US20100022493A1 - Use of mometasone furoate for treating airway passage and lung disease - Google Patents

Use of mometasone furoate for treating airway passage and lung disease Download PDF

Info

Publication number
US20100022493A1
US20100022493A1 US12/575,356 US57535609A US2010022493A1 US 20100022493 A1 US20100022493 A1 US 20100022493A1 US 57535609 A US57535609 A US 57535609A US 2010022493 A1 US2010022493 A1 US 2010022493A1
Authority
US
United States
Prior art keywords
mometasone furoate
administered
day
micrograms
mcg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/575,356
Inventor
Joel A. Sequeira
Francis M. Cuss
Keith B. Nolop
Imtiaz A. Chaudry
Nagamani Nagabhushan
James E. Patrick
Mitchell Cayen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Sharp and Dohme Corp
Original Assignee
Schering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27539197&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100022493(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schering Corp filed Critical Schering Corp
Priority to US12/575,356 priority Critical patent/US20100022493A1/en
Publication of US20100022493A1 publication Critical patent/US20100022493A1/en
Priority to US13/366,971 priority patent/US20120134935A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents

Definitions

  • This invention relates to the treating of corticosteroid-responsive diseases of the upper and lower airway passages and lungs, such as asthma, by orally or intranasally administering to said passages and lungs an amount of mometasone furoate effective for treating such diseases while minimizing systemic absorption and side effects associated with such systemic absorption.
  • Mometasone furoate is a corticosteroid approved for topical dermatologic use to treat inflammatory and/or pruritic manifestations of corticosteroid-responsive dermatoses.
  • the compound may be prepared in accordance with the procedures disclosed in U.S. Pat. Nos. 4,472,393, 4,731,447, and 4,873,335, which U.S. patents are hereby incorporated by reference.
  • corticosteroids e.g., beclomethasone dipropionate are commercially available for the treatment of diseases of airway passages and lungs such as rhinitis and bronchial asthma.
  • corticosteroids e.g., beclomethasone dipropionate
  • the art teaches that not every corticosteroid having topical anti-inflammatory activity is active in treating rhinitis and/or asthma.
  • a topically active corticosteroid may exhibit activity in treating bronchial asthma, the long term use of such steroids has been limited by the occurrence of serious systemic side-effects, including hypothalamic-pituitary-adrenal (HPA) axis suppression.
  • HPA hypothalamic-pituitary-adrenal
  • topically active steroids administered by metered-dose inhalation has greatly reduced but not eliminated the detrimental system side-effects of steroid therapy in the treatment of asthma.
  • a large portion of an inhaled corticosteriod dose is swallowed by the patient. Since certain corticosteroids are readily bioavailable, the swallowed portion of the dose may reach the systemic circulation through the gastro-intestinal tract and may cause unwanted systemic side-effects.
  • Some corticosteroids currently approved for treating asthma have systemic bioavailability after oral ingestion of greater than 10% (budesonide) or even 20% (triamcinolone acetonide and flunisolide) of the inhalation dose.
  • a topically active steroid which is not readily bioavailable would provide a therapeutic advantage over other topically active corticosteroids that are more systematically bioavailable and it would also be superior to any corticosteroid orally administered by the oral swallowing of, for example, a solution, tablet or capsule.
  • corticosteroid which is therapeutically effective in treating disease of the airway passages and lungs such as asthma and which also exhibits low bioavailability and low systemic side-effects when it is administered intra-nasally or by oral inhalation.
  • the present invention provides a method of treating a corticosteroid-responsive disease of the upper or lower airway passages and/or of the lungs in patients afflicted with said disease, which comprises administering once-a-day to said passages or lungs of said patients a substantially non-systematically bio-available amount of aerosolized particles of mometasone furoate effective for treating said disease.
  • a method of treating allergic or non-allergic rhinitis in patients afflicted with said rhinitis which comprises administering once-a-day to the surfaces of the upper airway passages of said patients an amount of aerosolized particles of mometasone furoate effective to maximize treating said rhinitis in the upper airway passages while simultaneously substantially minimizing systemic absorption thereof.
  • a method of treating allergic and/or inflammatory diseases of the lower airway passages and/or lungs in patients afflicted with at least one of said diseases which comprises administering once-a-day via oral inhalation to the surfaces of the upper and lower airway passages of said patients an amount of aerosolized particles of mometasone furoate effective to maximize topically treating said allergic and/or inflammatory disease in the lower airway passage and/or lungs while simultaneously substantially minimizing the systemic absorption thereof.
  • the present invention also provides a method of producing a rapid onset of action in treating asthma in a patient afflicted with asthma which comprises administering via oral inhalation to the surfaces of the lower airway passages and lungs of the patient an amount of aerosolized particles of mometasone furoate effective to produce a rapid onset of action in treating asthma while simultaneously substantially minimizing systemic absorption thereof.
  • FIG. 1 graphically illustrates the variation with time (measured in hours) of the plasma concentrations of total radioactivity (measured in ng-eq/mL) following administration of tritium-labelled mometasone furoate by various formulations and routes of administration to male volunteers.
  • the curve plotted with the darkened circles ( ⁇ ) represents the variations of plasma concentrations with time after administration of radio-labelled drug by oral suspension;
  • the curve plotted with open circles ( ⁇ ) represents the variation of plasma concentrations with time after administration of drug by nasal spray;
  • the curve plotted with the darkened squares ( ⁇ ) represents the variation of plasma concentrations with time after administration by a metered dose inhaler;
  • the curve plotted with the open squares ( ⁇ ) represent the variation of plasma concentrations with time after administration of drug by Gentlehaler;
  • the curve plotted with the darkened triangles ( ⁇ ) represents the variation of plasma concentrations with time after administration of drug by the intravenous route and
  • the curve plotted with the open triangles (A) represent the variations of plasma concentration with time after administration of the radio-labelled drug via oral solution. See Tables in Results section hereinafter.
  • corticosteroids have been effective in treating airway passage diseases such as asthma, such treating with corticosteroids may often cause systemic side-effects such as suppression of hypothalamic-pituitary-adrenocortical (“HPA”) axis function by reducing corticotrophin (ACTH) production, which in turn leads to a reduced cortisol secretion by the adrenal gland.
  • HPA hypothalamic-pituitary-adrenocortical
  • ACTH corticotrophin
  • mometasone furoate exhibits superior anti-inflammatory effects in treating airway passage diseases such as asthma and allergic rhinitis by acting on surfaces of the upper and lower airways passages and lungs while having a substantially minimum systemic effect.
  • the substantial minimization of the systemic effect of mometasone furoate administered intranasally or by oral inhalation has been measured by High Performance Liquid Chromatography (HPLC) metabolite profiling of plasma radioactivity of mometasone furoate, its substantially complete (>98%) first-pass metabolism in the liver and by a minimal reduction in cortisol secretion levels.
  • HPLC High Performance Liquid Chromatography
  • mometasone furoate When mometasone furoate is administered orally (i.e., swallowed as an oral suspension) or by oral or nasal inhalation, there is a substantial absence of absorption systemically into the bloodstream of mometasone furoate i.e., there is essentially no parent drug (substantially less than 1% of mometasone furoate) which reaches the bloodstream from the gastro-intestinal tract. Any mometasone furoate found in the bloodstream after it has been administered by oral or nasal inhalation has already passed through the lungs and/or airway passage tissue. Therefore, there is no “wasted” drug (i.e., drug that reaches the relevant tissue in the lungs and/or airways only via the bloodstream). Thus, mometasone furoate is an ideal drug for treating diseases of the airway passages and lungs such as asthma and allergic rhinitis.
  • the term “therapeutic index”, as used herein, means the ratio of local efficacy to systemic safety.
  • the local efficacy in asthma of corticosteroids such as mometasone furoate is assessed by measurement of lung function and reduction in frequency and severity of symptoms.
  • Systemic safety of such cortosteroids is usually measured by HPA-axis function; other measures of systemic effect include, for example, growth suppression, bone density, and skin thickness measurements.
  • mometasone furoate In addition to the superb safety profile exhibited by mometasone furoate administered to patients with asthma and allergic rhinitis in accordance with the present invention, mometasone furoate also exhibits an unexpected higher level of efficacy in treating asthma and allergic rhinitis than the superb safety profile would suggest.
  • the term “rapid onset of action in treating asthma in patients afflicted with asthma” as used herein means that there is a significant clinically meaningful improvement in the pulmonary function of asthma patients within 7, 3 and even 1 day(s) of the initial administration of mometasone furoate in accordance with the present invention.
  • corticosteroid-responsive disease of the airway passage ways and lungs means those allergic, non-allergic and/or inflammatory diseases of the upper or lower airway passages or of the lungs which are treatable by administering corticosteroids such as mometasone furoate.
  • corticosteroids such as mometasone furoate.
  • Typical corticosteroid-responsive diseases include asthma, allergic and non-allergic rhinitis as well as non-malignant proliferative and inflammatory diseases of the airways passages and lungs.
  • asthmatic condition marked by recurrent attacks of paroxysmal dyspnea (i.e., “reversible obstructive airway passage disease”) with wheezing due to spasmodic contraction of the bronchi (so called “bronchospasm”).
  • Asthmatic conditions which may be treated or even prevented in accordance with this invention include allergic asthma and bronchial allergy characterized by manifestations in sensitized persons provoked by a variety of factors including exercise, especially vigorous exercise (“exercise-induced bronchospasm”), irritant particles (pollen, dust, cotton, cat dander) as well as mild to moderate asthma, chronic asthma, severe chronic asthma, severe and unstable asthma, nocturnal asthma, and psychologic stresses.
  • the methods of this invention are particularly useful in preventing the onset of asthma in mammals e.g., humans afflicted with reversible obstructive disease of the lower airway passages and lungs as well as exercise-induced bronchospasm.
  • the methods of this invention are also useful in treating allergic and non-allergic rhinitis as well as non-malignant proliferative and/or inflammatory disease of the airway passages and lungs.
  • allergic rhinitis means any allergic reaction of the nasal mucosa and includes hay fever (seasonal allergic rhinitis) and perennial rhinitis (non-seasonal allergic rhinitis) which are characterized by seasonal or perennial sneezing, rhinorrhea, nasal congestion, pruritis and eye itching, redness and tearing.
  • non-allergic rhinitis means eosinophilic nonallergic rhinitis which is found in patients with negative skin tests and those who have numerous eosinophils in their nasal secretions.
  • non-malignant proliferative and/or inflammatory disease as used herein in reference to the pulmonary system means one or more of (1) alveolitis, such as extrinsic allergic alveolitis, and drug toxicity such as caused by, e.g. cytotoxic and/or alkylating agents; (2) vasculitis such as Wegener's granulomatosis, allergic granulomatosis, pulmonary hemangiomatosis and idiopathic pulmonary fibrosis, chronic eosinophilic pneumonia, eosinophilic granuloma and sarcoidosis.
  • alveolitis such as extrinsic allergic alveolitis
  • drug toxicity such as caused by, e.g. cytotoxic and/or alkylating agents
  • vasculitis such as Wegener's granulomatosis, allergic granulomatosis, pulmonary hemangiomatosis and idiopathic pulmonary fibrosis, chronic eosinophil
  • the mometasone furoate administered, for example, by oral inhalation or intranasally to treat disease of the lower and/or upper airway passages and/or lungs may be used as monotherapy or as adjuvant therapy with for example cromolyn sodium or nedocromil sodium (available from Fisons); immunosuppressive agents such as methotrexate sodium (available from Astra Pharmaceutical Products, Inc.), oral gold, or cyclosporine A (available from Sandoz under the SANDIMMUNE® tradename); bronchodilators such as albuterol (available from Schering Corporation under the PROVENTIL® tradename) or theophylline (available from Key Pharmaceuticals of Schering Corporation under the Theo-Dur® tradename).
  • immunosuppressive agents such as methotrexate sodium (available from Astra Pharmaceutical Products, Inc.), oral gold, or cyclosporine A (available from Sandoz under the SANDIMMUNE® tradename)
  • bronchodilators such as albuterol (available from Sche
  • the devices found useful for providing measured substantially non-systematically bioavailable amounts of aerosolized mometasone furoate or aerosolized pharmaceutical compositions thereof for delivery to the oral airway passages and lungs by oral inhalation or intranasally by inhalation include pressurized metered-dose inhalers (“MDI”) which deliver aerosolized particles suspended in chlorofluorocarbon propellants such as CFC-11, CFC-12, or the non-chlorofluorocarbons or alternate propellants such as the fluorocarbons, HFC-134A or HFC-227 with or without surfactants and suitable bridging agents; dry-powder inhalers either breath activated or delivered by air or gas pressure such as the dry-powder inhaler disclosed in the Schering Corporation International Patent Application No.
  • MDI pressurized metered-dose inhalers
  • dry-powder inhalers either breath activated or delivered by air or gas pressure such as the dry-powder inhaler disclosed in the Schering Corporation International Patent Application No.
  • Mometasone furoate may be also administered in specific, measured amounts in the form of an aqueous suspension by use of a pump spray bottle such as the bottles used to deliver VANCENASE AQ® Nasal Spray as well as the spray bottle disclosed in the Schering Corporation Industrial Design Deposit DM/026304, registered by the Hague Union on Jun. 1, 1993 (each are available from Schering Corporation).
  • the aqueous suspension compositions of the present invention may be prepared by admixing mometasone furoate or mometasone furoate monohydrate (preferably mometasone furoate monohydrate) with water and other pharmaceutically acceptable excipients. See International Application No.
  • the aqueous suspensions of the invention may contain from about 0.01 to 10.0 mg, preferably 0.1 to 10.0 mg of mometasone furoate monohydrate per gram of suspension.
  • the aqueous suspension compositions according to the present invention may contain, inter alia, water, auxiliaries and/or one or more of the excipients, such as: suspending agents, e.g., microcrystalline cellulose, sodium carboxymethylcellulose, hydroxypropyl-methyl cellulose; humectants, e.g.
  • glycerin and propylene glycol e.g., citric acid, sodium citrate, phosphoric acid, sodium phosphate as well as mixtures of citrate and phosphate buffers; surfactants, e.g. Polysorbate 80; and antimicrobial preservatives, e.g., benzalkonium chloride, phenylethyl alcohol and potassium sorbate.
  • acids, bases or buffer substances for adjusting the pH e.g., citric acid, sodium citrate, phosphoric acid, sodium phosphate as well as mixtures of citrate and phosphate buffers
  • surfactants e.g. Polysorbate 80
  • antimicrobial preservatives e.g., benzalkonium chloride, phenylethyl alcohol and potassium sorbate.
  • the amount of mometasone furoate administered and the treatment regimen used will, of course, be dependent on the age, sex and medical history of the patient being treated, the severity of the specific asthmatic or non-malignant pulmonary disease condition and the tolerance of patient to the treatment regimen as evidenced by local toxicity (e.g., nasal irritation and/or bleeding) and by systemic side-effects (e.g. cortisol level).
  • Cortisol also referred to as hydrocortisone
  • the substantially non-systematically bioavailable amount of mometasone furoate which may be administered as an aqueous suspension or dry powder is in the range of about 10 to 5000 micrograms (“mcg”)/day, 10 to 4000 mcg/day, 10 to 2000 mcg/day, 25-1000 mcg/day, 25 to 400 mcg/day, 25-200 mcg/day, 25-100 mcg/day or 25-50 mcg/day in single or divided doses.
  • mcg micrograms
  • the aqueous suspension of mometasone furoate may be administered intranasally by inserting an appropriate device (such as the pump spray bottle used to deliver Vancenase AQ® Nasal Spray as well as the spray bottle disclosed in the Schering Corporation Industrial Design Deposit DM/026304 registered Jun. 1, 1993) into each nostril. Active drug is then expelled (nasal spray device) or could be nasally inhaled (sniffed) as a powder. Efficacy is generally assessed in a double blind fashion by a reduction in nasal symptoms (e.g., sneezing, itching, congestion, and discharge). Other objective measurements (e.g., nasal peak flow and resistance) can be used as supportive indices of efficacy.
  • an appropriate device such as the pump spray bottle used to deliver Vancenase AQ® Nasal Spray as well as the spray bottle disclosed in the Schering Corporation Industrial Design Deposit DM/026304 registered Jun. 1, 1993
  • Active drug is then expelled (nasal spray device)
  • mometasone furoate may be used: (1) for metered dose inhalers with standard CFC or alternate propellant about 10 to 5000 mcg/day or 10 to 4000 mcg/day or 10 to 2000 mcg/day, or 50 to 1000 mcg/day or 25 to 100 mcg/day, or 25 to 400 mcg/day, or 25 to 200 mcg/day, or 25-50 mcg/day; the preferred dosage range is 50 to 1000 micrograms a day and the preferred dosages are 25, 100, 200 and 250 mcg
  • the aqueous suspension of mometasone furoate has been found to be safe and effective in treating allergic rhinitis e.g. seasonal allergic rhinitis from 25 micrograms up to 1600 micrograms administered once-a-day; the preferred dosage range is 25-800 micrograms a day, although no improvement in treatment is typically found above 400 micrograms a day.
  • the most preferred dosages are 25, 50 and 100 micrograms administered twice to each nostril, once-a-day for a total once-a-day dose of 100, 200 and 400 mcg.
  • Typically 2-4 mL of the aqueous suspension of mometasone furoate monohydrate may be placed in a plastic nebulizer container and the patient would inhale for 2-10 minutes. The total dosage placed in such a container would be in the range of 300-3000 mcg.
  • the anhydrous mometasone furoate may be admixed with a dry excipient, for example dry lactose for use in the dry powder inhaler.
  • a dry excipient for example dry lactose for use in the dry powder inhaler.
  • the mometasone furoate:dry lactose ratio varies broadly from 119 to 1:0, and preferably it is 1:19 to 1:4.
  • the suitable anhydrous mometasone furoate dosage range is 25 to 600 micrograms administered once-a-day.
  • the preferred mometasone furoate dosages for admixture with dry lactose are 25, 100, 200 and 250 micrograms which are administered in one to three puffs a day.
  • the preferred combined mometasone furoate:lactose dose is 500 micrograms for each dose.
  • 25 micrograms of anhydrous mometasone furoate are admixed with 475 micrograms of anhydrous lactose and for the preferred 1:4 ratio, 100 micrograms of anhydrous mometasone furoate are admixed with 400 micrograms of anhydrous lactose, to produce the 500 microgram dose of the mometasone furoate:lactose admixture.
  • the dosing regimen for lower airway diseases such as asthma will vary from four times a day to twice a day to once-a-day. Once-a-day (such as at 8 a.m.) maintenance therapy should be adequate, once control of asthma is achieved. It is anticipated, however, that the superior therapeutic index of mometasone furoate will result in effective treatment of patients by once-a-day dosing even at the initiation of the methods of this invention.
  • dosing is likely to be two to four times daily, preferably two to three times and most preferably once daily, when adequate control of the disease is achieved.
  • any route of administration divided or single doses may be used.
  • a metered dose inhaler is used to deliver, for example, 500 mcg of aerosolized mometasone furoate, once-a-day, two puffs of 250 mcg would normally be used to deliver the aerosolized drug.
  • a plastic nebulizer container is used to deliver for example 200 micrograms a day of an aqueous suspension of mometasone furoate, two squeezes of 50 micrograms into each nostril would normally be used to deliver the drug.
  • the metered dose inhaler When the metered dose inhaler is used to deliver for example 200 mcg of anhydrous mometasone furoate, two puffs of 500 micrograms of an admixture of 100 mcg of mometasone furoate and 400 mcg of lactose once-a-day would normally be used to deliver the aerosolized drug.
  • the effectiveness of the methods of this invention can also be shown clinically in mammals, e.g. humans being afflicted with or susceptible to a non-malignant proliferative and/or inflammatory disease such as idiopathic pulmonary fibrosis or using patients with inter alia the following entry criteria: 1. an improved Karnofsky performance status; (2) adequate pulmonary function for undergoing the required inhalation treatment satisfactorily as evidenced by (a) an improved forced expiratory volume (FEV) and (b) an improved forced vital capacity (FVC) and (3) no serious systemic infections and/or fever.
  • FEV forced expiratory volume
  • FVC forced vital capacity
  • Pulmonary function including peak expiatory flow rate (PEF), forced expiatory volume in one second (FEV 1 ), and forced vial capacity (FVC) and cortisol levels may be also measured.
  • Subjective and objective symptoms including the number and severity of coughing bouts, shortness of breath, chest tightness and wheezing are normally assessed.
  • mometasone furoate formulated for delivery as a suspension in a pressurized metered dose inhaler (MDI).
  • MDI pressurized metered dose inhaler
  • aerosolized mometasone furoate was administered by a metered dose inhaler to eight healthy male volunteers. Doses were administered at 11 p.m. and plasma cortisol concentrations were measured during the following 24-hour period.
  • mometasone furoate doses of 1000 mcg, 2000 mcg and 4000 mcg reduced the 24-hour area under the curve plasma cortisol profile (AUC0-24) by 13%, 23% and 36%, respectively.
  • Equivalent doses of beclomethasone dipropionate (BDP) reduced the AUC0-24 by 30%, 38% and 65%, respectively.
  • mometasone furoate was given by MDI at dose of 500 mcg twice daily (“BID”), 1 mg BID, and 2 mg BID for 28 days to 48 patients with mild asthma (12 patients per treatment group) or placebo also given BID by MDI.
  • BID twice daily
  • 1 mg BID 1 mg BID
  • 2 mg BID 2 mg BID
  • Therapy with mometasone furoate was well tolerated, and all patients completed the therapy.
  • Patients treated with 1000 mcg of mometasone furoate daily had values for 8 a.m.
  • Efficacy was evaluated by spirometry and by physician and patient evaluation of asthma signs and symptoms.
  • the forced expiratory volume in one second (FEV 1 ), forced vital capacity (FVC), and forced expiratory flow between 25% to 75% (FEF 25%-75% ) were measured at each visit by the investigator.
  • the peak expiratory flow rate (PEFR) was measured twice daily (AM and PM) by the patient.
  • FEV 1 at endpoint of treatment (last evaluable visit) was the primary measure of efficacy.
  • the investigator at all visits) and the patient (twice daily) rated wheezing, tightness in chest, shortness of breath, and cough on a scale from 0 (None) to 6 (Incapacitating).
  • the investigator rated the overall condition of asthma on the same scale at each visit, and the patient kept a diary of the total number of asthma attacks each day, the number of night awakenings due to asthma, and the total number of puffs of Proventil (protocol-permitted rescue medication) used. The actual value and changes from Baseline were analyzed for each visit.
  • Mometasone furoate intranasally in the form of an aqueous suspension of mometasone furoate monohydrate
  • seasonal allergic rhinitis means a hypersensitivity response to seasonal pollens characterized by inflammation of the nasal mucous membranes, nasal discharge, sneezing and congestion.
  • aqueous nasal spray suspension formulation of mometasone furoate monohydrate.
  • the aqueous nasal spray suspension formulation was administered to eight healthy male volunteers. Doses were administered at 11 pm, and plasma cortisol concentrations were measured during the following 24-hour period. Compared to placebo, mometasone furoate at doses of 1000 mcg, 2000 mcg, and 4000 mcg did not significantly affect the 24-hour area under the curve plasma cortisol profile (AUC0-24).
  • the mometasone furoate aqueous nasal spray formulation was well tolerated, and all patients completed the study. Neither of the 2 doses of the mometasone furoate aqueous nasal spray formulation were associated with any changes in cortisol secretion compared to placebo.
  • the mometasone furoate aqueous nasal spray formulation at doses of 50 mcg/day, 100 mcg/day, 200 mcg/day, 800 mcg/day or placebo was administered to 480 patients with seasonal allergic rhinitis for 4 weeks. All treatments were well tolerated; results of statistical analysis indicated that all doses of mometasone furoate were effective relative to placebo. These results showed that administration of an aqueous suspension of mometasone furoate as a nasal spray to patients with seasonal allergic rhinitis was effacious, well tolerated with little potential for systemic side effects and are consistent with the low oral bioavailability of mometasone furoate.
  • the term “rapid onset of action in treating allergic or seasonal allergic rhinitis” as used herein means that there is a clinically and statistically significant reduction in the total nasal symptom score from baseline for seasonal allergic rhinitis patients treated with mometasone furoate nasal spray with medium onset to moderate or complete relief at 3 days (35.9 hours) compared to 72 hours for the patients treated with a placebo nasal spray.
  • Drug Each patient was given a metered nasal pump spray bottle containing either an aqueous suspension of mometasone furoate or placebo. Dosing instructions on the bottle informed patient to deliver 2 sprays of drug (mometasone furoate 50 mcg/spray) or placebo into each nostril once-a-day, each morning.
  • each patient was instructed to enter into his/her diary the information about the time of onset of nasal relief and level of nasal symptom relief as no relief, slight, moderate, marked, or complete.
  • the primary efficacy results are based on a survival analysis of the onset times of relief (defined as the first time patient experienced at least moderate relief of nasal symptoms) for the mometasone furoate nasal spray and placebo groups. In this analysis, patients reporting slight or no relief for the first 3 days after treatment were censored at Day 3. Also, results from the patient regular diary (by 15-day average) data were evaluated.
  • mometasone furoate-DPI was once-a-day given to eight normal volunteers in single doses of 400, 800, 1600, 3200 mcg and placebo.
  • Parallel groups of volunteers received either budesonide dry powder (400, 800, 1600, 3200 mcg and placebo) or prednisone (5 mg, 10 mg, 20 mg, 40 mg, or placebo). All doses were administered at 11 p.m., and plasma cortisol levels over the next 24 hours were monitored.
  • a drug metabolism and clinical pharmacology study was conducted by administering (by various routes) tritium-labeled mometasone furoate (“ 3 H-MF”) to 6 groups of 6 normal male volunteers in each group. Blood and urine samples were collected for measurement of total drug (including metabolites).
  • 3 H-MF tritium-labeled mometasone furoate
  • 3 H-labeled mometasone furoate (“ 3 H-MF”) following administration by oral swallow as a solution and as an aqueous suspension of the monohydrate, by oral inhalation as a suspension from a standard metered dose inhaler (MDI) and from a metered dose inhaler containing a spacer device (Gentlehaler), by nasal inhalation as an aqueous suspension of the mometasone furoate monohydrate from a nasal spray unit and by intravenous injection as a solution.
  • MDI standard metered dose inhaler
  • Genetlehaler metered dose inhaler containing a spacer device
  • nasal inhalation as an aqueous suspension of the mometasone furoate monohydrate from a nasal spray unit and by intravenous injection as a solution.
  • Oral Solution 1.03 209 33.3 ml (0.031 mg/ml) by oral swallow MDI (metered- 0.86 163 4 puffs from a MDI dose inhaler) canister (215 ⁇ g/actuation) Nasal Spray 0.19 197 4 sprays from a nasal spray bottle (47 ⁇ g/spray) Gentlehaler 0.40 79 4 bursts from a MDI canister containing a spacer (referred to as Gentlehaler) (101 ⁇ g/burst) Intravenous 1.03 204 1.03 mg/ml administered Solution at a rate of 1 ml/min. Oral Suspension 0.99 195 1.6 ml (0.62 mg/ml by (hydrated) oral swallow *Doses based on analysis of dosage forms prior to start of study
  • Plasma, urine, expired air filters, Respirgard and fecal samples were collected and assayed for radioactivity content.
  • the limit of quantitation (LOQ) for plasma radioactivity ranged from 0.103 to 0.138 ng eq/ml., except for the nasal spray treatment where the LOQ was 0.025 ng eq/ml.
  • Selected plasma, urine and fecal samples were analyzed for metabolite profiles.
  • HPLC/radio-flow analysis of both urinary and fecal extracts following both intravenous and oral solution administration demonstrated that all of the radioactivity was associated with metabolites more polar than parent drug.
  • Analysis of urine specimens obtained from subjects who received 3 H-MF by the Gentlehaler also demonstrated that all of the radioactivity was associated with metabolites more polar than parent drug.
  • analyses of fecal extracts following administration of the nasal spray, oral suspension and inhalation (MDI and Gentlehaler) formulations demonstrated the presence primarily of mometasone furoate, presumably due to unabsorbed drug which was swallowed.
  • Hydrolysis of plasma and urine was performed with an enzyme preparation containing both ⁇ -glucuronidase and aryl sulfates.
  • the percent of dose as tritiated water in the body was estimated from urinary distillation experiments to be approximately 3.7% after intravenous and 2.9% after oral solution dosing.
  • the plasma concentrations of unchanged mometasone furoate could not be determined after administration by oral inhalation as a suspension from a MDI or a Gentlehaler, or by nasal inhalation of an aqueous suspension of mometasone furoate monohydrate from a nasal spray unit or by oral swallow of an aqueous suspension of the monohydrate because the plasma concentrations of total radioactivity were too low for metabolite profiling.
  • 3 H-MF-derived radioactivity suggests that systemic absorption was greater from an orally swallowed solution (about 100%) than from an orally swallowed suspension or an intranasally inhaled suspension (8%).
  • Mometasone furoate was detectable in plasma by metabolite profiling after administration of the drug by intravenous injection or oral administration as solution dosage forms, but not after administration of the oral or nasal suspensions.
  • the excretion of radioactivity in urine after dosing with the solution formulation was greater (25%) than after dosing with the nasal spray or oral suspension (2%).
  • the total recovery or radioactivity in urine and feces was 87% and 75% respectively, with most of the radioactivity being excreted in the feces. After intravenous dosing, the total radioactivity excreted was 78% with 24% being excreted in the urine and 54% being excreted in the feces.

Abstract

The administration of aerosolize particles of mometasone furoate in the form of dry powders, solutions, or aqueous suspension for treating corticosteroid-responsive diseases of the surfaces of upper and/or lower airway passages and/or lungs, e.g., allergic rhinitis and asthma is disclosed.

Description

    INTRODUCTION TO THE INVENTION
  • This invention relates to the treating of corticosteroid-responsive diseases of the upper and lower airway passages and lungs, such as asthma, by orally or intranasally administering to said passages and lungs an amount of mometasone furoate effective for treating such diseases while minimizing systemic absorption and side effects associated with such systemic absorption.
  • Mometasone furoate is a corticosteroid approved for topical dermatologic use to treat inflammatory and/or pruritic manifestations of corticosteroid-responsive dermatoses. The compound may be prepared in accordance with the procedures disclosed in U.S. Pat. Nos. 4,472,393, 4,731,447, and 4,873,335, which U.S. patents are hereby incorporated by reference.
  • Certain corticosteroids, e.g., beclomethasone dipropionate are commercially available for the treatment of diseases of airway passages and lungs such as rhinitis and bronchial asthma. However, the art teaches that not every corticosteroid having topical anti-inflammatory activity is active in treating rhinitis and/or asthma. Furthermore, even though a topically active corticosteroid may exhibit activity in treating bronchial asthma, the long term use of such steroids has been limited by the occurrence of serious systemic side-effects, including hypothalamic-pituitary-adrenal (HPA) axis suppression. The introduction of topically active steroids administered by metered-dose inhalation has greatly reduced but not eliminated the detrimental system side-effects of steroid therapy in the treatment of asthma. Unfortunately, however, a large portion of an inhaled corticosteriod dose is swallowed by the patient. Since certain corticosteroids are readily bioavailable, the swallowed portion of the dose may reach the systemic circulation through the gastro-intestinal tract and may cause unwanted systemic side-effects. Some corticosteroids currently approved for treating asthma have systemic bioavailability after oral ingestion of greater than 10% (budesonide) or even 20% (triamcinolone acetonide and flunisolide) of the inhalation dose. Thus, a topically active steroid which is not readily bioavailable would provide a therapeutic advantage over other topically active corticosteroids that are more systematically bioavailable and it would also be superior to any corticosteroid orally administered by the oral swallowing of, for example, a solution, tablet or capsule.
  • Discovering an effective corticosteroid for treating diseases such as asthma with low systemic side-effects is unpredictable. For example, the corticosteroid tipredane exhibited not only good initial anti-inflammatory activity against asthma but also low systemic side effects. However, development of tipredane for treating asthma has been discontinued because clinical trials have not demonstrated a level of efficacy in treating asthma which would be considered therapeutically useful. It has recently been disclosed that butixocort propionate, another potent topical anti-inflammatory corticosteroid having reportedly low systemic side-effects is under development (Phase II) for treating chronic bronchial asthma. While the clinical results currently available from the Phase II studies show butixocort propionate has some efficacy, it remains to be seen if the efficacy in treating asthma will be sufficient to justify continuing the clinical development.
  • Thus, it would be desirable to find a corticosteroid which is therapeutically effective in treating disease of the airway passages and lungs such as asthma and which also exhibits low bioavailability and low systemic side-effects when it is administered intra-nasally or by oral inhalation.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method of treating a corticosteroid-responsive disease of the upper or lower airway passages and/or of the lungs in patients afflicted with said disease, which comprises administering once-a-day to said passages or lungs of said patients a substantially non-systematically bio-available amount of aerosolized particles of mometasone furoate effective for treating said disease.
  • In a preferred aspect of the present invention, there is provided a method of treating allergic or non-allergic rhinitis in patients afflicted with said rhinitis which comprises administering once-a-day to the surfaces of the upper airway passages of said patients an amount of aerosolized particles of mometasone furoate effective to maximize treating said rhinitis in the upper airway passages while simultaneously substantially minimizing systemic absorption thereof.
  • In another preferred aspect of the present invention, there is provided a method of treating allergic and/or inflammatory diseases of the lower airway passages and/or lungs in patients afflicted with at least one of said diseases which comprises administering once-a-day via oral inhalation to the surfaces of the upper and lower airway passages of said patients an amount of aerosolized particles of mometasone furoate effective to maximize topically treating said allergic and/or inflammatory disease in the lower airway passage and/or lungs while simultaneously substantially minimizing the systemic absorption thereof.
  • The present invention also provides a method of producing a rapid onset of action in treating asthma in a patient afflicted with asthma which comprises administering via oral inhalation to the surfaces of the lower airway passages and lungs of the patient an amount of aerosolized particles of mometasone furoate effective to produce a rapid onset of action in treating asthma while simultaneously substantially minimizing systemic absorption thereof.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 graphically illustrates the variation with time (measured in hours) of the plasma concentrations of total radioactivity (measured in ng-eq/mL) following administration of tritium-labelled mometasone furoate by various formulations and routes of administration to male volunteers. The curve plotted with the darkened circles () represents the variations of plasma concentrations with time after administration of radio-labelled drug by oral suspension; the curve plotted with open circles (∘) represents the variation of plasma concentrations with time after administration of drug by nasal spray; the curve plotted with the darkened squares (▪) represents the variation of plasma concentrations with time after administration by a metered dose inhaler; the curve plotted with the open squares (□) represent the variation of plasma concentrations with time after administration of drug by Gentlehaler; the curve plotted with the darkened triangles (▴) represents the variation of plasma concentrations with time after administration of drug by the intravenous route and the curve plotted with the open triangles (A) represent the variations of plasma concentration with time after administration of the radio-labelled drug via oral solution. See Tables in Results section hereinafter.
  • DETAILED DESCRIPTION OF THE INVENTION AND OF THE PREFERRED EMBODIMENTS
  • Although corticosteroids have been effective in treating airway passage diseases such as asthma, such treating with corticosteroids may often cause systemic side-effects such as suppression of hypothalamic-pituitary-adrenocortical (“HPA”) axis function by reducing corticotrophin (ACTH) production, which in turn leads to a reduced cortisol secretion by the adrenal gland.
  • We have surprisingly discovered that mometasone furoate exhibits superior anti-inflammatory effects in treating airway passage diseases such as asthma and allergic rhinitis by acting on surfaces of the upper and lower airways passages and lungs while having a substantially minimum systemic effect. The substantial minimization of the systemic effect of mometasone furoate administered intranasally or by oral inhalation has been measured by High Performance Liquid Chromatography (HPLC) metabolite profiling of plasma radioactivity of mometasone furoate, its substantially complete (>98%) first-pass metabolism in the liver and by a minimal reduction in cortisol secretion levels.
  • When mometasone furoate is administered orally (i.e., swallowed as an oral suspension) or by oral or nasal inhalation, there is a substantial absence of absorption systemically into the bloodstream of mometasone furoate i.e., there is essentially no parent drug (substantially less than 1% of mometasone furoate) which reaches the bloodstream from the gastro-intestinal tract. Any mometasone furoate found in the bloodstream after it has been administered by oral or nasal inhalation has already passed through the lungs and/or airway passage tissue. Therefore, there is no “wasted” drug (i.e., drug that reaches the relevant tissue in the lungs and/or airways only via the bloodstream). Thus, mometasone furoate is an ideal drug for treating diseases of the airway passages and lungs such as asthma and allergic rhinitis.
  • Administering mometasone furoate to the surfaces of the airways of asthmatic patients will maximize the therapeutic index. The term “therapeutic index”, as used herein, means the ratio of local efficacy to systemic safety. The local efficacy in asthma of corticosteroids such as mometasone furoate is assessed by measurement of lung function and reduction in frequency and severity of symptoms. Systemic safety of such cortosteroids is usually measured by HPA-axis function; other measures of systemic effect include, for example, growth suppression, bone density, and skin thickness measurements.
  • In addition to the superb safety profile exhibited by mometasone furoate administered to patients with asthma and allergic rhinitis in accordance with the present invention, mometasone furoate also exhibits an unexpected higher level of efficacy in treating asthma and allergic rhinitis than the superb safety profile would suggest.
  • The term “rapid onset of action in treating asthma in patients afflicted with asthma” as used herein means that there is a significant clinically meaningful improvement in the pulmonary function of asthma patients within 7, 3 and even 1 day(s) of the initial administration of mometasone furoate in accordance with the present invention. These unexpected results were obtained in a placebo-controlled, parallel group Phase I study of safety and pilot efficacy wherein mometasone furoate was administered by a metered dose inhaler twice daily to forty-eight patients with mild asthma (12 patients in each treatment group). The three groups of patients treated with mometasone furoate exhibited clinically meaningful increases in pulmonary function as measured by improvements in the forced expiratory volume in one second (FEV1).
  • These increases in FEV1 are unexpectedly superior even though mometasone furoate exhibits a superb safety profile. Furthermore, one would not predict the increases based on the known clinical data for other corticosteroids available for treating asthma.
  • The term “corticosteroid-responsive disease of the airway passage ways and lungs” as used herein means those allergic, non-allergic and/or inflammatory diseases of the upper or lower airway passages or of the lungs which are treatable by administering corticosteroids such as mometasone furoate. Typical corticosteroid-responsive diseases include asthma, allergic and non-allergic rhinitis as well as non-malignant proliferative and inflammatory diseases of the airways passages and lungs.
  • The term “asthma” as used herein includes any asthmatic condition marked by recurrent attacks of paroxysmal dyspnea (i.e., “reversible obstructive airway passage disease”) with wheezing due to spasmodic contraction of the bronchi (so called “bronchospasm”). Asthmatic conditions which may be treated or even prevented in accordance with this invention include allergic asthma and bronchial allergy characterized by manifestations in sensitized persons provoked by a variety of factors including exercise, especially vigorous exercise (“exercise-induced bronchospasm”), irritant particles (pollen, dust, cotton, cat dander) as well as mild to moderate asthma, chronic asthma, severe chronic asthma, severe and unstable asthma, nocturnal asthma, and psychologic stresses. The methods of this invention are particularly useful in preventing the onset of asthma in mammals e.g., humans afflicted with reversible obstructive disease of the lower airway passages and lungs as well as exercise-induced bronchospasm.
  • The methods of this invention are also useful in treating allergic and non-allergic rhinitis as well as non-malignant proliferative and/or inflammatory disease of the airway passages and lungs.
  • The term “allergic rhinitis” as used herein means any allergic reaction of the nasal mucosa and includes hay fever (seasonal allergic rhinitis) and perennial rhinitis (non-seasonal allergic rhinitis) which are characterized by seasonal or perennial sneezing, rhinorrhea, nasal congestion, pruritis and eye itching, redness and tearing.
  • The term “non-allergic rhinitis” as used herein means eosinophilic nonallergic rhinitis which is found in patients with negative skin tests and those who have numerous eosinophils in their nasal secretions.
  • The term “non-malignant proliferative and/or inflammatory disease” as used herein in reference to the pulmonary system means one or more of (1) alveolitis, such as extrinsic allergic alveolitis, and drug toxicity such as caused by, e.g. cytotoxic and/or alkylating agents; (2) vasculitis such as Wegener's granulomatosis, allergic granulomatosis, pulmonary hemangiomatosis and idiopathic pulmonary fibrosis, chronic eosinophilic pneumonia, eosinophilic granuloma and sarcoidosis.
  • The mometasone furoate administered, for example, by oral inhalation or intranasally to treat disease of the lower and/or upper airway passages and/or lungs may be used as monotherapy or as adjuvant therapy with for example cromolyn sodium or nedocromil sodium (available from Fisons); immunosuppressive agents such as methotrexate sodium (available from Astra Pharmaceutical Products, Inc.), oral gold, or cyclosporine A (available from Sandoz under the SANDIMMUNE® tradename); bronchodilators such as albuterol (available from Schering Corporation under the PROVENTIL® tradename) or theophylline (available from Key Pharmaceuticals of Schering Corporation under the Theo-Dur® tradename).
  • The devices found useful for providing measured substantially non-systematically bioavailable amounts of aerosolized mometasone furoate or aerosolized pharmaceutical compositions thereof for delivery to the oral airway passages and lungs by oral inhalation or intranasally by inhalation include pressurized metered-dose inhalers (“MDI”) which deliver aerosolized particles suspended in chlorofluorocarbon propellants such as CFC-11, CFC-12, or the non-chlorofluorocarbons or alternate propellants such as the fluorocarbons, HFC-134A or HFC-227 with or without surfactants and suitable bridging agents; dry-powder inhalers either breath activated or delivered by air or gas pressure such as the dry-powder inhaler disclosed in the Schering Corporation International Patent Application No. PCT/US92/05225, published 7 Jan. 1993 as well as the TURBUHALER™ (available from Astra Pharmaceutical Products, Inc.) or the ROTAHALER™ (available from Allen & Hanburys) which may be used to deliver the aerosolized mometasone furoate as a finely milled powder in large aggregates either alone or in combination with some pharmaceutically acceptable carrier e.g. lactose; and nebulizers. The inhalation of aerosolized drugs by use of nebulizers and metered-dose inhalers such as used to deliver VANCENASE® (brand of beclomethasone dipropionate) inhalation aerosol (available from Schering Corporation, Kenilworth, N.J.) is disclosed in Remington's Pharmaceutical Sciences, Mack Publishing Co. Easton Pa., 15th Ed. Chapter 99, pages 1910-1912.
  • Mometasone furoate may be also administered in specific, measured amounts in the form of an aqueous suspension by use of a pump spray bottle such as the bottles used to deliver VANCENASE AQ® Nasal Spray as well as the spray bottle disclosed in the Schering Corporation Industrial Design Deposit DM/026304, registered by the Hague Union on Jun. 1, 1993 (each are available from Schering Corporation). The aqueous suspension compositions of the present invention may be prepared by admixing mometasone furoate or mometasone furoate monohydrate (preferably mometasone furoate monohydrate) with water and other pharmaceutically acceptable excipients. See International Application No. PCT/US91/06249 especially Examples 1-5 for preparation of mometasone furoate monohydrate and aqueous suspensions containing same. The aqueous suspensions of the invention may contain from about 0.01 to 10.0 mg, preferably 0.1 to 10.0 mg of mometasone furoate monohydrate per gram of suspension. The aqueous suspension compositions according to the present invention may contain, inter alia, water, auxiliaries and/or one or more of the excipients, such as: suspending agents, e.g., microcrystalline cellulose, sodium carboxymethylcellulose, hydroxypropyl-methyl cellulose; humectants, e.g. glycerin and propylene glycol; acids, bases or buffer substances for adjusting the pH, e.g., citric acid, sodium citrate, phosphoric acid, sodium phosphate as well as mixtures of citrate and phosphate buffers; surfactants, e.g. Polysorbate 80; and antimicrobial preservatives, e.g., benzalkonium chloride, phenylethyl alcohol and potassium sorbate.
  • Based on the judgment of the attending clinician, the amount of mometasone furoate administered and the treatment regimen used will, of course, be dependent on the age, sex and medical history of the patient being treated, the severity of the specific asthmatic or non-malignant pulmonary disease condition and the tolerance of patient to the treatment regimen as evidenced by local toxicity (e.g., nasal irritation and/or bleeding) and by systemic side-effects (e.g. cortisol level). Cortisol (also referred to as hydrocortisone) is the major natural glucocorticosteroid elaborated by the adrenal cortex.
  • For the treatment of allergic, non-allergic rhinitis and/or inflammatory diseases of the upper or lower airway passages to treat for example asthma or allergic or non-allergic rhinitis, the substantially non-systematically bioavailable amount of mometasone furoate which may be administered as an aqueous suspension or dry powder is in the range of about 10 to 5000 micrograms (“mcg”)/day, 10 to 4000 mcg/day, 10 to 2000 mcg/day, 25-1000 mcg/day, 25 to 400 mcg/day, 25-200 mcg/day, 25-100 mcg/day or 25-50 mcg/day in single or divided doses.
  • In treating allergic and non-allergic rhinitis, the aqueous suspension of mometasone furoate may be administered intranasally by inserting an appropriate device (such as the pump spray bottle used to deliver Vancenase AQ® Nasal Spray as well as the spray bottle disclosed in the Schering Corporation Industrial Design Deposit DM/026304 registered Jun. 1, 1993) into each nostril. Active drug is then expelled (nasal spray device) or could be nasally inhaled (sniffed) as a powder. Efficacy is generally assessed in a double blind fashion by a reduction in nasal symptoms (e.g., sneezing, itching, congestion, and discharge). Other objective measurements (e.g., nasal peak flow and resistance) can be used as supportive indices of efficacy.
  • For treatment of allergic and/or inflammatory diseases of the lower airways and lung parenchyma especially diseases such as asthma, chronic obstructive pulmonary disease (“COPD”), granulomatous diseases of the lungs and lower airway passage, non-malignant proliferative disease of the lungs e.g., idiopathic pulmonary fibrosis, hypersensitivity pneumonitis and bronchopulmonary dysplasia the following dosage ranges of mometasone furoate may be used: (1) for metered dose inhalers with standard CFC or alternate propellant about 10 to 5000 mcg/day or 10 to 4000 mcg/day or 10 to 2000 mcg/day, or 50 to 1000 mcg/day or 25 to 100 mcg/day, or 25 to 400 mcg/day, or 25 to 200 mcg/day, or 25-50 mcg/day; the preferred dosage range is 50 to 1000 micrograms a day and the preferred dosages are 25, 100, 200 and 250 mcg, administered in one to four puffs; preferably one to three puffs, once-a-day; (2) for the dry powder inhaler—about 10 to 5000 mcg/day or 10-4000 mcg/day or 10-2000 mcg/day or 25-1000 mcg/day or 25-400 mcg/day or 25-200 mcg/day or 50-200 mcg/day or 25-50 mcg/day of anhydrous mometasone furoate; the preferred dosage range of anhydrous mometasone furoate in the dry powder inhaler is 50 to 600 micrograms a day more preferably 100 to 600 mcg a day and the preferred dosages are 50, 100, 200 and 250 mcg, administered in one to three puffs, once-a-day; typically the metered dose inhaler unit will contain 120 doses; (3) for aqueous suspension for inhalation, the preferral dosage ranged from 25 to 800 mcg/100 μL and the dosages are 25, 50, 100, 125, 150, 175, 200, 225, 250, 300, 400, 500 and 800 mcg/100 μL of mometasone furoate in single or divided doses. The aqueous suspension of mometasone furoate has been found to be safe and effective in treating allergic rhinitis e.g. seasonal allergic rhinitis from 25 micrograms up to 1600 micrograms administered once-a-day; the preferred dosage range is 25-800 micrograms a day, although no improvement in treatment is typically found above 400 micrograms a day. The most preferred dosages are 25, 50 and 100 micrograms administered twice to each nostril, once-a-day for a total once-a-day dose of 100, 200 and 400 mcg. Typically 2-4 mL of the aqueous suspension of mometasone furoate monohydrate may be placed in a plastic nebulizer container and the patient would inhale for 2-10 minutes. The total dosage placed in such a container would be in the range of 300-3000 mcg.
  • In a preferred aspect of this invention, the anhydrous mometasone furoate may be admixed with a dry excipient, for example dry lactose for use in the dry powder inhaler. The mometasone furoate:dry lactose ratio varies broadly from 119 to 1:0, and preferably it is 1:19 to 1:4. Typically, the suitable anhydrous mometasone furoate dosage range is 25 to 600 micrograms administered once-a-day. The preferred mometasone furoate dosages for admixture with dry lactose are 25, 100, 200 and 250 micrograms which are administered in one to three puffs a day. The preferred combined mometasone furoate:lactose dose is 500 micrograms for each dose. For example, for the preferred 1:19 ratio, 25 micrograms of anhydrous mometasone furoate are admixed with 475 micrograms of anhydrous lactose and for the preferred 1:4 ratio, 100 micrograms of anhydrous mometasone furoate are admixed with 400 micrograms of anhydrous lactose, to produce the 500 microgram dose of the mometasone furoate:lactose admixture.
  • The dosing regimen for lower airway diseases such as asthma will vary from four times a day to twice a day to once-a-day. Once-a-day (such as at 8 a.m.) maintenance therapy should be adequate, once control of asthma is achieved. It is anticipated, however, that the superior therapeutic index of mometasone furoate will result in effective treatment of patients by once-a-day dosing even at the initiation of the methods of this invention.
  • For other diseases of the lower airway passages and/or lungs, dosing is likely to be two to four times daily, preferably two to three times and most preferably once daily, when adequate control of the disease is achieved.
  • For any route of administration, divided or single doses may be used. For example, when a metered dose inhaler is used to deliver, for example, 500 mcg of aerosolized mometasone furoate, once-a-day, two puffs of 250 mcg would normally be used to deliver the aerosolized drug. When a plastic nebulizer container is used to deliver for example 200 micrograms a day of an aqueous suspension of mometasone furoate, two squeezes of 50 micrograms into each nostril would normally be used to deliver the drug. When the metered dose inhaler is used to deliver for example 200 mcg of anhydrous mometasone furoate, two puffs of 500 micrograms of an admixture of 100 mcg of mometasone furoate and 400 mcg of lactose once-a-day would normally be used to deliver the aerosolized drug.
  • The effectiveness of the methods of this invention can also be shown clinically in mammals, e.g. humans being afflicted with or susceptible to a non-malignant proliferative and/or inflammatory disease such as idiopathic pulmonary fibrosis or using patients with inter alia the following entry criteria: 1. an improved Karnofsky performance status; (2) adequate pulmonary function for undergoing the required inhalation treatment satisfactorily as evidenced by (a) an improved forced expiratory volume (FEV) and (b) an improved forced vital capacity (FVC) and (3) no serious systemic infections and/or fever.
  • Similar results to those achieved in treating asthma are expected.
  • Results
  • The following is a summary of the clinical results obtained in treating asthma and asthmatic conditions.
  • Prior to enrollment, all patients are thoroughly evaluated via a medical history, physical examination, chest x-ray, an electrocardiogram and hematologic and blood chemistry measurements. Pulmonary function including peak expiatory flow rate (PEF), forced expiatory volume in one second (FEV1), and forced vial capacity (FVC) and cortisol levels may be also measured. Subjective and objective symptoms including the number and severity of coughing bouts, shortness of breath, chest tightness and wheezing are normally assessed.
  • Several Phase I studies were conducted using mometasone furoate formulated for delivery as a suspension in a pressurized metered dose inhaler (MDI). In a randomized, third-party blinded, placebo-controlled rising single-dose safety and tolerance study, aerosolized mometasone furoate was administered by a metered dose inhaler to eight healthy male volunteers. Doses were administered at 11 p.m. and plasma cortisol concentrations were measured during the following 24-hour period. Compared to placebo, mometasone furoate doses of 1000 mcg, 2000 mcg and 4000 mcg reduced the 24-hour area under the curve plasma cortisol profile (AUC0-24) by 13%, 23% and 36%, respectively. Equivalent doses of beclomethasone dipropionate (BDP) reduced the AUC0-24 by 30%, 38% and 65%, respectively.
  • In a subsequent placebo-controlled, parallel group Phase I study of safety and pilot efficacy, mometasone furoate was given by MDI at dose of 500 mcg twice daily (“BID”), 1 mg BID, and 2 mg BID for 28 days to 48 patients with mild asthma (12 patients per treatment group) or placebo also given BID by MDI. Therapy with mometasone furoate was well tolerated, and all patients completed the therapy. Patients treated with 1000 mcg of mometasone furoate daily had values for 8 a.m. plasma cortisol that were similar to those of patients treated with 2000 mcg of mometasone furoate daily at all time points; there were small decreases from Baseline on Days 15 and 21 which were statistically significant compared to placebo. Patients treated with 4000 mcg of mometasone furoate daily had greater decreases in plasma cortisol, which were statistically different from placebo from Day 3 through Day 28. The mean values of urinary cortisol tended to decrease during the course of the study for the 2000 mcg and 4000 mcg groups; the mean values of urinary cortisol for the 1000 mcg group were not different from placebo. With respect to the responses to ACTH infusions at post-treatment (Day 30), all of the treatment groups demonstrated significant increases from Baseline in plasma cortisol both immediately after the 8 hour infusion and 24 hours after the beginning of the infusion (i.e., a normal response). The asthma patients treated with mometasone furoate in this placebo-controlled Phase I study exhibited unexpected, clinically meaningful increases in FEV1 values that were ≧15% from Baseline at a majority of time points. The mean increases in FEV1 values for the 1 mg/day, 2 mg/day and 4 mg/day treatment groups were statistically significantly greater than for the placebo group at every time point from day 3 to day 28. The 1 mg/day treatment group showed a statistically significant, clinically meaningful improvement in the FEV1 value even on day 1 compared to the FEV1 value for the placebo group.
  • In a recently completed, randomized, double-blinded multicenter, Phase II study, 395 patients with asthma requiring treatment with inhaled corticosteroids were randomized to one of the five treatment groups: mometasone furoate (MDI 112 mcg/day, 400 mcg/day or 1000 mcg/day, beclomethasone dipropionate (BDP) 336 mcg/day, or placebo. All treatment regimens consisted of BID dosing for 4 weeks. PROVENTIL inhalation aerosol (albuterol, USP) was supplied as rescue medication.
  • Evaluation of Efficacy
  • Efficacy was evaluated by spirometry and by physician and patient evaluation of asthma signs and symptoms. The forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and forced expiratory flow between 25% to 75% (FEF25%-75%) were measured at each visit by the investigator. The peak expiratory flow rate (PEFR) was measured twice daily (AM and PM) by the patient. FEV1 at endpoint of treatment (last evaluable visit) was the primary measure of efficacy. The investigator (at all visits) and the patient (twice daily) rated wheezing, tightness in chest, shortness of breath, and cough on a scale from 0 (None) to 6 (Incapacitating). In addition, the investigator rated the overall condition of asthma on the same scale at each visit, and the patient kept a diary of the total number of asthma attacks each day, the number of night awakenings due to asthma, and the total number of puffs of Proventil (protocol-permitted rescue medication) used. The actual value and changes from Baseline were analyzed for each visit.
  • All treatments were well tolerated; most frequently reported adverse events were dysphonia, pharyngitis, cough and headache, which were generally mild to moderate in severity. All 4 active treatments were statistically superior to placebo at all visits with respect to improvement in FEV1 (p<0.01) compared with the placebo treatment group which experienced a mean decrease in this variable. The two higher doses of mometasone furoate were superior to beclomethasone dipropionate (BDP) at Days 14, 21 and 28. At Day 21 and Day 28, the two higher doses of mometasone furoate were significantly superior to the low mometasone furoate dose. Diary a.m. and p.m. PEFR data were similar to FEV1. During the final week of treatment, all mometasone furoate doses were significantly better than 336 mg dose of BDP in improving a.m. PEFR. Total asthma scores, assessment of overall condition, and therapeutic response to treatment confirmed superiority of all mometasone furoate doses relative to placebo, as well as relationships among the active treatment groups.
  • Mometasone furoate (intranasally in the form of an aqueous suspension of mometasone furoate monohydrate) has been used for treating patients with seasonal allergic rhinitis. The term “seasonal allergic rhinitis” as used herein means a hypersensitivity response to seasonal pollens characterized by inflammation of the nasal mucous membranes, nasal discharge, sneezing and congestion.
  • Several Phase I studies have been completed using the aqueous nasal spray suspension formulation of mometasone furoate monohydrate. In a randomized, third party-blinded, placebo-controlled rising single-dose safety and tolerance study, the aqueous nasal spray suspension formulation was administered to eight healthy male volunteers. Doses were administered at 11 pm, and plasma cortisol concentrations were measured during the following 24-hour period. Compared to placebo, mometasone furoate at doses of 1000 mcg, 2000 mcg, and 4000 mcg did not significantly affect the 24-hour area under the curve plasma cortisol profile (AUC0-24).
  • In a follow-up multiple dose study, 48 normal male volunteers were empanelled in a randomized, third party-blinded, placebo and active-controlled parallel group study. Twelve volunteers in each of four groups received one of the following treatments for 28 days: A) Intranasal aqueous nasal spray suspension formulation of mometasone furoate monohydrate, 400 mcg/day; B) Intranasal aqueous nasal spray suspension formulation of mometasone furoate monohydrate, 1600 mcg/day; C) Intranasal placebo; D) Oral prednisone, 10 mg/day. All treatments were administered as once daily dosing in the morning. The mometasone furoate aqueous nasal spray formulation was well tolerated, and all patients completed the study. Neither of the 2 doses of the mometasone furoate aqueous nasal spray formulation were associated with any changes in cortisol secretion compared to placebo.
  • In addition, a single-dose absorption, excretion and metabolism study using 200 mcg of 3H-mometasone furoate as the nasal spray formulation was conducted in 6 normal male volunteers. When systemic absorption (based on urinary excretion) was compared to an intravenously administered dose of 3H-mometasone furoate, it was 8%. The plasma concentrations of parent drug could not be determined by metabolite profiling because the levels of plasma radioactivity were below the limit of quantification. These data are consistent with substantially less than 1% of bioavailability of mometasone furoate. See Tables 1 to 2 herein below.
  • In a dose ranging safety and efficacy study, the mometasone furoate aqueous nasal spray formulation at doses of 50 mcg/day, 100 mcg/day, 200 mcg/day, 800 mcg/day or placebo was administered to 480 patients with seasonal allergic rhinitis for 4 weeks. All treatments were well tolerated; results of statistical analysis indicated that all doses of mometasone furoate were effective relative to placebo. These results showed that administration of an aqueous suspension of mometasone furoate as a nasal spray to patients with seasonal allergic rhinitis was effacious, well tolerated with little potential for systemic side effects and are consistent with the low oral bioavailability of mometasone furoate.
  • The term “rapid onset of action in treating allergic or seasonal allergic rhinitis” as used herein means that there is a clinically and statistically significant reduction in the total nasal symptom score from baseline for seasonal allergic rhinitis patients treated with mometasone furoate nasal spray with medium onset to moderate or complete relief at 3 days (35.9 hours) compared to 72 hours for the patients treated with a placebo nasal spray. These results were obtained in a randomized, double-blind, multicenter, placebo-controlled, parallel group study to characterize the period between initiation of dosing with mometasone furoate nasal spray and onset of clinical efficacy as measured by the total nasal symptom score in symptomatic patients with seasonal allergic rhinitis. The study lasted 14 days in length. Data from 201 patients were used for analysis.
  • A. Clinical Evaluations
  • 1. Seasonal Allergy Rhinitis
  • a. Signs and symptoms were individually scored by the patient on the diary card, and by the investigator or designee at Screening and Baseline (Day 1), Day 4, Day 8, and Day 15 after treatment.
  • Signs and Symptoms of Rhinitis
    Nasal Non-Nasal
    Nasal stuffiness/congestion Itching/buring eyes
    Rhinorrhea (nasal discharge/ Tearing/watering eyes
    runny nose) Redness of eyes
    Nasal itching, Itching of ears or palate
    Sneezing
  • All symptoms (nasal and non-nasal) were rated by the investigator or designee according to the following scale:
      • 0=None: No signs/symptoms are evident
      • 1=Mild: Signs/symptoms are clearly present but minimal awareness; easily tolerated
      • 2=Moderate: Definite awareness of signs/symptoms which are bothersome but tolerable
      • 3=Severe: Signs/symptoms are hard to tolerate; may cause interference with activities of daily living and/or sleeping
  • 2. Overall Condition of Seasonal Allergic Rhinitis
  • The overall condition of rhinitis was evaluated by the investigator or designee and patient at the same time as symptoms, and scored according to the following criteria:
      • 0=None: No signs/symptoms are evident
      • 1=Mild: Signs/symptoms are clearly present but minimal awareness; easily tolerated
      • 2=Moderate: Definite awareness of signs/symptoms which are bothersome but tolerable
      • 3=Severe: Signs/symptoms are hard to tolerate; may cause interference with activities of daily living and/or sleeping.
  • In order to qualify for randomization, a patient must have had:
      • 1. Nasal congestion ≧2 (moderate) at both Screening and Basline.
      • 2. Total score of the four nasal symptoms ≧7 at both Screening and Baseline.
      • 3. Overall condition ≧2 (moderate) at both Screening and Basline.
  • At visits after Basline, evaluations included the entire time period since the last visit, up to and including the time of the current observations.
  • 3. Drug—Each patient was given a metered nasal pump spray bottle containing either an aqueous suspension of mometasone furoate or placebo. Dosing instructions on the bottle informed patient to deliver 2 sprays of drug (mometasone furoate 50 mcg/spray) or placebo into each nostril once-a-day, each morning.
  • 4. Clinical Efficacy
  • 1. Parameters
  • After the Baseline visit, each patient was instructed to enter into his/her diary the information about the time of onset of nasal relief and level of nasal symptom relief as no relief, slight, moderate, marked, or complete.
  • At Baseline and each follow-up visit, the physician evaluated the following signs and symptoms of allergic rhinitis, scored as 0=none, 1=mild, 2=moderate, 3=severe.
      • a. NASAL SYMPTOMS
        • nasal discharge
        • congestion/stuffiness
        • sneezing
        • itching
      • b. TOTAL NASAL SCORE: sum of the 4 individual nasal scores
      • c. COMPOSITE TOTAL SCORE: sum of the 8 nasal and non-nasal scores
  • The overall condition of rhinitis was also evaluated by both the physician and patient using the same scoring system.
  • At each follow-up visit post Baseline, the physician and patient evaluated the therapeutic response as 5=no relief, 4=slight relief, 3=moderate relief, 2=marked relief, 1=complete relief.
  • After the Basline visit, each morning and evening the patient completed a diary to assess the 8 signs and symptoms of allergic rhinitis as described above.
  • Results
  • The primary efficacy results are based on a survival analysis of the onset times of relief (defined as the first time patient experienced at least moderate relief of nasal symptoms) for the mometasone furoate nasal spray and placebo groups. In this analysis, patients reporting slight or no relief for the first 3 days after treatment were censored at Day 3. Also, results from the patient regular diary (by 15-day average) data were evaluated.
  • Data from 201 patients were used in the survival analysis. There were 101 patients in the mometasone furoate nasal spray group and 100 patients in the placebo group. From the individual patient onset diary data, it was found that there were a total of 24 patients who recorded slight or no relief (i.e. censored) at Day 3 in the mometasone furoate nasal spray group as compared to 50 patients in the placebo group similarly recording slight or no relief (i.e. censored).
  • Survival analysis results suggest that mometasone furoate nasal spray group had a median onset time to relief of 35.9 hours as compared to placebo group's 72 hours (due to more censored observations in this group). From a plot of the survival distribution for the two groups, it was seen that proportion reporting slight or no relief with increasing duration (in total hours) in the placebo group was higher compared to the mometasone furoate nasal spray group. Using a log-rank data showed a statistically significant difference between the two treatment groups (p-value <0.001).
  • Analysis of morning & evening averaged diary data showed that (for the 15-days average) reduction in the total nasal symptom score from baseline for mometasone furoate nasal spray group was statistically significantly higher than that for the placebo group.
  • In a first Phase I trial of the mometasone furoate dry powder inhaler (DPI), mometasone furoate-DPI was once-a-day given to eight normal volunteers in single doses of 400, 800, 1600, 3200 mcg and placebo. Parallel groups of volunteers received either budesonide dry powder (400, 800, 1600, 3200 mcg and placebo) or prednisone (5 mg, 10 mg, 20 mg, 40 mg, or placebo). All doses were administered at 11 p.m., and plasma cortisol levels over the next 24 hours were monitored.
  • Drug Metabolism/Clinical Pharmacology Study
  • A drug metabolism and clinical pharmacology study was conducted by administering (by various routes) tritium-labeled mometasone furoate (“3H-MF”) to 6 groups of 6 normal male volunteers in each group. Blood and urine samples were collected for measurement of total drug (including metabolites).
  • The objectives of these studies in male volunteers were to determine the absorption, metabolism and excretion of 3H-labeled mometasone furoate (“3H-MF”) following administration by oral swallow as a solution and as an aqueous suspension of the monohydrate, by oral inhalation as a suspension from a standard metered dose inhaler (MDI) and from a metered dose inhaler containing a spacer device (Gentlehaler), by nasal inhalation as an aqueous suspension of the mometasone furoate monohydrate from a nasal spray unit and by intravenous injection as a solution.
  • Population
  • Thirty-six (n=6 per treatment group) normal healthy male volunteers between the ages of 19 and 40 yr. (average 29 yr.) having weights in accordance with current actuarial tables (+10%) were enrolled in these single dose studies. All subjects were determined to be in good health by their medical history, physical examinations, clinical and laboratory tests.
  • Study Design
  • Six volunteers in each of the six treatment groups received one of the following 3H-MF dosage forms listed in Table 1:
  • TABLE 1
    Dose*
    Dosage Form mg/Subject μCi/Subject Mode of Administration
    Oral Solution 1.03 209 33.3 ml (0.031 mg/ml)
    by oral swallow
    MDI (metered- 0.86 163 4 puffs from a MDI
    dose inhaler) canister (215
    μg/actuation)
    Nasal Spray 0.19 197 4 sprays from a nasal
    spray bottle (47 μg/spray)
    Gentlehaler 0.40 79 4 bursts from a MDI
    canister containing a
    spacer (referred to as
    Gentlehaler)
    (101 μg/burst)
    Intravenous 1.03 204 1.03 mg/ml administered
    Solution at a rate of 1 ml/min.
    Oral Suspension 0.99 195 1.6 ml (0.62 mg/ml by
    (hydrated) oral swallow
    *Doses based on analysis of dosage forms prior to start of study
  • Plasma, urine, expired air filters, Respirgard and fecal samples were collected and assayed for radioactivity content. The limit of quantitation (LOQ) for plasma radioactivity ranged from 0.103 to 0.138 ng eq/ml., except for the nasal spray treatment where the LOQ was 0.025 ng eq/ml. Selected plasma, urine and fecal samples were analyzed for metabolite profiles.
  • Results
  • Clinical Summary—Mometasone furoate was found to be safe and well tolerated by all volunteers after administration of all dosage forms.
  • Pharmacokinetics—The mean (n=6) plasma concentrations of total radioactivity are illustrated in Summary FIG. 1 and the mean (n=6) pharmacokinetic parameters derived from total plasma radioactivity are presented in Table 2.
  • Comparison of plasma radioactivity illustrated in FIG. 1 and/or urinary excretion data and presented in Table 2 after the various formulations with those after intravenous treatment demonstrated that drug-derived radioactivity was completely absorbed when 3H-MF was administered orally as a solution. In contrast, systemic absorption of drug-derived radioactivity following administration of 3H-MF as an oral suspension or as a nasal spray suspension was approximately 8% of the dose. Systemic absorption of drug-derived radioactivity following administration of 3H-MF via the MDI (30%) and Gentlehaler™ (67%) was higher than that following nasal spray or oral suspension. Although the peak plasma concentration of radioactivity was less than 1 ng eq/ml for both MDI and Gentlehaler, comparative dose normalized AUC radioactivity data and urinary excretion data suggested that absorption of drug-derived radioactivity from the MDI and Gentlehaler was approximately 23-30% and 67-69%, respectively. The drug derived radioactivity data suggested that systemic bioavailability was greater following administration with the Gentlehaler™ compared to MDI administration. This may have been the result of enhanced lung deposition of drug due to the use of a spacer device in the Gentlehaler™. The Gentlehaler™ device is a MDI actuator described in U.S. Pat. No. 4,972,830.
  • Radioactivity was predominantly excreted in the feces regardless of dosage form and route of administration. Excretion of radioactivity in the urine was approximately 25% for the intravenous and oral solution formulations, 7% for the MDI and 16% for the Gentlehaler and 2% or less for both the nasal spray and oral suspension formulations, respectively. These data thus demonstrate that the drug was well absorbed when orally administered as a solution formulation but poorly absorbed following oral or intranasal administration as a suspension formulation.
  • TABLE 2
    PHARMACOKINETIC PARAMETERS OF TOTAL RADIOACTIVITY
    FOLLOWING ADMINISTRATION OF 3H-MF IN MALE VOLUNTEERS
    Dosage Form
    Oral Nasal Oral
    Parameter Intravenous Solution MDI Gentlehaler Spray Suspension
    Cmax 23.7 4.8 0.80 (0.93*) 0.69 (1.71*) BQL** BQL
    AUC(1) 401 488 81 (94*) 110 (275*) BQL BQL
    Urine
    24 25  7 16 2 2
    (% dose)
    Feces 54 62 86 89 78 73
    (% dose)
    U + F 78 87 94 105  80 75
    (% dose)
    % Absorbed
    AUC 122  23*  69*
    Urine 104 30 67 8 8
    *Based on dose normalized data
    **BQL = Below Quantifiable Limit
    Parameter Units Definition
    Cmax ng eq/ml Maximum plasma concentration, except for the
    intravenous treatment, which is C5 min.
    AUC(1) ng eq hr/ml Area under the plasma concentration-
    time curve to infinity.
    Urine % Percent of administered radioactivity excreted in the
    (% dose) urine through 168 hr.
    Feces % Percent of administered radioactivity excreted in
    (% dose) feces through 168 hr.
    U + F % Total percent dose recovered in the urine and
    (% dose) feces through 168 hr.
    % Absorbed % Percent of administered radioactivity absorbed
    (AUC) based on dose normalized treatment data
    versus intravenous data.
    % Absorbed % Percent of administered radioactivity absorbed
    (Urine) (based on urinary excretion data) compared
    to the intravenous dose.
  • Selected plasma, urine and fecal extracts were analyzed by high performance liquid chromatography (HPLC) with radio-flow monitoring to determine metabolite profiles. The results of these analyses demonstrated that, following administration of the oral solution, most of the plasma radioactivity was associated with metabolites more polar than the available standards. Approximately 1.5% of the 3 hr. plasma radioactivity was associated with parent drug indicating extensive first past metabolism and rapid inactivation by the liver. In contrast, following intravenous administration, approximately 39% of the 3 hr. plasma radioactivity was associated with parent drug. Approximately 12% and 33% of the 3 hr. plasma radioactivity was associated with parent drug following administration of the MDI and Gentlehaler, respectively. In general, the plasma concentrations of radioactivity following the nasal and oral suspension routes of administration were too low for metabolite profiling.
  • HPLC/radio-flow analysis of both urinary and fecal extracts following both intravenous and oral solution administration demonstrated that all of the radioactivity was associated with metabolites more polar than parent drug. Analysis of urine specimens obtained from subjects who received 3H-MF by the Gentlehaler also demonstrated that all of the radioactivity was associated with metabolites more polar than parent drug. However, analyses of fecal extracts following administration of the nasal spray, oral suspension and inhalation (MDI and Gentlehaler) formulations, demonstrated the presence primarily of mometasone furoate, presumably due to unabsorbed drug which was swallowed. Hydrolysis of plasma and urine was performed with an enzyme preparation containing both β-glucuronidase and aryl sulfates. These experiments yielded modest changes in the HPLC metabolite profiles that were consistent with the hydrolytic release of conjugated metabolites.
  • The percent of dose as tritiated water in the body was estimated from urinary distillation experiments to be approximately 3.7% after intravenous and 2.9% after oral solution dosing.
  • These findings suggested that less than 4% of the tritium label had exchanged with body water following administration of 3H-MF to male volunteers.
  • The results of these drug metabolism/clinical pharmacology studies demonstrate that:
  • 1. Drug-derived radioactivity was completely absorbed when 3H-MF was given orally as a solution to male volunteers. However, the absolute bioavailability of unchanged mometasone furoate was extremely low (less than approximately 1%) due to extensive first pass metabolism.
  • 2. Drug-derived radioactivity was moderately absorbed following oral inhalation of 3H-MF by the metered dose inhaler (23-30%) and Gentlehaler™ (67-69%).
  • 3. The absorption of drug-derived radioactivity following administration of 3H-MF nasal spray and oral suspension formulations was approximately 8%.
  • 4. The plasma concentrations of unchanged mometasone furoate could not be determined after administration by oral inhalation as a suspension from a MDI or a Gentlehaler, or by nasal inhalation of an aqueous suspension of mometasone furoate monohydrate from a nasal spray unit or by oral swallow of an aqueous suspension of the monohydrate because the plasma concentrations of total radioactivity were too low for metabolite profiling.
  • 5. Mometasone furoate was extensively metabolized following all routes of administration.
  • As shown in Table 2, 3H-MF-derived radioactivity suggests that systemic absorption was greater from an orally swallowed solution (about 100%) than from an orally swallowed suspension or an intranasally inhaled suspension (8%). Mometasone furoate was detectable in plasma by metabolite profiling after administration of the drug by intravenous injection or oral administration as solution dosage forms, but not after administration of the oral or nasal suspensions. Similarly, the excretion of radioactivity in urine after dosing with the solution formulation was greater (25%) than after dosing with the nasal spray or oral suspension (2%). The total recovery or radioactivity in urine and feces was 87% and 75% respectively, with most of the radioactivity being excreted in the feces. After intravenous dosing, the total radioactivity excreted was 78% with 24% being excreted in the urine and 54% being excreted in the feces.

Claims (21)

1-29. (canceled)
30. A method of treating allergic, non-allergic and inflammatory diseases of the upper airway passages comprising administering once daily to nasal passages about 200 micrograms of mometasone furoate.
31. The method of claim 30, wherein the corticosteroid responsive disease is at least one disease selected from the group consisting of seasonal allergic rhinitis, perennial rhinitis, non-malignant proliferative disease of the airway passage, inflammatory diseases of the airway passage and non-allergic rhinitis.
32. The method of claim 30, wherein treating said corticosteroid responsive disease provides relief of at least one sign or symptom selected from the group consisting of seasonal or perennial sneezing, rhinorrhea, nasal congestion, pruritis, eye itching, redness, and tearing.
33. The method of claim 30, wherein the disease is a non-malignant proliferative disease of the airway passage.
34. The method of claim 30, wherein the mometasone furoate is administered as anhydrous mometasone furoate.
35. The method of claim 30, wherein the mometasone furoate is administered in the form of an aqueous suspension of mometasone furoate monohydrate.
36. The method of claim 30, wherein the mometasone furoate is administered in the form of an aqueous suspension of anhydrous mometasone furoate.
37. The method of claim 30, wherein there are administered 200 micrograms of mometasone furoate by applying two times to each nostril about 50 micrograms of mometasone furoate.
38. A method of treating allergic, non-allergic and inflammatory diseases of the upper airway passages comprising administering twice daily to nasal passages about 200 micrograms of mometasone furoate.
39. The method of claim 38, wherein the mometasone furoate is administered in the form of an aqueous suspension.
40. The method of claim 38, wherein the mometasone furoate is administered in the form of an aqueous suspension of mometasone furoate monohydrate.
41. The method of claim 38, wherein the mometasone furoate is administered in the form of an aqueous suspension of anhydrous mometasone furoate.
42. The method of claim 38, wherein there are administered 200 micrograms of mometasone furoate by applying two times to each nostril about 50 micrograms of mometasone furoate.
43. The method of claim 38, wherein the corticosteroid responsive disease is at least one disease selected from the group consisting of seasonal allergic rhinitis, perennial rhinitis, non-malignant proliferative disease of the airway passage, inflammatory diseases of the airway passage and non-allergic rhinitis.
44. The method of claim 38, wherein treating said corticosteroid responsive disease provides relief of at least one sign or symptom selected from the group consisting of seasonal or perennial sneezing, rhinorrhea, nasal congestion, pruritis, eye itching, redness, and tearing.
45. The method of claim 38, wherein the disease is a non-malignant proliferative disease of the airway passage.
46. A method of using a mometasone furoate formulation comprising administering twice daily to nasal passages about 200 micrograms of mometasone furoate.
47. The method of claim 46, wherein the mometasone furoate is administered as anhydrous mometasone furoate.
48. The method of claim 46, wherein the mometasone furoate is administered as mometasone furoate monohydrate.
49. The method of claim 46, wherein there are administered 200 micrograms of mometasone furoate by applying two times to each nostril about 50 micrograms of mometasone furoate.
US12/575,356 1994-01-27 2009-10-07 Use of mometasone furoate for treating airway passage and lung disease Abandoned US20100022493A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/575,356 US20100022493A1 (en) 1994-01-27 2009-10-07 Use of mometasone furoate for treating airway passage and lung disease
US13/366,971 US20120134935A1 (en) 1994-01-27 2012-02-06 Use of mometasone furoate for treating airway passage and lung disease

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US18837294A 1994-01-27 1994-01-27
US37650695A 1995-01-23 1995-01-23
US44458295A 1995-05-19 1995-05-19
US70153696A 1996-08-22 1996-08-22
US70066496A 1996-08-22 1996-08-22
US08/821,135 US5837699A (en) 1994-01-27 1997-03-20 Use of mometasone furoate for treating upper airway passage diseases
US08/911,300 US5889015A (en) 1994-01-27 1997-08-14 Use of mometasone furoate for treating lower airway passage and lung diseases
US09/259,721 US6057307A (en) 1994-01-27 1999-03-01 Use of mometasone furoate for treating airway passage and lung diseases
US09/535,208 US6365581B1 (en) 1994-01-27 2000-03-27 Use of mometasone furoate for treating airway passage and lung diseases
US10/053,204 US6677323B2 (en) 1994-01-27 2002-01-16 Use of mometasone furoate for treating airway passage and lung diseases
US10/050,396 US6677322B2 (en) 1994-01-27 2002-01-16 Use of mometasone furoate for treating airway passage and lung diseases
US10/426,329 US6723713B2 (en) 1994-01-27 2003-04-30 Use of mometasone furoate for treating upper airway diseases
US10/763,143 US6956030B2 (en) 1994-01-27 2004-01-22 Use of mometasone furoate for treating upper airway diseases
US10/763,295 US6949532B2 (en) 1994-01-27 2004-01-22 Use of mometasone furoate for treating airway passage and lung diseases
US11/210,409 US20050287080A1 (en) 1994-01-27 2005-08-24 Use of mometasone furoate for treating airway passage and lung disease
US12/575,356 US20100022493A1 (en) 1994-01-27 2009-10-07 Use of mometasone furoate for treating airway passage and lung disease

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/210,409 Continuation US20050287080A1 (en) 1994-01-27 2005-08-24 Use of mometasone furoate for treating airway passage and lung disease

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/366,971 Continuation US20120134935A1 (en) 1994-01-27 2012-02-06 Use of mometasone furoate for treating airway passage and lung disease

Publications (1)

Publication Number Publication Date
US20100022493A1 true US20100022493A1 (en) 2010-01-28

Family

ID=27539197

Family Applications (12)

Application Number Title Priority Date Filing Date
US08/821,135 Expired - Lifetime US5837699A (en) 1994-01-27 1997-03-20 Use of mometasone furoate for treating upper airway passage diseases
US08/911,300 Expired - Lifetime US5889015A (en) 1994-01-27 1997-08-14 Use of mometasone furoate for treating lower airway passage and lung diseases
US09/259,721 Expired - Lifetime US6057307A (en) 1994-01-27 1999-03-01 Use of mometasone furoate for treating airway passage and lung diseases
US09/535,208 Expired - Lifetime US6365581B1 (en) 1994-01-27 2000-03-27 Use of mometasone furoate for treating airway passage and lung diseases
US10/053,204 Expired - Fee Related US6677323B2 (en) 1994-01-27 2002-01-16 Use of mometasone furoate for treating airway passage and lung diseases
US10/050,396 Expired - Fee Related US6677322B2 (en) 1994-01-27 2002-01-16 Use of mometasone furoate for treating airway passage and lung diseases
US10/426,329 Expired - Fee Related US6723713B2 (en) 1994-01-27 2003-04-30 Use of mometasone furoate for treating upper airway diseases
US10/763,143 Expired - Fee Related US6956030B2 (en) 1994-01-27 2004-01-22 Use of mometasone furoate for treating upper airway diseases
US10/763,295 Expired - Fee Related US6949532B2 (en) 1994-01-27 2004-01-22 Use of mometasone furoate for treating airway passage and lung diseases
US11/210,409 Abandoned US20050287080A1 (en) 1994-01-27 2005-08-24 Use of mometasone furoate for treating airway passage and lung disease
US12/575,356 Abandoned US20100022493A1 (en) 1994-01-27 2009-10-07 Use of mometasone furoate for treating airway passage and lung disease
US13/366,971 Abandoned US20120134935A1 (en) 1994-01-27 2012-02-06 Use of mometasone furoate for treating airway passage and lung disease

Family Applications Before (10)

Application Number Title Priority Date Filing Date
US08/821,135 Expired - Lifetime US5837699A (en) 1994-01-27 1997-03-20 Use of mometasone furoate for treating upper airway passage diseases
US08/911,300 Expired - Lifetime US5889015A (en) 1994-01-27 1997-08-14 Use of mometasone furoate for treating lower airway passage and lung diseases
US09/259,721 Expired - Lifetime US6057307A (en) 1994-01-27 1999-03-01 Use of mometasone furoate for treating airway passage and lung diseases
US09/535,208 Expired - Lifetime US6365581B1 (en) 1994-01-27 2000-03-27 Use of mometasone furoate for treating airway passage and lung diseases
US10/053,204 Expired - Fee Related US6677323B2 (en) 1994-01-27 2002-01-16 Use of mometasone furoate for treating airway passage and lung diseases
US10/050,396 Expired - Fee Related US6677322B2 (en) 1994-01-27 2002-01-16 Use of mometasone furoate for treating airway passage and lung diseases
US10/426,329 Expired - Fee Related US6723713B2 (en) 1994-01-27 2003-04-30 Use of mometasone furoate for treating upper airway diseases
US10/763,143 Expired - Fee Related US6956030B2 (en) 1994-01-27 2004-01-22 Use of mometasone furoate for treating upper airway diseases
US10/763,295 Expired - Fee Related US6949532B2 (en) 1994-01-27 2004-01-22 Use of mometasone furoate for treating airway passage and lung diseases
US11/210,409 Abandoned US20050287080A1 (en) 1994-01-27 2005-08-24 Use of mometasone furoate for treating airway passage and lung disease

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/366,971 Abandoned US20120134935A1 (en) 1994-01-27 2012-02-06 Use of mometasone furoate for treating airway passage and lung disease

Country Status (1)

Country Link
US (12) US5837699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264480B2 (en) 2012-09-25 2022-03-01 Stmicroelectronics, Inc. Threshold adjustment for quantum dot array devices with metal source and drain

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO117414B1 (en) * 1992-12-09 2002-03-29 Jager Paul D Waterbury Pharmaceutical composition of gas dispersoid in solution
US5837699A (en) * 1994-01-27 1998-11-17 Schering Corporation Use of mometasone furoate for treating upper airway passage diseases
PL320856A1 (en) * 1994-12-22 1997-11-10 Astra Ab Aerosol drug preparations
US6495167B2 (en) * 1997-03-20 2002-12-17 Schering Corporation Preparation of powder agglomerates
US6187765B1 (en) * 1997-10-09 2001-02-13 Schering Corporation Mometasone furoate suspensions for nebulization
SE9704186D0 (en) 1997-11-14 1997-11-14 Astra Ab New composition of matter
GB9904919D0 (en) * 1999-03-03 1999-04-28 Novartis Ag Organic compounds
GB9918425D0 (en) * 1999-08-04 1999-10-06 Novartis Ag Organic compounds
EP1311294A2 (en) * 2000-08-04 2003-05-21 Longwood Pharmaceutical Research, Inc. Formulations of mometasone and a bronchodilator for pulmonary administration
GB0019172D0 (en) * 2000-08-05 2000-09-27 Glaxo Group Ltd Novel compounds
US6750210B2 (en) 2000-08-05 2004-06-15 Smithkline Beecham Corporation Formulation containing novel anti-inflammatory androstane derivative
US6858593B2 (en) 2000-08-05 2005-02-22 Smithkline Beecham Corporation Anti-inflammatory androstane derivative compositions
US6777400B2 (en) * 2000-08-05 2004-08-17 Smithkline Beecham Corporation Anti-inflammatory androstane derivative compositions
US6787532B2 (en) 2000-08-05 2004-09-07 Smithkline Beecham Corporation Formulation containing anti-inflammatory androstane derivatives
AU2001276497B2 (en) * 2000-08-05 2005-04-07 Glaxo Group Limited 17.beta.-carbothioate 17.alpha.-arylcarbonyloxyloxy androstane derivative as anti-inflammatory agents
US6759398B2 (en) 2000-08-05 2004-07-06 Smithkline Beecham Corporation Anti-inflammatory androstane derivative
US6858596B2 (en) * 2000-08-05 2005-02-22 Smithkline Beecham Corporation Formulation containing anti-inflammatory androstane derivative
US6777399B2 (en) 2000-08-05 2004-08-17 Smithkline Beecham Corporation Anti-inflammatory androstane derivative compositions
US20100184732A1 (en) * 2000-09-15 2010-07-22 Mcdonald George Method of long-term treatment of graft-versus-host disease using topical active corticosteroids
US20020086857A1 (en) * 2000-09-15 2002-07-04 Mcdonald George B. Method of long-term treatment of graft-versus-host disease using topical active corticosterioids
UA77656C2 (en) 2001-04-07 2007-01-15 Glaxo Group Ltd S-fluoromethyl ester of 6-alpha, 9-alpha-difluoro-17-alpha-[(2-furanylcarbonyl)oxy]-11-beta-hydroxy-16- alpha-methyl-3-oxoandrosta-1,4-dien-17-beta-carbothioacid as anti-inflammatory agent
KR100831534B1 (en) * 2001-04-30 2008-05-22 글락소 그룹 리미티드 Anti-inflammatory 17.beta.-carbothioate ester derivatives of androstane with a cyclic ester group in position 17.alpha
ATE399174T1 (en) * 2001-06-12 2008-07-15 Glaxo Group Ltd NEW ANTI-INFLAMMATORY 17.ALPHA.-HETEROCYCLIC ESTERS OF 17.BETA.-CARBOTHIOATE ANDROSTANE DERIVATIVES
US20030105162A1 (en) * 2001-08-21 2003-06-05 Celluar Sciences, Inc. Method for treating bronchial constriction and bronchospasm
JP2003221335A (en) 2001-10-26 2003-08-05 Dey Lp Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptom of chronic obstructive pulmonary disease
US20030203930A1 (en) * 2001-10-26 2003-10-30 Imtiaz Chaudry Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptoms of chronic obstructive pulmonary disease
US20030191151A1 (en) * 2001-10-26 2003-10-09 Imtiaz Chaudry Albuterol and ipratropium inhalation solution, system, kit and method for relieving symptoms of chronic obstructive pulmonary disease
US20030140920A1 (en) * 2001-10-26 2003-07-31 Dey L.P. Albuterol inhalation soultion, system, kit and method for relieving symptoms of pediatric asthma
US6702997B2 (en) 2001-10-26 2004-03-09 Dey, L.P. Albuterol inhalation solution, system, kit and method for relieving symptoms of pediatric asthma
EP1441715B1 (en) * 2001-11-06 2013-02-27 The Brigham And Women's Hospital, Inc. Lipoxins and aspirin-triggered lipoxins and their stable analogs in the treatment of asthma and inflammatory airway diseases
US20050175545A1 (en) * 2002-02-04 2005-08-11 Keith Biggadike Formulation for inhalation comprising a glucocorticoid and a beta 2-adrenoreceptor agonist
GB0202635D0 (en) * 2002-02-05 2002-03-20 Glaxo Wellcome Mfg Pte Ltd Formulation containing novel anti-inflammatory androstane derivative
GB2389530B (en) * 2002-06-14 2007-01-10 Cipla Ltd Pharmaceutical compositions
US20040053902A1 (en) * 2002-09-13 2004-03-18 Smith C. Steven Novel composition and method for treatment of upper respiratory conditions
US20040235807A1 (en) * 2003-05-21 2004-11-25 Weinrich Karl P. Formulations including a topical decongestant and a topical corticosteroid suitable for nasal administration and method for treating obstructive sleep apnea
SE527200C2 (en) * 2003-06-19 2006-01-17 Microdrug Ag Administration of metered dry powder combined doses of finely divided dry medication powders involves selecting first and second medicaments for forming of pharmaceutical, combined doses
NZ545748A (en) * 2003-08-29 2010-03-26 Ranbaxy Lab Ltd Isoxazoline derivatives as inhibitors of phosphodiesterase type-IV
WO2005030220A1 (en) * 2003-09-26 2005-04-07 Schering Corporation Pulmonary disease treatment
WO2005044186A2 (en) * 2003-10-28 2005-05-19 Glaxo Group Limited Inhalable pharmaceutical formulations employing desiccating agents and methods of administering the same
EP1694655A2 (en) * 2003-11-26 2006-08-30 Ranbaxy Laboratories Limited Phosphodiesterase inhibitors
ES2340777T3 (en) 2004-01-21 2010-06-09 Schering Corporation METHOD OF TREATMENT OF ACUTE RHINOSINUSITIS.
ES2317245T3 (en) * 2004-05-31 2009-04-16 Laboratorios Almirall, S.A. COMBINATIONS THAT INCLUDE ANTIMUSCARINIC AGENTS AND BETA-ADRENERGIC AGONISTS.
JP2008509143A (en) * 2004-08-04 2008-03-27 シェーリング コーポレイション Pharmaceutical formulations containing pleconaril for the treatment of airway diseases
US20080009535A1 (en) * 2004-08-30 2008-01-10 Sarala Balachandran Inhibitors of phosphodiesterase type-IV
US7858650B2 (en) * 2004-10-22 2010-12-28 Ono Pharmaceutical Co., Ltd. Medicinal composition for inhalation
US7524831B2 (en) * 2005-03-02 2009-04-28 Schering Corporation Treatments for Flaviviridae virus infection
GB0507165D0 (en) * 2005-04-08 2005-05-18 Glaxo Group Ltd Novel crystalline pharmaceutical product
GB0523653D0 (en) * 2005-11-21 2005-12-28 Novartis Ag Organic compounds
EP1934219A1 (en) 2005-09-16 2008-06-25 Ranbaxy Laboratories Limited Substituted pyrazolo [3,4-b] pyridines as phosphodiesterase inhibitors
US20070099883A1 (en) * 2005-10-07 2007-05-03 Cheryl Lynn Calis Anhydrous mometasone furoate formulation
CA2626628A1 (en) * 2005-10-19 2007-04-26 Ranbaxy Laboratories Limited Compositions of phosphodiesterase type iv inhibitors
AU2006305619A1 (en) 2005-10-19 2007-04-26 Ranbaxy Laboratories Limited Pharmaceutical compositions of muscarinic receptor antagonists
EP1962869B1 (en) * 2005-12-21 2013-03-20 SolAeroMed Inc. Treatment of respiratory diseases
US7399248B2 (en) * 2006-05-22 2008-07-15 Ford Motor Company Moving coil electronic locking differential
US8568790B2 (en) * 2006-05-31 2013-10-29 Medihoney Pty Ltd. Medicinal compositions containing honey
GB0615108D0 (en) * 2006-07-28 2006-09-06 Glaxo Group Ltd Novel formulations
US20100029728A1 (en) * 2006-09-22 2010-02-04 Ranbaxy Laboratories Limited Phosphodiesterase inhibitors
US20110021473A1 (en) * 2006-09-22 2011-01-27 Ranbaxy Laboratories Limited Inhibitors of phosphodiesterase type-iv
AU2007311607A1 (en) * 2006-10-19 2008-04-24 Cipla Limited Pharmaceutical compositions and nasal spray incorporating anhydrous mometasone furoate
WO2008057248A2 (en) * 2006-10-26 2008-05-15 Next Breath Llc Phospholipid-based inhalation system
NZ547946A (en) * 2006-12-14 2009-10-30 Waikatolink Ltd Treatment composition
US20080207659A1 (en) * 2007-02-15 2008-08-28 Asit Kumar Chakraborti Inhibitors of phosphodiesterase type 4
WO2008111009A1 (en) * 2007-03-14 2008-09-18 Ranbaxy Laboratories Limited Pyrazolo [3, 4-b] pyridine derivatives as phosphodiesterase inhibitors
PL2124944T3 (en) 2007-03-14 2012-08-31 Sun Pharmaceutical Ind Ltd Pyrazolo[3,4-b]pyridine derivatives as phosphodiesterase inhibitors
US20090082318A1 (en) * 2007-09-26 2009-03-26 Protia, Llc Deuterium-enriched mometasone
CN101909626A (en) * 2007-10-25 2010-12-08 默克弗罗斯特加拿大有限公司 Combination therapy
EP2111861A1 (en) 2008-04-21 2009-10-28 Ranbaxy Laboratories Limited Compositions of phosphodiesterase type IV inhibitors
US8642069B2 (en) * 2008-08-27 2014-02-04 Alexander D. Goldin Composition and method for treating colds
PL2435025T3 (en) * 2009-05-29 2017-08-31 Pearl Therapeutics, Inc. Respiratory delivery of active agents
US8815258B2 (en) 2009-05-29 2014-08-26 Pearl Therapeutics, Inc. Compositions, methods and systems for respiratory delivery of two or more active agents
US10383894B2 (en) * 2010-03-17 2019-08-20 Lutran Industries, Inc. Human medicinal treatment using salt of peroxymonosulfuric acid
JOP20120023B1 (en) 2011-02-04 2022-03-14 Novartis Ag Dry powder formulations of particles that contain two or more active ingredients for treating obstructive or inflammatory airways diseases
KR102074543B1 (en) 2013-03-14 2020-02-06 노파르티스 아게 Deamorphization of spray-dried formulations via spray-blending
US9452139B2 (en) 2013-03-14 2016-09-27 Novartis Ag Respirable agglomerates of porous carrier particles and micronized drug
TR201902687T4 (en) 2013-03-15 2019-03-21 Pearl Therapeutics Inc Methods and systems for conditioning coarse crystalline materials.
KR20160013134A (en) 2013-05-22 2016-02-03 펄 테라퓨틱스 인코포레이티드 Compositions, methods & systems for respiratory delivery of three or more active agents
US9937189B2 (en) 2013-09-13 2018-04-10 Glenmark Specialty S.A. Stable fixed dose pharmaceutical composition comprising mometasone and olopatadine
DK3043773T3 (en) 2013-09-13 2021-10-04 Glenmark Specialty Sa STABLE PHARMACEUTICAL FIXED DOSAGE COMPOSITION INCLUDING MOMETASON AND OLOPATADIN FOR NASAL ADMINISTRATION
US9370483B2 (en) 2013-09-13 2016-06-21 Glenmark Specialty S.A. Stable fixed dose pharmaceutical composition comprising mometasone and olopatadine
US10758550B2 (en) 2013-10-04 2020-09-01 Glenmark Specialty S.A. Treatment of allergic rhinitis using a combination of mometasone and olopatadine
EP2922553A1 (en) * 2013-10-04 2015-09-30 Glenmark Pharmaceuticals Limited Treatment of allergic rhinitis using a combination of mometasone and olopatadine
US10016443B2 (en) 2013-10-04 2018-07-10 Glenmark Specialty S.A. Treatment of allergic rhinitis using a combination of mometasone and olopatadine
US10548907B2 (en) 2013-10-04 2020-02-04 Glenmark Specialty S.A. Treatment of allergic rhinitis using a combination of mometasone and olopatadine
US10653661B2 (en) * 2013-10-04 2020-05-19 Glenmark Specialty S.A. Treatment of allergic rhinitis using a combination of mometasone and olopatadine
CA2940599A1 (en) 2014-03-27 2015-10-01 Novartis Ag Spray-dried solid-in-oil-in-water dispersions for inhalation of active pharmaceutical ingredients
US11679210B2 (en) 2014-10-03 2023-06-20 Glenmark Specialty S.A. Dispensing device and pharmaceutical composition for the treatment of rhinitis
CN113350353A (en) * 2015-03-23 2021-09-07 墨尔本大学 Treatment of respiratory diseases
CN112997256A (en) 2018-06-14 2021-06-18 阿斯利康(英国)有限公司 Methods of treating and preventing asthma symptoms using corticosteroid pharmaceutical compositions
TW202317080A (en) 2021-07-09 2023-05-01 美商阿斯特捷利康有限責任公司 Compositions, methods and systems for aerosol drug delivery
WO2023119093A1 (en) 2021-12-20 2023-06-29 Astrazeneca Ab Compositions, methods and systems for aerosol drug delivery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267173A (en) * 1979-11-05 1981-05-12 Schering Corporation Use of 6β-fluoro-7α-halogenocorticoids as topical anti-inflammatories and pharmaceutical formulations useful therefor
US5837699A (en) * 1994-01-27 1998-11-17 Schering Corporation Use of mometasone furoate for treating upper airway passage diseases
US6068832A (en) * 1996-08-29 2000-05-30 Schering Corporation Chlorofluorocarbon-free mometasone furoate aerosol formulations
US6187765B1 (en) * 1997-10-09 2001-02-13 Schering Corporation Mometasone furoate suspensions for nebulization
US6503482B1 (en) * 1991-06-10 2003-01-07 Schering Corporation Non-chlorofluorocarbon aerosol formulations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CY1359A (en) * 1981-02-02 1987-08-07 Schering Corp Aromatic heterocyclic esters of steroids, their preparation and pharmaceutical compositions containing them
MX9203396A (en) * 1990-09-10 1992-07-31 Schering Corp MOMETASONE FUROATE MONOHYDRATE, PROCESS TO PRODUCE IT AND PHARMACEUTICAL COMPOSITIONS.
DE69123960T2 (en) * 1990-10-16 1997-05-07 John Lezdey TREATMENT OF INFLAMMATION
EP0504112A3 (en) * 1991-03-14 1993-04-21 Ciba-Geigy Ag Pharmaceutical aerosol formulations
DK0656207T4 (en) * 1991-06-10 2009-11-30 Schering Corp Aerosol formulations without chlorofluorocarbon compounds
US6127353A (en) 1991-09-06 2000-10-03 Schering Corporation Mometasone furoate monohydrate, process for making same and pharmaceutical compositions
SE9203743D0 (en) * 1992-12-11 1992-12-11 Astra Ab EFFICIENT USE

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267173A (en) * 1979-11-05 1981-05-12 Schering Corporation Use of 6β-fluoro-7α-halogenocorticoids as topical anti-inflammatories and pharmaceutical formulations useful therefor
US6503482B1 (en) * 1991-06-10 2003-01-07 Schering Corporation Non-chlorofluorocarbon aerosol formulations
US6365581B1 (en) * 1994-01-27 2002-04-02 Schering Corporation Use of mometasone furoate for treating airway passage and lung diseases
US6057307A (en) * 1994-01-27 2000-05-02 Schering Corporation Use of mometasone furoate for treating airway passage and lung diseases
US5889015A (en) * 1994-01-27 1999-03-30 Schering Corporation Use of mometasone furoate for treating lower airway passage and lung diseases
US5837699A (en) * 1994-01-27 1998-11-17 Schering Corporation Use of mometasone furoate for treating upper airway passage diseases
US6677323B2 (en) * 1994-01-27 2004-01-13 Schering Corporation Use of mometasone furoate for treating airway passage and lung diseases
US6677322B2 (en) * 1994-01-27 2004-01-13 Schering Corporation Use of mometasone furoate for treating airway passage and lung diseases
US6723713B2 (en) * 1994-01-27 2004-04-20 Schering Corporation Use of mometasone furoate for treating upper airway diseases
US6949532B2 (en) * 1994-01-27 2005-09-27 Schering Corporation Use of mometasone furoate for treating airway passage and lung diseases
US6956030B2 (en) * 1994-01-27 2005-10-18 Schering Corporation Use of mometasone furoate for treating upper airway diseases
US6068832A (en) * 1996-08-29 2000-05-30 Schering Corporation Chlorofluorocarbon-free mometasone furoate aerosol formulations
US6187765B1 (en) * 1997-10-09 2001-02-13 Schering Corporation Mometasone furoate suspensions for nebulization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264480B2 (en) 2012-09-25 2022-03-01 Stmicroelectronics, Inc. Threshold adjustment for quantum dot array devices with metal source and drain

Also Published As

Publication number Publication date
US20050287080A1 (en) 2005-12-29
US5889015A (en) 1999-03-30
US20020127187A1 (en) 2002-09-12
US20120134935A1 (en) 2012-05-31
US6956030B2 (en) 2005-10-18
US20020103175A1 (en) 2002-08-01
US6677323B2 (en) 2004-01-13
US6723713B2 (en) 2004-04-20
US6949532B2 (en) 2005-09-27
US20040223920A1 (en) 2004-11-11
US6365581B1 (en) 2002-04-02
US6677322B2 (en) 2004-01-13
US5837699A (en) 1998-11-17
US20040152683A1 (en) 2004-08-05
US6057307A (en) 2000-05-02
US20030216365A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
US6949532B2 (en) Use of mometasone furoate for treating airway passage and lung diseases
CA2182086C (en) Use of mometasone furoate for treating airway passage and lung diseases
US20050186144A1 (en) Treatment methods

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION