US20100022824A1 - Tissue modification devices and methods of using the same - Google Patents

Tissue modification devices and methods of using the same Download PDF

Info

Publication number
US20100022824A1
US20100022824A1 US12/422,176 US42217609A US2010022824A1 US 20100022824 A1 US20100022824 A1 US 20100022824A1 US 42217609 A US42217609 A US 42217609A US 2010022824 A1 US2010022824 A1 US 2010022824A1
Authority
US
United States
Prior art keywords
tissue
distal end
modification device
elongated member
tissue modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/422,176
Inventor
James S. Cybulski
Fred R. Seddiqui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSYTE MEDICAL TECHNOLOGIES Inc
Original Assignee
AXIS SURGICAL TECHNOLOGIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AXIS SURGICAL TECHNOLOGIES Inc filed Critical AXIS SURGICAL TECHNOLOGIES Inc
Priority to US12/422,176 priority Critical patent/US20100022824A1/en
Priority to CN201410145799.3A priority patent/CN103961177B/en
Priority to CN2009801370234A priority patent/CN102159140A/en
Priority to US13/055,662 priority patent/US20120095458A1/en
Priority to EA201100251A priority patent/EA201100251A1/en
Priority to CA2768610A priority patent/CA2768610A1/en
Priority to EP09800963.2A priority patent/EP2317931B1/en
Priority to JP2011520179A priority patent/JP2011528950A/en
Priority to BRPI0916269A priority patent/BRPI0916269A2/en
Priority to PCT/US2009/051446 priority patent/WO2010011781A2/en
Assigned to AXIS SURGICAL TECHNOLOGIES INC. reassignment AXIS SURGICAL TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CYBULSKI, JAMES S., SEDDIQUI, FRED R.
Publication of US20100022824A1 publication Critical patent/US20100022824A1/en
Assigned to BIOSTAR VENTURES II, L.P., AS COLLATERAL AGENT reassignment BIOSTAR VENTURES II, L.P., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: AXIS SURGICAL TECHNOLOGIES, INC.
Assigned to INSYTE MEDICAL TECHNOLOGIES, INC. reassignment INSYTE MEDICAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AXIS SURGICAL TECHNOLOGIES, INC.
Priority to US13/777,523 priority patent/US20130303846A1/en
Priority to US16/000,731 priority patent/US20180317752A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00091Nozzles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00114Electrical cables in or with an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/00167Details of optical fibre bundles, e.g. shape or fibre distribution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00183Optical arrangements characterised by the viewing angles for variable viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3135Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for examination of the epidural or the spinal space
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/317Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for bones or joints, e.g. osteoscopes, arthroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320071Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • Tissue modification devices are provided. Aspects of the devices include an elongated member having a proximal end and a distal end. The distal end of the elongated member is dimensioned to pass through a minimally invasive body opening and includes a distal end integrated visualization sensor and tissue modifier. In some instances, the devices further include an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member. Also provided are methods of modifying internal target tissue of a subject using the tissue modification devices.
  • FIGS. 1A and B provide two different views of a disposable tissue modification device according to an embodiment of the invention.
  • FIGS. 2A to 2C provide cross-sectional views of the distal ends of devices according to certain embodiments of the invention.
  • FIGS. 3A to 3E provide cross-sectional views of the distal ends of devices according to certain embodiments of the invention.
  • FIG. 4 provides an alternative view of the distal end of a device according to an embodiment of the invention, where the device is shown accessing the nucleus pulposus of an intervertebral disc.
  • FIG. 5 provides an alternative view of the distal end of a device according to an embodiment of the invention, where the device is shown accessing the nucleus pulposus of an intervertebral disc.
  • FIGS. 6A to 6E provide various views of the distal end of a device according to one embodiment of the invention.
  • FIG. 7 provides a cutaway view of the device shown in FIGS. 1A and 1B .
  • FIG. 8 provides a depiction of a system according to one embodiment of the invention, where the system includes both a disposable tissue modifier device and an extra-corporeal control unit.
  • FIG. 9 provides a block diagram showing the architecture of a system according to one embodiment of the invention and how that system interacts with a user.
  • FIG. 10 shows a CMOS visualization sub-system that may be incorporated into a tissue modification system according to an embodiment of the invention.
  • Tissue modification devices are provided. Aspects of the devices include an elongated member having a proximal end and a distal end. The distal end of the elongated member is dimensioned to pass through a minimally invasive body opening and includes a distal end integrated visualization sensor and tissue modifier. In some instances, the devices further include an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member. Also provided are methods of modifying internal target tissue of a subject using the tissue modification devices.
  • tissue modification devices useful for modifying an internal target tissue site, e.g., a spinal location that is near or inside of an intervertebral disc (IVD).
  • IVD intervertebral disc
  • the tissue modification devices are dimensioned such that at least the distal end of the devices can pass through a minimally invasive body opening.
  • At least the distal end of the devices may be introduced to an internal target site of a patient, e.g., a spinal location that is near or inside of an intervertebral disc, through a minimal incision, e.g., one that is less than the size of an incision employed for an access device having a outer diameter of 20 mm or smaller, e.g., less than 75% the size of such an incision, such as less than 50% of the size of such an incision, or smaller.
  • a minimal incision e.g., one that is less than the size of an incision employed for an access device having a outer diameter of 20 mm or smaller, e.g., less than 75% the size of such an incision, such as less than 50% of the size of such an incision, or smaller.
  • at least the distal end of the elongated member is dimensioned to pass through a Cambin's triangle.
  • the Cambin's triangle (also known in the art as the Pambin's triangle) is an anatomical spinal structure bounded by an exiting nerve root and a traversing nerve root and a disc.
  • the exiting root is the root that leaves the spinal canal just cephalad (above) the disc
  • the traversing root is the root that leaves the spinal canal just caudad (below) the disc.
  • the distal end of the elongated member is dimensioned to pass through a Cambin's triangle
  • at least the distal end of the device has a longest cross-sectional dimension that is 10 mm or less, such as 8 mm or less and including 7 mm or less.
  • the elongated member has an outer diameter that is 7.5 mm or less, such as 7.0 mm or less, including 6.7 mm or less, such as 6.6 mm or less, 6.5 mm or less, 6.0 mm or less, 5.5 mm or less, 5.0 mm or less.
  • tissue modification devices of the invention include an elongated member.
  • this component of the devices is elongated, it has a length that is 1.5 times or longer than its width, such as 2 times or longer than its width, including 5 or even 10 times or longer than its width, e.g., 20 times longer than its width, 30 times longer than its width, or longer.
  • the length of the elongated member may vary, an in some instances ranges from 5 cm to 20 cm, such as 7.5 cm to 15 cm and including 10 to 12 cm.
  • the elongated member may have the same outer cross-sectional dimensions (e.g., diameter) along its entire length. Alternatively, the cross-sectional diameter may vary along the length of the elongated member.
  • the elongated members of the subject tissue modification devices have a proximal end and a distal end.
  • proximal end refers to the end of the elongated member that is nearer the user (such as a physician operating the device in a tissue modification procedure)
  • distal end refers to the end of the elongated member that is nearer the internal target tissue of the subject during use.
  • the elongated member is, in some instances, a structure of sufficient rigidity to allow the distal end to be pushed through tissue when sufficient force is applied to the proximal end of the elongate member. As such, in these embodiments the elongated member is not pliant or flexible, at least not to any significant extent.
  • the elongated member may or may not include one or more lumens that extend at least partially along its length.
  • the lumens may vary in diameter and may be employed for a variety of different purposes, such as irrigation, aspiration, electrical isolation (for example of conductive members, such as wires), as a mechanical guide, etc., as reviewed in greater detail below.
  • such lumens may have a longest cross section that varies, ranging in some in stances from 0.5 to 5.0 mm, such as 1.0 to 4.5 mm, including 1.0 to 4.0 mm.
  • the lumens may have any convenient cross-sectional shape, including but not limited to circular, square, rectangular, triangular, semi-circular, trapezoidal, irregular, etc., as desired. These lumens may be provided for a variety of different functions, including as irrigation and/or aspiration lumens, as described in greater detail below.
  • the devices include a distal end integrated visualization sensor and a distal end integrated tissue modifier.
  • the visualization sensor is integrated at the distal end of the device, it cannot be removed from the remainder of the device without significantly compromising the structure and functionality of the device.
  • the devices of the present invention are distinguished from devices which include a “working channel” through which a separate autonomous device, such as a tissue modifier, is passed through.
  • a separate autonomous device such as a tissue modifier
  • the visualization sensor may be integrated with the distal end of the elongated member by a variety of different configurations. Integrated configurations include configurations where the visualization sensor is fixed relative to the distal end of the elongated member, as well as configurations where the visualization sensor is movable to some extent relative to the distal end of the elongated member. Movement of the visualizations sensor may also be provided relative to the distal end of the elongated member, but then fixed with respect to another component present at the distal end, such as a distal end integrated tissue modifier. Specific configurations of interest are further described below in connection with the figures.
  • Visualization sensors of interest include miniature imaging sensors that have a cross-sectional area which is sufficiently small for its intended use and yet retains a sufficiently high matrix resolution.
  • Imaging sensors of interest are those that include a photosensitive component, e.g., array of photosensitive elements that convert light into electrons, coupled to an integrated circuit.
  • the integrated circuit may be configured to obtain and integrate the signals from the photosensitive array and output image data, which image data may in turn be conveyed to an extra-corporeal device configured to receive the data and display it to a user.
  • the image sensors of these embodiments may be viewed as integrated circuit image sensors.
  • the integrated circuit component of these sensors may include a variety of different types of functionalities, including but not limited to: image signal processing, memory, and data transmission circuitry to transmit data from the visualization sensor to an extra-corporeal location, etc.
  • the miniature imaging sensors may further include a lens component made up of one or more lenses positioned relative to the photosensitive component so as to focus images on the photosensitive component. Where desired, the one or more lenses may be present in a housing.
  • Specific types of miniature imaging sensors of interest include complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled device (CCD) sensors.
  • CMOS complementary metal-oxide-semiconductor
  • CCD charge-coupled device
  • the sensors may have any convenient configuration, including circular, square, rectangular, etc.
  • Visualization sensors of interest may have a longest cross-sectional dimension that varies depending on the particular embodiment, where in some instances the longest cross sectional dimension (e.g., diameter) is 4.0 mm or less, such as 3.5 mm or less, including 3.0 mm or less, such as 2.5 mm or less, including 2.0 mm or less, including 1.5 mm or less, including 1.0 mm or less.
  • the longest cross sectional dimension e.g., diameter
  • Imaging sensors of interest may be either frontside or backside illumination sensors, and have sufficiently small dimensions while maintaining sufficient functionality to be integrated at the distal end of the elongated members of the devices of the invention. Aspects of these sensors are further described in one or more the following U.S. Patents, the disclosures of which are herein incorporated by reference: U.S. Pat. Nos. 7,388,242; 7,368,772; 7,355,228; 7,345,330; 7,344,910; 7,268,335; 7,209,601; 7,196,314; 7,193,198; 7,161,130; and 7,154,137.
  • the visualization sensor is a distal end integrated visualization sensor, it is located at or near the distal end of the elongated member. Accordingly, it is positioned at 3 mm or closer to the distal end, such as at 2 mm or closer to the distal end, including at 1 mm or closer to the distal end. In some instances, the visualization sensor is located at the distal end of the elongated member.
  • the visualization sensor may provide for front viewing and/or side-viewing, as desired. Accordingly, the visualization sensor may be configured to provide image data as seen in the forward direction from the distal end of the elongated member. Alternatively, the visualization sensor may be configured to provide image data as seen from the side of the elongate member.
  • a visualization sensor may be configured to provide image data from both the front and the side, e.g., where the image sensor faces at an angle that is less than 90° relative to the longitudinal axis of the elongated member, e.g., as illustrated in FIGS. 6A to 6C , described in greater detail below.
  • the visualization sensor is a distal end integrated visualization sensor
  • the visualization sensor also includes functionality for conveying image data to an extra-corporeal device, such as an image display device.
  • an extra-corporeal device such as an image display device.
  • a signal cable (or other type of signal conveyance element) may be present to connect the image sensor at the distal end to a device at the proximal end of the elongate member, e.g., in the form of one or more wires running along the length of the elongate member from the distal to the proximal end.
  • wireless communication protocols may be employed, e.g., where the imaging sensor is operatively coupled to a wireless data transmitter, which may be positioned at the distal end of the elongated member (including integrated into the visualization sensor, at some position along the elongated member or at the proximal end of the device, e.g., at a location of the proximal end of the elongated member or associated with the handle of the device).
  • the devices may include one or more illumination elements configured to illuminate a target tissue location so that the location can be visualized with a visualization sensor, e.g., as described above.
  • illumination elements A variety of different types of light sources may be employed as illumination elements, so long as their dimensions are such that they can be positioned at the distal end of the elongated member.
  • the light sources may be integrated with a given component (e.g., elongated member) such that they are configured relative to the component such that the light source element cannot be removed from the remainder of the component without significantly compromising the structure of the component.
  • the integrated illumination element of these embodiments is not readily removable from the remainder of the component, such that the illumination element and remainder of the component form an inter-related whole.
  • the light sources may be light emitting diodes configured to emit light of the desired wavelength range, or optical conveyance elements, e.g., optical fibers, configured to convey light of the desired wavelength range from a location other than the distal end of the elongate member, e.g., a location at the proximal end of the elongate member, to the distal end of the elongate member.
  • the light sources may include a conductive element, e.g., wire, or an optical fiber, which runs the length of the elongate member to provide for power and control of the light sources from a location outside the body, e.g., an extracorporeal control device.
  • the light sources may include a diffusion element to provide for uniform illumination of the target tissue site.
  • Any convenient diffusion element may be employed, including but not limited to a translucent cover or layer (fabricated from any convenient translucent material) through which light from the light source passes and is thus diffused.
  • the illumination elements may emit light of the same wavelength or they may be spectrally distinct light sources, where by “spectrally distinct” is meant that the light sources emit light at wavelengths that do not substantially overlap, such as white light and infra-red light.
  • an illumination configuration as described in copending U.S. application Ser. Nos. 12/269,770 and 12/269,772 (the disclosures of which are herein incorporated by reference) is present in the device.
  • devices of the invention further include an integrated distal end tissue modifier.
  • tissue modifier As the tissue modifier is integrated at the distal end of the device, it cannot entirely be removed from the remainder of the device without significantly compromising the structure and functionality of the device. While the tissue modifier cannot entirely be removed from the device without compromising the structure and functionality of the device, components of the tissue modifier may be removable and replaceable.
  • an RF electrode tissue modifier may be configured such that the wire component of the tissue modifier may be replaceable while the remainder of the tissue modifier is not. Accordingly, the devices of the present invention are distinguished from devices which include a “working channel” through which a separate autonomous tissue modifier device, such as autonomous RF electrode device, is passed through.
  • the tissue modifier of the present device is integrated at the distal end, it is not a separate device from the elongated member that is merely present in a working channel of the elongated member and which can be removed from the working channel of such an elongated member without structurally compromising the elongated member in any way.
  • the tissue modifier may be integrated with the distal end of the elongated member by a variety of different configurations. Integrated configurations include configurations where the tissue modifier is fixed relative to the distal end of the elongated member, as well as configurations where the tissue modifier is movable to some extent relative to the distal end of the elongated member may be employed in devices of the invention. Specific configurations of interest are further described below in connection with the figures.
  • the tissue modifier is a distal end integrated tissue modifier, it is located at or near the distal end of the elongated member. Accordingly, it is positioned at 10 mm or closer to the distal end, such as at 5 mm or closer to the distal end, including at 2 mm or closer to the distal end. In some instances, the tissue modifier is located at the distal end of the elongated member.
  • Tissue modifiers are components that interact with tissue in some manner to modify the tissue in a desired way.
  • the term modify is used broadly to refer to changing in some way, including cutting the tissue, ablating the tissue, delivering an agent(s) to the tissue, freezing the tissue, etc.
  • tissue modifiers are tissue cutters, tissue ablators, tissue freezing/heating elements, agent delivery devices, etc.
  • Tissue cutters of interest include, but are not limited to: blades, liquid jet devices, lasers and the like.
  • Tissue ablators of interest include, but are not limited to ablation devices, such as devices for delivery ultrasonic energy (e.g., as employed in ultrasonic ablation), devices for delivering plasma energy, devices for delivering radiofrequency (RF) energy, devices for delivering microwave energy, etc.
  • Energy transfer devices of interest include, but are not limited to: devices for modulating the temperature of tissue, e.g., freezing or heating devices, etc.
  • the tissue modifier is not a tissue modifier that achieves tissue modification by clamping, clasping or grasping of tissue such as may be accomplished by devices that trap tissue between opposing surfaces (e.g., jaw-like devices).
  • the tissue modification device is not an element that is configured to apply mechanical force to tear tissue, e.g., by trapping tissue between opposing surfaces.
  • tissue modification comprises an action other than just removal by low pressure irrigation or aspiration, for example where some other act is performed on the tissue beyond low pressure irrigation and/or aspiration.
  • the tissue modifier is distinct from a probe element or device that is configured to move tissue without any modification to the tissue other than simple displacement or repositioning, such as through retraction, atraumatic movement, etc.
  • tissue modifiers of interest may include RF energy tissue modifiers, which include at least one electrode and may be configured in a variety of different ways depending on the desired configuration of the RF circuit.
  • An RF circuit can be completed substantially entirely at target tissue location of interest (bipolar device) or by use of a second electrode attached to another portion of the patient's body (monopolar device). In either case, a controllable delivery of RF energy is achieved.
  • aspects of the subject tissue modification devices include a radiofrequency (RF) electrode positioned at the distal end of the elongated member.
  • RF electrodes are devices for the delivery of radiofrequency energy, such as ultrasound, microwaves, and the like.
  • the RF electrode is an electrical conductor for delivering RF energy to a particular location, such as a desired target tissue.
  • the RF electrode can be an RF ablation electrode.
  • RF electrodes of the subject tissue modification devices can include a conductor, such as a metal wire, and can be dimensioned to access an intervertebral disc space.
  • RF electrodes may be shaped in a variety of different formats, such as circular, square, rectangular, oval, etc. The dimensions of such electrodes may vary, where in some embodiments they RF electrode has a longest cross-sectional dimension that is 7 mm or less, 6 mm or less 5 mm or less, 4 mm or less, 3 mm or less or event 2 mm or less, as desired.
  • the diameter of the wire in such embodiments may be 180 ⁇ m, such as 150 ⁇ m or less, such as 130 ⁇ m or less, such as 100 ⁇ m or less, such as 80 ⁇ m or less.
  • RF electrode configurations suitable for use in tissue modification include, but are not limited to, those described in U.S. Pat. Nos. 7,449,019; 7,137,981; 6,997,941; 6,837,887; 6,241,727; 6,112,123; 6,607,529; 5,334,183.
  • RF electrode systems or components thereof may be adapted for use in devices of the present invention (when coupled with guidance provided by the present specification) and, as such, the disclosures of the RF electrode configurations in these patents are herein incorporated by reference. Specific RF electrode configurations of interest are further described in connection with the figures, below.
  • the tissue modifier is supplied with current from an RF energy source.
  • the voltage signal driving the current to the tissue modifier may be definable as a sine, square, saw-tooth, triangle, pulse, non-standard, complex, or irregular waveform, or the like, with a well-defined operating frequency.
  • the operating frequency can range from 1 KHz to 50 MHz, such as from 100 KHz to 25 MHz, and including from 250 KHz to 10 MHz.
  • the RF voltage signal is a sine wave with operating frequency 460 kHz.
  • the tissue modifier's operating frequency can be modulated by a modulation waveform. By “modulated” is meant attenuated in amplitude by a second waveform, such as a periodic signal waveform.
  • the modulation waveform may be definable as a sine, square, saw-tooth, triangle, pulse, non-standard, complex, or irregular waveform, or the like, with a well-defined modulation frequency.
  • the modulation frequency can range from 1 Hz to 10 kHz, such as from 1 Hz to 500 Hz, and including from 10 Hz to 100 Hz.
  • the modulation waveform is a square wave with modulation frequency 70 Hz.
  • a RF tuner is included as part of the RF energy source.
  • the RF tuner includes basic electrical elements (e.g., capacitors and inductors) which serve to tailor the output impedance of the RF energy source.
  • the term “tailor” is intended here to have a broad interpretation, including affecting an electrical response that achieves maximum power delivery, affecting an electrical response that achieves constant power (or voltage) level under different loading conditions, affecting an electrical response that achieves different power (or voltage) levels under different loading conditions, etc.
  • the elements of the RF tuner can be chosen so that the output impedance is dynamically tailored, meaning the RF tuner self-adjusts according to the load impedance encountered at the electrode tip.
  • the elements may be selected so that the electrode has adequate voltage to develop a plasma corona when the electrode is placed in a saline solution (with saline solution grounded to return electrode), but then may self-adjust the voltage level to a lower threshold when the electrode contacts tissue (with tissue also grounded to return electrode, for example through the saline solution), thus dynamically maintaining the plasma corona at the electrode tip while minimizing the power delivered to the tissue and the thermal impact to surrounding tissue.
  • RF tuners when present, can provide a number of advantages.
  • delivering RF energy to target tissue through the distal tip of the electrode is challenging since RF energy experiences attenuation and reflection along the length of the conductive path from the RF energy source to the electrode tip, which can result in insertion loss.
  • Inclusion of a RF tuner, e.g., as described above, can help to minimize and control insertion loss.
  • Devices of the invention may include a linear mechanical actuator for linearly translating a distal end element of the device, such as the tissue modifier (e.g., a RF electrode) relative to the distal end of the elongate member.
  • tissue modifier e.g., a RF electrode
  • linearly translating is meant moving the tissue modifier along a substantially straight path.
  • the term “linear” also encompasses movement of the tissue modifier in a non-straight (i.e., curved) path.
  • the path of movement of the tissue modifier can be deflected from a substantially straight path if the electrode encounters a tissue of a different density (such as, cartilage, bone, etc.), or if the conformation of the tissue the electrode is passing through is not straight, etc.
  • the tissue modifier When actuated by a linear mechanical actuator, the tissue modifier is cyclically displaced from a “neutral” position along its axial extension to positions displaced distally or proximally from the neutral position, with maximum displacement from the neutral position corresponding to the vibratory amplitude.
  • the linear mechanical actuator actuates the tissue modifier through a distance equal to twice the vibratory amplitude and ranging from a distal extreme position to a proximal extreme position.
  • the tissue modifier can be extended by the linear mechanical actuator from the distal end of the elongated member by 0.1 mm or more, such as 0.5 mm or more, including 1 mm or more, for instance 2 mm or more, such as 5 mm or more.
  • the linear mechanical actuator may be the only means for translating the electrode.
  • the linear mechanical actuator may provide vibratory amplitude that is superimposed on another independent control over electrode translation which moves the electrode over a distance significantly greater than the vibratory amplitude, e.g. 10 mm or more, such as 20 mm or more, including 30 mm or more, for instance 40 mm or more.
  • the tissue modifier may be extended beyond the range defined by the above described linear mechanical actuator distal and proximal extreme positions.
  • a manual control e.g., a thumbwheel or analogous structure
  • a thumbwheel or analogous structure may be provided on the device which permits a user to move the tissue modifier relative to the distal end in a movement that is distinct from that provided by the linear mechanical actuator.
  • devices of the invention may include a linear mechanical actuator configured to linearly translate the tissue modifier relative to the distal end at linear translation frequency.
  • the linear mechanical actuator can be any of a variety of actuators convenient for use in the subject devices for linearly translating the tissue modifier relative to the distal end of the elongated member.
  • the linear mechanical actuator can be a voice coil motor (VCM), solenoid, pneumatic actuator, electric motor, etc.
  • VCM voice coil motor
  • the linear mechanical actuator is operatively coupled to the tissue modifier.
  • operatively coupled is meant that the linear mechanical actuator is connected to the tissue modifier such that linear movement by the actuator is transferred to the tissue modifier thereby extending the tissue modifier from the distal end of the elongated member or retracting the tissue modifier towards the distal end of the elongated member depending on the direction of movement by the linear actuator.
  • the linear actuator provides for linear translation of the tissue modifier at a linear translation frequency.
  • the linear translation frequency is 10 Hz or greater, such as 25 Hz or greater, including 50 Hz or greater, such as 100 Hz or greater. In some embodiments, the linear translation frequency is 70 Hz. In certain cases, the translation of the tissue modifier between the distal and proximal extreme positions occurs with a predetermined linear translation frequency while in other embodiments the linear translation frequency may not be predetermined.
  • the translation frequency may depend on various factors, such as but not limited to, the type of tissue being modified, the amount of tissue being modified, the location of the tissue, the proximity of surrounding tissues, the conformation of the tissue, the type of procedure being performed, the nature of the linear mechanical actuator, the DC voltage applied to the actuator, the amplitude of the AC voltage applied to the actuator, etc.
  • the linear translation frequency is definable as a standard waveform, such as a sine waveform.
  • the sine waveform is an Hz sine waveform, such that the linear translation frequency ranges from 1 Hz to 500 Hz, such as from 1 Hz to 250 Hz, and including from 10 Hz to 100 Hz.
  • the linear translation frequency is definable as a non-standard, complex, or irregular waveform, or the like.
  • the linear translation frequency can be definable as a waveform comprising periods that have varying frequencies, a waveform comprising periods that have varying amplitudes, a waveform comprising periods that have varying frequencies and varying amplitudes, a superposition of two or more waveforms, and the like.
  • the tissue modification device is configured to synchronize the linear mechanical actuation with the modulated RF waveform.
  • synchronize is meant that two or more events are timed to operate in a coordinated manner.
  • the modulation frequency equals the linear translation frequency
  • the modulation waveform is phase-shifted relative to the linear translation waveform. Synchronization of these waveforms may be achieved using a variety of different protocols and may implement one or more controllers of different formats, including hardware, software, and combinations thereof.
  • a single common controller may generate two waveforms that are phase-shifted; alternatively, separate controllers can be arranged in a master-slave configuration to generate two waveforms that are phase-shifted, alternatively, one controller can generate a waveform, hardware (e.g., an opto-electronic encoder, a mechanical encoder, a hall sensor, or the like) can be used to trigger on a physical embodiment (such as mechanical rotation) of that waveform, and a second controller can generate a second waveform with adjustable phase shift from the trigger signal.
  • hardware e.g., an opto-electronic encoder, a mechanical encoder, a hall sensor, or the like
  • a second controller can generate a second waveform with adjustable phase shift from the trigger signal.
  • phase shift of the modulation waveform relative to the linear translation waveform can be positive (phase lead) or negative (phase lag), and can have magnitude 0° to 360° or more, such as 0° to 180°, including 60° to 120°.
  • the modulation waveform lags the linear translation waveform by 90°.
  • the tissue modifier e.g., a RF electrode
  • the tissue modifier has distal and proximal extreme positions of its cyclic linear translation.
  • the tissue modifier is configured to deliver RF energy to an internal target tissue while at a position other than the distal extreme position.
  • the modulation waveform is synchronized with the linear translation waveform such that the tissue modifier is energized when the tissue modifier is at a position other than the distal extreme position, such as while the tissue modifier is at or near the proximal extreme position.
  • the modulating waveform may be phase-shifted relative to the linear translation waveform.
  • Cyclic linear translation of the tissue modification device can facilitate a variety of functions with multiple benefits. For instance, cyclic linear translation of the tissue modifier at a fast rate relative to manually controlled translation (e.g., at a frequency greater than 10 Hz) will tend to physically advance the tissue modifier into soft tissue due to the compliance of the soft tissue, while hard tissue will resist deformation and will thus not allow the tissue modifier to physically advance into the hard tissue. Consequently, the electrode will push back against the elongated body as it encounters hard tissue, thus producing tactile feedback to the user. In some embodiments, synchronization of the tissue modifier's modulation waveform with its linear translation waveform provides additional benefits.
  • tissue modifier tip is activated only when the tissue modifier is at or near the proximal extreme position, as mentioned above. This has the effect of preferentially delivering the tissue modification energy to soft, compliant tissue as opposed to hard, stiff tissue. Stated otherwise, this provides tissue discrimination based on elastic modulus.
  • synchronization of the modulation waveform with the linear translation waveform facilitates the delivery of tissue modification energy to the nucleus pulposus (soft, compliant tissue) while minimizing the delivery of tissue modification energy to the disc annulus (hard, stiff tissue) and the endplates of the vertebral bodies (hard, stiff tissue).
  • cyclic linear translation of the tissue modifier helps to prevent a condition where the electrode sticks to tissue as it ablates it, resulting in increased thermal effects to the surrounding tissue, ineffective or discontinuous tissue dissection, buildup of charred or otherwise modified tissue on the tissue modifier tip, or a combination thereof.
  • cyclic linear translation of the tissue modifier helps chop the dissected tissue into smaller pieces, thus facilitating aspiration of the dissected tissue.
  • the devices will include proximal end connectors for operatively connecting the device and tissue modifier to extra-corporeal elements required for operability of the tissue modifier, such as extra-corporeal RF controllers, mechanical tissue cutter controllers, liquid jet controllers, etc.
  • an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member is also present in the device.
  • steerability is meant the ability to maneuver or orient the visualization sensor, tissue modifier and/or distal end of the elongated member as desired during a procedure, e.g., by using controls positioned at the proximal end of the device.
  • the devices include a steerability mechanism (or one or more elements located at the distal end of the elongated member) which renders the desired distal end component maneuverable as desired through proximal end control.
  • the term “steerability”, as used herein, refers to a mechanism that provides a user steering functionality, such as the ability to change direction in a desired manner, such as by moving left, right, up or down relative to the initial direction.
  • the steering functionality can be provided by a variety of different mechanisms. Examples of suitable mechanisms include, but are not limited to one or more wires, tubes, plates, meshes or combinations thereof, made from appropriate materials, such as shape memory materials, music wire, etc.
  • the distal end of the elongated member is provided with a distinct, additional capability that allows it to be independently rotated about its longitudinal axis when a significant portion of the operating handle is maintained in a fixed position, as discussed in greater detail below.
  • distal component articulations of the invention may vary, such as from ⁇ 180 to +180°; e.g., ⁇ 90 to +90°.
  • the distal probe tip articulations may range from 0 to 360°, such as 0 to +180°, and including 0 to +90°, with provisions for rotating the entire probe about its axis so that the full range of angles is accessible on either side of the axis of the probe, e.g., as described in greater detail below.
  • Articulation mechanisms of interest are further described in published PCT Application Publication Nos. WO 2009029639; WO 2008/094444; WO 2008/094439 and WO 2008/094436; the disclosures of which are herein incorporated by reference. Specific articulation configurations of interest are further described in connection with the figures, below.
  • devices of the invention may further include an irrigator and aspirator configured to flush an internal target tissue site and/or a component of the device, such as a lens of the visualization sensor.
  • the elongated member may further include one or more lumens that run at least the substantial length of the device, e.g., for performing a variety of different functions, as summarized above.
  • the elongated member may include both irrigation lumens and aspiration lumens.
  • the tissue modification device can comprise an irrigation lumen located at the distal end of the elongated member, and the tissue modification device can include an aspiration lumen located at the distal end of the elongated member.
  • the irrigation lumen is operatively connected to a fluid source (e.g., a physiologically acceptable fluid, such as saline) at the proximal end of the device, where the fluid source is configured to introduce fluid into the lumen under positive pressure, e.g., at a pressure ranging from 0 psi to 60 psi, so that fluid is conveyed along the irrigation lumen and out the distal end.
  • a fluid source e.g., a physiologically acceptable fluid, such as saline
  • the longest cross-sectional dimension of the irrigation lumen ranges from 0.5 mm to 5 mm, such as 0.5 mm to 3 mm, including 0.5 mm to 1.5 mm.
  • the aspiration lumen is operatively connected to a source of negative pressure (e.g., a vacuum source) at the proximal end of the device.
  • a source of negative pressure e.g., a vacuum source
  • the longest cross-sectional dimension of the aspiration lumen ranges from 1 mm to 7 mm, such as 1 mm to 6 mm, including 1 mm to 5 mm.
  • the aspirator comprises a port having a cross-sectional area that is 33% or more, such as 50% or more, including 66% or more, of the cross-sectional area of the distal end of the elongated member.
  • the negative pressure source is configured to draw fluid and/or tissue from the target tissue site at the distal end into the aspiration lumen under negative pressure, e.g., at a negative pressure ranging from 300 to 600 mmHg, such as 550 mmHg, so that fluid and/or tissue is removed from the tissue site and conveyed along the aspiration lumen and out the proximal end, e.g., into a waste reservoir.
  • the irrigation lumen and aspiration lumen may be separate lumens, while in other embodiments, the irrigation lumen and the aspiration lumen can be included in a single lumen, for example as concentric tubes with the inner tube providing for aspiration and the outer tube providing for irrigation.
  • the lumen or lumens of the flushing functionality of the device may be operatively coupled to extra-corporeal irrigation devices, such as a source of fluid, positive and negative pressure, etc. Where desired, irrigators and/or aspirators may be steerable, as described above.
  • the devices may include a control structure, such as a handle, operably connected to the proximal end of the elongated member.
  • a control structure such as a handle
  • operably connected is meant that one structure is in communication (for example, mechanical, electrical, optical connection, or the like) with another structure.
  • the control structure e.g., handle
  • the handle may have any convenient configuration, such as a hand-held wand with one or more control buttons, as a hand-held gun with a trigger, etc., where examples of suitable handle configurations are further provided below.
  • the distal end of the elongated member is rotatable about its longitudinal axis when a significant portion of the operating handle is maintained in a fixed position. As such, at least the distal end of the elongated member can turn by some degree while the handle attached to the proximal end of the elongated member stays in a fixed position.
  • the degree of rotation in a given device may vary, and may range from 0 to 360°, such as 0 to 270°, including 0 to 180°.
  • Devices of the invention may be disposable or reusable. As such, devices of the invention may be entirely reusable (e.g., be multi-use devices) or be entirely disposable (e.g., where all components of the device are single-use). In some instances, the device can be entirely reposable (e.g., where all components can be reused a limited number of times). Each of the components of the device may individually be single-use, of limited reusability, or indefinitely reusable, resulting in an overall device or system comprised of components having differing usability parameters.
  • Devices of the invention may be fabricated using any convenient materials or combination thereof, including but not limited to: metallic materials such as tungsten, stainless steel alloys, platinum or its alloys, titanium or its alloys, molybdenum or its alloys, and nickel or its alloys, etc; polymeric materials, such as polytetrafluoroethylene, polyimide, PEEK, and the like; ceramics, such as alumina (e.g., STEATITETM alumina, MAECORTM alumina), etc.
  • metallic materials such as tungsten, stainless steel alloys, platinum or its alloys, titanium or its alloys, molybdenum or its alloys, and nickel or its alloys, etc
  • polymeric materials such as polytetrafluoroethylene, polyimide, PEEK, and the like
  • ceramics such as alumina (e.g., STEATITETM alumina, MAECORTM alumina), etc.
  • FIGS. 1A and 1B provide two different side views of a device 100 according to one embodiment of the invention.
  • Device 100 includes an elongated member 110 and an operating handle 120 at the proximal end of the elongated member 110 .
  • the operating handle has a gun configuration and includes a trigger 125 and thumbwheel 130 which provide a user with manual operation over certain functions of the device, e.g., RF electrode positioning and extension.
  • Located at the distal end of the elongated member is an integrated visualization sensor 140 and tissue modifier 150 .
  • Control elements 160 exit the handle 120 at the distal end region 170 , which region 170 is rotatable relative to the remainder of the handle 120 .
  • additional components may be present at the distal end of the elongated member, which additional elements may include irrigators, aspirators, articulation mechanisms, etc. as described generally above. More details regarding the distal end of elongate member 140 may be seen in FIG. 6D .
  • FIGS. 2A to 2C provide cross-sectional views of the distal ends of elongated members according to three different embodiments of the device. Each of these views shows how the visualization sensor and tissue modifier may be integrated at the distal end despite the limited size of the distal end.
  • FIG. 2A shows an example cross-section of the distal end 200 of an elongated member of a device according one embodiment of the invention.
  • Distal end 200 includes an integrated CMOS visualization sensor 210 , which has a 2.5 mm diameter.
  • guide-wires 215 which have a 1 mm diameter and provide for articulation of the distal end of the device.
  • Integrated mechanical cutter 230 has a 1.58 mm diameter.
  • Light source 240 has a 1.33 mm diameter.
  • lumen 250 which provides for aspiration and irrigation.
  • FIG. 2A is drawn to scale, demonstrating that integrated visualization, tissue modification, illumination and irrigation can be positioned at the distal end of an elongated member that has a 5.00 mm outer diameter.
  • FIG. 2B shows the cross-section of a distal end of elongated member that is analogous to that shown in FIG. 2A , with the exception that smaller diameter guidewires (0.80 mm) are employed.
  • light source 240 may have a 1.50 mm diameter and mechanical cutter 230 may have a 1.92 mm diameter.
  • FIG. 2B is drawn to scale, demonstrating that integrated visualization, tissue modification, illumination and irrigation can be positioned at the distal end of an elongated member that has a 5.00 mm outer diameter.
  • FIG. 2C shows the cross-section of a distal end of elongated member that is analogous to that shown in FIG. 2A , with the exception that smaller non-circular cross-section guidewires (1.20 mm ⁇ 0.60 mm) are present.
  • light source 240 may have a 1.63 mm diameter and mechanical cutter 230 may have a 2.22 mm diameter.
  • FIG. 2C is drawn to scale, demonstrating that integrated visualization, tissue modification, illumination and irrigation can be positioned at the distal end of an elongated member that has a 5.00 mm outer diameter.
  • FIG. 3A shows an example cross-section a distal end of a device according to an embodiment of the invention.
  • FIG. 3A illustrates the distal end of a device 300 having a distal end outer diameter of 6.6 mm, where the drawing is to scale.
  • the distal end of device 300 includes an integrated camera 320 (e.g., a CMOS sensor) having an outer diameter of 2.8 mm and two fiber optic light sources 330 each having an outer diameter of 1.3 mm.
  • electrode cutters 340 having dimensions of 2.0 mm ⁇ 0.7 mm
  • irrigation lumen 350 having dimensions of 1.2 mm ⁇ 0.8 mm.
  • the distal end includes central aspiration lumen 360 which has a rectangular configuration and dimensions of 5.0 mm ⁇ 1.8 mm.
  • the integrated camera 320 is overlapping with other elements, which illustrates how the camera cross-section only occupies space at the most distal portion of the device 300 . Overlapping portions of cross sections of other components, including the aspiration lumen 360 , would be terminated or diverted laterally before reaching the proximal end of the camera.
  • the following steps may be performed. First the distal end 300 of the device is introduced into the target tissue dissection region through access device 310 .
  • Access device 310 may be any convenient device, such as a conventional retractor tube.
  • Access device 310 as shown in FIG. 3A has an inner diameter of 7.0 mm and an outer diameter of 9.5 mm. At this stage, orientation of camera 320 is biased to one side (left side in figure).
  • the electrode 340 on the side opposite the viewing field of the camera (right side in figure) is distally translated so that it emerges distally from the distal tip of the device 300 . Also during insertion, the distally translated electrode 340 is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection during insertion of the device.
  • the electrode 340 on the same side as the viewing field of the camera is distally translated so that it emerges laterally from the endoscope probe on the proximal side of the camera. While being translated, the same electrode (left side in figure) is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection. At this point, the entire end of the device 300 may be translated proximally and distally until the desired tissue dissection is obtained. When finished with tissue dissection at the first location, the device may be rotated 180 degrees and further tissue removed using the steps described above.
  • FIG. 3B shows an example cross-section of the distal end of a device 300 similar to that in FIG. 3A , except that it includes additional irrigation lumens 370 (outer diameter 1.2 mm) in addition to the irrigation lumens 350 (dimensions of 1.5 mm ⁇ 0.9 mm) associated with the electrodes 340 (dimensions 2.5 mm ⁇ 1.1 mm).
  • the geometry of the aspiration tube is hexagonal rather than rectangular to maximize use of space for this geometry (dimensions 4.2 mm ⁇ 2.3 mm).
  • the drawing is to scale, and shows another example of what can be integrated at the distal end of a device having a 6.6 mm outer.
  • the cross section of the camera 320 is overlapping with other elements as in FIG.
  • FIG. 3A which shows how the camera cross-section only occupies space at the most distal portion of the device. Overlapping portions of other cross sections, including the light sources, one of the electrodes, and the aspiration tube, would be terminated or diverted laterally before reaching the proximal end of the camera. Operating this device may include the same steps as described above in connection with the device of FIG. 3A , except that additional irrigation could be used to help flush out dissected tissue and to clean the camera lens using the additional irrigation lumens 370 .
  • FIG. 3C shows an example cross-section of the distal end 300 of a device similar to that in FIG. 3B , except that the orientation one of the electrodes 340 is reversed and the geometry of the aspiration tube 360 is trapezoidal rather than hexagonal to maximize use of space for this geometry.
  • the drawing is to scale, and shows another example of components that can be integrated into a 6.6 mm outer diameter device distal end. In FIG. 3C , the dimensions of the components are the same as that of FIG.
  • irrigation lumens 370 have an outer diameter of 1.1 mm
  • the dimensions of aspiration lumen 360 are 4.2 mm ⁇ 2.7 mm
  • the dimensions of electrodes 340 are 2.5 mm ⁇ 1.1 mm
  • the dimensions of electrode irrigation lumens 350 are 1.5 mm ⁇ 0.9 mm.
  • the camera cross section is overlapping with other elements, which shows how the camera cross-section 320 only occupies space at the most distal portion of the probe. Overlapping portions of other cross sections, including the light sources, one of the electrodes, and the aspiration tube, would be terminated or diverted laterally before reaching the proximal end of the camera 320 . Operating this device may include the same steps as described above in connection with the device of FIGS. 3A and 3B .
  • FIG. 3D shows an example cross-section of the distal end 300 of a device that is similar to that in FIG. 3C , except that only one electrode 340 (dimensions 5.4 mm diameter ⁇ 0.35 mm thick) is used and it is much larger than the electrode present in the device shown in FIG. 3C .
  • the electrode irrigation lumen is also dimensioned differently, having dimensions of 1.5 mm ⁇ 0.6 mm.
  • integrated camera 320 is shown with camera cables 380 (having dimensions of (1.5 mm ⁇ 0.8 mm).
  • the geometry of the aspiration lumen is a semi-circular rather than trapezoidal to maximize use of space for this geometry, where the dimensions of the aspiration lumen are 3.4 mm ⁇ 2.1 mm.
  • the drawing is to scale, and shows an example of the components that can be integrated at the distal end of a device that has a 6.6 mm outer diameter.
  • the device is shown present in an access tube having a 7.2 mm inner diameter and a 9.5 mm outer diameter.
  • the camera 320 cross section is overlapping with other elements as in FIGS. 3A to 3C , demonstrating that the camera 320 cross-section only occupies space at the most distal portion of the probe. Overlapping portions of other cross sections, including the light sources and the aspiration tube, would be terminated or diverted laterally before reaching the proximal end of the camera. Operating this device may include the same steps as described above in connection with the device of FIGS.
  • the electrode is distally translated only a short distance for distal cutting, and then it is distally translated farther to cause it to extend laterally to the side viewed by the camera for tissue dissection on that side.
  • FIG. 3E shows an example cross-section of the distal probe tip similar to that in FIG. 3D , except that one of the irrigation channels is replaced by a probe tool 390 , having an outer diameter of 1.2 mm, which is employed to manipulate tissue and expose target tissue regions for visualization and/or modification by a tissue modifier, such as the electrode device 340 .
  • the drawing is to scale, and shows another example of components that can be integrated at the distal end of a device having a 6.6 mm outer diameter. Operating this device may include the same steps as described above in connection with the device of FIGS. 3A to 3D , except that the probe is also available for probing the tissue dissection region and for assisting in desired tissue dissection.
  • FIG. 4 provides a side view of a device according to an embodiment of the invention, where the device includes a side-viewing integrated camera at its distal end.
  • device 400 includes integrated camera 410 having a side-viewing or biased lens 420 , which provides a field of view which includes components from both the forward and side views of the device.
  • the side-viewing camera is angled at a degree ranging from 15 to 65° relative to the longitudinal axis of the elongated member
  • Device 400 also includes an integrated tissue cutter 430 (e.g., in the form of an RF electrode) and integrated light source 435 .
  • Device 400 is shown in relation to intervertebral disc 440 , where the distal end of the device 400 extends through the annulus fibrosis 450 into the nucleus pulposus 460 .
  • FIG. 5 provides a side view of a device 500 according to an embodiment of the invention, where the device includes a side-viewing integrated camera 510 at its distal end and two steerable electrodes 520 and 525 .
  • device 500 includes integrated camera 510 having a side-viewing or biased lens 520 .
  • Device 500 also includes an integrated electrodes 530 and 535 which are steerable (erg., being fabricated from a shape-memory material) and integrated light source 540 .
  • Device 500 is shown in relation to intervertebral disc 540 , where the distal end of the device 500 extends through the annulus fibrosis 450 into the nucleus pulposus 460 .
  • FIGS. 6A and 6B are isometric views of an embodiment of the distal end of a tissue modification device illustrating the invention inserted into the intervertebral disc space.
  • the tissue modification device 600 includes an elongated member 610 inserted through the disc annulus 620 into the nucleus pulposus 630 of the intervertebral disc space.
  • the tissue modification device 600 also includes an RF electrode 640 extended from the distal end of guidetubes 650 , which are extended from the distal end of the elongated member 610 .
  • the guidetubes 650 are extended from the distal end of the elongated member 610 and have a curved shape, which facilitates access of the RF electrode 640 to the entire intervertebral disc space.
  • the tissue modification device 600 also includes an integrated CMOS visualization-element 660 at the distal end of the elongated member 610 .
  • FIGS. 6A and 6B provide views of an RF electrode that is steerable at its distal end.
  • the steering functionality of the RF electrode is provided by a shape-memory element in conjunction with a guidetube.
  • shape-memory refers to a material that can return to its original shape after being deformed.
  • the shape-memory element comprises a shape-memory alloy, such as, but not limited to, a nickel-titanium (e.g., NITINOL) alloy, a copper-zinc-aluminum-nickel alloy, a copper-aluminum-nickel alloy, or the like.
  • the steering functionality of the RF electrode can be provided by wires comprising a shape-memory alloy.
  • the shape-memory wires can be attached to the RF electrode such that when the RF electrode is extended from the distal end of the elongated member, the shape-memory wires take on a predetermined conformation, thus moving the RF electrode into substantially the same conformation.
  • the shape-memory element is provided in conjunction with a guidetube.
  • the guidetube can be a tube (i.e., a cylinder with a hollow central lumen) provided within the elongated member for housing the RF electrode and for guiding the direction of the RF electrode.
  • the RF electrode can be provided within the central lumen of the guidetube.
  • the guidetube can be composed of any convenient biocompatible material, such as plastic, rubber, metal, and the like.
  • the guidetube can be provided with one or more shape-memory elements, such as wires comprising a shape-memory alloy, as described above.
  • the guidetube is a shape-memory guidetube, such as a guidetube comprising a shape-memory alloy.
  • the guidetube is slidably positioned in the elongated member, and may be extended from the distal end of the elongated member.
  • the shape-memory guidetube has a curved shape when extended from the distal end of the elongated member, such that the guidetube extends at an angle from the longitudinal axis of the elongated member.
  • the guidetube may form an arc shape where the guidetube comprises an arc of 1° to 360°, such as 30° to 180°, including 60° to 120°.
  • the guidetube can be provided with an RF electrode in the central lumen of the guidetube.
  • the guidetube is configured to facilitate the RF electrode's access to the entire intervertebral disc space.
  • accessibility to the entire IVD space is facilitated by articulation of one or more of the RF electrode, the guidetube, and the elongated member.
  • the RF electrode can be slidably positioned in the guidetube, and may be extended from the distal end of the guidetube. The elongated member, the RF electrode and/or the guidetube can be independently rotated, providing additional accessibility within the IVD space.
  • the tissue modification device includes two or more guidetubes, where the guidetubes are slideably translateable with respect to the elongated member.
  • the guidetubes are slideably translateable with respect to each other, which facilitates extending the RF electrode at an angle from the longitudinal axis of the elongated member or deforming the electrode tip into a new shape or configuration.
  • one guidetube can be extended or retracted with respect to the distal end of the elongated member independent of the other guidetube(s).
  • the movement of each guidetube can be controlled by the user, such that the user can extend, retract or steer each guidetube individually.
  • the RF electrode comprises a wire slidably positioned in a shape-memory guidetube that is slidably positioned in the elongated member.
  • the RF electrode comprises an exposed portion positioned between first and second ends, where the first and second ends are each positioned in a shape-memory guidetube.
  • exposed is meant that a portion of the RF electrode is able to make electrical contact with the desired target tissue.
  • the first and second ends are linearly translatable, where the first and second ends are translatable in unison, such that the first and second ends can be extended and retracted from the distal end of the elongated member at the same rate.
  • first and second ends are linearly translatable with respect to each other, such that the first and second ends can be extended and retracted from the distal end of the elongated member at different rates or to different positions of extension from the distal end of the elongated member.
  • This facilitates the movement of the exposed portion of the RF electrode at an angle from the longitudinal axis of the elongated member.
  • the angle between the RF electrode and the longitudinal axis of the elongated member can be from 1° to 270°, such as 30° to 180°, including 60° to 120°.
  • the RF electrode 640 is a U-shaped structure that includes a distal cutting end (the exposed region), bounded on each side by a ceramic member. This U-shaped configuration is further illustrated in FIG. 6E .
  • the ceramic members 617 flanking each side of the distal cutting end 619 may be joined (e.g., such that they have a cross-bar configuration as shown in FIGS. 6A and 68 ) or be separate component from each other (e.g., as shown in FIG. 6E ).
  • These components may be fabricated from any convenient ceramic material, including but not limited to alumina, such as STEATITETM alumina, MAECORTM alumina, and the like.
  • alumina such as STEATITETM alumina, MAECORTM alumina, and the like.
  • the extended length of region 619 may vary, ranging from 2 to 20 mm, such as 2 to 10 mm and including 2 to 6 mm.
  • the diameter of the wire making up region 619 may vary, and in certain embodiments is 180 ⁇ m, such as 150 ⁇ m or less, such as 130 ⁇ m or less, such as 100 ⁇ m or less, such as 80 ⁇ m or less. While the distal cutting end or region 619 may be fabricated from a variety of materials, in some instances this portion of the electrode is fabricated from a material that is different from the material of the electrode wires 621 .
  • Materials of interest from which the distal cutting end 619 may be fabricated include, but are not limited to tungsten, tungsten alloys, e.g., tungsten rhenium, steel, tungsten coated with noble metals, such as Pt, Au, etc., and the like.
  • FIG. 6C provides a view of the distal end of device that is analogous to that shown in FIGS. 6A and 6B .
  • FIG. 6C shows how a variety of components including an integrated CMOS visualization sensor 660 , irrigation lumens 665 , aspiration lumen 670 , and steerable RF electrode 640 can be incorporated into the distal end of an elongated member having an outer diameter that is 7.0 mm or less, such as 6.5 mm or less.
  • Electrode 640 is made up of electrode wires extending from electrode guidetubes 650 . Separating the electrode wires from the distal cutting end 690 are ceramic electrode crimp elements 680 . Electrode wires 640 and guidetubes 650 are shown in an extended configuration in FIG.
  • aspiration lumen 670 opens to the side of the device 600 and is positioned just proximal of the CMOS visualization sensor 660 so that all of the disparate components may be integrated at the distal end of the device.
  • FIG. 6D provides a three-dimensional view of one embodiment of a distal end of tissue modification device 600 (having a 6.5 mm outer dimension) of the invention.
  • the distal end of the device includes and integrated circular CMOS visualization sensor 605 and integrated LED 610 .
  • CMOS visualization sensor 605 Also shown is a first forward facing irrigation lumen 615 and a second irrigation lumen 617 which is slightly extended from the distal end and is side facing so that fluid emitted from lumen 617 is flowed across CMOS visualization sensor 605 to clean the sensor of debris, when needed.
  • an aspiration lumen 625 positioned proximal the irrigation lumens 615 and 617 and integrated CMOS visualization sensor 605 , where the aspiration lumen 605 is configured to aspirate fluid and tissue debris from a target tissue site during use.
  • the distal end further includes an integrated steerable RF electrode assembly 655 .
  • RF electrode assembly 655 includes NITINOL shape memory guide tubes 645 extending from insulated (e.g., RF shielded) guide lumens 642 .
  • the RF electrode further includes a tungsten cutting wire 665 joined at each end to a NITINOL shape memory electrode wire 663 by a ceramic arc stop 675 . As shown, the diameter of the cutting wire 665 is smaller than the diameter of the electrode wires 663 , where the difference in size may vary and may range from 100 to 500 ⁇ m, such as 300 to 400 ⁇ m.
  • FIGS. 1A and 1B provide different views of a device according to an embodiment of the invention, where the device includes a distal end as shown in FIG. 6D .
  • FIG. 7 provides a cutaway view of the devices shown in FIGS. 1A and 1B .
  • the device includes trigger element 125 which translates the guidetubes relative to the distal end of the elongated member.
  • thumbwheel 130 which provides for manual movement of the electrode relative to the distal end.
  • the cutaway view of FIG. 7 shows mechanical actuator 180 which provides for linear translation of electrode 190 positioned at the distal end of the elongated member.
  • Tissue modification devices of the invention are configured to be hand-held. Accordingly, in certain instances the tissue modification devices have a mass that is 1.5 kg or less, such as 1 kg or less, including 0.5 kg or less, e.g., 0.25 kg or less.
  • tissue modification systems where the systems include a tissue modification device, e.g., as described above, operatively connected to one or more extra-corporeal control units (i.e., extra-corporeal controllers).
  • Extra-corporeal control units may include a number of different components, such as power sources, irrigation sources, aspiration sources, image data processing components, image display components (such as monitors, printers, and the like), data processors, e.g., in the form of computers, data storage devices, e.g., floppy disks, hard drives, CD-ROM, DVD, flash memory, etc., device and system controls, etc.
  • FIG. 8 An example of a system according to an embodiment of the invention is shown in FIG. 8 .
  • the system includes hand-held tissue modification device 800 and extra-corporeal control unit 850 .
  • Hand-held device 800 includes distal end 810 and handle 820 configured to be held in the hand of an operator. Positioned at the distal end 810 are the integrated visualization and tissue modification components (as well as other components), as shown by cross-section 830 .
  • Extra-corporeal control unit 850 includes image display 860 (e.g., a liquid crystal display monitor), video digital signal processor 870 , energy source 880 (e.g., configured to operate an RF tissue modification member) and irrigation/aspiration system 890 .
  • the hand-held device 800 and extra-corporeal control unit 850 are operatively connected to each other by a cable.
  • FIG. 9 provides a diagrammatic view of the architecture of a system according to one embodiment of the invention and how the various components of the system may interact with a user, such as a surgeon, during use.
  • extra-corporeal control unit 910 includes a video processing unit 911 , an RF electrode power source 912 , an irrigation source 913 and an aspiration source 914 .
  • Each of these components is operatively connected to electrical controls 915 , with which the user 990 may interact to operate the system as desired.
  • tissue modification device 950 which includes an integrated visualization sensor 951 , an RF electrode 952 , an irrigation lumen 953 , an aspiration lumen 954 and an articulation mechanism 955 .
  • the tissue modification device 950 provides a number of functionalities 960 , including tissue dissection 961 , tissue removal 962 , tissue discrimination 963 and accessibility 964 .
  • the system provides numerous user interface opportunities 930 ; including image display 931 , tactile feedback 932 and mechanical controls 933 .
  • FIG. 10 provides an example of an embodiment of an integrated visualization sub-system that includes a distal end CMOS visualization sensor.
  • visualization sub-system 1000 includes distal end CMOS visualization sensor 1010 that includes lens housing 1015 component operatively coupled to integrated circuit component 1020 .
  • lens housing 1015 includes a lens set 1016 .
  • LED 1018 which provides illumination for a target tissue location during use.
  • Integrated circuit component 1020 includes CMOS sensor integrated circuit 1021 and rigid printed circuit board 1022 .
  • lens housing/light source component 1015 are operatively coupled to flexible cable 1030 which provides for operative connection of the CMOS visualization system at the distal end of the device via the handle. 1040 to the video processing sub-system 1050 .
  • the flexible cable operatively connects to a shielded cable 1052 which provides for RF isolation.
  • the various components are shielded from RF, e.g., by coating the elements with a conductive material which is then connected to a ground.
  • lens housing 1015 and cable 1030 are RF shielded.
  • RF shielded cable 1052 connects to video processing sub-system 1050 which includes a variety of functional blocks, such as host controller 1051 (coupled to PC 1061 ), digital signal processor 1052 (coupled to LCD 1062 ) and CMOS visualization sensor bridge 1053 . As shown in FIG. 10 , video processing sub-system 1050 is ground to earth 1072 by connection to metal case 1070 .
  • Systems of the invention may include a number of additional components in addition to the tissue modification devices and extra-corporeal control units, as described above. Additional components may include access port devices; root retractors; retractor devices, system component fixation devices; and the like; etc. Of interest are systems that further access devices as described in co-pending U.S. application Ser. Nos. 12/269,770; 12/269,772; and 12/269,775; the disclosures of which are herein incorporated by reference.
  • aspects of the subject invention also include methods of imaging and/or modifying an internal target tissue of a subject. Accordingly, aspects of the invention further include methods of imaging an internal tissue site with tissue modification devices of the invention. A-variety of internal tissue sites can be imaged with devices of the invention. In certain embodiments, the methods are methods of imaging an intervertebral disc in a minimally invasive manner. For ease of description, the methods are now primarily described further in terms of imaging IVD target tissue sites. However, the invention is not so limited, as the devices may be used to image a variety of distinct target tissue sites.
  • embodiments of such methods include positioning a distal end of a minimally invasive intervertebral disc imaging device of the invention in viewing relationship to an intervertebral disc or portion of there, e.g., nucleus pulposus, internal site of nucleus pulposus, etc.
  • viewing relationship is meant that the distal end is positioned within 40 mm, such as within 10 mm, including within 5 mm of the target tissue site of interest.
  • Positioning the distal end in viewing device in relation to the desired target tissue may be accomplished using any convenient approach, including through use of an access device, such as a cannula or retractor tube, which may or may not be fitted with a trocar, as desired.
  • an access device such as a cannula or retractor tube, which may or may not be fitted with a trocar, as desired.
  • the target tissue erg., intervertebral disc or portion thereof, is imaged through use of the illumination and visualization elements to obtain image data.
  • Image data obtained according to the methods of the invention is output to a user in the form of an image, e.g., using a monitor or other convenient medium as a display means.
  • the image is a still image, while in other embodiments the image may be a video.
  • the methods include a step of tissue modification in addition to the tissue viewing.
  • the methods may include a step of tissue removal, e.g., using a combination of tissue cutting and irrigation or flushing.
  • the methods may include cutting a least a portion of the tissue and then removing the cut tissue from the site, e.g., by flushing at least a portion of the imaged tissue location using a fluid introduced by an irrigation lumen and removed by an aspiration lumen.
  • the internal target tissue site may vary widely.
  • Internal target tissue sites of interest include, but are not limited to, cardiac locations, vascular locations, orthopedic joints, central nervous system locations, etc.
  • the internal target tissue site comprises spinal tissue.
  • the subject methods are suitable for use with a variety of mammals.
  • Mammals of interest include, but are not limited to: race animals, e.g. horses, dogs, etc., work animals, e.g. horses, oxen etc., and humans.
  • the mammals on which the subject methods are practiced are humans.
  • Access device 310 may be any convenient device, such as a conventional retractor tube.
  • Access device 310 as shown in FIG. 3A has an inner diameter of 7.0 mm and an outer diameter of 9.5 mm.
  • orientation of camera 320 is biased to one side (left side in figure).
  • the electrode 340 on the side opposite the viewing field of the camera (right side in figure) is distally translated so that it emerges distally from the distal tip of the device 300 .
  • the distally translated electrode 340 is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection during insertion of the device.
  • the electrode 340 on the same side as the viewing field of the camera is distally translated so that it emerges laterally from the endoscope probe on the proximal side of the camera.
  • the same electrode (left side in figure) is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection.
  • the entire end of the device 300 may be translated proximally and distally until the desired tissue dissection is obtained.
  • the device may be rotated 180 degrees and further tissue removed using the steps described above.
  • the subject tissue modification devices and methods find use in a variety of different applications where it is desirable to image and/or modify an internal target tissue of a subject while minimizing damage to the surrounding tissue.
  • the subject devices and methods find use in many applications, such as but not limited to surgical procedures, where a variety of different types of tissues may be removed, including but not limited to; soft tissue, cartilage, bone, ligament, etc.
  • Specific procedures of interest include, but are not limited to, spinal fusion (such as Transforaminal Lumbar Interbody Fusion (TLIF)), total disc replacement (TDR), partial disc replacement (PDR), procedures in which all or part of the nucleus pulposus is removed from the intervertebral disc (IVD) space, arthroplasty, and the like.
  • spinal fusion such as Transforaminal Lumbar Interbody Fusion (TLIF)
  • TDR total disc replacement
  • PDR partial disc replacement
  • methods of the invention also include treatment methods, e.g., where a disc is modified in some manner to treat an existing medical condition.
  • Treatment methods of interest include, but are not limited to: annulotomy, nucleotomy, discectomy, annulus replacement, nucleus replacement, and decompression due to a bulging or extruded disc. Additional methods in which the imaging devices find use include those described in United States Published Application No. 20080255563.
  • the subject devices and methods facilitate the dissection of the nucleus pulposus while minimizing thermal damage to the surrounding tissue.
  • the subject devices and methods can facilitate the surgeon's accessibility to the entire region interior to the outer shell, or annulus, of the IVD, while minimizing the risk of cutting or otherwise causing damage to the annulus or other adjacent structures (such as nerve roots) in the process of dissecting and removing the nucleus pulposus.
  • the subject devices and methods may find use in other procedures, such as but not limited to ablation procedures, including high-intensity focused ultrasound (HIFU) surgical ablation, cardiac tissue ablation, neoplastic tissue ablation (e.g. carcinoma tissue ablation, sarcoma tissue ablation, etc.), microwave ablation procedures, and the like.
  • ablation procedures including high-intensity focused ultrasound (HIFU) surgical ablation, cardiac tissue ablation, neoplastic tissue ablation (e.g. carcinoma tissue ablation, sarcoma tissue ablation, etc.), microwave ablation procedures, and the like.
  • HIFU high-intensity focused ultrasound
  • cardiac tissue ablation e.g. carcinoma tissue ablation, sarcoma tissue ablation, etc.
  • neoplastic tissue ablation e.g. carcinoma tissue ablation, sarcoma tissue ablation, etc.
  • microwave ablation procedures e.g., microwave ablation procedures, and the like.
  • additional applications of interest include, but are not limited to
  • Devices of the invention may provide variable tactile feedback to the operator depending on tissue type.
  • tissue modifier e.g., a RF electrode
  • a mechanical linear actuator e.g., as described above
  • the operator may experience different tactile properties depending on the type of tissue that is being contacted by the linearly translating distal end structure. These different tactile properties may then be employed by the user to differentiate between different types of tissue.
  • devices of invention may provide different sensations to an operator, such as a surgeon, during use depending on the nature of the tissue with the distal end of the device is in contact.
  • devices and methods of the invention also find use in tissue discrimination applications, where the devices are employed to determine the particular nature of the internal tissue with which the distal end of the device is in contact, e.g., whether the distal end of the device is in contact with soft tissue, cartilage, bone, etc.
  • synchronization of the tissue modifier's modulation waveform with its linear translation waveform provides additional benefits. For instance, rapid retraction of the electrode from hard tissue that it encounters will leave the tissue modifier physically separated from the hard tissue by a gap as the tissue modifier approaches the proximal extreme position.
  • the tissue modifier tip is activated only when the tissue modifier is at or near the proximal extreme position, as mentioned above. This has the effect of preferentially delivering the tissue modification energy to soft, compliant tissue as opposed to hard, stiff tissue. Stated otherwise, this provides tissue discrimination based on elastic modulus.
  • synchronization of the modulation waveform with the linear translation waveform facilitates the delivery of tissue modification energy to the nucleus pulposus (soft, compliant tissue) while minimizing the delivery of tissue modification energy to the disc annulus (hard, stiff tissue) and the endplates of the vertebral bodies (hard, stiff tissue).
  • cyclic linear translation of the tissue modifier helps to prevent a condition where the electrode sticks to tissue as it ablates it, resulting in increased thermal effects to the surrounding tissue, ineffective or discontinuous tissue dissection, buildup of charred or otherwise modified tissue on the tissue modifier tip, or a combination thereof.
  • cyclic linear translation of the tissue modifier helps chop the dissected tissue into smaller pieces, thus facilitating aspiration of the dissected tissue.
  • kits for use in practicing the subject methods may include one or more of the above devices, and/or components of the subject systems, as described above.
  • the kit may further include other components, e.g., guidewires, access devices, fluid sources, etc., which may find use in practicing the subject methods.
  • Various components may be packaged as desired, e.g., together or separately.
  • the subject kits may further include instructions for using the components of the kit to practice the subject methods.
  • the instructions for practicing the subject methods are generally recorded on a suitable recording medium.
  • the instructions may be printed on a substrate, such as paper or plastic, etc.
  • the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging) etc.
  • the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, etc.
  • the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided.
  • An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate.

Abstract

Tissue modification devices are provided. Aspects of the devices include an elongated member having a proximal end and a distal end. The distal end of the elongated member is dimensioned to pass through a minimally invasive body opening and includes a distal end integrated visualization sensor and tissue modifier. In some instances, the devices further include an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member. Also provided are methods of modifying internal target tissue of a subject using the tissue modification devices.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • Pursuant to 35 U.S.C. §119 (e), this application claims priority to U.S. Provisional Application Ser. No. 61/082,774 filed Jul. 22, 2008; the disclosure of which priority application is herein incorporated by reference.
  • INTRODUCTION
  • Traditional surgical procedures, both therapeutic and diagnostic, for pathologies located within the body can cause significant trauma to the intervening tissues. These procedures often require a long incision, extensive muscle stripping, prolonged retraction of tissues, denervation and devascularization of tissue. These procedures can require operating room time of several hours and several weeks of post-operative recovery time due to the destruction of tissue during the surgical procedure. In some cases, these invasive procedures lead to permanent scarring and pain that can be more severe than the pain leading to the surgical intervention.
  • The development of percutaneous procedures has yielded a major improvement in reducing recovery time and post-operative pain because minimal dissection of tissue, such as muscle tissue, is required. For example, minimally invasive surgical techniques are desirable for spinal and neurosurgical applications because of the need for access to locations within the body and the danger of damage to vital intervening tissues. While developments in minimally invasive surgery are steps in the right direction, there remains a need for further development in minimally invasive surgical instruments and methods.
  • SUMMARY
  • Tissue modification devices are provided. Aspects of the devices include an elongated member having a proximal end and a distal end. The distal end of the elongated member is dimensioned to pass through a minimally invasive body opening and includes a distal end integrated visualization sensor and tissue modifier. In some instances, the devices further include an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member. Also provided are methods of modifying internal target tissue of a subject using the tissue modification devices.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIGS. 1A and B provide two different views of a disposable tissue modification device according to an embodiment of the invention.
  • FIGS. 2A to 2C provide cross-sectional views of the distal ends of devices according to certain embodiments of the invention.
  • FIGS. 3A to 3E provide cross-sectional views of the distal ends of devices according to certain embodiments of the invention.
  • FIG. 4 provides an alternative view of the distal end of a device according to an embodiment of the invention, where the device is shown accessing the nucleus pulposus of an intervertebral disc.
  • FIG. 5 provides an alternative view of the distal end of a device according to an embodiment of the invention, where the device is shown accessing the nucleus pulposus of an intervertebral disc.
  • FIGS. 6A to 6E provide various views of the distal end of a device according to one embodiment of the invention.
  • FIG. 7 provides a cutaway view of the device shown in FIGS. 1A and 1B.
  • FIG. 8 provides a depiction of a system according to one embodiment of the invention, where the system includes both a disposable tissue modifier device and an extra-corporeal control unit.
  • FIG. 9 provides a block diagram showing the architecture of a system according to one embodiment of the invention and how that system interacts with a user.
  • FIG. 10 shows a CMOS visualization sub-system that may be incorporated into a tissue modification system according to an embodiment of the invention.
  • DETAILED DESCRIPTION
  • Tissue modification devices are provided. Aspects of the devices include an elongated member having a proximal end and a distal end. The distal end of the elongated member is dimensioned to pass through a minimally invasive body opening and includes a distal end integrated visualization sensor and tissue modifier. In some instances, the devices further include an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member. Also provided are methods of modifying internal target tissue of a subject using the tissue modification devices.
  • Before the present invention is described in greater detail, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
  • Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.
  • All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
  • It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
  • As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
  • In further describing various aspects of the invention, aspects of embodiments of the subject tissue modification devices are described first in greater detail. Next, embodiments of methods of modifying an internal target tissue of a subject in which the subject tissue modification devices may find use are reviewed in greater detail.
  • Tissue Modification Devices
  • Aspects of the invention include tissue modification devices useful for modifying an internal target tissue site, e.g., a spinal location that is near or inside of an intervertebral disc (IVD). As summarized above, the tissue modification devices are dimensioned such that at least the distal end of the devices can pass through a minimally invasive body opening. As such, at least the distal end of the devices may be introduced to an internal target site of a patient, e.g., a spinal location that is near or inside of an intervertebral disc, through a minimal incision, e.g., one that is less than the size of an incision employed for an access device having a outer diameter of 20 mm or smaller, e.g., less than 75% the size of such an incision, such as less than 50% of the size of such an incision, or smaller. In some instances, at least the distal end of the elongated member is dimensioned to pass through a Cambin's triangle. The Cambin's triangle (also known in the art as the Pambin's triangle) is an anatomical spinal structure bounded by an exiting nerve root and a traversing nerve root and a disc. The exiting root is the root that leaves the spinal canal just cephalad (above) the disc, and the traversing root is the root that leaves the spinal canal just caudad (below) the disc. Where the distal end of the elongated member is dimensioned to pass through a Cambin's triangle, at least the distal end of the device has a longest cross-sectional dimension that is 10 mm or less, such as 8 mm or less and including 7 mm or less. In some instances, the elongated member has an outer diameter that is 7.5 mm or less, such as 7.0 mm or less, including 6.7 mm or less, such as 6.6 mm or less, 6.5 mm or less, 6.0 mm or less, 5.5 mm or less, 5.0 mm or less.
  • As summarized above, tissue modification devices of the invention include an elongated member. As this component of the devices is elongated, it has a length that is 1.5 times or longer than its width, such as 2 times or longer than its width, including 5 or even 10 times or longer than its width, e.g., 20 times longer than its width, 30 times longer than its width, or longer. The length of the elongated member may vary, an in some instances ranges from 5 cm to 20 cm, such as 7.5 cm to 15 cm and including 10 to 12 cm. The elongated member may have the same outer cross-sectional dimensions (e.g., diameter) along its entire length. Alternatively, the cross-sectional diameter may vary along the length of the elongated member.
  • The elongated members of the subject tissue modification devices have a proximal end and a distal end. The term “proximal end”, as used herein, refers to the end of the elongated member that is nearer the user (such as a physician operating the device in a tissue modification procedure), and the term “distal end”, as used herein, refers to the end of the elongated member that is nearer the internal target tissue of the subject during use. The elongated member is, in some instances, a structure of sufficient rigidity to allow the distal end to be pushed through tissue when sufficient force is applied to the proximal end of the elongate member. As such, in these embodiments the elongated member is not pliant or flexible, at least not to any significant extent.
  • Depending on the particular device embodiment, the elongated member may or may not include one or more lumens that extend at least partially along its length. When present, the lumens may vary in diameter and may be employed for a variety of different purposes, such as irrigation, aspiration, electrical isolation (for example of conductive members, such as wires), as a mechanical guide, etc., as reviewed in greater detail below. When present, such lumens may have a longest cross section that varies, ranging in some in stances from 0.5 to 5.0 mm, such as 1.0 to 4.5 mm, including 1.0 to 4.0 mm. The lumens may have any convenient cross-sectional shape, including but not limited to circular, square, rectangular, triangular, semi-circular, trapezoidal, irregular, etc., as desired. These lumens may be provided for a variety of different functions, including as irrigation and/or aspiration lumens, as described in greater detail below.
  • As summarized above, the devices include a distal end integrated visualization sensor and a distal end integrated tissue modifier. As the visualization sensor is integrated at the distal end of the device, it cannot be removed from the remainder of the device without significantly compromising the structure and functionality of the device. Accordingly, the devices of the present invention are distinguished from devices which include a “working channel” through which a separate autonomous device, such as a tissue modifier, is passed through. In contrast to such devices, since the visualization sensor of the present device is integrated at the distal end, it is not a separate device from the elongated member that is merely present in a working channel of the elongated member and which can be removed from the working channel of such an elongated member without structurally compromising the elongated member in any way. The visualization sensor may be integrated with the distal end of the elongated member by a variety of different configurations. Integrated configurations include configurations where the visualization sensor is fixed relative to the distal end of the elongated member, as well as configurations where the visualization sensor is movable to some extent relative to the distal end of the elongated member. Movement of the visualizations sensor may also be provided relative to the distal end of the elongated member, but then fixed with respect to another component present at the distal end, such as a distal end integrated tissue modifier. Specific configurations of interest are further described below in connection with the figures.
  • Visualization sensors of interest include miniature imaging sensors that have a cross-sectional area which is sufficiently small for its intended use and yet retains a sufficiently high matrix resolution. Imaging sensors of interest are those that include a photosensitive component, e.g., array of photosensitive elements that convert light into electrons, coupled to an integrated circuit. The integrated circuit may be configured to obtain and integrate the signals from the photosensitive array and output image data, which image data may in turn be conveyed to an extra-corporeal device configured to receive the data and display it to a user. The image sensors of these embodiments may be viewed as integrated circuit image sensors. The integrated circuit component of these sensors may include a variety of different types of functionalities, including but not limited to: image signal processing, memory, and data transmission circuitry to transmit data from the visualization sensor to an extra-corporeal location, etc. The miniature imaging sensors may further include a lens component made up of one or more lenses positioned relative to the photosensitive component so as to focus images on the photosensitive component. Where desired, the one or more lenses may be present in a housing. Specific types of miniature imaging sensors of interest include complementary metal-oxide-semiconductor (CMOS) sensors and charge-coupled device (CCD) sensors. The sensors may have any convenient configuration, including circular, square, rectangular, etc. Visualization sensors of interest may have a longest cross-sectional dimension that varies depending on the particular embodiment, where in some instances the longest cross sectional dimension (e.g., diameter) is 4.0 mm or less, such as 3.5 mm or less, including 3.0 mm or less, such as 2.5 mm or less, including 2.0 mm or less, including 1.5 mm or less, including 1.0 mm or less.
  • Imaging sensors of interest may be either frontside or backside illumination sensors, and have sufficiently small dimensions while maintaining sufficient functionality to be integrated at the distal end of the elongated members of the devices of the invention. Aspects of these sensors are further described in one or more the following U.S. Patents, the disclosures of which are herein incorporated by reference: U.S. Pat. Nos. 7,388,242; 7,368,772; 7,355,228; 7,345,330; 7,344,910; 7,268,335; 7,209,601; 7,196,314; 7,193,198; 7,161,130; and 7,154,137.
  • As the visualization sensor is a distal end integrated visualization sensor, it is located at or near the distal end of the elongated member. Accordingly, it is positioned at 3 mm or closer to the distal end, such as at 2 mm or closer to the distal end, including at 1 mm or closer to the distal end. In some instances, the visualization sensor is located at the distal end of the elongated member. The visualization sensor may provide for front viewing and/or side-viewing, as desired. Accordingly, the visualization sensor may be configured to provide image data as seen in the forward direction from the distal end of the elongated member. Alternatively, the visualization sensor may be configured to provide image data as seen from the side of the elongate member. In yet other embodiments, a visualization sensor may be configured to provide image data from both the front and the side, e.g., where the image sensor faces at an angle that is less than 90° relative to the longitudinal axis of the elongated member, e.g., as illustrated in FIGS. 6A to 6C, described in greater detail below.
  • Because the visualization sensor is a distal end integrated visualization sensor, the visualization sensor also includes functionality for conveying image data to an extra-corporeal device, such as an image display device. In some instances, a signal cable (or other type of signal conveyance element) may be present to connect the image sensor at the distal end to a device at the proximal end of the elongate member, e.g., in the form of one or more wires running along the length of the elongate member from the distal to the proximal end. Alternatively, wireless communication protocols may be employed, e.g., where the imaging sensor is operatively coupled to a wireless data transmitter, which may be positioned at the distal end of the elongated member (including integrated into the visualization sensor, at some position along the elongated member or at the proximal end of the device, e.g., at a location of the proximal end of the elongated member or associated with the handle of the device).
  • Where desired, the devices may include one or more illumination elements configured to illuminate a target tissue location so that the location can be visualized with a visualization sensor, e.g., as described above. A variety of different types of light sources may be employed as illumination elements, so long as their dimensions are such that they can be positioned at the distal end of the elongated member. The light sources may be integrated with a given component (e.g., elongated member) such that they are configured relative to the component such that the light source element cannot be removed from the remainder of the component without significantly compromising the structure of the component. As such, the integrated illumination element of these embodiments is not readily removable from the remainder of the component, such that the illumination element and remainder of the component form an inter-related whole. The light sources may be light emitting diodes configured to emit light of the desired wavelength range, or optical conveyance elements, e.g., optical fibers, configured to convey light of the desired wavelength range from a location other than the distal end of the elongate member, e.g., a location at the proximal end of the elongate member, to the distal end of the elongate member. As with the image sensors, the light sources may include a conductive element, e.g., wire, or an optical fiber, which runs the length of the elongate member to provide for power and control of the light sources from a location outside the body, e.g., an extracorporeal control device. Where desired, the light sources may include a diffusion element to provide for uniform illumination of the target tissue site. Any convenient diffusion element may be employed, including but not limited to a translucent cover or layer (fabricated from any convenient translucent material) through which light from the light source passes and is thus diffused. In those embodiments of the invention where the system includes two or more illumination elements, the illumination elements may emit light of the same wavelength or they may be spectrally distinct light sources, where by “spectrally distinct” is meant that the light sources emit light at wavelengths that do not substantially overlap, such as white light and infra-red light. In certain embodiments, an illumination configuration as described in copending U.S. application Ser. Nos. 12/269,770 and 12/269,772 (the disclosures of which are herein incorporated by reference) is present in the device.
  • In addition to a distal end integrated visualization sensor, devices of the invention further include an integrated distal end tissue modifier. As the tissue modifier is integrated at the distal end of the device, it cannot entirely be removed from the remainder of the device without significantly compromising the structure and functionality of the device. While the tissue modifier cannot entirely be removed from the device without compromising the structure and functionality of the device, components of the tissue modifier may be removable and replaceable. For example, an RF electrode tissue modifier may be configured such that the wire component of the tissue modifier may be replaceable while the remainder of the tissue modifier is not. Accordingly, the devices of the present invention are distinguished from devices which include a “working channel” through which a separate autonomous tissue modifier device, such as autonomous RF electrode device, is passed through. In contrast to such devices, since the tissue modifier of the present device is integrated at the distal end, it is not a separate device from the elongated member that is merely present in a working channel of the elongated member and which can be removed from the working channel of such an elongated member without structurally compromising the elongated member in any way. The tissue modifier may be integrated with the distal end of the elongated member by a variety of different configurations. Integrated configurations include configurations where the tissue modifier is fixed relative to the distal end of the elongated member, as well as configurations where the tissue modifier is movable to some extent relative to the distal end of the elongated member may be employed in devices of the invention. Specific configurations of interest are further described below in connection with the figures. As the tissue modifier is a distal end integrated tissue modifier, it is located at or near the distal end of the elongated member. Accordingly, it is positioned at 10 mm or closer to the distal end, such as at 5 mm or closer to the distal end, including at 2 mm or closer to the distal end. In some instances, the tissue modifier is located at the distal end of the elongated member.
  • Tissue modifiers are components that interact with tissue in some manner to modify the tissue in a desired way. The term modify is used broadly to refer to changing in some way, including cutting the tissue, ablating the tissue, delivering an agent(s) to the tissue, freezing the tissue, etc. As such, of interest as tissue modifiers are tissue cutters, tissue ablators, tissue freezing/heating elements, agent delivery devices, etc. Tissue cutters of interest include, but are not limited to: blades, liquid jet devices, lasers and the like. Tissue ablators of interest include, but are not limited to ablation devices, such as devices for delivery ultrasonic energy (e.g., as employed in ultrasonic ablation), devices for delivering plasma energy, devices for delivering radiofrequency (RF) energy, devices for delivering microwave energy, etc. Energy transfer devices of interest include, but are not limited to: devices for modulating the temperature of tissue, e.g., freezing or heating devices, etc. In some embodiments, the tissue modifier is not a tissue modifier that achieves tissue modification by clamping, clasping or grasping of tissue such as may be accomplished by devices that trap tissue between opposing surfaces (e.g., jaw-like devices). In these embodiments, the tissue modification device is not an element that is configured to apply mechanical force to tear tissue, e.g., by trapping tissue between opposing surfaces. In some embodiments, tissue modification comprises an action other than just removal by low pressure irrigation or aspiration, for example where some other act is performed on the tissue beyond low pressure irrigation and/or aspiration. In some embodiments, the tissue modifier is distinct from a probe element or device that is configured to move tissue without any modification to the tissue other than simple displacement or repositioning, such as through retraction, atraumatic movement, etc.
  • In some instances, the tissue modifier includes at least one electrode. For example, tissue modifiers of interest may include RF energy tissue modifiers, which include at least one electrode and may be configured in a variety of different ways depending on the desired configuration of the RF circuit. An RF circuit can be completed substantially entirely at target tissue location of interest (bipolar device) or by use of a second electrode attached to another portion of the patient's body (monopolar device). In either case, a controllable delivery of RF energy is achieved. Aspects of the subject tissue modification devices include a radiofrequency (RF) electrode positioned at the distal end of the elongated member. RF electrodes are devices for the delivery of radiofrequency energy, such as ultrasound, microwaves, and the like. In some instances, the RF electrode is an electrical conductor for delivering RF energy to a particular location, such as a desired target tissue. For instance, in certain cases, the RF electrode can be an RF ablation electrode. RF electrodes of the subject tissue modification devices can include a conductor, such as a metal wire, and can be dimensioned to access an intervertebral disc space. RF electrodes may be shaped in a variety of different formats, such as circular, square, rectangular, oval, etc. The dimensions of such electrodes may vary, where in some embodiments they RF electrode has a longest cross-sectional dimension that is 7 mm or less, 6 mm or less 5 mm or less, 4 mm or less, 3 mm or less or event 2 mm or less, as desired. Where the electrode includes a wire, the diameter of the wire in such embodiments may be 180 μm, such as 150 μm or less, such as 130 μm or less, such as 100 μm or less, such as 80 μm or less. A variety of different RF electrode configurations suitable for use in tissue modification and include, but are not limited to, those described in U.S. Pat. Nos. 7,449,019; 7,137,981; 6,997,941; 6,837,887; 6,241,727; 6,112,123; 6,607,529; 5,334,183. RF electrode systems or components thereof may be adapted for use in devices of the present invention (when coupled with guidance provided by the present specification) and, as such, the disclosures of the RF electrode configurations in these patents are herein incorporated by reference. Specific RF electrode configurations of interest are further described in connection with the figures, below.
  • In some instances, the tissue modifier is supplied with current from an RF energy source. The voltage signal driving the current to the tissue modifier may be definable as a sine, square, saw-tooth, triangle, pulse, non-standard, complex, or irregular waveform, or the like, with a well-defined operating frequency. For example, the operating frequency can range from 1 KHz to 50 MHz, such as from 100 KHz to 25 MHz, and including from 250 KHz to 10 MHz. In some embodiments, the RF voltage signal is a sine wave with operating frequency 460 kHz. Furthermore, the tissue modifier's operating frequency can be modulated by a modulation waveform. By “modulated” is meant attenuated in amplitude by a second waveform, such as a periodic signal waveform. The modulation waveform may be definable as a sine, square, saw-tooth, triangle, pulse, non-standard, complex, or irregular waveform, or the like, with a well-defined modulation frequency. For example, the modulation frequency can range from 1 Hz to 10 kHz, such as from 1 Hz to 500 Hz, and including from 10 Hz to 100 Hz. In some embodiments, the modulation waveform is a square wave with modulation frequency 70 Hz.
  • In some embodiments, a RF tuner is included as part of the RF energy source. The RF tuner includes basic electrical elements (e.g., capacitors and inductors) which serve to tailor the output impedance of the RF energy source. The term “tailor” is intended here to have a broad interpretation, including affecting an electrical response that achieves maximum power delivery, affecting an electrical response that achieves constant power (or voltage) level under different loading conditions, affecting an electrical response that achieves different power (or voltage) levels under different loading conditions, etc. Furthermore, the elements of the RF tuner can be chosen so that the output impedance is dynamically tailored, meaning the RF tuner self-adjusts according to the load impedance encountered at the electrode tip. For instance, the elements may be selected so that the electrode has adequate voltage to develop a plasma corona when the electrode is placed in a saline solution (with saline solution grounded to return electrode), but then may self-adjust the voltage level to a lower threshold when the electrode contacts tissue (with tissue also grounded to return electrode, for example through the saline solution), thus dynamically maintaining the plasma corona at the electrode tip while minimizing the power delivered to the tissue and the thermal impact to surrounding tissue. RF tuners, when present, can provide a number of advantages. For example, delivering RF energy to target tissue through the distal tip of the electrode is challenging since RF energy experiences attenuation and reflection along the length of the conductive path from the RF energy source to the electrode tip, which can result in insertion loss. Inclusion of a RF tuner, e.g., as described above, can help to minimize and control insertion loss.
  • Devices of the invention may include a linear mechanical actuator for linearly translating a distal end element of the device, such as the tissue modifier (e.g., a RF electrode) relative to the distal end of the elongate member. By “linearly translating” is meant moving the tissue modifier along a substantially straight path. As used herein, the term “linear” also encompasses movement of the tissue modifier in a non-straight (i.e., curved) path. For instance, the path of movement of the tissue modifier can be deflected from a substantially straight path if the electrode encounters a tissue of a different density (such as, cartilage, bone, etc.), or if the conformation of the tissue the electrode is passing through is not straight, etc.
  • When actuated by a linear mechanical actuator, the tissue modifier is cyclically displaced from a “neutral” position along its axial extension to positions displaced distally or proximally from the neutral position, with maximum displacement from the neutral position corresponding to the vibratory amplitude. Thus, the linear mechanical actuator actuates the tissue modifier through a distance equal to twice the vibratory amplitude and ranging from a distal extreme position to a proximal extreme position. In certain embodiments, the tissue modifier can be extended by the linear mechanical actuator from the distal end of the elongated member by 0.1 mm or more, such as 0.5 mm or more, including 1 mm or more, for instance 2 mm or more, such as 5 mm or more. This back and forth movement of the tissue modifier relative to the distal end of the elongated member that is implemented by the linear mechanical actuator is described herein in terms of linear translation frequency. It is noted that the above described distal and proximal extreme positions refer to those positions implemented solely by the linear mechanical actuator. In some embodiments,.the linear mechanical actuator may be the only means for translating the electrode. In other embodiments, e.g., as described in greater detail below, the linear mechanical actuator may provide vibratory amplitude that is superimposed on another independent control over electrode translation which moves the electrode over a distance significantly greater than the vibratory amplitude, e.g. 10 mm or more, such as 20 mm or more, including 30 mm or more, for instance 40 mm or more. In this case, the tissue modifier may be extended beyond the range defined by the above described linear mechanical actuator distal and proximal extreme positions. For example, a manual control (e.g., a thumbwheel or analogous structure) may be provided on the device which permits a user to move the tissue modifier relative to the distal end in a movement that is distinct from that provided by the linear mechanical actuator.
  • Accordingly, devices of the invention may include a linear mechanical actuator configured to linearly translate the tissue modifier relative to the distal end at linear translation frequency. The linear mechanical actuator can be any of a variety of actuators convenient for use in the subject devices for linearly translating the tissue modifier relative to the distal end of the elongated member. For instance, the linear mechanical actuator can be a voice coil motor (VCM), solenoid, pneumatic actuator, electric motor, etc. The linear mechanical actuator is operatively coupled to the tissue modifier. By “operatively coupled” is meant that the linear mechanical actuator is connected to the tissue modifier such that linear movement by the actuator is transferred to the tissue modifier thereby extending the tissue modifier from the distal end of the elongated member or retracting the tissue modifier towards the distal end of the elongated member depending on the direction of movement by the linear actuator.
  • When present, the linear actuator provides for linear translation of the tissue modifier at a linear translation frequency. In some instances, the linear translation frequency is 10 Hz or greater, such as 25 Hz or greater, including 50 Hz or greater, such as 100 Hz or greater. In some embodiments, the linear translation frequency is 70 Hz. In certain cases, the translation of the tissue modifier between the distal and proximal extreme positions occurs with a predetermined linear translation frequency while in other embodiments the linear translation frequency may not be predetermined. The translation frequency (whether or not predetermined) may depend on various factors, such as but not limited to, the type of tissue being modified, the amount of tissue being modified, the location of the tissue, the proximity of surrounding tissues, the conformation of the tissue, the type of procedure being performed, the nature of the linear mechanical actuator, the DC voltage applied to the actuator, the amplitude of the AC voltage applied to the actuator, etc. For example, in certain embodiments, the linear translation frequency is definable as a standard waveform, such as a sine waveform. In some cases, the sine waveform is an Hz sine waveform, such that the linear translation frequency ranges from 1 Hz to 500 Hz, such as from 1 Hz to 250 Hz, and including from 10 Hz to 100 Hz. In other cases, the linear translation frequency is definable as a non-standard, complex, or irregular waveform, or the like. For example, the linear translation frequency can be definable as a waveform comprising periods that have varying frequencies, a waveform comprising periods that have varying amplitudes, a waveform comprising periods that have varying frequencies and varying amplitudes, a superposition of two or more waveforms, and the like.
  • In some embodiments, the tissue modification device is configured to synchronize the linear mechanical actuation with the modulated RF waveform. By “synchronize” is meant that two or more events are timed to operate in a coordinated manner. For example, two or more waveforms can be timed to operate in a coordinated manner. In some embodiments, the modulation frequency equals the linear translation frequency, and the modulation waveform is phase-shifted relative to the linear translation waveform. Synchronization of these waveforms may be achieved using a variety of different protocols and may implement one or more controllers of different formats, including hardware, software, and combinations thereof. For instance, a single common controller may generate two waveforms that are phase-shifted; alternatively, separate controllers can be arranged in a master-slave configuration to generate two waveforms that are phase-shifted, alternatively, one controller can generate a waveform, hardware (e.g., an opto-electronic encoder, a mechanical encoder, a hall sensor, or the like) can be used to trigger on a physical embodiment (such as mechanical rotation) of that waveform, and a second controller can generate a second waveform with adjustable phase shift from the trigger signal. The phase shift of the modulation waveform relative to the linear translation waveform can be positive (phase lead) or negative (phase lag), and can have magnitude 0° to 360° or more, such as 0° to 180°, including 60° to 120°. In certain embodiments of the invention, the modulation waveform lags the linear translation waveform by 90°.
  • As discussed above, the tissue modifier (e.g., a RF electrode) has distal and proximal extreme positions of its cyclic linear translation. In certain embodiments, the tissue modifier is configured to deliver RF energy to an internal target tissue while at a position other than the distal extreme position. Thus, in these cases, the modulation waveform is synchronized with the linear translation waveform such that the tissue modifier is energized when the tissue modifier is at a position other than the distal extreme position, such as while the tissue modifier is at or near the proximal extreme position. For example, as discussed above, the modulating waveform may be phase-shifted relative to the linear translation waveform.
  • Cyclic linear translation of the tissue modification device can facilitate a variety of functions with multiple benefits. For instance, cyclic linear translation of the tissue modifier at a fast rate relative to manually controlled translation (e.g., at a frequency greater than 10 Hz) will tend to physically advance the tissue modifier into soft tissue due to the compliance of the soft tissue, while hard tissue will resist deformation and will thus not allow the tissue modifier to physically advance into the hard tissue. Consequently, the electrode will push back against the elongated body as it encounters hard tissue, thus producing tactile feedback to the user. In some embodiments, synchronization of the tissue modifier's modulation waveform with its linear translation waveform provides additional benefits. For instance, rapid retraction of the electrode from hard tissue that it encounters will leave the tissue modifier physically separated from the hard tissue by a gap as the tissue modifier approaches the proximal extreme position. In some embodiments, the tissue modifier tip is activated only when the tissue modifier is at or near the proximal extreme position, as mentioned above. This has the effect of preferentially delivering the tissue modification energy to soft, compliant tissue as opposed to hard, stiff tissue. Stated otherwise, this provides tissue discrimination based on elastic modulus. In the case of spinal surgery applications requiring removal of nuclear material, such as fusion, total disc replacement, and partial disc replacement, synchronization of the modulation waveform with the linear translation waveform facilitates the delivery of tissue modification energy to the nucleus pulposus (soft, compliant tissue) while minimizing the delivery of tissue modification energy to the disc annulus (hard, stiff tissue) and the endplates of the vertebral bodies (hard, stiff tissue). In addition, cyclic linear translation of the tissue modifier helps to prevent a condition where the electrode sticks to tissue as it ablates it, resulting in increased thermal effects to the surrounding tissue, ineffective or discontinuous tissue dissection, buildup of charred or otherwise modified tissue on the tissue modifier tip, or a combination thereof. Additionally, cyclic linear translation of the tissue modifier helps chop the dissected tissue into smaller pieces, thus facilitating aspiration of the dissected tissue.
  • Depending on the nature of the tissue modifier, the devices will include proximal end connectors for operatively connecting the device and tissue modifier to extra-corporeal elements required for operability of the tissue modifier, such as extra-corporeal RF controllers, mechanical tissue cutter controllers, liquid jet controllers, etc.
  • In some embodiments, an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member is also present in the device. By “steerability” is meant the ability to maneuver or orient the visualization sensor, tissue modifier and/or distal end of the elongated member as desired during a procedure, e.g., by using controls positioned at the proximal end of the device. In these embodiments, the devices include a steerability mechanism (or one or more elements located at the distal end of the elongated member) which renders the desired distal end component maneuverable as desired through proximal end control. As such, the term “steerability”, as used herein, refers to a mechanism that provides a user steering functionality, such as the ability to change direction in a desired manner, such as by moving left, right, up or down relative to the initial direction. The steering functionality can be provided by a variety of different mechanisms. Examples of suitable mechanisms include, but are not limited to one or more wires, tubes, plates, meshes or combinations thereof, made from appropriate materials, such as shape memory materials, music wire, etc. In some instances, the distal end of the elongated member is provided with a distinct, additional capability that allows it to be independently rotated about its longitudinal axis when a significant portion of the operating handle is maintained in a fixed position, as discussed in greater detail below. The extent of distal component articulations of the invention may vary, such as from −180 to +180°; e.g., −90 to +90°. Alternatively, the distal probe tip articulations may range from 0 to 360°, such as 0 to +180°, and including 0 to +90°, with provisions for rotating the entire probe about its axis so that the full range of angles is accessible on either side of the axis of the probe, e.g., as described in greater detail below. Articulation mechanisms of interest are further described in published PCT Application Publication Nos. WO 2009029639; WO 2008/094444; WO 2008/094439 and WO 2008/094436; the disclosures of which are herein incorporated by reference. Specific articulation configurations of interest are further described in connection with the figures, below.
  • In certain embodiments, devices of the invention may further include an irrigator and aspirator configured to flush an internal target tissue site and/or a component of the device, such as a lens of the visualization sensor. As such, the elongated member may further include one or more lumens that run at least the substantial length of the device, e.g., for performing a variety of different functions, as summarized above. In certain embodiments where it is desired to flush (i.e., wash) the target tissue site at the distal end of the elongated member (e.g. to remove ablated tissue from the location, etc.), the elongated member may include both irrigation lumens and aspiration lumens. Thus, the tissue modification device can comprise an irrigation lumen located at the distal end of the elongated member, and the tissue modification device can include an aspiration lumen located at the distal end of the elongated member. During use, the irrigation lumen is operatively connected to a fluid source (e.g., a physiologically acceptable fluid, such as saline) at the proximal end of the device, where the fluid source is configured to introduce fluid into the lumen under positive pressure, e.g., at a pressure ranging from 0 psi to 60 psi, so that fluid is conveyed along the irrigation lumen and out the distal end. While the dimensions of the irrigation lumen may vary, in certain embodiments the longest cross-sectional dimension of the irrigation lumen ranges from 0.5 mm to 5 mm, such as 0.5 mm to 3 mm, including 0.5 mm to 1.5 mm. During use, the aspiration lumen is operatively connected to a source of negative pressure (e.g., a vacuum source) at the proximal end of the device. While the dimensions of the aspiration lumen may vary, in certain embodiments the longest cross-sectional dimension of the aspiration lumen ranges from 1 mm to 7 mm, such as 1 mm to 6 mm, including 1 mm to 5 mm. In some embodiments, the aspirator comprises a port having a cross-sectional area that is 33% or more, such as 50% or more, including 66% or more, of the cross-sectional area of the distal end of the elongated member. In some instances, the negative pressure source is configured to draw fluid and/or tissue from the target tissue site at the distal end into the aspiration lumen under negative pressure, e.g., at a negative pressure ranging from 300 to 600 mmHg, such as 550 mmHg, so that fluid and/or tissue is removed from the tissue site and conveyed along the aspiration lumen and out the proximal end, e.g., into a waste reservoir. In certain embodiments, the irrigation lumen and aspiration lumen may be separate lumens, while in other embodiments, the irrigation lumen and the aspiration lumen can be included in a single lumen, for example as concentric tubes with the inner tube providing for aspiration and the outer tube providing for irrigation. When present, the lumen or lumens of the flushing functionality of the device may be operatively coupled to extra-corporeal irrigation devices, such as a source of fluid, positive and negative pressure, etc. Where desired, irrigators and/or aspirators may be steerable, as described above.
  • Where desired, the devices may include a control structure, such as a handle, operably connected to the proximal end of the elongated member. By “operably connected” is meant that one structure is in communication (for example, mechanical, electrical, optical connection, or the like) with another structure. When present, the control structure (e.g., handle) is located at the proximal end of the device. The handle may have any convenient configuration, such as a hand-held wand with one or more control buttons, as a hand-held gun with a trigger, etc., where examples of suitable handle configurations are further provided below.
  • In some embodiments, the distal end of the elongated member is rotatable about its longitudinal axis when a significant portion of the operating handle is maintained in a fixed position. As such, at least the distal end of the elongated member can turn by some degree while the handle attached to the proximal end of the elongated member stays in a fixed position. The degree of rotation in a given device may vary, and may range from 0 to 360°, such as 0 to 270°, including 0 to 180°.
  • Devices of the invention may be disposable or reusable. As such, devices of the invention may be entirely reusable (e.g., be multi-use devices) or be entirely disposable (e.g., where all components of the device are single-use). In some instances, the device can be entirely reposable (e.g., where all components can be reused a limited number of times). Each of the components of the device may individually be single-use, of limited reusability, or indefinitely reusable, resulting in an overall device or system comprised of components having differing usability parameters.
  • Devices of the invention may be fabricated using any convenient materials or combination thereof, including but not limited to: metallic materials such as tungsten, stainless steel alloys, platinum or its alloys, titanium or its alloys, molybdenum or its alloys, and nickel or its alloys, etc; polymeric materials, such as polytetrafluoroethylene, polyimide, PEEK, and the like; ceramics, such as alumina (e.g., STEATITE™ alumina, MAECOR™ alumina), etc.
  • Various aspects of device embodiments of the invention have been described in varying detail above. Device embodiments will now be described in further detail in terms of figures. FIGS. 1A and 1B provide two different side views of a device 100 according to one embodiment of the invention. Device 100 includes an elongated member 110 and an operating handle 120 at the proximal end of the elongated member 110. The operating handle has a gun configuration and includes a trigger 125 and thumbwheel 130 which provide a user with manual operation over certain functions of the device, e.g., RF electrode positioning and extension. Located at the distal end of the elongated member is an integrated visualization sensor 140 and tissue modifier 150. Control elements 160 (which may include aspiration and irrigation lumens, control/power wires, etc.) exit the handle 120 at the distal end region 170, which region 170 is rotatable relative to the remainder of the handle 120. A variety of additional components may be present at the distal end of the elongated member, which additional elements may include irrigators, aspirators, articulation mechanisms, etc. as described generally above. More details regarding the distal end of elongate member 140 may be seen in FIG. 6D.
  • FIGS. 2A to 2C provide cross-sectional views of the distal ends of elongated members according to three different embodiments of the device. Each of these views shows how the visualization sensor and tissue modifier may be integrated at the distal end despite the limited size of the distal end.
  • FIG. 2A shows an example cross-section of the distal end 200 of an elongated member of a device according one embodiment of the invention. Distal end 200 includes an integrated CMOS visualization sensor 210, which has a 2.5 mm diameter. Also shown are guide-wires 215 which have a 1 mm diameter and provide for articulation of the distal end of the device. Integrated mechanical cutter 230 has a 1.58 mm diameter. Light source 240 has a 1.33 mm diameter. Also shown is lumen 250 which provides for aspiration and irrigation. FIG. 2A is drawn to scale, demonstrating that integrated visualization, tissue modification, illumination and irrigation can be positioned at the distal end of an elongated member that has a 5.00 mm outer diameter.
  • FIG. 2B shows the cross-section of a distal end of elongated member that is analogous to that shown in FIG. 2A, with the exception that smaller diameter guidewires (0.80 mm) are employed. As a result, light source 240 may have a 1.50 mm diameter and mechanical cutter 230 may have a 1.92 mm diameter. Like the embodiment shown in FIG. 2A, FIG. 2B is drawn to scale, demonstrating that integrated visualization, tissue modification, illumination and irrigation can be positioned at the distal end of an elongated member that has a 5.00 mm outer diameter.
  • FIG. 2C shows the cross-section of a distal end of elongated member that is analogous to that shown in FIG. 2A, with the exception that smaller non-circular cross-section guidewires (1.20 mm×0.60 mm) are present. As a result, light source 240 may have a 1.63 mm diameter and mechanical cutter 230 may have a 2.22 mm diameter. Like the embodiment shown in FIG. 2A, FIG. 2C is drawn to scale, demonstrating that integrated visualization, tissue modification, illumination and irrigation can be positioned at the distal end of an elongated member that has a 5.00 mm outer diameter.
  • FIG. 3A shows an example cross-section a distal end of a device according to an embodiment of the invention. FIG. 3A illustrates the distal end of a device 300 having a distal end outer diameter of 6.6 mm, where the drawing is to scale. The distal end of device 300 includes an integrated camera 320 (e.g., a CMOS sensor) having an outer diameter of 2.8 mm and two fiber optic light sources 330 each having an outer diameter of 1.3 mm. Also integrated at the distal end are electrode cutters 340 (having dimensions of 2.0 mm×0.7 mm) each associated with an irrigation lumen 350 (having dimensions of 1.2 mm×0.8 mm). In addition, the distal end includes central aspiration lumen 360 which has a rectangular configuration and dimensions of 5.0 mm×1.8 mm. In FIG. 3A, the integrated camera 320 is overlapping with other elements, which illustrates how the camera cross-section only occupies space at the most distal portion of the device 300. Overlapping portions of cross sections of other components, including the aspiration lumen 360, would be terminated or diverted laterally before reaching the proximal end of the camera. During use of the device for removal of tissue from a target tissue location, the following steps may be performed. First the distal end 300 of the device is introduced into the target tissue dissection region through access device 310. Access device 310 may be any convenient device, such as a conventional retractor tube. Access device 310 as shown in FIG. 3A has an inner diameter of 7.0 mm and an outer diameter of 9.5 mm. At this stage, orientation of camera 320 is biased to one side (left side in figure). During insertion, the electrode 340 on the side opposite the viewing field of the camera (right side in figure) is distally translated so that it emerges distally from the distal tip of the device 300. Also during insertion, the distally translated electrode 340 is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection during insertion of the device. For further tissue dissection on the side to which the camera is biased (left side in figure), the electrode 340 on the same side as the viewing field of the camera (left side in figure) is distally translated so that it emerges laterally from the endoscope probe on the proximal side of the camera. While being translated, the same electrode (left side in figure) is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection. At this point, the entire end of the device 300 may be translated proximally and distally until the desired tissue dissection is obtained. When finished with tissue dissection at the first location, the device may be rotated 180 degrees and further tissue removed using the steps described above.
  • FIG. 3B shows an example cross-section of the distal end of a device 300 similar to that in FIG. 3A, except that it includes additional irrigation lumens 370 (outer diameter 1.2 mm) in addition to the irrigation lumens 350 (dimensions of 1.5 mm×0.9 mm) associated with the electrodes 340 (dimensions 2.5 mm×1.1 mm). Also, the geometry of the aspiration tube is hexagonal rather than rectangular to maximize use of space for this geometry (dimensions 4.2 mm×2.3 mm). The drawing is to scale, and shows another example of what can be integrated at the distal end of a device having a 6.6 mm outer. As shown, the cross section of the camera 320 is overlapping with other elements as in FIG. 3A, which shows how the camera cross-section only occupies space at the most distal portion of the device. Overlapping portions of other cross sections, including the light sources, one of the electrodes, and the aspiration tube, would be terminated or diverted laterally before reaching the proximal end of the camera. Operating this device may include the same steps as described above in connection with the device of FIG. 3A, except that additional irrigation could be used to help flush out dissected tissue and to clean the camera lens using the additional irrigation lumens 370.
  • FIG. 3C shows an example cross-section of the distal end 300 of a device similar to that in FIG. 3B, except that the orientation one of the electrodes 340 is reversed and the geometry of the aspiration tube 360 is trapezoidal rather than hexagonal to maximize use of space for this geometry. The drawing is to scale, and shows another example of components that can be integrated into a 6.6 mm outer diameter device distal end. In FIG. 3C, the dimensions of the components are the same as that of FIG. 3B, with the exception that irrigation lumens 370 have an outer diameter of 1.1 mm, the dimensions of aspiration lumen 360 are 4.2 mm×2.7 mm, the dimensions of electrodes 340 are 2.5 mm×1.1 mm and the dimensions of electrode irrigation lumens 350 are 1.5 mm×0.9 mm. As in the devices shown in FIGS. 3A and 3B, the camera cross section is overlapping with other elements, which shows how the camera cross-section 320 only occupies space at the most distal portion of the probe. Overlapping portions of other cross sections, including the light sources, one of the electrodes, and the aspiration tube, would be terminated or diverted laterally before reaching the proximal end of the camera 320. Operating this device may include the same steps as described above in connection with the device of FIGS. 3A and 3B.
  • FIG. 3D shows an example cross-section of the distal end 300 of a device that is similar to that in FIG. 3C, except that only one electrode 340 (dimensions 5.4 mm diameter×0.35 mm thick) is used and it is much larger than the electrode present in the device shown in FIG. 3C. The electrode irrigation lumen is also dimensioned differently, having dimensions of 1.5 mm×0.6 mm. In FIG. 3C, integrated camera 320 is shown with camera cables 380 (having dimensions of (1.5 mm×0.8 mm). Also, the geometry of the aspiration lumen is a semi-circular rather than trapezoidal to maximize use of space for this geometry, where the dimensions of the aspiration lumen are 3.4 mm×2.1 mm. The drawing is to scale, and shows an example of the components that can be integrated at the distal end of a device that has a 6.6 mm outer diameter. The device is shown present in an access tube having a 7.2 mm inner diameter and a 9.5 mm outer diameter. In FIG. 3D, the camera 320 cross section is overlapping with other elements as in FIGS. 3A to 3C, demonstrating that the camera 320 cross-section only occupies space at the most distal portion of the probe. Overlapping portions of other cross sections, including the light sources and the aspiration tube, would be terminated or diverted laterally before reaching the proximal end of the camera. Operating this device may include the same steps as described above in connection with the device of FIGS. 3A to 3C, except that the single electrode serves the function of both electrodes in FIGS. 3A to 3C. The electrode is distally translated only a short distance for distal cutting, and then it is distally translated farther to cause it to extend laterally to the side viewed by the camera for tissue dissection on that side.
  • FIG. 3E shows an example cross-section of the distal probe tip similar to that in FIG. 3D, except that one of the irrigation channels is replaced by a probe tool 390, having an outer diameter of 1.2 mm, which is employed to manipulate tissue and expose target tissue regions for visualization and/or modification by a tissue modifier, such as the electrode device 340. The drawing is to scale, and shows another example of components that can be integrated at the distal end of a device having a 6.6 mm outer diameter. Operating this device may include the same steps as described above in connection with the device of FIGS. 3A to 3D, except that the probe is also available for probing the tissue dissection region and for assisting in desired tissue dissection.
  • FIG. 4 provides a side view of a device according to an embodiment of the invention, where the device includes a side-viewing integrated camera at its distal end. In FIG. 4, device 400 includes integrated camera 410 having a side-viewing or biased lens 420, which provides a field of view which includes components from both the forward and side views of the device. As shown, the side-viewing camera is angled at a degree ranging from 15 to 65° relative to the longitudinal axis of the elongated member Device 400 also includes an integrated tissue cutter 430 (e.g., in the form of an RF electrode) and integrated light source 435. Device 400 is shown in relation to intervertebral disc 440, where the distal end of the device 400 extends through the annulus fibrosis 450 into the nucleus pulposus 460.
  • FIG. 5 provides a side view of a device 500 according to an embodiment of the invention, where the device includes a side-viewing integrated camera 510 at its distal end and two steerable electrodes 520 and 525. In FIG. 4, device 500 includes integrated camera 510 having a side-viewing or biased lens 520. Device 500 also includes an integrated electrodes 530 and 535 which are steerable (erg., being fabricated from a shape-memory material) and integrated light source 540. Device 500 is shown in relation to intervertebral disc 540, where the distal end of the device 500 extends through the annulus fibrosis 450 into the nucleus pulposus 460.
  • FIGS. 6A and 6B are isometric views of an embodiment of the distal end of a tissue modification device illustrating the invention inserted into the intervertebral disc space. The tissue modification device 600 includes an elongated member 610 inserted through the disc annulus 620 into the nucleus pulposus 630 of the intervertebral disc space. The tissue modification device 600 also includes an RF electrode 640 extended from the distal end of guidetubes 650, which are extended from the distal end of the elongated member 610. The guidetubes 650 are extended from the distal end of the elongated member 610 and have a curved shape, which facilitates access of the RF electrode 640 to the entire intervertebral disc space. The tissue modification device 600 also includes an integrated CMOS visualization-element 660 at the distal end of the elongated member 610.
  • FIGS. 6A and 6B provide views of an RF electrode that is steerable at its distal end. In the embodiment depicted in FIGS. 6A and 6B, the steering functionality of the RF electrode is provided by a shape-memory element in conjunction with a guidetube. The term “shape-memory” as used herein refers to a material that can return to its original shape after being deformed. In certain embodiments, the shape-memory element comprises a shape-memory alloy, such as, but not limited to, a nickel-titanium (e.g., NITINOL) alloy, a copper-zinc-aluminum-nickel alloy, a copper-aluminum-nickel alloy, or the like. For example, the steering functionality of the RF electrode can be provided by wires comprising a shape-memory alloy. The shape-memory wires can be attached to the RF electrode such that when the RF electrode is extended from the distal end of the elongated member, the shape-memory wires take on a predetermined conformation, thus moving the RF electrode into substantially the same conformation. In certain cases, the shape-memory element is provided in conjunction with a guidetube. The guidetube can be a tube (i.e., a cylinder with a hollow central lumen) provided within the elongated member for housing the RF electrode and for guiding the direction of the RF electrode. Thus, the RF electrode can be provided within the central lumen of the guidetube. The guidetube can be composed of any convenient biocompatible material, such as plastic, rubber, metal, and the like. The guidetube can be provided with one or more shape-memory elements, such as wires comprising a shape-memory alloy, as described above. In certain embodiments, the guidetube is a shape-memory guidetube, such as a guidetube comprising a shape-memory alloy.
  • In some cases, the guidetube is slidably positioned in the elongated member, and may be extended from the distal end of the elongated member. In some cases, the shape-memory guidetube has a curved shape when extended from the distal end of the elongated member, such that the guidetube extends at an angle from the longitudinal axis of the elongated member. For example, when the guidetube is fully extended from the distal end of the elongated member, the guidetube may form an arc shape where the guidetube comprises an arc of 1° to 360°, such as 30° to 180°, including 60° to 120°. As described above, the guidetube can be provided with an RF electrode in the central lumen of the guidetube. In some instances, the guidetube is configured to facilitate the RF electrode's access to the entire intervertebral disc space. In certain instances, accessibility to the entire IVD space is facilitated by articulation of one or more of the RF electrode, the guidetube, and the elongated member. In addition, the RF electrode can be slidably positioned in the guidetube, and may be extended from the distal end of the guidetube. The elongated member, the RF electrode and/or the guidetube can be independently rotated, providing additional accessibility within the IVD space.
  • In certain embodiments, the tissue modification device includes two or more guidetubes, where the guidetubes are slideably translateable with respect to the elongated member. In some cases, the guidetubes are slideably translateable with respect to each other, which facilitates extending the RF electrode at an angle from the longitudinal axis of the elongated member or deforming the electrode tip into a new shape or configuration. Thus, one guidetube can be extended or retracted with respect to the distal end of the elongated member independent of the other guidetube(s). For instance, the movement of each guidetube can be controlled by the user, such that the user can extend, retract or steer each guidetube individually.
  • In some cases, the RF electrode comprises a wire slidably positioned in a shape-memory guidetube that is slidably positioned in the elongated member. In certain instances, the RF electrode comprises an exposed portion positioned between first and second ends, where the first and second ends are each positioned in a shape-memory guidetube. By “exposed” is meant that a portion of the RF electrode is able to make electrical contact with the desired target tissue. In these cases, the first and second ends are linearly translatable, where the first and second ends are translatable in unison, such that the first and second ends can be extended and retracted from the distal end of the elongated member at the same rate. In other instances, the first and second ends are linearly translatable with respect to each other, such that the first and second ends can be extended and retracted from the distal end of the elongated member at different rates or to different positions of extension from the distal end of the elongated member. This facilitates the movement of the exposed portion of the RF electrode at an angle from the longitudinal axis of the elongated member. For example, when the RF electrode is extended from the distal end of the elongated member, the angle between the RF electrode and the longitudinal axis of the elongated member can be from 1° to 270°, such as 30° to 180°, including 60° to 120°.
  • As shown in FIGS. 6A and 6B, the RF electrode 640 is a U-shaped structure that includes a distal cutting end (the exposed region), bounded on each side by a ceramic member. This U-shaped configuration is further illustrated in FIG. 6E. The ceramic members 617 flanking each side of the distal cutting end 619 may be joined (e.g., such that they have a cross-bar configuration as shown in FIGS. 6A and 68) or be separate component from each other (e.g., as shown in FIG. 6E). These components may be fabricated from any convenient ceramic material, including but not limited to alumina, such as STEATITE™ alumina, MAECOR™ alumina, and the like. In FIG. 6E, the extended length of region 619 may vary, ranging from 2 to 20 mm, such as 2 to 10 mm and including 2 to 6 mm. The diameter of the wire making up region 619 may vary, and in certain embodiments is 180 μm, such as 150 μm or less, such as 130 μm or less, such as 100 μm or less, such as 80 μm or less. While the distal cutting end or region 619 may be fabricated from a variety of materials, in some instances this portion of the electrode is fabricated from a material that is different from the material of the electrode wires 621. Materials of interest from which the distal cutting end 619 may be fabricated include, but are not limited to tungsten, tungsten alloys, e.g., tungsten rhenium, steel, tungsten coated with noble metals, such as Pt, Au, etc., and the like.
  • FIG. 6C provides a view of the distal end of device that is analogous to that shown in FIGS. 6A and 6B. FIG. 6C shows how a variety of components including an integrated CMOS visualization sensor 660, irrigation lumens 665, aspiration lumen 670, and steerable RF electrode 640 can be incorporated into the distal end of an elongated member having an outer diameter that is 7.0 mm or less, such as 6.5 mm or less. Electrode 640 is made up of electrode wires extending from electrode guidetubes 650. Separating the electrode wires from the distal cutting end 690 are ceramic electrode crimp elements 680. Electrode wires 640 and guidetubes 650 are shown in an extended configuration in FIG. 6C but each independently may be fabricated from a shape memory material so as to assume a curved configuration (as shown in FIGS. 6A and 6B) and therefore impart steerability to the RF electrode. As shown in FIG. 6C, aspiration lumen 670 opens to the side of the device 600 and is positioned just proximal of the CMOS visualization sensor 660 so that all of the disparate components may be integrated at the distal end of the device.
  • FIG. 6D provides a three-dimensional view of one embodiment of a distal end of tissue modification device 600 (having a 6.5 mm outer dimension) of the invention. In FIG. 6D, the distal end of the device includes and integrated circular CMOS visualization sensor 605 and integrated LED 610. Also shown is a first forward facing irrigation lumen 615 and a second irrigation lumen 617 which is slightly extended from the distal end and is side facing so that fluid emitted from lumen 617 is flowed across CMOS visualization sensor 605 to clean the sensor of debris, when needed. Also shown is an aspiration lumen 625 positioned proximal the irrigation lumens 615 and 617 and integrated CMOS visualization sensor 605, where the aspiration lumen 605 is configured to aspirate fluid and tissue debris from a target tissue site during use. The distal end further includes an integrated steerable RF electrode assembly 655. RF electrode assembly 655 includes NITINOL shape memory guide tubes 645 extending from insulated (e.g., RF shielded) guide lumens 642. The RF electrode further includes a tungsten cutting wire 665 joined at each end to a NITINOL shape memory electrode wire 663 by a ceramic arc stop 675. As shown, the diameter of the cutting wire 665 is smaller than the diameter of the electrode wires 663, where the difference in size may vary and may range from 100 to 500 μm, such as 300 to 400 μm.
  • FIGS. 1A and 1B, reviewed above, provide different views of a device according to an embodiment of the invention, where the device includes a distal end as shown in FIG. 6D. FIG. 7 provides a cutaway view of the devices shown in FIGS. 1A and 1B. As shown in FIG. 7, the device includes trigger element 125 which translates the guidetubes relative to the distal end of the elongated member. Also shown is thumbwheel 130 which provides for manual movement of the electrode relative to the distal end. The cutaway view of FIG. 7 shows mechanical actuator 180 which provides for linear translation of electrode 190 positioned at the distal end of the elongated member.
  • Tissue modification devices of the invention are configured to be hand-held. Accordingly, in certain instances the tissue modification devices have a mass that is 1.5 kg or less, such as 1 kg or less, including 0.5 kg or less, e.g., 0.25 kg or less.
  • Systems
  • Aspects of the subject invention include tissue modification systems, where the systems include a tissue modification device, e.g., as described above, operatively connected to one or more extra-corporeal control units (i.e., extra-corporeal controllers). Extra-corporeal control units may include a number of different components, such as power sources, irrigation sources, aspiration sources, image data processing components, image display components (such as monitors, printers, and the like), data processors, e.g., in the form of computers, data storage devices, e.g., floppy disks, hard drives, CD-ROM, DVD, flash memory, etc., device and system controls, etc.
  • An example of a system according to an embodiment of the invention is shown in FIG. 8. In FIG. 8 the system includes hand-held tissue modification device 800 and extra-corporeal control unit 850. Hand-held device 800 includes distal end 810 and handle 820 configured to be held in the hand of an operator. Positioned at the distal end 810 are the integrated visualization and tissue modification components (as well as other components), as shown by cross-section 830. Extra-corporeal control unit 850 includes image display 860 (e.g., a liquid crystal display monitor), video digital signal processor 870, energy source 880 (e.g., configured to operate an RF tissue modification member) and irrigation/aspiration system 890. The hand-held device 800 and extra-corporeal control unit 850 are operatively connected to each other by a cable.
  • FIG. 9 provides a diagrammatic view of the architecture of a system according to one embodiment of the invention and how the various components of the system may interact with a user, such as a surgeon, during use. In FIG. 9, extra-corporeal control unit 910 includes a video processing unit 911, an RF electrode power source 912, an irrigation source 913 and an aspiration source 914. Each of these components is operatively connected to electrical controls 915, with which the user 990 may interact to operate the system as desired. Also shown is tissue modification device 950 which includes an integrated visualization sensor 951, an RF electrode 952, an irrigation lumen 953, an aspiration lumen 954 and an articulation mechanism 955. The tissue modification device 950 provides a number of functionalities 960, including tissue dissection 961, tissue removal 962, tissue discrimination 963 and accessibility 964. The system provides numerous user interface opportunities 930; including image display 931, tactile feedback 932 and mechanical controls 933.
  • Within a given system, the integrated distal end visualization sub-system may have a variety of different configurations. FIG. 10 provides an example of an embodiment of an integrated visualization sub-system that includes a distal end CMOS visualization sensor. As shown in FIG. 10, visualization sub-system 1000 includes distal end CMOS visualization sensor 1010 that includes lens housing 1015 component operatively coupled to integrated circuit component 1020. As shown in the figure, lens housing 1015 includes a lens set 1016. Also shown at the distal end is LED 1018 which provides illumination for a target tissue location during use. Integrated circuit component 1020 includes CMOS sensor integrated circuit 1021 and rigid printed circuit board 1022. The sub-components of lens housing/light source component 1015 are operatively coupled to flexible cable 1030 which provides for operative connection of the CMOS visualization system at the distal end of the device via the handle. 1040 to the video processing sub-system 1050. In the handle 1040 the flexible cable operatively connects to a shielded cable 1052 which provides for RF isolation. As shown in FIG. 10, the various components are shielded from RF, e.g., by coating the elements with a conductive material which is then connected to a ground. For example, lens housing 1015 and cable 1030 are RF shielded. RF shielded cable 1052 connects to video processing sub-system 1050 which includes a variety of functional blocks, such as host controller 1051 (coupled to PC 1061), digital signal processor 1052 (coupled to LCD 1062) and CMOS visualization sensor bridge 1053. As shown in FIG. 10, video processing sub-system 1050 is ground to earth 1072 by connection to metal case 1070.
  • Systems of the invention may include a number of additional components in addition to the tissue modification devices and extra-corporeal control units, as described above. Additional components may include access port devices; root retractors; retractor devices, system component fixation devices; and the like; etc. Of interest are systems that further access devices as described in co-pending U.S. application Ser. Nos. 12/269,770; 12/269,772; and 12/269,775; the disclosures of which are herein incorporated by reference.
  • Methods
  • Aspects of the subject invention also include methods of imaging and/or modifying an internal target tissue of a subject. Accordingly, aspects of the invention further include methods of imaging an internal tissue site with tissue modification devices of the invention. A-variety of internal tissue sites can be imaged with devices of the invention. In certain embodiments, the methods are methods of imaging an intervertebral disc in a minimally invasive manner. For ease of description, the methods are now primarily described further in terms of imaging IVD target tissue sites. However, the invention is not so limited, as the devices may be used to image a variety of distinct target tissue sites.
  • With respect to imaging an intervertebral disc or portion thereof, e.g., exterior of the disc, nucleus pulposus, etc., embodiments of such methods include positioning a distal end of a minimally invasive intervertebral disc imaging device of the invention in viewing relationship to an intervertebral disc or portion of there, e.g., nucleus pulposus, internal site of nucleus pulposus, etc. By viewing relationship is meant that the distal end is positioned within 40 mm, such as within 10 mm, including within 5 mm of the target tissue site of interest. Positioning the distal end in viewing device in relation to the desired target tissue may be accomplished using any convenient approach, including through use of an access device, such as a cannula or retractor tube, which may or may not be fitted with a trocar, as desired. Following positioning of the distal end of the imaging device in viewing relationship to the target tissue, the target tissue, erg., intervertebral disc or portion thereof, is imaged through use of the illumination and visualization elements to obtain image data. Image data obtained according to the methods of the invention is output to a user in the form of an image, e.g., using a monitor or other convenient medium as a display means. In certain embodiments, the image is a still image, while in other embodiments the image may be a video.
  • In certain embodiments, the methods include a step of tissue modification in addition to the tissue viewing. For example, the methods may include a step of tissue removal, e.g., using a combination of tissue cutting and irrigation or flushing. For example, the methods may include cutting a least a portion of the tissue and then removing the cut tissue from the site, e.g., by flushing at least a portion of the imaged tissue location using a fluid introduced by an irrigation lumen and removed by an aspiration lumen.
  • The internal target tissue site may vary widely. Internal target tissue sites of interest include, but are not limited to, cardiac locations, vascular locations, orthopedic joints, central nervous system locations, etc. In certain cases, the internal target tissue site comprises spinal tissue.
  • The subject methods are suitable for use with a variety of mammals. Mammals of interest include, but are not limited to: race animals, e.g. horses, dogs, etc., work animals, e.g. horses, oxen etc., and humans. In some embodiments, the mammals on which the subject methods are practiced are humans.
  • An example of a method which employs the device depicted in FIG. 3A includes the following steps. First the distal end 300 of the device is introduced into the target tissue dissection region through access device 310. Access device 310 may be any convenient device, such as a conventional retractor tube. Access device 310 as shown in FIG. 3A has an inner diameter of 7.0 mm and an outer diameter of 9.5 mm. At this stage, orientation of camera 320 is biased to one side (left side in figure). During insertion, the electrode 340 on the side opposite the viewing field of the camera (right side in figure) is distally translated so that it emerges distally from the distal tip of the device 300. Also during insertion, the distally translated electrode 340 is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection during insertion of the device. For further tissue dissection on the side to which the camera is biased (left side in figure), the electrode 340 on the same side as the viewing field of the camera (left side in figure) is distally translated so that it emerges laterally from the endoscope probe on the proximal side of the camera. While being translated, the same electrode (left side in figure) is activated by supplying RF current and irrigating conducting fluid, resulting in tissue dissection. At this point, the entire end of the device 300 may be translated proximally and distally until the desired tissue dissection is obtained. When finished with tissue dissection at the first location, the device may be rotated 180 degrees and further tissue removed using the steps described above.
  • Utility
  • The subject tissue modification devices and methods find use in a variety of different applications where it is desirable to image and/or modify an internal target tissue of a subject while minimizing damage to the surrounding tissue. The subject devices and methods find use in many applications, such as but not limited to surgical procedures, where a variety of different types of tissues may be removed, including but not limited to; soft tissue, cartilage, bone, ligament, etc. Specific procedures of interest include, but are not limited to, spinal fusion (such as Transforaminal Lumbar Interbody Fusion (TLIF)), total disc replacement (TDR), partial disc replacement (PDR), procedures in which all or part of the nucleus pulposus is removed from the intervertebral disc (IVD) space, arthroplasty, and the like. As such, methods of the invention also include treatment methods, e.g., where a disc is modified in some manner to treat an existing medical condition. Treatment methods of interest include, but are not limited to: annulotomy, nucleotomy, discectomy, annulus replacement, nucleus replacement, and decompression due to a bulging or extruded disc. Additional methods in which the imaging devices find use include those described in United States Published Application No. 20080255563.
  • In certain embodiments, the subject devices and methods facilitate the dissection of the nucleus pulposus while minimizing thermal damage to the surrounding tissue. In addition, the subject devices and methods can facilitate the surgeon's accessibility to the entire region interior to the outer shell, or annulus, of the IVD, while minimizing the risk of cutting or otherwise causing damage to the annulus or other adjacent structures (such as nerve roots) in the process of dissecting and removing the nucleus pulposus.
  • Furthermore, the subject devices and methods may find use in other procedures, such as but not limited to ablation procedures, including high-intensity focused ultrasound (HIFU) surgical ablation, cardiac tissue ablation, neoplastic tissue ablation (e.g. carcinoma tissue ablation, sarcoma tissue ablation, etc.), microwave ablation procedures, and the like. Yet additional applications of interest include, but are not limited to: orthopedic applications, e.g., fracture repair, bone remodeling, etc., sports medicine applications, e.g., ligament repair, cartilage removal, etc., neurosurgical applications, and the like.
  • Devices of the invention may provide variable tactile feedback to the operator depending on tissue type. For example, in embodiments where a distal end structure, such as a tissue modifier (e.g., a RF electrode) is linearly translated by a mechanical linear actuator (e.g., as described above), the operator may experience different tactile properties depending on the type of tissue that is being contacted by the linearly translating distal end structure. These different tactile properties may then be employed by the user to differentiate between different types of tissue. In other words, devices of invention may provide different sensations to an operator, such as a surgeon, during use depending on the nature of the tissue with the distal end of the device is in contact. As such, devices and methods of the invention also find use in tissue discrimination applications, where the devices are employed to determine the particular nature of the internal tissue with which the distal end of the device is in contact, e.g., whether the distal end of the device is in contact with soft tissue, cartilage, bone, etc.
  • As reviewed above, in some embodiments synchronization of the tissue modifier's modulation waveform with its linear translation waveform provides additional benefits. For instance, rapid retraction of the electrode from hard tissue that it encounters will leave the tissue modifier physically separated from the hard tissue by a gap as the tissue modifier approaches the proximal extreme position. In some embodiments, the tissue modifier tip is activated only when the tissue modifier is at or near the proximal extreme position, as mentioned above. This has the effect of preferentially delivering the tissue modification energy to soft, compliant tissue as opposed to hard, stiff tissue. Stated otherwise, this provides tissue discrimination based on elastic modulus. In the case of spinal surgery applications requiring removal of nuclear material, such as fusion, total disc replacement, and partial disc replacement, synchronization of the modulation waveform with the linear translation waveform facilitates the delivery of tissue modification energy to the nucleus pulposus (soft, compliant tissue) while minimizing the delivery of tissue modification energy to the disc annulus (hard, stiff tissue) and the endplates of the vertebral bodies (hard, stiff tissue). In addition, cyclic linear translation of the tissue modifier helps to prevent a condition where the electrode sticks to tissue as it ablates it, resulting in increased thermal effects to the surrounding tissue, ineffective or discontinuous tissue dissection, buildup of charred or otherwise modified tissue on the tissue modifier tip, or a combination thereof. Additionally, cyclic linear translation of the tissue modifier helps chop the dissected tissue into smaller pieces, thus facilitating aspiration of the dissected tissue.
  • Kits
  • Also provided are kits for use in practicing the subject methods, where the kits may include one or more of the above devices, and/or components of the subject systems, as described above. The kit may further include other components, e.g., guidewires, access devices, fluid sources, etc., which may find use in practicing the subject methods. Various components may be packaged as desired, e.g., together or separately.
  • In addition to above mentioned components, the subject kits may further include instructions for using the components of the kit to practice the subject methods. The instructions for practicing the subject methods are generally recorded on a suitable recording medium. For example, the instructions may be printed on a substrate, such as paper or plastic, etc. As such, the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging) etc. In other embodiments, the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, etc. In yet other embodiments, the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided. An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate.
  • Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
  • Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims (28)

1. A tissue modification device comprising:
an elongated member having a distal end dimensioned to be passed through a minimally invasive body opening, wherein the distal end comprises an integrated visualization sensor and tissue modifier.
2. The tissue modification device according to claim 1, wherein the integrated visualization sensor comprises a lens and an integrated circuit.
3. The tissue modification device according to claim 2, wherein the visualization sensor is a CMOS device.
4. The tissue modification device according to claim 2, wherein the visualization sensor is a CCD device
5. The tissue modification device according to claim 1, wherein the device further comprises an integrated articulation mechanism that imparts steerability to at least one of the visualization sensor, the tissue modifier and the distal end of the elongated member.
6. The tissue modification device according to claim 1, wherein the distal end of the elongate member is dimensioned to be passed through a Cambin's triangle.
7. The tissue modification device according to claim 6, wherein the distal end of the elongate member has an outer diameter of 7.5 mm or less.
8. The tissue modification device according to claim 7, wherein the distal end of the elongate member has an outer diameter of 7.0 mm or less.
9. The tissue modification device according of claim 8, wherein the distal end of the elongate member has an outer diameter of 5.0 mm or less.
10. The tissue modification device according to claim 1, wherein the distal end of the elongate member further comprises an integrated illuminator.
11. The tissue modification device according to claim 10, wherein the illuminator is a fiber-optic illuminator.
12. The tissue modification device according to claim 10, wherein the illuminator is a light emitting diode.
13. The tissue modification device according to claim 1, wherein the tissue modifier comprises an electrode.
14. The tissue modification device according to claim 1, wherein at least one of the visualization sensor and tissue modifier are moveable relative to the distal end of the elongate member.
15. The tissue modification device according to claim 1, wherein the distal end of the elongate member further comprises an irrigator and an aspirator.
16. The tissue modification device according to claim 15, wherein the aspirator is located proximal of the integrated visualization sensor.
17. The tissue modification device according to claim 15, wherein the aspirator comprises a port having a cross-sectional area that is 33% or more of the cross-sectional area of the distal end of the elongate member.
18. The tissue modification device according to claim 1, wherein the elongated member is rigid.
19. The tissue modification device according to claim 1, wherein the tissue modification device is configured to modify an intervertebral disc tissue.
20. The tissue modification device according to claim 1, wherein the device is configured as a disposable.
21. The tissue modification device according to claim 1, wherein the device comprises an operating handle positioned at the proximal end.
22. The tissue modification device according to claim 21, wherein the distal end of the elongated member is rotatable about its longitudinal axis when a significant portion of the operating handle is maintained in a fixed position.
23. A system comprising:
(a) an elongated member having a distal end dimensioned to be passed through a minimally invasive body opening, wherein the distal end comprises an integrated visualization sensor and tissue modifier; and
(b) an extracorporeal controller operatively coupled to the proximal end of the elongated member.
24. The system according to claim 23, wherein the system further comprises an image displayer for displaying to a user images obtained by the visualization sensor.
25. The system according to claim 23, wherein the system further comprises a minimally invasive access tube.
26. A method of modifying an internal target tissue of a subject, the method comprising:
(a) positioning distal end of a tissue modification device comprising an elongated member having a distal end dimensioned to be passed through a minimally invasive body opening, wherein the distal end comprises an integrated visualization sensor and tissue modifier in operable relation to the internal target tissue; and
(b) modifying the internal target tissue with the tissue modifier.
27. The method according to claim 26, wherein the internal target tissue site comprises spinal tissue.
28. The method according to claim 26, wherein the method is a method of removing nucleus pulposus tissue from an intervertebral disc.
US12/422,176 2008-07-22 2009-04-10 Tissue modification devices and methods of using the same Abandoned US20100022824A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US12/422,176 US20100022824A1 (en) 2008-07-22 2009-04-10 Tissue modification devices and methods of using the same
JP2011520179A JP2011528950A (en) 2008-07-22 2009-07-22 Organization modification device and method of using the organization modification device
BRPI0916269A BRPI0916269A2 (en) 2008-07-22 2009-07-22 tissue modification device and its method of use
US13/055,662 US20120095458A1 (en) 2008-07-22 2009-07-22 Tissue Modification Devices and Methods of Using The Same
EA201100251A EA201100251A1 (en) 2008-07-22 2009-07-22 DEVICES FOR CHANGING TISSUES AND METHODS OF THEIR USE
CA2768610A CA2768610A1 (en) 2008-07-22 2009-07-22 Tissue modification devices and methods of using the same
EP09800963.2A EP2317931B1 (en) 2008-07-22 2009-07-22 Tissue modification devices
CN201410145799.3A CN103961177B (en) 2008-07-22 2009-07-22 Change in organization's device and its application method
CN2009801370234A CN102159140A (en) 2008-07-22 2009-07-22 Tissue modification devices and methods of using same
PCT/US2009/051446 WO2010011781A2 (en) 2008-07-22 2009-07-22 Tissue modification devices and methods of using the same
US13/777,523 US20130303846A1 (en) 2008-07-22 2013-02-26 Tissue modification devices and methods of using the same
US16/000,731 US20180317752A1 (en) 2008-07-22 2018-06-05 Tissue modification devices and methods of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8277408P 2008-07-22 2008-07-22
US12/422,176 US20100022824A1 (en) 2008-07-22 2009-04-10 Tissue modification devices and methods of using the same

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/055,662 Continuation US20120095458A1 (en) 2008-07-22 2009-07-22 Tissue Modification Devices and Methods of Using The Same
PCT/US2009/051446 Continuation WO2010011781A2 (en) 2008-07-22 2009-07-22 Tissue modification devices and methods of using the same
US13/777,523 Continuation US20130303846A1 (en) 2008-07-22 2013-02-26 Tissue modification devices and methods of using the same

Publications (1)

Publication Number Publication Date
US20100022824A1 true US20100022824A1 (en) 2010-01-28

Family

ID=41569256

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/422,176 Abandoned US20100022824A1 (en) 2008-07-22 2009-04-10 Tissue modification devices and methods of using the same
US13/055,662 Abandoned US20120095458A1 (en) 2008-07-22 2009-07-22 Tissue Modification Devices and Methods of Using The Same
US13/777,523 Abandoned US20130303846A1 (en) 2008-07-22 2013-02-26 Tissue modification devices and methods of using the same
US16/000,731 Pending US20180317752A1 (en) 2008-07-22 2018-06-05 Tissue modification devices and methods of using the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/055,662 Abandoned US20120095458A1 (en) 2008-07-22 2009-07-22 Tissue Modification Devices and Methods of Using The Same
US13/777,523 Abandoned US20130303846A1 (en) 2008-07-22 2013-02-26 Tissue modification devices and methods of using the same
US16/000,731 Pending US20180317752A1 (en) 2008-07-22 2018-06-05 Tissue modification devices and methods of using the same

Country Status (8)

Country Link
US (4) US20100022824A1 (en)
EP (1) EP2317931B1 (en)
JP (1) JP2011528950A (en)
CN (2) CN102159140A (en)
BR (1) BRPI0916269A2 (en)
CA (1) CA2768610A1 (en)
EA (1) EA201100251A1 (en)
WO (1) WO2010011781A2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033984A1 (en) * 2010-09-09 2012-03-15 Old Dominion University Research Foundation Multi-electrode electrical pulse delivery system for treatment of biological tissues
US20130204285A1 (en) * 2012-02-03 2013-08-08 Gwenael D. Gouery Cutting Tips for Ultrasonic Surgical System
US20130296648A1 (en) * 2008-11-12 2013-11-07 Trice Orthopedics, Inc. Minimally invasive imaging systems
USD716841S1 (en) 2012-09-07 2014-11-04 Covidien Lp Display screen with annotate file icon
USD717340S1 (en) 2012-09-07 2014-11-11 Covidien Lp Display screen with enteral feeding icon
WO2015003944A1 (en) * 2013-07-08 2015-01-15 Waterford Institute Of Technology A measurement probe
US8956414B2 (en) 2010-04-21 2015-02-17 Spinecraft, LLC Intervertebral body implant, instrument and method
GB2517962A (en) * 2013-09-06 2015-03-11 Ol Medical Ltd Medical applicator
USD735343S1 (en) 2012-09-07 2015-07-28 Covidien Lp Console
WO2015077584A3 (en) * 2013-11-22 2015-08-20 Massachusetts Institute Of Technology Steering techniques for surgical instruments
US9198835B2 (en) 2012-09-07 2015-12-01 Covidien Lp Catheter with imaging assembly with placement aid and related methods therefor
WO2016053778A1 (en) * 2014-09-29 2016-04-07 Clearmind Biomedical, Inc. Surgical tool
US9307893B2 (en) 2011-12-29 2016-04-12 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder in a catheter with off-centered lumens
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US9375556B2 (en) 2013-09-12 2016-06-28 Hansa Medical Products, Inc. Tissue modification methods and apparatus
US9433339B2 (en) 2010-09-08 2016-09-06 Covidien Lp Catheter with imaging assembly and console with reference library and related methods therefor
US9517184B2 (en) 2012-09-07 2016-12-13 Covidien Lp Feeding tube with insufflation device and related methods therefor
WO2017017191A1 (en) * 2015-07-29 2017-02-02 Olympus Winter & Ibe Gmbh Resectoscope and light guide cable for a resectoscope
US9668643B2 (en) 2011-12-29 2017-06-06 Cook Medical Technologies Llc Space-optimized visualization catheter with oblong shape
US9968249B2 (en) 2014-09-29 2018-05-15 Clearmind Biomedical, Inc. Endocranial endoscope
US10244927B2 (en) 2011-12-29 2019-04-02 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder
US10254534B2 (en) * 2015-11-30 2019-04-09 The Regents Of The University Of Colorado, A Body Corporate Single multimode fiber endoscope
US10342579B2 (en) 2014-01-13 2019-07-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10362926B2 (en) 2012-06-25 2019-07-30 Coopersurgical, Inc. Low-cost instrument for endoscopically guided operative procedures
US10405886B2 (en) 2015-08-11 2019-09-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10441153B2 (en) 2014-09-29 2019-10-15 Clearmind Biomedical, Inc. Endocranial endoscope
US10441134B2 (en) 2011-05-03 2019-10-15 Coopersurgical, Inc. Method and apparatus for hysteroscopy and endometrial biopsy
US10702305B2 (en) 2016-03-23 2020-07-07 Coopersurgical, Inc. Operative cannulas and related methods
TWI726309B (en) * 2018-04-23 2021-05-01 美商克力邁生醫股份有限公司 Endocranial endoscope and method for using endocranial endoscope
US11033323B2 (en) * 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11446055B1 (en) 2018-10-18 2022-09-20 Lumoptik, Inc. Light assisted needle placement system and method
US11484189B2 (en) 2001-10-19 2022-11-01 Visionscope Technologies Llc Portable imaging system employing a miniature endoscope
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US11602390B2 (en) * 2017-01-30 2023-03-14 Apyx Medical Corporation Electrosurgical apparatus with flexible shaft
US11622753B2 (en) 2018-03-29 2023-04-11 Trice Medical, Inc. Fully integrated endoscope with biopsy capabilities and methods of use
US11839422B2 (en) 2016-09-23 2023-12-12 Cilag Gmbh International Electrosurgical instrument with fluid diverter
US11877788B2 (en) 2017-05-30 2024-01-23 Apyx Medical Corporation Electrosurgical apparatus with robotic tip
WO2024035855A1 (en) * 2022-08-11 2024-02-15 Boston Scientific Scimed, Inc. Medical device with integrated instrument and related methods
US11903630B2 (en) 2010-11-08 2024-02-20 Apyx Medical Corporation Electrosurgical apparatus with retractable blade

Families Citing this family (483)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10595710B2 (en) 2001-10-19 2020-03-24 Visionscope Technologies Llc Portable imaging system employing a miniature endoscope
DE10154163A1 (en) 2001-11-03 2003-05-22 Advanced Med Tech Device for straightening and stabilizing the spine
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US20100286477A1 (en) * 2009-05-08 2010-11-11 Ouyang Xiaolong Internal tissue visualization system comprising a rf-shielded visualization sensor module
US8979931B2 (en) 2006-12-08 2015-03-17 DePuy Synthes Products, LLC Nucleus replacement device and method
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
CA2701504A1 (en) 2007-10-05 2009-04-09 Synthes Usa, Llc Dilation system and method of using the same
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20110009694A1 (en) * 2009-07-10 2011-01-13 Schultz Eric E Hand-held minimally dimensioned diagnostic device having integrated distal end visualization
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
DE102010024666A1 (en) * 2010-06-18 2011-12-22 Hella Kgaa Hueck & Co. Method for optical self-diagnosis of a camera system and apparatus for carrying out such a method
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9367930B2 (en) * 2010-08-31 2016-06-14 University Of Massachusetts Methods and systems for determining fish catches
US9913577B2 (en) 2010-09-28 2018-03-13 Obp Medical Corporation Speculum
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US10012361B2 (en) * 2010-11-15 2018-07-03 Adl, Inc. Multi-spectral variable focus illuminator
WO2012112829A2 (en) * 2011-02-17 2012-08-23 MRI Interventions, Inc. Thin-sleeve apparatus for reducing rf coupling of devices in mri environments
WO2012129542A1 (en) * 2011-03-23 2012-09-27 Halt Medical Inc. Merged image user interface and navigational tool for remote control of surgical devices
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
CA2841704C (en) * 2011-07-11 2019-06-04 Elias Daher Endobronchial tube
US9622779B2 (en) 2011-10-27 2017-04-18 DePuy Synthes Products, Inc. Method and devices for a sub-splenius / supra-levator scapulae surgical access technique
US9808232B2 (en) 2011-11-01 2017-11-07 DePuy Synthes Products, Inc. Dilation system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9265490B2 (en) 2012-04-16 2016-02-23 DePuy Synthes Products, Inc. Detachable dilator blade
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US10022041B2 (en) * 2012-06-27 2018-07-17 Camplex, Inc. Hydraulic system for surgical applications
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
WO2014052599A1 (en) * 2012-09-26 2014-04-03 Children's National Medical Center Anastomosis clipping tool with half-loop clip
US9480855B2 (en) 2012-09-26 2016-11-01 DePuy Synthes Products, Inc. NIR/red light for lateral neuroprotection
US10862950B2 (en) 2013-01-07 2020-12-08 Aeris Communications, Inc. Radio module as web-controllable remote sensor
US9173199B2 (en) * 2013-01-07 2015-10-27 Aeris Communications, Inc. Radio module as web-controllable remote sensor
EP2754384B1 (en) 2013-01-10 2018-07-11 Ambu A/S Endobronchial tube with integrated image sensor and cleaning nozzle arrangement
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
CN103405271B (en) * 2013-08-05 2015-07-01 上海交通大学 Multifunctional abdominal-cavity minimally invasive surgery tool
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
CN104688342B (en) * 2013-12-09 2017-04-12 苏州点合医疗科技有限公司 Positioning equipment for digital spinal surgeries
CN104688300B (en) * 2013-12-09 2018-06-19 苏州点合医疗科技有限公司 A kind of vertebral column digital operation clears up knife with nucleus pulposus
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
DE102014004290A1 (en) * 2014-03-26 2015-10-01 Olympus Winter & Ibe Gmbh Urological instrument
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10555788B2 (en) * 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
KR101652989B1 (en) * 2014-04-03 2016-09-01 주식회사 원메드텍 RF catheter with Camera
KR101626958B1 (en) * 2014-04-03 2016-06-02 주식회사 원메드텍 RF catheter with Multi-electrode
JP5953445B2 (en) * 2014-04-11 2016-07-20 オリンパス株式会社 Plasma treatment system
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
CN104013381A (en) * 2014-05-29 2014-09-03 中山大学附属第三医院 Three-dimensional micro endo disc system
US9980737B2 (en) 2014-08-04 2018-05-29 Medos International Sarl Flexible transport auger
US10135242B2 (en) * 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111712B2 (en) 2014-09-09 2018-10-30 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US9924979B2 (en) 2014-09-09 2018-03-27 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10264959B2 (en) 2014-09-09 2019-04-23 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10420538B2 (en) 2015-02-05 2019-09-24 Obp Medical Corporation Illuminated surgical retractor
US9867602B2 (en) 2015-02-05 2018-01-16 Obp Medical Corporation Illuminated surgical retractor
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
CN107636794B (en) 2015-03-06 2020-02-28 英国质谱公司 Liquid trap or separator for electrosurgical applications
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
EP3265823B1 (en) 2015-03-06 2020-05-06 Micromass UK Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
US10777397B2 (en) 2015-03-06 2020-09-15 Micromass Uk Limited Inlet instrumentation for ion analyser coupled to rapid evaporative ionisation mass spectrometry (“REIMS”) device
EP3671216A1 (en) 2015-03-06 2020-06-24 Micromass UK Limited Imaging guided ambient ionisation mass spectrometry
WO2016142681A1 (en) 2015-03-06 2016-09-15 Micromass Uk Limited Spectrometric analysis of microbes
EP3265819B1 (en) 2015-03-06 2020-10-14 Micromass UK Limited Chemically guided ambient ionisation mass spectrometry
DE202016008460U1 (en) 2015-03-06 2018-01-22 Micromass Uk Limited Cell population analysis
EP3265822B1 (en) 2015-03-06 2021-04-28 Micromass UK Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
CN108700590B (en) 2015-03-06 2021-03-02 英国质谱公司 Cell population analysis
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
EP4174906A1 (en) 2015-03-06 2023-05-03 Micromass UK Limited Improved ionisation of gaseous samples
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
EP3264989B1 (en) 2015-03-06 2023-12-20 Micromass UK Limited Spectrometric analysis
GB2552430B (en) 2015-03-06 2022-05-11 Micromass Ltd Collision surface for improved ionisation
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
CA2977906A1 (en) * 2015-03-06 2016-09-15 Micromass Uk Limited In vivo endoscopic tissue identification tool
EP3800657A1 (en) 2015-03-06 2021-04-07 Micromass UK Limited Desorption electrospray ionisation mass spectrometry ("desi-ms") and desorption electroflow focusing ionisation ("deffi-ms") analysis of biological samples on swabs
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10786264B2 (en) 2015-03-31 2020-09-29 Medos International Sarl Percutaneous disc clearing device
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US9414878B1 (en) * 2015-05-15 2016-08-16 C2 Therapeutics, Inc. Cryogenic balloon ablation system
US10939899B2 (en) 2015-06-03 2021-03-09 Obp Medical Corporation End cap assembly for retractor and other medical devices
US10881387B2 (en) 2015-06-03 2021-01-05 Obp Medical Corporation Retractor
US10952712B2 (en) 2015-06-03 2021-03-23 Obp Medical Corporation Retractor
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10987129B2 (en) 2015-09-04 2021-04-27 Medos International Sarl Multi-shield spinal access system
US11672562B2 (en) 2015-09-04 2023-06-13 Medos International Sarl Multi-shield spinal access system
CN113143355A (en) 2015-09-04 2021-07-23 美多斯国际有限公司 Multi-shield spinal access system
US11439380B2 (en) 2015-09-04 2022-09-13 Medos International Sarl Surgical instrument connectors and related methods
US11744447B2 (en) 2015-09-04 2023-09-05 Medos International Surgical visualization systems and related methods
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
GB201517195D0 (en) 2015-09-29 2015-11-11 Micromass Ltd Capacitively coupled reims technique and optically transparent counter electrode
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10299838B2 (en) 2016-02-05 2019-05-28 Medos International Sarl Method and instruments for interbody fusion and posterior fixation through a single incision
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
WO2017161177A1 (en) 2016-03-17 2017-09-21 Trice Medical, Inc. Clot evacuation and visualization devices and methods of use
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
WO2017178833A1 (en) 2016-04-14 2017-10-19 Micromass Uk Limited Spectrometric analysis of plants
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10201267B2 (en) * 2016-05-24 2019-02-12 Phoenix Spine Holdings, Inc. Methods and apparatus for facilitating direct visualized rhizotomy
WO2017213619A1 (en) * 2016-06-06 2017-12-14 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Combination electrosurgical instrument
US10722621B2 (en) 2016-07-11 2020-07-28 Obp Medical Corporation Illuminated suction device
US10172570B2 (en) * 2016-07-15 2019-01-08 Under Armour, Inc. Methods and apparatus for dynamic displays
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
WO2019018470A1 (en) 2017-07-18 2019-01-24 Obp Medical Corporation Minimally invasive no touch (mint) procedure for harvesting the great saphenous vein (gsv) and venous hydrodissector and retractor for use during the mint procedure
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10278572B1 (en) 2017-10-19 2019-05-07 Obp Medical Corporation Speculum
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11259882B1 (en) 2018-01-25 2022-03-01 Integrity Implants Inc. Robotic surgical instrument system
EP3755234A4 (en) 2018-02-20 2021-11-17 OBP Surgical Corporation Illuminated medical devices
US10799229B2 (en) 2018-02-20 2020-10-13 Obp Medical Corporation Illuminated medical devices
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
CN109259717B (en) * 2018-08-27 2020-08-14 彭波 Stereoscopic endoscope and endoscope measuring method
DE102019100821A1 (en) * 2019-01-14 2020-07-16 Lufthansa Technik Aktiengesellschaft Boroscope for the optical inspection of gas turbines
DE102019102839A1 (en) 2019-02-05 2020-08-06 Olympus Winter & Ibe Gmbh Irrigation fluid for resection
DE102019102841A1 (en) 2019-02-05 2020-08-06 Olympus Winter & Ibe Gmbh Detachable insulating insert for use in a resectoscope
USD911521S1 (en) 2019-02-19 2021-02-23 Obp Medical Corporation Handle for medical devices including surgical retractors
US11013530B2 (en) 2019-03-08 2021-05-25 Medos International Sarl Surface features for device retention
US11241252B2 (en) 2019-03-22 2022-02-08 Medos International Sarl Skin foundation access portal
US11571107B2 (en) * 2019-03-25 2023-02-07 Karl Storz Imaging, Inc. Automated endoscopic device control systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11129727B2 (en) 2019-03-29 2021-09-28 Medos International Sari Inflatable non-distracting intervertebral implants and related methods
US11813026B2 (en) 2019-04-05 2023-11-14 Medos International Sarl Systems, devices, and methods for providing surgical trajectory guidance
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
USD904607S1 (en) 2019-05-07 2020-12-08 Obp Medical Corporation Nasal retractor
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US10959609B1 (en) 2020-01-31 2021-03-30 Obp Medical Corporation Illuminated suction device
US10966702B1 (en) 2020-02-25 2021-04-06 Obp Medical Corporation Illuminated dual-blade retractor
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
CN112634218B (en) * 2020-12-17 2022-08-23 王跃 Lumbar muscle measurement method based on transverse position magnetic resonance image
CN112957523B (en) * 2021-02-09 2021-12-07 浙江大学 Bionic composite stent for synchronously repairing soft and hard tissue defects and forming method based on 3D printing
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11771517B2 (en) 2021-03-12 2023-10-03 Medos International Sarl Camera position indication systems and methods
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
WO2023052960A1 (en) * 2021-09-29 2023-04-06 Cilag Gmbh International Surgical devices, systems, and methods using fiducial identification and tracking
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647840A (en) * 1994-09-14 1997-07-15 Circon Corporation Endoscope having a distally heated distal lens
US5674191A (en) * 1994-05-09 1997-10-07 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US20030181905A1 (en) * 2002-03-25 2003-09-25 Long Gary L. Endoscopic ablation system with a distally mounted image sensor
US20040162572A1 (en) * 2003-02-13 2004-08-19 Sauer Jude S. Instrument for surgically cutting tissue and method of use
US20060069303A1 (en) * 2004-09-30 2006-03-30 Couvillon Lucien A Jr Endoscopic apparatus with integrated hemostasis device
US20060084839A1 (en) * 2002-05-30 2006-04-20 Mourlas Nicholas J Apparatus and methods for coronary sinus access
US20060167340A1 (en) * 2005-01-10 2006-07-27 Pease Alfred A Optical snake
US20060173244A1 (en) * 2004-09-30 2006-08-03 Boston Scientific Scimed, Inc. System and method of obstruction removal
US20060270904A1 (en) * 2005-05-27 2006-11-30 Markus Kupferschmid Medical instrument for endoscopic interventions
US7169147B2 (en) * 2003-05-30 2007-01-30 Olympus Winter & Ibe Gmbh Ureter resectoscope
US7258663B2 (en) * 1999-05-18 2007-08-21 Olympus Corporation Endoscope system with irradiated light switching feature
US20070213733A1 (en) * 2004-10-15 2007-09-13 Bleich Jeffery L Mechanical tissue modification devices and methods
US20070232850A1 (en) * 2006-03-30 2007-10-04 Ethicon Endo-Surgery, Inc. Endoscopic ancillary attachment devices
US8016839B2 (en) * 2005-01-26 2011-09-13 Wilk Patent, Llc Intra-abdominal medical procedures and device
US20120241188A1 (en) * 2011-03-23 2012-09-27 Tyco Healthcare Group Lp Wire guides and anchors for endoscopy

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000280A1 (en) * 1983-07-06 1985-01-31 Peter Stasz Electro cautery surgical blade
US4624243A (en) * 1985-04-08 1986-11-25 American Hospital Supply Corp. Endoscope having a reusable eyepiece and a disposable distal section
US4903696A (en) * 1988-10-06 1990-02-27 Everest Medical Corporation Electrosurgical generator
US5518502A (en) * 1994-06-08 1996-05-21 The United States Surgical Corporation Compositions, methods and apparatus for inhibiting fogging of endoscope lenses
US6517498B1 (en) * 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
US6454727B1 (en) * 1998-03-03 2002-09-24 Senorx, Inc. Tissue acquisition system and method of use
AU3893299A (en) * 1998-05-13 1999-11-29 Inbae Yoon Penetrating endoscope and endoscopic surgical instrument with cmos image sensor and display
WO2001026570A1 (en) * 1999-10-13 2001-04-19 Arthrocare Corporation Systems and methods for treating spinal pain
US7422586B2 (en) * 2001-02-28 2008-09-09 Angiodynamics, Inc. Tissue surface treatment apparatus and method
US20020177847A1 (en) * 2001-03-30 2002-11-28 Long Gary L. Endoscopic ablation system with flexible coupling
US20070167681A1 (en) * 2001-10-19 2007-07-19 Gill Thomas J Portable imaging system employing a miniature endoscope
JP3668461B2 (en) * 2002-02-25 2005-07-06 オリンパス株式会社 Tip hood material
WO2004058084A2 (en) * 2002-12-20 2004-07-15 Manoa Medical, Inc. Systems and methods for cutting tissue
US7435214B2 (en) * 2004-01-29 2008-10-14 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
JP2005279253A (en) * 2004-03-02 2005-10-13 Olympus Corp Endoscope
US7192396B2 (en) * 2004-04-08 2007-03-20 Scimed Life Systems, Inc. System and method for orienting endoscope and operator control
US20070060798A1 (en) * 2005-09-15 2007-03-15 Hagai Krupnik System and method for presentation of data streams
JP5086535B2 (en) * 2005-11-21 2012-11-28 オリンパスメディカルシステムズ株式会社 Two-plate imaging device
US20070179340A1 (en) * 2005-12-20 2007-08-02 Medicept, Inc. Method and devices for minimally invasive arthroscopic procedures
JP5175264B2 (en) * 2006-03-13 2013-04-03 バクサノ,インク. Apparatus and method for modifying tissue
US7776037B2 (en) * 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674191A (en) * 1994-05-09 1997-10-07 Somnus Medical Technologies, Inc. Ablation apparatus and system for removal of soft palate tissue
US5647840A (en) * 1994-09-14 1997-07-15 Circon Corporation Endoscope having a distally heated distal lens
US7258663B2 (en) * 1999-05-18 2007-08-21 Olympus Corporation Endoscope system with irradiated light switching feature
US20030181905A1 (en) * 2002-03-25 2003-09-25 Long Gary L. Endoscopic ablation system with a distally mounted image sensor
US20060084839A1 (en) * 2002-05-30 2006-04-20 Mourlas Nicholas J Apparatus and methods for coronary sinus access
US20040162572A1 (en) * 2003-02-13 2004-08-19 Sauer Jude S. Instrument for surgically cutting tissue and method of use
US7169147B2 (en) * 2003-05-30 2007-01-30 Olympus Winter & Ibe Gmbh Ureter resectoscope
US20060173244A1 (en) * 2004-09-30 2006-08-03 Boston Scientific Scimed, Inc. System and method of obstruction removal
US20060069303A1 (en) * 2004-09-30 2006-03-30 Couvillon Lucien A Jr Endoscopic apparatus with integrated hemostasis device
US20070213733A1 (en) * 2004-10-15 2007-09-13 Bleich Jeffery L Mechanical tissue modification devices and methods
US20060167340A1 (en) * 2005-01-10 2006-07-27 Pease Alfred A Optical snake
US8016839B2 (en) * 2005-01-26 2011-09-13 Wilk Patent, Llc Intra-abdominal medical procedures and device
US20060270904A1 (en) * 2005-05-27 2006-11-30 Markus Kupferschmid Medical instrument for endoscopic interventions
US20070232850A1 (en) * 2006-03-30 2007-10-04 Ethicon Endo-Surgery, Inc. Endoscopic ancillary attachment devices
US20120241188A1 (en) * 2011-03-23 2012-09-27 Tyco Healthcare Group Lp Wire guides and anchors for endoscopy

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484189B2 (en) 2001-10-19 2022-11-01 Visionscope Technologies Llc Portable imaging system employing a miniature endoscope
US20130296648A1 (en) * 2008-11-12 2013-11-07 Trice Orthopedics, Inc. Minimally invasive imaging systems
US10045686B2 (en) * 2008-11-12 2018-08-14 Trice Medical, Inc. Tissue visualization and modification device
US8956414B2 (en) 2010-04-21 2015-02-17 Spinecraft, LLC Intervertebral body implant, instrument and method
US9433339B2 (en) 2010-09-08 2016-09-06 Covidien Lp Catheter with imaging assembly and console with reference library and related methods therefor
US9538908B2 (en) 2010-09-08 2017-01-10 Covidien Lp Catheter with imaging assembly
US9585813B2 (en) 2010-09-08 2017-03-07 Covidien Lp Feeding tube system with imaging assembly and console
US10272016B2 (en) 2010-09-08 2019-04-30 Kpr U.S., Llc Catheter with imaging assembly
US9872721B2 (en) 2010-09-09 2018-01-23 Old Dominion University Research Foundation Multi-electrode electrical pulse delivery system for treatment of biological tissues
US10881447B2 (en) 2010-09-09 2021-01-05 Old Dominion University Research Foundation Multi-electrode electrical pulse delivery system for treatment of biological tissues
WO2012033984A1 (en) * 2010-09-09 2012-03-15 Old Dominion University Research Foundation Multi-electrode electrical pulse delivery system for treatment of biological tissues
EP2613725A4 (en) * 2010-09-09 2014-02-26 Old Dominion Univesity Res Foundation Multi-electrode electrical pulse delivery system for treatment of biological tissues
EP2613725A1 (en) * 2010-09-09 2013-07-17 Old Dominion Univesity Research Foundation Multi-electrode electrical pulse delivery system for treatment of biological tissues
US11903630B2 (en) 2010-11-08 2024-02-20 Apyx Medical Corporation Electrosurgical apparatus with retractable blade
US10441134B2 (en) 2011-05-03 2019-10-15 Coopersurgical, Inc. Method and apparatus for hysteroscopy and endometrial biopsy
US9668643B2 (en) 2011-12-29 2017-06-06 Cook Medical Technologies Llc Space-optimized visualization catheter with oblong shape
US20160220103A1 (en) * 2011-12-29 2016-08-04 Cook Medical Technologies Llc Space-optimized visualization catheter having a camera train holder in a catheter with off-centred lumens
US10244927B2 (en) 2011-12-29 2019-04-02 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder
US9307893B2 (en) 2011-12-29 2016-04-12 Cook Medical Technologies Llc Space-optimized visualization catheter with camera train holder in a catheter with off-centered lumens
US10016208B2 (en) * 2012-02-03 2018-07-10 DePuy Synthes Products, Inc. Cutting tips for ultrasonic surgical system
US20130204285A1 (en) * 2012-02-03 2013-08-08 Gwenael D. Gouery Cutting Tips for Ultrasonic Surgical System
US10362926B2 (en) 2012-06-25 2019-07-30 Coopersurgical, Inc. Low-cost instrument for endoscopically guided operative procedures
US9517184B2 (en) 2012-09-07 2016-12-13 Covidien Lp Feeding tube with insufflation device and related methods therefor
USD717340S1 (en) 2012-09-07 2014-11-11 Covidien Lp Display screen with enteral feeding icon
USD735343S1 (en) 2012-09-07 2015-07-28 Covidien Lp Console
USD716841S1 (en) 2012-09-07 2014-11-04 Covidien Lp Display screen with annotate file icon
US9198835B2 (en) 2012-09-07 2015-12-01 Covidien Lp Catheter with imaging assembly with placement aid and related methods therefor
WO2015003944A1 (en) * 2013-07-08 2015-01-15 Waterford Institute Of Technology A measurement probe
GB2517962A (en) * 2013-09-06 2015-03-11 Ol Medical Ltd Medical applicator
GB2517962B (en) * 2013-09-06 2016-02-10 Ol Medical Ltd Transcervical applicator for a Fallopian tube occluder
US9974933B2 (en) 2013-09-12 2018-05-22 Hansa Medical Products, Inc. Tissue modification methods and apparatus
US9604042B2 (en) * 2013-09-12 2017-03-28 Hansa Medical Products, Inc. Tissue modification methods and apparatus
US20160287852A1 (en) * 2013-09-12 2016-10-06 Hansa Medical Products, Inc. Tissue modification methods and apparatus
US9375556B2 (en) 2013-09-12 2016-06-28 Hansa Medical Products, Inc. Tissue modification methods and apparatus
US10688284B2 (en) 2013-11-22 2020-06-23 Massachusetts Institute Of Technology Steering techniques for surgical instruments
WO2015077584A3 (en) * 2013-11-22 2015-08-20 Massachusetts Institute Of Technology Steering techniques for surgical instruments
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10092176B2 (en) 2014-01-13 2018-10-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10398298B2 (en) 2014-01-13 2019-09-03 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US9610007B2 (en) 2014-01-13 2017-04-04 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10342579B2 (en) 2014-01-13 2019-07-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US9968249B2 (en) 2014-09-29 2018-05-15 Clearmind Biomedical, Inc. Endocranial endoscope
US11076755B2 (en) 2014-09-29 2021-08-03 Clearmind Biomedical, Inc. Endocranial endoscope
WO2016053778A1 (en) * 2014-09-29 2016-04-07 Clearmind Biomedical, Inc. Surgical tool
US10441153B2 (en) 2014-09-29 2019-10-15 Clearmind Biomedical, Inc. Endocranial endoscope
WO2017017191A1 (en) * 2015-07-29 2017-02-02 Olympus Winter & Ibe Gmbh Resectoscope and light guide cable for a resectoscope
US10405886B2 (en) 2015-08-11 2019-09-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10945588B2 (en) 2015-08-11 2021-03-16 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10254534B2 (en) * 2015-11-30 2019-04-09 The Regents Of The University Of Colorado, A Body Corporate Single multimode fiber endoscope
US10702305B2 (en) 2016-03-23 2020-07-07 Coopersurgical, Inc. Operative cannulas and related methods
US11839422B2 (en) 2016-09-23 2023-12-12 Cilag Gmbh International Electrosurgical instrument with fluid diverter
US11602390B2 (en) * 2017-01-30 2023-03-14 Apyx Medical Corporation Electrosurgical apparatus with flexible shaft
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US11877788B2 (en) 2017-05-30 2024-01-23 Apyx Medical Corporation Electrosurgical apparatus with robotic tip
US11033323B2 (en) * 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11622753B2 (en) 2018-03-29 2023-04-11 Trice Medical, Inc. Fully integrated endoscope with biopsy capabilities and methods of use
TWI726309B (en) * 2018-04-23 2021-05-01 美商克力邁生醫股份有限公司 Endocranial endoscope and method for using endocranial endoscope
US11446055B1 (en) 2018-10-18 2022-09-20 Lumoptik, Inc. Light assisted needle placement system and method
WO2024035855A1 (en) * 2022-08-11 2024-02-15 Boston Scientific Scimed, Inc. Medical device with integrated instrument and related methods

Also Published As

Publication number Publication date
US20120095458A1 (en) 2012-04-19
WO2010011781A3 (en) 2010-04-22
WO2010011781A2 (en) 2010-01-28
US20130303846A1 (en) 2013-11-14
BRPI0916269A2 (en) 2018-05-29
CN103961177B (en) 2019-04-26
EP2317931A2 (en) 2011-05-11
JP2011528950A (en) 2011-12-01
EP2317931A4 (en) 2015-09-02
EP2317931B1 (en) 2020-09-16
US20180317752A1 (en) 2018-11-08
CN102159140A (en) 2011-08-17
EA201100251A1 (en) 2011-10-31
CA2768610A1 (en) 2010-01-28
CN103961177A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
US20130303846A1 (en) Tissue modification devices and methods of using the same
US20100292684A1 (en) Tissue modification devices and methods of the same
US20220168035A1 (en) Tissue visualization and modification devices and methods
US20100286477A1 (en) Internal tissue visualization system comprising a rf-shielded visualization sensor module
US20100284580A1 (en) Tissue visualization systems and methods for using the same
US11903607B2 (en) Flexible surgical device for tissue removal
Wuchinich et al. Endoscopic ultrasonic rotary electro-cauterizing aspirator
CN107567301B (en) Steerable miniature endoscope and zipper catheter with electrosurgical tool
US5085658A (en) Neurosurgical pathological tissue removing device
US20150112324A1 (en) Rf tissue modulation devices and methods of using the same
WO2016130844A1 (en) Tissue visualization and modification devices and methods
US20170224199A1 (en) Method and apparatus for steerable, rotatable, microendoscope with tool for cutting, coagulating, desiccating and fulgurating tissue
US8409194B1 (en) RF intervertebral disc surgical system
US5250047A (en) Bipolar laparoscopic instrument with replaceable electrode tip assembly
EP1614393B1 (en) Electrosurgical handpiece for treating tissue
KR20120098942A (en) Tissue removal in the paranasal sinus and nasal cavity
US20220110513A1 (en) Ent instrument with deformable guide having translatable imaging feature
US20220054188A1 (en) Ent ablation instrument with electrode loop
US10070918B2 (en) Ablator for spinal disc removal
US20080294160A1 (en) RF endoscopic electrosurgical instrument
US11759233B2 (en) Optical cannula
US20230125835A1 (en) Scope with controllable energy tip
WO2023119022A1 (en) Ent instrument with deformable guide having translatable imaging feature

Legal Events

Date Code Title Description
AS Assignment

Owner name: AXIS SURGICAL TECHNOLOGIES INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CYBULSKI, JAMES S.;SEDDIQUI, FRED R.;REEL/FRAME:023087/0140

Effective date: 20090507

AS Assignment

Owner name: BIOSTAR VENTURES II, L.P., AS COLLATERAL AGENT, MI

Free format text: SECURITY AGREEMENT;ASSIGNOR:AXIS SURGICAL TECHNOLOGIES, INC.;REEL/FRAME:026552/0249

Effective date: 20091105

AS Assignment

Owner name: INSYTE MEDICAL TECHNOLOGIES, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AXIS SURGICAL TECHNOLOGIES, INC.;REEL/FRAME:029307/0264

Effective date: 20111221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION