may or may not substantially alter the taste of the contents of the container. Additionally, the thickness of the liner 314 can be increased to inhibit gas or other fluids from passing through the liner. Optionally, the liner 314 can be a monolayer or multilayer structure. For example, the liner 314 can comprise an inner layer of PET (i.e., the layer in contact with the container contents) and an outer layer of foam material.
  • The liner 314 can have a layer suitable for contacting foodstuffs and one or more layers acting as a barrier, similar to the preforms described herein. In some embodiments, for example, the liner 314 can comprise a first layer and a second layer wherein the first layer comprises a foam material and the second layer comprises a barrier material. Thus, a second layer can reduce or inhibit the migration of fluid through the liner 314 and the first layer insulates the closure 302. In some embodiments, the liner 314 comprises a layer of PET and a layer comprising a second material. The PET layer preferably is the lowermost layer so that it forms a seal with the lip of a container. The second material can be EVA or other suitable material for forming a portion of a liner.
  • In some embodiments, the liner 314 of FIG. 19 can be pre-formed and inserted into the body 310. For example, the body 310 can be shaped like a typical screw cap used to seal a bottle. The liner 314 is formed by cutting out a portion of the sheet, which is described below. The pre-cut liner 314 can then be inserted into the body 310 and positioned as shown in FIG. 19. Alternatively, the liner 314 can be formed within the body 310. For example, the liner 314 can be formed through a molding process, such as over-molding. At least a portion of the liner 314 can be formed by a spray coating process. For example, a monolayer liner can be sprayed and coated with a polymer (e.g., PET, phenoxy type thermoplastic, or other materials described herein) resulting in a multilayer liner.
  • A further advantage is optionally provided where the liner 314 can be retained in the body 310 or can be attached to the container. The liner 314 can be attached to the body 310 such that the liner 314 remains coupled to the body 310 after the body has been separated from the container. Alternatively, the liner 314 can be coupled to the container so that the body 310 and liner are separable. For example, the liner 314 can be transferred to the body 310 to the opening of a container by a welding process, such as an induction welding process.
  • A further advantage is optionally provided where at least a portion of the closure 302 is formed of material to provide a comfortable gripping surface so that a user can comfortably grip the closure 302. The body 310 may comprise a material for sufficient rigidity, (e.g., PP), compressibility for a comfortable grip (e.g., foam material), and/or the like. In some embodiments, the outer portion 311 of the body 310 can comprise foam to increase the space occupied by the outer portion 311 and can provide the user with greater leverage for easy opening and closing of the closure 302. For example, the closure 302 can have an internally threaded surface that is configured to threadably mate with an externally threaded surface of the container. The enlarged outer portion 311 can provide increased leverage such that the user can easily rotate the closure 302 onto and off of a container. Advantageously, a similar, or same, amount of material that forms a conventional cap can be used to form the enlarged diameter closure.
  • In some embodiments, at least a portion of one of the portions 311 and liner 314 can be formed of foam material to achieve a very lightweight closure due to the low density of the foam material. The reduced weight of the closure 302 can desirably reduce the transportation cost of the closure 302. Additionally, a foam material of the closure 302 can reduce the amount of material that is used to form the closure, since the foam material may have a substantial number of voids.
  • The closures described below can be similar to or different than the closure illustrated in FIG. 19. With respect to FIG. 20, the closure 330 has a body 331 that comprises an inner portion 332 and an outer portion 334. The illustrated wall 335 comprises the portions 332, 334. The inner portion 332 may define at least a portion of the interior of the closure 330 and can optionally define one or more of the threads 336. The inner portion 332 can be formed by an injection molding process, spray coating process, or other process described herein for forming a portion of an article. In some non-limiting embodiments, the inner portion 332 comprises polyolefin (e.g., PET), phenoxy type thermoplastics, and/or other materials described herein. FIGS. 21A to 21E illustrate non-limiting embodiments of closures. FIG. 21A illustrates a closure 340 that has an outer portion 342 and an inner portion 344 that forms at least a portion of the interior of the closure 340. That is, the outer portion 342 and the inner portion 344 each can define a portion (e.g., the threads) of the interior surface of the closure 340. The inner portion 344 is set into the outer portion 342; however, in other embodiments the inner portion 344 is not set into the outer 342. FIG. 21B illustrates a closure 350 that comprises an inner portion 354 comprising a plurality of layers 356, 358. FIG. 21C illustrates a closure 360 comprising a plurality of layers. An outer layer 362 forms the outer surface (including the top and wall) of the closure 360. An intermediate layer 364 can comprise one or more layers. An inner layer 366 defines a threaded contact surface 368.
  • The closures can have portions or layers of varying thicknesses. As shown in FIG. 21D, at least one of the portions or layers of a closure 370 comprises a thickened portion. The illustrated closure 370 has an inner portion 374 with an upper thickened portion 372 that has a thickness greater than the thickness of the wall portion 376.
  • FIG. 21E illustrates a multilayer closure 380 that comprises a band 382 connected to an inner portion 383 of the closure 380 by one or more connectors 384. The closures illustrated in FIGS. 18 to 21E may have any suitable structure(s) or design for coupling to containers. For example, the closures of FIGS. 18 to 21E may have a similar configuration as the closure 213 (FIG. 14A). It is contemplated that the closures of FIGS. 18-21E described herein can be attached to containers by threadable engagement, welding or fusing process (e.g., induction welding), an adhesive, by frictional interaction, or the like. The closures of FIGS. 18-21E are illustrated with bands. However, the closures may not have bands, or they may have other anti-tamper indicators or structures. Although the closures of FIGS. 18-21E are illustrated as screw closures, other types of closures (e.g., closures of a multi-piece construction, such as closures with a lid that opens and closes, a closure with a nipple, and or the like) have similar constructions.
  • The closures can have one or more compartments configured for storage. The compartments can contain additives that can be added to the contents of the associated container. The additives can affect the characteristics of the container's contents and can be in a solid, gas, and/or liquid state. In some embodiments, the additives can affect one or more of the following: aroma (e.g., additives can comprise scented gases/liquids), flavor, color (e.g., additives can comprise dies, pigments, etc.), nutrient content (e.g., additives can comprise vitamins, protein, carbohydrates, etc.), and combinations thereof. The additives can be delivered from the closure into the contents within the container for subsequent ingestion and preferably enhance the desirability of the contents and the consumption experience. The compartment can release the additives during removal of the closure so that the mixture is fresh. However, the compartment can be opened before or after the closure is removed from the container. In some embodiments, the closure has a compartment that can be broken (e.g., punctured) after the closure has been separated from a container. The compartment can be broken by a puncturing process, tearing, and the like. The compartment can have a structure for releasing its contents. The structure can be a pull plug, snap cap or other suitable structure for releasing the compartment's contents.
  • The containers can also be closed with a seal that is separate from the closure. The seal can be applied to the container before the closure is attached. A sealing process can be employed to attach the seal to the neck finish of a container after the container has been filled. The seal can be similar to or different than the liners that are attached to the closures. The seals can be hermetic seals (preferably spill proof) that ensure the integrity of the containers' contents. In some embodiments, the seal can comprise foil (preferably comprising metal, such as aluminum foil) and is applied to a container by a welding process, such as induction welding. However, the seal can be attached to a container using other suitable attachment processes, for example an adhesive may be used.
  • The closures can have an inner surface suitable for engaging closuring mounting structures (e.g., threads, snap cap fittings, and the like). The inner surface can provide a somewhat lubricious surface to facilitate removal of the closure from a container. For example, the closures can have a lubricious or low friction material (e.g. olefin polymers) to engage the material forming the container. If a closure is formed of PET, for example, the closure may stick or lock with a PET container. Thus, the closure (including snap caps, twist caps, and the like) may require a relatively high removal torque. Advantageously, a closure with a lubricious or low friction material can reduce the removal torque in order to facilitate removal of the closure. The lubricious or low friction material preferably provides enough friction such that closure can remain coupled to an associated container while also permitting convenient closure removal. Thus, the lubricious or low friction material can be selected to achieve the desired removal torque.
  • With reference to FIG. 20, the closure 330 can include an inner portion 332 comprising a lubricious or low friction material (e.g., an olefin or other material having a low coefficient of friction) and an outer portion 334 comprising a polymer, such as an olefin polymer, foam material, PET, and other materials described herein. The closures described herein can comprise lubricious or low friction material that can interface with a container and achieve a desired removal torque. The lubricious or low friction material forming the closure can be selected based on the material forming the container in order to produce the desired frictional interaction. It is contemplated that the molds described herein can be modified with an edge gate to form the inner most layer of the closure for engaging a container.
  • 3. Detailed Description of Mono and Multilayer Profiles and Sheets
  • FIGS. 22A and 22B are cross-sectional views of sheets. The sheets can have a somewhat uniform thickness or varying thickness. The sheet of FIG. 22A is a monolayer sheet 389. The sheet of FIG. 22B is a multilayer sheet 390 comprising two layers. The sheets can have any number of layers of any desired thickness based, for example, on the use of the sheets. For example, the sheets 389, 390 can be used to form packaging, such as a label. At least a portion of the sheets 389, 390 may comprise foam material. For example, the sheets 389, 390 may comprise foam material to provide insulation to the packaging to which the label is attached. Optionally, the sheet 390 can comprise one or more tie layers. For example, the sheet 390 may comprise a tie layer between the layers 392, 394.
  • The sheets can be used in various applications and may be formed into various shapes. For example, the sheets can be cut, molded (e.g., by thermoforming or casting), and/or the like into a desired shape. A skilled artisan can select the desired shape, size, and/or configuration of the sheets based on a desired application.
  • FIG. 23 illustrates a multilayer profile 402. The profile 402 is in the form of a conduit having a substantially tubular shape. The shape of the profile 402 can be generally circular, elliptical, polygonal (including rounded polygonal), combinations thereof, and the like. The illustrated profile 402 has a generally circular cross sectional profile.
  • In some embodiments, the profile 402 can be a conduit adapted for delivering fluids, preferably adapted for drinking liquids. The profile 402 can have an inner layer 404 and an outer layer 406. In some embodiments, at least one of the layers 404, 406 can comprise a plurality of layers (e.g., lamellar material).
  • The profile 402 can be a conduit that comprises a material suitable for contacting foodstuff and one or more additional materials having desirable physical properties (e.g., structural and thermal properties). Advantageously, the inner layer 404 that is in direct contact with the fluid preferably does not substantially change the flavor of the foodstuff in which it contacts. For example, many times fluid transfer lines of beverage dispensing systems have flavor scalping polyolefins. Advantageously, the inner layer 404 preferably does not substantially change the flavor of the fluid passing through a lumen 408 of the profile 402. In some embodiments, the outer layer 406 can provide improved physical characteristics of the profile 402. In another embodiment, the outer layer 406 can provide increased insulation and/or structural properties of the profile 402. For example, in one embodiment the outer layer 406 can provide increased impact resistance. In some embodiments, the outer layer 406 can reduce heat transfer through the walls of the profile 402. In some embodiments, the outer layer 406 can have a high tensile strength so that highly pressurized fluid can be passed through the profile 402. Thus, the inner layer serves as a substantially inert food contact surface while the outer layer(s) serve as an insulator and/or withstand external influences.
  • Of course, the profile 402 can be employed in various other applications. For example, the profile 402 can be used in hospitals (e.g., as a delivery line for medicinal fluids, manufacturing processes, equipment, fluid systems (e.g., ingestible fluid dispensing systems), and/or the like.
  • 4. Detailed Description of Packaging
  • One or more of the articles described herein can be employed alone or in combination in various applications, such as packaging. FIG. 24 illustrates a packaging system 416 comprising a container 420 that can be made from the preforms described herein. A closure 422 can be attached to a neck finish 432 of the container 420 to close the container.
  • FIG. 24 also illustrates a label 440 attached to the container 420 in the form of a bottle. The label 440 can engage the bottle 420 and can be a monolayer or multilayer. The label 440 can optionally comprise foam material.
  • The label 440 is preferably coupled to the outer surface 442 of the container 420. The label 440 can be removably attached the outer surface 442. The label 440 can be attached during and/or after the formation of the container 420. In the illustrated embodiment, the label 440 is a generally tubular sleeve that surrounds at least a portion of the bottle 420. The label 440 can have any shape or configuration suitable for being attached to the bottle and displaying information. Although not illustrated, the label 440 can be attached to glass bottles, metal cans, or the like. Further, the label 440 can be attached to other structures or packages. For example, the label 440 can be attached to a box, carton, bottle (plastic bottle, glass bottle, and the like), can, and other items discussed herein. Additionally, the label 440 can be printed upon. Optionally, an outer surface 446 of the label 440 can be treated to achieve a suitable printing surface.
  • An adhesive can be used to attach the label 440 to an article. In one embodiment, after the label is attached to the article, foam material of the label 440 may be expanded to achieve a thermal barrier, a fluid barrier, a protective layer, and/or desired structural properties. The foam material is preferably expanded by heating the label 440. The material of the label 440 can be foamed before and/or after the label 440 is placed on the container 420. Of course, the foam material of the label 440 can be directly adhered to an article without the use of adhesives.
  • FIG. 25 illustrates another embodiment of a container comprising a foamable material. The container 450 can be similar or different than the containers described above. In the illustrated embodiment, the container 450 comprises a closure 452, a body 454, and a handle 456 attached to the body 454. The body 454 can be substantially rigid or flexible. The handle 456 is preferably configured and sized to be comfortably gripped by a user. The wall of the body 454 can be a mono-layer or multi-layer wall. The container 450 can have any shape, including a shape similar to typical containers used for holding ingestible liquids. The container 450 can be formed by an extrusion blow-molding process.
  • With respect to FIG. 26A, container 460 is packaging (e.g., food packaging) that preferably comprises foam material. In one embodiment, a sheet (e.g., the sheets 389 or 390) is used to form at least a portion of the container 460 by, e.g., a thermoforming process. The container 460 can be in the form of a flexible pouch, food container, or any other suitable structure.
  • For example, in one arrangement the sheets are formed into clamshell packages that are adapted to hold food, such as hamburgers. In another arrangement, the sheets are configured to form boxes (e.g., pizza boxes). In another embodiment, the material and the dimensions of the container 460 can be determined based on the desired structural properties, thermal properties, and/or other characteristics. For example, the container 460 may comprise foam material for effective thermal insulation of the container 460. In another example, the container 460 can have thick walls so that the container 460 is generally rigid.
  • FIG. 26B illustrates another article comprising foamable material. In one embodiment, the article 462 is in the form of a tray that is configured to receive foodstuff. The tray 462 can be formed from a sheet through thermoforming. Optionally, the tray 462 can be adapted to fit within a container or box.
  • The tray 462 (or other articles described herein) can be configured for thermal processing. In some embodiments, the tray 462 can be used for heating and reheating. The tray 462 can hold foodstuffs so that the foodstuffs can be heated by, for example, a heat lamp, microwave oven, oven, toaster, heated water, and the like. The microstructure of the tray 462 can be adapted based on the type and method of thermal processing. For example, the tray 462 may comprise crystalline material (e.g., crystalline PET) to enhance thermal stability. During the thermoforming process one or more layers of the tray can be heated above a predetermined temperature to cause crystallization of at least a portion of one of the layers. Thus, at least a portion of the tray 462 can be crystallized during the manufacturing process. In some embodiments, the tray 462 can comprise a mono or multilayer sheet. The tray 462 can have a first layer of thermoplastic material and a second layer (e.g., a foam layer). The first layer can comprise crystalline material (e.g., amorphous, partially crystallized, or fully crystallized). The tray 462 can be used to hold food for use in a microwave oven. Of course, other articles, such as containers like pizza boxes, can have a similar configuration.
  • Articles can also be in the form of a can. The can may comprise polymer materials as disclosed herein. The can may comprise a metal layer and one or more layers of another material. In some embodiments, a metal can (e.g., aluminum can) can be coated with foam material such as a thermoplastic material. At least a portion of the exterior and/or the interior of the can may be coated with foam material.
  • B. Crystalline Neck Finishes
  • Plastic bottles and containers, in some embodiments, preferably comprise one or more materials in the neck, neck finish and/or neck cylinder that are at least partially in the crystalline state. Such bottles and preforms can also comprise one or more layers of materials.
  • In some embodiments, bottles are made by a process which includes the blow-molding of plastic preforms. In some circumstances, it is preferred that the material in the plastic preforms is in an amorphous or semi-crystalline state because materials in this state can be readily blow-molded where fully crystalline materials generally cannot. However, bottles made entirely of amorphous or semi-crystalline material may not have enough dimensional stability during a standard hot-fill process. In these circumstances, a bottle comprising crystalline material would be preferred, as it would hold its shape during hot-fill processes.
  • In some embodiments, a plastic bottle has the advantages of both a crystalline bottle and an amorphous or semi-crystalline bottle. By making at least part of the uppermost portion of the preform crystalline while keeping the body of the preform amorphous or semi-crystalline (sometimes referred to herein as “non-crystalline”), one can make a preform that will blow-mold easily yet retain necessary dimensions in the crucial neck area during a hot-fill process. Some embodiments have both crystalline and amorphous or semi-crystalline regions. This results in a preform which has sufficient strength to be used in widespread commercial applications.
  • One or more embodiments described herein generally produce preforms with a crystalline neck, which are typically then blow-molded into beverage containers. The preforms may be monolayer; that is, comprised of a single layer of a base material, or they may be multilayer. The material in such layers may be a single material or it may be a blend of one or more materials. In one embodiment, an article is provided which comprises a neck portion and a body portion. The neck portion and the body portion are a monolithic first layer of material. The body portion is primarily amorphous or semi-crystalline, and the neck portion is primarily crystalline.
  • Referring to FIG. 1, the preferred preform 30 is depicted. The preform 30 may be made by injection molding as is known in the art or by methods disclosed herein. The preform 30 has the neck portion 32 and a body portion 34, formed monolithically (i.e., as a single, or unitary, structure). Advantageously, in some embodiments, the monolithic arrangement of the preform, when blow-molded into a bottle, provides greater dimensional stability and improved physical properties in comparison to a preform constructed of separate neck and body portions, which are bonded together.
  • By achieving a crystallized state in the neck portion of the preform during the molding step, the final dimensions are substantially identical to the initial dimensions, unlike when additional heating steps are used. Therefore, dimensional variations are minimized and dimensional stability is achieved. This results in more consistent performance with regard to closures, such as the threads on the neck finish and reduces the scrap rate of the molding process.
  • While a non-crystalline preform is preferred for blow-molding, a bottle having greater crystalline character is preferred for its dimensional stability during a hot-fill process. Accordingly, a preform constructed according to some embodiments has a generally non-crystalline body portion and a generally crystalline neck portion. To create generally crystalline and generally non-crystalline portions in the same preform, one needs to achieve different levels of heating and/or cooling in the mold in the regions from which crystalline portions will be formed as compared to those in which generally non-crystalline portions will be formed. The different levels of heating and/or cooling may be maintained by thermal isolation of the regions having different temperatures. This thermal isolation between the thread split, core and/or cavity interface can be accomplished utilizing a combination of low and high thermal conduct materials as inserts or separate components at the mating surfaces of these portions.
  • Some preferred processes accomplish the making of a preform within the preferred cycle times for uncoated preforms of similar size by standard methods currently used in preform production. Further, the preferred processes are enabled by tooling design and process techniques to allow for the simultaneous production of crystalline and amorphous regions in particular locations on the same preform.
  • In one embodiment, there is provided a mold for making a preform comprising a neck portion having a first mold temperature control system (e.g., cooling/heating channels), a body portion having a second temperature control system, and a core having a third temperature control system, wherein the first temperature control system is independent of the second and third temperature control systems and the neck portion is thermally isolated from the body portion and core.
  • The cooling of the mold in regions which form preform surfaces for which it is preferred that the material be generally amorphous or semi-crystalline, can be accomplished by chilled fluid circulating through the mold cavity and core. In some embodiments, a mold set-up similar to conventional injection molding applications is used, except that there is an independent fluid circuit or electric heating system for the portions of the mold from which crystalline portions of the preform will be formed. Thermal isolation of the body mold, neck finish mold and core section can be achieved by use of inserts having low thermal conductivity. The neck, neck finish, and/or neck cylinder portions of the mold preferably are maintained at a higher temperature to achieve slower cooling, which promotes crystallinity of the material during cooling.
  • The above embodiments as well as further embodiments and techniques regarding preforms that have both crystalline and amorphous or semi-crystalline regions are described in U.S. Pat. Nos. 6,217,818 to Collette et al; 6,428,737 to Collette et al.; U.S. Patent Publication No. 2003/0031814A1 to Hutchinson et al.; and PCT Publication No. WO 98/46410 to Koch et al.
  • C. Detailed Description of Some Preferred Materials
  • 1. General Description of Preferred Materials
  • Furthermore, the articles described herein may be described specifically in relation to a particular material, such as polyethylene terephthalate (PET) or polypropylene (PP), but preferred methods are applicable to many other thermoplastics, including those of the of the polyester and polyolefin types. Other suitable materials include, but are not limited to, foam materials, various polymers and thermosets, thermoplastic materials such as polyesters, polyolefins, including polypropylene and polyethylene, polycarbonate, polyamides, including nylons (e.g. Nylon 6, Nylon 66, MXD6), polystyrenes, epoxies, acrylics, copolymers, blends, grafted polymers, and/or modified polymers (monomers or portion thereof having another group as a side group, e.g. olefin-modified polyesters). These materials may be used alone or in conjunction with each other. More specific material examples include, but are not limited to, ethylene vinyl alcohol copolymer (“EVOH”), ethylene vinyl acetate (“EVA”), ethylene acrylic acid (“EAA”), linear low density polyethylene (“LLDPE”), polyethylene 2,6- and 1,5-naphthalate (PEN), polyethylene terephthalate glycol (PETG), poly(cyclohexylenedimethylene terephthalate), polystryrene, cycloolefin, copolymer, poly-4-methylpentene-1, poly(methyl methacrylate), acrylonitrile, polyvinyl chloride, polyvinylidine chloride, styrene acrylonitrile, acrylonitrile-butadiene-styrene, polyacetal, polybutylene terephthalate, ionomer, polysulfone, polytetra-fluoroethylene, polytetramethylene 1,2-dioxybenzoate and copolymers of ethylene terephthalate and ethylene isophthalate.
  • As used herein, the term “polyethylene terephthalate glycol” (PETG) refers to a copolymer of PET wherein an additional comonomer, cyclohexane di-methanol (CHDM), is added in significant amounts (e.g. approximately 40% or more by weight) to the PET mixture. In one embodiment, preferred PETG material is essentially amorphous. Suitable PETG materials may be purchased from various sources. One suitable source is Voridian, a division of Eastman Chemical Company. Other PET copolymers include CHDM at lower levels such that the resulting material remains crystallizable or semi-crystalline. One example of PET copolymer containing low levels of CHDM is Voridian 9921 resin.
  • In some embodiments polymers that have been grafted or modified may be used. In one embodiment polypropylene or other polymers may be grafted or modified with polar groups including, but not limited to, maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion. In other embodiments polypropylene also refers to clarified polypropylene. As used herein, the term “clarified polypropylene” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a polypropylene that includes nucleation inhibitors and/or clarifying additives. Clarified polypropylene is a generally transparent material as compared to the homopolymer or block copolymer of polypropylene. The inclusion of nucleation inhibitors helps prevent and/or reduce crystallinity, which contributes to the haziness of polypropylene, within the polypropylene. Clarified polypropylene may be purchased from various sources such as Dow Chemical Co. Alternatively, nucleation inhibitors may be added to polypropylene. One suitable source of nucleation inhibitor additives is Schulman.
  • Optionally, the materials may comprise microstructures such as microlayers, microspheres, and combinations thereof. In certain embodiments preferred materials may be virgin, pre-consumer, post-consumer, regrind, recycled, and/or combinations thereof.
  • As used herein, “PET” includes, but is not limited to, modified PET as well as PET blended with other materials. One example of a modified PET is “high IPA PET” or IPA-modified PET, which refer to PET in which the IPA content is preferably more than about 2% by weight, including about 2-10% IPA by weight, also including about 5-10% IPA by weight. PET can be virgin, pre or post-consumer, recycled, or regrind PET, PET copolymers and combinations thereof.
  • In embodiments of preferred methods and processes one or more layers may comprise barrier layers, UV protection layers, oxygen scavenging layers, oxygen barrier layers, carbon dioxide scavenging layers, carbon dioxide barrier layers, and other layers as needed for the particular application. As used herein, the terms “barrier material,” “barrier resin,” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which, when used in preferred methods and processes, have a lower permeability to oxygen and carbon dioxide than the one or more of the layers. As used herein, the terms “UV protection” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which have a higher UV absorption rate than one or more layers of the article. As used herein, the terms “oxygen scavenging” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which have a higher oxygen absorption rate than one or more layers of the article. As used herein, the terms “oxygen barrier” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which are passive or active in nature and slow the transmission of oxygen into and/or out of an article. As used herein, the terms “carbon dioxide scavenging” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which have a higher carbon dioxide absorption rate than one or more layers of the article. As used herein, the terms “carbon dioxide barrier” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials which are passive or active in nature and slow the transmission of carbon dioxide into and/or out of an article. Without wishing to be bound to any theory, applicants believe that in applications wherein a carbonated product, e.g. a soft-drink beverage, contained in an article is over-carbonated, the inclusion of a carbon dioxide scavenger in one or more layers of the article allows the excess carbonation to saturate the layer which contains the carbon dioxide scavenger. Therefore, as carbon dioxide escapes to the atmosphere from the article it first leaves the article layer rather than the product contained therein. As used herein, the terms “crosslink,” “crosslinked,” and the like are broad terms and are used in their ordinary sense and refer, without limitation, to materials and coatings which vary in degree from a very small degree of crosslinking up to and including fully cross linked materials such as a thermoset epoxy. The degree of crosslinking can be adjusted to provide the appropriate degree of chemical or mechanical abuse resistance for the particular circumstances. As used herein, the term “tie material” is a broad term and is used in its ordinary sense and refers, without limitation, to a gas, liquid, or suspension comprising a material that aids in binding two materials together physically and/or chemically, including but not limited to adhesives, surface modification agents, reactive materials, and the like.
  • 2. Preferred Materials
  • In a preferred embodiment materials comprise thermoplastic materials. A further preferred embodiment includes “Phenoxy-Type Thermoplastics.” Phenoxy-Type Thermoplastics, as that term is used herein, include a wide variety of materials including those discussed in WO 99/20462. In one embodiment, materials comprise thermoplastic epoxy resins (TPEs), a subset of Phenoxy-Type Thermoplastics. A further subset of Phenoxy-Type Thermoplastics, and thermoplastic materials, are preferred hydroxy-phenoxyether polymers, of which polyhydroxyaminoether copolymers (PHAE) is a further preferred material. See for example, U.S. Pat. Nos. 6,455,116; 6,180,715; 6,011,111; 5,834,078; 5,814,373; 5,464,924; and 5,275,853; see also PCT Application Nos. WO 99/48962; WO 99/12995; WO 98/29491; and WO 98/14498. In some embodiments, PHAEs are TPEs.
  • Preferably, the Phenoxy-Type Thermoplastics used in preferred embodiments comprise one of the following types:
  • (1) hydroxy-functional poly(amide ethers) having repeating units represented by any one of the Formulae Ia, Ib or Ic:
  • Figure US20100000957A1-20100107-C00001
  • (2) poly(hydroxy amide ethers) having repeating units represented independently by any one of the Formulae IIa, IIb or IIc:
  • Figure US20100000957A1-20100107-C00002
  • (3) amide- and hydroxymethyl-functionalized polyethers having repeating units represented by Formula III:
  • Figure US20100000957A1-20100107-C00003
  • (4) hydroxy-functional polyethers having repeating units represented by Formula IV:
  • Figure US20100000957A1-20100107-C00004
  • (5) hydroxy-functional poly(ether sulfonamides) having repeating units represented by Formulae Va or Vb:
  • Figure US20100000957A1-20100107-C00005
  • (6) poly(hydroxy ester ethers) having repeating units represented by Formula VI:
  • Figure US20100000957A1-20100107-C00006
  • (7) hydroxy-phenoxyether polymers having repeating units represented by Formula VII:
  • Figure US20100000957A1-20100107-C00007
  • and
    (8) poly(hydroxyamino ethers) having repeating units represented by Formula VIII:
  • Figure US20100000957A1-20100107-C00008
  • wherein each Ar individually represents a divalent aromatic moiety, substituted divalent aromatic moiety or heteroaromatic moiety, or a combination of different divalent aromatic moieties, substituted aromatic moieties or heteroaromatic moieties; R is individually hydrogen or a monovalent hydrocarbyl moiety; each Ar1 is a divalent aromatic moiety or combination of divalent aromatic moieties bearing amide or hydroxymethyl groups; each Ar2 is the same or different than Ar and is individually a divalent aromatic moiety, substituted aromatic moiety or heteroaromatic moiety or a combination of different divalent aromatic moieties, substituted aromatic moieties or heteroaromatic moieties; R1 is individually a predominantly hydrocarbylene moiety, such as a divalent aromatic moiety, substituted divalent aromatic moiety, divalent heteroaromatic moiety, divalent alkylene moiety, divalent substituted alkylene moiety or divalent heteroalkylene moiety or a combination of such moieties; R2 is individually a monovalent hydrocarbyl moiety; A is an amine moiety or a combination of different amine moieties; X is an amine, an arylenedioxy, an arylenedisulfonamido or an arylenedicarboxy moiety or combination of such moieties; and Ar3 is a “cardo” moiety represented by any one of the Formulae:
  • Figure US20100000957A1-20100107-C00009
  • wherein Y is nil, a covalent bond, or a linking group, wherein suitable linking groups include, for example, an oxygen atom, a sulfur atom, a carbonyl atom, a sulfonyl group, or a methylene group or similar linkage; n is an integer from about 10 to about 1000; x is 0.01 to 1.0; and y is 0 to 0.5.
  • The term “predominantly hydrocarbylene” means a divalent radical that is predominantly hydrocarbon, but which optionally contains a small quantity of a heteroatomic moiety such as oxygen, sulfur, imino, sulfonyl, sulfoxyl, and the like.
  • The hydroxy-functional poly(amide ethers) represented by Formula I are preferably prepared by contacting an N,N′-bis(hydroxyphenylamido)alkane or arene with a diglycidyl ether as described in U.S. Pat. Nos. 5,089,588 and 5,143,998.
  • The poly(hydroxy amide ethers) represented by Formula II are prepared by contacting a bis(hydroxyphenylamido)alkane or arene, or a combination of 2 or more of these compounds, such as N,N′-bis(3-hydroxyphenyl) adipamide or N,N′-bis(3-hydroxyphenyl)glutaramide, with an epihalohydrin as described in U.S. Pat. No. 5,134,218.
  • The amide- and hydroxymethyl-functionalized polyethers represented by Formula III can be prepared, for example, by reacting the diglycidyl ethers, such as the diglycidyl ether of bisphenol A, with a dihydric phenol having pendant amido, N-substituted amido and/or hydroxyalkyl moieties, such as 2,2-bis(4-hydroxyphenyl)acetamide and 3,5-dihydroxybenzamide. These polyethers and their preparation are described in U.S. Pat. Nos. 5,115,075 and 5,218,075.
  • The hydroxy-functional polyethers represented by Formula IV can be prepared, for example, by allowing a diglycidyl ether or combination of diglycidyl ethers to react with a dihydric phenol or a combination of dihydric phenols using the process described in U.S. Pat. No. 5,164,472. Alternatively, the hydroxy-functional polyethers are obtained by allowing a dihydric phenol or combination of dihydric phenols to react with an epihalohydrin by the process described by Reinking, Barnabeo and Hale in the Journal of Applied Polymer Science, Vol. 7, p. 2135 (1963).
  • The hydroxy-functional poly(ether sulfonamides) represented by Formula V are prepared, for example, by polymerizing an N,N′-dialkyl or N,N′-diaryldisulfonamide with a diglycidyl ether as described in U.S. Pat. No. 5,149,768.
  • The poly(hydroxy ester ethers) represented by Formula VI are prepared by reacting diglycidyl ethers of aliphatic or aromatic diacids, such as diglycidyl terephthalate, or diglycidyl ethers of dihydric phenols with, aliphatic or aromatic diacids such as adipic acid or isophthalic acid. These polyesters are described in U.S. Pat. No. 5,171,820.
  • The hydroxy-phenoxyether polymers represented by Formula VII are prepared, for example, by contacting at least one dinucleophilic monomer with at least one diglycidyl ether of a cardo bisphenol, such as 9,9-bis(4-hydroxyphenyl)fluorene, phenolphthalein, or phenolphthalimidine or a substituted cardo bisphenol, such as a substituted bis(hydroxyphenyl)fluorene, a substituted phenolphthalein or a substituted phenolphthalimidine under conditions sufficient to cause the nucleophilic moieties of the dinucleophilic monomer to react with epoxy moieties to form a polymer backbone containing pendant hydroxy moieties and ether, imino, amino, sulfonamido or ester linkages. These hydroxy-phenoxyether polymers are described in U.S. Pat. No. 5,184,373.
  • The poly(hydroxyamino ethers) (“PHAE” or polyetheramines) represented by Formula VIII are prepared by contacting one or more of the diglycidyl ethers of a dihydric phenol with an amine having two amine hydrogens under conditions sufficient to cause the amine moieties to react with epoxy moieties to form a polymer backbone having amine linkages, ether linkages and pendant hydroxyl moieties. These compounds are described in U.S. Pat. No. 5,275,853. For example, polyhydroxyaminoether copolymers can be made from resorcinol diglycidyl ether, hydroquinone diglycidyl ether, bisphenol A diglycidyl ether, or mixtures thereof.
  • The hydroxy-phenoxyether polymers are the condensation reaction products of a dihydric polynuclear phenol, such as bisphenol A, and an epihalohydrin and have the repeating units represented by Formula IV wherein Ar is an isopropylidene diphenylene moiety. The process for preparing these is described in U.S. Pat. No. 3,305,528, incorporated herein by reference in its entirety. One preferred non-limiting hydroxy-phenoxyether polymer, PAPHEN 25068-38-6, is commercially available from Phenoxy Associates, Inc. Other preferred phenoxy resins are available from InChem® (Rock Hill, S.C.), these materials include, but are not limited to, the INCHEMREZ™ PKHH and PKHW product lines.
  • Generally, preferred phenoxy-type materials form stable aqueous based solutions or dispersions. Preferably, the properties of the solutions/dispersions are not adversely affected by contact with water. Preferred materials range from about 10% solids to about 50% solids, including about 15%, 20%, 25%, 30%, 35%, 40% and 45%, and ranges encompassing such percentages. Preferably, the material used dissolves or disperses in polar solvents. These polar solvents include, but are not limited to, water, alcohols, and glycol ethers. See, for example, U.S. Pat. Nos. 6,455,116, 6,180,715, and 5,834,078 which describe some preferred phenoxy-type solutions and/or dispersions.
  • One preferred phenoxy-type material is a polyhydroxyaminoether copolymer (PHAE), represented by Formula VIII, dispersion or solution. The dispersion or solution, when applied to a container or preform, greatly reduces the permeation rate of a variety of gases through the container walls in a predictable and well known manner. One dispersion or latex made thereof comprises 10-30 percent solids. A PHAE solution/dispersion may be prepared by stirring or otherwise agitating the PHAE in a solution of water with an organic acid, preferably acetic or phosphoric acid, but also including lactic, malic, citric, or glycolic acid and/or mixtures thereof. These PHAE solution/dispersions also include organic acid salts produced by the reaction of the polyhydroxyaminoethers with these acids.
  • In other preferred embodiments, phenoxy-type thermoplastics are mixed or blended with other materials using methods known to those of skill in the art. In some embodiments a compatibilizer may be added to the blend. When compatibilizers are used, preferably one or more properties of the blends are improved, such properties including, but not limited to, color, haze, and adhesion between a layer comprising a blend and other layers. One preferred blend comprises one or more phenoxy-type thermoplastics and one or more polyolefins. A preferred polyolefin comprises polypropylene. In one embodiment polypropylene or other polyolefins may be grafted or modified with a polar molecule or monomer, including, but not limited to, maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to increase compatibility.
  • The following PHAE solutions or dispersions are examples of suitable phenoxy-type solutions or dispersions which may be used if one or more layers of resin are applied as a liquid such as by dip, flow, or spray coating, such as described in WO 04/004929 and U.S. Pat. No. 6,676,883. One suitable material is BLOX® experimental barrier resin, for example XU-19061.00 made with phosphoric acid manufactured by Dow Chemical Corporation. This particular PHAE dispersion is said to have the following typical characteristics: 30% percent solids, a specific gravity of 1.30, a pH of 4, a viscosity of 24 centipoise (Brookfield, 60 rpm, LVI, 22° C.), and a particle size of between 1,400 and 1,800 angstroms. Other suitable materials include BLOX® 588-29 resins based on resorcinol have also provided superior results as a barrier material. This particular dispersion is said to have the following typical characteristics: 30% percent solids, a specific gravity of 1.2, a pH of 4.0, a viscosity of 20 centipoise (Brookfield, 60 rpm, LVI, 22° C.), and a particle size of between 1500 and 2000 angstroms. Other variations of the polyhydroxyaminoether chemistry may prove useful such as crystalline versions based on hydroquinone diglycidylethers. Other suitable materials include polyhydroxyaminoether solutions/dispersions by Imperial Chemical Industries (“ICI,” Ohio, USA) available under the name OXYBLOK. In one embodiment, PHAE solutions or dispersions can be crosslinked partially (semi-cross linked), fully, or to the exact desired degree as appropriate for the application by adding an appropriate cross linker material. The benefits of cross linking include, but are not limited to, one or more of the following: improved chemical resistance, improved abrasion resistance, low blushing, low surface tension. Examples of cross linker materials include, but are not limited to, formaldehyde, acetaldehyde or other members of the aldehyde family of materials. Suitable cross linkers can also enable changes to the Tg of the material, which can facilitate formation of specific containers. Other suitable materials include BLOX® 5000 resin dispersion intermediate, BLOX® XUR 588-29, BLOX® 0000 and 4000 series resins. The solvents used to dissolve these materials include, but are not limited to, polar solvents such as alcohols, water, glycol ethers or blends thereof. Other suitable materials include, but are not limited to, BLOX® R1.
  • In one embodiment, preferred phenoxy-type thermoplastics are soluble in aqueous acid. A polymer solution/dispersion may be prepared by stirring or otherwise agitating the thermoplastic epoxy in a solution of water with an organic acid, preferably acetic or phosphoric acid, but also including lactic, malic, citric, or glycolic acid and/or mixtures thereof. In a preferred embodiment, the acid concentration in the polymer solution is preferably in the range of about 5%-20%, including about 5%-10% by weight based on total weight. In other preferred embodiments, the acid concentration may be below about 5% or above about 20%; and may vary depending on factors such as the type of polymer and its molecular weight. In other preferred embodiments, the acid concentration ranges from about 2.5 to about 5% by weight. The amount of dissolved polymer in a preferred embodiment ranges from about 0.1% to about 40%. A uniform and free flowing polymer solution is preferred. In one embodiment a 10% polymer solution is prepared by dissolving the polymer in a 10% acetic acid solution at 90° C. Then while still hot the solution is diluted with 20% distilled water to give an 8% polymer solution. At higher concentrations of polymer, the polymer solution tends to be more viscous.
  • Examples of preferred copolyester materials and a process for their preparation is described in U.S. Pat. No. 4,578,295 to Jabarin. They are generally prepared by heating a mixture of at least one reactant selected from isophthalic acid, terephthalic acid and their C1 to C4 alkyl esters with 1,3 bis(2-hydroxyethoxy)benzene and ethylene glycol. Optionally, the mixture may further comprise one or more ester-forming dihydroxy hydrocarbon and/or bis(4-β-hydroxyethoxyphenyl)sulfone. Especially preferred copolyester materials are available from Mitsui Petrochemical Ind. Ltd. (Japan) as B-010, B-030 and others of this family.
  • Examples of preferred polyamide materials include MXD-6 from Mitsubishi Gas Chemical (Japan). Other preferred polyamide materials include Nylon 6, and Nylon 66. Other preferred polyamide materials are blends of polyamide and polyester, including those comprising about 1-20% polyester by weight, more preferably about 1-10% polyester by weight, where the polyester is preferably PET or a modified PET. In another embodiment, preferred polyamide materials are blends of polyamide and polyester, including those comprising about 1-20% polyamide by weight, more preferably about 1-10% polyamide by weight, where the polyester is preferably PET or a modified PET. The blends may be ordinary blends or they may be compatibilized with an antioxidant or other material. Examples of such materials include those described in U.S. Patent Publication No. 2004/0013833, filed Mar. 21, 2003, which is hereby incorporated by reference in its entirety. Other preferred polyesters include, but are not limited to, PEN and PET/PEN copolymers.
  • 3. Preferred Foam Materials
  • As used herein, the term “foam material” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a foaming agent, a mixture of foaming agent and a binder or carrier material, an expandable cellular material, and/or a material having voids. The terms “foam material” and “expandable material” are used interchangeably herein. Preferred foam materials may exhibit one or more physical characteristics that improve the thermal and/or structural characteristics of articles (e.g., containers) and may enable the preferred embodiments to be able to withstand processing and physical stresses typically experienced by containers. In one embodiment, the foam material provides structural support to the container. In another embodiment, the foam material forms a protective layer that can reduce damage to the container during processing. For example, the foam material can provide abrasion resistance which can reduce damage to the container during transport. In one embodiment, a protective layer of foam may increase the shock or impact resistance of the container and thus prevent or reduce breakage of the container. Furthermore, in another embodiment foam can provide a comfortable gripping surface and/or enhance the aesthetics or appeal of the container.
  • In one embodiment, foam material comprises a foaming or blowing agent and a carrier material. In one preferred embodiment, the foaming agent comprises expandable structures (e.g., microspheres) that can be expanded and cooperate with the carrier material to produce foam. For example, the foaming agent can be thermoplastic microspheres, such as EXPANCEL® microspheres sold by Akzo Nobel. In one embodiment, microspheres can be thermoplastic hollow spheres comprising thermoplastic shells that encapsulate gas. Preferably, when the microspheres are heated, the thermoplastic shell softens and the gas increases its pressure causing the expansion of the microspheres from an initial position to an expanded position. The expanded microspheres and at least a portion of the carrier material can form the foam portion of the articles described herein. The foam material can form a layer that comprises a single material (e.g., a generally homogenous mixture of the foaming agent and the carrier material), a mix or blend of materials, a matrix formed of two or more materials, two or more layers, or a plurality of microlayers (lamellae) preferably including at least two different materials. Alternatively, the microspheres can be any other suitable controllably expandable material. For example, the microspheres can be structures comprising materials that can produce gas within or from the structures. In one embodiment, the microspheres are hollow structures containing chemicals which produce or contain gas wherein an increase in gas pressure causes the structures to expand and/or burst. In another embodiment, the microspheres are structures made from and/or containing one or more materials which decompose or react to produce gas thereby expanding and/or bursting the microspheres. Optionally, the microsphere may be generally solid structures. Optionally, the microspheres can be shells filled with solids, liquids, and/or gases. The microspheres can have any configuration and shape suitable for forming foam. For example, the microspheres can be generally spherical. Optionally, the microspheres can be elongated or oblique spheroids. Optionally, the microspheres can comprise any gas or blends of gases suitable for expanding the microspheres. In one embodiment, the gas can comprise an inert gas, such as nitrogen. In one embodiment, the gas is generally non-flammable. However, in certain embodiments non-inert gas and/or flammable gas can fill the shells of the microspheres. In some embodiments, the foam material may comprise foaming or blowing agents as are known in the art. Additionally, the foam material may be mostly or entirely foaming agent.
  • Although some preferred embodiments contain microspheres that generally do not break or burst, other embodiments comprise microspheres that may break, burst, fracture, and/or the like. Optionally, a portion of the microspheres may break while the remaining portion of the microspheres do not break. In some embodiments up to about 0.5%, 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60% 70%, 80%, 90% by weight of microspheres, and ranges encompassing these amounts, break. In one embodiment, for example, a substantial portion of the microspheres may burst and/or fracture when they are expanded. Additionally, various blends and mixtures of microspheres can be used to form foam material.
  • The microspheres can be formed of any material suitable for causing expansion. In one embodiment, the microspheres can have a shell comprising a polymer, resin, thermoplastic, thermoset, or the like as described herein. The microsphere shell may comprise a single material or a blend of two or more different materials. For example, the microspheres can have an outer shell comprising ethylene vinyl acetate (“EVA”), polyethylene terephthalate (“PET”), polyamides (e.g. Nylon 6 and Nylon 66) polyethylene terephthalate glycol (PETG), PEN, PET copolymers, and combinations thereof. In one embodiment a PET copolymer comprises CHDM comonomer at a level between what is commonly called PETG and PET. In another embodiment, comonomers such as DEG and IPA are added to PET to form miscrosphere shells. The appropriate combination of material type, size, and inner gas can be selected to achieve the desired expansion of the microspheres. In one embodiment, the microspheres comprise shells formed of a high temperature material (e.g., PETG or similar material) that is capable of expanding when subject to high temperatures, preferably without causing the microspheres to burst. If the microspheres have a shell made of low temperature material (e.g., as EVA), the microspheres may break when subjected to high temperatures that are suitable for processing certain carrier materials (e.g., PET or polypropylene having a high melt point). In some circumstances, for example, EXPANCEL® microspheres may be break when processed at relatively high temperatures. Advantageously, mid or high temperature microspheres can be used with a carrier material having a relatively high melt point to produce controllably, expandable foam material without breaking the microspheres. For example, microspheres can comprise a mid temperature material (e.g., PETG) or a high temperature material (e.g., acrylonitrile) and may be suitable for relatively high temperature applications. Thus, a blowing agent for foaming polymers can be selected based on the processing temperatures employed.
  • The foam material can be a matrix comprising a carrier material, preferably a material that can be mixed with a blowing agent (e.g., microspheres) to form an expandable material. The carrier material can be a thermoplastic, thermoset, or polymeric material, such as ethylene acrylic acid (“EAA”), ethylene vinyl acetate (“EVA”), linear low density polyethylene (“LLDPE”), polyethylene terephthalate glycol (PETG), poly(hydroxyamino ethers) (“PHAE”), PET, polyethylene, polypropylene, polystyrene (“PS”), pulp (e.g., wood or paper pulp of fibers, or pulp mixed with one or more polymers), mixtures thereof, and the like. However, other materials suitable for carrying the foaming agent can be used to achieve one or more of the desired thermal, structural, optical, and/or other characteristics of the foam. In some embodiments, the carrier material has properties (e.g., a high melt index) for easier and rapid expansion of the microspheres, thus reducing cycle time thereby resulting in increased production.
  • In preferred embodiments, the foamable material may comprise two or more components including a plurality of components each having different processing windows and/or physical properties. The components can be combined such that the foamable material has one or more desired characteristics. The proportion of components can be varied to produce a desired processing window and/or physical properties. For example, the first material may have a processing window that is similar to or different than the processing window of the second material. The processing window may be based on, for example, pressure, temperature, viscosity, or the like. Thus, components of the foamable material can be mixed to achieve a desired, for example, pressure or temperature range for shaping the material.
  • In one embodiment, the combination of a first material and a second material may result in a material having a processing window that is more desirable than the processing window of the second material. For example, the first material may be suitable for processing over a wide range of temperatures, and the second material may be suitable for processing over a narrow range of temperatures. A material having a portion formed of the first material and another portion formed of the second material may be suitable for processing over a range of temperatures that is wider than the narrow range of processing temperatures of the second material. In one embodiment, the processing window of a multi-component material is similar to the processing window of the first material. In one embodiment, the foamable material comprises a multilayer sheet or tube comprising a layer comprising PET and a layer comprising polypropylene. The material formed from both PET and polypropylene can be processed (e.g., extruded) within a wide temperature range similar to the processing temperature range suitable for PET. The processing window may be for one or more parameters, such as pressure, temperature, viscosity, and/or the like.
  • Optionally, the amount of each component of the material can be varied to achieve the desired processing window. Optionally, the materials can be combined to produce a foamable material suitable for processing over a desired range of pressure, temperature, viscosity, and/or the like. For example, the proportion of the material having a more desirable processing window can be increased and the proportion of material having a less undesirable processing window can be decreased to result in a material having a processing window that is very similar to or is substantially the same as the processing window of the first material. Of course, if the more desired processing window is between a first processing window of a first material and the second processing window of a second material, the proportion of the first and the second material can be chosen to achieve a desired processing window of the foamable material.
  • Optionally, a plurality of materials each having similar or different processing windows can be combined to obtain a desired processing window for the resultant material.
  • In one embodiment, the rheological characteristics of a foamable material can be altered by varying one or more of its components having different rheological characteristics. For example, a substrate (e.g., PP) may have a high melt strength and is amenable to extrusion. PP can be combined with another material, such as PET which has a low melt strength making it difficult to extrude, to form a material suitable for extrusion processes. For example, a layer of PP or other strong material may support a layer of PET during co-extrusion (e.g., horizontal or vertical co-extrusion). Thus, foamable material formed of PET and polypropylene can be processed, e.g., extruded, in a temperature range generally suitable for PP and not generally suitable for PET.
  • In some embodiments, the composition of the foamable material may be selected to affect one or more properties of the articles. For example, the thermal properties, structural properties, barrier properties, optical properties, rheology properties, favorable flavor properties, and/or other properties or characteristics disclosed herein can be obtained by using foamable materials described herein.
  • 4. Additives to Enhance Materials
  • An advantage of preferred methods disclosed herein are their flexibility allowing for the use of multiple functional additives. Additives known by those of ordinary skill in the art for their ability to provide enhanced CO2 barriers, O2 barriers, UV protection, scuff resistance, blush resistance, impact resistance and/or chemical resistance may be used.
  • Preferred additives may be prepared by methods known to those of skill in the art. For example, the additives may be mixed directly with a particular material, they may be dissolved/dispersed separately and then added to a particular material, or they may be combined with a particular material to addition of the solvent that forms the material solution/dispersion. In addition, in some embodiments, preferred additives may be used alone as a single layer.
  • In preferred embodiments, the barrier properties of a layer may be enhanced by the addition of different additives. Additives are preferably present in an amount up to about 40% of the material, also including up to about 30%, 20%, 10%, 5%, 2% and 1% by weight of the material. In other embodiments, additives are preferably present in an amount less than or equal to 1% by weight, preferred ranges of materials include, but are not limited to, about 0.01% to about 1%, about 0.01% to about 0.1%, and about 0.1% to about 1% by weight. Further, in some embodiments additives are preferably stable in aqueous conditions. For example, derivatives of resorcinol (m-dihydroxybenzene) may be used in conjunction with various preferred materials as blends or as additives or monomers in the formation of the material. The higher the resorcinol content the greater the barrier properties of the material. For example, resorcinol diglycidyl ether can be used in PHAE and hydroxyethyl ether resorcinol can be used in PET and other polyesters and Copolyester Barrier Materials.
  • Another additive that may be used are “nanoparticles” or “nanoparticulate material.” For convenience the term nanoparticles will be used herein to refer to both nanoparticles and nanoparticulate material. These nanoparticles are tiny, micron or sub-micron size (diameter), particles of materials which enhance the barrier properties of a material by creating a more tortuous path for migrating gas molecules, e.g. oxygen or carbon dioxide, to take as they permeate a material. In preferred embodiments nanoparticulate material is present in amounts ranging from 0.05 to 1% by weight, including 0.1%, 0.5% by weight and ranges encompassing these amounts.
  • One preferred type of nanoparticulate material is a microparticular clay based product available from Southern Clay Products. One preferred line of products available from Southern Clay products is Cloisite® nanoparticles. In one embodiment preferred nanoparticles comprise monmorillonite modified with a quaternary ammonium salt. In other embodiments nanoparticles comprise monmorillonite modified with a ternary ammonium salt. In other embodiments nanoparticles comprise natural monmorillonite. In further embodiments, nanoparticles comprise organoclays as described in U.S. Pat. No. 5,780,376, the entire disclosure of which is hereby incorporated by reference and forms part of the disclosure of this application. Other suitable organic and inorganic microparticular clay based products may also be used. Both man-made and natural products are also suitable.
  • Another type of preferred nanoparticulate material comprises a composite material of a metal. For example, one suitable composite is a water based dispersion of aluminum oxide in nanoparticulate form available from BYK Chemie (Germany). It is believed that this type of nanoparticular material may provide one or more of the following advantages: increased abrasion resistance, increased scratch resistance, increased Tg, and thermal stability.
  • Another type of preferred nanoparticulate material comprises a polymer-silicate composite. In preferred embodiments the silicate comprises montmorillonite. Suitable polymer-silicate nanoparticulate material are available from Nanocor and RTP Company.
  • In preferred embodiments, the UV protection properties of the material may be enhanced by the addition of different additives. In a preferred embodiment, the UV protection material used provides UV protection up to about 350 nm or less, preferably about 370 nm or less, more preferably about 400 nm or less. The UV protection material may be used as an additive with layers providing additional functionality or applied separately as a single layer. Preferably additives providing enhanced UV protection are present in the material from about 0.05 to 20% by weight, but also including about 0.1%, 0.5%, 1%, 2%, 3%, 5%, 10%, and 15% by weight, and ranges encompassing these amounts. Preferably the UV protection material is added in a form that is compatible with the other materials. For example, a preferred UV protection material is Milliken UV390A ClearShield®. UV390A is an oily liquid for which mixing is aided by first blending the liquid with water, preferably in roughly equal parts by volume. This blend is then added to the material solution, for example, BLOX® 599-29, and agitated. The resulting solution contains about 10% UV390A and provides UV protection up to 390 nm when applied to a PET preform. As previously described, in another embodiment the UV390A solution is applied as a single layer. In other embodiments, a preferred UV protection material comprises a polymer grafted or modified with a UV absorber that is added as a concentrate. Other preferred UV protection materials include, but are not limited to, benzotriazoles, phenothiazines, and azaphenothiazines. UV protection materials may be added during the melt phase process prior to use, e.g. prior to injection molding or extrusion, or added directly to a coating material that is in the form of a solution or dispersion. Suitable UV protection materials are available from Milliken, Ciba and Clariant.
  • In preferred embodiments, CO2 scavenging properties can be added to the materials. In one preferred embodiment such properties are achieved by including an active amine which will react with CO2 forming a high gas barrier salt. This salt will then act as a passive CO2 barrier. The active amine may be an additive or it may be one or more moieties in the thermoplastic resin material of one or more layers.
  • In preferred embodiments, O2 scavenging properties can be added to preferred materials by including O2 scavengers such as anthroquinone and others known in the art. In another embodiment, one suitable O2 scavenger is AMOSORB® O2 scavenger available from BP Amoco Corporation and ColorMatrix Corporation which is disclosed in U.S. Pat. No. 6,083,585 to Cahill et al., the disclosure of which is hereby incorporated in its entirety. In one embodiment, O2 scavenging properties are added to preferred phenoxy-type materials, or other materials, by including O2 scavengers in the phenoxy-type material, with different activating mechanisms. Preferred O2 scavengers can act either spontaneously, gradually or with delayed action until initiated by a specific trigger. In some embodiments the O2 scavengers are activated via exposure to either UV or water (e.g., present in the contents of the container), or a combination of both. The O2 scavenger is preferably present in an amount of from about 0.1 to about 20 percent by weight, more preferably in an amount of from about 0.5 to about 10 percent by weight, and, most preferably, in an amount of from about 1 to about 5 percent by weight, based on the total weight of the coating layer.
  • In another preferred embodiment, a top coat or layer is applied to provide chemical resistance to harsher chemicals than what is provided by the outer layer. In certain embodiments, preferably these top coats or layers are aqueous based or non-aqueous based polyesters or acrylics which are optionally partially or fully cross linked. A preferred aqueous based polyester is polyethylene terephthalate, however other polyesters may also be used. In certain embodiments, the process of applying the top coat or layer is that disclosed in U.S. Patent Pub. No. 2004/0071885, entitled Dip, Spray, And Flow Coating Process For Forming Coated Articles, the entire disclosure of which is hereby incorporated by reference in its entirety.
  • A preferred aqueous based polyester resin is described in U.S. Pat. No. 4,977,191 (Salsman), incorporated herein by reference. More specifically, U.S. Pat. No. 4,977,191 describes an aqueous based polyester resin, comprising a reaction product of 20-50% by weight of waste terephthalate polymer, 10-40% by weight of at least one glycol an 5-25% by weight of at least one oxyalkylated polyol.
  • Another preferred aqueous based polymer is a sulfonated aqueous based polyester resin composition as described in U.S. Pat. No. 5,281,630 (Salsman), herein incorporated by reference. Specifically, U.S. Pat. No. 5,281,630 describes an aqueous suspension of a sulfonated water-soluble or water dispersible polyester resin comprising a reaction product of 20-50% by weight terephthalate polymer, 10-40% by weight at least one glycol and 5-25% by weight of at least one oxyalkylated polyol to produce a prepolymer resin having hydroxyalkyl functionality where the prepolymer resin is further reacted with about 0.10 mole to about 0.50 mole of alpha, beta-ethylenically unsaturated dicarboxylic acid per 100 g of prepolymer resin and a thus produced resin, terminated by a residue of an alpha, beta-ethylenically unsaturated dicarboxylic acid, is reacted with about 0.5 mole to about 1.5 mole of a sulfite per mole of alpha, beta-ethylenically unsaturated dicarboxylic acid residue to produce a sulfonated-terminated resin.
  • Yet another preferred aqueous based polymer is the coating described in U.S. Pat. No. 5,726,277 (Salsman), incorporated herein by reference. Specifically, U.S. Pat. No. 5,726,277 describes coating compositions comprising a reaction product of at least 50% by weight of waste terephthalate polymer and a mixture of glycols including an oxyalkylated polyol in the presence of a glycolysis catalyst wherein the reaction product is further reacted with a difunctional, organic acid and wherein the weight ratio of acid to glycols in is the range of 6:1 to 1:2.
  • While the above examples are provided as preferred aqueous based polymer coating compositions, other aqueous based polymers are suitable for use in the products and methods describe herein. By way of example only, and not meant to be limiting, further suitable aqueous based compositions are described in U.S. Pat. No. 4,104,222 (Date, et al.), incorporated herein by reference. U.S. Pat. No. 4,104,222 describes a dispersion of a linear polyester resin obtained by mixing a linear polyester resin with a higher alcohol/ethylene oxide addition type surface-active agent, melting the mixture and dispersing the resulting melt by pouring it into an aqueous solution of an alkali under stirring Specifically, this dispersion is obtained by mixing a linear polyester resin with a surface-active agent of the higher alcohol/ethylene oxide addition type, melting the mixture, and dispersing the resulting melt by pouring it into an aqueous solution of an alkanolamine under stirring at a temperature of 70-95° C., said alkanolamine being selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, monomethylethanolamine, monoethylethanolamine, diethylethanolamine, propanolamine, butanolamine, pentanolamine, N-phenylethanolamine, and an alkanolamine of glycerin, said alkanolamine being present in the aqueous solution in an amount of 0.2 to 5 weight percent, said surface-active agent of the higher alcohol/ethylene oxide addition type being an ethylene oxide addition product of a higher alcohol having an alkyl group of at least 8 carbon atoms, an alkyl-substituted phenol or a sorbitan monoacylate and wherein said surface-active agent has an HLB value of at least 12.
  • Likewise, by example, U.S. Pat. No. 4,528,321 (Allen) discloses a dispersion in a water immiscible liquid of water soluble or water swellable polymer particles and which has been made by reverse phase polymerization in the water immiscible liquid and which includes a non-ionic compound selected from C4-12 alkylene glycol monoethers, their C1-4 alkanoates, C6-12 polyakylene glycol monoethers and their C1-4 alkanoates.
  • The materials of certain embodiments may be cross-linked to enhance thermal stability for various applications, for example hot fill applications. In one embodiment, inner layers may comprise low-cross linking materials while outer layers may comprise high crosslinking materials or other suitable combinations. For example, an inner coating on a PET surface may utilize non or low cross-linked material, such as the BLOX® 588-29, and the outer coat may utilize another material, such as EXP 12468-4B from ICI, capable of cross linking to ensure maximum adhesion to the PET. Suitable additives capable of cross linking may be added to one or more layers. Suitable cross linkers can be chosen depending upon the chemistry and functionality of the resin or material to which they are added. For example, amine cross linkers may be useful for crosslinking resins comprising epoxide groups. Preferably cross linking additives, if present, are present in an amount of about 1% to 10% by weight of the coating solution/dispersion, preferably about 1% to 5%, more preferably about 0.01% to 0.1% by weight, also including 2%, 3%, 4%, 6%, 7%, 8%, and 9% by weight. Optionally, a thermoplastic epoxy (TPE) can be used with one or more crosslinking agents. In some embodiments, agents (e.g. carbon black) may also be coated onto or incorporated into the TPE material. The TPE material can form part of the articles disclosed herein. It is contemplated that carbon black or similar additives can be employed in other polymers to enhance material properties.
  • The materials of certain embodiments may optionally comprise a curing enhancer. As used herein, the term “curing enhancer” is a broad term and is used in its ordinary meaning and includes, without limitation, chemical cross-linking catalyst, thermal enhancer, and the like. As used herein, the term “thermal enhancer” is a broad term and is used in its ordinary meaning and includes, without limitation, transition metals, transition metal compounds, radiation absorbing additives (e.g., carbon black). Suitable transition metals include, but are not limited to, cobalt, rhodium, and copper. Suitable transition metal compounds include, but are not limited to, metal carboxylates. Preferred carboxylates include, but are not limited to, neodecanoate, octoate, and acetate. Thermal enhancers may be used alone or in combination with one or more other thermal enhancers.
  • The thermal enhancer can be added to a material and may significantly increase the temperature of the material during a curing process, as compared to the material without the thermal enhancer. For example, in some embodiments, the thermal enhancer (e.g., carbon black) can be added to a polymer so that the temperature of the polymer subjected to a curing process (e.g., IR radiation) is significantly greater than the polymer without the thermal enhancer subject to the same or similar curing process. The increased temperature of the polymer caused by the thermal enhancer can increase the rate of curing and therefore increase production rates. In some embodiments, the thermal enhancer generally has a higher temperature than at least one of the layers of an article when the thermal enhancer and the article are heated with a heating device (e.g., infrared heating device).
  • In some embodiments, the thermal enhancer is present in an amount of about 5 to 800 ppm, preferably about 20 to about 150 ppm, preferably about 50 to 125 ppm, preferably about 75 to 100 ppm, also including about 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, and 700 ppm and ranges encompassing these amounts. The amount of thermal enhancer may be calculated based on the weight of layer which comprises the thermal enhancer or the total weight of all layers comprising the article.
  • In some embodiments, a preferred thermal enhancer comprises carbon black. In one embodiment, carbon black can be applied as a component of a coating material in order to enhance the curing of the coating material. When used as a component of a coating material, carbon black is added to one or more of the coating materials before, during, and/or after the coating material is applied (e.g., impregnated, coated, etc.) to the article. Preferably carbon black is added to the coating material and agitated to ensure thorough mixing. The thermal enhancer may comprise additional materials to achieve the desire material properties of the article.
  • In another embodiment wherein carbon black is used in an injection molding process, the carbon black may be added to the polymer blend in the melt phase process.
  • In some embodiments, the polymer comprises about 5 to 800 ppm, preferably about 20 to about 150 ppm, preferably about 50 to 125 ppm, preferably about 75 to 100 ppm, also including about 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, and 700 ppm thermal enhancer and ranges encompassing these amounts. In a further embodiment, the coating material is cured using radiation, such as infrared (IR) heating. In preferred embodiments, the IR heating provides a more effective coating than curing using other methods. Other thermal and curing enhancers and methods of using same are disclosed in U.S. patent application Ser. No. 10/983,150, filed Nov. 5, 2004, entitled “Catalyzed Process for Forming Coated Articles,” the disclosure of which is hereby incorporated by reference it its entirety.
  • In some embodiments the addition of anti-foam/bubble agents is desirable. In some embodiments utilizing solutions or dispersion the solutions or dispersions form foam and/or bubbles which can interfere with preferred processes. One way to avoid this interference, is to add anti-foam/bubble agents to the solution/dispersion. Suitable anti-foam agents include, but are not limited to, nonionic surfactants, alkylene oxide based materials, siloxane based materials, and ionic surfactants. Preferably anti-foam agents, if present, are present in an amount of about 0.01% to about 0.3% of the solution/dispersion, preferably about 0.01% to about 0.2%, but also including about 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.25%, and ranges encompassing these amounts.
  • In another embodiment foaming agents may be added to the coating materials in order to foam the coating layer. In a further embodiment a reaction product of a foaming agent is used. Useful foaming agents include, but are not limited to azobisformamide, azobisisobutyronitrile, diazoaminobenzene, N,N-dimethyl-N,N-dinitroso terephthalamide, N,N-dinitrosopentamethylene-tetramine, benzenesulfonyl-hydrazide, benzene-1,3-disulfonyl hydrazide, diphenylsulfon-3-3, disulfonyl hydrazide, 4,4′-oxybis benzene sulfonyl hydrazide, p-toluene sulfonyl semicarbizide, barium azodicarboxylate, butylamine nitrile, nitroureas, trihydrazino triazine, phenyl-methyl-urethane, p-sulfonhydrazide, peroxides, ammonium bicarbonate, and sodium bicarbonate. As presently contemplated, commercially available foaming agents include, but are not limited to, EXPANCEL®, CELOGEN®, HYDROCEROL®, MIKROFINE®, CEL-SPAN®, and PLASTRON® FOAM.
  • The foaming agent is preferably present in the coating material in an amount from about 1 up to about 20 percent by weight, more preferably from about 1 to about 10 percent by weight, and, most preferably, from about 1 to about 5 percent by weight, based on the weight of the coating layer. Newer foaming technologies known to those of skill in the art using compressed gas could also be used as an alternate means to generate foam in place of conventional blowing agents listed above.
  • The tie-layer is preferably a polymer having functional groups, such as anhydrides and epoxies that react with the carboxyl and/or hydroxyl groups on the PET polymer chains. Useful tie-layer materials include, but are not limited to, DuPont BYNEL®, Mitsui ADMER®, Eastman's EPOLINE, Arkema's LOTADER and ExxonMobil's EVELOY®.
  • D. Methods and Systems for Making Lamellar Material
  • A multi component layer or article can also be made from a lamellar meltstream that preferably comprises at least two components. A lamellar meltstream, as that term is used herein, includes without limitation, a meltstream comprising at least two layers in which the layers in the meltstream are generally parallel. Although a lamellar meltstream may have as few as two layers, a lamellar meltstream may comprise, and preferably comprises, a plurality of thin layers. Where the lamellar meltstream is made from two materials, the meltstream is preferably comprised of generally alternating thin layers of the two materials. The materials used to form the lamellar meltstream are preferably polymers, such as thermoplastics, including polyester, polyolefin, phenoxy-type materials and other materials as described herein. The layer materials may also include blends of two or more materials. The layer materials may also incorporate additives such as nanoparticles, oxygen scavengers, UV absorbers, compatibilizers, and the like. In one embodiment, the lamellar meltstream comprises recycled polyester such as recycled PET and a barrier material.
  • One method of forming a lamellar meltstream uses a system similar to that disclosed in several patents to Schrenk, U.S. Pat. Nos. 5,202,074, 5,540,878, and 5,628,950, the disclosures of which are hereby incorporated in their entireties by reference, although the use of that method as well as other methods for obtaining lamellar meltstreams are presently contemplated. Referring to FIG. 27, a schematic of an embodiment of a lamellar meltstream generation system 482 is shown. The system in FIG. 27 illustrates one embodiment of a two material system, but it will be understood that a system for three or more materials will operate in a similar fashion. The two materials which are to form the layers are placed in separate hoppers or inlets 484 and 485, which feed two separate extruders, 486 and 487 respectively. In a preferred embodiment, the extruders 486 and 487 are screw-type extruders that can apply a combination of heat and pressure to turn raw materials into a melt. The materials are extruded at rates and thicknesses to provide the desired relative amounts of each material and the meltstreams of the extruders combined to form a two layer meltstream 488 comprised of a layer from each cylinder preferably arranged so that one layer lies on top of the other layer
  • The two layer meltstream 488 output from combined cylinders is then preferably applied to a layer multiplication system 490. In the illustrated layer multiplication system 490, the two layer meltstream 488 is multiplied into a multi-layer meltstream 492, which has 10 layers in the illustrated embodiment as shown in FIG. 27A. The illustration in FIG. 27A is schematic and somewhat idealistic in that although the layers of the lamellar material on average are preferably generally parallel to each other, the lamellar material may include layers that are not parallel to each other and/or layers may be generally parallel at some points and not parallel at others.
  • Layer multiplication may be done by any of a number of ways. In one embodiment, one first divides a section of meltstream into two pieces perpendicular to the interface of the two layers. Then the two pieces are flattened so that each of the two pieces is about as long as the original section before it was halved in the first step, but only half as thick as the original section. Then the two pieces are recombined into one piece having similar dimensions as the original section, but having four layers, by stacking one piece on top of the other piece so that the sublayers of the two materials are parallel to each other (i.e. stacking in a direction perpendicular to the layers of the meltstream). These steps of dividing, flattening, and recombining the meltstream may be done several times to create more thinner layers. The meltstream may be multiplied by performing the dividing, flattening and recombining a number of times to produce a single melt stream consisting of a plurality of sublayers of the component materials. In this two material embodiment, the composition of the layers will alternate between the two materials. Other methods of layer generation include performing steps similar to those outlined above, but flattening the meltstream prior to dividing or following recombination. Alternatively, in any of these embodiments one may fold the meltstream back onto itself rather than dividing it into sections. Combinations of dividing and folding may also be used, but it is noted that folding and dividing will achieve slightly different results because folding will cause one layer to be doubled back upon itself. The output from the layer multiplication system passes out an opening 494 such as a nozzle or valve, and is used to form an article or a multi-component layer in an article, such as by injecting or placing the lamellar meltstream into a mold.
  • In the illustrated two-material embodiment, the composition of the layers generally alternates between the two materials. However, in other embodiments any suitable number of materials can be combined into a component meltstream and then fed to layer multiplication system 490 which can produce a lamellar meltstream with any desired number and/or size of repeating blocks or stacks of materials. For example, in one embodiment, the system 482 comprises three extruders that simultaneously deliver material to the layer multiplication system 490. The layer multiplication system 490 can form a stack of layers formed of the three materials.
  • When a lamellar meltstream includes one or more materials which provide gas barrier properties, it is preferred that the lamellar meltstream be used in a manner which orients it such that the layers of the meltstream are generally parallel to one or more broad surfaces of the article. For example, in a preform or container, the layers are preferably generally parallel to the length of the wall section or body portion. Although parallel is preferred, other orientations may be used and are within the scope of this disclosure. For example, one or more portions of the wall of a container can have layers that are parallel to each other and the surface of the wall while one or more other portions have layers that are not parallel to each other. The desired tortuous path through the wall of a container is determined by the orientation and configuration of the layers of which form the container. For example, layers that are generally parallel to each other and the wall section can increase substantially the length of the path through the wall to be traversed by a gas molecule. Alternatively, layers that are generally parallel to each other and transverse to the wall result in a shorter or reduced tortuous fluid path through the wall and would thus have lower barrier properties than the same meltstream oriented in a parallel fashion.
  • The articles, such as containers and preforms disclosed herein can be formed using a lamellar meltstream output from a system such as the one illustrated. In some embodiments, the lamellar melt comprises materials that have generally similar melt temperatures, Tm, for convenient processing and molding. However, the lamellar melt may comprise materials that have substantially different Tms. For example, the lamellar material can comprise materials which have Tms within a range of about 500° F. (about 260° C.). The materials of the lamellar material can be selected based on the material's thermal properties, structural properties, barrier properties, rheology properties, processing properties, and/or other properties. The lamellar melt can be formed and cooled, preferably before one or more of its components substantially degrade. A skilled artisan can select materials to form the lamellar material to achieve the desired material stability suitable for the processing characteristics and chosen end use.
  • E. Methods and Apparatuses for Making Preferred Articles
  • The monolayer and multilayer articles (including packaging such as closures, preforms, containers, bottles) can be formed by a molding process (e.g., injection molding including co-injection molding). One method of producing multi-layered articles is referred to herein generally as overmolding, and sometimes as inject-over-inject (“IOI”). The name refers to a procedure which uses injection molding to inject one or more layers of material over an existing layer, which preferably was itself made by injection molding. The terms “overinjecting” and “overmolding” are used herein to describe the coating process whereby a layer of material is injected over an existing layer or preform.
  • One overmolding method for making preforms involves using an injection molding machine in conjunction with a mold comprising a mandrel or core and a cavity. A first layer of a preform is molded between the mandrel and a first cavity of the mold by injecting a molten polymer (i.e. polymer melt) into the void space in the mold. The first layer remains on the mandrel when the mandrel is pulled out of the cavity, moved, and inserted into a second mold cavity. A second layer of a material is then injected over the existing first preform layer. The mandrel and accompanying preform are then removed from the second cavity and the preform is removed from the mandrel.
  • In some embodiments, the overinjecting process is performed while the underlying layer has not yet fully cooled. The underlying layer may have retained inherent heat from an injection molding process that formed the underlying layer. In some embodiments, the underlying layer can be at room temperature or any other temperature suitable for overmolding. For example, articles at room temperature can be overmolded with one or more layers of material. These articles may have been stored for an extended period of time before being overmolded.
  • Overinjecting may be used to place one or more layers of material(s) such as those comprising PP, expandable/foam material, PET (including recycled PET, virgin PET), lamellar material, barrier materials, combinations thereof, and/or other materials described herein over a substrate (i.e., the underlying layer). In some non-limiting embodiments, the substrate is in the form of a preform, preferably having an interior surface for contacting foodstuff. In some embodiments, the substrate preform comprises PET (such as virgin PET), phenoxy type thermoplastic, combinations thereof, and/or the like.
  • Articles may comprises one or more layers or portions having one or more of the following advantageous characteristics: an insulating layer, a barrier layer, a foodstuff contacting layer, a non-flavor scalping layer, a high strength layer, a compliant layer, a tie layer, a gas scavenging layer, a layer or portion suitable for hot-fill applications, a layer having a melt strength suitable for extrusion. In some embodiments, monolayer or multi-layer material comprises one or more of the following materials: PET (including recycled and/or virgin PET), PETG, foam, polypropylene, phenoxy type thermoplastics, polyolefins, phenoxy-polyolefin thermoplastic blends, and/or combinations thereof. For the sake of convenience, articles are described primarily with respect to preforms, containers, and closures.
  • In some embodiments, articles can comprise foam material. Foam material can be prepared by combining a foaming agent and a carrier material. In one embodiment, the carrier material and the foaming agent are co-extruded for a preferably generally homogenous mixture of foam material. The amount of carrier material and the foaming agent can be varied depending on the desired amount of one or more of the following: expansion properties, structural properties, thermal properties, feed pressure, and the like. In some non-limiting embodiments, the expandable/foam material comprises less than about 10% by weight, also including less than about 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% by weight, of the foaming agent. In some non-limiting embodiments, the expandable/foam material comprises about 1-6% by weight of the foaming agent. In another non-limiting embodiment, the expandable/foam material comprises about 3-6% by weight of the foaming agent. In another non-limiting embodiment, the expandable/foam material comprises about 2-8% by weight of the foaming agent. It is contemplated that the expandable/foam material may comprise any suitable amount of foaming agent including those above and below the particular percentages recited above, depending on the desired properties of the foam material.
  • In some embodiments, carrier material (e.g., polypropylene pellets) and a foaming agent in the form of microspheres, preferably EXPANCEL® microspheres or similar material, are fed into a hopper. The carrier material and the microspheres are heated to melt the carrier material for effective mixing of the materials. When the mixture is heated, the microspheres may expand or become enlarged. Preferably, the temperature of the mixture is in a temperature range to not cause full expansion or bursting of a substantial portion of the microspheres. For example, if the temperature of the mixture reaches a sufficiently high temperature, the gas within the microspheres may expand such that microspheres break or collapse. The melted foam material can be co-extruded and is preferably rapidly quenched to limit the amount of expansion of the microspheres.
  • When the foam material is heated for processing (e.g., extruding, injecting, etc.), the microspheres according to one embodiment may partially expand from their initial generally unexpanded position. When such microspheres are partially expanded, they retain the ability to undergo further expansion to increase the size of the microspheres. Preferably, the pressure and temperature are such that the microspheres are not fully expanded during extrusion in order to allow further expansion of the microspheres during blow molding, for example. Additionally, the pressure of the foam material can be increased to reduce, or substantially prevent, the expansion of the microspheres. Thus, the pressure and the temperature of the foam material can be varied to obtain the desired amount of expansion of the microspheres. Partially expanded microspheres can undergo further expansion when they are reheated (e.g., during the blow molding cycle) as described herein.
  • It is contemplated that articles described herein can be prepared or modified by any suitable method, including but not limited to (1) dip or flow coating, (2) spray coating, (3) flame spraying, (4) fluidized bed dipping, (5) electrostatic powder spray, (6) overmolding (e.g., inject-over-inject), and/or (7) injection molding (including co-injection). For example, preferred methods and apparatuses for performing the methods are disclosed in U.S. Pat. No. 6,352,426 and U.S. Publication No. 2004-0071885 which are incorporated by reference in their entirety and form part of the disclosure of this application. It is also contemplated that these methods and apparatuses can be used to form other articles described herein. The preforms disclosed herein can be blow molded using methods and apparatus disclosed in the references (e.g., U.S. Pat. No. 6,352,426) incorporated by reference into the present application.
  • 1. Methods and Apparatus for Preparing an Article Comprising Foam
  • A article, such as the preform 30 can be formed through injecting molding by utilizing an injection mold. FIG. 28 illustrates a mold 501 which has a cavity 500 defined by the core 499 and the mold cavity section 504. The mold 501 can form an article that comprises expandable/foam material. In some embodiments, including the illustrated embodiment, the foam material is passed along a line 509 and passes through a gate 508 and into the cavity 500. The foam material can fill the cavity 500 to form the preform 30. The foam material within the cavity 500 can be rapidly cooled or quenched to limit expansion of the foaming agent and can reduce cycle times to increase production. The mold can have a gate or needle valve 511 to prevent backflow of the expanding foam.
  • The back pressure of the melt may not be high enough to cause the foaming agent in the form of microspheres to break. However, the back pressure should prevent the microspheres from over expanding in order to allow for blow molding the preform into the desired shape and/or to allow for further expansion of the microspheres. The temperature of the melt can be varied depending on the back pressure of the melt. For example, a melt at a high temperature can cause the microspheres to expand. To inhibit or prevent the expansion of the microspheres, the back pressure can be increased to account for the increased pressure within each of the microspheres. However, if the pressure of the melt is too high, the microspheres may break or collapse. Thus, the pressure of the melt is preferably maintained in a range so that a substantial portion of the microspheres do not fully expand or break. In other embodiments, however, some or all of the spheres may break upon full expansion to form the foam (e.g., open celled foam).
  • In some embodiments, the melt may undergo at least partial expansion before it is injected into the mold cavity 500. For example, after a shot of melt is injected into the cavity 500, the screw of the extruder can be retracted to accumulate melt for the next shot. After recovery, the screw can be decompressed to reduce the pressure of the melt to achieve controllable expansion of the microspheres in the melt. In one embodiment, the melt is not under pressure so that the microspheres can freely expand. However, pressure can be applied to the melt to selectively control the expansion of the microspheres. Accordingly, the microspheres in the melt can be partially or fully expanded before the melt is injected into the cavity 500. Preferably, the microspheres are in a state of expansion such that the microspheres can undergo further expansion during, e.g., the preheat process for blow molding. The melt having microspheres may be injected into the cavity 500 to form a preform having expanded microspheres. The preform having expanded microspheres can then be formed into the container having generally evenly distributed microspheres.
  • The cavity 500 can be heated to result in a generally even distribution of the microspheres of the preform. The heat can cause generally uniform expansion of the foam material. In some embodiments, the melt may comprises polypropylene and microspheres and is injected into the cavity 500, which can be at a temperature of about 100° F. (37.8° C.) to about 250° F. (121.1° C.). The heated cavity 500 can ensure that the microspheres are generally evenly distributed throughout the preform. In another embodiment, the cavity 500 can be maintained at a temperature of about 150° F. (65.6° C.) to about 225° F. (107.2° C.). In yet another embodiment, the cavity 500 can be maintained at a temperature of less than about 200° F. (93.3° C.). The cavity 500 can be cooled at any suitable time to achieve the desired distribution of the microspheres. In another embodiment, the melt comprises polyethylene and microspheres. The cavity 500 can be at a temperature of about 75° F. (23.9° C.) to about 125° F. (51.7° C.) to form a preform, preferably generally evenly distributed microspheres. The preform may have evenly distributed microspheres can then be molded into a container which, in turn, has evenly distributed microspheres. The temperatures noted above are dependent upon the particular materials used. In view of the present disclosure, a skilled artisan can select material(s), processing parameters, and design to the mold to produce various types of articles.
  • The speed of the melt passing through the line 509 and the cavity 500 can cause frictional heat and thus cause expansion of the microspheres in addition to the heat of the melt. The illustrated mold of FIG. 28 has high heat transfer material 507 that can rapidly cool the melt passing through the cavity 500 to retard the expansion of the microspheres. The high heat transfer material 507 can form a portion or the entire mold cavity section 504. Thus, operating parameters (e.g., the flow speed, pressure, temperature, mixture ratios, viscosity, and the like) can be varied depending on the shape, size, and other characteristics of the mold.
  • In some embodiments, the preform in the cavity 500 can be rapidly cooled or quenched to retard, or even to stop, the expansion of the microspheres. This allows that the microspheres, which may be partially expanded, to form a tight structure that can be expanded during blow molding. After the preform is sufficiently cooled, it can be conveniently handled without further expansion of the microspheres. In one embodiment, the cavity 500 is maintained at a temperature suitable for controlling the expansion rate of the microspheres during the molding process. In one non-limiting embodiment, the cavity 500 is maintained at a temperature of about 40° F. (4.4° C.) to about 180° F. (82.2° C.) to reduce or stop the expansion of the microspheres. The temperature of the cavity 500 can be selected based on, e.g., the molding materials, the size and configuration of the preform, the size of the space filled by the foam material, and/or processing parameters. The processing temperature of the material can be chosen or determined by a skilled artisan given the composition of foam (carrier material, foaming agent, microspheres), degree of expansion desired, and/or other parameters.
  • a. Preparing Articles by Blow Molding Process
  • Articles comprising form can be produced by blow-molding processes. An article in the form of the preform 30 can be stretch blow-molded to form a container, such as the container 37 (FIG. 4), and preferably cause expansion of the microspheres. The preform 30 can be subjected to a stretch blow-molding process in the mold illustrated in FIG. 3. The preform 30 comprising expandable material is placed in the mold 28 having a cavity corresponding to the desired container shape. The preform 30 is then heated and expanded by stretching the preform 30 to fill the cavity within the mold 28, thus creating a container. The stretching can be accomplished by, e.g., forcing air into the interior portion of the preform 30. The blow molding operation normally is restricted to the body portion 34.
  • Before the preform 30 is stretched, the preform 30 is preferably preheated to the blow temperature range for the blow molding process. If the temperature of the preform 30 reaches the expansion temperature range, the microspheres of the preform 30 may expand. The expansion temperature range can be achieved before, during, or after the stretching of the preform 30. Preferably, the microspheres of the preform 30 are heated to their expansion temperature range to cause at least partial expansion of the microspheres before the preform 30 is blow molded.
  • After the temperature of the preform 30 is raised to the blow temperature range, air is passed into the interior portion of the preform 30 to expand the preform into the desired shape of the container 37. The expansion temperature range is preferably generally similar to the blow temperature range such that the microspheres can expand during the heating or reheating for blow molding. The expandable material is expanded as the air forces the preform to stretch and mold to the desired shape. In another embodiment, the preform 30 can be blow molded into the desired shape and then the temperature of the container 37 can reach the expansion temperature range so as to cause expansion of the foam material of the container 37. To increase the rate of expansion of the microspheres, the temperature during the blow molding cycle can be increased and/or the blow pressure can be reduced. To decrease the rate of expansion of the microspheres, the temperature during the blow molding cycle can be decreased and/or the blow pressure can be increased. Thus, the preform can be heated/chilled and the pressure can be set as desired.
  • With reference to FIG. 3, the walls 33 of the mold 28 can be temperature controlled to achieve the desired expansion of the foam material of the preform 30/container 37. In one embodiment, the mold 28 has a temperature control system to control the temperature of the walls 33. The temperature control system can have heating/cooling channels or any suitable system for effectively controlling the temperature of the walls 33.
  • In some embodiments, for example, the walls 33 are heated to cause expansion of the microspheres of the container 37. After the preform 30 is blow molded to form the container 37, the heated walls 33 continue the expansion of the microspheres in the wall of the container 37, thereby reducing the density of the wall. In this manner, the microspheres in the walls of the container 37 can be expanded or enlarged to provide a more effective thermal barrier due to the highly expanded microspheres.
  • The walls 33 of the mold 28 can be cooled to retard, or prevent, the expansion or further expansion of the microspheres. The walls 33 may be heated during one or more portions and cooled during one or more portions of the production cycle. The walls 33 can be heated during a heat cycle to promote expansion of the microspheres as discussed above. After the microspheres have expanded as desired, the mold walls 33 are preferably cooled to decrease, or preferably stop, the further expansion of the microspheres. Thus, the walls 33 can be heated during a first portion and cooled during a second portion of the blow-molding process. However, the walls 33 can be heated and/or cooled at any suitable time during the blow-molding process. For example, in another embodiment the walls 33 of the mold 28 are cooled during the stretching of the preform 30 from its initial position to the desired container shape. The preform 30 can be heated, blown, and stretched until the wall of the preform contacts the chilled walls 33. Preferably, the expandable material forming the preform 30 undergoes localized expansion as the preform is stretched. When the preform 30 thermally communicates with the walls 33, heat is transferred from the stretched preform 30 to the mold 28 to cool the wall 84 of the shaped preform. As the preform 30 is cooled, the expansion of the microspheres can be reduced or stopped. The pressure within the mold 28 can be increased to decrease the rate of expansion of the microspheres. The pressure within the mold 28 can be decreased to increase the rate of expansion of the microspheres.
  • The walls 33 of the mold 28 can have a surface treatment or structures for achieving a desired foaming reaction during the blow molding process which may result in a textured surface of the container 37. For example, the surface of the walls 33 can be rough or gritty so that when the outer surface of container 37 contacts the wall 33 during blow molding, the outer surface of the container 37 will have a textured foam surface. The textured surface of the wall 33 can promote further expansion of the microspheres after at least a portion of the container contacts the wall 33 of the mold 28. However, the surface of the wall 33 can have any treatment to achieve a suitable outer surface texture of the container 82. In another embodiment, for example, the wall 33 of the mold 28 can have a reduced friction finish, such as a vapor honed finish, for easy release of the container 37 from the mold 28. The reduced friction finish can be a substantially smooth surface to facilitate release of the container. The mold 28 can be used to produce multilayer containers, such as the container 82 of FIG. 6.
  • 2. Preferred Methods and Apparatuses for Preparing Preforms
  • Articles having mono or multilayers can be formed through injection molding processes, such as by co-injection, overmolding, and the like. It is contemplated that combinations of injection molding can be performed to produce different configurations of articles.
  • a. Preferred Methods and Apparatuses for Co-Injection Molding
  • FIG. 28 illustrates the mold 501 that can be used to inject or co-inject to form monolayer or multilayer, respectively, articles. Multilayer preforms can be formed by a co-injection procedure in which a plurality of materials are co-injected into the cavity 500. In some embodiments, a first material and a second material are co-injected into the cavity 500 to form a multilayer preform. In the embodiment illustrated in FIG. 11, a first material that forms the inner layer 164 and a second material that forms the outer layer 162 can be co-injected through the gate 508. To terminate the inner layer 164 along the interior surface of the preform 160, the flow of the first material forming the inner layer 164 can be stopped before the melt stream comprising the first material proceeds throughout the entire cavity 500. Thus, one or more materials can be delivered through the gate 508 at different flow rates, simultaneously or at different times, in various amounts, and the like to form a desired article.
  • The preform 160 can have a thin inner layer 164 relative to the outer layer 162. This is especially advantageous if the material forming the inner layer 164 is substantially more expensive than the material forming the outer layer 162. For example, some types of phenoxy type thermoplastics may be more expensive than readily available materials, such as PET, so that the amount of phenoxy type thermoplastics can be used in minimal amounts to reduce the material cost of the preform 160.
  • The preform 180 of FIG. 12 also can be formed through a co-injection process using the mold 501. A skilled artisan will readily recognize that the layers of the preforms 160, 180 can be varied to achieve the desired properties of the preform. FIGS. 12A and 12B illustrate alternative embodiments of multilayer preforms. FIG. 12B illustrates a preform 180B that comprises an inner layer 184B and/or outer layer 182B that may have a varying thickness. The illustrated layers 182B, 184B comprise a thickened portion in the body portion of the preform. The inner layer 184B has a slightly thickened body portion relative to the neck finish. The thickness of the outer layer 182B is generally greater than the thickness of the inner layer 184B. Although not illustrated, the preform 190 of FIG. 13 also can have the inner layer 194 and the outer layer 199 of varying thicknesses.
  • It is contemplated that the preforms of FIGS. 11-14 can be overmolded with a material (e.g., barrier material), preferably to form a layer that extends from the support ring along the body portion of the preform. U.S. Pat. No. 6,312,641 is hereby incorporated by reference in its entirety and describes methods, systems and articles formed by one or more molding processes. In view of the present disclosure, various combinations of systems can be used to produce a wide variety of articles by employing a co-injection processes.
  • b. First Preferred Method and Apparatus for Overmolding
  • Articles having multiple layers can be formed through injection molding process, such as by an overmolding process. FIG. 29 illustrates an example of a mold 520 for overmolding. The mold 520 has a core half 522 and a cavity half 524 illustrated in the closed position prior to overinjecting. The cavity half 524 comprises a cavity in which the uncoated article in the form of a substrate (e.g., the preform 528) is placed. The overmolding process is can be used to deposit one or more layers on the substrate.
  • The preform 528 can be a mono or multilayer preform. The illustrated preform is a monolayer preform that may comprise one or more of the following: PET (e.g., virgin PET and/or recycled PET), polyester, PP, phenoxy type thermoplastics, thermoplastics and/or the like. The preform 528 can also be similar to the preforms disclosed in the applications or patents incorporated by reference into the present application.
  • A support ring 538 of the preform 528 can rest on a ledge 536 and is held in place by the core half 522, which exerts pressure on the support ring 538, thus sealing the neck portion off from the body portion of the substrate preform. The core half 522 of the mold comprises a core 540. The core 540 selectively heats/cools the interior of the preform 528, while channels 544 can heat/cool the cavity half 524. For example, the cooling is done by fluid circulating through channels 546 in the core half 522 of the mold 520.
  • As the preform 528 sits in the mold cavity, the body portion of the preform is substantially centered within the cavity and is preferably completely surrounded by a void space or cavity 550. The preform, thus positioned, acts as an interior die mandrel in the subsequent injection procedure. The melt of the overmolding material is then introduced into the mold cavity 550 from an injector via gate 554 and flows around the preform 528, preferably surrounding at least the body portion of the preform 528. Following overinjection, the overmolded layer will take the approximate size and shape of the cavity 550.
  • The coating material may be heated to form a melt of a viscosity compatible with use in an injection molding apparatus. The temperature for this, the inject temperature, will differ among materials, as melting ranges in polymers and viscosities of melts may vary due to the history, chemical character, molecular weight, degree of branching and other characteristics of a material.
  • The mold 520 can be used to form the coated preforms disclosed herein such as the preform 50. The preform 50 of FIG. 5 can have one of the layers 52, 54 comprising substantially PET, phenoxy type thermoplastics (including phenoxy and polyoletin-phenoxyblends), polypropylene, lamellar material, and/or other thermoplastics. In some embodiments, the other of the layers 52, 54 of the preform 50 can comprise another material, such as foam. The expandable/foam material can comprise a carrier material (e.g., PP, PET, and/or ethylene acrylic acid) that mixed with a foaming agent (e.g., microspheres, such as EXPANCEL® microspheres) for producing a foam material. For example, the inner layer 54 can comprise PET and the outer layer 52 can comprise expandable/foam material. The substrate preform can comprise PET. Foam material can be delivered through a line 552 and the gate 554 into the cavity 550. The injected expandable/foam material is then cooled for subsequent removal. In view of the present disclosure, a skilled artisan can select material(s) based on the material(s)' properties and desired articles made therefrom.
  • i. Preparing Multilayer Articles by Blow Molding
  • Multilayer articles can be blow molded in a similar manner as monolayer articles, except as described in further detail below. For the sake of convenience, blow molding of multilayer articles will be described with respect to the preform 50. Of course, other multilayer preforms can be blow molded in a similar manner, especially multilayer preforms comprising foam material.
  • The preform 50 is placed in a mold (e.g., the mold 28 of FIG. 3) having a cavity corresponding to the desired container shape. The preform 50 is then heated and expanded by forcing air into the interior of the preform to stretch the preform so that it fills the cavity, thus creating a multilayer container. Optionally, the preform 50 can be stretched with a stretch rod or other means of stretching the preform.
  • In some embodiments, the preform 50 comprises material having similar or different processing windows. The preform may comprise an inner layer 54 comprising PET and an outer layer 52 comprising another material, such as PP (including foamed and non-foamed PP). The outer layer 52 can be made of mostly or entirely of PP. Advantageously, the inner layer 54 and the outer layer 52 can be blow molded within a processing window that is dramatically wider than the processing window of preforms made entirely of PP. Advantageously, the processing window may be widened irrespective of the thicknesses of the inner layer 54 and outer layer 52. Optionally, a layer 85 can be used to enhance adhesion between the inner layer 54 and the outer layer 52. In one embodiment, a coupling agent or crafting (e.g., adhesive) forms the layer 85 and provides adhesion between the inner layer 54 and the outer layer 52.
  • In some embodiments, the layer 52 can be expandable material formed through overmolding by using injection molding to inject at least one layer of expandable material over an existing preform (e.g., a preform comprising PET, phenoxy type thermoplastics, etc.). The inner layer 54 and the carrier material of the foam layer 52 may have a similar Tg so that both layers 52, 54 can be processed within their preferred blowing temperature ranges. As discussed above, the expansion temperature range may be the temperature range that causes expansion of the microspheres. The expansion temperature range can be varied by changing the pressure applied to the expandable material. Preferably, the expansion temperature range is similar or within the blowing temperature range of the layers 52, 54. During the blow molding process the temperature of the preform can be within the expansion temperature range to cause at least partial expansion of the microspheres. Thus, the foaming agent of the foam layer 52 can expand (1) during the reheat of the preform for blow molding, (2) during the stretching of the preform to the shape of the container, (3) after the container is generally formed, and/or (4) combinations of (1), (2), and/or (3).
  • In some embodiments, a multi-layer preform can be blow-molded into a container that has an inner layer suitable for engaging with liquid within the container. For example, a preform or container can have an inner layer or coating (e.g., as a plasma layer of silicon oxide, certain types of phenoxy, and the like) which is suitable for use in contact with drinking liquids, foodstuff, or the like. This layer can be applied to the container (e.g., a container 37 or container 83) at any suitable time during the production of the containers. For example, the plasma layer can be applied to the preform or to the shaped container.
  • c. Second Preferred Method and Apparatus for Overmolding
  • The methods and apparatus described herein can be modified to make other preforms disclosed herein. For example, FIG. 30 illustrates a mold that can be used to form an underlying layer of a substrate preform, prior to injecting material. The preform may or may not have a neck finish. For example, the preform can be a neckless preform. A mold 560 has a core section 561 and a cavity section 566 having a cavity section surface 568. The mold 560 comprises a cavity 570 defined by a core 562 of the core section 561 and the cavity section 566. A line 572 can feed melt through a gate 574 and into the cavity 570.
  • The cavity 570 has a shape corresponding to the desired shape of a portion of a preform. In the illustrated embodiment, the cavity 570 is configured and sized to mold the inner layer 164 of the preform 160 of FIG. 11. However, the cavity 570 can be sized and configured for forming any desired article. For example, the cavity 570 can have a shape corresponding to the shape of an inner layer, such as the inner layers of any of the preforms described above. Melt can be injected into the cavity 570 in the manner described above to form a molded article. The molded article can be removed from the cavity section 566 and then inserted into another cavity section (e.g., a cavity section 580 of FIG. 31) for an overmolding process.
  • The overmolding is carried out by using an injection molding process using equipment similar to that used to form the inner layer 164. As shown in FIG. 31, after the layer 164 is formed in the mold 560 of FIG. 30 the core 562 can be inserted into the cavity section 580. The layer 164 and the cavity section 580 can define a void or cavity 582 corresponding to the shape of the outer layer 162 of the preform 160 of FIG. 11. Generally, the melt is passed along a line 584 and passes through a gate 586 and into the cavity 582. The melt can fill the cavity 582 to form the outer layer 162. After the preform 160 has cooled a sufficient amount, it can be removed from the mold cavity 582. Following overinjection, the overmolded outer layer 162 will take the approximate size and shape of the cavity 582.
  • To carry out the overmolding procedure, one preferably heats the initial layer 164 which is to be overmolded preferably to a temperature above its Tg. In the case of PET, that temperature is preferably about 100 to 200° C., more preferably about 180° C. to about 225° C. If a temperature at or above the temperature of crystallization for PET is used, which is about 120° C., care should be taken when cooling the PET in the preform. The cooling should be sufficient to minimize crystallization of the PET in the preform, especially in the body portion, so that the PET is in the preferred amorphous and/or semi-crystalline state. Alternatively, the initial inner layer 164 may be very recently injection molded and not fully cooled, as to be at an elevated temperature as is sometimes preferred for the overmolding process.
  • The overmolding material is heated to form a melt of a viscosity compatible with use in an injection molding apparatus. For the some materials such as foam and PP, the inject temperature is preferably in the range of about 375° F. to 550° F.
  • After the overmolding process, the multilayer preform is preferably cooled at least to the point where it can be displaced from the mold or handled without being damaged, and removed from the mold where further cooling may take place. If the body portion of the preform has been heated to a temperature near or above the temperature of crystallization for the material forming the body portion, the cooling should be fairly rapid and sufficient to ensure that the material is primarily in the semi-crystalline state when the preform is fully cooled. As a result of this process, a strong and effective bonding takes place between the initial layer 164 and the subsequently applied outer layer 162 material. The neck finish may have a greater proportion of crystalline material for increased dimensional stability, especially during subsequent process (e.g., blow molding, hot filling, and the like). In view of the present disclosure, a skilled artisan can select the type and design of the molds to make mono and multilayer articles described herein. The molds and processes for other preform embodiments, including those from above, in view of the disclosure herein. Additional details of molding processes (e.g., by an inject-over-inject molding process) can be found in U.S. Pat. No. 6,352,426 incorporated by reference herein.
  • 3. Methods and Apparatus for Preparing a Closure
  • A closure, such as the closures illustrated in FIGS. 18-21E can be formed by utilizing an injection mold. The molds of FIGS. 31 and 32 are generally similar to the molds illustrated in FIGS. 28 to 31, except as further detailed below.
  • FIG. 31 illustrates a mold 700 that is configured to form at least a portion of a closure. The mold 700 is defined by a core section 702 having a core 704 and a cavity section 706. In one embodiment, the material (e.g., PET including virgin and/or recycled PET, PP, phenoxy type thermoplastic, expandable/foam material, PP, and/or other suitable material(s)) is passed along a line 709 and passes through a gate 708 and into a cavity 710, which is defined by the core 704 and the cavity section 706. The material can fill the cavity 710 to form at least a portion of a closure. The illustrated cavity 710 is sized and configured in the shape of the inner layer of a body of a closure. However, the cavity 710 can be configured to form the entire closure. The cavity 710 also optionally includes a portion 711 for forming a band and connectors between the body and band of the closure.
  • The closures described above having multi-layers can be formed through an overmolding process. FIG. 33 illustrates a mold 730 for overmolding. The underlying layer or substrate 732 formed by the mold 700 (FIG. 32) can be positioned in the mold 730 (FIG. 33). The mold 730 has a core section 734 and a cavity section 736 illustrated in the closed position prior to overinjecting. A split ring 740 can engage a portion of the body 742 and a band 744 of the substrate 732. The cavity section 736 comprises a cavity 738 in which the uncoated substrate 732 is placed.
  • The illustrated substrate 732 is a monolayer portion of a closure; however, the substrate 732 can be a multilayer substrate. In some non-limiting embodiments, the substrate 732 can comprise one or more of the following: PET (e.g., virgin PET and/or recycled PET), polyester, PP, phenoxy, thermoplastics (including phenoxy type thermoplastics, lamellar materials, combinations thereof, and/or the like. The substrate 732 can also be a standard closure that is used to close bottles. A skilled artisan can select the size and configuration of the substrate 732 based on the desired end use of the closure.
  • As the substrate 732 sits in the mold cavity, the body 742 of the substrate 732 is preferably centered within the cavity and is completely surrounded by a void space 750. The substrate 732, thus positioned, acts as an interior die in the subsequent injection procedure. The melt of the overmolding material is then introduced into the mold cavity from the injector via gate 752 and flows around the substrate 732, preferably surrounding at least the body portion of the substrate 732. Following overinjection, the overmolded layer will take the approximate size and shape of the void space 750.
  • The mold 730 can be used to form the coated or multilayer closures disclosed herein. In some non-limiting embodiments, the closures of FIGS. 18-21E and 24 can have one or more layers comprising substantially PET, phenoxy type thermoplastics, polypropylene, foam material, and/or other thermoplastics. Optionally, at least one of the layers of the closure can comprise a expandable/foam material. In some embodiments, the closure 302 (FIG. 19) can have the layer 314 of a first material (e.g., PET) and an outer layer of PP (e.g., foamed or non-foamed PP).
  • The methods and apparatuses disclosed in the references incorporated by reference into the present application can be modified to produce closures. For example, the molding machines, apparatuses, and methods disclosed in U.S. Pat. No. 6,352,426 (see, e.g., FIGS. 10-15, 17-24) can modified to produce closures. For example, the molds can comprise high heat transfer material, cooling channels, tie layer systems, gas insertion systems, and/or the like.
  • F. Methods and Apparatuses for Depositing Material on a Substrate
  • Systems for making articles can have one or more apparatuses or systems for depositing a plurality of materials. The molds described above can have one or more delivery systems for depositing material on a substrate, such as an article in the form of a preform, closure, and the like. The deposited material can form at least portion of a tie layer or other layer (e.g., barrier layer). For the sake of convenience, the delivery systems described herein are primarily discussed with respect to molding apparatuses, such as injection molding machines for producing preforms. However, delivery systems can be used to delivery other materials (e.g., barrier materials, plastics including thermoplastics, foam material, and the like) onto substrates in the form of closures, containers (e.g., bottles), sheet, tubes, etc.
  • With reference to FIG. 34, a delivery system 1004 of molding system 1008 can be used in different types of molding systems, such as injection molding system or compression molding system, for example. Molding apparatuses may have a delivery system 1004 for enhancing adhesion between materials and/or to aid in the release of the molded article.
  • FIG. 33 illustrates a molding system 1000 for producing mono and/or multilayer preforms. The molding system 1000 has the delivery system 1004 and a mold 1002 that is similar to the mold 501 illustrated in FIG. 28, except as further detailed below.
  • The mold 1002 of FIGS. 34 and 35 is adapted for an overmolding process. The illustrated mold 1002 is configured to overmold a plurality of preforms and comprises a core section 1052 and the cavity section 1054 that cooperate to define a cavity 1008 when the mold 1002 is in the illustrated closed position of FIG. 35.
  • With respect to FIGS. 34 and 35, the mold 1002 comprises the fluid delivery system 1004 for inserting material, preferably tie material, into the cavity 1008. The fluid delivery system 1004 has a feed line 1010 that receives fluid, preferably pressurized fluid, from a fluid source. An exhaust system 1012 comprises an exhaust line 1016 that is connected to the mold cavity 1008 and a vent 1020 (FIG. 33). The fluid delivery system 1004 injects fluid, preferably tie fluid, through the feed line 1010 and into the cavity 1008 to coat at least a portion of a substrate 1022 (FIG. 35). The illustrated substrate 1022 is in the form of a preform. The preform is then overmolded with a layer of material. The tie fluid preferably forms a tie layer that adheres an overmolded layer to the substrate preform 1022.
  • The fluid can be removed from the cavity 1008 by passing the fluid through the exhaust line 1016 and out of the vent 1020 (FIG. 34). In some embodiments, a flow or pressurization device (e.g., a pump) can be disposed at some point along the exhaust line 1016 to create a low pressure or vacuum (i.e., suction) to promote the flow of the tie fluid. The suction can be applied with pressurized or non-pressurized tie fluid. The pressurized tie fluid provided by the feed line 1010 and the vacuum can result in selectively controlled flow rates within the cavity 1008. In some embodiments, the tie fluid is delivered into the cavity 1008 and then a vacuum is drawn to remove unused tie fluid. However, the exhaust system 1012 may not have device for creating a vacuum. For example, the exhaust system 1012 may be vented to the atmosphere directly, or through a scrubber to remove any potentially ecologically harmful materials such as VOCs.
  • The delivery system 1004 can be used to deliver material, preferably coating material, into the mold 1002. In some embodiments, the material is a non tie coating material. As used herein, the term “coating material” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, tie fluid or material, polymer melt, adhesives, and the like which form a layer on all or part of the surface of the article or layer in the mold. The coating material can provide desired properties to a substrate. In some preferred embodiments, the coating material being adapted to form a structural layer (e.g., a tie layer, polymer layer, barrier layer) on a surface.
  • As used herein, the term “tie fluid” is a broad term and is used in accordance with its ordinary meaning and may include, without limitation, a fluid that can be deposited on the preform to form a tie, adhesive, or crafting layer and may promote adhesion between materials. For example, the tie fluid can be chemical substance that may promote adhesion between thermoplastic polymers, foams, plastics, other materials described herein, and combinations thereof. The tie fluid can comprise one or more anhydride polymers (e.g., maleic anhydride), acrylate group containing polymers, epoxy group containing polymers, acids, bases, organic solvents, chemical etchants, adhesives, cross-linking agents, and/or other substances for promoting adhesion, phenoxy, and/or phenoxy/polyolefin blends. The tie fluid can comprise one or more of the following: a mist, gas, plasma, particles, liquid, and/or combinations thereof. The tie fluid can be selected based on the materials contacted by the tie fluid. In some embodiments, the tie fluid forms a tie layer adapted or configured to adhere a foam layer to a PET layer. In some embodiments, the tie fluid forms a tie layer which causes a PP layer to adhere more strongly to a PET layer. Additives (e.g., chemicals, microparticles, binders, or the like) can be added to the tie fluid to enhance adhesion characteristics of the tie fluid. Thus, the tie fluid can form a tie layer, such as the tie layer of the container 83 of FIG. 6. In some embodiments, the tie fluid comprises one or more of the tie materials described above. In some instances, the terms “tie fluid” and “tie material” are used interchangeably herein.
  • As shown in FIGS. 35 and 37, the delivery system 1004 may be formed at a joint 1024 between members of the mold cavity surface 1018. An outlet or outlet 1028 is positioned along the mold cavity surface 1018 and preferably spaced from a gate 1040. The gate 1040 can be configured to inject material (e.g., melt, molten polymer, and the like) into the cavity 1008. The illustrated outlet 1028 is formed circumferentially around at least a portion the cavity 1008. The outlet 1028 is sufficiently small that substantially no molten material will enter during melt injection. Alternatively, the outlet 1028 may comprise one or more individual openings or apertures. Optionally, the feed line 1010 has a valve system 1030 (FIG. 34) for selectively controlling the flow of fluid through the feed line 1010. The valve system 1030, if present, can be located at any point along the feed line 1010. In some embodiments, including the illustrated embodiment of FIG. 34, a valve system 1030 is positioned upstream of a plurality of cavities 1008. The valves selectively permit or inhibit flow through the feed line 1010 to the cavities. The valve system 1030 is preferably embedded in the material forming the cavity section 1054. Although not illustrated, the valve system 1030 can be located proximate to an outlet (e.g., the outlet 1028) of the feed line 1010.
  • The valve system 1030 can be operated in response to pressure, such as positive or negative pressures and can comprise one or more valves, such as a lift type check valve. In one embodiment, the lift type check valve is a ball check valve having a ball and seat arrangement. Pressure within the feed line 1010 may lift the ball away from the seat, but pressure in the opposite direction will force the ball against the seat and prevent flow in the reverse direction. Typically there is also a spring to bias the ball into contact with the seat. When the pressure within the feed line 1010 overcomes the bias of the spring, the ball can be displaced from the seat allowing flow to the cavity 1008 (FIG. 35). In some embodiments, negative pressure can cause fluid to flow through the valve system 1030. For example, if there is a negative pressure in the cavity 1008, it can cause fluid through the valve system 1030. Alternatively, the valve system 1030 can be mechanically controlled independent of pressure. For example, the valve system 1030 can comprise one or more valves (e.g., gate valves, globe valves, and the like). The valve system 130 can be operated to deliver a determined amount of tie fluid to the cavity 1008.
  • The outlet 1028 of FIG. 35 can be located at any point along the mold cavity surface 1018. The position of the outlet 1028 can be determined on the desired fluid flow about the preform. For example, the illustrated mold 1002 of FIG. 35 has the outlet 1028 positioned near or at the portion of the mold cavity 1008 corresponding to the end cap of the preform. The fluid provided by the feed line 1010 can flow around the end cap of the preform and proceeds upwardly along the cavity 1008 to the exhaust line 1016, thereby depositing material on at least a portion of the preform. The illustrated mold 1002 is configured to deposit tie fluid on the body portion of the preform. As shown in FIG. 37, the outlet 1028 is preferably formed by a step 1036 of between about 0.05 mm (0.002 inches) and about 0.127 mm (0.005 inches) and most preferably about 0.076 mm (0.003 inches) in depth. Because of its small size, the outlet 1028 generally will not fill with melt during injection but will enable fluid (tie fluid, air, and/or other fluids) to be delivered out of the outlet 1028. In some embodiments, fluid (e.g., air, tie fluid, etc.) can pass through the outlet 1028 to clear out any material within the outlet 1028. Although not illustrated, the outlet 1028 can be positioned at other locations along the surface 1018. For example, the outlet 1028 can be position at a location along the surface 1018 corresponding to the body, neck finish, and/or support ring of the preform. For example, the outlet 1028 can be positioned near the end cap region of the mold, below the support ring of the preform, at the neck finish of the preform, or at body portion of the preform. Additionally, a plurality of outlets 1028 can be positioned along the surface 1018. A skilled artisan can select the size, configuration, and placement of the outlet 1028 to achieve the desired deposition of material on the substrate. The outlets 1028 can be positioned on the same or opposing side of the preform as an inlet configured to receive unused tie fluid. For example, an outlet 1028 can be diametrically spaced from an inlet. In the illustrated embodiment, the inlet 1029 and the outlet 1028 are positioned on the same side of the preform.
  • With reference to FIGS. 34 and 35, the exhaust line 1016 is configured to draw in fluid from the cavity 1008 (FIG. 35). The exhaust line 1016 then delivers the tie fluid to the vent 1020, or recirculation system so that fluid can be passed through the cavity 1008 again. The exhaust line 1016 can have a valve system 1038 that can be similar to the valve system 1030 and therefore will not be described in further detail.
  • In operation, after the preform is positioned in the mold 1002, the valve system 1030 permits fluid to flow through the feed line 1010 and into the cavity 1008. As shown in FIGS. 36 and 37, the tie fluid TF can flow through the cavity 1008 and coat at least a portion of the exterior surface of the preform. Preferably, the tie fluid TF coats a substantial portion of the preform forming the interior surface defining the cavity 1008. In some embodiments, including the illustrated embodiment, the tie fluid TF forms a thin layer of material on most of the body portion of the preform, or a generally uniform continuous or discontinuous coating. However, the tie fluid TF can coat any portion of the preform exposed to the fluid. For example, the thread finish and the body portion can be coated with the tie fluid, if the cavity 1008 is defined by both the thread finish and the body portion of the preform.
  • To enhance coating of the preform, the mold 1002 can selectively control the temperature of the preform. In one embodiment, the core 1040 of FIG. 35 heats or cools the preform to promote coating of the preform. A skilled artisan can select the desired temperature of the preform depending on the properties of the tie fluid that coats the preform. Alternatively, the preforms can be electrostatically charged to promote coating of the preform. In other embodiments, the preform can be physically or chemically roughened or textured to enhance coating of the preform. Optionally, the mold cavity surfaces 1018 can be thermally controlled to enhance coating of the preform. For example, the mold cavity surface 1018 can be chilled to ensure that gases in the cavity 1008 generally remain in gas phase.
  • Optionally, the temperature of the tie material can be selectively controlled. For example, the tie material may include tie fluid that is heated to reduce the viscosity of the tie fluid to facilitate spreading of the tie fluid. Heaters and/or chillers can be employed to control the temperature of the tie material.
  • As the delivery system 1004 feeds tie fluid into the cavity 1008, the tie fluid coats the preform and may flow out of the cavity 1008 and into the exhaust system 1012. After the preform has been coated, or after a predetermined period of time, the delivery system 1004 can reduce, or preferably stop the flow of fluid into the cavity 1008. The coating on the preform can form a tie layer for tying the substrate preform 1022 to a material that is subsequently injected through the gate 1040 into the cavity 1008. If the tie material is a solvent/solute, the flow can be reduced or stopped and the cavity 1008 can be vented. The feed line 1010 can deliver a gas or vapor (e.g., air, inert gases such as nitrogen, or other gases) to purge the cavity 1008. The exhaust system 1012 can optionally provide a negative pressure causing gas or vapor in the cavity 1008 to be removed. In this manner, one or more solvents can be removed in order to achieve desirable characteristics of the tie layer and/or overmolded material.
  • During melt injection, the valve system 1030 is preferably closed. The melt injected through the gate 1040 proceeds up along and fills the cavity 1008. In some embodiments, excess tie fluid is pushed out of the mold cavity 1008 by the injected melt stream. Thus, the melt stream can cause tie fluid to be removed from the cavity 1008. For example, if the tie fluid is a gas, the gas can be forced out of the cavity 1008 by the advancing melt stream. The tie coating formed on the preform can be spread on the preform by the melt stream. As the melt stream proceeds along the cavity 1008, the melt stream can push and spread the tie material about the surface of the preform to ensure that at least a portion of the body portion, preferably most or all of the body portion, is coated with a tie material. A skilled artisan can determine the appropriate location of the outlet 1028 based on the properties of the tie layer and melt stream to achieve the desired tie layer in the container produced from the preform.
  • With reference to FIG. 35, during the injection of the melt stream, the valve system 1038 can be opened to allow tie fluid to escape from the cavity 1008. The valve system 1038 can be closed after a predetermined amount of melt stream has been injected to prevent or inhibit melt from entering the exhaust line 1016. Additionally, the inlet 1029 of the exhaust line 1016 can have a small size so that melt will not substantially enter therein, but will enable fluid (tie fluid, air, and/or other fluids) to be delivered into the exhaust line 1016.
  • Optionally, when injection is complete, pressurized fluid, preferably air, is supplied to the outlet 1028 in order to defeat a vacuum that may form between a preform and the cavity wall. The supply of air is delivered to the outlet 1028 at a pressure between about 75 psi (about 0.52 MPa) and 150 psi (about 1.03 MPa) and most preferably about 100 psi (about 0.69 MPa). In other embodiments, the preform is removed from the mold cavity 1018 without the aid of pressurized fluid from the feed line 1010. Additionally, similar delivery systems may be utilized in other portions of the mold, such as the thread area, for example but without limitation.
  • Optionally, the core section 1052 and the cavity section 1054 can cooperate to form a seal to inhibit or prevent the tie fluid from escaping into the environment surrounding the mold 1002 illustrated in FIG. 35. Thus, if the tie fluid has volatile organic compounds (VOCs) or other substances undesirable for inhalation or the environment, the tie fluid can be contained within the mold 1002. The mold 1002 can circulate and reuse the tie fluid to also reduce waste. The tie fluid can be vented via the exhaust system 1012 or by another means. If the tie fluid is suitable for release into the atmosphere, the tie fluid can be vented to the atmosphere. For example, the tie fluid can escape between the preform and the ledge 1056 and then may proceed between the core section 1052 and the cavity section 1054 and out into the atmosphere.
  • The preform can be coated with a tie material before the mold 1002 is in the fully closed position. The tie material can be deposited on the substrate preform as the preform is inserted and advanced into the cavity section 1054. Thus, the preform is coated with tie material when the preform is proximate to or at least partially within the cavity section 1054. In some embodiments, the delivery system 1004 outputs fluid when the mold 1002 is in a partially or fully opened position. In one embodiment, the delivery system 1004 injects tie fluid into the cavity 1008 as the mold 1002 is moved from an open position to the illustrated closed position of FIG. 35. As the preform is advanced into the cavity section 1054, the tie fluid flows upwardly through the cavity 1008 and coats at least a portion of the preform. Before the mold 1002 is in the closed position, the tie fluid can escape into the atmosphere. Thus, the mold 1002 may or may not have an exhaust system 1012. For example, if the tie material is deposited before the mold 1002 is in the closed position, the mold 1002 preferably does not have the exhaust system 1012. If the tie material is deposited after the mold 1002 is in the closed position, the mold 1002 preferably has an exhaust system 1012, especially when the tie fluid is not suitable for venting directly to the atmosphere.
  • FIG. 38 illustrates another embodiment of the delivery system 1004. The delivery system 1004 has a plurality of inlets 1060 for injecting or delivering fluid (e.g., tie fluid, air, etc.) into the cavity 1008. The fluid can be delivered in response to positive pressure in the feed line 1010, or drawn into the cavity 1008 under a negative pressure. In the illustrated embodiment, the mold 1002 has a feed line 1010 connected to each inlet. The delivery system 1004 having a plurality of outlets 1060 may promote more uniform coating of the preform 1022.
  • The delivery system 1004 of FIG. 39 has an inlet 1061 defined by the end cap region. The position of the inlet 1061 results in generally uniform unidirectional flow through the cavity 1008. In some embodiments, the feed line 1010 delivers tie fluid in the form of a liquid that douses the end cap of the preform. After an amount of tie fluid has been delivered, melt can be delivered into the cavity 1008 through the gate 1040. The melt spreads the tie material on the surface of the preform.
  • Other apparatus disclosed herein can be used to deposit tie material on articles. For example, the molds of FIGS. 28, 30, 31 can be modified to deposit tie material on the inner layer or underlying substrate.
  • Optionally, the delivery system 1004 can be connected to the line that delivers melt into a cavity. For example, the feed line 1010 can feed tie fluid into a line through a gate to coat a substrate. After the substrate is coated, the melt can be injected through the same line and gate to form an outer layer.
  • Additionally, the insertion system of the mold (e.g., the mold illustrated in FIG. 26) of U.S. Pat. No. 6,352,426 and the other incorporated applications and patents can inject tie fluid to both coat a preform and aid in the release of the preform. The coated substrate preform can then be overmolded. The delivery system (or insertion systems) can be used to delivery other materials (e.g., one or more of the materials discloses herein) onto articles. For the sake of simplicity, the apparatuses were described delivering a tie fluid. However, it is to be understood in many cases that other materials may be delivered out by the apparatuses described above. For example, the tie material or fluid can be replaced with colorant, chemical, melt, polymer, powder, coating material, barrier material, and/or any other material suitable for coating at least a portion of a substrate.
  • G. Preferred Articles
  • Generally, preferred articles described herein include articles comprising one or more materials. The material(s) may form one or more layers of the articles. The layers of the articles may preferably provide some functionality and may be applied as multiple layers, each layer having one or more functional characteristics, or as a single layer containing one or more functional components. The articles may be in the form of packaging, such as preforms, closures, containers, etc. The materials, methods, ranges, and embodiments disclosed herein are given by way of example only and are not intended to limit the scope of the disclosure in any way. The articles disclosed herein can be formed with any suitable material disclosed herein. Nevertheless, some articles and materials are discussed below. In view of the present disclosure, embodiments and materials can be modified by a skilled artisan to produce other alternative embodiments and/or uses and obvious modifications and equivalents thereof.
  • 1. General Description of Preferred Materials Forming Articles
  • a. Non-Limiting Articles Comprising Foam Material
  • Articles may comprise foam material. In some non-limiting embodiments, foam material can form a portion of an article, such as the body or neck finish of a preform. In some non-limiting embodiments, foam material comprises less than about 90% by weight, also including less than about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% by weight, of the article (such as a preform, closures, container, sheet, etc.). In some non-limiting embodiments, the foam material comprises about 5-30% by weight of the article. In some non-limiting embodiments, the foam material comprises about 20%-60% by weight of the article. In some non-limiting embodiments, the foam material comprises about 10%-30% by weight of the article. In some embodiments, the foam material comprises more than about 90% by weight of the article. The foam material can form most or all of the article. The foam material may result in reduced weight articles as compared to conventional articles and therefore may desirably reduce the transportation cost of the articles. Additionally, foam material can reduce the amount of material that is used to form the articles, since the foam material may have a substantial number of voids.
  • The foam material can be made from expandable material. For example, at least a portion of an article can comprise expandable that has a first density that is reduced when the expandable material is expanded. In some non-limiting embodiments, a first material, preferably expandable material, has a first density and the second material, preferably foam material, made from the first material has a second density. The second density is less than about 95%, 90%, 80%, 70%, 50%, 30%, 20%, 10%, 5%, 2%, 1%, and ranges encompassing such percentages of the first density. In some non-limiting embodiments, the second density is in the range of about 30% to 60% of the first density. Thus, foam material with a low density relative to an expandable material can be made.
  • It is contemplated that articles may comprise any suitable amount of foaming agent including those above and below the particular percentages recited above, depending on the desired use of the articles.
  • b. Non-Limiting Articles Comprising Phenoxy Type Thermoplastic Material
  • Articles may comprise phenoxy type thermoplastics, such as phenoxy and blends (e.g., polyolefin-phenoxy blend), PET-phenoxy, and combinations thereof). In some non-limiting embodiments, the phenoxy type thermoplastic can form a portion of the article, such as at least a portion of the interior surface of the preform, closure, container, etc. In some non-limiting embodiments, the phenoxy type thermoplastic comprises less than about 30% by weight, also including less than about 1%, 2%, 5%, 7.5%, 10%, 12%, 15%, 20%, 25%, 50% by weight, of the article. In another non-limiting embodiment, the phenoxy type thermoplastic comprises about 1-4% by weight of the article. In another non-limiting embodiment, the phenoxy type thermoplastic comprises about 1-15% by weight of the article. In another non-limiting embodiment, the phenoxy type thermoplastic comprises about 7-25% by weight of the article. In another non-limiting embodiment, the phenoxy type thermoplastic material comprises about 5-30% by weight of the article. In some embodiments, the phenoxy type thermoplastic forms a discrete layer or a layer blended with another material. In some embodiments, a discrete layer comprises phenoxy type thermoplastic that forms about 0.1% to 1% by weight of the article. In some embodiments, a discrete layer comprise phenoxy type thermoplastic that forms about 0.1% to 1% by weight of the article. In some embodiments, the phenoxy type thermoplastic is blended with a polymer material (e.g., PET, polyolefin, combinations thereof) and can comprise more than about 0.5%, 1%, 2%, 5%, 7.5%, 10%, 12%, 15%, 20%, 25%, 50%, 70% by weight of the article. It is contemplated that these percentages can be by volume in certain embodiments. The phenoxy type thermoplastic may result in articles having one or more of the following properties: desirable flavor scalping, color scalping, oxygen barrier, recyclable, and/or other properties especially well suited for food contact. These percentages may result in effective desirable characteristics while minimizing the amount of phenoxy type thermoplastic used, thus providing a cost effective article.
  • Various combinations of phenoxy type thermoplastic with polyethylene, polypropylene, foam material, and the like can be used to produce preforms, containers, and other packaging of relatively larger sizes and having desirable characteristics, especially when the phenoxy type thermoplastic forms the surface of the packaging that contacts foodstuffs. Phenoxy type thermoplastics can provide desirable adhesive between a layer comprising PET and a layer comprising PP.
  • It is contemplated that articles may comprise any suitable amount of phenoxy type thermoplastics including those above and below the particular percentages recited above, depending on the desired use of the articles.
  • 2. Articles In the Form of Preforms/Containers
  • Foam material may form one or more portions of layers of the articles (such as packaging including preforms and containers). The preform 30 of FIG. 1 can comprise a foam material. In some embodiments, the preform 30 comprises mostly foam material. In some embodiments, the preform 30 can comprise a phenoxy type thermoplastic formed through a molding process. For example, the preform 30 may comprise mostly a phenoxy type thermoplastic. In some embodiments, the preform 30 may be formed by a co-injection process, wherein the interior portion and exterior portions of the preform 30 comprise different materials. The co-injected material can be compressed into a desired shape. For example, the preform 30 may have an interior portion that comprises one or more of the following: phenoxy type thermoplastic, PET, PETG, expandable/foam materials or the like. The outer portion of the preform 30 can comprise one or more of the following: polyethylene, polypropylene (including clarified polypropylene), PET, combinations thereof, and the like. Optionally, a portion of the preform 30 may comprise foam material.
  • In some embodiments, the preform 30 can be coated with a layer to enhance its barrier characteristics. For example, the preform 30 can be coated with a barrier material. For example, U.S. application Ser. No. 10/614,731 (Publication No. 2004-0071885), which is incorporated in its entirety and describes systems and methods of coating preforms. This system and other systems disclosed or incorporated herein can be employed to form a barrier layers described herein. The coated preform can then be overmolded with another material to form an outer layer.
  • With respect to FIG. 5, the preform 50 can comprises an uncoated preform 39 coated with a foam layer 52. Preferably, the uncoated preform 39 comprises a polymer material, such as polypropylene, polyester, PET, PETG, phenoxy type thermoplastics, and/or other thermoplastic materials. In one embodiment, for example, the uncoated preform 39 substantially comprises polypropylene. In another embodiment, the uncoated preform 39 substantially comprises polyester.
  • The foam layer 52 may comprise either a single material or several materials (such as several microlayers of at least two materials). In some non-limiting embodiments, the foam layer 52 can comprise about 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and ranges encompassing such percentages of the preform. In some embodiments, the foam layer 52 comprises about 2% to about 90% of the preform. In some non-limiting embodiments, the foam layer 52 can comprise about 5% to about 50% of the preform. In some embodiments, the foam layer 52 comprises about 10% to about 30% of the preform. In some non-limiting embodiments, the foam layer 52 can comprise about 5% to about 25% of the preform. In some non-limiting embodiments, the foam layer 52 can comprise less than about 20% of the preform. It is contemplated that these percentages can be by weight or by volume in different embodiments. The foam layer 52 may comprise foam material that is not expanded. The outer layer 52 of the preform 50 may have a thickness, preferably the average wall thickness, of about 0.2 mm (0.008 inches) to about 0.5 mm (0.02 inches). In another non-limiting embodiment, the outer layer 52 has a thickness of about 0.3 mm (0.012 inches). In some embodiments, the average wall thickness is taken only along the body portion of the preform 50. In some non-limiting embodiments, the outer layer 52 comprises less than about 90% of the average thickness of a wall of the preform 50, also including less than about 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5% of the average thickness of a wall of the preform 50.
  • The foam layer 52 may comprise microspheres that are either not expanded or partially expanded, for example. Further, the foam layer 52 can be generally homogenous or generally heterogeneous. Although not illustrated, the foam layer 52 can form other portions of the preform 50. For example, the foam layer 52 can form at least a portion of the inner surface of the preform 50 or a portion of the neck portion 32.
  • In some embodiments, the inner layer 54 can comprise one or more of the following: polyethylene, PET, polypropylene (e.g., foamed polypropylene, non foamed polypropylene, clarified polypropylene), combinations thereof, and the like. For example, the preform 50 can comprise an outer layer 52 of polypropylene (preferably foamed) and an inner layer 54 comprising PET. Optionally, a tie layer can be interposed between the layers 52, 54 and may comprise a phenoxy type thermoplastic.
  • In some embodiments, a barrier layer can be interposed between the layers 52, 54. The barrier layer can inhibit or prevent egress and/or ingress of one or more gases, UV rays, and the like through the walls of a container made from the preform 50.
  • In some embodiments, second layer 54 comprises polypropylene. The polypropylene may be grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion. In one embodiment, the polypropylene further comprises nanoparticles. In a further embodiment, the polypropylene comprises nanoparticles and is grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds.
  • With reference to FIG. 6, the container 83 can be used as a carbonated beverage container, the thickness 44, preferably the average wall thickness, of the outer layer 52 of the container 83 that is about 0.76 mm (0.030 inch), 1.52 mm (0.060 inch), 2.54 mm (0.10 inch), 3.81 mm (0.15 inch), 5.08 mm (0.2 inch), 6.35 mm (0.25 inch), and ranges encompassing such thicknesses. In some embodiments, the outer layer is preferably less than about 7.62 mm (0.3 inch), more preferably about 1.27 mm (0.05 inch) to 5.08 mm (0.2 inch). The outer layer 52 may comprise foam material having a thickness more than about 3.81 mm (0.15 inch). In some non-limiting embodiments, the outer layer 52 has a thickness in the range of about 0.127 mm (0.005 inch) to about 0.635 mm (0.025 inch).
  • In some non-limiting embodiments, the thickness 46 of the inner layer 54, preferably the average thickness, of the inner layer 54 is preferably about 0.127 mm (0.005 inch), 0.635 mm (0.025 inch), 1.07 mm (0.040 inch), 1.52 mm (0.060 inch), 2.03 mm (0.080 inch), 2.54 mm (0.100 inch), 3.05 mm (0.120 inch), 3.56 mm (0.140 inch), 4.07 mm (0.160 inch), and ranges encompassing such thicknesses. In some embodiments, the inner layer 54 of the container 83 has a thickness of less than about 2.54 mm (0.1 inch) to provide a cost effective food barrier. In some non-limiting embodiments, the inner layer 54 has a thickness in the range of about 0.127 mm (0.005 inch) to about 0.635 mm (0.025 inch). The overall thickness 48 of the wall of the container can be selected to achieve the desired properties of the container 83.
  • To enhance barrier characteristics of the container 83, the container 83 can have a barrier layer. On or more barrier layers can be formed on the interior surface of the inner layer 54, between the layers 52, 54, on the exterior of the outer layer 52, and the like. For example, the outer layer 52 of the container (or the preform that makes the container 83) can be coated with barrier material by using methods disclosed herein. For example, the barrier layer can be formed by using apparatuses, methods, and systems disclosed in U.S. application Ser. No. 10/614,731 (Publication No. 2004-0071885), which is incorporated in its entirety. Additionally, in some embodiments, the container 82 comprises substantially closed cell foam that may inhibit the migration of fluid through the foam. For example, the foam can be a barrier that inhibits, preferably prevents, migration of CO2 gas through the wall 84 of the container 83 formed from the preform.
  • The preform 60 of FIG. 11 has an inner layer 164 that comprises a first material and the outer layer 162 preferably comprises another material. In some non-limiting embodiments, the layer 162 can comprise about 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and ranges encompassing such percentages of the preform. In some embodiments, the foam layer 162 comprises less than about 97% of the preform. In some embodiments, the layer 162 comprises about 5% to about 99% of the preform. In some non-limiting embodiments, the layer 162 can comprise less than about 90% of the preform. In some non-limiting embodiments, the layer 162 can comprise about 40% to 80% of the preform. In some non-limiting embodiments, the layer 162 can comprise about 60% to 90% of the preform. In some non-limiting embodiments, the layer 162 can comprise more than about 60% of the preform. It is contemplated that these percentages can be by weight or by volume in different embodiments. In some embodiments, the outer layer 162 can comprise foam material and the inner layer 164 can comprise a polymer material, such as PET (e.g., virgin or post-consumer/recycled PET). The foam layer 162 may comprise foam material that is not expanded. For example, the foam layer 162 may comprise microspheres that are either not expanded or partially expanded, for example. The foam layer 162 may provide a desirable insulating layer when the preform 160 is molded into a container.
  • Preferably, a substantial portion of the outer layer 162 comprises foam material and a substantial portion of the inner layer 164 comprises PET or other material for contacting foodstuffs. In one non-limiting embodiment, the foam material comprises PP and expandable microspheres. In yet another embodiment, the outer layer 162 comprises PP and the inner layer 164 can comprise PET. Preferably, a substantial portion of the outer layer 162 comprises PP and a substantial portion of the inner layer 164 comprises PET. In one non-limiting embodiment, the outer layer 162 comprises generally entirely PP. In yet another embodiment, substantial portions of the inner layer 164 and outer layer 162 can comprise foam material. The preforms 76, 132 may similarly comprise foam material and material suitable for contacting foodstuffs.
  • In some embodiments, the inner layer 164 may comprise one or more of the following: PET, phenoxy type thermoplastic (including blends), foam material (e.g., foamed PET), and/or other coating/layer suitable for contacting foodstuff. The outer layer 162 may comprise one or more of the following: foam material (including foamed PP, foamed PET, etc.), non foamed material (e.g., phenoxy type-thermoplastics, PET, PP), or other material suitable for forming the outer portion of a preform. In some embodiments, the preform 160 comprises a phenoxy type thermoplastic. In some non-limiting embodiments, the phenoxy type thermoplastic can comprise less than about 1%, 2.5%, 5%, 10%, 20%, 30%, 50%, 60%, 70%, 80%, 90%, and ranges encompassing such percentages of the preform. In some embodiments, the phenoxy type thermoplastic material comprises about 10% to 30% by weight of the preform. In some embodiments, the phenoxy type thermoplastic material comprises most of or all of the preform. The weight is for phenoxy type thermoplastic in a discrete or blend form. It is contemplated that these percentages can be by weight or by volume in different embodiments. For example, in some embodiments the layer 164 comprises phenoxy type thermoplastic that forms less than 10% of the preform. The layer 164 can have a thickness suitable for forming a food contacting layer. The thickness 174 of the inner layer 164 is preferably less than about 3.81 mm (0.150 inch) to form a cost effective food contacting layer. The thickness 174 of the inner layer 164 may be less than about 0.01 mm (0.0004 inch), 0.02 mm (0.0007 inch), 0.05 mm (0.002 inch), 0.10 mm (0.004 inch), 0.15 mm (0.006 inch), 0.20 mm (0.008 inch), 0.30 mm (0.01 inch), 0.5 mm (0.019 inch), and ranges encompassing such thicknesses. In some non-limiting embodiments, the inner layer 174 comprising phenoxy type thermoplastic having a thickness in the range of about 0.01 mm (0.0004 inches) to about 0.05 mm (0.002 inches). In some embodiments, the preform 160 may be formed by an molding process, wherein the interior portion and exterior portions of the preform comprise different materials.
  • In some embodiments, the outer layer 162 comprises a first material and the inner layer 164 preferably comprises another material. For example, the outer layer 162 can comprise polypropylene and the inner layer 64 can comprise PETG. In another embodiment, the polypropylene may be grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds to improve adhesion. In one embodiment, the polypropylene further comprises nanoparticles. In a further embodiment, the polypropylene comprises nanoparticles and is grafted or modified with maleic anhydride, glycidyl methacrylate, acryl methacrylate and/or similar compounds.
  • The preform 180 (FIG. 12) may have the inner layer 184 that is similar or identical to the inner layer 164 and the outer layer 182 that is similar or identical to the outer layer 162. The preform 190 (FIG. 13) may have the inner layer 194 that is similar or identical to the inner layer 164 and the outer layer 199 that is similar or identical to the outer layer 162. The materials forming the inner layer 194 and the outer layer 199 can be selected to provide desirable interaction with the locking structure 197. The preform 202 (FIG. 14) may have layers formed of similar or identical materials as the preform 160.
  • The preforms and resulting containers may be particularly well suited for thermal applications, such as hot-fill processes. The container 211 of FIG. 14A can generally maintain its shape during hot-fill processes. After blow molding or hot-filling, the final dimensions of the neck portion 132 of the container 211 are substantially identical to the initial dimensions of the preform. Additionally, this results in reduced dimension variations of the threads on the neck finish. For example, the inner layer 283 can be formed of a material for contacting foodstuffs, such as PET. The outer layer 203 can comprise moldable materials (e.g., mostly or entirely of PP, PP and a foaming agent, crystalline PET, lamellar material, homopolymers, copolymers, and other materials described herein) suitable for hot-filling. The outer layer 203 provides dimensional stability to the neck finish 132 even during and after hot-filling. The width of the outer layer 203 can be increased or decreased to increase or decrease, respectively, the dimensional stability of the neck finish 132. Preferably, one of the layers forming the neck finish 132 comprises a material having high thermal stability; however, the neck finish 132 can also be made of materials having low temperature stability, especially for non hot-fill applications.
  • Additionally, the dimensional stability of the outer layer 203 ensures that the closure 213 remains attached to the container 211 of FIG. 14A. For example, the outer layer 203 of PP can maintain its shape thereby preventing the closure 213 from unintentionally decoupling from the container 211.
  • The preforms described above can be modified by adding one or more layers to achieve desired properties. For example, a barrier layer can be formed on the body portions of the preforms.
  • 3. Articles in the Form of Closures
  • Closures may comprise foam material. In some non-limiting embodiments, the foam material comprises less than about 95% by weight, also including less than about 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, and ranges encompassing such percentages of the closure. It is contemplated that these percentages can be by weight or by volume in different embodiments. In some embodiments, foam material comprising ranges encompassing these percentages by weight of the closure. In one non-limiting embodiment, the foam material comprises about 45-60% by weight of the closure. In another non-limiting embodiment, the foam material comprises about 15-70% by weight of the closure. In some embodiments, the closure comprises mostly or entirely of foam material. For example, the closure can be a monolayer closure that is made from foam material.
  • With reference to FIG. 19, at least a portion of the closure 302 comprises a foam material. The layer 314 and/or the outer portion 311 may comprise foam material (e.g., foamed PET, foamed PP, etc.). In one embodiment, the outer portion 311 comprises foam material and the layer 314 comprises non-foamed material (such as PP, PET, etc.).
  • Additionally, the inner portion of the closures may comprise foam material. In some embodiments, the outer portions of closures may or may not comprise foam material. The closures of FIGS. 21A to 21E may have similar or different inner and outer layers (or outer portions).
  • FIG. 21C illustrates the closure 360 that may have an intermediate layer 364 formed of materials that have desired structural, thermal, optical, barrier and/or characteristics. For example, the layer 364 can be formed of PET, PP, PET, PETG, and/or the like.
  • In one embodiment, a further advantage is provided where the outer portion of the closure is formed of foam material to provide a comfortable gripping surface so that a user can comfortably remove the closure from a container. The outer portion 311 of FIG. 19 can be foam to increase the space occupied by the outer portion 311 and can provide the user with greater leverage for easy opening and closing of the closure device.
  • The closures can have an internally threaded surface that is configured to threadably mate with an externally threaded surface of the container. The enlarged outer portion 311 of FIG. 19 can provide increased leverage such that the user can easily rotate the closure 302 onto and off of the container. Advantageously, the similar, or same, amount of material that forms a conventional cap can be used to form the enlarged diameter closure device. Thus, the cost of materials for producing the closure 302 can be reduced.
  • Closures may comprise phenoxy type thermoplastic materials. In some non-limiting embodiments, the phenoxy type thermoplastic material comprises less than about 25% by weight, also including less than about 1%, 2%, 4%, 5%, 10%, 15%, 20% by weight, of the closure. In some embodiments, phenoxy type thermoplastic material comprising ranges encompassing these percentages by weight of the closure. The weight is for phenoxy type thermoplastic in discrete or blend form. In one non-limiting embodiment, the phenoxy type thermoplastic material comprises about 0.5 to 5% by weight of the closure. In another non-limiting embodiment, the phenoxy type thermoplastic material comprises about 1 to 6% by weight of the closure.
  • The phenoxy type thermoplastic can form at least a portion of the interior surface of the closure. For example, a phenoxy type thermoplastic layer can be deposited on the interior surface 309 of the layer 314 (FIG. 19). Optionally, the layer 314 can be made of a phenoxy type thermoplastic. The phenoxy type thermoplastic can form at least a portion of the layer 344 of the closure 340 (FIG. 21A), the layer 356 of the closure 350 (FIG. 21B), the layer 366 and/or layer 364 of the closure 360 (FIG. 21C), the layer 374 of the closure 370 (FIG. 21D), the layer 383 of the closure 380 (FIG. 21E), for example. Of course, these layers may comprise material (e.g., lamellar material, PET, PP, and/or the like) that is coated with a phenoxy type thermoplastic, such a phenoxy or polyolefin-phenoxy blend.
  • The closures described above can have one or more barrier layers to enhance its barrier characteristics. For example, an inner layer, one or more intermediate layers, and/or exterior barrier layers can be formed by using systems and methods disclosed in U.S. application Ser. No. 10/614,731 (Publication No. 2004-0071885), which is incorporated in its entirety and describes systems and methods of forming barrier layers. In some embodiments, the materials of the closures can be modified to enhance barrier characteristics. For example, foam material may have additives (e.g., microparticulates) that improve the barrier characteristics of the foam material. A skilled artisan can select the design of the closures to achieve the desired barrier properties.
  • 4. Articles with Tie Layers
  • Exemplary articles can be multilayer articles. A tie layer can be disposed between one or more portions or layers of the articles. For example, articles can have a tie layer interposed between layers of materials. Articles can have a plurality of tie layers, preferably one of the tie layers is positioned between a pair of adjacent layers. In some embodiments, a plurality of pairs of adjacent layers each have interposed therebetween one of the tie layers.
  • The container 83 of FIG. 6 can have a tie layer 85 (FIG. 7) between the layer 52 and the layer 54. In some non-limiting embodiments, the layer 52 comprises one or more of the following: foam material (including foamed PP, foamed PET, etc.), non foamed material (e.g., phenoxy type-thermoplastics, PET, PP), combinations thereof, or other material suitable for forming the outer portion of a preform. The layer 54 comprises one or more of the following: PET, phenoxy, polyolefin-phenoxy blend, combinations thereof, or other suitable materials suitable for forming a portion of the wall of a container. In some embodiments, outer layer 52 comprises PP (foamed or unfoamed) and the inner layer 54 comprises PET. The tie layer 85 may comprise adhesives, phenoxy type thermoplastics, polyolefins, or combinations thereof (e.g., polyolefin-phenoxy blend). The tie layer 85 can advantageously adhere to both of the layers 52, 54. Phenoxy may provide desirable adhesion between an inner layer 54 comprising PET and an outer layer 52 comprising PP, for example.
  • The multilayer articles illustrated in FIGS. 8-14B and 18-21E can have one or more tie layers, preferably one tie layer, is between at least two of the layers of the articles. For example, a tie layer can be interposed between the layers 52, 54 of the preform 76 (FIG. 9). A tie layer can be interposed between the layers 134, 136 and/or the preform 30 and the layer 134 of FIG. 10. The preform 160 (FIG. 11) can have a tie layer interposed between the layer 164 and the layer 162. The preform 180 (FIG. 12) can have a tie layer interposed between the layer 184 and the layer 183. The preform 190 (FIG. 13) can have a tie layer interposed between the layer 194 and the layer 199. The preform 202 (FIG. 14) can have a tie layer interposed between the layer 203 and the layer 283.
  • With respect to FIG. 19, the closure 302 can have a tie layer between the layer 314 and the outer portion 311. In some non-limiting embodiments, the outer portion 311 comprises one or more of the following: foam material (including foamed PP, foamed PET, etc.), non-foamed material (e.g., phenoxy type-thermoplastics, PET, PP), combinations thereof, or other materials suitable for forming the outer portion of a closure. The layer 314 comprises one or more of the following: PET, phenoxy, polyolefin-phenoxy blend, combinations thereof, or other suitable materials suitable for forming a portion of the closure. The tie layer may comprise adhesives, phenoxy, polyolefin, combinations thereof (e.g., polyolefin-phenoxy blend). Similarly, the closures illustrated in FIGS. 21A-21E can likewise have one or more tie layers, preferably at least one tie layer is between a pair of adjacent layers.
  • A further advantage is provided wherein a tie layer comprising a phenoxy type thermoplastic, such as a phenoxy blend, which can help compatibilization of a somewhat pure phenoxy layer and another layer. Phenoxy can effectively compatibilize with polypropylene, polyethylene, and the like.
  • In view of the present disclosure, a skilled artisan can select various material(s) and tie layer(s) to achieve the desired properties of an article.
  • 5. Articles Comprising Lamellar Material
  • Lamellar material may form one or more portions of layers of the articles (such as packaging including preforms, closures, and containers). Referring to FIG. 2, the preform 30 may comprise lamellar material. As FIG. 40 is an enlarged cross-sectional view of the wall section 43 of the preform 30. In the illustrated embodiment, the wall section 43 comprises lamellar material that includes one or more layers. Preferably, the lamellar material is made up of a plurality of microlayers. However, the layers of the lamellar material can have any suitable size based on the desired properties and characteristics of the preform, and the resulting container formed from the preform. The layers of wall section 43 can comprise generally similar or different materials to one another. One or more of the layers forming the wall section 43 can be made from materials disclosed herein, or other materials known in the art.
  • In the illustrated embodiment, the wall section 43 has an inner layer 47, an outer layer 45, and one or more intermediate layers 41 therebetween. In some embodiments, the inner layer 47 is suitable for contacting foodstuffs, such as virgin polyethylene terephtalate (“PET”), or other suitable material that can form the inner chamber of the bottle made from the preform 30.
  • Optionally, the wall section 43 can have at least one layer of a material with good gas barrier characteristics. In some embodiments, the wall section 43 of the preform 30 has a plurality of layers having good gas barrier characteristics. Advantageously, one or more layers of the wall section 43 that comprise a barrier material can inhibit or prevent ingress and/or egress of fluid through the wall of a container made from the preform 30. However, the wall section 43 can comprise a plurality of layers that do not have good barrier characteristics.
  • The wall section 43 of the preform 30 can have at least one layer formed from recycled or post-consumer PET (“RPET”). For example, in one embodiment, the wall section 43 can have the plurality of layers formed from RPET. In some embodiments, the inner layer 47 can be formed from virgin PET and other layers from the wall section 43 can be formed from virgin PET or RPET. Thus, the preform 30 can comprise alternating thin layers of PET, RPET, barrier material, and combinations thereof. Additionally, other materials can be used to obtain the desired characteristics and physical properties of the preform 30, or resulting container made from the preform 30.
  • Each of the layers of the wall section 43 can have generally the same thickness. Alternatively, the layers of the wall section 43 can have thicknesses that are generally different from each other. A skilled artisan can determine the desired number of layers, thickness of each layer, and composition of each layer of the wall section 43. In one non-limiting embodiment, the preform 30 can have a wall section 43 including more than two layers. In some preferred embodiments, the wall section 43 has more than three layers.
  • As shown in FIG. 40, the layers of the lamellar material forming the wall section 43 can be generally parallel to one of an inner surface 49 and an outer surface 51 of the preform 30. Portions of the lamellar material forming the body portion 34 can comprise layers that are generally parallel to the longitudinal axis of the preform 30.
  • The distance and/or orientation of the layers of the walls section 45 can vary or remain generally constant along the wall section 43. Additionally, the thicknesses of one or more layers of the wall section 43 also may vary, or they may be substantially constant along the preform 30. It is contemplated that one or more of the layers may have holes, openings, or diffuse into an adjacent layer.
  • Lamellar material can also form other monolayer and multilayer articles. Referring to FIG. 5, for example, the preform 50 can comprise an outer layer 52 and an inner layer 54 defining an interior surface of the preform 50. The outer layer 52 preferably does not extend to the neck portion 32, nor is it present on the interior surface of the preform 50 at least one of the outer layer 52 and the inner layer 54 can comprise lamellar material. In the illustrated embodiment, the outer layer 52 comprises lamellar material and the inner layer 54 comprises another material. Preferably, the inner layer 54 comprises PET, preferably virgin PET, so that the interior surface of the preform 50 is suitable for contacting foodstuffs. In another embodiment not illustrated, the inner layer 54 comprises lamellar material and the outer layer 52 comprises another material. Preferably, the inner layer 54 comprises PET that forms the interior surface. However, the inner layer 54 can comprise other materials described herein (e.g., foam material, PET including virgin PET and RPET, PP, etc.). Alternatively, both the inner layer 54 and the outer layer 52 can comprise lamellar material. Thus, various combinations of materials can be used to form the preforms disclosed herein.
  • The articles illustrated in FIGS. 6-17 may comprises multiple layers. One or more of the layers of these articles can comprise lamellar material. For example, the preform 60 illustrated in FIG. 8A comprises an outer layer 52 formed of lamellar material. The outer layer 52 covers the bottom surface of the support ring 38 and extends along the body portion 34.
  • Referring to FIG. 10, one or more of the layers 134 and 136 may comprise lamellar material. In one embodiment, for example, substantially the entire preform 132 is formed of different lamellar layers 134 and 136 that are adhered together. In some embodiments, at least one of the layers 134 and 136 comprises a lamellar material, foam material, phenoxy type thermoplastics, PET, PP (including foamed and non-foamed), and the like. Optionally, only one of the layers 134 and 136 may be formed of lamellar material.
  • Closures may also comprise lamellar material. The lamellar material can form a substantial portion of the closure or only a portion thereof. In some non-limiting embodiments, the lamellar material comprises less than about 95% by weight, also including less than about 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85% by weight, of the closure. In some embodiments, lamellar material comprising ranges encompassing these percentages by weight of the closure.
  • As shown in FIG. 19, at least a portion of the closure 302 comprises a lamellar material. The layer 314 and/or the outer portion 311 may comprise lamellar material. In one embodiment, the outer portion 311 comprises lamellar material and the layer 314 comprises lamellar material (such as PP, PET, etc.). Additionally, the inner portion of the closures may comprise lamellar material. In some embodiments, the outer portions of closures may or may not comprise lamellar material. The closures of FIGS. 21A to 21E may have similar or different inner and outer layers (or outer portions).
  • FIG. 21C illustrates a closure 360 has the intermediate layer 364 that is formed of materials that have desired structural, thermal, optical, barrier and/or characteristics. For example, the layer 364 can be formed of lamellar material.
  • The lamellar material can form at least a portion of the layer 344 of the closure 340 (FIG. 21A), layer 356 of the closure 350 (FIG. 21B), layer 366 and/or layer 364 of the closure 360 (FIG. 21C), layer 374 of the closure 370 (FIG. 21D), layer 383 of the closure 380 (FIG. 21E), for example. The other portions of the closures can be formed of a similar material or different material. In some embodiments, the majority of or the entire closure comprises lamellar material.
  • 6. Articles Comprising a Heat Resistance Layer
  • Articles described herein can comprise one or more heat resistant materials. As used herein the phrase “heat resistant materials” is a broad phrase and is used in its ordinary meaning and includes, without limitation, materials that may be suitable for hot-fill or warm-fill applications. For example, the heat resistant material may include high heat resistant material that has dimensional stability during a hot-fill process. The heat resistant material may include a mid heat resistant material that has dimensional stability during a warm-fill process. Heat resistant materials may include, but are not limited to, polypropylene, crystalline material, polyester, and the like. In some embodiments, heat resistant material has greater thermal dimensional stability then amorphous PET. Heat resistant material can form a portion of articles (e.g., one or more layers of a preform, container, closure, sheet, and other articles described herein.)
  • In some embodiments, a container comprises an inner layer, comprising a thermoplastic polyester, an outer layer, comprising a thermoplastic material (e.g., a polymer heat resistant material) having a heat resistance greater than that of the thermoplastic polyester of the inner layer, and an intermediate tie layer, providing adhesion between the inner layer and the outer layer, where the layers are co extruded prior to blow molding. Preferably, the thermoplastic polyester of the inner layer is PET, and may further comprise at least one of an oxygen scavenger and a passive barrier material blended with the thermoplastic polyester. Preferably, the passive barrier material is a polyamide, such as MXD 6.
  • In view of the present disclosure, a skilled artisan can select various types of lamellar material(s) to achieve the desired properties of an article made therefrom. The articles disclosed herein may be formed through any suitable means. For example, the articles can be formed through injection molding, blow molding, injection blow molding, extrusion, co-extrusion, and injection stretch blow molding, and other methods disclosed herein. The various methods and techniques described above provide a number of ways to carry out the invention. Of course, it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that the methods may be performed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
  • Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments disclosed herein. Similarly, the various features and steps discussed above, as well as other known equivalents for each such feature or step, can be mixed and matched by one of ordinary skill in this art to perform methods in accordance with principles described herein. Additionally, the methods which are described and illustrated herein are not limited to the exact sequence of acts described, nor a skilled artisan can select various types of lamellar material(s) to achieve the desired properties of an article made therefrom. The articles disclosed herein may be formed through any suitable means. For example, the articles can be formed through injection molding, blow molding, injection blow molding, extrusion, co-extrusion, and injection stretch blow molding, and other methods disclosed herein. The various methods and techniques described above provide a number of ways to carry out the invention. Of course, it is to be understood that not necessarily all objectives or advantages described may be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that the methods may be performed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as may be taught or suggested herein.
  • Although the invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Accordingly, the invention is not intended to be limited by the specific disclosures of preferred embodiments herein. Instead, Applicant intends that the scope of the invention be limited solely by reference to the attached claims, and that variations on the methods and materials disclosed herein which are apparent to those of skill in the art will fall within the scope of Applicant's invention.

Claims (14)

1. A bottle comprising
a neck portion adapted to engage a closure; and
a body portion comprising a first layer and a second layer, the second layer comprising an expandable material comprising a polymer material and microspheres that enlarge during heat treatment, the first layer positioned interior to the second layer,
wherein the microspheres are partially and/or fully expanded.
2. The bottle of claim 1, wherein the first layer comprises a material suitable for contacting foodstuffs.
3. The bottle of claim 1, wherein the first layer comprises a material including at least one material selected from a group consisting of polyester, polypropylene, phenoxy-type thermoplastic, and combinations thereof.
4. The bottle of claim 1, wherein the polymer material of the expandable material comprises polyethylene, post-consumer PET and/or recycled PET.
5. The bottle of claim 1, wherein the expandable material is configured to expand to form foam when heated above an expansion temperature.
6. The bottle of claim 1, wherein the expandable material comprises about 5% to about 60% by weight of the preform.
7. The bottle of claim 1, wherein the neck portion consists of the same material as the first layer.
8. The bottle of claim 1, further comprising a barrier layer comprising barrier material having a permeability to oxygen and carbon dioxide which is less than that of polyethylene terephthalate.
9. The bottle of claim 8, wherein the barrier layer forms at least a portion of the body portion of the bottle.
10. A bottle comprising:
a neck portion; and
a body portion comprising:
an inner layer comprising polyester; and
an outer layer comprising foam material, the foam material comprising a polymer material and microspheres that enlarge during heat treatment, wherein the microspheres are partially and/or fully expanded.
11. The bottle of claim 10, wherein the inner layer comprises polyethylene terephthalate.
12. The bottle of claim 10, wherein the polymer material of the outer layer comprises recycled or post-consumer polyethylene terephthalate.
13. The bottle of claim 10, wherein the neck portion is configured to receive a closure.
14. The bottle of claim 10, wherein the bottle is made by blow molding a preform having a neck finish and preform body portion.
US12/559,393 2004-04-16 2009-09-14 Containers comprising a closed cell foam layer Abandoned US20100000957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/559,393 US20100000957A1 (en) 2004-04-16 2009-09-14 Containers comprising a closed cell foam layer

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US56302104P 2004-04-16 2004-04-16
US57523104P 2004-05-28 2004-05-28
US58639904P 2004-07-07 2004-07-07
US62016004P 2004-10-18 2004-10-18
US64300805P 2005-01-11 2005-01-11
US11/108,345 US7588808B2 (en) 2004-04-16 2005-04-18 Mono and multi-layer articles and injection molding methods of making the same
US12/559,393 US20100000957A1 (en) 2004-04-16 2009-09-14 Containers comprising a closed cell foam layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/108,345 Continuation US7588808B2 (en) 2004-04-16 2005-04-18 Mono and multi-layer articles and injection molding methods of making the same

Publications (1)

Publication Number Publication Date
US20100000957A1 true US20100000957A1 (en) 2010-01-07

Family

ID=34966074

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/108,345 Active 2025-10-13 US7588808B2 (en) 2004-04-16 2005-04-18 Mono and multi-layer articles and injection molding methods of making the same
US11/108,607 Abandoned US20060073298A1 (en) 2004-04-16 2005-04-18 Mono and multi-layer articles and extrusion methods of making the same
US12/559,393 Abandoned US20100000957A1 (en) 2004-04-16 2009-09-14 Containers comprising a closed cell foam layer
US12/861,757 Active 2025-12-05 US8551589B2 (en) 2004-04-16 2010-08-23 Mono and multi-layer articles and extrusion methods of making the same
US13/299,907 Abandoned US20120061344A1 (en) 2004-04-16 2011-11-18 Mono and Multi-Layer Articles and Injection Molding Methods of Making the Same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/108,345 Active 2025-10-13 US7588808B2 (en) 2004-04-16 2005-04-18 Mono and multi-layer articles and injection molding methods of making the same
US11/108,607 Abandoned US20060073298A1 (en) 2004-04-16 2005-04-18 Mono and multi-layer articles and extrusion methods of making the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/861,757 Active 2025-12-05 US8551589B2 (en) 2004-04-16 2010-08-23 Mono and multi-layer articles and extrusion methods of making the same
US13/299,907 Abandoned US20120061344A1 (en) 2004-04-16 2011-11-18 Mono and Multi-Layer Articles and Injection Molding Methods of Making the Same

Country Status (13)

Country Link
US (5) US7588808B2 (en)
EP (2) EP1737642A2 (en)
JP (4) JP4974081B2 (en)
KR (2) KR20070010059A (en)
AT (1) ATE424288T1 (en)
AU (2) AU2005235596A1 (en)
BR (2) BRPI0509843A (en)
CA (2) CA2562074C (en)
DE (1) DE602005013076D1 (en)
ES (1) ES2321421T3 (en)
MX (2) MXPA06011806A (en)
PL (1) PL1742785T3 (en)
WO (2) WO2005102667A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297748A1 (en) * 2002-10-30 2009-12-03 Semersky Frank E Container having a foamed wall
US20100227092A1 (en) * 2002-10-30 2010-09-09 Semersky Frank E Overmolded container having an inner foamed layer
US20110303685A1 (en) * 2009-03-03 2011-12-15 Toyo Seikan Kaisha, Ltd. Multilayered plastic container having excellent drop impact resistance
WO2012138473A1 (en) * 2011-03-22 2012-10-11 Spartech Corporation A thermoplastic sheet structure and articles formed therefrom
EP2561970A1 (en) * 2010-04-23 2013-02-27 Mitsubishi Gas Chemical Company, Inc. Multilayered container, die for multilayered container, and method for producing multilayered container
USD759429S1 (en) * 2011-08-01 2016-06-21 Steel Technology, Llc Growler
US10679738B2 (en) 2014-10-20 2020-06-09 3M Innovative Properties Company Identification of codable sections in medical documents
US20200239174A1 (en) * 2017-10-06 2020-07-30 Hokkai Can Co., Ltd. Synthetic resin multilayer bottle

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9296126B2 (en) 2003-05-17 2016-03-29 Microgreen Polymers, Inc. Deep drawn microcellularly foamed polymeric containers made via solid-state gas impregnation thermoforming
US7150902B2 (en) * 2004-04-07 2006-12-19 Pepsico, Inc. High Tg coatings
JP2006118669A (en) * 2004-10-25 2006-05-11 Sanoh Industrial Co Ltd Resin tube
WO2006099768A1 (en) * 2005-03-23 2006-09-28 Wilhelm Rene 'push-pull' type closure for a container
MX2008002154A (en) * 2005-08-19 2008-04-22 Advanced Plastics Technologies Mono and multi-layer labels.
MX2008002479A (en) 2005-08-30 2008-04-07 Advanced Plastics Technologies Methods and systems for controlling mold temperatures.
JP4779527B2 (en) * 2005-09-16 2011-09-28 大日本印刷株式会社 Plastic molded container with foam label and manufacturing method thereof
US20070101681A1 (en) * 2005-11-09 2007-05-10 Toyo Seikan Kaisha, Ltd. Method for manufacturing contents contained in a container
US20070172612A1 (en) * 2006-01-23 2007-07-26 Plastipak Packaging, Inc. Plastic container
US20100264052A1 (en) * 2006-03-20 2010-10-21 Semersky Frank E Foamed-wall container with foamed and unfoamed regions
US7794643B2 (en) * 2006-03-24 2010-09-14 Ricoh Company, Ltd. Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
DE102006017116B4 (en) * 2006-04-10 2013-11-28 Infineon Technologies Ag Device and method for producing an article by means of molding technique, in particular by means of a transfer molding process
FR2902176A1 (en) * 2006-06-07 2007-12-14 Interesting Sourcing Soc Par A Insulating device for a thermal insulation of an object e.g. a bottle of white wine, comprises a structural part formed by thermal press of a plastic material such as heated foam, and a pasty material to accumulate the thermal energy
WO2008000275A1 (en) * 2006-06-30 2008-01-03 Carlsberg Breweries A/S A method of stretch-blow-moulding a product, a preform for use in the method and a product produced by the method
US20080057294A1 (en) * 2006-09-01 2008-03-06 Fina Technology, Inc. High impact polystyrene tile
US20080057242A1 (en) * 2006-09-05 2008-03-06 David Jasper Tai Wai Wong Co-moulding polymers in injection stretch blow moulding
DE102006061120B4 (en) * 2006-12-22 2011-12-22 Khs Gmbh Keg
DK2428358T3 (en) * 2007-01-17 2015-06-15 Microgreen Polymers Inc A process for the production of a multilayer foamed polymeric article
US8877331B2 (en) * 2007-01-17 2014-11-04 MicroGREEN Polymers Multi-layered foamed polymeric objects having segmented and varying physical properties and related methods
US7850382B2 (en) * 2007-01-18 2010-12-14 Sanford, L.P. Valve made from two materials and writing utensil with retractable tip incorporating same
US7488130B2 (en) * 2007-02-01 2009-02-10 Sanford, L.P. Seal assembly for retractable instrument
US8100285B2 (en) * 2007-03-09 2012-01-24 Danielle Aseff Food cooking, serving and storage device
WO2008127674A2 (en) * 2007-04-13 2008-10-23 Consolidated Container Company Lp Container constructions
US20080257883A1 (en) 2007-04-19 2008-10-23 Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US9849621B2 (en) 2007-04-19 2017-12-26 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having a bag anchoring point; process for the production thereof; and tool thereof
US9919841B2 (en) 2007-04-19 2018-03-20 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having interface vents opening to the atmosphere at location adjacent to bag's mouth, preform for making it; and processes for producing the preform and bag-in-container
US20080262466A1 (en) * 2007-04-19 2008-10-23 Steve Smith Storage container
US20080257847A1 (en) * 2007-04-19 2008-10-23 Inbev S.A. Integrally blow-moulded bag-in-container having a bag anchoring point; process for the production thereof; and tool therefor
US20080258356A1 (en) 2007-04-19 2008-10-23 Inbev S.A. Integrally blow-moulded bag-in-container comprising an inner layer and an outer layer comprising energy absorbing additives, and preform for making it
US20090008360A1 (en) * 2007-05-31 2009-01-08 Graham Packaging Company, L.P. Finish and closure for plastic pasteurizable container
US7901452B2 (en) * 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US20090030095A1 (en) * 2007-07-24 2009-01-29 Laverdure Kenneth S Polystyrene compositions and methods of making and using same
US8336729B2 (en) * 2007-10-15 2012-12-25 Millercoors, Llc Thermal barrier liner for containers
US8448809B2 (en) 2007-10-15 2013-05-28 Millercoors, Llc Thermal barrier liner for containers
US8297072B2 (en) 2007-10-16 2012-10-30 Millercoors, Llc Container incorporating integral cooling element
CA2752778C (en) 2007-10-15 2013-04-16 Coors Brewing Company Insulated beverage container and method
ITRM20070552A1 (en) * 2007-10-23 2009-04-24 Acqua Minerale S Benedetto S P PLASTIC CONTAINER
USD769720S1 (en) 2007-12-21 2016-10-25 Silgan Plastics Llc Preform for dosing bottle
US8057733B2 (en) * 2007-12-21 2011-11-15 Silgan Plastics Corporation Dosing bottle and method
US8226312B2 (en) * 2008-03-28 2012-07-24 Sanford, L.P. Valve door having a force directing component and retractable instruments comprising same
US8568125B2 (en) 2008-04-14 2013-10-29 Microgreen Polymers Inc. Roll fed flotation/impingement air ovens and related thermoforming systems for corrugation-free heating and expanding of gas impregnated thermoplastic webs
JP5239479B2 (en) * 2008-04-23 2013-07-17 東洋製罐グループホールディングス株式会社 Method for producing partially foamed co-injection molded body and partially foamed co-injection molded body
US8080194B2 (en) 2008-06-13 2011-12-20 Microgreen Polymers, Inc. Methods and pressure vessels for solid-state microcellular processing of thermoplastic rolls or sheets
US20090321383A1 (en) * 2008-06-30 2009-12-31 Lane Michael T Single serve container
US8827197B2 (en) * 2008-11-04 2014-09-09 Microgreen Polymers Inc Apparatus and method for interleaving polymeric roll for gas impregnation and solid-state foam processing
US8221012B2 (en) 2008-11-07 2012-07-17 Sanford, L.P. Retractable instruments comprising a one-piece valve door actuating assembly
US8393814B2 (en) 2009-01-30 2013-03-12 Sanford, L.P. Retractable instrument having a two stage protraction/retraction sequence
NL2003132C2 (en) 2009-07-03 2011-01-04 Heineken Supply Chain Bv Container, preform assembly and method and apparatus for forming containers.
SG177551A1 (en) 2009-07-09 2012-02-28 Advanced Tech Materials Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
GB0914702D0 (en) 2009-08-22 2009-09-30 Reckitt Benckiser Nv Method
JP4621804B1 (en) * 2010-04-02 2011-01-26 株式会社環境経営総合研究所 Insulation
WO2011133568A1 (en) 2010-04-19 2011-10-27 Microgreen Polymers, Inc A method for joining thermoplastic polymer material
EP2390077A1 (en) * 2010-05-25 2011-11-30 Sika Technology AG Overmolding extruded profiles
US20110297635A1 (en) * 2010-06-02 2011-12-08 Maki Kirk Edward Surface energy modification for wetting substances
JP5779322B2 (en) * 2010-06-29 2015-09-16 本多プラス株式会社 Multilayer blow bottle and method for producing the same
EP2420373A3 (en) * 2010-08-20 2012-06-06 Rundpack AG Method for producing an opaque moulded part
JP2012100737A (en) * 2010-11-08 2012-05-31 Yoshida Industry Co Ltd Multilayer cosmetic container
WO2012071370A2 (en) 2010-11-23 2012-05-31 Advanced Technology Materials, Inc. Liner-based dispenser
US9074092B2 (en) 2010-12-20 2015-07-07 Eastman Chemical Company Miscible polyester blends utilizing recycled polyesters
EP2468661A1 (en) * 2010-12-23 2012-06-27 Amcor Flexibles Kreuzlingen Ltd. Bag-in-box package
US8613372B2 (en) 2011-02-01 2013-12-24 Granite State Product Development LLC Dispensing cap for a container
US10065775B2 (en) 2011-02-01 2018-09-04 Granite State Product Development LLC Dispensing cap for a container
WO2012115984A2 (en) 2011-02-21 2012-08-30 Felice Kristopher M Polyurethane dispersions and methods of making and using same
EP2681124A4 (en) 2011-03-01 2015-05-27 Advanced Tech Materials Nested blow molded liner and overpack and methods of making same
US9707732B2 (en) * 2011-03-25 2017-07-18 Amcor Limited Barrier system for wide mouth containers
CO6350189A1 (en) * 2011-04-13 2011-12-20 Pablo Poch Figueroa POLIFORM CONTAINER FOR THE DEPOSIT OF PATHOGENIC, BIOLOGICAL, BIOSANITARY, ANAPATOLOGICAL AND HOSPITAL WASTE WITH HERMETIC CLOSURE.
CH704980A1 (en) * 2011-05-19 2012-11-30 Alpla Werke In a stretch-produced plastic container with a cut throat.
US8940401B2 (en) 2011-06-10 2015-01-27 Resinate Technologies, Inc. Clear coatings acrylic coatings
ES2503890B2 (en) 2011-06-17 2015-09-28 Berry Plastics Corporation INSULATING GLASS
MX351150B (en) * 2011-08-01 2017-10-04 Graham Packaging Co Plastic aerosol container and method of manufacture.
CN111690204A (en) 2011-08-31 2020-09-22 比瑞塑料公司 Polymeric material for an insulating container
BR122018017039B1 (en) 2011-09-16 2020-01-21 Ball Corp process for manufacturing a container shaped from a tablet in an impact extrusion manufacturing process
WO2013111692A1 (en) * 2012-01-26 2013-08-01 キョーラク株式会社 Method for producing foam-molded article, and foam-molded article
JP6134339B2 (en) 2012-02-29 2017-05-24 マイクログリーン ポリマーズ,インク. Method and related system for gas injection into thermoplastic materials
JP6011929B2 (en) 2012-10-31 2016-10-25 株式会社吉野工業所 Biaxial stretch blow molded container and manufacturing method thereof
NL2009802C2 (en) 2012-11-13 2014-05-14 Heineken Supply Chain Bv Container, preform assembly and method and apparatus for forming containers.
MX2015006106A (en) * 2012-11-14 2016-02-05 Pactiv LLC Making a multilayer article, blank, and insulating cup.
CN102963581B (en) * 2012-11-22 2015-08-26 中山环亚塑料包装有限公司 A kind of high light two-layer compound bottle
BR112015015139A2 (en) * 2012-12-24 2017-12-12 Petapak Ip Ltd Collar and cup assembly for plastic aerosol container
US9809404B2 (en) 2013-01-14 2017-11-07 Dart Container Corporation Systems for unwinding a roll of thermoplastic material interleaved with a porous material, and related methods
JP5392425B2 (en) * 2013-01-28 2014-01-22 東洋製罐株式会社 Preform for container and method for producing the same
TW201505928A (en) 2013-03-14 2015-02-16 Berry Plastics Corp Container
AU2014251206B2 (en) 2013-04-09 2018-03-08 Ball Corporation Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys
US11247381B2 (en) 2013-06-28 2022-02-15 Dai Nippon Printing Co., Ltd. Composite container, inner label and plastic member
JP2016527347A (en) 2013-07-12 2016-09-08 ベリー プラスチックス コーポレイション Polymer material for container
US10557024B2 (en) * 2013-07-31 2020-02-11 Kimberly-Clark Worldwide, Inc. Sustainable injection molded articles
MX2016001839A (en) 2013-08-12 2016-05-24 American Glass Res Blow molder control systems snad methods.
TW201522445A (en) 2013-08-16 2015-06-16 Berry Plastics Corp Polymeric material for an insulated container
MX2016002374A (en) 2013-08-26 2016-05-31 Berry Plastics Corp Polymeric material for container.
TW201536527A (en) 2013-08-30 2015-10-01 Berry Plastics Corp Multiple layer tube and process of making the same
EP3046776A4 (en) 2013-09-19 2017-05-31 Dart Container Corporation A method for generating a microstructure in a material that includes thermoplastic polymer molecules, and related systems
US10526277B2 (en) * 2013-10-17 2020-01-07 Swimc Llc Food or beverage containers coated with polymers of di(amido(alkyl)phenol) compounds
WO2015073964A1 (en) * 2013-11-15 2015-05-21 Parker-Hannifin Corporation Rfid enabled container
EP2949441B1 (en) * 2014-05-27 2018-09-19 The Procter and Gamble Company Method of manufacturing a container
WO2015195979A1 (en) * 2014-06-18 2015-12-23 Pwe, Llc Decorative and protective molded label
JP6413569B2 (en) * 2014-09-30 2018-10-31 大日本印刷株式会社 Composite container manufacturing method, composite preform, composite container, and bottom protective member
JP6413571B2 (en) * 2014-09-30 2018-10-31 大日本印刷株式会社 Composite container manufacturing method, composite container filling method, and composite container filling apparatus
KR102332728B1 (en) * 2014-11-20 2021-12-01 코웨이 주식회사 Bladder for water storage tank and manufacturing method thereof and water storage tank having the same
KR102309691B1 (en) * 2014-11-20 2021-10-12 코웨이 주식회사 Water storage tank and water treatment apparatus having the same
FR3030341B1 (en) * 2014-12-17 2017-06-23 Sidel Participations CONTAINER WITH LARGE SLEEVE WITH RETAINED SLEEVE
USD817173S1 (en) * 2014-12-25 2018-05-08 Dai Nippon Printing Co., Ltd. Preform for bottles
JP6667990B2 (en) * 2014-12-26 2020-03-18 大日本印刷株式会社 Composite container, composite preform, method for separating and collecting composite container, and system for separating and collecting composite container
JP6714893B2 (en) * 2015-01-06 2020-07-01 大日本印刷株式会社 Plastic bottle and method for manufacturing the same
US9937652B2 (en) 2015-03-04 2018-04-10 Berry Plastics Corporation Polymeric material for container
US20160257440A1 (en) * 2015-03-05 2016-09-08 The Clorox Company Multilayer plastic bottles with mineral filler and foamed layer for improved recyclability
JP6681037B2 (en) * 2015-07-24 2020-04-15 大日本印刷株式会社 Composite preform, composite container and method of manufacturing the same, and plastic member
US11186013B2 (en) * 2015-07-31 2021-11-30 Husky Injection Molding Systems Ltd. Preform, a mold stack for producing the preform, and a preform handling apparatus for handling the preform
JP6682780B2 (en) * 2015-08-31 2020-04-15 大日本印刷株式会社 Composite container and its manufacturing method, composite preform, and plastic member
JP7102091B2 (en) * 2015-09-11 2022-07-19 大日本印刷株式会社 Composite preforms, composite containers, plastic parts and their manufacturing methods
FR3042390B1 (en) * 2015-10-15 2017-11-24 Albea Le Treport BOTTLE AND METHOD FOR MANUFACTURING A BOTTLE TUBE FOR BOTTLE
JP6724331B2 (en) * 2015-10-21 2020-07-15 大日本印刷株式会社 Composite preform, composite container, plastic member, and method for manufacturing composite container
JP6709524B2 (en) * 2015-10-21 2020-06-17 大日本印刷株式会社 Composite preform, composite container and method of manufacturing the same, and plastic member
JP6709525B2 (en) * 2015-10-21 2020-06-17 大日本印刷株式会社 Composite preform, composite container, plastic member, and method for manufacturing composite container
JP6709527B2 (en) * 2015-10-30 2020-06-17 大日本印刷株式会社 Composite preform, composite container, plastic member, and method for manufacturing plastic member
GB201520430D0 (en) * 2015-11-19 2016-01-06 Petainer Large Container Ip Ltd Processes and products relating to injection stretch blow moulding
JP6706429B2 (en) * 2015-12-18 2020-06-10 大日本印刷株式会社 Method for manufacturing composite preform and method for manufacturing composite container
JP6880553B2 (en) * 2016-02-24 2021-06-02 東洋製罐グループホールディングス株式会社 Composite container and its manufacturing method
FR3048236B1 (en) * 2016-02-29 2019-07-12 Albea Le Treport PRODUCT DELIVERY SYSTEM FOR BOTTLE
US10583602B2 (en) * 2016-03-11 2020-03-10 Ring Container Technologies, Llc Container and method of manufacture
CA3017986C (en) * 2016-04-06 2023-08-01 Amcor Group Gmbh Multi-layer preform and container
FR3051675B1 (en) * 2016-05-25 2019-09-27 Sidel Participations METHOD FOR PROCESSING HOLLOW BODIES AND FACILITY FOR MANUFACTURING CONTAINERS INTEGRATING SUCH A METHOD
US20180044155A1 (en) 2016-08-12 2018-02-15 Ball Corporation Apparatus and Methods of Capping Metallic Bottles
WO2018034357A1 (en) * 2016-08-17 2018-02-22 주식회사 정민 Double cosmetic container and method for manufacturing same
JP6860778B2 (en) * 2016-10-24 2021-04-21 キョーラク株式会社 Preform cover, composite preform, container manufacturing method
WO2018037979A1 (en) * 2016-08-26 2018-03-01 キョーラク株式会社 Preform cover, complex preform, manufacturing method of container
US11230418B2 (en) * 2016-09-30 2022-01-25 Huvis Corporation Food container with reduced elution of hazardous substances
EP3541591B8 (en) 2016-11-18 2023-07-05 Husky Injection Molding Systems Ltd. Molded article, container and a method for the molding and recycling thereof
DE102016226064A1 (en) * 2016-12-22 2018-06-28 Kautex Textron Gmbh & Co. Kg Hollow body comprising a wall of a multilayer thermoplastic material and method for its production
CA3048957C (en) 2016-12-30 2023-01-03 John L. Siles Aluminum alloy for impact extruded containers and method of making the same
BR112019016870A2 (en) 2017-02-16 2020-04-14 Ball Corp apparatus and methods for forming rotatable tamper-proof closures on the threaded neck of metal containers
BR112019017293B1 (en) 2017-02-23 2023-02-14 Dai Nippon Printing Co., Ltd COMPOSITE PREFORM AND METHOD FOR PRODUCING THE SAME, COMPOSITE CONTAINER AND METHOD FOR PRODUCING THE SAME, AND COMPOSITE CONTAINER PRODUCT FILLED WITH BEER
WO2018164666A1 (en) * 2017-03-07 2018-09-13 Covestro Llc Two shot injection molding process for thermoplastic parts
US11214429B2 (en) * 2017-08-08 2022-01-04 Berry Global, Inc. Insulated multi-layer sheet and method of making the same
JP6932448B2 (en) * 2017-08-31 2021-09-08 株式会社吉野工業所 Laminated preform, container, manufacturing method of laminated preform, and manufacturing method of container
US10744720B2 (en) 2017-09-07 2020-08-18 Sonoco Development, Inc. Container with product visualization aperture
WO2019055777A1 (en) 2017-09-15 2019-03-21 Ball Corporation System and method of forming a metallic closure for a threaded container
CN111699085B (en) 2018-01-11 2022-06-24 赫斯基注塑系统有限公司 Method and apparatus for forming a final shaped container using a liquid to be contained therein
WO2019140506A1 (en) * 2018-01-22 2019-07-25 Husky Injection Molding Systems Ltd. Method and apparatus for producing a multi-layer molded article having controllably-positioned core layer
JP6838202B2 (en) 2018-02-01 2021-03-03 エイジーアール インターナショナル,インコーポレイテッド Energy efficient blow molding machine control
JP7072999B2 (en) * 2018-11-30 2022-05-23 株式会社吉野工業所 Synthetic resin container and method for manufacturing synthetic resin container
US10829275B2 (en) * 2018-12-03 2020-11-10 Jaxamo Ltd Fitness bottle
JP7180335B2 (en) * 2018-12-04 2022-11-30 東洋製罐株式会社 Preforms and synthetic resin containers
DE102018132005B4 (en) * 2018-12-12 2022-06-23 Kulzer Gmbh Container with microcellular structure
DE102018132007A1 (en) * 2018-12-12 2020-06-18 Kulzer Gmbh Multi-layer wall with a microcellular structure
CN113661037B (en) * 2019-04-11 2023-10-13 宝洁公司 Blow molded article with visual effect
WO2021009675A1 (en) * 2019-07-15 2021-01-21 Vinlabindia Innovations Llp Preform neck finish and closure for beverages container
US11607833B2 (en) 2019-11-04 2023-03-21 Ring Container Technologies, Llc Container and method of manufacture
DE102020201543A1 (en) * 2020-02-07 2021-08-12 Adidas Ag Process for the production of a foam component
TWM611527U (en) * 2020-03-02 2021-05-11 大陸商立訊精密工業股份有限公司 Transmission line, car charger and power adapter having identification housing
KR102151214B1 (en) * 2020-03-27 2020-09-02 현 동 장 A multi layer sheet manufacturing plastic foam and plastic form using thereof
KR102151215B1 (en) * 2020-03-27 2020-09-02 현 동 장 A multi layer sheet manufacturing plastic foam and plastic form using thereof
DE102020119413A1 (en) 2020-07-22 2022-01-27 Universität Paderborn, Körperschaft des öffentlichen Rechts Process for the production of a multi-component composite part
JP7125680B2 (en) * 2021-02-18 2022-08-25 大日本印刷株式会社 Composite container and its manufacturing method, composite preform, and plastic member
CA3224800A1 (en) * 2021-07-15 2023-01-19 Mark Delafosse Sheeting and methods of manufacturing sheeting
US20230091692A1 (en) * 2021-09-20 2023-03-23 Carl David Bodam Pressurized tube sealing for containers
JP7279838B1 (en) 2022-03-25 2023-05-23 大日本印刷株式会社 Container and its preform
WO2024028799A1 (en) * 2022-08-05 2024-02-08 Product Armor Packaging Pvt. Ltd. Method of manufacturing child-resistant cap by continuous compression moulding technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221954A (en) * 1963-06-11 1965-12-07 Haveg Industries Inc Blow molded foamed plastic container

Family Cites Families (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708288A (en) 1950-05-26 1955-05-17 Frank W Fuller Method and apparatus for molding plastic
US3317471A (en) 1959-03-12 1967-05-02 Dow Chemical Co Thermoplastic resinous reaction product of a diglycidyl ether and an amino compound
US3305528A (en) 1960-11-30 1967-02-21 Union Carbide Corp Poly (hydroxyethers) and a method for their preparation
NL276020A (en) 1962-03-16
US3395118A (en) 1962-10-15 1968-07-30 Union Carbide Corp Modified thermoplastic polyhydroxyethers
US3430680A (en) 1966-06-16 1969-03-04 George R Leghorn Method of forming structural shapes from molten material by stream casting
US3401475A (en) 1966-07-18 1968-09-17 Dow Chemical Co Label and labelled container
US3482284A (en) 1967-02-23 1969-12-09 Husky Mfg Tool Works Ltd Dual injection-molding machine
US3418398A (en) 1967-08-07 1968-12-24 Phillips Petroleum Co Method of heating parison preforms
US3632267A (en) 1968-03-12 1972-01-04 Kautex Werke Gmbh Apparatus for making hollow articles of thermoplastics
US3535144A (en) 1968-05-22 1970-10-20 Dow Chemical Co Method of coating containers
CH507802A (en) 1970-02-25 1971-05-31 Synthexa Establishment Process and injection mold for the production of hollow bodies from thermoplastics
US3944643A (en) 1970-07-10 1976-03-16 Showa Denko K.K. Method for manufacturing shaped articles by injection-blow molding
US4040233A (en) 1970-09-14 1977-08-09 Valyi Emery I Method of obtaining a filled, fluid barrier resistant plastic container
US3869056A (en) 1970-09-14 1975-03-04 Emery I Valyi Multilayered hollow plastic container
US3810965A (en) 1970-11-03 1974-05-14 Monsanto Chemicals Process of producing a foamed resin sheet
US3719735A (en) 1970-12-21 1973-03-06 Valyi Emery I Method for molding plastic containers
US3740181A (en) 1971-05-17 1973-06-19 Owens Illinois Inc Apparatus for blow molding plastic articles
US3878282A (en) 1971-08-10 1975-04-15 Ilikon Corp Process for molding multilayer articles
US3900286A (en) 1971-11-19 1975-08-19 Ciba Geigy Ag Dyestuff preparations and processes for the dyeing of synthetic organic material
US3963399A (en) 1971-11-24 1976-06-15 Continental Can Company, Inc. Injection-blow molding apparatus with parison heat redistribution means
US3813198A (en) 1971-12-23 1974-05-28 Valyi Emery I Apparatus for making composite plastic articles
US3882213A (en) 1972-02-11 1975-05-06 Owens Illinois Inc Method of making blown plastic articles
GB1362133A (en) * 1972-02-24 1974-07-30 Ici Ltd Injection blow moulding
US3819314A (en) 1972-05-31 1974-06-25 P Marcus Linear transfer injection blow molding
CH565647A5 (en) 1973-07-02 1975-08-29 Valyi Emery I
US3857660A (en) 1973-09-17 1974-12-31 Wheaton Industries Injection-blow molding machine
CH574321A5 (en) * 1974-01-04 1976-04-15 Lo Sfruttamento Di Brevetti Sa
GB1455091A (en) 1974-02-11 1976-11-10 Toyo Boseki Dispersion of linear polyester resin
US3966378A (en) 1974-05-28 1976-06-29 Valyi Emery I Apparatus for making oriented hollow plastic articles
US3947176A (en) 1974-07-23 1976-03-30 Rainville Company, Inc. Double injection mold with neck gating
GB1482956A (en) 1974-09-10 1977-08-17 Ilikon Corp Process for moulding multi-layer articles
CH602308A5 (en) 1975-02-20 1978-07-31 Paul Marcus
US4149645A (en) 1975-07-02 1979-04-17 Valyi Emery I Plastic article and method for making same
CH618451A5 (en) 1975-10-02 1980-07-31 Emery I Valyi
US4127633A (en) 1976-04-21 1978-11-28 Imperial Chemical Industries Limited Process for fabricating biaxially oriented container of polyethylene terephthalate coated with a copolymer of vinylidene chloride
US4092391A (en) 1976-07-30 1978-05-30 Valyi Emery I Method of making multilayered containers
DE2649640A1 (en) 1976-10-29 1978-05-03 Rainer Fischer Blank for plastics blow moulding is released from outer mould - by air forced into mould to press blank on to mandrel
US4108956A (en) 1977-01-21 1978-08-22 Owens-Illinois, Inc. Injection molding method and apparatus
SE430147B (en) 1977-05-13 1983-10-24 Plm Ab SUBJECT FOR MANUFACTURING PLASTIC MATERIAL CONTAINERS AS WELL AS ASTADCOMMUNICATING A SUBJECT
JPS5413567A (en) * 1977-07-01 1979-02-01 Asahi Chem Ind Co Ltd Molding of foamed article
US4150079A (en) 1977-08-22 1979-04-17 Owens-Illinois, Inc. Method for controlling crystallization in thermoplastic materials
US4151247A (en) 1977-10-20 1979-04-24 Ethyl Corporation Injection blow molding apparatus
DE2755216A1 (en) 1977-12-10 1979-06-13 Demag Kunststofftech METHOD FOR MANUFACTURING PLASTIC PARTS IN COMPOSITE CONSTRUCTION
US4208177A (en) 1977-12-14 1980-06-17 Logic Devices, Inc. Fluid cooling of injection molded plastic articles
FR2421928A1 (en) 1978-02-13 1979-11-02 Rhone Poulenc Ind POLYMER COATING COMPOSITION AND ITS USE FOR THE MANUFACTURE OF LAMINATE PACKAGING
FR2416784A1 (en) 1978-02-13 1979-09-07 Rhone Poulenc Ind MANUFACTURING PROCESS OF BIORIENT HOLLOW BODIES
US4213751A (en) 1978-06-06 1980-07-22 The Continental Group, Inc. Valve gate mechanism for injection molding
GB2024087B (en) 1978-06-29 1982-08-25 Yoshino Kogyosho Co Ltd Blow moulding polyester container
GB2038208B (en) 1978-11-20 1983-05-11 Yoshino Kogyosho Co Ltd Saturated polyester bottle-shaped container with hard coating and method of fabricating the same
US4323341A (en) 1979-01-24 1982-04-06 Valyi Emery I Apparatus for forming hollow plastic objects
US4284671A (en) 1979-05-11 1981-08-18 Clopay Corporation Polyester compositions for gas and moisture barrier materials
US4375947A (en) 1979-05-29 1983-03-08 Paul Marcus Injection molding system
US4376090A (en) 1979-05-29 1983-03-08 Paul Marcus Injection molding system
US4357296A (en) 1979-08-30 1982-11-02 Ethyl Corporation Injection blow molding process
US4604044A (en) 1979-08-30 1986-08-05 Hoover Universal, Inc. Injection blow molding apparatus
JPS5677143A (en) 1979-11-30 1981-06-25 Yoshino Kogyosho Co Ltd Polyethylene terephthalate resin product
US4357288A (en) 1980-02-25 1982-11-02 Deacon Machinery, Inc. Method of making clear transparent polypropylene containers
US4370368A (en) 1980-05-07 1983-01-25 Toyo Seikan Kaisha, Ltd. Plastic bottles and process for preparation thereof
US4381277A (en) 1980-05-29 1983-04-26 Plm Ab Method for producing containers
NL8102428A (en) 1980-05-29 1981-12-16 Plm Ab PRE-PREPARED FORMAT FROM THERMOPLASTIC PLASTIC.
NL8102376A (en) 1980-05-29 1981-12-16 Plm Ab METHOD AND APPARATUS FOR FORMING A HOLDER
DE3173472D1 (en) 1980-10-31 1986-02-20 Toyo Seikan Kaisha Ltd Laminated plastic container and process for preparation thereof
US4378963A (en) 1980-12-11 1983-04-05 Schouenberg Hendrikus J E Injection mechanism for molding plastics
US4395222A (en) 1981-05-15 1983-07-26 The Broadway Companies, Inc. Injection molding apparatus
US4731266A (en) 1981-06-03 1988-03-15 Rhone-Poulenc, S.A. Water-resistant polyvinyl alcohol film and its application to the preparation of gas-impermeable composite articles
CA1184717A (en) 1981-08-20 1985-04-02 Yoshiaki Hayashi Blow-molded bottle-shaped container of biaxially oriented polyethylene terephthalate resin and method of molding the same
US4956143A (en) 1981-09-16 1990-09-11 Taut, Inc. Method and apparatus for the multi-unit production of thin-walled tubular products utilizing an injection molding technique
DE3228743C2 (en) 1982-07-31 1985-11-14 Maschinenfabrik Köppern GmbH & Co KG, 4320 Hattingen Multiple injection mold for the simultaneous production of several moldings
JPS5878732A (en) 1981-11-05 1983-05-12 Toyo Seikan Kaisha Ltd Manufacture of coated orientation plastic bottle
CA1174020A (en) 1982-01-06 1984-09-11 Jobst U. Gellert Injection molding manifold member and method of manufacture
US4451224A (en) 1982-03-25 1984-05-29 General Electric Company Mold device for making plastic articles from resin
US4818213A (en) 1982-04-12 1989-04-04 Roy Siegfried S Injection blow molding
ATE20209T1 (en) 1982-04-12 1986-06-15 Siegfried Shankar Roy INJECTION BLOW MOLDING DEVICE.
JPS58183243A (en) 1982-04-22 1983-10-26 株式会社吉野工業所 Biaxial stretched blow molded bottle body made of synthetic resin
EP0212339B1 (en) 1982-04-22 1995-08-16 Yoshino Kogyosho CO., LTD. Bottle-shaped container
JPS58208046A (en) 1982-05-28 1983-12-03 東洋製罐株式会社 Plastic vessel with oriented coating and its manufacture
EP0096581B1 (en) 1982-06-07 1986-09-03 Idemitsu Petrochemical Co. Ltd. Laminated materials
US4515836A (en) 1982-07-16 1985-05-07 Nordson Corporation Process for coating substrates with aqueous polymer dispersions
CA1243040A (en) 1982-08-12 1988-10-11 Paul D. Mclean Epoxy resin fortifiers based on aromatic amides
JPS59158232A (en) * 1983-02-28 1984-09-07 Toyo Seikan Kaisha Ltd Preparaton of multi-layered stretched polyester bottle
US4551368A (en) 1982-09-07 1985-11-05 The Goodyear Tire & Rubber Company Polyester melt blends having high gas barrier properties
US4403090A (en) 1982-09-07 1983-09-06 The Goodyear Tire & Rubber Company Polyisophthalates and copolymers thereof having high barrier properties
JPS5989149A (en) 1982-11-15 1984-05-23 三井化学株式会社 Multilayer vessel
JPS59120427A (en) 1982-12-28 1984-07-12 Katashi Aoki 2-layer preform molding apparatus for injection drawing blow molding machine
JPS59136253A (en) 1983-01-26 1984-08-04 東洋製罐株式会社 Multilayer plastic laminated structure
EP0118226B2 (en) 1983-02-08 1990-10-10 Toyo Seikan Kaisha Limited Vessel containing a plastic laminate structure
US4438254A (en) 1983-02-28 1984-03-20 The Dow Chemical Company Process for producing epoxy resins
GB8309275D0 (en) 1983-04-06 1983-05-11 Allied Colloids Ltd Dissolution of water soluble polymers in water
JPS60168625A (en) 1984-02-13 1985-09-02 Ekuseru Kk Manufacture of hollow molded article provided with composite material and manufacturing device thereof
JPS59199237A (en) 1983-04-28 1984-11-12 東洋製罐株式会社 Manufacture of multilayer stretched polyester bottle
ZA843231B (en) 1983-05-04 1984-12-24 American Can Co Multiple layer packaging film
IT1177704B (en) 1983-05-09 1987-08-26 Cosden Technology IMPROVEMENTS IN CONTAINERS WITH BARRIER MATERIAL WELDED BY CLUTCH
US4573429A (en) 1983-06-03 1986-03-04 Nordson Corporation Process for coating substrates with aqueous polymer dispersions
US4505951A (en) 1983-07-18 1985-03-19 Owens-Illinois, Inc. Method for making a polyvinylidene chloride coated biaxially oriented polyethylene terephthalate container
JPS6071207A (en) 1983-09-29 1985-04-23 Toyo Seikan Kaisha Ltd Multilayer preform for elongation blow molding and its manufacture
US4573596A (en) 1983-10-08 1986-03-04 Plastipak Packaging, Inc. Plastic container with vapor barrier
US4459400A (en) 1983-12-12 1984-07-10 Eastman Kodak Company Poly(ester-amide) compositions
US4649004A (en) 1983-12-27 1987-03-10 Toyo Seikan Kaisha, Ltd. Process for production of multi-layer pipes for draw-forming
US4487789A (en) 1984-02-09 1984-12-11 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for forming film of hydrolyzed ethylene-vinyl acetate copolymer
US4609516A (en) 1984-02-17 1986-09-02 Continental Pet Technologies, Inc. Method of forming laminated preforms
DE3407060C2 (en) 1984-02-27 1986-04-10 Krupp Corpoplast Maschinenbau GmbH, 2000 Hamburg Process for making a parison for blow molding
JPS60183334A (en) 1984-03-02 1985-09-18 日精エー・エス・ビー機械株式会社 Biaxial oriented vessel having excellent heat resistance andgas barrier property
US4499262A (en) 1984-03-09 1985-02-12 Eastman Kodak Company Process for the preparation of sulfo-modified polyesters
JPS60201909A (en) * 1984-03-26 1985-10-12 Toyo Seikan Kaisha Ltd Manufacture of multilayer stretch blown bottle
US4632053A (en) 1984-04-05 1986-12-30 Amoco Corporation Apparatus for coating containers
US4534995A (en) 1984-04-05 1985-08-13 Standard Oil Company (Indiana) Method for coating containers
JPS60247557A (en) 1984-05-09 1985-12-07 株式会社クラレ Laminate and manufacture thereof
DE8416309U1 (en) 1984-05-26 1985-03-28 Opticproduct GmbH + Co Vertriebs KG, 6100 Darmstadt COMPACT DEVICE FOR THE CONTINUOUS SCRATCH-PROOF COATING OF PLASTIC MOLDED BODIES
US4540543A (en) 1984-06-11 1985-09-10 Canada Cup, Inc. Injection blow molding process and apparatus
US4538542A (en) 1984-07-16 1985-09-03 Nordson Corporation System for spray coating substrates
US4578295A (en) 1984-07-16 1986-03-25 Owens-Illinois, Inc. High barrier polymer blend and articles prepared therefrom
JPS6160436A (en) 1984-08-23 1986-03-28 東洋製罐株式会社 Multilayer gas barrier property oriented polyester vessel
EP0174265A3 (en) 1984-09-07 1987-09-09 The Goodyear Tire & Rubber Company Solid state polymerization process
JPS61108542A (en) 1984-10-31 1986-05-27 三菱瓦斯化学株式会社 Multilayer vessel
US4604258A (en) 1984-11-15 1986-08-05 Canada Cup, Inc. Stack-mold for injection blow molding
US4680001A (en) 1984-11-28 1987-07-14 Application Engineering Corporation Passive mold cooling and heating system
US4623497A (en) 1984-11-28 1986-11-18 Application Engineering Corporation Passive mold cooling and heating method
JPH0617136B2 (en) 1985-02-15 1994-03-09 日精エ−・エス・ビ−機械株式会社 Biaxially oriented container with excellent gas barrier properties
US4690789A (en) 1985-03-13 1987-09-01 Dart Industries Inc. Refrigerant cooled plastic molding, method and apparatus
JPS61235126A (en) 1985-04-12 1986-10-20 Nissei Ee S B Kikai Kk Multi-layer vessel and manufacture thereof
US4560741A (en) 1985-04-12 1985-12-24 Eastman Kodak Company Polyester resins capable of forming containers having improved gas barrier properties
JPS61241323A (en) * 1985-04-18 1986-10-27 Mitsui Petrochem Ind Ltd Polyhydroxy polyether, production and use thereof
EP0203630A3 (en) 1985-04-29 1988-04-06 Shell Internationale Researchmaatschappij B.V. Multiple-layer materials
DE3518441A1 (en) 1985-05-22 1986-11-27 Krupp Corpoplast Maschinenbau GmbH, 2000 Hamburg METHOD FOR PRODUCING A MOLD FOR BLOW MOLDING A HOLLOW BODY
DE3518875A1 (en) 1985-05-24 1986-11-27 Dow Chemical GmbH, 7587 Rheinmünster Coating composition, process for the coating of plastic articles, and plastic articles which have a polymer coating
US4942008A (en) 1985-07-10 1990-07-17 Cahill John W Process for molding a multiple layer structure
US4647648A (en) 1985-08-26 1987-03-03 The Dow Chemical Company Polyhydroxyethers from hydroxybiphenyls
US4753832A (en) 1985-09-10 1988-06-28 The Procter & Gamble Company Barrier laminates for the retention of essential oils, vitamins and flavors in citrus beverages and a method of making said laminate and leak-tight containers therefrom
US4715504A (en) 1985-10-02 1987-12-29 Owen-Illinois Plastic Products Inc. Oriented plastic container
JPS62189135A (en) 1985-10-09 1987-08-18 Kuraray Co Ltd Injection orientation blow molded vessel
US4844987A (en) 1985-10-29 1989-07-04 Teijin Limited Polyamide molding material and hollow-molded body obtained therefrom
GB2188272B (en) 1986-02-28 1990-10-10 Toyo Seikan Kaisha Ltd A process for preparation of a biaxially drawn polyester vessel having resistance to heat distortion and gas barrier properties.
US4717521A (en) 1986-03-21 1988-01-05 Intelitec Corporation Thermal gate for plastic molding apparatus and method of using it
US4755404A (en) 1986-05-30 1988-07-05 Continental Pet Technologies, Inc. Refillable polyester beverage bottle and preform for forming same
EP0280736A4 (en) 1986-08-20 1988-11-22 Mitsui Petrochemical Ind Aromatic polyamides and agents for imparting gas barrier properties to them.
DE3633884C1 (en) 1986-10-04 1988-02-25 Minnesota Mining & Mfg Method and device for producing field-controlling elastic sheathing for electrical medium and high voltage connectors
US4698013A (en) 1986-10-20 1987-10-06 Butcher Robert M Mechanism for valve gated injection molding with resilient retaining ring
CA1288912C (en) 1987-02-06 1991-09-17 Senzo Shimizu Parison and blow-molded containers and processes for production thereof
JPS63194912A (en) 1987-02-09 1988-08-12 Nissei Ee S B Kikai Kk Preform for biaxially orienting container and molding method thereof
US4871507A (en) 1987-03-02 1989-10-03 Owens-Illinois Plastic Products Inc. Method for forming hollow partially crystalline biaxially oriented heat set polyethylene terephthalate articles
US4800129A (en) 1987-03-26 1989-01-24 E. I. Du Pont De Nemours And Company Multi-layer plastic container
JPS63260418A (en) 1987-04-17 1988-10-27 Mazda Motor Corp Extrusion molding device for multi-layer parison
US4764405A (en) 1987-07-22 1988-08-16 Air Products And Chemicals, Inc. Method for increasing barrier properties of thermoplastic substrates
JP2555087B2 (en) 1987-07-23 1996-11-20 株式会社クラレ Heat resistant container
JPS6449615A (en) 1987-08-20 1989-02-27 Fuji Photo Film Co Ltd Mold for spool injection molding
USRE34537E (en) 1987-09-23 1994-02-08 E. I. Du Pont De Nemours And Company Plastic composite barrier structures
JPH01131275A (en) 1987-11-16 1989-05-24 Mitsui Petrochem Ind Ltd Polyamide composition
US4824618A (en) * 1987-12-21 1989-04-25 E. I. Du Pont De Nemours And Company Coextrusion blowmolding process
GB8801599D0 (en) 1988-01-25 1988-02-24 Du Pont Canada Process for injection moulding of multi-layered articles
US5006381A (en) 1988-02-04 1991-04-09 Ppg Industries, Inc. Ungelled polyamine-polyepoxide resins
US5300541A (en) 1988-02-04 1994-04-05 Ppg Industries, Inc. Polyamine-polyepoxide gas barrier coatings
DE68927240T2 (en) 1988-05-06 1997-02-06 Ajinomoto Kk Plastic container and process for its manufacture
MX163432B (en) 1988-07-13 1992-05-12 Rohm & Haas MULTIPLE LAYER STRUCTURES
DE3824071A1 (en) 1988-07-15 1990-01-18 Bayer Ag METHOD FOR PRODUCING INJECTED MOLDED BODIES FROM COMPOSITES
US4847129A (en) 1988-09-16 1989-07-11 Continental Pet Technologies, Inc. Multilayer preform for hot fill containers
CA2002369C (en) 1988-11-08 2000-10-31 Mikio Hashimoto Copolyester, polyester composition containing the copolyester, and polyester laminated structure having layer composed of the copolyester or the polyester composition
US4954376A (en) 1988-12-30 1990-09-04 Continental Pet Technologies, Inc. Two material three/five layer preform
US4937130A (en) 1989-01-18 1990-06-26 General Electric Company Polycarbonate container having internal layers of amorphous polyamide
JPH0677717B2 (en) 1989-02-27 1994-10-05 日本合成化学工業株式会社 Method for forming coating film of saponified ethylene-vinyl acetate copolymer
DE3908188C2 (en) 1989-03-14 1998-10-29 Tetra Pak Gmbh Plastic injection molding tool
GB8909249D0 (en) 1989-04-24 1989-06-07 Ici Plc Polyester composition
US5143998A (en) 1989-04-26 1992-09-01 The Dow Chemical Company Hydroxy-functional poly(amide ethers) as thermoplastic barrier resins
US4955804A (en) 1989-06-19 1990-09-11 General Motors Corporation Tool for molding plastic articles
US4977191A (en) 1989-06-27 1990-12-11 The Seydel Companies, Inc. Water-soluble or water-dispersible polyester sizing compositions
US5028462A (en) 1989-07-21 1991-07-02 Amoco Corporation Molded bottles and method of producing same
AU6745390A (en) 1989-11-23 1991-06-26 Lin Pac Plastics International Limited Blow moulded containers
US5380479A (en) 1989-12-26 1995-01-10 The Dow Chemical Company Method and apparatus for producing multilayer plastic articles
US5202074A (en) 1989-12-26 1993-04-13 The Dow Chemical Company Method for producing injection molded multilayer articles
US5077111A (en) 1990-01-12 1991-12-31 Continental Pet Technologies, Inc. Recyclable multilayer plastic preform and container blown therefrom
US5164472A (en) 1990-01-18 1992-11-17 The Dow Chemical Company Hydroxy-functional polyethers as thermoplastic barrier resins
US5071340A (en) 1990-03-02 1991-12-10 Dart Industries Inc. Cooling arrangement for valve stem gates in hot runner injection molding machine systems
US5115075A (en) 1990-05-08 1992-05-19 The Dow Chemical Company Amide and hydroxymethyl functionalized polyethers as thermoplastic barrier resins
US5218075A (en) 1990-05-08 1993-06-08 The Dow Chemical Company Amide and hydroxymethyl functionalized polyethers as thermoplastic barrier resins
SE9002100L (en) 1990-06-13 1991-12-14 Tetra Pak Holdings Sa LAMINATED PACKAGING MATERIAL WITH GOOD AROMBARRIA CHARACTERISTICS AS WELL AS MANUFACTURING THE MATERIAL
GB9013481D0 (en) 1990-06-15 1990-08-08 Ici Plc Polyester polymer products
GB9013663D0 (en) 1990-06-19 1990-08-08 Ici Plc Composition comprising a crystallisable polymer
JPH089187B2 (en) 1990-09-10 1996-01-31 ポリプラスチックス株式会社 Polyester composite molded article and method for producing the same
ATE163949T1 (en) 1990-10-03 1998-03-15 Dow Chemical Co HYDROXY FUNCTIONALIZED POLYETHERAMINES FOR USE AS A BARRIER LAYER IN OXYGEN SENSITIVE MATERIALS
US5089588A (en) 1990-10-17 1992-02-18 The Dow Chemical Company Hydroxy-functional poly(amide ethers) as thermoplastic barrier resins
CA2056224A1 (en) 1990-12-19 1992-06-20 Terry Martin Boustead Conformal composite molding
EP0537346B1 (en) * 1990-12-20 1997-03-05 Asahi Kasei Kogyo Kabushiki Kaisha Method of producing a shaped resin article
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
DE4041512A1 (en) 1990-12-22 1992-06-25 Schulte Soehne Gmbh Co A STEERING WHEEL
WO1992014785A1 (en) 1991-02-15 1992-09-03 Kuraray Co., Ltd. Aqueous dispersion and base material coated therewith
SE9100663L (en) 1991-03-05 1992-05-04 Toolvac Engineering Ab PROCEDURE FOR COOLING A FORM TOOL
US5516470A (en) 1991-03-05 1996-05-14 Aga Aktiebolag Method of tempering a molding tool
US5196469A (en) 1991-03-28 1993-03-23 Mica Corporation Ethylene/vinyl alcohol coatings
US5171820A (en) 1991-05-13 1992-12-15 The Dow Chemical Company Hydroxy-functional polyesters as thermoplastic barrier resins
US5134218A (en) 1991-06-06 1992-07-28 The Dow Chemical Company Hydroxy-functional poly(amide ethers) as thermoplastic barrier resins
US5300572A (en) 1991-06-14 1994-04-05 Polyplastics Co., Ltd. Moldable polyester resin compositions and molded articles formed of the same
US5149768A (en) 1991-06-21 1992-09-22 The Dow Chemical Company Hydroxy-functional poly(ether sulfonamides) as thermoplastic barrier resins
US5273811A (en) 1991-07-24 1993-12-28 Mitsubishi Kasei Corporation Stretched, laminated film
US5652034A (en) 1991-09-30 1997-07-29 Ppg Industries, Inc. Barrier properties for polymeric containers
US5814373A (en) 1991-11-26 1998-09-29 Dow Chemical Company Heat-resistant hydroxy-functional polyethers as thermoplastic barrier resins
JP2500556B2 (en) 1991-11-27 1996-05-29 東洋製罐株式会社 Laminated squeezing container with excellent impact resistance and its manufacturing method
US5281630A (en) 1991-12-18 1994-01-25 The Seydel Companies Sulfonated water-soluble or water-dispersible polyester resin compositions
JPH05169555A (en) * 1991-12-20 1993-07-09 Shin Etsu Polymer Co Ltd Manufacture of heat-resistant resin vessel having heat insulating property
US5219593A (en) 1992-01-21 1993-06-15 Husky Injection Molding Systems Ltd. Injection molding apparatus
US5344912A (en) 1992-02-03 1994-09-06 Therma-Plate Corporation Elevated temperature dimensionally stable polyester with low gas permeability
JP2538476B2 (en) 1992-02-12 1996-09-25 リョービ株式会社 Mold cooling device
EP0581970B1 (en) 1992-02-25 1998-08-26 Toray Industries, Inc. Biaxially oriented, laminated polyester film
US5509965A (en) 1992-03-18 1996-04-23 Continental Pet Technologies, Inc. Preform coating apparatus and method
CA2095674A1 (en) 1992-05-13 1993-11-14 Nicholas A. Grippi Blood collection tube assembly
US5939516A (en) 1992-05-15 1999-08-17 Imperial Chemical Industries Plc Modified polyester polymers
US5246751A (en) 1992-05-18 1993-09-21 The Dow Chemical Company Poly(hydroxy ether imides) as barrier packaging materials
AU674528B2 (en) 1992-07-07 1997-01-02 Graham Packaging Pet Technologies Inc. Method of forming multi-layer preform and container with low crystallizing interior layer
ATE157927T1 (en) 1992-07-07 1997-09-15 Continental Pet Technologies METHOD FOR SHAPING A CONTAINER HAVING A HIGH CRYSTALLINITY SIDEWALL AND A LOW CRYSTALLINITY BOTTOM
US5628957A (en) 1992-07-07 1997-05-13 Continental Pet Technologies, Inc. Method of forming multilayer container with polyethylene naphthalalte (pen)
US6276656B1 (en) 1992-07-14 2001-08-21 Thermal Wave Molding Corp. Mold for optimizing cooling time to form molded article
HUT70703A (en) * 1992-07-28 1995-10-30 Dowbrands Inc Self-foaming liquid composition and dispenser there of
US5288548A (en) * 1992-07-31 1994-02-22 Mobil Oil Corporation Label face stock
JP2999071B2 (en) 1992-08-12 2000-01-17 麒麟麦酒株式会社 Bag body and bag-in-box for bag-in-box
PL172400B1 (en) 1992-09-22 1997-09-30 Pepsico Inc Stress relieving in blow-moulded products and their heat treatment
US5376317A (en) 1992-12-08 1994-12-27 Galic Maus Ventures Precision surface-replicating thermoplastic injection molding method and apparatus, using a heating phase and a cooling phase in each molding cycle
US5258444A (en) 1993-01-22 1993-11-02 Ppg Industries, Inc. Aqueous coating composition for plastic substrates
JP3287648B2 (en) 1993-06-07 2002-06-04 株式会社リコー Simultaneous recording verification method for phase change type information recording medium and phase change type information recording drive device
US5328724A (en) 1993-09-02 1994-07-12 E. I. Du Pont De Nemours And Company Solution coating process for packaging film
US5443766A (en) 1993-09-10 1995-08-22 Plastipak Packaging, Inc. Method of making multi-layer preform used for plastic blow molding
IL110837A (en) 1993-09-10 2001-03-19 Plastipak Packaging Inc Polyethylene terephthalate multi-layer preform used for plastic blow molding and method for making the preform
US5712009A (en) * 1993-09-16 1998-01-27 Owens-Illinois Plastic Products Inc. Coextruded multilayer plastic container utilizing post consumer plastic
US6051294A (en) 1993-10-01 2000-04-18 The Dow Chemical Company Heat-resistant hydroxy-functional polyethers as thermoplastic barrier resins
JP2807619B2 (en) 1993-10-08 1998-10-08 株式会社新潟鉄工所 Resin molding machine
US6011111A (en) 1993-10-18 2000-01-04 The Dow Chemical Company Hydroxy-phenoxyether polymer thermoplastic composites
US5464924A (en) 1994-01-07 1995-11-07 The Dow Chemical Company Flexible poly(amino ethers) for barrier packaging
US5726277A (en) 1994-02-02 1998-03-10 Seydel Companies, Inc. Adhesive compositions from phthalate polymers and the preparation thereof
US5508076A (en) 1994-02-10 1996-04-16 Electra Form, Inc. Layered preform
US5571470A (en) 1994-02-18 1996-11-05 The Coca-Cola Company Method for fabricating a thin inner barrier layer within a preform
EP0671251A1 (en) 1994-03-08 1995-09-13 FOBOHA GmbH Injection moulding method and apparatus for carrying out the method
DE4414258C2 (en) * 1994-04-23 1996-07-25 Battenfeld Gmbh Process for injection molding objects consisting of at least two different layers
US5492947A (en) 1994-06-23 1996-02-20 Aspen Research Corporation Barrier material comprising a thermoplastic and a compatible cyclodextrin derivative
US5837339A (en) 1994-06-23 1998-11-17 Cellresin Technologies, Llc Rigid polymeric beverage bottles with improved resistance to permeant elution
US5472753A (en) * 1994-06-28 1995-12-05 Pepsico Inc. Polyethylene terephthalate-containing laminate
US5464106A (en) 1994-07-06 1995-11-07 Plastipak Packaging, Inc. Multi-layer containers
US5443378A (en) 1994-07-11 1995-08-22 Ferromatik Milacron Maschinenbau Gmbh Apparatus for the sandwich method of injection molding
US5693283A (en) 1994-08-02 1997-12-02 Continental Plastic Containers, Inc. Container with recycled plastic
EP0781200B1 (en) 1994-09-12 2000-01-05 Chevron Chemical Company LLC Oxygen scavenging structures having organic oxygen scavenging material and having a polymeric selective barrier
US5545375A (en) 1994-10-03 1996-08-13 Becton, Dickinson And Company Blood collection tube assembly
US5599494A (en) 1994-10-13 1997-02-04 Marcus; Paul Method of forming a parison having multiple resin layers
EP0806272B1 (en) 1994-11-25 2002-06-05 Asahi Kasei Kabushiki Kaisha Improved injection molding method for producing hollow articles and mold used for said method
US5759653A (en) 1994-12-14 1998-06-02 Continental Pet Technologies, Inc. Oxygen scavenging composition for multilayer preform and container
ES2141387T3 (en) 1994-12-16 2000-03-16 Ppg Ind Ohio Inc BARRIER COATINGS BASED ON EPOXY-AMINE WITH ARILOXI OR ARYLOATE GROUPS.
ES2095199T3 (en) * 1994-12-21 1998-09-16 Wella Ag BOTTLE SHAPED PLASTIC CONTAINER.
US6121387A (en) 1994-12-21 2000-09-19 Imperial Chemical Industries, Plc Process for preparing a coating composition
US6673874B1 (en) 1994-12-21 2004-01-06 Imperial Chemical Industries Plc Modified polymers
US5582788A (en) 1994-12-28 1996-12-10 Continental Pet Technologies, Inc. Method of cooling multilayer preforms
CO4520125A1 (en) 1995-03-29 1997-10-15 Continental Pet Technologies PRESSURIZED CONTAINER TO FILL RESISTANT TO THE CRAWLING OF THE DRINKER, PREFORM AND METHOD TO MANUFACTURE THEM
GB9510496D0 (en) 1995-05-24 1995-07-19 Ford Motor Co Resin transfer moulding
AR002773A1 (en) 1995-07-07 1998-04-29 Continental Pet Technologies METHOD FOR INJECTION MOLDING OF A PLASTIC ARTICLE AND APPARATUS TO CARRY IT OUT.
DE69606811T3 (en) 1995-07-31 2012-01-12 Kureha Corp. Multilayer film
JPH0958648A (en) 1995-08-16 1997-03-04 Toyo Seikan Kaisha Ltd Plastic bottle and manufacture thereof
JP3618152B2 (en) * 1995-09-22 2005-02-09 ジャパンゴアテックス株式会社 Hollow molded product having a liquid crystal polymer layer
EP0852602B1 (en) 1995-09-29 2003-04-23 Avery Dennison Corporation Process for preparing hot water whitening resistant emulsion pressure sensitive adhesives
US6610378B1 (en) 1995-10-02 2003-08-26 Toray Industries, Inc. Biaxially oriented polyester film to be formed into containers
US5688570A (en) 1995-10-13 1997-11-18 Crown Cork & Seal Company, Inc. Method and apparatus for forming a multi-layer preform
EP0774491A3 (en) 1995-11-20 1997-12-03 General Electric Company Films, sheets and molded products made of a polyester/polycarbonate composition
US5972445A (en) 1996-01-17 1999-10-26 Mitsubishi Chemical Corporation Multilayer polyester sheet
US5716683A (en) 1996-01-30 1998-02-10 Becton, Dickinson And Company Blood collection tube assembly
US5653907A (en) 1996-02-15 1997-08-05 Ford Motor Company Lightweight thermally responsive mold for resin transfer molding
DE19606045C2 (en) 1996-02-19 1997-11-27 Krupp Ag Hoesch Krupp Process for the injection molding of three-layer moldings and device for carrying out the process
BR9704619A (en) 1996-02-21 1998-06-09 Mitsui Petrochemica Ind Ltd Polyester polyester laminated polyester compositions and methods for producing biaxially drawn polyester bottles
US5817345A (en) * 1996-03-06 1998-10-06 Husky Injection Molding System Ltd. Turrent article molding machine and method of use
US5804016A (en) 1996-03-07 1998-09-08 Continental Pet Technologies, Inc. Multilayer container resistant to elevated temperatures and pressures, and method of making the same
US5942297A (en) 1996-03-07 1999-08-24 Cryovac, Inc. By-product absorbers for oxygen scavenging systems
US5780128A (en) 1996-04-15 1998-07-14 Pepsico Inc. Polyethylene preform and container
DE19617349C1 (en) * 1996-04-30 1997-09-04 Hans Kuehn Injection moulding of multilayered tubing
US5906285A (en) 1996-05-10 1999-05-25 Plastipak Packaging, Inc. Plastic blow molded container
US5851471A (en) 1996-05-16 1998-12-22 The Coca-Cola Company Method for injection molding a multi-layer preform for use in blow molding a plastic bottle
US5772056A (en) 1996-05-24 1998-06-30 Plastipak Packaging, Inc. Plastic blow molded container
ATE257113T1 (en) 1996-07-05 2004-01-15 Wella Ag HOLLOW PLASTIC BODY WITH HIGH CHEMICAL RESISTANCE
US5876812A (en) 1996-07-09 1999-03-02 Tetra Laval Holdings & Finance, Sa Nanocomposite polymer container
FR2752770B1 (en) * 1996-08-30 1998-10-16 Graham Packaging France HOLLOW BODY IN SYNTHETIC MATERIAL OBTAINED BY AN EXTRUSION-BLOWING TECHNIQUE
US5971742A (en) 1996-09-18 1999-10-26 Pyramid Composites Manufacturing Limited Partnership Apparatus for molding composite articles
CZ298276B6 (en) 1996-09-23 2007-08-15 Bp Corporation North America Inc. Thermoplastic container, thermoplastic bottle and process for producing multilayered thermoplastic bottle
US5914138A (en) 1996-09-27 1999-06-22 Kortec, Inc. Apparatus for throttle-valving control for the co-extrusion of plastic materials as interior core streams encased by outer and inner streams for molding and the like
DE19640662C1 (en) 1996-10-02 1998-03-05 Krupp Ag Hoesch Krupp Injection moulding of bottle preforms
US5731094A (en) 1996-10-22 1998-03-24 The Dow Chemical Company Hydroxy-phenoxyether polyester coextruded laminates
EP0870800B1 (en) * 1996-11-06 2003-03-05 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer compositions, hose made by using thermoplastic elastomer composition, and process for the production thereof
US5728439A (en) 1996-12-04 1998-03-17 Ppg Industries, Inc. Multilayer packaging material for oxygen sensitive food and beverage
CA2225949A1 (en) * 1996-12-31 1998-06-30 Edward John Giblin Bottle
US5879727A (en) 1997-01-21 1999-03-09 Husky Injection Molding Systems, Ltd. Insulated modular injection nozzle system
US6261400B1 (en) * 1997-04-09 2001-07-17 Spalding Sports Worldwide, Inc. Method of manufacturing multi-layer game ball
ATE368559T1 (en) 1997-04-16 2007-08-15 Husky Injection Molding METHOD AND DEVICE FOR THE PATIAL CRYSTALLIZATION OF AMORPHOUS PLASTIC OBJECTS
US5813991A (en) * 1997-04-25 1998-09-29 Cardiac Pathways Corporation Endocardial mapping system and method
US5927525A (en) 1997-04-28 1999-07-27 Plastipak Packaging, Inc. Multi-layer containers and preforms
US6004641A (en) * 1997-07-11 1999-12-21 Sinclair & Rush, Inc. Molded plastisol article with textured exterior
US5942563A (en) 1997-07-18 1999-08-24 The Glidden Company Aqueous dispersed acrylic-epoxy, branched epoxy protective coatings
GB9715146D0 (en) * 1997-07-19 1997-09-24 Thermo Electric Systems Limite Heat transfer apparatus and method
US6322738B1 (en) 1997-07-24 2001-11-27 Husky Injection Molding Systems Ltd. Method of injection over-molding articles
US6090337A (en) 1997-07-30 2000-07-18 Plastipak Packaging, Inc. Method for making multi-layer plastic preform for blow molding
US5834078A (en) 1997-08-14 1998-11-10 The Dow Chemical Company Hydroxy-functionalized poly(amino ether) salts
JPH11100097A (en) * 1997-09-24 1999-04-13 Sanyo Electric Co Ltd Feed device for drink
US6123211A (en) 1997-10-14 2000-09-26 American National Can Company Multilayer plastic container and method of making the same
US6312641B1 (en) 1997-10-17 2001-11-06 Plastic Fabrication Technologies Llc Method of making containers and preforms incorporating barrier materials
US6352426B1 (en) 1998-03-19 2002-03-05 Advanced Plastics Technologies, Ltd. Mold for injection molding multilayer preforms
TWI250934B (en) 1997-10-17 2006-03-11 Advancsd Plastics Technologies Barrier-coated polyester articles and the fabrication method thereof
US5972258A (en) * 1997-10-20 1999-10-26 Husky Injection Molding Systems Ltd. Method of using a multiple gating nozzle
US5939153A (en) 1997-11-13 1999-08-17 The Elizabeth And Sandor Valyi Foundation, Inc. Multilayered plastic container
KR100577033B1 (en) * 1997-11-28 2006-05-08 가부시키가이샤 제이에스피 Blow-molded foam and process for producing the same
ATE528346T1 (en) 1998-02-03 2011-10-15 Graham Packaging Pet Tech IMPROVED OXYGEN ABSORBING POLYMER COMPOSITIONS AND PACKAGING MADE THEREFROM
EP0941836B1 (en) 1998-03-12 2005-06-08 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing multi-layer laminate, production method thereof and packaging container
IT1301690B1 (en) 1998-06-11 2000-07-07 Sinco Ricerche Spa MIXTURES OF POLYESTER RESINS WITH HIGH PROPERTIES OF AIGAS BARRIER.
US6589621B1 (en) * 1998-07-01 2003-07-08 Dow Global Technologies Inc. Thermally stable polyetheramines
US6109006A (en) 1998-07-14 2000-08-29 Advanced Plastics Technologies, Ltd. Process for making extruded pet containers
US6103152A (en) * 1998-07-31 2000-08-15 3M Innovative Properties Co. Articles that include a polymer foam and method for preparing same
US6562276B1 (en) * 1998-08-20 2003-05-13 Eastman Chemical Company Process for forming a multilayer, coinjected article
US6749785B2 (en) 1998-09-01 2004-06-15 E. I. Du Pont De Nemours And Company Multilayer structures of poly(1,3-propylene 2,6 napthalate) and poly (ethylene terephthalate)
US6428305B2 (en) 1998-10-13 2002-08-06 Husky Injection Molding Systems Ltd. Injection molding nozzle tip insulator and injection molding device
AT409631B (en) 1998-10-28 2002-09-25 Solutia Austria Gmbh IONICALLY OR NONIONICALLY STABILIZED EPOXY ADDUCTS AS WATER-THINNABLE BASE RESINS FOR 2 K ISOCYANATE SYSTEMS
US6393803B1 (en) 1998-11-06 2002-05-28 Graham Packaging Company, L.P. Process for coating blow-molded plastic containers
DE69917070T2 (en) 1998-12-22 2005-06-09 Bp Corporation North America Inc., Warrenville ACTIVE OXYGEN REMOVAL PACKAGING
US6312628B1 (en) 1998-12-28 2001-11-06 Cito Products, Inc. Mold temperature control
US6196830B1 (en) 1998-12-31 2001-03-06 Security Plastics, Inc. Water jacket apparatus for injection molding systems
US6458468B1 (en) 1999-01-28 2002-10-01 Eastman Chemical Company Photocurable coatings for polyester articles
US6524672B1 (en) 1999-02-12 2003-02-25 Plastipak Packaging, Inc. Multilayer preform and container with co-extruded liner
US6533571B2 (en) 1999-03-19 2003-03-18 Husky Injection Molding Systems, Ltd Injection nozzle insulator assembly
US6315549B1 (en) 1999-03-19 2001-11-13 Husky Injection Molding Systems Ltd. Hot tip insulator retainer
US6184281B1 (en) 1999-06-21 2001-02-06 The Glidden Company Strippable aqueous emulsion inomeric coating for recyclable plastic containers
US6180715B1 (en) 1999-09-03 2001-01-30 The Dow Chemical Company Aqueous solution and dispersion of an acid salt of a polyetheramine
JP2001106219A (en) 1999-10-06 2001-04-17 Toppan Printing Co Ltd Pet bottle having high barrier characteristic
US6673432B2 (en) 1999-11-30 2004-01-06 Elk Premium Building Products, Inc. Water vapor barrier structural article
US6517664B1 (en) * 2000-01-10 2003-02-11 Process Resources Corporation Techniques for labeling of plastic, glass or metal containers or surfaces with polymeric labels
WO2001053062A1 (en) 2000-01-20 2001-07-26 Advanced Plastics Technologies, Ltd. Plastic cans or bottles produced from continually extruded tubes
KR100689232B1 (en) 2000-02-01 2007-03-02 시바 스폐셜티 케미칼스 홀딩 인코포레이티드 Method of Content Protection with Durable UV Absorbers
US6309757B1 (en) 2000-02-16 2001-10-30 Ppg Industries Ohio, Inc. Gas barrier coating of polyamine, polyepoxide and hydroxyaromatic compound
ZA200102941B (en) * 2000-04-13 2001-05-22 Gerhard Rosenberg Extruded, injection moulded or blow moulded pipe, fitting of component.
KR100460340B1 (en) * 2000-04-28 2004-12-08 악조 노벨 엔.브이. Chemical product and method
US20030031814A1 (en) 2000-04-28 2003-02-13 Hutchinson Gerald A. Bottles and preforms having a crystalline neck
US6509384B2 (en) * 2000-04-28 2003-01-21 Akzo Nobel N.V. Chemical product and method
JP2003531779A (en) * 2000-05-03 2003-10-28 イーストマン ケミカル カンパニー Containers with reduced heat gain
US6474499B2 (en) * 2000-05-03 2002-11-05 Eastman Chemical Company Container base cup having reduced heat gain
US6403231B1 (en) 2000-05-12 2002-06-11 Pechiney Emballage Flexible Europe Thermoplastic film structures having improved barrier and mechanical properties
US6737464B1 (en) 2000-05-30 2004-05-18 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content
US6346596B1 (en) 2000-07-14 2002-02-12 Valspar Corporation Gas barrier polymer composition
US6740378B1 (en) 2000-08-24 2004-05-25 The Coca-Cola Company Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and uv barrier and method for making same
US6720052B1 (en) 2000-08-24 2004-04-13 The Coca-Cola Company Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same
EP1315608A1 (en) * 2000-09-05 2003-06-04 Advanced Plastics Technologies, Ltd Multilayer containers and preforms having barrier properties utilizing recycled material
CA2423601C (en) 2000-11-06 2007-05-22 The Procter & Gamble Company Method of disposal for plastic articles digestible by hot alkaline treatment
US6471503B1 (en) 2000-11-07 2002-10-29 Burger & Brown Engineering, Inc. Rotary disc valve assembly for use with an injection mold cooling system
US6933055B2 (en) 2000-11-08 2005-08-23 Valspar Sourcing, Inc. Multilayered package with barrier properties
US20020058114A1 (en) * 2000-11-10 2002-05-16 Sung Chien Min Colored bottle blank and forming mold set with manufacturing process thereof
US6515067B2 (en) 2001-01-16 2003-02-04 Chevron Phillips Chemical Company Lp Oxygen scavenging polymer emulsion suitable as a coating, an adhesive, or a sealant
US6582633B2 (en) * 2001-01-17 2003-06-24 Akzo Nobel N.V. Process for producing objects
US6599584B2 (en) 2001-04-27 2003-07-29 The Coca-Cola Company Barrier coated plastic containers and coating methods therefor
US20030021927A1 (en) * 2001-07-30 2003-01-30 The Coleman Company, Inc. Method of blow and vacuum molding insulated containers
US6455116B1 (en) 2001-09-14 2002-09-24 Dow Global Technologies Inc. Poly(hydroxy amino ether) composition, method for preparing the same and articles prepared therefrom
JP2003103324A (en) 2001-09-26 2003-04-08 Suwa Netsukogyo Kk Manufacturing method of mold
US6709735B2 (en) 2001-11-14 2004-03-23 Mitsubishi Polyester Film, Llc Oxygen barrier coating and coated film
WO2003080731A2 (en) 2002-03-21 2003-10-02 Advanced Plastics Technologies, Ltd. Compatibilized polyester/polyamide blends
WO2003100125A1 (en) 2002-05-24 2003-12-04 Sig Technology Ltd. Method and device for plasma treating workpieces
EG23499A (en) 2002-07-03 2006-01-17 Advanced Plastics Technologies Dip, spray, and flow coating process for forming coated articles
JP4257826B2 (en) * 2002-09-30 2009-04-22 株式会社ジェイエスピー Method for producing polypropylene resin foam molding
US7588810B2 (en) * 2002-10-30 2009-09-15 Plastic Technologies, Inc. Container having foam layer
WO2004043675A1 (en) 2002-11-08 2004-05-27 Advanced Plastics Technologies Ltd Injection mold having a wear resistant portion and a high heat transfer portion and a method for forming a preform

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221954A (en) * 1963-06-11 1965-12-07 Haveg Industries Inc Blow molded foamed plastic container

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090297748A1 (en) * 2002-10-30 2009-12-03 Semersky Frank E Container having a foamed wall
US20100227092A1 (en) * 2002-10-30 2010-09-09 Semersky Frank E Overmolded container having an inner foamed layer
US9694515B2 (en) 2002-10-30 2017-07-04 Plastic Technologies, Inc. Overmolded container having an inner foamed layer
US8124203B2 (en) 2002-10-30 2012-02-28 Plastic Technologies, Inc. Container having a foamed wall
US20110303685A1 (en) * 2009-03-03 2011-12-15 Toyo Seikan Kaisha, Ltd. Multilayered plastic container having excellent drop impact resistance
WO2011017048A1 (en) * 2009-08-06 2011-02-10 Plastic Technologies, Inc. Container having a foamed wall
EP2561970A4 (en) * 2010-04-23 2014-08-13 Mitsubishi Gas Chemical Co Multilayered container, die for multilayered container, and method for producing multilayered container
EP2561970A1 (en) * 2010-04-23 2013-02-27 Mitsubishi Gas Chemical Company, Inc. Multilayered container, die for multilayered container, and method for producing multilayered container
WO2011142965A1 (en) * 2010-05-12 2011-11-17 Plastic Technologies, Inc. Overmolded container having an inner foamed layer
WO2012138473A1 (en) * 2011-03-22 2012-10-11 Spartech Corporation A thermoplastic sheet structure and articles formed therefrom
CN104271335A (en) * 2011-03-22 2015-01-07 普立万结构设计及解决方案有限责任公司 A thermoplastic sheet structure and articles formed therefrom
US9114902B2 (en) 2011-03-22 2015-08-25 Polyone Designed Structures And Solutions Llc Methods and systems for use in forming an article from a multi-layer sheet structure
US9669992B2 (en) 2011-03-22 2017-06-06 Polyone Designed Structures And Solutions Llc Methods and systems for use in forming an article from a multi-layer sheet structure
USD759429S1 (en) * 2011-08-01 2016-06-21 Steel Technology, Llc Growler
US10679738B2 (en) 2014-10-20 2020-06-09 3M Innovative Properties Company Identification of codable sections in medical documents
US20200239174A1 (en) * 2017-10-06 2020-07-30 Hokkai Can Co., Ltd. Synthetic resin multilayer bottle

Also Published As

Publication number Publication date
PL1742785T3 (en) 2009-08-31
US20120061344A1 (en) 2012-03-15
US7588808B2 (en) 2009-09-15
JP2012006403A (en) 2012-01-12
JP4974081B2 (en) 2012-07-11
MXPA06011853A (en) 2007-04-16
EP1742785A2 (en) 2007-01-17
KR100921267B1 (en) 2009-10-09
US8551589B2 (en) 2013-10-08
JP2007532363A (en) 2007-11-15
ATE424288T1 (en) 2009-03-15
DE602005013076D1 (en) 2009-04-16
KR20070012493A (en) 2007-01-25
WO2005102668A2 (en) 2005-11-03
AU2005235601A1 (en) 2005-11-03
BRPI0509773A (en) 2007-10-23
JP5508363B2 (en) 2014-05-28
AU2005235596A1 (en) 2005-11-03
WO2005102667A2 (en) 2005-11-03
EP1742785B1 (en) 2009-03-04
CA2562074A1 (en) 2005-11-03
JP5037335B2 (en) 2012-09-26
BRPI0509843A (en) 2007-10-09
CA2562074C (en) 2014-12-16
JP2007532362A (en) 2007-11-15
KR20070010059A (en) 2007-01-19
US20060073294A1 (en) 2006-04-06
JP2012006402A (en) 2012-01-12
WO2005102667A3 (en) 2006-03-09
EP1737642A2 (en) 2007-01-03
MXPA06011806A (en) 2006-12-15
CA2562073A1 (en) 2005-11-03
US20060073298A1 (en) 2006-04-06
ES2321421T3 (en) 2009-06-05
CA2562073C (en) 2014-07-08
WO2005102668A3 (en) 2005-12-29
US20110180509A1 (en) 2011-07-28
JP5037717B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US7588808B2 (en) Mono and multi-layer articles and injection molding methods of making the same
US20060065992A1 (en) Mono and multi-layer articles and compression methods of making the same
US7578668B2 (en) Mold assembly having a pressure reducing device
US7717697B2 (en) Methods and systems for controlling mold temperatures
US20080044603A1 (en) Plastic multi-piece containers and methods and systems of making same
US20120082810A1 (en) Water-resistant coated articles and methods of making same
US20080063858A1 (en) Mono and multi-layer labels
CN1997502A (en) Preform and bottle, and method for making same
RU2387540C2 (en) Single- and multi-layer products, their production by methods of extrusion
SA05260116B1 (en) Preform and methods of manufacturing the preform and a bottle

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUTCHINSON, SHARON,COLORADO

Free format text: PATENT ASSIGNMENT AND REDACTED ORDERS AND FINDINGS OF FACT;ASSIGNOR:HUTCHINSON, GERALD A.;REEL/FRAME:023992/0177

Effective date: 20091204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: THE CONCENTRATE MANUFACTURING COMPANY OF IRELAND,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED PLASTICS TECHNOLOGIES LUXEMBOURG SA;REEL/FRAME:026143/0523

Effective date: 20110316