US20100008995A1 - Processes for preparing pharmaceutical compositions - Google Patents

Processes for preparing pharmaceutical compositions Download PDF

Info

Publication number
US20100008995A1
US20100008995A1 US12/309,343 US30934307A US2010008995A1 US 20100008995 A1 US20100008995 A1 US 20100008995A1 US 30934307 A US30934307 A US 30934307A US 2010008995 A1 US2010008995 A1 US 2010008995A1
Authority
US
United States
Prior art keywords
water
triptan
carrier
solvent
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/309,343
Inventor
David John Duncalf
Paul Rannard
James Long
Dong Wang
Andrew James Elphick
John Staniforth
Alison Jayne Foster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Original Assignee
Unilever PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC filed Critical Unilever PLC
Assigned to UNILEVER PLC reassignment UNILEVER PLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STANIFORTH, JOHN, ELPHICK, ANDREW JAMES, LONG, JAMES, RANNARD, STEVEN PAUL, DUNCALF, DAVID JOHN, FOSTER, ALISON JAYNE, WANG, DONG
Publication of US20100008995A1 publication Critical patent/US20100008995A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to improvements relating to pharmaceutical compositions.
  • it relates to pharmaceutically active compositions and precursors therefor which fall within the group of so-called “triptans”.
  • Triptans are a family of tryptamine-based drugs used, for example, in the treatment of migraine and cluster headaches. They are selective serotonin receptor agonists and their mechanism of action is attributed to their serotonin agonist activity at 5-HT 1B and 5-HT 1D receptors in the body, whether centrally, for example in the dorsal horn of the brain, and/or peripherally, for example at cranial blood vessels. Although other dosing regimes are possible, it is felt that triptans are preferably administered to a patient within twenty minutes of the onset of a headache.
  • Triptans include sumatriptan (Imitrex®, Imigran®), rizatriptan (Maxalt®), naratriptan (Amerge®, Natamig®), zolmitriptan (Zomig®), eletriptan (Relpax®), almotriptan (Axert®, Almogran®), and frovatriptan (Frova®, Migard®).
  • triptans exhibit low water solubility and are practically insoluble in water. This hinders their effective use, particularly for oral delivery in base form and water soluble salt forms are preferred, such as sumatriptan succinate, rizatriptan benzoate, naratriptan hydrochloride, eletriptan hydrobromide, almotriptan malate, frovatriptan succinate.
  • WO 2004/011537 describes the formation of solid, porous beads comprising a three dimensional open-cell lattice of a water-soluble polymeric material.
  • These are typically “templated” materials formed by the removal of both water and a non-aqueous dispersed phase from a high internal phase emulsion (HIPE) which has a polymer dissolved in the aqueous phase.
  • HIPE high internal phase emulsion
  • the beads are formed by dropping the HIPE emulsion into a low temperature fluid such as liquid nitrogen, then freeze-drying the particles formed to remove the bulk of the aqueous phase and the dispersed phase. This leaves behind the polymer in the form of a “skeletal” structure.
  • the beads dissolve rapidly in water and have the remarkable property that a water-insoluble component dispersed in the dispersed phase of the emulsion prior to freezing and drying can also be dispersed in water on solution of the polymer skeleton of the beads.
  • WO 2005/011636 discloses a non-emulsion based spray drying process for forming “solid amorphous dispersions” of drugs in polymers.
  • a polymer and a low-solubility drug are dissolved in a solvent and spray-dried to form dispersions in which the drug is mostly present in an amorphous form rather than in a crystalline form.
  • ambient temperature means 20° C. and all percentages are percentages by weight unless otherwise specified.
  • the present invention provides a process for the production of a composition comprising a water-insoluble triptan which comprises the steps of:
  • the preferred method of particle sizing for the dispersed products of the present invention employs a dynamic light scattering instrument (Nano S, manufactured by Malvern Instruments, UK). Specifically, the Malvern Instruments Nano S uses a red (633 nm) 4 mW Helium-Neon laser to illuminate a standard optical quality UV cuvette containing a suspension of material.
  • the particle sizes quoted in this application are those obtained with that apparatus using the standard protocol.
  • Particle sizes in solid products are the particle sizes inferred from the measurement of the particle size obtained by solution of the solid in water and measurement of the particle size.
  • the peak diameter of the water-insoluble triptan is below 1500 nm. More preferably the peak diameter of the water-insoluble triptan is below 1000 nm, most preferably below 800 nm. In a particularly preferred embodiment of the invention the median diameter of the water-insoluble triptan is in the range 400 to 1000 nm, more preferably 500 to 800 nm.
  • compositions obtainable by the process of the present invention comprise a water-insoluble triptan and a water soluble carrier which comprises triptan particles of 750 nm average particle size dispersed in the carrier.
  • water insoluble as applied to the triptan means that its solubility in water is less than 25 g/L.
  • Water insoluble triptan may also mean that the solubility of the triptan is less than 20 or less than 15 g/L.
  • the water insoluble triptan has solubility in water at ambient temperature (20° C.) less than 5 g/L preferably of less than 1 g/L, especially preferably less than 150 mg/L, even more preferably less than 100 mg/L. This solubility level provides the intended interpretation of what is meant by water-insoluble in the present specification.
  • Preferred water-insoluble triptans include base forms of sumatriptan, rizatriptan, naratriptan, eletriptan, almotriptan, frovatriptan and zolmitriptan and water insoluble derivatives of these compounds.
  • Preferred carrier materials are selected from the group consisting of water-soluble organic and inorganic materials, surfactants, polymers and mixtures thereof.
  • a further aspect of the present invention provides a process for preparing a triptan composition comprising a water-insoluble triptan and a water-soluble carrier, which comprises the steps of:
  • this class of method is referred to herein as the “emulsion” method.
  • a further aspect of the present invention provides a process for preparing a triptan composition comprising a water insoluble triptan and a water-soluble carrier which comprises the steps of:
  • this class of method is referred to herein as the “single-phase” method.
  • substantially solvent free means within limits accepted by international pharmaceutical regulatory bodies (eg FDA, EMEA) for residual solvent levels in a pharmaceutical product and/or that the free solvent content of the product is less than 15% wt, preferably below 10% wt, more preferably below 5% wt and most preferably below 2% wt.
  • both the carrier material and the triptan are essentially fully dissolved in their respective solvents prior to the drying step. It is not within the ambit of the present specification to teach the drying of slurries. For the avoidance of any doubt, it is therefore the case that the solids content of the emulsion or the mixture is such that over 90% wt, preferably over 95%, and more preferably over 98% of the soluble materials present is in solution prior to the drying step.
  • the preferred triptan and the preferred carrier materials are as described above and as elaborated on in further detail below.
  • the preferred physical characteristics of the material are as described above.
  • the “single phase” method where both the triptan and the carrier material are dissolved in a phase comprising at least one other non-aqueous solvent (and optional water) is preferred. This is believed to be more efficacious in obtaining a smaller particle size for the nano-disperse triptan.
  • the drying step simultaneously removes both the water and other solvents and, more preferably, drying is accomplished by spray drying at above ambient temperature.
  • the products obtainable by the process aspects of the present invention are suitable for use in the preparation of medicaments for treatment of migraines and headaches, especially cluster headaches.
  • a further aspect of the present invention provides a method for the preparation of a medicament for use in the treatment of migraines and headaches, especially cluster headaches, which comprises the step of preparing a composition according to the present invention.
  • the preferred water-insoluble triptans include sumatriptan, rizatripta, naratriptan, zolmitriptan, eletriptan, almotriptan, frovatriptan and derivatives and mixtures thereof. These can be present as the sole pharmaceutically active ingredient in compositions according to the present invention or be together with other drugs to provide a so-called “combination therapy”.
  • a triptan such as Sumatriptan
  • a further an agent for example an NSAID such as diclofenac, ibuprofen or naproxen, paracetamol, or other analgesic agents such as for example, codeine or other anti-nausea agents such as for example, diphenhydramine or ondansetron.
  • an NSAID such as diclofenac, ibuprofen or naproxen, paracetamol
  • other analgesic agents such as for example, codeine or other anti-nausea agents such as for example, diphenhydramine or ondansetron.
  • the present invention provides a method for obtaining a water-dispersible form of an otherwise water-insoluble material. This is prepared by forming a not wholly aqueous intermediate emulsion or solution in which both a water-soluble carrier material and the water insoluble triptan are dissolved. On removal of solvents the insoluble triptan is left dispersed through the water-soluble carrier material. Suitable carrier materials are described in further detail below.
  • the structure of the material obtained after the drying step is not well understood. It is believed that the resulting dry materials are not encapsulates, as discrete macroscopic bodies of the water-insoluble materials are not present in the dry product. Neither are the dry materials “dry emulsions” as little or none of the volatile solvent comprising the “oil” phase of the emulsion remains after the drying step. On addition of water to the dry product the emulsion is not reformed, as it would be with a “dry emulsion”. It is also believed that the compositions are not so-called solid solutions, as with the present invention the ratios of components present can be varied without loss of the benefits.
  • compositions of the invention are not solid solutions, but comprise nano-scale, phase-separated mixtures. Further, from X-ray powder diffraction studies it is believed that the triptan nano-particle material produced is in crystalline form and not amorphous form and it is believed to be predominantly or entirely the same crystalline form as the starting material.
  • compositions produced after the drying step will comprise the triptan and the carrier in a weight ratio of from 1:500 to 1:1 (as triptan:carrier), 1:100 to 1:1 being preferred.
  • Typical levels of around 10-50% wt water-insoluble triptan and 90-50% wt carrier can be obtained by spray drying.
  • the particle size of the triptan materials can be reduced to below 1000 nm and may be reduced to around 100 nm.
  • Preferred particle sizes are in the range 400-800 nm.
  • the solvent for the water-insoluble triptan is not miscible with water. On admixture with water it therefore can form an emulsion.
  • the non-aqueous phase comprises from about 10% to about 95% v/v of the emulsion, more preferably from about 20% to about 68% v/v.
  • the emulsions are typically prepared under conditions which are well known to those skilled in the art, for example, by using a magnetic stirring bar, a homogeniser, or a rotational mechanical stirrer.
  • the emulsions need not be particularly stable, provided that they do not undergo extensive phase separation prior to drying.
  • Homogenisation using a high-shear mixing device is a particularly preferred way to make an emulsion in which the aqueous phase is the continuous phase. It is believed that this avoidance of coarse emulsion and reduction of the droplet size of the dispersed phase of the emulsion, results in an improved dispersion of the “payload” material in the dry product.
  • a water-continuous emulsion is prepared with an average dispersed-phase droplet size (using the Malvern peak intensity) of between 500 nm and 5000 nm.
  • an Ultra-Turrux T25 type laboratory homogenizer or equivalent gives a suitable emulsion when operated for more than a minute at above 10,000 rpm.
  • the re-dissolved particle size can be reduced by nearly one half when the homogenization speed increased from 13,500 rpm to 21,500 rpm.
  • the homogenization time is also believed to play a role in controlling re-dissolved particle size.
  • the particle size again decreases with increase in the homogenization time, and the particle size distribution become broader at the same time.
  • Sonication is also a particularly preferred way of reducing the droplet size for emulsion systems.
  • a Hert Systems Sonicator XL operated at level 10 for two minutes is suitable.
  • ratios of components which decrease the relative concentration of the triptan to the solvents and/or the carrier give a smaller particle size.
  • both the carrier and the triptan are soluble in a non-aqueous solvent or a mixture of such a solvent with water.
  • the non-aqueous solvent can be a mixture of non-aqueous solvents.
  • the feedstock of the drying step can be a single phase material in which both the water-soluble carrier and the water-insoluble triptan are dissolved. It is also possible for this feedstock to be an emulsion, provided that both the carrier and the triptan are dissolved in the same phase.
  • the “single-phase” method is generally believed to give a better nano-dispersion with a smaller particle size than the emulsion method.
  • ratios of components which decrease the relative concentration of the triptan to the solvents and/or the carrier give a smaller particle size.
  • Spray drying is well known to those versed in the art. In the case of the present invention some care must be taken due to the presence of a volatile non-aqueous solvent in the emulsion being dried.
  • an inert gas for example nitrogen, can be employed as the drying medium in a so-called closed spray-drying system. The solvent can be recovered and re-used.
  • the drying temperature should be at or above 100° C., preferably above 120° C. and most preferably above 140° C. Elevated drying temperatures have been found to give smaller particles in the re-dissolved nano-disperse material.
  • the carrier material is water soluble, which includes the formation of structured aqueous phases as well as true ionic solution of molecularly mono-disperse species.
  • the carrier material preferably comprises an inorganic material, surfactant, a polymer or may be a mixture of two or more of these.
  • Suitable carrier materials include preferred water-soluble polymers, preferred water-soluble surfactants and preferred water-soluble inorganic materials.
  • Suitable water-soluble polymeric carrier materials include:
  • the polymeric material when it is a copolymer it may be a statistical copolymer (heretofore also known as a random copolymer), a block copolymer, a graft copolymer or a hyperbranched copolymer. Co-monomers other than those listed above may also be included in addition to those listed if their presence does not destroy the water soluble or water dispersible nature of the resulting polymeric material.
  • suitable and preferred homopolymers include poly-vinylalcohol, poly-acrylic acid, poly-methacrylic acid, poly-acrylamides (such as poly-N-isopropylacrylamide), poly-methacrylamide; poly-acrylamines, poly-methyl-acrylamines, (such as polydimethylaminoethylmethacrylate and poly-N-morpholinoethylmethacrylate), polyvinylpyrrolidone, poly-styrenesulphonate, polyvinylimidazole, polyvinylpyridine, poly-2-ethyl-oxazoline poly-ethyleneimine and ethoxylated derivatives thereof.
  • Polyethylene glycol PEG
  • polyvinylpyrrolidone PVP
  • polyvinyl alcohol PVA
  • HPMC hydroxypropyl-methyl cellulose
  • alginates are preferred polymeric carrier materials.
  • the surfactant may be non-ionic, anionic, cationic, amphoteric or zwitterionic.
  • non-ionic surfactants include ethoxylated triglycerides; fatty alcohol ethoxylates; alkylphenol ethoxylates; fatty acid ethoxylates; fatty amide ethoxylates; fatty amine ethoxylates; sorbitan alkanoates; ethylated sorbitan alkanoates; alkyl ethoxylates; PluronicsTM; alkyl polyglucosides; stearol ethoxylates; and alkyl polyglycosides.
  • anionic surfactants include alkylether sulfates; alkylether carboxylates; alkylbenzene sulfonates; alkylether phosphates; dialkyl sulfosuccinates; sarcosinates; alkyl sulfonates; soaps; alkyl sulfates; alkyl carboxylates; alkyl phosphates; paraffin sulfonates; secondary n-alkane sulfonates; alpha-olefin sulfonates; and isethionate sulfonates.
  • Suitable cationic surfactants include fatty amine salts; fatty diamine salts; quaternary ammonium compounds; phosphonium surfactants; sulfonium surfactants; and sulfonxonium surfactants.
  • Suitable zwitterionic surfactants include N-alkyl derivatives of amino acids (such as glycine, betaine, aminopropionic acid); imidazoline surfactants; amine oxides; and amidobetaines.
  • Mixtures of surfactants may be used.
  • Alkoxylated nonionics especially the PEG/PPG PluronicTM materials
  • phenol-ethoxylates especially TRITONTM materials
  • alkyl sulphonates especially SDS
  • ester surfactants preferably sorbitan esters of the SpanTM and TweenTM types
  • cationics especially cetyltrimethylammonium bromide—CTAB
  • the carrier material can also be a water-soluble inorganic material which is neither a surfactant nor a polymer.
  • Simple organic salts have been found suitable, particularly in admixture with polymeric and/or surfactant carrier materials as described above. Suitable salts include carbonate, bicarbonates, halides, sulphates, nitrates and acetates, particularly soluble salts of sodium, potassium and magnesium.
  • Preferred materials include sodium carbonate, sodium bicarbonate and sodium sulphate. These materials have the advantage that they are cheap and physiologically acceptable. They are also relatively inert as well as compatible with many materials found in pharmaceutical products.
  • compositions of carrier materials are advantageous.
  • Preferred mixtures include combinations of surfactants and polymers, which include at least one of:
  • the carrier material can also be a water-soluble small organic material which is neither a surfactant, a polymer nor an inorganic carrier material.
  • Simple organic sugars have been found to be suitable, particularly in admixture with a polymeric and/or surfactant carrier material as described above.
  • Suitable small organic materials include mannitol, polydextrose, xylitol, maltitol, dextrose, dextrins, dextrans, maltodextrin and inulin, etc.
  • compositions of the invention comprise a volatile, second non-aqueous solvent. This may either be miscible with the other solvents in pre-mix before drying or, together with those solvents may form an emulsion.
  • a single, non-aqueous solvent is employed in which can form a single phase with water in the presence of the triptan and the carrier.
  • Preferred solvents for these embodiments are polar, protic or aprotic solvents.
  • Generally preferred solvents have a dipole moment greater than 1 and a dielectric constant greater than 4.5.
  • Particularly preferred solvents are selected from the group consisting of haloforms (preferably dichloromethane, chloroform), lower (C1-C10) alcohols (preferably methanol, ethanol, isopropanol, isobutanol), organic acids (preferably formic acid, acetic acid), amides (preferably formamide, N,N-dimethylformamide), nitriles (preferably aceto-nitrile), esters (preferably ethyl acetate) aldehydes and ketones (preferably methyl ethyl ketone, acetone), and other water miscible species comprising heteroatom bond with a suitably large dipole (preferably tetrahydrofuran, dialkylsulphoxide).
  • haloforms preferably dichloromethane, chloroform
  • lower (C1-C10) alcohols preferably methanol, ethanol, isopropanol, isobutanol
  • organic acids preferably formic acid, acetic acid
  • Haloforms, lower alcohols, ketones and dialkylsulphoxides are the most preferred solvents.
  • the non-aqueous solvent is not miscible with water and forms an emulsion.
  • the non-aqueous phase of the emulsion is preferably selected from one or more from the following group of volatile organic solvents:
  • Preferred solvents include dichloromethane, chloroform, ethanol, acetone and dimethyl sulphoxide.
  • Preferred non-aqueous solvents whether miscible or not, have a boiling point of less than 150° C. and, more preferably, have a boiling point of less than 100° C., so as to facilitate drying, particularly spray-drying under practical conditions and without use of specialised equipment.
  • they are non-flammable, or have a flash point above the temperatures encountered in the method of the invention.
  • the non-aqueous solvent comprises from about 10% to about 95% v/v of any emulsion formed, more preferably from about 20% to about 80% v/v.
  • the level of solvent is preferably 20-100% v/v.
  • Particularly preferred solvents are alcohols, particularly ethanol and halogenated solvents, more preferably chlorine-containing solvents, most preferably solvents selected from (di- or trichloromethane).
  • an optional co-surfactant may be employed in the composition prior to the drying step.
  • a relatively small quantity of a volatile cosurfactant reduced the particle diameter of the material produced. This can have a significant impact on particle volume. For example, reduction from 297 nm to 252 nm corresponds to a particle size reduction of approximately 40%.
  • the addition of a small quantity of co-surfactant offers a simple and inexpensive method for reducing the particle size of materials according to the present invention without changing the final product formulation.
  • Preferred co-surfactants are short chain alcohols or amine with a boiling point of ⁇ 220° C.
  • Preferred co-surfactants are linear alcohols.
  • Preferred co-surfactants are primary alcohols and amines. Particularly preferred co-surfactants are selected from the group consisting of the 3-6 carbon alcohols.
  • Suitable alcohol co-surfactants include n-propanol, n-butanol, n-pentanol, n-hexanol, hexylamine and mixtures thereof.
  • the co-surfactant is present in a quantity (by volume) less than the solvent preferably the volume ratio between the solvent and the co-surfactant falls in the range 100:40 to 100:2, more preferably 100:30 to 100:5.
  • Typical spray drying feedstocks comprise:
  • Preferred spray-drying feedstocks comprise:
  • drying feed-stocks used in the present invention are either emulsions or solutions which preferably do not contain any solid matter and in particular preferably do not contain any undissolved triptan.
  • the level of the triptan in the composition may be up to 95% wt, up to 90%, up to 85%, up to 80%, up to 75%, up to 70%, up to 65%, up to 60%, up to 55%, up to 50%, up to 45%, up to 40%, up to 35% or up to 30%. It is particularly preferable that the level of the triptan in the composition should be such that the loading in the dried composition is below 40% wt, and more preferably below 30% wt. Such compositions have the advantages of a small particle size and high effectiveness as discussed above.
  • the carrier dissolves and the water-insoluble triptan is dispersed through the water in sufficiently fine form that it behaves like a soluble material in many respects.
  • the particle size of the water-insoluble materials in the dry product is preferably such that, on solution in water the water-insoluble materials have a particle size of less than 1 ⁇ m as determined by the Malvern method described herein. It is believed that there is no significant reduction of particle size for the triptan on dispersion of the solid form in water.
  • solution form will be a form suitable for administration to a patient either “as is” or following further dilution.
  • the solution form of embodiments of the invention may be combined with other active materials to yield a medicament suitable for use in combination therapy.
  • a range of formulations were produced based on different excipients, different active loadings, and different process conditions.
  • the formulations include sumatriptan as an illustrative example of a triptan, but could equally have been prepared using one of the other available water insoluble triptans.
  • the excipients were chosen from hydroxypropyl cellulose (Klucel EF, Herlus), polyvinyl pyrrolidone (PVP k30, Aldrich), hydroxypropyl methyl cellulose (HPMC, Mw 10 k, 5 cps, Aldrich), polyethylene glycol (PEG, Mw 6,000, Fluka), Tween 80 (Aldrich), pluronic F68 (BASF), pluronic F127 (Aldrich), span 80 (Aldrich), cremphor RH40 (BASF), mannitol (Aldrich), and sodium alginate (Aldrich).
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 120° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 0.40 g Sumatriptan, 1.40 g Klucel EF, 0.10 g Tween 80, and 0.10 g Span 80 are all dispersed into 100 ml absolute ethanol.
  • the ethanol suspension is stirred intensively with a magnetic bar for about half hour and a clear solution is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 0.20 g Sumatriptan, 0.40 g Klucel EF, 0.10 g Pluronic F127, 0.10 g Tween 80, and 0.20 g Mannitol are all dispersed into 50 ml absolute ethanol.
  • the ethanol suspension is stirred intensively with a magnetic bar for about half hour before added 30 ml distilled water. A clear solution is obtained.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 140° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • a dissolution test based on a 20 mg sumatriptan dose is carried out for formulation obtained from Example 11 following the standard USP2 test. 50% of the 20 mg dose is expected to dissolve within less than 5 minutes and 95% within less than 10 minutes.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 140° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • a dissolution test based on a 20 mg sumatriptan dose is carried out for following the standard USP2 test. 95% of the 20 mg dose is expected to dissolve within less than 5 minutes.
  • the solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 0.20 g Sumatriptan, 0.60 g Klucel EF, 0.10 g Pluronic F127, 0.025 g Tween 80, and 0.025 g Span 80 are all dispersed into 50 ml absolute ethanol.
  • the ethanol suspension is stirred intensively with a magnetic bar for about half hour and a clear ethanol solution was formed.
  • 0.05 g Sodium alginate is dissolved into 30 ml distilled water. The ethanol solution and the aqueous solution are mixed together and a clear mixture is obtained.
  • the mixture is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • the mixture is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • a dissolution test based on a 20 mg sumatriptan dose is carried out for the formulation prepared in Example 15 following the standard USP2 test. 50% of the mg dose is expected to dissolve within less than 5 minutes and 95% within less than 90 minutes.
  • This example summarises the experimental conditions used to produce three consecutive batches of spray dried Sumatriptan USP formulation (containing 40% (w/w) sumatriptan).
  • the batches were spray dried using a Niro Mobile Minor and the same spray drying conditions used for each batch.
  • a single solution of the sumatriptan formulation was prepared and used to produce the batches, with spray drying occurring over a 2-day period.
  • aqueous solution was prepared separately by adding the following solutes to 2.5 L of de-ionised water and stirring for 1 hour: 3 g Mannitol, 3 g Polydextran, 3 g Lutrol F127, and 3 g Tween 80. The aqueous solution was then added to the sumatriptan/HPMC suspension and stirred for 30 mins. The resulting solution became “clear” but then became “cloudy” as the final amounts of aqueous solution were added. Total solids content at this stage was 50 g solids in 5.0 L 50% (v/v) ethanol/water solution (i.e. 1% (w/v))
  • the final solution contained 75 g solids in 6.25 L of 60% (v/v) ethanol/water i.e. 1.2% (w/v) solids.
  • a 2 L volume of the sumatriptan solution was spray dried using a Niro Mobile Minor fitted with a 2-fluid nozzle.
  • the liquid feed was provided by a gear pump calibrated to provide a flow of 25 ml/minute.
  • the following spray drying conditions were used:
  • a 2 L volume of the sumatriptan solution was spray dried using a Niro Mobile Minor fitted with a 2-fluid nozzle.
  • the liquid feed was provided by a gear pump calibrated to provide a flow of 25 ml/minute.
  • the following spray drying conditions were used:
  • a 2 L volume of the sumatriptan solution was spray dried using a Niro Mobile Minor fitted with a 2-fluid nozzle.
  • the liquid feed was provided by a gear pump calibrated to provide a flow of 25 ml/minute.
  • the following spray drying conditions were used:
  • FIG. 2 is a graph showing the size analysis of Sumatriptan Batch INS089-UT04, wherein:
  • FIG. 3 is a graph showing the size analysis of Sumatriptan Batch INS089-UT05, wherein:
  • FIG. 4 is a graph showing the size analysis of Sumatriptan Batch INS089-UT06, wherein:
  • FIG. 5 is a graph showing the size analysis of Sumatriptan Batches INS089-UT04, INS089-UT05 and INS089-UT06.
  • a 50 mg sample (equivalent to 20 mg sumatriptan) of the spray dried batches was dissolved into 1000 ml of distilled water at 37° C. with overhead paddle stirring at 50 rpm. Aliquots of each solution were taken at 5, 10, and 15 minutes. The dispersions were then diluted with 0.1 M HCl solution for UV characterization. The dissolution is expressed as a percentage of the initial sumatriptan concentration that has dissolved after specific time intervals, for each formulation.
  • a UV calibration curve was also obtained by dissolving different amounts of sumatriptan into 0.1 M HCl solution.
  • FIGS. 6 and 7 show the X-ray powder diffraction results. These show that the sumatriptan nano-particle material produced is in crystalline form and not amorphous form and it is believed to be predominantly or entirely the same crystalline form as the starting material.

Abstract

A process for the production of a composition comprising a water-insoluble triptan which comprises the steps of: a) providing a mixture comprising: i) a water-insoluble triptan, ii) a water soluble carrier, and iii) a solvent for each of the triptan and the carrier, and b) spray-drying the mixture to remove the or each solvent and obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.

Description

    FIELD OF THE INVENTION
  • The present invention relates to improvements relating to pharmaceutical compositions. In particular it relates to pharmaceutically active compositions and precursors therefor which fall within the group of so-called “triptans”.
  • BACKGROUND OF THE INVENTION
  • Triptans are a family of tryptamine-based drugs used, for example, in the treatment of migraine and cluster headaches. They are selective serotonin receptor agonists and their mechanism of action is attributed to their serotonin agonist activity at 5-HT1B and 5-HT1D receptors in the body, whether centrally, for example in the dorsal horn of the brain, and/or peripherally, for example at cranial blood vessels. Although other dosing regimes are possible, it is felt that triptans are preferably administered to a patient within twenty minutes of the onset of a headache.
  • Triptans include sumatriptan (Imitrex®, Imigran®), rizatriptan (Maxalt®), naratriptan (Amerge®, Natamig®), zolmitriptan (Zomig®), eletriptan (Relpax®), almotriptan (Axert®, Almogran®), and frovatriptan (Frova®, Migard®).
  • Many triptans exhibit low water solubility and are practically insoluble in water. This hinders their effective use, particularly for oral delivery in base form and water soluble salt forms are preferred, such as sumatriptan succinate, rizatriptan benzoate, naratriptan hydrochloride, eletriptan hydrobromide, almotriptan malate, frovatriptan succinate.
  • WO 2004/011537 describes the formation of solid, porous beads comprising a three dimensional open-cell lattice of a water-soluble polymeric material. These are typically “templated” materials formed by the removal of both water and a non-aqueous dispersed phase from a high internal phase emulsion (HIPE) which has a polymer dissolved in the aqueous phase. The beads are formed by dropping the HIPE emulsion into a low temperature fluid such as liquid nitrogen, then freeze-drying the particles formed to remove the bulk of the aqueous phase and the dispersed phase. This leaves behind the polymer in the form of a “skeletal” structure. The beads dissolve rapidly in water and have the remarkable property that a water-insoluble component dispersed in the dispersed phase of the emulsion prior to freezing and drying can also be dispersed in water on solution of the polymer skeleton of the beads.
  • WO 2005/011636 discloses a non-emulsion based spray drying process for forming “solid amorphous dispersions” of drugs in polymers. In this method a polymer and a low-solubility drug are dissolved in a solvent and spray-dried to form dispersions in which the drug is mostly present in an amorphous form rather than in a crystalline form.
  • Unpublished co-pending applications (GB 0501835 of 28 Jan. 2005 and GB 0613925 filed on 13 Jul. 2006) describe how materials which will form a nano-dispersion in water can be prepared, preferably by a spray-drying process. In the first of these applications the water insoluble materials is dissolved in the solvent-phase of an emulsion. In the second, the water-insoluble materials are dissolved in a mixed solvent system and co-exist in the same phase as a water-soluble structuring agent. In both cases the liquid is dried above ambient temperature (above 20° C.), such as by spray drying, to produce particles of the structuring agent, as a carrier, with the water-insoluble materials dispersed therein. When these particles are placed in water they dissolve, forming a nano-dispersion of the water-insoluble material with particles typically below 300 nm. This scale is similar to that of virus particles, and the water-insoluble material behaves as though it were in solution.
  • In the present application the term “ambient temperature” means 20° C. and all percentages are percentages by weight unless otherwise specified.
  • BRIEF DESCRIPTION OF THE INVENTION
  • We have now determined that both the emulsion-based and the single-phase method can be used to produce a water-soluble, nano-disperse form of a triptan.
  • Accordingly, the present invention provides a process for the production of a composition comprising a water-insoluble triptan which comprises the steps of:
      • a) providing a mixture comprising:
        • i) a water-insoluble triptan,
        • ii) a water soluble carrier, and
        • iii) a solvent for each of the triptan and the carrier; and
      • b) spray-drying the mixture to remove the or each solvent and obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
  • The preferred method of particle sizing for the dispersed products of the present invention employs a dynamic light scattering instrument (Nano S, manufactured by Malvern Instruments, UK). Specifically, the Malvern Instruments Nano S uses a red (633 nm) 4 mW Helium-Neon laser to illuminate a standard optical quality UV cuvette containing a suspension of material. The particle sizes quoted in this application are those obtained with that apparatus using the standard protocol. Particle sizes in solid products are the particle sizes inferred from the measurement of the particle size obtained by solution of the solid in water and measurement of the particle size.
  • Preferably, the peak diameter of the water-insoluble triptan is below 1500 nm. More preferably the peak diameter of the water-insoluble triptan is below 1000 nm, most preferably below 800 nm. In a particularly preferred embodiment of the invention the median diameter of the water-insoluble triptan is in the range 400 to 1000 nm, more preferably 500 to 800 nm.
  • Advantageous compositions obtainable by the process of the present invention comprise a water-insoluble triptan and a water soluble carrier which comprises triptan particles of 750 nm average particle size dispersed in the carrier.
  • It is believed that reduction of the particle size in the eventual nano-dispersion has significant advantages in improving the availability of the otherwise water-insoluble material. This is believed to be particularly advantageous where an improved bio-availability is sought, or, in similar applications where high local concentrations of the material are to be avoided. Moreover it is believed that nano-dispersions with a small particle size are more stable than those with a larger particle size.
  • In the context of the present invention, “water insoluble” as applied to the triptan means that its solubility in water is less than 25 g/L. “Water insoluble triptan” may also mean that the solubility of the triptan is less than 20 or less than 15 g/L. Preferably, the water insoluble triptan has solubility in water at ambient temperature (20° C.) less than 5 g/L preferably of less than 1 g/L, especially preferably less than 150 mg/L, even more preferably less than 100 mg/L. This solubility level provides the intended interpretation of what is meant by water-insoluble in the present specification.
  • Preferred water-insoluble triptans include base forms of sumatriptan, rizatriptan, naratriptan, eletriptan, almotriptan, frovatriptan and zolmitriptan and water insoluble derivatives of these compounds.
  • Preferred carrier materials are selected from the group consisting of water-soluble organic and inorganic materials, surfactants, polymers and mixtures thereof.
  • A further aspect of the present invention provides a process for preparing a triptan composition comprising a water-insoluble triptan and a water-soluble carrier, which comprises the steps of:
      • a) forming an emulsion comprising:
        • i) a solution of the triptan in a water-immiscible solvent for the same, and
        • ii) an aqueous solution of the carrier; and
      • b) drying the emulsion to remove water and the water-immiscible solvent to obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
  • For convenience, this class of method is referred to herein as the “emulsion” method.
  • A further aspect of the present invention provides a process for preparing a triptan composition comprising a water insoluble triptan and a water-soluble carrier which comprises the steps of:
      • a) providing a single phase mixture comprising:
        • i) at least one non-aqueous solvent,
        • ii) optionally, water,
        • iii) a water-soluble carrier material soluble in the mixture of (i) and (ii), and
        • iv) a water-insoluble triptan which is soluble in the mixture of (i) and (ii); and
      • b) drying the solution to remove water and the water miscible solvent to obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
  • For convenience, this class of method is referred to herein as the “single-phase” method.
  • In the context of the present invention substantially solvent free means within limits accepted by international pharmaceutical regulatory bodies (eg FDA, EMEA) for residual solvent levels in a pharmaceutical product and/or that the free solvent content of the product is less than 15% wt, preferably below 10% wt, more preferably below 5% wt and most preferably below 2% wt.
  • In the context of the present invention it is essential that both the carrier material and the triptan are essentially fully dissolved in their respective solvents prior to the drying step. It is not within the ambit of the present specification to teach the drying of slurries. For the avoidance of any doubt, it is therefore the case that the solids content of the emulsion or the mixture is such that over 90% wt, preferably over 95%, and more preferably over 98% of the soluble materials present is in solution prior to the drying step.
  • In relation to the methods mentioned above, the preferred triptan and the preferred carrier materials are as described above and as elaborated on in further detail below. Similarly the preferred physical characteristics of the material are as described above.
  • The “single phase” method where both the triptan and the carrier material are dissolved in a phase comprising at least one other non-aqueous solvent (and optional water) is preferred. This is believed to be more efficacious in obtaining a smaller particle size for the nano-disperse triptan. Preferably, the drying step simultaneously removes both the water and other solvents and, more preferably, drying is accomplished by spray drying at above ambient temperature.
  • The products obtainable by the process aspects of the present invention are suitable for use in the preparation of medicaments for treatment of migraines and headaches, especially cluster headaches.
  • A further aspect of the present invention provides a method for the preparation of a medicament for use in the treatment of migraines and headaches, especially cluster headaches, which comprises the step of preparing a composition according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Various preferred features and embodiments of the present invention are described in further detail below.
  • Triptans
  • As noted above the preferred water-insoluble triptans include sumatriptan, rizatripta, naratriptan, zolmitriptan, eletriptan, almotriptan, frovatriptan and derivatives and mixtures thereof. These can be present as the sole pharmaceutically active ingredient in compositions according to the present invention or be together with other drugs to provide a so-called “combination therapy”.
  • As an illustrative example, it would be beneficial to provide a combination of a triptan, such as Sumatriptan, and a further an agent, for example an NSAID such as diclofenac, ibuprofen or naproxen, paracetamol, or other analgesic agents such as for example, codeine or other anti-nausea agents such as for example, diphenhydramine or ondansetron.
  • Water-Dispersible Product Form
  • The present invention provides a method for obtaining a water-dispersible form of an otherwise water-insoluble material. This is prepared by forming a not wholly aqueous intermediate emulsion or solution in which both a water-soluble carrier material and the water insoluble triptan are dissolved. On removal of solvents the insoluble triptan is left dispersed through the water-soluble carrier material. Suitable carrier materials are described in further detail below.
  • The structure of the material obtained after the drying step is not well understood. It is believed that the resulting dry materials are not encapsulates, as discrete macroscopic bodies of the water-insoluble materials are not present in the dry product. Neither are the dry materials “dry emulsions” as little or none of the volatile solvent comprising the “oil” phase of the emulsion remains after the drying step. On addition of water to the dry product the emulsion is not reformed, as it would be with a “dry emulsion”. It is also believed that the compositions are not so-called solid solutions, as with the present invention the ratios of components present can be varied without loss of the benefits. Also from X-ray and DSC studies, it is believed that the compositions of the invention are not solid solutions, but comprise nano-scale, phase-separated mixtures. Further, from X-ray powder diffraction studies it is believed that the triptan nano-particle material produced is in crystalline form and not amorphous form and it is believed to be predominantly or entirely the same crystalline form as the starting material.
  • Preferably, the compositions produced after the drying step will comprise the triptan and the carrier in a weight ratio of from 1:500 to 1:1 (as triptan:carrier), 1:100 to 1:1 being preferred. Typical levels of around 10-50% wt water-insoluble triptan and 90-50% wt carrier can be obtained by spray drying.
  • By the method of the present invention the particle size of the triptan materials can be reduced to below 1000 nm and may be reduced to around 100 nm. Preferred particle sizes are in the range 400-800 nm.
  • “Emulsion” Preparation Method
  • In one preferred method according to the invention the solvent for the water-insoluble triptan is not miscible with water. On admixture with water it therefore can form an emulsion.
  • Preferably, the non-aqueous phase comprises from about 10% to about 95% v/v of the emulsion, more preferably from about 20% to about 68% v/v.
  • The emulsions are typically prepared under conditions which are well known to those skilled in the art, for example, by using a magnetic stirring bar, a homogeniser, or a rotational mechanical stirrer. The emulsions need not be particularly stable, provided that they do not undergo extensive phase separation prior to drying.
  • Homogenisation using a high-shear mixing device is a particularly preferred way to make an emulsion in which the aqueous phase is the continuous phase. It is believed that this avoidance of coarse emulsion and reduction of the droplet size of the dispersed phase of the emulsion, results in an improved dispersion of the “payload” material in the dry product.
  • In a preferred method according to the invention a water-continuous emulsion is prepared with an average dispersed-phase droplet size (using the Malvern peak intensity) of between 500 nm and 5000 nm. We have found that an Ultra-Turrux T25 type laboratory homogenizer (or equivalent) gives a suitable emulsion when operated for more than a minute at above 10,000 rpm.
  • There is a directional relation between the emulsion droplet size and the size of the particles of the payload material, which can be detected after dispersion of the materials of the invention in aqueous solution. We have determined that an increase in the speed of homogenization for precursor emulsions can decrease final particle size after re-dissolution.
  • It is believed that the re-dissolved particle size can be reduced by nearly one half when the homogenization speed increased from 13,500 rpm to 21,500 rpm. The homogenization time is also believed to play a role in controlling re-dissolved particle size. The particle size again decreases with increase in the homogenization time, and the particle size distribution become broader at the same time.
  • Sonication is also a particularly preferred way of reducing the droplet size for emulsion systems. We have found that a Hert Systems Sonicator XL operated at level 10 for two minutes is suitable.
  • It is believed that ratios of components which decrease the relative concentration of the triptan to the solvents and/or the carrier give a smaller particle size.
  • “Single Phase” Preparation Method
  • In an alternative method according to the present invention both the carrier and the triptan are soluble in a non-aqueous solvent or a mixture of such a solvent with water. Both here and elsewhere in the specification the non-aqueous solvent can be a mixture of non-aqueous solvents.
  • In this case the feedstock of the drying step can be a single phase material in which both the water-soluble carrier and the water-insoluble triptan are dissolved. It is also possible for this feedstock to be an emulsion, provided that both the carrier and the triptan are dissolved in the same phase.
  • The “single-phase” method is generally believed to give a better nano-dispersion with a smaller particle size than the emulsion method.
  • It is believed that ratios of components which decrease the relative concentration of the triptan to the solvents and/or the carrier give a smaller particle size.
  • Drying
  • Spray drying is well known to those versed in the art. In the case of the present invention some care must be taken due to the presence of a volatile non-aqueous solvent in the emulsion being dried. In order to reduce the risk of explosion when a flammable solvent is being used, an inert gas, for example nitrogen, can be employed as the drying medium in a so-called closed spray-drying system. The solvent can be recovered and re-used.
  • We have found that the Buchi B-290 type laboratory spray drying apparatus is suitable.
  • It is preferable that the drying temperature should be at or above 100° C., preferably above 120° C. and most preferably above 140° C. Elevated drying temperatures have been found to give smaller particles in the re-dissolved nano-disperse material.
  • Carrier Material
  • The carrier material is water soluble, which includes the formation of structured aqueous phases as well as true ionic solution of molecularly mono-disperse species. The carrier material preferably comprises an inorganic material, surfactant, a polymer or may be a mixture of two or more of these.
  • It is envisaged that other non-polymeric, organic, water-soluble materials such as sugars can be used as the carrier. However the carrier materials specifically mentioned herein are preferred.
  • Suitable carrier materials (referred to herein as “water soluble carrier materials”) include preferred water-soluble polymers, preferred water-soluble surfactants and preferred water-soluble inorganic materials.
  • Preferred Polymeric Carrier Materials
  • Examples of suitable water-soluble polymeric carrier materials include:
      • (a) natural polymers (for example naturally occurring gums such as guar gum, alginate, locust bean gum or a polysaccharide such as dextran;
      • (b) cellulose derivatives for example xanthan gum, xyloglucan, cellulose acetate, methylcellulose, methyl-ethylcellulose, hydroxy-ethylcellulose, hydroxy-ethylmethyl-cellulose, hydroxy-propylcellulose, hydroxy-propylmethylcellulose, hydroxy-propylbutylcellulose, ethylhydroxy-ethylcellulose, carboxy-methylcellulose and its salts (e.g. the sodium salt—SCMC), or carboxy-methylhydroxyethylcellulose and its salts (for example the sodium salt);
      • (c) homopolymers of or copolymers prepared from two or more monomers selected from: vinyl alcohol, acrylic acid, methacrylic acid, acrylamide, methacrylamide, acrylamide methylpropane sulphonates, aminoalkylacrylates, aminoalkyl-methacrylates, hydroxyethylacrylate, hydroxyethylmethylacrylate, vinyl pyrrolidone, vinyl imidazole, vinyl amines, vinyl pyridine, ethyleneglycol and other alkylene glycols, ethylene oxide and other alkylene oxides, ethyleneimine, styrenesulphonates, ethyleneglycolacrylates and ethyleneglycol methacrylate;
      • (d) cyclodextrins, for example β-cyclodextrin; and
      • (e) mixtures thereof.
  • When the polymeric material is a copolymer it may be a statistical copolymer (heretofore also known as a random copolymer), a block copolymer, a graft copolymer or a hyperbranched copolymer. Co-monomers other than those listed above may also be included in addition to those listed if their presence does not destroy the water soluble or water dispersible nature of the resulting polymeric material.
  • Examples of suitable and preferred homopolymers include poly-vinylalcohol, poly-acrylic acid, poly-methacrylic acid, poly-acrylamides (such as poly-N-isopropylacrylamide), poly-methacrylamide; poly-acrylamines, poly-methyl-acrylamines, (such as polydimethylaminoethylmethacrylate and poly-N-morpholinoethylmethacrylate), polyvinylpyrrolidone, poly-styrenesulphonate, polyvinylimidazole, polyvinylpyridine, poly-2-ethyl-oxazoline poly-ethyleneimine and ethoxylated derivatives thereof.
  • Polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), poly(2-ethyl-2-oxazaline), polyvinyl alcohol (PVA) hydroxypropyl cellulose and hydroxypropyl-methyl cellulose (HPMC) and alginates are preferred polymeric carrier materials.
  • Preferred Surfactant Carrier Materials
  • Where the carrier material is a surfactant, the surfactant may be non-ionic, anionic, cationic, amphoteric or zwitterionic.
  • Examples of suitable non-ionic surfactants include ethoxylated triglycerides; fatty alcohol ethoxylates; alkylphenol ethoxylates; fatty acid ethoxylates; fatty amide ethoxylates; fatty amine ethoxylates; sorbitan alkanoates; ethylated sorbitan alkanoates; alkyl ethoxylates; Pluronics™; alkyl polyglucosides; stearol ethoxylates; and alkyl polyglycosides.
  • Examples of suitable anionic surfactants include alkylether sulfates; alkylether carboxylates; alkylbenzene sulfonates; alkylether phosphates; dialkyl sulfosuccinates; sarcosinates; alkyl sulfonates; soaps; alkyl sulfates; alkyl carboxylates; alkyl phosphates; paraffin sulfonates; secondary n-alkane sulfonates; alpha-olefin sulfonates; and isethionate sulfonates.
  • Examples of suitable cationic surfactants include fatty amine salts; fatty diamine salts; quaternary ammonium compounds; phosphonium surfactants; sulfonium surfactants; and sulfonxonium surfactants.
  • Examples of suitable zwitterionic surfactants include N-alkyl derivatives of amino acids (such as glycine, betaine, aminopropionic acid); imidazoline surfactants; amine oxides; and amidobetaines.
  • Mixtures of surfactants may be used. In such mixtures there may be individual components which are liquid, provided that the carrier material overall, is a solid.
  • Alkoxylated nonionics (especially the PEG/PPG Pluronic™ materials), phenol-ethoxylates (especially TRITON™ materials), alkyl sulphonates (especially SDS), ester surfactants (preferably sorbitan esters of the Span™ and Tween™ types) and cationics (especially cetyltrimethylammonium bromide—CTAB) are particularly preferred as surfactant carrier materials.
  • Preferred Inorganic Carrier Materials
  • The carrier material can also be a water-soluble inorganic material which is neither a surfactant nor a polymer. Simple organic salts have been found suitable, particularly in admixture with polymeric and/or surfactant carrier materials as described above. Suitable salts include carbonate, bicarbonates, halides, sulphates, nitrates and acetates, particularly soluble salts of sodium, potassium and magnesium. Preferred materials include sodium carbonate, sodium bicarbonate and sodium sulphate. These materials have the advantage that they are cheap and physiologically acceptable. They are also relatively inert as well as compatible with many materials found in pharmaceutical products.
  • Mixtures of carrier materials are advantageous. Preferred mixtures include combinations of surfactants and polymers, which include at least one of:
      • a) polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), hydroxypropyl cellulose and hydroxypropyl-methyl cellulose (HPMC), and alginates; and at least one of:
      • b) alkoxylated nonionics (especially the PEG/PPG Pluronic™ materials), phenol-ethoxylates (especially TRITON™ materials), alkyl sulphonates (especially SDS), ester surfactants (preferably sorbitan esters of the Span™ and Tween™ types) and cationics (especially cetyltrimethylammonium bromide—CTAB).
  • The carrier material can also be a water-soluble small organic material which is neither a surfactant, a polymer nor an inorganic carrier material. Simple organic sugars have been found to be suitable, particularly in admixture with a polymeric and/or surfactant carrier material as described above. Suitable small organic materials include mannitol, polydextrose, xylitol, maltitol, dextrose, dextrins, dextrans, maltodextrin and inulin, etc.
  • Non-Aqueous Solvent
  • The compositions of the invention comprise a volatile, second non-aqueous solvent. This may either be miscible with the other solvents in pre-mix before drying or, together with those solvents may form an emulsion.
  • In one alternative form of the invention a single, non-aqueous solvent is employed in which can form a single phase with water in the presence of the triptan and the carrier. Preferred solvents for these embodiments are polar, protic or aprotic solvents. Generally preferred solvents have a dipole moment greater than 1 and a dielectric constant greater than 4.5.
  • Particularly preferred solvents are selected from the group consisting of haloforms (preferably dichloromethane, chloroform), lower (C1-C10) alcohols (preferably methanol, ethanol, isopropanol, isobutanol), organic acids (preferably formic acid, acetic acid), amides (preferably formamide, N,N-dimethylformamide), nitriles (preferably aceto-nitrile), esters (preferably ethyl acetate) aldehydes and ketones (preferably methyl ethyl ketone, acetone), and other water miscible species comprising heteroatom bond with a suitably large dipole (preferably tetrahydrofuran, dialkylsulphoxide).
  • Haloforms, lower alcohols, ketones and dialkylsulphoxides are the most preferred solvents.
  • In another alternative form of the invention the non-aqueous solvent is not miscible with water and forms an emulsion.
  • The non-aqueous phase of the emulsion is preferably selected from one or more from the following group of volatile organic solvents:
      • alkanes, preferably heptane, n-hexane, isooctane, dodecane, decane;
      • cyclic hydrocarbons, preferably toluene, xylene, cyclohexane;
      • halogenated alkanes, preferably dichloromethane, dichoroethane, trichloromethane (chloroform), fluoro-trichloromethane and tetrachloroethane;
      • esters, preferably ethyl acetate;
      • ketones, preferably 2-butanone;
      • ethers, preferably diethyl ether;
      • volatile cyclic silicones, preferably either linear or cyclomethicones containing from 4 to 6 silicon units. Suitable examples include DC245 and DC345, both of which are available from Dow Corning Inc.
  • Preferred solvents include dichloromethane, chloroform, ethanol, acetone and dimethyl sulphoxide.
  • Preferred non-aqueous solvents, whether miscible or not, have a boiling point of less than 150° C. and, more preferably, have a boiling point of less than 100° C., so as to facilitate drying, particularly spray-drying under practical conditions and without use of specialised equipment. Preferably they are non-flammable, or have a flash point above the temperatures encountered in the method of the invention.
  • Preferably, the non-aqueous solvent comprises from about 10% to about 95% v/v of any emulsion formed, more preferably from about 20% to about 80% v/v. In the single phase method the level of solvent is preferably 20-100% v/v.
  • Particularly preferred solvents are alcohols, particularly ethanol and halogenated solvents, more preferably chlorine-containing solvents, most preferably solvents selected from (di- or trichloromethane).
  • Optional Cosurfactant
  • In addition to the non-aqueous solvent an optional co-surfactant may be employed in the composition prior to the drying step. We have determined that the addition of a relatively small quantity of a volatile cosurfactant reduced the particle diameter of the material produced. This can have a significant impact on particle volume. For example, reduction from 297 nm to 252 nm corresponds to a particle size reduction of approximately 40%. Thus, the addition of a small quantity of co-surfactant offers a simple and inexpensive method for reducing the particle size of materials according to the present invention without changing the final product formulation.
  • Preferred co-surfactants are short chain alcohols or amine with a boiling point of <220° C.
  • Preferred co-surfactants are linear alcohols. Preferred co-surfactants are primary alcohols and amines. Particularly preferred co-surfactants are selected from the group consisting of the 3-6 carbon alcohols. Suitable alcohol co-surfactants include n-propanol, n-butanol, n-pentanol, n-hexanol, hexylamine and mixtures thereof.
  • Preferably the co-surfactant is present in a quantity (by volume) less than the solvent preferably the volume ratio between the solvent and the co-surfactant falls in the range 100:40 to 100:2, more preferably 100:30 to 100:5.
  • Preferred Spray-Drying Feedstocks
  • Typical spray drying feedstocks comprise:
      • a) a surfactant;
      • b) at least one lower alcohol;
      • c) more than 0.1% of at least one water-insoluble triptan dissolved in the feedstock;
      • d) a polymer; and,
      • e) optional water.
  • Preferred spray-drying feedstocks comprise:
      • a) at least one non-aqueous solvent selected from dichloromethane, chloroform, ethanol, acetone, and mixtures thereof;
      • b) a surfactant selected from PEG co-polymer nonionics (especially the PEG/PPG Pluronic™ materials), alkyl sulphonates (especially SDS), ester surfactants (preferably sorbitan esters of the Span™ and Tween™ types) and cationics (especially cetyltrimethylammonium bromide—CTAB) and mixtures thereof;
      • c) more than 0.1% of at least one water-insoluble triptan;
      • d) a polymer selected from Polyethylene glycol (PEG), Polyvinyl alcohol (PVA), polyvinyl-pyrrolidone (PVP), hydroxypropyl cellulose and hydroxypropyl-methyl cellulose (HPMC), alginates and mixtures thereof; and
      • e) optionally, water.
  • The drying feed-stocks used in the present invention are either emulsions or solutions which preferably do not contain any solid matter and in particular preferably do not contain any undissolved triptan.
  • The level of the triptan in the composition may be up to 95% wt, up to 90%, up to 85%, up to 80%, up to 75%, up to 70%, up to 65%, up to 60%, up to 55%, up to 50%, up to 45%, up to 40%, up to 35% or up to 30%. It is particularly preferable that the level of the triptan in the composition should be such that the loading in the dried composition is below 40% wt, and more preferably below 30% wt. Such compositions have the advantages of a small particle size and high effectiveness as discussed above.
  • Water-Dispersed Form
  • On admixture of the water-soluble carrier material with water, the carrier dissolves and the water-insoluble triptan is dispersed through the water in sufficiently fine form that it behaves like a soluble material in many respects. The particle size of the water-insoluble materials in the dry product is preferably such that, on solution in water the water-insoluble materials have a particle size of less than 1 μm as determined by the Malvern method described herein. It is believed that there is no significant reduction of particle size for the triptan on dispersion of the solid form in water.
  • By applying the present invention significant levels of “water-insoluble” materials can be brought into a state which is largely equivalent to true solution. When the dry product is dissolved in water it is possible to achieve optically clear solutions comprising more than 0.1%, preferably more than 0.5% and more preferably more than 1% of the water-insoluble material.
  • It is envisaged that the solution form will be a form suitable for administration to a patient either “as is” or following further dilution. In the alternative, the solution form of embodiments of the invention may be combined with other active materials to yield a medicament suitable for use in combination therapy.
  • EXAMPLES
  • In order that the present invention may be further understood and carried forth into practice it is further described below with reference to non-limiting examples.
  • A range of formulations were produced based on different excipients, different active loadings, and different process conditions. The formulations include sumatriptan as an illustrative example of a triptan, but could equally have been prepared using one of the other available water insoluble triptans.
  • The excipients were chosen from hydroxypropyl cellulose (Klucel EF, Herlus), polyvinyl pyrrolidone (PVP k30, Aldrich), hydroxypropyl methyl cellulose (HPMC, Mw 10 k, 5 cps, Aldrich), polyethylene glycol (PEG, Mw 6,000, Fluka), Tween 80 (Aldrich), pluronic F68 (BASF), pluronic F127 (Aldrich), span 80 (Aldrich), cremphor RH40 (BASF), mannitol (Aldrich), and sodium alginate (Aldrich).
  • Details of these formulations are listed as below:
  • Example 1 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.00 g Klucel EF, 0.44 g HPMC, and 0.16 g Pluronic F68 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bat for about half hour before adding 60 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 120° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 500 nm.
  • Example 2 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.00 g Klucel EF, 0.34 g HPMC, 0.16 g Pluronic F127, and 0.10 g Tween 80 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 60 ml distilled water. A clear solution is obtained.
  • The solution was then spray dried with a BUCHI Mini B-290 spray dryer at 120° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of 100 to 500 nm.
  • Two dissolution tests based on a 20 mg sumatriptan dose and an 80 mg sumatriptan dose are carried out using the standard USP2 test. 50% of the 20 rag dose is expected to dissolve within less than 10 minutes and 50% of the 80 mg dose within 30 minutes. 95% of the 20 mg dose is expected to dissolve within less than 60 minutes and 95% of the 80 mg dose within less than 150 minutes.
  • Example 3 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.00 g Klucel EF, and 0.60 g HPMC are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 60 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder was dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 500 nm.
  • Example 4 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.44 g Klucel EF, and 0.16 g PEG 6000 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour and a clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a translucent nanodispersion with a particle size of between 300 and 800 nm.
  • Example 5 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.00 g Klucel EF, 0.18 g HPMC, 0.16 g PEG 6000, 0.16 g Pluronic F127, and 0.10 g Tween 80 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with magnetic bar for about half hour before adding 60 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of 100 to 200 nm.
  • Example 6 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.34 g Klucel EF, 0.16 g Pluronic F127, and 0.10 g Cremphor RH40 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 60 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder was dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 200 nm.
  • Two dissolution tests based on a 20 mg sumatriptan dose and an 80 mg sumatriptan dose are carried out for formulations following the standard USP2 test. 50% of the 20 mg dose is expected to dissolve within less than 10 minutes and 50% of the 80 mg dose within less than 5 minutes. 95% of the 20 mg dose is expected to dissolve within less than 25 minutes and 95% of the 80 mg dose within less than 90 minutes.
  • Example 7 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.18 g Klucel EF, 0.16 g Pluronic F68, 0.16 g Pluronic F127, and 0.10 g Span 80 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 10 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 300 nm.
  • Example 8 20 wt % Loadings
  • 0.40 g Sumatriptan, 1.40 g Klucel EF, 0.10 g Tween 80, and 0.10 g Span 80 are all dispersed into 100 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour and a clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 300 nm.
  • Example 9 30 wt % Loadings
  • 0.30 g Sumatriptan, 0.57 g Klucel EF, 0.05 g PEG 6000, 0.05 g Pluronic F127, and 0.03 g Tween 80 are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 30 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 400 nm.
  • Example 10 30 wt % Loadings
  • 0.30 g Sumatriptan, 0.65 g Klucel EF, 0.025 g Tween 80, and 0.025 g Span 80 are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour and a clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a translucent nanodispersion with a particle size of between 200 and 400 nm.
  • Example 11 20 wt % Loadings
  • 0.20 g Sumatriptan, 0.40 g Klucel EF, 0.10 g Pluronic F127, 0.10 g Tween 80, and 0.20 g Mannitol are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before added 30 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 140° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 300 nm.
  • A dissolution test based on a 20 mg sumatriptan dose is carried out for formulation obtained from Example 11 following the standard USP2 test. 50% of the 20 mg dose is expected to dissolve within less than 5 minutes and 95% within less than 10 minutes.
  • Example 12 20 wt % Loadings
  • 0.20 g Sumatriptan, 0.50 g Klucel EF, 0.10 g Plutonic F127, and 0.20 g Mannitol are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 30 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 140° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 300 nm.
  • A dissolution test based on a 20 mg sumatriptan dose is carried out for following the standard USP2 test. 95% of the 20 mg dose is expected to dissolve within less than 5 minutes.
  • Example 13 20 wt % Loadings
  • 0.20 g Sumatriptan, 0.60 g Klucel EF, 0.05 g Pluronic F127, 0.05 g Tween 80, and 0.10 g Mannitol are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour before adding 30 ml distilled water. A clear solution is obtained.
  • The solution is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 300 nm.
  • Example 14 20 wt % Loadings
  • 0.20 g Sumatriptan, 0.60 g Klucel EF, 0.10 g Pluronic F127, 0.025 g Tween 80, and 0.025 g Span 80 are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour and a clear ethanol solution was formed. 0.05 g Sodium alginate is dissolved into 30 ml distilled water. The ethanol solution and the aqueous solution are mixed together and a clear mixture is obtained.
  • The mixture is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 100 and 400 nm.
  • Example 15 20 wt % Loadings
  • 0.20 g Sumatriptan, 0.60 g Klucel EF, 0.15 g Pluronic F127 are all dispersed into 50 ml absolute ethanol. The ethanol suspension is stirred intensively with a magnetic bar for about half hour. 0.05 g Sodium alginate is dissolved into 30 ml distilled water. The ethanol dispersion and the aqueous solution are mixed together and a clear mixture is obtained.
  • The mixture is then spray dried with a BUCHI Mini B-290 spray dryer at 160° C. with the liquid feed rate at 2.5 ml/min. A white free flowing powder is obtained.
  • 20 mg dried powder is dispersed into 10 ml distilled water, giving a crystal clear nanodispersion with a particle size of between 200 and 400 nm.
  • A dissolution test based on a 20 mg sumatriptan dose is carried out for the formulation prepared in Example 15 following the standard USP2 test. 50% of the mg dose is expected to dissolve within less than 5 minutes and 95% within less than 90 minutes.
  • Example 16
  • This example summarises the experimental conditions used to produce three consecutive batches of spray dried Sumatriptan USP formulation (containing 40% (w/w) sumatriptan). The batches were spray dried using a Niro Mobile Minor and the same spray drying conditions used for each batch. A single solution of the sumatriptan formulation was prepared and used to produce the batches, with spray drying occurring over a 2-day period.
  • All chemicals used for spray drying studies were sourced by Iota NanoSolutions. These include, for Sumatriptan Batches SMT/0706003 and SMT/0602002:
      • Tween 80 supplied by Croda Iota Batch E0028D
      • Mannitol supplied by Roquette Iota Batch E0010
      • Polydextran supplied by Danisco Iota Batch E0025
      • Lutrol F127 supplied by BASF Iota Batch E0014
      • HPMC supplied by Colorcon Iota Batch E0017
      • Ethanol (Absolute) supplied in bulk by VWR
    Preparation of a Sumatriptan Solution for Spray Drying Day 1:
  • The following quantities of powder were weighed out (to within 0.01 g): 19.9 g Sumatriptan Batch SMT/0706003 (required amount was 20 g). The sumatriptan was added to 1.0 L ethanol and left to stir overnight at room temperature in a capped bottle.
  • Day 2:
  • A further 1.5 L of ethanol was added to the suspension and stirred for 1 hour to fully dissolve the sumatriptan (total volume of ethanol was 2.5 L). A pale yellow solution was produced.
  • 18 g HPMC was then added to the ethanolic sumatriptan solution and stirred briskly for 1 hour to produce an even suspension.
  • The following aqueous solution was prepared separately by adding the following solutes to 2.5 L of de-ionised water and stirring for 1 hour: 3 g Mannitol, 3 g Polydextran, 3 g Lutrol F127, and 3 g Tween 80. The aqueous solution was then added to the sumatriptan/HPMC suspension and stirred for 30 mins. The resulting solution became “clear” but then became “cloudy” as the final amounts of aqueous solution were added. Total solids content at this stage was 50 g solids in 5.0 L 50% (v/v) ethanol/water solution (i.e. 1% (w/v))
  • To return to a “clear” solution a decision was made to adjust the solute concentrations and solvent concentrations such that the solids content remained at ˜1% (w/v) but that the ethanol concentration was raised to 60% (v/v).
  • The following quantities of powder were weighed out (to within 0.01 g): 10 g Sumatriptan Batch SMT/0602002. The sumatriptan was added to 1.25 L ethanol and left to stir at room temperature for 2 hours. When the sumatriptan had dissolved, 9 g of HPMC was added and stirred for 1 hour to create a homogeneous suspension. Additional solutes were added to the existing 5 L volume of sumatriptan solution and the solution stirred for 30 mins, namely: 1.5 g Mannitol, 1.5 g Polydextran, 1.5 g Lutrol F127 and 1.5 g Tween 80. The aqueous solution was then added to the 1.25 L of ethanolic Sumatriptan/HPMC suspension and stirred for 30 mins. The resulting solution was clear, pale yellow.
  • The final solution contained 75 g solids in 6.25 L of 60% (v/v) ethanol/water i.e. 1.2% (w/v) solids.
  • The process for manufacturing the sumatriptan spray solution is summarised in the flowchart shown in FIG. 1.
  • Spray Drying Process
  • A 2 L volume of the sumatriptan solution was spray dried using a Niro Mobile Minor fitted with a 2-fluid nozzle. The liquid feed was provided by a gear pump calibrated to provide a flow of 25 ml/minute. The following spray drying conditions were used:
  • Inlet temperature 100° C.
    Outlet temperature (start) 57° C.
    Liquid feed rate 25 ml/min
    Atomisation pressure 0.5 bar
  • After all of the solution had been atomised, drying was halted and the spray dried powder recovered (Batch Number INS089-UT04). The spray dryer was then cleaned and dried prior to further use.
  • A 2 L volume of the sumatriptan solution was spray dried using a Niro Mobile Minor fitted with a 2-fluid nozzle. The liquid feed was provided by a gear pump calibrated to provide a flow of 25 ml/minute. The following spray drying conditions were used:
  • Inlet temperature 100° C.
    Outlet temperature (start) 59° C.
    Liquid feed rate 25 ml/min
    Atomisation pressure 0.5 bar
  • After all of the solution had been atomised, drying was halted and the spray dried powder recovered (Batch Number INS089-UT05). The spray dryer was then cleaned and dried prior to further use.
  • A 2 L volume of the sumatriptan solution was spray dried using a Niro Mobile Minor fitted with a 2-fluid nozzle. The liquid feed was provided by a gear pump calibrated to provide a flow of 25 ml/minute. The following spray drying conditions were used:
  • Inlet temperature 100° C.
    Outlet temperature (start) 58° C.
    Liquid feed rate 25 ml/min
    Atomisation pressure 0.5 bar
  • After all of the solution had been atomised, drying was halted and the spray dried powder recovered (Batch Number INS089-UT06).
  • The recoveries obtained are shown in Table 1. Each spray drying run used 2.0 L of a 1.2% (w/v) solution i.e. 24 g spray dried.
  • TABLE 1
    Recovery of Spray Dried Powders
    Quantity of Material Recovered
    Batch Number (% of starting material)
    INS089-UT04 12.3 g (51%)
    INS089-UT05 15.3 g (64%)
    INS089-UT06 16.4 g (68%)
  • Size analysis of the three spray dried batches were carried out using a Sympatec Laser Sizer, fitted with a Rodos air dispenser. Powders dispersed at 5.0 bar.
  • FIG. 2 is a graph showing the size analysis of Sumatriptan Batch INS089-UT04, wherein:
  • x10 = 2.81 μm x50 = 11.67 μm x90 = 35.99 μm
    SMD = 5.79 μm VMD = 16.98 μm
    x16 = 4.17 μm x84 = 28.41 μm x99 = 96.35 μm
    Sv = 1.04 m2/cm3 Sm = 7681.35 cm2/g
  • FIG. 3 is a graph showing the size analysis of Sumatriptan Batch INS089-UT05, wherein:
  • x10 = 2.51 μm x50 = 9.38 μm x90 = 27.39 μm
    SMD = 5.16 μm VMD = 12.79 μm
    x16 = 3.67 μm x84 = 21.73 μm x99 = 56.73 μm
    Sv = 1.16 m2/cm3 Sm = 8619.08 cm2/g
  • FIG. 4 is a graph showing the size analysis of Sumatriptan Batch INS089-UT06, wherein:
  • x10 = 2.42 μm x50 = 8.90 μm x90 = 26.09 μm
    SMD = 5.01 μm VMD = 12.29 μm
    x16 = 3.52 μm x84 = 20.55 μm x99 = 57.62 μm
    Sv = 1.20 m2/cm3 Sm = 8875.92 cm2/g
  • FIG. 5 is a graph showing the size analysis of Sumatriptan Batches INS089-UT04, INS089-UT05 and INS089-UT06.
  • Example 17
  • The following materials were used as purchased, without further purification:
      • 1-[3-(2-dimethylaminoethyl)-1H-indol-5-yl]-N-methyl-methanesulfonamide (Sumatriptan, 98%, MW 295.402 g/mol, supplied by PharmaKodex)
      • Hydroxypropyl methyl cellulose (HPMC, Mw 10,000, Aldrich)
      • Polyvinylpyrrolidone K30 (PVP, Mw 45,000, Aldrich)
      • Maltitol (MW 344.32 g/mol, Fluka)
      • Polydextrose (Litessse® II, Danisco)
      • Pluronic F-127 (Aldrich)
      • Tween 80 (MW 1309.68 g/mol, Aldrich)
  • Sumatriptan and the excipients were dissolved into water/ethanol co-solvent and the resulting solution was then spray dried on a Buchi B-290 Mini Spray Dryer. The spray drying was conducted with an inlet temperature of 100° C. and a pump rate of 2.5 ml/min. The make-up of each batch is set out in Table 2.
  • TABLE 2
    Poly- Pluronic Tween
    Batch Sumatriptan HPMC PVP dextrose Maltitol F-127 80
    No. (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) Water:EtOH
    39 20 24 24 8 8 8 8 1:1.6
    42 40 18 18 6 6 6 6 1:1.2
    54 40 36 6 6 6 6 1:1
    55 40 36 6 6 6 6 1:1
    58 40 42 6 6 6 1:1
    60 40 40 6 6 8 1:1
  • In order to measure the sumatriptan particle size distribution (PSD), a 25 mg sample of the spray dried sumatriptan batches were dissolved into 26 ml distilled water with stirring (vortex) before measurements were taken using Malvern Nano-S particle sizer. The dispersions were corrected for viscosity.
  • To study the dissolution characterization, a 50 mg sample (equivalent to 20 mg sumatriptan) of the spray dried batches was dissolved into 1000 ml of distilled water at 37° C. with overhead paddle stirring at 50 rpm. Aliquots of each solution were taken at 5, 10, and 15 minutes. The dispersions were then diluted with 0.1 M HCl solution for UV characterization. The dissolution is expressed as a percentage of the initial sumatriptan concentration that has dissolved after specific time intervals, for each formulation.
  • TABLE 3
    Batch % Solids in PSD Dissolution In H 20 Dissoluton in H 20
    No. solution (nm) (5 min) (10 min)
    39 1.5% 354 89 100
    42 0.9% 306 98 100
    54 0.8% 414 91 101
    55 0.8% 598 99 99
    58 0.8% 1030 76 99
    60 0.8% 492 97 98
  • A UV calibration curve was also obtained by dissolving different amounts of sumatriptan into 0.1 M HCl solution.
  • FIGS. 6 and 7 show the X-ray powder diffraction results. These show that the sumatriptan nano-particle material produced is in crystalline form and not amorphous form and it is believed to be predominantly or entirely the same crystalline form as the starting material.

Claims (21)

1. A process for the production of a composition comprising a water-insoluble triptan which comprises the steps of:
a) providing a mixture comprising:
i) a water-insoluble triptan,
ii) a water soluble carrier, and
iii) a solvent for each of the triptan and the carrier; and
b) spray-drying the mixture to remove the or each solvent and obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
2. A process according to claim 1, which comprises the steps of:
a) providing an emulsion comprising:
i) a solution of the triptan in a water-immiscible solvent for the same, and
ii) an aqueous solution of the carrier; and
b) spray-drying the emulsion to remove water and the water-immiscible solvent to obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
3. A process according to claim 1, which comprises the steps of:
a) providing a single phase mixture comprising:
i) at least one non-aqueous solvent,
ii) optionally, water,
iii) a water-soluble carrier material soluble in the mixture of (i) and (ii), and
iv) a water-insoluble triptan which is soluble in the mixture of (i) and (ii); and
b) spray-drying the solution to remove water and the water miscible solvent to obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
4. A process according to claim 1, wherein the spray drying process is conducted at a temperature at or above 120° C.
5. A process according to claim 1, in which the carrier material includes a polymer and/or a surfactant.
6. A process according to claim 5, wherein the carrier material includes at least one of polyethylene glycol, polyvinylpyrrolidone, poly(2-ethyl-2-oxazaline), polyvinyl alcohol, hydroxypropyl cellulose and hydroxypropyl-methyl cellulose and alginate.
7. A process according to claim 5, wherein the carrier material includes at least one of alkoxylated non-ionic surfactant, ether sulphate surfactant, cationic surfactant or ester surfactant.
8. A process according to claim 1, wherein the non-aqueous solvent includes at least one of dichloromethane, chloroform, ethanol, acetone and dimethyl sulphoxide.
9. A process according to claim 1, wherein the water insoluble triptan is sumatriptan, rizatriptan, naratriptan, zolmitriptan, eletriptan, frovatriptan or almotriptan.
10. A process for the preparation of a medicament for use in the treatment migraine or headache, which comprises the step of preparing a composition by a process according to claim 1.
11. A composition comprising a water-insoluble triptan and a water soluble carrier which comprises triptan particles with an average particle size of between 100 and 1500 nm dispersed in the carrier.
12. A composition according to claim 11, wherein the composition is obtained or obtainable by a process which comprises the steps of:
a) providing a mixture comprising:
i) a water-insoluble triptan,
ii) a water soluble carrier, and
iii) a solvent for each of the triptan and the carrier; and
b) spray-drying the mixture to remove the or each solvent and obtain a substantially solvent-free nano-dispersion of the triptan in the carrier.
13. A composition according to claim 11, wherein the average particle size of the triptan particles is between 200 and 1000 nm, 400 and 1000 nm or 500 and 800 nm.
14. A composition according to claim 11, wherein the triptan particles are substantially crystalline.
15. A composition according to claim 11, wherein the triptan particles retain the crystallinity of the original triptan material used to prepare the composition.
16. A composition according to claim 11, wherein the triptan particles are substantially free of amorphous material.
17. A composition according to claim 11, further comprising one or more further therapeutically active agent.
18. A composition according to claim 17, wherein the composition comprises an analgesic agent, an NSAID or paracetamol.
19. A composition according to claim 17, wherein the composition comprises an anti-nausea agent, diphenhydramine or ondansetron.
20. A composition according to claim 11, for use in treating migraine and/or headache.
21. A method of treating migraine and/or headache, comprising administering to a patient a therapeutically effective amount of a composition according to claim 11.
US12/309,343 2006-07-13 2007-07-13 Processes for preparing pharmaceutical compositions Abandoned US20100008995A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0613925.7A GB0613925D0 (en) 2006-07-13 2006-07-13 Improvements relating to nanodispersions
GB0613925.7 2006-07-13
PCT/GB2007/050408 WO2008007151A2 (en) 2006-07-13 2007-07-13 Processes for preparing pharmaceutical compositions

Publications (1)

Publication Number Publication Date
US20100008995A1 true US20100008995A1 (en) 2010-01-14

Family

ID=36955583

Family Applications (10)

Application Number Title Priority Date Filing Date
US12/309,293 Abandoned US20090239749A1 (en) 2006-07-13 2007-06-29 Biocidal compositions
US12/309,295 Abandoned US20100015233A1 (en) 2006-07-13 2007-06-29 anti-parasitic compositions
US12/309,294 Active 2028-07-27 US8821932B2 (en) 2006-07-13 2007-06-29 Pharmaceutical compositions
US12/309,292 Active 2030-01-29 US9060937B2 (en) 2006-07-13 2007-06-29 Pharmaceutical compositions
US12/309,306 Abandoned US20090175953A1 (en) 2006-07-13 2007-06-29 Nanodispersions
US12/309,344 Expired - Fee Related US8945626B2 (en) 2006-07-13 2007-07-13 Preparation of pharmaceutical compositions
US12/309,343 Abandoned US20100008995A1 (en) 2006-07-13 2007-07-13 Processes for preparing pharmaceutical compositions
US12/309,341 Expired - Fee Related US7691873B2 (en) 2006-07-13 2007-07-13 Preparation of pharmaceutical formulations
US13/365,826 Abandoned US20120134940A1 (en) 2006-07-13 2012-02-03 Nanodispersions
US13/365,830 Abandoned US20120135058A1 (en) 2006-07-13 2012-02-03 Nanodispersions

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US12/309,293 Abandoned US20090239749A1 (en) 2006-07-13 2007-06-29 Biocidal compositions
US12/309,295 Abandoned US20100015233A1 (en) 2006-07-13 2007-06-29 anti-parasitic compositions
US12/309,294 Active 2028-07-27 US8821932B2 (en) 2006-07-13 2007-06-29 Pharmaceutical compositions
US12/309,292 Active 2030-01-29 US9060937B2 (en) 2006-07-13 2007-06-29 Pharmaceutical compositions
US12/309,306 Abandoned US20090175953A1 (en) 2006-07-13 2007-06-29 Nanodispersions
US12/309,344 Expired - Fee Related US8945626B2 (en) 2006-07-13 2007-07-13 Preparation of pharmaceutical compositions

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/309,341 Expired - Fee Related US7691873B2 (en) 2006-07-13 2007-07-13 Preparation of pharmaceutical formulations
US13/365,826 Abandoned US20120134940A1 (en) 2006-07-13 2012-02-03 Nanodispersions
US13/365,830 Abandoned US20120135058A1 (en) 2006-07-13 2012-02-03 Nanodispersions

Country Status (17)

Country Link
US (10) US20090239749A1 (en)
EP (8) EP2040679A2 (en)
JP (9) JP2009542760A (en)
CN (11) CN101489533A (en)
AP (1) AP2008004713A0 (en)
AR (4) AR061992A1 (en)
AU (9) AU2007271827B2 (en)
BR (8) BRPI0714177A2 (en)
CA (8) CA2659666A1 (en)
CL (4) CL2007002030A1 (en)
ES (2) ES2741124T3 (en)
GB (1) GB0613925D0 (en)
IL (2) IL195911A0 (en)
MX (2) MX2009000307A (en)
TW (1) TW200812694A (en)
WO (8) WO2008006713A2 (en)
ZA (7) ZA200900031B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198867B2 (en) 2008-01-09 2015-12-01 Charleston Laboratories, Inc. Pharmaceutical compositions
US9393207B2 (en) 2006-10-09 2016-07-19 Locl Pharma, Inc. Pharmaceutical compositions
US9433625B2 (en) 2009-07-08 2016-09-06 Locl Pharma, Inc. Pharmaceutical compositions for treating or preventing pain
US10034857B2 (en) 2015-07-02 2018-07-31 Civitas Therapeutics, Inc. Triptan powders for pulmonary delivery
US10179109B2 (en) 2016-03-04 2019-01-15 Charleston Laboratories, Inc. Pharmaceutical compositions comprising 5HT receptor agonist and antiemetic particulates
IT202000022789A1 (en) 2020-09-28 2020-12-28 Vitop Moulding Srl Dispenser tap equipped with positioning, blocking and orientation system on Bag-In-Box type boxes

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0501833D0 (en) * 2005-01-28 2005-03-09 Unilever Plc Carrier liquids and methods of production thereof
US20090130212A1 (en) * 2006-05-15 2009-05-21 Physical Pharmaceutica, Llc Composition and improved method for preparation of small particles
GB0613925D0 (en) * 2006-07-13 2006-08-23 Unilever Plc Improvements relating to nanodispersions
WO2008022651A1 (en) 2006-08-21 2008-02-28 Antoine Turzi Process and device for the preparation of platelet rich plasma for extemporaneous use and combination thereof with skin and bone cells
AR063704A1 (en) 2006-09-14 2009-02-11 Makhteshim Chem Works Ltd PESTICIDE NANOPARTICLES OBTAINED OBTAINED FROM MICROEMULSIONS AND NANOEMULSIONS
AR067047A1 (en) * 2007-06-18 2009-09-30 Combino Pharm Sl ACETAMINOFEN WATERY FORMULATIONS FOR INJECTION.
AR067048A1 (en) * 2007-06-18 2009-09-30 Combino Pharm Sl ACETAMINOFEN WATERY FORMULATIONS FOR INJECTION.
AU2008303129B2 (en) 2007-09-25 2013-08-01 Formulex Pharma Innovations Ltd. Compositions comprising lipophilic active compounds and method for their preparation
TR200800634A2 (en) * 2008-01-30 2009-02-23 Takka Sevgi̇ Fluvastatin tablet for extended release.
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
CA2720108C (en) * 2008-03-11 2016-06-07 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
WO2010004730A1 (en) * 2008-07-11 2010-01-14 日本曹達株式会社 Method for producing extended-release preparation composition
GB0814953D0 (en) * 2008-08-18 2008-09-24 Unilever Plc Improvements relating to nanodisperse compositions
CN105309424B (en) 2008-09-25 2022-09-02 维乌作物保护有限公司 Method for producing polymer nanoparticles and preparation of active ingredients
FR2938433B1 (en) * 2008-11-19 2011-09-09 Francois Fauran PHARMACEUTICAL COMPOSITIONS USING INULIN AS A GRANULATING EXCIPIENT
US8927063B2 (en) * 2008-12-12 2015-01-06 Timtechchem International Limited Compositions for the treatment of timber and other wood substrates
EP2243477A1 (en) 2009-04-22 2010-10-27 Fresenius Kabi Deutschland GmbH Paracetamol for parenteral application
CA2763465C (en) * 2009-05-27 2015-05-05 Samyang Biopharmaceuticals Corporation A poorly soluble drug containing microsphere with improved bioavailability and method of preparing the same
HUP0900376A2 (en) * 2009-06-19 2011-01-28 Nangenex Nanotechnologiai Zartkoerueen Muekoedoe Reszvenytarsasag Nanoparticulate candesartan cilexetil composition
HUP0900384A2 (en) * 2009-06-19 2011-01-28 Nangenex Nanotechnologiai Zartkoerueen Muekoedoe Reszvenytarsasag Nanoparticulate olmesartan medoxomil compositions
JP5442116B2 (en) * 2009-06-25 2014-03-12 ジン ヤン ファーム カンパニー リミテッド Pharmaceutical composition containing losartan carboxylic acid and method for producing the same
EP2473195A4 (en) * 2009-08-31 2013-01-16 Depomed Inc Gastric retentive pharmaceutical compositions for immediate and extended release of acetaminophen
JP5498769B2 (en) * 2009-12-04 2014-05-21 花王株式会社 Method for producing lipid-soluble drug-encapsulating nanoparticles
US8597681B2 (en) 2009-12-22 2013-12-03 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
US9198861B2 (en) 2009-12-22 2015-12-01 Mallinckrodt Llc Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans
WO2011102702A2 (en) 2010-02-16 2011-08-25 Krka, D. D., Novo Mesto Process for the preparation of oral solid dosage forms comprising valsartan
EP2552234B1 (en) 2010-03-29 2013-12-04 Firmenich S.A. Spray-dried crystalline active ingredient
GB201006038D0 (en) 2010-04-12 2010-05-26 Unilever Plc Improvements relating to antiviral compositions
UA111167C2 (en) * 2010-08-05 2016-04-11 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі PESTICIDIC COMPOSITIONS OF MECHANIZED PARTICLES WITH STRENGTH
EP2624819A1 (en) * 2010-10-05 2013-08-14 Iota NanoSolutions Limited Processes for preparing improved compositions
US8877221B2 (en) 2010-10-27 2014-11-04 Warsaw Orthopedic, Inc. Osteoconductive matrices comprising calcium phosphate particles and statins and methods of using the same
US9107983B2 (en) 2010-10-27 2015-08-18 Warsaw Orthopedic, Inc. Osteoconductive matrices comprising statins
WO2012082765A2 (en) 2010-12-16 2012-06-21 The United State Of America. As Represented By The Secretary Department Of Health And Human Services Methods for decreasing body weight and treating diabetes
WO2012142160A1 (en) 2011-04-12 2012-10-18 Rigel Pharmaceuticals, Inc. Methods for inhibiting allograft rejection
US8741885B1 (en) 2011-05-17 2014-06-03 Mallinckrodt Llc Gastric retentive extended release pharmaceutical compositions
US8658631B1 (en) 2011-05-17 2014-02-25 Mallinckrodt Llc Combination composition comprising oxycodone and acetaminophen for rapid onset and extended duration of analgesia
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
WO2012170417A2 (en) 2011-06-06 2012-12-13 Warsaw Orthopedic, Inc. Methods and compositions to enhance bone growth comprising a statin
JP2013001771A (en) * 2011-06-14 2013-01-07 Neos Co Ltd Liquid mold control detergent composition
RU2469536C1 (en) * 2011-06-16 2012-12-20 Государственное бюджетное учреждение Республики Башкортостан "Научно-исследовательский технологический институт гербицидов и регуляторов роста растений с опытно-экспериментальным производством Академии наук Республики Башкортостан" Fungicidal agent and method of its production
EP2723452A2 (en) 2011-06-22 2014-04-30 Vyome Biosciences Pvt Ltd Conjugate-based antifungal and antibacterial prodrugs
EP2747556B1 (en) 2011-08-23 2021-08-11 Vive Crop Protection Inc. Pyrethroid formulations
GB201115079D0 (en) 2011-08-31 2011-10-19 Iota Nanosolutions Ltd Method of preparing carrier liquids
GB201115634D0 (en) 2011-09-09 2011-10-26 Univ Liverpool Compositions of lopinavir
GB201115635D0 (en) 2011-09-09 2011-10-26 Univ Liverpool Compositions of lopinavir and ritonavir
GB201115633D0 (en) 2011-09-09 2011-10-26 Univ Liverpool Compositions of efavirenz
US8609684B2 (en) * 2011-12-12 2013-12-17 PruGen IP Holdings, Inc. Solubilization and bioavailability of acetaminophen
JP6062454B2 (en) 2011-12-22 2017-01-18 ヴァイヴ クロップ プロテクション インコーポレイテッドVive Crop Protection Inc. Strobilurin formulation
AU2013263292B2 (en) * 2012-05-16 2018-03-08 Maninder SANDHU Pharmaceutical compositions for the delivery of substantially water-insoluble drugs
PL2872121T3 (en) 2012-07-12 2019-02-28 SpecGx LLC Extended release, abuse deterrent pharmaceutical compositions
US20140073678A1 (en) * 2012-09-12 2014-03-13 Monosol Rx, Llc Anti-pain and anti-nausea and/or vomiting combinatorial compositions
BR112015030501A2 (en) 2013-06-04 2017-07-25 Vyome Biosciences Pvt Ltd coated particles and compositions comprising them
WO2015023675A2 (en) 2013-08-12 2015-02-19 Pharmaceutical Manufacturing Research Services, Inc. Extruded immediate release abuse deterrent pill
CA2928135A1 (en) 2013-10-21 2015-04-30 Salk Institute For Biological Studies Mutated fibroblast growth factor (fgf) 1 and methods of use
DK3069733T3 (en) * 2013-11-13 2022-11-14 National Defense Education And Res Foundation NEW ACETAMINOPHYDRATE COMPOUND WITH NO LIVER SIDE EFFECTS
US10172797B2 (en) 2013-12-17 2019-01-08 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
AU2015226911B2 (en) 2014-03-07 2018-03-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Non-narcotic CRMP2 peptides targeting sodium channels for chronic pain
EP2952208A1 (en) * 2014-06-04 2015-12-09 Universidade de Santiago de Compostela Hydroalcoholic system for nail treatment
MX2016015528A (en) 2014-06-11 2017-04-25 Mallinckrodt Llc Spray dried compositions having different dissolution profiles and processes for their preparation.
CN104042626A (en) * 2014-07-01 2014-09-17 李绍明 Bactericidal and bacteriostatic agent
US9707184B2 (en) 2014-07-17 2017-07-18 Pharmaceutical Manufacturing Research Services, Inc. Immediate release abuse deterrent liquid fill dosage form
US20160106737A1 (en) 2014-10-20 2016-04-21 Pharmaceutical Manufacturing Research Services, Inc. Extended Release Abuse Deterrent Liquid Fill Dosage Form
EP3237159B1 (en) * 2014-12-23 2019-05-01 Dow Global Technologies LLC Treated porous material
US20180280302A1 (en) * 2015-01-20 2018-10-04 Merck Patent Gmbh Solid dispersions of compounds using polyvinyl alcohol as a carrier polymer
CN104798772B (en) * 2015-03-13 2017-05-24 中国农业科学院农业环境与可持续发展研究所 Pesticide nano-solid dispersion and preparation method thereof
ES2952606T3 (en) * 2015-07-17 2023-11-02 Univ Oklahoma Licophelone derivatives and methods of use
CN105145553A (en) * 2015-10-12 2015-12-16 广西田园生化股份有限公司 Indissolvable pesticide solid dispersion composition
WO2017133868A1 (en) * 2016-02-02 2017-08-10 Evonik Degussa Gmbh Powdery formulations with surface active substances on solid, water-soluble carriers, method for the production and use thereof
EP3471697A1 (en) * 2016-06-16 2019-04-24 The University of Liverpool Chemical composition
RU2619249C1 (en) * 2016-11-07 2017-05-12 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) Composition for seed treatment and method of its production
WO2018160772A1 (en) 2017-02-28 2018-09-07 The United State Of America, As Represented By The Secretary, Department Of Health & Human Services Method of treating obesity, insulin resistance, non-alcoholic fatty liver disease including non-alcoholic steatohepatitis
CN110741009A (en) 2017-03-31 2020-01-31 利物浦大学 Prodrug composition
EP3638212A4 (en) * 2017-06-15 2021-04-28 Savior Lifetec Corporation Methods for producing particles of an active ingredient
US11517013B2 (en) 2017-08-25 2022-12-06 Vive Crop Protection Inc. Multi-component, soil-applied, pesticidal compositions
EP3758683A1 (en) 2018-03-02 2021-01-06 The University Of Liverpool Solid compositions of actives, processes for preparing same and uses of such solid compositions
JP6858729B2 (en) * 2018-05-25 2021-04-14 ▲財▼▲団▼法人国防教育研究基金会National Defense Education And Research Foundation New acetaminophen complex composition with no side effects on the liver
CN113260257B (en) * 2018-12-28 2022-09-06 南京善思生物科技有限公司 Nano pesticide preparation and preparation method thereof
CN109846821B (en) * 2019-01-03 2021-07-06 昆药集团股份有限公司 Artemether nano preparation and preparation method thereof
US20220054494A1 (en) 2019-03-13 2022-02-24 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods for treating bladder and urethra dysfunction and disease
CN110074993A (en) * 2019-06-05 2019-08-02 山东大学 A method of preparing ultraviolet absorber nano particle
US20230133037A1 (en) * 2019-06-28 2023-05-04 Solstar Pharma Extended release gastroretentive formulation against helicobacter pylori
WO2021062012A1 (en) 2019-09-25 2021-04-01 Emory University Use of klk10 and engineered derivatizations thereof
JPWO2021085395A1 (en) * 2019-10-28 2021-05-06
EP4090381A1 (en) 2020-01-17 2022-11-23 The United States of America, as represented by the Secretary, Department of Health and Human Services <smallcaps/>? ? ?crx-? ? ? ? ?gene therapy for treatment ofautosomal dominant retinopathies
WO2021225781A2 (en) 2020-05-07 2021-11-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Aberrant post-translational modifications (ptms) in methyl- and propionic acidemia and a mutant sirtuin (sirt) to metabolize ptms
GB202115049D0 (en) 2021-10-20 2021-12-01 Univ Liverpool Chemical Compositions
WO2023196898A1 (en) 2022-04-07 2023-10-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Beta globin mimetic peptides and their use
CN114732009B (en) * 2022-06-13 2022-08-23 山东百农思达生物科技有限公司 Preparation method of water dispersible granules containing pyraclostrobin and dimethomorph

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207674B1 (en) * 1999-12-22 2001-03-27 Richard A. Smith Dextromethorphan and oxidase inhibitor for weaning patients from narcotics and anti-depressants
US20040162333A1 (en) * 2003-02-19 2004-08-19 Naima Mezaache Rapid absorption selective 5-HT agonist formulations
US20040180089A1 (en) * 2002-12-26 2004-09-16 Pozen Inc. Multilayer dosage forms containing NSAIDs and triptans
US20060105038A1 (en) * 2004-11-12 2006-05-18 Eurand Pharmaceuticals Limited Taste-masked pharmaceutical compositions prepared by coacervation

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB501835A (en) 1936-05-29 1939-03-02 Siemens Ag Process and apparatus for reducing the power required for the mechanical treatment of movable masses
GB1305024A (en) * 1969-07-10 1973-01-31
GB1554662A (en) * 1976-05-05 1979-10-24 Inverni Della Beffa Spa Polyhydroxyphenylchromanones
US4230687A (en) * 1978-05-30 1980-10-28 Griffith Laboratories U.S.A., Inc. Encapsulation of active agents as microdispersions in homogeneous natural polymeric matrices
DE3439482A1 (en) 1984-10-27 1986-05-07 Röhm GmbH, 6100 Darmstadt METHOD FOR COATING SUBSTRATES WITH SCRATCH-RESISTANT, NON-REFLECTIVE COVERS
US4830858A (en) * 1985-02-11 1989-05-16 E. R. Squibb & Sons, Inc. Spray-drying method for preparing liposomes and products produced thereby
US5160530A (en) * 1989-01-24 1992-11-03 Griffin Corporation Microencapsulated polymorphic agriculturally active material
GB8918807D0 (en) * 1989-08-17 1989-09-27 Shell Int Research A solid pesticidal formulation,a process for its preparation and the use thereof
JP3067810B2 (en) * 1990-12-21 2000-07-24 中外製薬株式会社 Method for producing dry powder of O / W emulsion for oral administration
GB9304294D0 (en) * 1993-03-03 1993-04-21 Zeneca Ltd Herbicidal compositions
DE4329446A1 (en) * 1993-09-01 1995-03-02 Basf Ag Process for the production of finely divided color or active substance preparations
US5858398A (en) * 1994-11-03 1999-01-12 Isomed Inc. Microparticular pharmaceutical compositions
TW318777B (en) * 1995-06-29 1997-11-01 Novartis Ag
EP0862420A4 (en) * 1995-10-13 1999-11-03 Penn State Res Found Synthesis of drug nanoparticles by spray drying
GB9606188D0 (en) 1996-03-23 1996-05-29 Danbiosyst Uk Pollysaccharide microspheres for the pulmonary delivery of drugs
US5858409A (en) * 1996-04-17 1999-01-12 Fmc Corporation Hydrolyzed cellulose granulations for pharmaceuticals
WO1998029140A1 (en) * 1996-12-31 1998-07-09 Inhale Therapeutic Systems Processes and compositions for spray drying hydrophobic drugs in organic solvent suspensions of hydrophilic excipients
JP4183279B2 (en) * 1997-04-15 2008-11-19 アール ピー シェーラー テクノロジーズ インコーポレーテッド Hydrolyzed cellulose granules for pharmaceutical use
CA2322805C (en) * 1998-03-05 2005-09-13 Nippon Shinyaku Co., Ltd. Fat emulsions for inhalational administration
JPH11322587A (en) 1998-05-18 1999-11-24 Sumitomo Chem Co Ltd Microcapsulation of physiologically active substance solid at room temperature and microcapsule composition obtained thereby
EP1058539A1 (en) * 1999-01-06 2000-12-13 Korea Research Institute Of Chemical Technology Method of preparing pharmaceutical active ingredient comprising water-insoluble drug and pharmaceutical composition for oral administration comprising the same
EP1027886B1 (en) * 1999-02-10 2008-07-09 Pfizer Products Inc. Pharmaceutical solid dispersions
GB9904012D0 (en) 1999-02-22 1999-04-14 Zeneca Ltd Agrochemical formulation
KR100883477B1 (en) * 1999-05-27 2009-02-16 아쿠스피어 인코포레이티드. Pharmaceutical composition of porous drug matrices
US6395300B1 (en) * 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6610317B2 (en) * 1999-05-27 2003-08-26 Acusphere, Inc. Porous paclitaxel matrices and methods of manufacture thereof
US7919119B2 (en) * 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
GB9915231D0 (en) 1999-06-29 1999-09-01 Pfizer Ltd Pharmaceutical complex
GB9920148D0 (en) * 1999-08-25 1999-10-27 Smithkline Beecham Plc Novel composition
ATE311227T1 (en) * 1999-12-01 2005-12-15 Natco Pharma Ltd FAST-ACTING, FREEZE-DRIED, ORAL, PHARMACEUTICAL FORMULATION FOR THE TREATMENT OF MIGRAINE
KR100694667B1 (en) * 1999-12-08 2007-03-14 동아제약주식회사 Antifungal compositions containing itraconazole with both improved bioavailability and narrow intra- and inter-individual variation of its absorption
WO2001089484A2 (en) 2000-05-22 2001-11-29 Verion, Inc. Method for increasing the compressibility of poorly binding powder materials
US6932963B2 (en) * 2000-06-23 2005-08-23 Nicholas V. Perricone Treatment of skin wounds using polyenylphosphatidylcholine and alkanolamines
IT1318618B1 (en) * 2000-07-10 2003-08-27 A C R Applied Coating Res S A QUICK RELEASE BIOADHESIVE MICROSPHERES FOR SUBLINGUAL ADMINISTRATION OF ACTIVE INGREDIENTS.
AU2002224526A1 (en) * 2000-07-24 2002-02-05 Ono Pharmaceutical Co. Ltd. Freeze-dried preparation of n-(o-(p-pivaloyloxybenzenesulfonylamino)benzoyl)glycine monosodium salt tetrahydrate and process for producing the same
DE10036871A1 (en) * 2000-07-28 2002-02-14 Pharmasol Gmbh Dispersions for the formulation of poorly or poorly soluble active ingredients
AU2001262945B2 (en) * 2000-09-20 2006-02-02 Skyepharma Canada Inc. Spray drying process and compositions of fenofibrate
US6756062B2 (en) * 2000-11-03 2004-06-29 Board Of Regents University Of Texas System Preparation of drug particles using evaporation precipitation into aqueous solutions
US8067032B2 (en) * 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
WO2002060411A2 (en) * 2001-01-30 2002-08-08 Board Of Regents University Of Texas System Process for production of nanoparticles and microparticles by spray freezing into liquid
US6355675B1 (en) 2001-05-15 2002-03-12 Isp Investments Inc. Emulsifiable concentrate of a water-insoluble fungicide
DE60237087D1 (en) * 2001-06-01 2010-09-02 Pozen Inc PHARMACEUTICAL COMPOSITIONS FOR THE COORDINATED DELIVERY OF NSAID
KR20040011549A (en) * 2001-06-22 2004-02-05 화이자 프로덕츠 인크. Pharmaceutical Compositions Comprising Low-Solubility and/or Acid-Sensitive Drugs and Neutralized Acidic Polymers
KR100425226B1 (en) * 2001-07-03 2004-03-30 주식회사 팜트리 Compositions and preparation methods for bioavailable oral aceclofenac dosage forms
EP1420582B1 (en) * 2001-08-21 2012-03-21 Sony Corporation Information processing system; information processing apparatus; and method
EP1429749A2 (en) * 2001-09-26 2004-06-23 Baxter International Inc. Preparation of submicron sized nanoparticles via dispersion and solvent or liquid phase removal
US20060003012A9 (en) * 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
DE10151392A1 (en) * 2001-10-18 2003-05-08 Bayer Cropscience Ag Powdery solid formulations
AU2002351853B2 (en) * 2001-11-07 2008-01-10 Basf Aktiengesellschaft Cinidon-ethyl containing solid crop protection formulations and corresponding dispersions
US20040266626A1 (en) * 2001-11-07 2004-12-30 Wolfgang Schrof Solid crop protection formulations and dispersion formulations and their use in agriculture
RS61604A (en) * 2002-02-01 2006-10-27 Pfizer Products Inc. Method for making homogeneous spray-dried solid amorphous drug dispersions utilizing modified spray-drying apparatus
RU2004123637A (en) * 2002-02-01 2005-04-20 Пфайзер Продактс Инк. (Us) PHARMACEUTICAL MEDICINAL FORMS OF CONTROLLED RELEASE OF THE CHOLESTEROL PROTEIN PROTEIN INHIBITOR
US6780324B2 (en) * 2002-03-18 2004-08-24 Labopharm, Inc. Preparation of sterile stabilized nanodispersions
US20040028505A1 (en) * 2002-06-07 2004-02-12 Bilbrey Robert A. Document tape binding system with automatic tape feed, tape indicia sensing, spine printing method and post-bind automation mechanisms
WO2003103640A1 (en) 2002-06-10 2003-12-18 Elan Pharma International, Ltd Nanoparticulate formulations comprising hmg coa reductase inhibitor derivatives (“statins”), novel combinations thereof as well as manufacturing of these pharmaceutical compositions
US20030017208A1 (en) * 2002-07-19 2003-01-23 Francis Ignatious Electrospun pharmaceutical compositions
DE10244681A1 (en) * 2002-09-24 2004-04-08 Boehringer Ingelheim International Gmbh New solid telmisartan-containing pharmaceutical formulations and their preparation
WO2004032980A1 (en) * 2002-10-04 2004-04-22 Elan Pharma International Limited Gamma irradiation of solid nanoparticulate active agents
CN1176649C (en) * 2002-10-16 2004-11-24 上海医药工业研究院 Inhalant of Shumaputan dry-powder and its preparation method
EP1569620A4 (en) * 2002-10-30 2006-03-22 Spherics Inc Nanoparticulate bioactive agents
WO2004060396A2 (en) * 2002-12-27 2004-07-22 Chiron Corporation Immunogenic compositions containing phospholpid
CA2513729A1 (en) 2003-01-21 2004-08-05 Ranbaxy Laboratories Limited Co-precipitated amorphous losartan and dosage forms comprising the same
US20040197301A1 (en) * 2003-02-18 2004-10-07 Zhong Zhao Hybrid polymers and methods of making the same
WO2004075921A1 (en) * 2003-02-26 2004-09-10 Vrije Universiteit Brussel Inclusion complex of artemisinin or derivates thereof with cyclodextrins
CA2521420A1 (en) * 2003-04-08 2004-10-28 Progenics Pharmaceuticals, Inc. Combination therapy for constipation comprising a laxative and a peripheral opioid antagonist
US20040247624A1 (en) * 2003-06-05 2004-12-09 Unger Evan Charles Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility
CA2465565A1 (en) 2003-06-12 2004-12-12 Warner-Lambert Company Llc Pharmaceutical compositions of atorvastatin
EP1648515B1 (en) * 2003-07-16 2012-11-21 Boehringer Ingelheim International GmbH Chlorthalidone combinations
US7687167B2 (en) * 2003-07-18 2010-03-30 Panasonic Corporation Power supply unit
CL2004001884A1 (en) 2003-08-04 2005-06-03 Pfizer Prod Inc DRYING PROCEDURE FOR SPRAYING FOR THE FORMATION OF SOLID DISPERSIONS AMORPHES OF A PHARMACO AND POLYMERS.
DE10338403A1 (en) * 2003-08-18 2005-03-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Powder formulation containing the CGRP antagonist 1- [N 2 - [3,5-dibromo-N - [[4- (3,4-dihydro-2 (1 H) -oxoquinazolin-3-yl] -1-piperidinyl] carbonyl] -D-tyrosyl] -L-lysyl] -4- (4-pyrindinyl) piperazine, process for its preparation and its use as inhalant
DE10351004A1 (en) * 2003-10-30 2005-05-25 Basf Ag Aqueous nanodispersion-forming formulations of active agents, especially plant protectants such as fungicides, comprise random copolymer of unsaturated sulfonic acid(s)
DE10351087A1 (en) 2003-10-31 2005-05-25 Bayer Technology Services Gmbh Solid active ingredient formulation
KR100603974B1 (en) * 2003-12-05 2006-07-25 김갑식 Method for preparing nano-scale or amorphous particle using solid fat as a solvent
CA2551254A1 (en) * 2003-12-31 2005-07-21 Pfizer Products Inc. Stabilized pharmaceutical solid compositions of low-solubility drugs, poloxamers, and stabilizing polymers
KR100629771B1 (en) * 2004-01-27 2006-09-28 씨제이 주식회사 Process for preparing oltipraz with diminished crystalline state or amorphous state
IL160095A0 (en) * 2004-01-28 2004-06-20 Yissum Res Dev Co Formulations for poorly soluble drugs
JP2005298347A (en) * 2004-04-06 2005-10-27 Yoshiaki Kawashima Inhalation preparation and method for producing the same
KR100598326B1 (en) 2004-04-10 2006-07-10 한미약품 주식회사 EXTENDED RELEASE ORAL FORMULATION OF HMG-CoA REDUCTASE INHIBITOR AND METHOD FOR THE PREPARATION THEREOF
CN1946302A (en) 2004-04-28 2007-04-11 荷兰联合利华有限公司 Edible oil containing statins
WO2005117834A1 (en) * 2004-05-27 2005-12-15 Janssen Pharmaceutica N.V. Solid dispersions of a basic drug compound and a polymer containing acidic groups
KR20060123772A (en) 2004-06-01 2006-12-04 테바 기오기스제르갸르 자르트쾨렌 뮈쾨되 레스즈베니타르사사그 Process for preparation of amorphous form of a drug
DE102004031298A1 (en) 2004-06-28 2006-01-12 Basf Ag Aqueous dispersions of poorly water-soluble or water-insoluble active ingredients and dry powders prepared therefrom containing at least one polymer containing polyether groups as protective colloid
EP1806129A1 (en) * 2004-10-01 2007-07-11 Eisai R&D Management Co., Ltd. Composition containing fine particles and process for producing the same
KR20070118224A (en) 2005-01-06 2007-12-14 엘란 파마 인터내셔널 리미티드 Nanoparticulate candesartan formulations
GB0501835D0 (en) * 2005-01-28 2005-03-09 Unilever Plc Improvements relating to spray dried compositions
GB0613925D0 (en) * 2006-07-13 2006-08-23 Unilever Plc Improvements relating to nanodispersions
WO2008076780A2 (en) * 2006-12-14 2008-06-26 Isp Investments Inc. Amorphous valsartan and the production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207674B1 (en) * 1999-12-22 2001-03-27 Richard A. Smith Dextromethorphan and oxidase inhibitor for weaning patients from narcotics and anti-depressants
US20040180089A1 (en) * 2002-12-26 2004-09-16 Pozen Inc. Multilayer dosage forms containing NSAIDs and triptans
US20040162333A1 (en) * 2003-02-19 2004-08-19 Naima Mezaache Rapid absorption selective 5-HT agonist formulations
US20060105038A1 (en) * 2004-11-12 2006-05-18 Eurand Pharmaceuticals Limited Taste-masked pharmaceutical compositions prepared by coacervation

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399022B2 (en) 2006-10-09 2016-07-26 Locl Pharma, Inc. Pharmaceutical compositions
US9427407B2 (en) 2006-10-09 2016-08-30 Locl Pharma, Inc. Pharmaceutical compositions
US9402813B2 (en) 2006-10-09 2016-08-02 Locl Pharma, Inc. Pharmaceutical compositions
US9393207B2 (en) 2006-10-09 2016-07-19 Locl Pharma, Inc. Pharmaceutical compositions
US9775837B2 (en) 2008-01-09 2017-10-03 Charleston Laboratories, Inc. Pharmaceutical compositions
US9855264B2 (en) 2008-01-09 2018-01-02 Locl Pharma, Inc. Pharmaceutical compositions
US9226901B2 (en) 2008-01-09 2016-01-05 Locl Pharma, Inc. Pharmaceutical compositions
US10064856B2 (en) 2008-01-09 2018-09-04 Local Pharma, Inc. Pharmaceutical compositions
US9498444B2 (en) 2008-01-09 2016-11-22 Locl Pharma, Inc. Pharmaceutical compositions
US9387177B2 (en) 2008-01-09 2016-07-12 Locl Pharma, Inc. Pharmaceutical compositions
US9198867B2 (en) 2008-01-09 2015-12-01 Charleston Laboratories, Inc. Pharmaceutical compositions
US9789104B2 (en) 2008-01-09 2017-10-17 Locl Pharma, Inc. Pharmaceutical compositions
US9789105B2 (en) 2008-01-09 2017-10-17 Locl Pharma, Inc. Pharmaceutical compositions
US9526704B2 (en) 2009-07-08 2016-12-27 Locl Pharma, Inc. Pharmaceutical compositions for treating or preventing pain
US10016368B2 (en) 2009-07-08 2018-07-10 Locl Pharma, Inc. Pharmaceutical compositions for treating or preventing pain
US9433625B2 (en) 2009-07-08 2016-09-06 Locl Pharma, Inc. Pharmaceutical compositions for treating or preventing pain
US10532030B2 (en) 2009-07-08 2020-01-14 Locl Pharma, Inc. Pharmaceutical compositions for treating or preventing pain
US10034857B2 (en) 2015-07-02 2018-07-31 Civitas Therapeutics, Inc. Triptan powders for pulmonary delivery
US10179109B2 (en) 2016-03-04 2019-01-15 Charleston Laboratories, Inc. Pharmaceutical compositions comprising 5HT receptor agonist and antiemetic particulates
US10772840B2 (en) 2016-03-04 2020-09-15 Charleston Laboratories, Inc. Sumatriptan promethazine pharmaceutical compositions
IT202000022789A1 (en) 2020-09-28 2020-12-28 Vitop Moulding Srl Dispenser tap equipped with positioning, blocking and orientation system on Bag-In-Box type boxes

Also Published As

Publication number Publication date
US20090304806A1 (en) 2009-12-10
WO2008006714A2 (en) 2008-01-17
BRPI0722376A2 (en) 2012-05-22
GB0613925D0 (en) 2006-08-23
CN101516341A (en) 2009-08-26
TW200812694A (en) 2008-03-16
CL2007002030A1 (en) 2008-01-18
JP2009542760A (en) 2009-12-03
EP2040680B1 (en) 2019-08-07
JP2009542762A (en) 2009-12-03
WO2008006713A3 (en) 2008-07-31
AU2007271828A1 (en) 2008-01-17
WO2008006713A2 (en) 2008-01-17
WO2008007151A3 (en) 2008-03-06
AR061991A1 (en) 2008-08-10
AU2007271831B2 (en) 2010-11-18
EP2040677B1 (en) 2019-05-08
WO2008007152A2 (en) 2008-01-17
BRPI0714179A2 (en) 2012-12-25
BRPI0714177A2 (en) 2011-05-03
AR061992A1 (en) 2008-08-10
CN101489532A (en) 2009-07-22
AU2010201900A1 (en) 2010-06-03
CA2657548A1 (en) 2008-01-17
US20120134940A1 (en) 2012-05-31
ES2741124T3 (en) 2020-02-10
WO2008006712A3 (en) 2009-02-26
AU2007271827B2 (en) 2010-10-14
CA2657586A1 (en) 2008-01-17
US20100068282A1 (en) 2010-03-18
WO2008007151A2 (en) 2008-01-17
CA2656229C (en) 2014-05-27
BRPI0714353A2 (en) 2013-05-07
IL195933A0 (en) 2009-09-01
JP2009542761A (en) 2009-12-03
BRPI0714351A2 (en) 2013-03-19
ES2752460T3 (en) 2020-04-06
AU2007271829B2 (en) 2011-10-27
AP2008004713A0 (en) 2008-12-31
CA2656223A1 (en) 2008-01-17
EP2269581A1 (en) 2011-01-05
CN102631874A (en) 2012-08-15
JP2009542794A (en) 2009-12-03
ZA200900030B (en) 2010-04-28
US7691873B2 (en) 2010-04-06
AU2007271829A1 (en) 2008-01-17
WO2008006715A2 (en) 2008-01-17
CL2010000516A1 (en) 2010-10-15
WO2008006715A3 (en) 2008-05-08
US20100015229A1 (en) 2010-01-21
AU2007271830B2 (en) 2010-11-11
EP2040681B1 (en) 2017-08-09
JP2010202665A (en) 2010-09-16
EP2040681A2 (en) 2009-04-01
MX2009000309A (en) 2009-01-26
AU2007274041A1 (en) 2008-01-17
JP2009542795A (en) 2009-12-03
CN102671585A (en) 2012-09-19
ZA200900029B (en) 2010-04-28
CA2657582A1 (en) 2008-01-17
CN101489534A (en) 2009-07-22
IL195911A0 (en) 2009-09-01
EP2040680A2 (en) 2009-04-01
CL2007002032A1 (en) 2008-01-18
AU2007271827A1 (en) 2008-01-17
CL2007002031A1 (en) 2008-01-18
WO2008006714A3 (en) 2008-02-21
EP2040677A2 (en) 2009-04-01
CN101489531A (en) 2009-07-22
AU2007271828B2 (en) 2010-12-02
WO2008006712A2 (en) 2008-01-17
BRPI0714176A2 (en) 2012-12-25
US9060937B2 (en) 2015-06-23
EP2386292A1 (en) 2011-11-16
AU2007271830A1 (en) 2008-01-17
WO2008007150A1 (en) 2008-01-17
WO2008007152A3 (en) 2008-03-06
US8821932B2 (en) 2014-09-02
AU2007274039A1 (en) 2008-01-17
ZA200900347B (en) 2010-04-28
AR061990A1 (en) 2008-08-10
EP2387992A1 (en) 2011-11-23
CA2656229A1 (en) 2008-01-17
ZA200900031B (en) 2010-04-28
ZA200900345B (en) 2010-05-26
ZA200900027B (en) 2010-04-28
JP2009542793A (en) 2009-12-03
CA2656233A1 (en) 2008-01-17
US20090175953A1 (en) 2009-07-09
JP2009542763A (en) 2009-12-03
JP2009542764A (en) 2009-12-03
IL195933A (en) 2013-06-27
CA2659666A1 (en) 2008-01-17
AR077195A2 (en) 2011-08-10
US20090325995A1 (en) 2009-12-31
CN101516340A (en) 2009-08-26
CN101489533A (en) 2009-07-22
MX2009000307A (en) 2009-01-26
EP2040678A2 (en) 2009-04-01
WO2008006716A3 (en) 2008-03-13
US20090239749A1 (en) 2009-09-24
AU2007271831A1 (en) 2008-01-17
CN101516342A (en) 2009-08-26
BRPI0714230A2 (en) 2013-01-15
CN101489535A (en) 2009-07-22
EP2040679A2 (en) 2009-04-01
AU2007274040A1 (en) 2008-01-17
BRPI0714352A2 (en) 2013-03-19
US20100015233A1 (en) 2010-01-21
ZA200900028B (en) 2010-04-28
CA2656217A1 (en) 2008-01-17
CN101849911A (en) 2010-10-06
WO2008006716A2 (en) 2008-01-17
US20120135058A1 (en) 2012-05-31
US8945626B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
US20100008995A1 (en) Processes for preparing pharmaceutical compositions
US20110217381A1 (en) Pharmaceutical compositions
EP2046296A2 (en) Processes for preparing pharmaceutical compositions
EP2046295A1 (en) Preparation of pharmaceutical compositions
EP2046297A2 (en) Preparation of pharmaceutical formulations

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNILEVER PLC, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUNCALF, DAVID JOHN;RANNARD, STEVEN PAUL;LONG, JAMES;AND OTHERS;REEL/FRAME:023092/0855;SIGNING DATES FROM 20090402 TO 20090723

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION