US20100024696A1 - System and Method for Recycling Waste into Energy - Google Patents

System and Method for Recycling Waste into Energy Download PDF

Info

Publication number
US20100024696A1
US20100024696A1 US12/576,682 US57668209A US2010024696A1 US 20100024696 A1 US20100024696 A1 US 20100024696A1 US 57668209 A US57668209 A US 57668209A US 2010024696 A1 US2010024696 A1 US 2010024696A1
Authority
US
United States
Prior art keywords
flow line
heated
input
conveyors
rotary drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/576,682
Inventor
Phillip L. Cauley
Tracy L. Edwards
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/576,682 priority Critical patent/US20100024696A1/en
Publication of US20100024696A1 publication Critical patent/US20100024696A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/02Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with stationary charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention relates to equipment and techniques for recycling waste into energy, wherein a heated enclosure and a condenser operate under a selected vacuum maintained by a vacuum pump. Waste material is moved through the heated enclosure in a first direction, while hydrocarbon vapors are drawn toward the condenser in an opposing second direction.
  • One type of experimental device utilized a heated enclosure with an interior chamber and a conveyor for inputting waste particles to the heated enclosure.
  • a condenser received vapors from the heated enclosure and output liquid hydrocarbons and gas hydrocarbons.
  • Vacuum pumps have been used in some experimental units to maintain a selected vacuum within the heated enclosure, such that hydrocarbon vapors are drawn from the heated enclosure to the condenser.
  • the prior art systems known to Applicants do not provide a mechanism for metering the amount of waste material input to the heated enclosure, and contain no effective way of monitoring the vacuum within the system at potential leak sites. Conventional packing was used on the end of auger tube shafts to maintain a vacuum.
  • a system for recycling solid waste into energy utilizes solid waste particles having a cross-sectional size less than 1 inch in length.
  • the system comprises a heated enclosure having an interior chamber and a plurality of internal baffles within the heated chamber, one or more input conveyors for inputting waste particles to the heated enclosure, and a flow line within the heated enclosure in fluid communication with the one or more input conveyors for receiving waste particles and positioned with respect to the plurality of baffles to provide a temperature gradient along the flow line of at least 150 F.°, thereby producing hydrocarbon vapors and residual solids.
  • a heated conveyor within the flow line mechanically moves the waste particles and the residual solids along the flow line.
  • a heated rotary drum is provided in fluid communication with the flow line for receiving the waste particles and the residual solids, with the rotary drum having an interior temperature of from 730° F. to 800° F. for generating hydrocarbon vapors and carbon black solids.
  • a condenser is in fluid communication with the flow line and the rotary drum for receiving the vapors from the flow line and the rotary drum and outputting liquids including hydrocarbons and gas including hydrocarbons.
  • One or more discharge conveyors are provided for discharging the carbon black solids from the rotary drum.
  • Two or more input control valves are each positioned along the one or more input conveyors for sealing vacuum downstream from the one or more input conveyors, with each input control valve having two or more axially spaced closure gates.
  • two or more discharge control valves are positioned along the one or more discharge conveyors for sealing vacuum upstream from the one or more discharge conveyors, with each discharge control valve having two or more axially spaced closure gates.
  • a vacuum pump maintains a selective vacuum of less than 5 inches of water between the two or more input valves and the two or more discharge valves, such that hydrocarbon vapors are drawn from the flow line and the rotary drum into the condenser.
  • the system for recycling waste energy includes a heated enclosure, one or more input conveyors, a flow line within the heated enclosure, a heated conveyor within the flow line, a rotary drum, a condenser, one or more discharge conveyors, one or more input control valves, and one or more discharge control valves.
  • Each of the one or more input conveyors, the one or more discharge conveyors, and the conveyor within the flow line includes a rotary auger.
  • Each rotary auger is rotated by a drive motor and a gearbox, with a seal engaging a rotary shaft connected to each auger for sealing vacuum, and a back-up sealed enclosure downstream from the seal for sealing the auger seal from atmosphere.
  • a vacuum pump maintains a selective vacuum of less than 5 inches of water within the condenser, such that hydrocarbon vapors are drawn from the flow line into the condenser.
  • the system includes a heated enclosure, one or more input conveyors, a heated conveyor within the flow line, a condenser, one or more discharge conveyors, one or more input control valves, one or more discharge control valves, a vacuum pump, and a plurality of leak detector sensors for detecting a leak within the vacuum system between the one or more input control valves and the one or more discharge control valves.
  • a flow meter is provided for measuring a flow rate of hydrocarbon vapors to the condenser, and each of the one or more input conveyors, the one or more discharge conveyors, and the heated conveyor within the flow line includes a rotary auger.
  • a processor is provided for controlling the rotational rate of each rotary auger in response to the flow meter and the plurality of leak detector sensors.
  • FIG. 1 is a side view belt of a conveyor and vertical auger for initially feeding waste material into a heated enclosure.
  • FIG. 2 is a side view of additional conveyors, a portion of a heated enclosure and a condensing column.
  • FIG. 3 is a side view of another portion of the condensing column and heated enclosure, as well as a discharge conveyor and a flare stack.
  • FIG. 4 is a top view of the equipment shown in FIG. 2 .
  • FIG. 5 is a top view of the equipment shown in FIG. 3 .
  • FIG. 6 is a schematic representation of a suitable system according to the present invention.
  • FIG. 7 illustrates a powered end and a driven end of an auger shaft, an auger seal dynamically sealing with an auger shaft, and an enclosure for fluidly isolating the auger seal from atmosphere.
  • FIG. 8 illustrates in greater detail a roto-disk valve assembly
  • FIG. 9 illustrates a double dump valve assembly.
  • a system according to the present invention is well suited for converting various types of waste materials into energy, and for the purposes of explanation as discussed below is used to convert waste rubber particles of a type formed from worn tires into energy. Those skilled in the art will appreciate, however, that the system and method disclosed herein may be used to convert various other types of waste materials into energy as discussed below.
  • FIG. 1 illustrates a belt conveyor 12 which may be used to convey rubber particles from an initial dump hopper 14 into a staging hopper 16 .
  • the conveyor 12 may be supported on a suitable frame structure 18 , with a motor and gearbox assembly 20 used to power the conveyor 12 .
  • a magnetic drum 22 is provided adjacent a discharge end of the conveyor 12 for minimizing the amount of metal input to the hopper 16 .
  • the hopper 16 may be provided with a support structure 24 which includes a plurality of load cells 26 for measuring the weight of the material in the hopper. Since the conveyor 12 may be powered only intermittently as need to maintain material in hopper 16 , periodic measurements from the load cells 26 may thus be used to calculate the amount of material being input to the system over time.
  • Material from the hopper 16 is input to the vertical auger conveyor 30 , which is powered by a drive unit 28 . Waste material is discharged from the upper end of the auger conveyor 30 to discharge pipe 32 , which flows into the double-dump valve 34 (see FIG. 2 ) which includes a pair of axially spaced gates 36 , 38 .
  • One of the gates 36 , 38 is normally closed when the other gate is open, thereby providing a seal for the vacuum downstream from the valve 34 .
  • Waste material passing through the valve 34 is input to auger conveyor 40 , which houses a conventional screw-type auger 42 rotated by drive motor and gearbox assembly 44 .
  • Material discharged from conveyor 40 passes through a roto disc valve 46 , which also has a pair of axially spaced gates 48 , 50 .
  • Material passing through the valve 46 is input to another conveyor 52 having an internal auger 54 powered by a motor and gearbox assembly 56 .
  • a suitable double dump valve 34 is the Model H-0822-11 valve manufactured by Plattco, and a suitable roto disc valve is the Model RD-5402-1 valve manufactured by Roto-Disc.
  • FIGS. 8 and 9 show the roto disk valve 46 in greater detail, with the pair of gates 48 , 50 .
  • FIG. 9 illustrates the double dump valve 36 with the pair of gates 36 , 38 .
  • the Roto-Disc valve 46 is in series with the double-dump valve 34 , which in turn is in series with the substantially vertical auger conveyor 30 .
  • This system provides three separate mechanisms for maintaining a vacuum within the system while allowing waste material to pass into the system, with the valves 46 and 34 each including a pair of axially spaced gates. Any gas which bypasses the valves 46 and 34 is thus substantially plugged within the system by the waste material within the vertical auger 30 .
  • the plugging effect of the materials in the vertical auger conveyor 30 along with the valves 34 , 46 thus provide at least a triple redundancy to maintain vacuum within the system.
  • waste material is discharged from the auger conveyor 52 into the conduit 58 , where it drops by gravity into the horizontal conveyor 60 with an auger 62 powered by motor and gearbox assembly 63 (see FIG. 3 ).
  • Conveyor 60 and the auger 62 in turn are received within the interior chamber 64 of the heated enclosure 66 , which includes a plurality of baffles 68 for maintaining a desired temperature profile within the heated enclosure.
  • Material passing through the conveyor 60 is thus heated to produce hydrocarbon vapors and residual solids. More particularly, material passes through the conveyor 60 to the left as shown in FIG. 2 , and then drops to a similar conveyor 67 which includes an auger 65 for moving material to the right, as shown in FIG. 2 .
  • Conveyor auger 65 may be powered by motor and gearbox assembly 63 .
  • Conveyors 60 and 67 form a flow line positioned with respect to the plurality of baffles to provide a temperature gradient along the low line of at least 150 F.°, while the augers mechanically move the waste material and residual solids through the flow line.
  • Material discharged from the conveyor 67 drops by conduit 68 to yet another horizontal conveyor 70 , which similarly has an auger 72 powered by motor and a similar gearbox assembly 63 .
  • Conveyor 70 reintroduces the material into the heated enclosure 66 , and more particularly into rotary drum 74 which may be rotated by drive unit 75 .
  • the heated rotary drum 74 is thus in fluid communication with the flow line formed by the conveyors 60 and 67 , and receives waste particles and residual solids from the flow line. Accordingly to the present invention, the interior temperature within the rotary drum 74 is maintained at from 730° F. to 800° F. for generating hydrocarbon vapors and carbon black solids.
  • material discharged from the rotary drum 74 is input to the conveyor 76 , which also includes an auger 78 powered by motor and gearbox assembly 79 .
  • Carbon black solids discharged from the conveyor 76 are passed downward through a roto disc valve 82 , then upward through a vertical conveyor 84 , where the carbon black within the conveyor 84 acts as a plug to assist in maintaining vacuum in the system.
  • the auger 83 in the vertical conveyor 84 is powered by motor and gearbox assembly 85 .
  • Material discharged from the conveyor 84 passes downward through a double pump valve 80 , and is finally discharged through conveyor 88 with auger 87 powered by a similar drive.
  • a nitrogen supply system 89 supplies nitrogen to the carbon black solids discharged from the conveyor 88 .
  • Dry cooled nitrogen may thus be fed through the carbon exit assembly on the conveyor 88 to provide an inert atmosphere for neutralizing the volatility of the hot hydrocarbons and to cool these solids.
  • a bag type dust collecting filtration system (not shown) may be used to reduce dust from the discharge carbon block solids. Any remaining gases may exit the conveyor 88 through the vertical stack 91 , and be burned in flare chamber 90 , although flaring may only be necessary in the event of an emergency.
  • hydrocarbon vapors from the conveyors 62 and 67 may pass by conduit 92 into the condensing column 94 , which may then pass uncondensed vapors via line 96 to condenser 98 .
  • the condensing column 94 may be provided upstream from the condenser 98 for initially separating liquids and gases, and hydrocarbon vapors are input into a lower portion of the condensing column. Hydrocarbon vapors thus travel by vacuum in an opposite direction of the feed material through the conveyor 62 .
  • the condensing column 94 may utilize stainless steel pall rings to provide the surface area desired to start the first step of condensing.
  • Hydrocarbon vapors leaving the condenser 98 may be passed to a demister 106 , and then to a vacuum liquid ring or gas scrubber 108 .
  • a majority of the hydrocarbon vapors are liquefied in condensing column 94 , and further vapors are condensed in condenser 98 .
  • the demister 106 and the liquid ring 108 remove substantially the remaining portion of the gas vapors, so that any gas discharged from the gas chiller 109 may serve as a feedstock to the burner 104 , or may be passed to a pipeline or storage tank.
  • the gas chiller may be provided with a vacuum pump for dropping remaining heavy hydrocarbons to a liquid form. The remaining gas may be directed to the burner of the heated enclosure.
  • a water/oil separator 102 may be provided for separating liquid carbons from water, with most of the water occurring as a result of the steam input to the heated enclosure.
  • the reflux pump 110 may be provided for inputting a relatively low volume of oil to the top of the column 98 through the flux line 112 , with this oil acting as a quenching material to enhance the condensing process.
  • a blower 114 (see FIG. 3 ) may be provided for inputting air to the burner 104 within the heated enclosure 66 , and may be passed through the air to air heat exchanger 115 to warm the air before entering the heat enclosure, thereby increasing efficiency.
  • a boiler 116 (see FIG. 4 ) preferably powered by the hydrocarbons produced by the system may receive treated water and produce a relatively low volume, high temperature steam, which is preferably at a temperature greater than 800° F. into the rotary drum 74 for stripping remaining hydrocarbons from the material.
  • FIG. 4 is a top view of the equipment shown in FIG. 2 , and more particularly illustrates a heated flowline 117 from the enclosure 66 to a boiler 116 , which produces steam which is input to the enclosure. Low pressure high temperature steam input to the heated enclosure.
  • a refrigeration unit 124 as shown in FIG. 3 may be provided for gas and water cooling.
  • a separate water chiller 126 (see FIG. 5 ) may also be provided, and a gas accumulator tank 128 is also shown in FIG. 4 .
  • Temperature and/or vacuum sensors 130 may be provided at the various locations in the system to quickly identify leaks, and to quickly locate a leak, and to provide a temperature of the material at this stage of the process. Signals from each of the signals may thus be input to a master control station 132 shown in FIGS. 2 and 4 , which includes one or more conventional computers.
  • One or more digital flow meters 134 and digital pressure switches 136 may be provided for measuring the flow rate of gas to the condenser column or the flow rate of gas to various other pieces of the system, with the pressure switches providing an accurate reading of the pressure at selected locations within the system.
  • the system may include digital flow meters and digital pressure gauges that will communicate with the computer.
  • the conveyors within the heated enclosure may thus be operated with a level of one third material or less within each auger conveyor to increase the surface area of exposed material.
  • the material may be retained within the enclosure 66 during a retention time of less than 15 minutes, and typically more than 8 minutes. The retention time of from 10 to 12 minutes will be appropriate for many materials.
  • FIG. 6 illustrates many of the primary components of the system in schematic form.
  • Material from the conveyor 12 thus passes upward through the vertical auger 30 , through the double-dump valve 34 , and through the conveyor 62 into the heated enclosure 66 .
  • Carbon black discharged from the enclosure is passed through the vertical auger 84 and may then be packaged.
  • Hydrocarbons discharged from the heated enclosure 66 pass to the condensing column 94 , with gas continuing to the water tube condenser 98 , and are then input by a cyclone pump to a demister, and finally to a gas chiller.
  • a liquid ring with a vacuum pump may be spaced fluidly between the fragmentator and the gas chiller.
  • gas from the chiller may be input to a gas accumulator, and to a gas electrical generator. Some of the gas may be returned to the heated enclosure, and other gas may pass to the boiler.
  • Produced hydrocarbons may thus be recovered in holding tank 102 , and may be passed to a burner 104 within the heated enclosure 66 to generate heat. The system may thus primarily run on its own produced gas once the reaction starts to occur.
  • a water condenser is provided with internal coils preferably fabricated from stainless steel. Water may be treated with a water softening system and will be continuously circulated through a water chiller while flowing through the condenser to maintain a constant temperature and reduce the rate of corrosion.
  • the water softener may be used to input water to the liquid isolation chamber, and also the waste heat boiler. Steam from the boiler may be input to the heated enclosure 66 , as discussed above.
  • the oil and water separator 102 may receive oil and water from various locations in the system, but primarily from the condensing column 94 .
  • Each of the conveyors with augers therein may include a machine shaft seal, a shaft housing, a direct drive motor, and a gearbox.
  • FIG. 7 depicts an auger shaft with a shaft seal 140 and an enclosure 142 which fluidly isolates the shaft seal from the environment for redundancy.
  • the motor may be a hydraulic, pneumatic or electrically powered motor 144 , and may drive a gearbox 146 or another transmission device.
  • the auger motor may include a programmable drive which monitors amperage and rpms of the auger, and may thus be tied to a master computer.
  • the present invention may sufficiently convert various materials, including but not limited to waste materials, and to energy and non-energy byproducts.
  • the invention may be used to convert solid waste, sewage sludge, animal waste, trash and refuge, solid industrial waste, coal or other solid fossil fuels into energy. Waste plastics and waste fat from animals, fryer oils and other food processing wastes may also be converted into useful products according to the present invention.
  • the system avoids many of the problems of prior attempts to efficiently convert waste material into energy by avoiding the requirement of a fluidized bed or other special reactions. Solid material need not be specially treated or prepared into a slurry before being heated to release hydrocarbons.
  • the system of the present invention is relatively compact and can be placed in a small location, with the emissions from the system being relatively clean and non-hazardous.
  • a particular feature of the invention is that, in addition to or in some cases separate from producing energy, the equipment of the present invention may be used to produce valuable byproducts from waste materials including cleaners, solvents, and other valuable chemicals used in various industrial, oilfield, and pipeline operations.
  • Another significant advantage of the invention is that the system does not require specialized equipment, but rather utilizes components which are generally readily available from a variety of sources.

Abstract

A system for recycling solid waste into energy includes a heated enclosure 66, one or more input conveyors 60, 67 move waste materials through the heated enclosure, provide a flow line with a temperature gradient of at least 150 F.°, and mechanically move the waste particles and the residual solids along the flow line. A heated rotary drum 74 is in fluid communication with the flow line, and condenser unit 94, 98 receive vapors from the flow line and the rotary drum and output hydrocarbons. One or more discharge conveyors 76 discharge carbon black from the rotary drum. Control valves 80, 82 seal a vacuum downstream from the discharge conveyors, and control valves 34, 46 seal vacuum upstream from the one or more input conveyors. Various types of vacuum pumps may be used to maintain a selected vacuum between the control valves.

Description

    RELATED CASE
  • This application is a continuation of U.S. Ser. No. 11/320,936 filed on Dec. 29, 2005, which claims priority from U.S. Ser. No. 60/595,416 filed Jan. 12, 2005.
  • FIELD OF THE INVENTION
  • The present invention relates to equipment and techniques for recycling waste into energy, wherein a heated enclosure and a condenser operate under a selected vacuum maintained by a vacuum pump. Waste material is moved through the heated enclosure in a first direction, while hydrocarbon vapors are drawn toward the condenser in an opposing second direction.
  • BACKGROUND OF THE INVENTION
  • Various types of devices have been experimentally used for recycling waste into energy. Some devices are particularly intended for disposing of solid waste, such as rubber particles from used tires. One type of experimental device utilized a heated enclosure with an interior chamber and a conveyor for inputting waste particles to the heated enclosure. A condenser received vapors from the heated enclosure and output liquid hydrocarbons and gas hydrocarbons. Vacuum pumps have been used in some experimental units to maintain a selected vacuum within the heated enclosure, such that hydrocarbon vapors are drawn from the heated enclosure to the condenser. The prior art systems known to Applicants do not provide a mechanism for metering the amount of waste material input to the heated enclosure, and contain no effective way of monitoring the vacuum within the system at potential leak sites. Conventional packing was used on the end of auger tube shafts to maintain a vacuum.
  • Other prior art systems for recycling waste into energy include U.S. Pat. Nos. 4,624,417; 4,769,149; 4,857,458; 4,882,903; 5,429,645; 5,996,512; 6,938,562; and 6,848,375, as well as Patent Application Publications 2004/0103831 and 2004/0192980.
  • The disadvantages of the prior art are overcome by the present invention, and an improved system and method are hereinafter disclosed for converting solid waste into energy in a highly efficient manner.
  • SUMMARY OF THE INVENTION
  • In one embodiment, a system for recycling solid waste into energy utilizes solid waste particles having a cross-sectional size less than 1 inch in length. The system comprises a heated enclosure having an interior chamber and a plurality of internal baffles within the heated chamber, one or more input conveyors for inputting waste particles to the heated enclosure, and a flow line within the heated enclosure in fluid communication with the one or more input conveyors for receiving waste particles and positioned with respect to the plurality of baffles to provide a temperature gradient along the flow line of at least 150 F.°, thereby producing hydrocarbon vapors and residual solids. A heated conveyor within the flow line mechanically moves the waste particles and the residual solids along the flow line. A heated rotary drum is provided in fluid communication with the flow line for receiving the waste particles and the residual solids, with the rotary drum having an interior temperature of from 730° F. to 800° F. for generating hydrocarbon vapors and carbon black solids. A condenser is in fluid communication with the flow line and the rotary drum for receiving the vapors from the flow line and the rotary drum and outputting liquids including hydrocarbons and gas including hydrocarbons. One or more discharge conveyors are provided for discharging the carbon black solids from the rotary drum. Two or more input control valves are each positioned along the one or more input conveyors for sealing vacuum downstream from the one or more input conveyors, with each input control valve having two or more axially spaced closure gates. Similarly, two or more discharge control valves are positioned along the one or more discharge conveyors for sealing vacuum upstream from the one or more discharge conveyors, with each discharge control valve having two or more axially spaced closure gates. A vacuum pump maintains a selective vacuum of less than 5 inches of water between the two or more input valves and the two or more discharge valves, such that hydrocarbon vapors are drawn from the flow line and the rotary drum into the condenser.
  • In another embodiment, the system for recycling waste energy includes a heated enclosure, one or more input conveyors, a flow line within the heated enclosure, a heated conveyor within the flow line, a rotary drum, a condenser, one or more discharge conveyors, one or more input control valves, and one or more discharge control valves. Each of the one or more input conveyors, the one or more discharge conveyors, and the conveyor within the flow line includes a rotary auger. Each rotary auger is rotated by a drive motor and a gearbox, with a seal engaging a rotary shaft connected to each auger for sealing vacuum, and a back-up sealed enclosure downstream from the seal for sealing the auger seal from atmosphere. A vacuum pump maintains a selective vacuum of less than 5 inches of water within the condenser, such that hydrocarbon vapors are drawn from the flow line into the condenser.
  • In yet another embodiment, the system includes a heated enclosure, one or more input conveyors, a heated conveyor within the flow line, a condenser, one or more discharge conveyors, one or more input control valves, one or more discharge control valves, a vacuum pump, and a plurality of leak detector sensors for detecting a leak within the vacuum system between the one or more input control valves and the one or more discharge control valves. A flow meter is provided for measuring a flow rate of hydrocarbon vapors to the condenser, and each of the one or more input conveyors, the one or more discharge conveyors, and the heated conveyor within the flow line includes a rotary auger. A processor is provided for controlling the rotational rate of each rotary auger in response to the flow meter and the plurality of leak detector sensors.
  • These and further features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view belt of a conveyor and vertical auger for initially feeding waste material into a heated enclosure.
  • FIG. 2 is a side view of additional conveyors, a portion of a heated enclosure and a condensing column.
  • FIG. 3 is a side view of another portion of the condensing column and heated enclosure, as well as a discharge conveyor and a flare stack.
  • FIG. 4 is a top view of the equipment shown in FIG. 2.
  • FIG. 5 is a top view of the equipment shown in FIG. 3.
  • FIG. 6 is a schematic representation of a suitable system according to the present invention.
  • FIG. 7 illustrates a powered end and a driven end of an auger shaft, an auger seal dynamically sealing with an auger shaft, and an enclosure for fluidly isolating the auger seal from atmosphere.
  • FIG. 8 illustrates in greater detail a roto-disk valve assembly, and FIG. 9 illustrates a double dump valve assembly.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • A system according to the present invention is well suited for converting various types of waste materials into energy, and for the purposes of explanation as discussed below is used to convert waste rubber particles of a type formed from worn tires into energy. Those skilled in the art will appreciate, however, that the system and method disclosed herein may be used to convert various other types of waste materials into energy as discussed below.
  • FIG. 1 illustrates a belt conveyor 12 which may be used to convey rubber particles from an initial dump hopper 14 into a staging hopper 16. The conveyor 12 may be supported on a suitable frame structure 18, with a motor and gearbox assembly 20 used to power the conveyor 12. A magnetic drum 22 is provided adjacent a discharge end of the conveyor 12 for minimizing the amount of metal input to the hopper 16.
  • The hopper 16 may be provided with a support structure 24 which includes a plurality of load cells 26 for measuring the weight of the material in the hopper. Since the conveyor 12 may be powered only intermittently as need to maintain material in hopper 16, periodic measurements from the load cells 26 may thus be used to calculate the amount of material being input to the system over time. Material from the hopper 16 is input to the vertical auger conveyor 30, which is powered by a drive unit 28. Waste material is discharged from the upper end of the auger conveyor 30 to discharge pipe 32, which flows into the double-dump valve 34 (see FIG. 2) which includes a pair of axially spaced gates 36, 38. One of the gates 36, 38 is normally closed when the other gate is open, thereby providing a seal for the vacuum downstream from the valve 34.
  • Waste material passing through the valve 34 is input to auger conveyor 40, which houses a conventional screw-type auger 42 rotated by drive motor and gearbox assembly 44. Material discharged from conveyor 40 passes through a roto disc valve 46, which also has a pair of axially spaced gates 48, 50. Material passing through the valve 46 is input to another conveyor 52 having an internal auger 54 powered by a motor and gearbox assembly 56. A suitable double dump valve 34 is the Model H-0822-11 valve manufactured by Plattco, and a suitable roto disc valve is the Model RD-5402-1 valve manufactured by Roto-Disc. FIGS. 8 and 9 show the roto disk valve 46 in greater detail, with the pair of gates 48, 50. FIG. 9 illustrates the double dump valve 36 with the pair of gates 36, 38.
  • The Roto-Disc valve 46 is in series with the double-dump valve 34, which in turn is in series with the substantially vertical auger conveyor 30. This system provides three separate mechanisms for maintaining a vacuum within the system while allowing waste material to pass into the system, with the valves 46 and 34 each including a pair of axially spaced gates. Any gas which bypasses the valves 46 and 34 is thus substantially plugged within the system by the waste material within the vertical auger 30. The plugging effect of the materials in the vertical auger conveyor 30 along with the valves 34, 46 thus provide at least a triple redundancy to maintain vacuum within the system.
  • Referring still to FIG. 2, waste material is discharged from the auger conveyor 52 into the conduit 58, where it drops by gravity into the horizontal conveyor 60 with an auger 62 powered by motor and gearbox assembly 63 (see FIG. 3). Conveyor 60 and the auger 62 in turn are received within the interior chamber 64 of the heated enclosure 66, which includes a plurality of baffles 68 for maintaining a desired temperature profile within the heated enclosure. Material passing through the conveyor 60 is thus heated to produce hydrocarbon vapors and residual solids. More particularly, material passes through the conveyor 60 to the left as shown in FIG. 2, and then drops to a similar conveyor 67 which includes an auger 65 for moving material to the right, as shown in FIG. 2. If desired, another conveyor may be in parallel with conveyor 67 to increase the surface area of exposed material. Conveyor auger 65 may be powered by motor and gearbox assembly 63. Conveyors 60 and 67 form a flow line positioned with respect to the plurality of baffles to provide a temperature gradient along the low line of at least 150 F.°, while the augers mechanically move the waste material and residual solids through the flow line. Material discharged from the conveyor 67 drops by conduit 68 to yet another horizontal conveyor 70, which similarly has an auger 72 powered by motor and a similar gearbox assembly 63. Conveyor 70 reintroduces the material into the heated enclosure 66, and more particularly into rotary drum 74 which may be rotated by drive unit 75. The heated rotary drum 74 is thus in fluid communication with the flow line formed by the conveyors 60 and 67, and receives waste particles and residual solids from the flow line. Accordingly to the present invention, the interior temperature within the rotary drum 74 is maintained at from 730° F. to 800° F. for generating hydrocarbon vapors and carbon black solids.
  • As shown in FIG. 3, material discharged from the rotary drum 74 is input to the conveyor 76, which also includes an auger 78 powered by motor and gearbox assembly 79. Carbon black solids discharged from the conveyor 76 are passed downward through a roto disc valve 82, then upward through a vertical conveyor 84, where the carbon black within the conveyor 84 acts as a plug to assist in maintaining vacuum in the system. The auger 83 in the vertical conveyor 84 is powered by motor and gearbox assembly 85. Material discharged from the conveyor 84 passes downward through a double pump valve 80, and is finally discharged through conveyor 88 with auger 87 powered by a similar drive. A nitrogen supply system 89 supplies nitrogen to the carbon black solids discharged from the conveyor 88. Dry cooled nitrogen may thus be fed through the carbon exit assembly on the conveyor 88 to provide an inert atmosphere for neutralizing the volatility of the hot hydrocarbons and to cool these solids. A bag type dust collecting filtration system (not shown) may be used to reduce dust from the discharge carbon block solids. Any remaining gases may exit the conveyor 88 through the vertical stack 91, and be burned in flare chamber 90, although flaring may only be necessary in the event of an emergency.
  • Returning again to FIG. 2, hydrocarbon vapors from the conveyors 62 and 67 may pass by conduit 92 into the condensing column 94, which may then pass uncondensed vapors via line 96 to condenser 98. Accordingly to the present invention, the condensing column 94 may be provided upstream from the condenser 98 for initially separating liquids and gases, and hydrocarbon vapors are input into a lower portion of the condensing column. Hydrocarbon vapors thus travel by vacuum in an opposite direction of the feed material through the conveyor 62. The condensing column 94 may utilize stainless steel pall rings to provide the surface area desired to start the first step of condensing.
  • Hydrocarbon vapors leaving the condenser 98 may be passed to a demister 106, and then to a vacuum liquid ring or gas scrubber 108. A majority of the hydrocarbon vapors are liquefied in condensing column 94, and further vapors are condensed in condenser 98. The demister 106 and the liquid ring 108 remove substantially the remaining portion of the gas vapors, so that any gas discharged from the gas chiller 109 may serve as a feedstock to the burner 104, or may be passed to a pipeline or storage tank. The gas chiller may be provided with a vacuum pump for dropping remaining heavy hydrocarbons to a liquid form. The remaining gas may be directed to the burner of the heated enclosure. A water/oil separator 102 may be provided for separating liquid carbons from water, with most of the water occurring as a result of the steam input to the heated enclosure. The reflux pump 110 may be provided for inputting a relatively low volume of oil to the top of the column 98 through the flux line 112, with this oil acting as a quenching material to enhance the condensing process. A blower 114 (see FIG. 3) may be provided for inputting air to the burner 104 within the heated enclosure 66, and may be passed through the air to air heat exchanger 115 to warm the air before entering the heat enclosure, thereby increasing efficiency.
  • A boiler 116 (see FIG. 4) preferably powered by the hydrocarbons produced by the system may receive treated water and produce a relatively low volume, high temperature steam, which is preferably at a temperature greater than 800° F. into the rotary drum 74 for stripping remaining hydrocarbons from the material. FIG. 4 is a top view of the equipment shown in FIG. 2, and more particularly illustrates a heated flowline 117 from the enclosure 66 to a boiler 116, which produces steam which is input to the enclosure. Low pressure high temperature steam input to the heated enclosure.
  • A refrigeration unit 124 as shown in FIG. 3 may be provided for gas and water cooling. A separate water chiller 126 (see FIG. 5) may also be provided, and a gas accumulator tank 128 is also shown in FIG. 4.
  • Temperature and/or vacuum sensors 130 may be provided at the various locations in the system to quickly identify leaks, and to quickly locate a leak, and to provide a temperature of the material at this stage of the process. Signals from each of the signals may thus be input to a master control station 132 shown in FIGS. 2 and 4, which includes one or more conventional computers. One or more digital flow meters 134 and digital pressure switches 136 may be provided for measuring the flow rate of gas to the condenser column or the flow rate of gas to various other pieces of the system, with the pressure switches providing an accurate reading of the pressure at selected locations within the system. The system may include digital flow meters and digital pressure gauges that will communicate with the computer.
  • The conveyors within the heated enclosure may thus be operated with a level of one third material or less within each auger conveyor to increase the surface area of exposed material. The material may be retained within the enclosure 66 during a retention time of less than 15 minutes, and typically more than 8 minutes. The retention time of from 10 to 12 minutes will be appropriate for many materials.
  • FIG. 6 illustrates many of the primary components of the system in schematic form. Material from the conveyor 12 thus passes upward through the vertical auger 30, through the double-dump valve 34, and through the conveyor 62 into the heated enclosure 66. Carbon black discharged from the enclosure is passed through the vertical auger 84 and may then be packaged.
  • Hydrocarbons discharged from the heated enclosure 66 pass to the condensing column 94, with gas continuing to the water tube condenser 98, and are then input by a cyclone pump to a demister, and finally to a gas chiller. A liquid ring with a vacuum pump may be spaced fluidly between the fragmentator and the gas chiller. Other than the gas released through an emergency flare, gas from the chiller may be input to a gas accumulator, and to a gas electrical generator. Some of the gas may be returned to the heated enclosure, and other gas may pass to the boiler. Produced hydrocarbons may thus be recovered in holding tank 102, and may be passed to a burner 104 within the heated enclosure 66 to generate heat. The system may thus primarily run on its own produced gas once the reaction starts to occur.
  • A water condenser is provided with internal coils preferably fabricated from stainless steel. Water may be treated with a water softening system and will be continuously circulated through a water chiller while flowing through the condenser to maintain a constant temperature and reduce the rate of corrosion. The water softener may be used to input water to the liquid isolation chamber, and also the waste heat boiler. Steam from the boiler may be input to the heated enclosure 66, as discussed above. The oil and water separator 102 may receive oil and water from various locations in the system, but primarily from the condensing column 94.
  • Each of the conveyors with augers therein may include a machine shaft seal, a shaft housing, a direct drive motor, and a gearbox. FIG. 7 depicts an auger shaft with a shaft seal 140 and an enclosure 142 which fluidly isolates the shaft seal from the environment for redundancy. The motor may be a hydraulic, pneumatic or electrically powered motor 144, and may drive a gearbox 146 or another transmission device. The auger motor may include a programmable drive which monitors amperage and rpms of the auger, and may thus be tied to a master computer.
  • The present invention may sufficiently convert various materials, including but not limited to waste materials, and to energy and non-energy byproducts. In addition to rubber particles from tires as disclosed herein, the invention may be used to convert solid waste, sewage sludge, animal waste, trash and refuge, solid industrial waste, coal or other solid fossil fuels into energy. Waste plastics and waste fat from animals, fryer oils and other food processing wastes may also be converted into useful products according to the present invention. The system avoids many of the problems of prior attempts to efficiently convert waste material into energy by avoiding the requirement of a fluidized bed or other special reactions. Solid material need not be specially treated or prepared into a slurry before being heated to release hydrocarbons. The system of the present invention is relatively compact and can be placed in a small location, with the emissions from the system being relatively clean and non-hazardous. By providing a system which is essentially operating under a vacuum, the likelihood of inadvertent release of gases is minimized, while the vacuum pump draws the hydrocarbon vapors, preferably in a counter flow direction from the particles moving through the system, toward the condenser units.
  • A particular feature of the invention is that, in addition to or in some cases separate from producing energy, the equipment of the present invention may be used to produce valuable byproducts from waste materials including cleaners, solvents, and other valuable chemicals used in various industrial, oilfield, and pipeline operations. Another significant advantage of the invention is that the system does not require specialized equipment, but rather utilizes components which are generally readily available from a variety of sources.
  • Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.

Claims (23)

1-41. (canceled)
42. A system for recycling solid waste into energy, the system comprising:
a heated enclosure having an interior chamber and a plurality of internal baffles within the heated chamber;
one or more input conveyors for inputting waste particles to the heated enclosure and having a flow line positioned with respect to the plurality of baffles to provide a temperature gradient along the flow line of at least 150 F.°, thereby producing hydrocarbon vapors and residual solids, the input conveyors mechanically moving the waste particles and the residual solids along the flow line;
a heated rotary drum in fluid communication with an exit from the flow line for receiving the waste particles and residual solids from the flow line, the rotary drum having an interior temperature of from 730° F. to 800° F. for generating hydrocarbon vapors and the residual solids;
a condenser in fluid communication with the flow line and the rotary drum for receiving the vapors from the flow line and the rotary drum and outputting liquids including hydrocarbons and gas including hydrocarbons;
one or more discharge conveyors for discharging the residual solids from the rotary drum;
two or more input control valves each for sealing vacuum downstream from the one or more input conveyors;
two or more discharge control valves each for sealing vacuum upstream from the one or more discharge conveyors; and
a vacuum pump for maintaining a selected vacuum between the two or more input valves and the two or more discharge valves, such that hydrocarbon vapors are drawn from the flow line and the rotary drum into the condenser.
43. The system as defined in claim 42, wherein a drum sensor senses a temperature within the rotating drum; and
fuel to the burner is controlled as a function of the measured drum temperature.
44. The system as defined in claim 42, further comprising:
a substantially vertical input conveyor in fluid communication with the two or more input control valves for providing a plug of waste material for minimizing vacuum loss; and
a substantially vertical waste conveyor in fluid communication with the two or more discharge control valves for providing a plug of residual solids for minimizing vacuum loss.
45. The system as defined in claim 42, wherein at least a portion of the one or more of the gas including hydrocarbons and the liquids including hydrocarbons are input into a burner within the heated enclosure.
46. The system as defined in claim 42, wherein each of the one or more input conveyors, the one or more discharge conveyors, and the heated conveyor within the flow line includes a rotary auger, each rotary auger is rotated by a drive motor and gearbox, a seal engaging a rotary shaft connected to each auger for sealing vacuum, and a sealed enclosure downstream from the seal for containing gases which pass by the seal.
47. The system as defined in claim 46, further comprising:
one or more rpm sensors for monitoring a rotational rate of the rotary augers.
48. The system as defined in claim 46, wherein the flow line extends in one axial direction within the heated chamber and extends in a substantially opposing axial direction within the heated chamber.
49. The system as defined in claim 42, further comprising:
a nitrogen supply system to supply nitrogen to the residual solids discharged from the one or more discharge conveyors.
50. The system as defined in claim 42, further comprising:
a water chiller for cooling hydrocarbon vapors passing through the condenser.
51. The system as defined in claim 42, further comprising:
a condensing column upstream of the condenser for separating liquids and gases, hydrocarbon vapors being input into a lower portion of the condensing column.
52. The system as defined in claim 42, further comprising:
a steam line for inputting steam at a temperature of greater than 800° F. into the rotary drum.
53. A system for recycling waste into energy, the system comprising:
a heated enclosure having an interior chamber and a plurality of internal baffles within the heated chamber;
one or more input conveyors for inputting waste particles to the heated enclosure;
a flow line within the heated enclosure in fluid communication with the one or more input conveyors for receiving waste particles and positioned with respect to the plurality of baffles to provide a temperature gradient along the flow line of 150 F.°, thereby producing hydrocarbon vapors and residual solids, the flow line extending in one axial direction within the heated chamber and extending in a substantially opposing axial direction within the heated chamber;
a heated conveyor within the flow line mechanically moving the waste particles and the residual solids along the flow line;
a heated rotary drum in fluid communication with an exit from the flow line for receiving the waste particles and residual solids from the flow line, the rotary drum having an interior temperature of from 730° F. to 800° F. for generating hydrocarbon vapors and the residual solids;
a condenser in fluid communication with the flow line and the rotary drum for receiving the vapors from the flow line and the rotary drum and outputting liquids including hydrocarbons and gas including hydrocarbons;
one or more discharge conveyors for discharging the residual solids from the rotary drum;
each of the one or more input conveyors, the one or more discharge conveyors, and the heated conveyor within the flow line includes a rotary auger;
each rotary auger is rotated by a drive motor and gearbox, a seal engaging a rotary shaft connected to each auger for sealing vacuum, and a sealed enclosure downstream from the seal for containing gases which pass by the seal; and
a vacuum pump for maintaining a selected vacuum of less than 5 inches of water within the condenser, such that hydrocarbon vapors are drawn from the flow line and the rotary drum into the condenser.
54. The system as defined in claim 53, wherein at least a portion of one or more of the gas including hydrocarbons and the liquids including hydrocarbons are input into a burner within the heated closure.
55. The system as defined in claim 53, further comprising:
a substantially vertical input conveyor in fluid communication with the one or more input control valves for providing a plug of waste material for minimizing vacuum loss; and
a substantially vertical waste conveyor in fluid communication with the one or more discharge control valves for providing a plug of the residual solids for minimizing vacuum loss.
56. The system as defined in claim 53, further comprising:
a plurality of sensors for detecting a leak within a vacuum system between the one or more input control valves and the one or more discharge control valves.
57. The system as defined in claim 53, further comprising:
a steam line for inputting steam at a temperature of greater than 800° F. into the rotary drum; and
a boiler heated by at least one of the gas including hydrocarbons and liquids including hydrocarbon for generating steam to the steam line.
58. The system as defined in claim 53, wherein a drum sensor senses a temperature within the rotating drum; and
fuel to the burner is controlled as a function of the measured drum temperature.
59. The system as defined in claim 53, further comprising:
a condensing column upstream of the condenser for separating liquids and gases, hydrocarbon vapors being input into a lower portion of the condensing column; and
a water chiller for cooling hydrocarbon vapors passing through the condenser.
60. A system for recycling waste into energy, the system comprising:
a heated enclosure having an interior chamber and a plurality of internal baffles within the heated chamber;
one or more input conveyors for inputting waste particles to the heated enclosure;
a flow line within the heated enclosure in fluid communication with the one or more input conveyors for receiving waste particles and positioned with respect to the plurality of baffles to provide a temperature gradient along the flow line of 150 F.°, thereby producing hydrocarbon vapors and residual solids;
a heated conveyor within the flow line mechanically moving the waste particles and the residual solids along the flow line;
a heated rotary drum in fluid communication with the flow line for receiving the waste particles and the residual solids from the flow line;
a condenser in fluid communication with the flow line for receiving the vapors from the flow line and outputting liquids including hydrocarbons and gas including hydrocarbons;
one or more discharge conveyors for discharging the residual solids;
one or more input control valves each positioned along the one or more input conveyors for sealing vacuum downstream from the one or more input conveyors;
one or more discharge control valves each positioned along the one or more discharge conveyors for sealing vacuum upstream from the one or more discharge conveyors;
a vacuum pump for maintaining a selected vacuum of less than 5 inches of water between the one or more input valves and the one or more discharge valves, such that hydrocarbon vapors are drawn from the flow line and the rotary drum into the condenser;
a steam line for inputting steam at a temperature of greater than 800° F. into the rotary drum;
each of the one or more input conveyors, the one or more discharge conveyors, and the heated conveyor within the flow line includes a rotary auger;
one or more rpm sensors for monitoring a rotational rate of one or more of the augers; and
a processor for controlling a rotational speed of each rotary auger in response to the one or more rpm sensors.
61. The system as defined in claim 60, wherein each rotary auger is rotated by a drive motor and gearbox, a seal engaging a rotary shaft connected to each auger for sealing vacuum, and a sealed enclosure downstream from the seal for containing gases which pass by the seal.
62. The system as defined in claim 60, wherein the flow line extends in one axial direction within the heated chamber and in a substantially opposing axial direction within the heated chamber.
63. The system as defined in claim 60, further comprising:
the heated rotary drum having an interior temperature of from 730° F. to 800° F. for generating hydrocarbon vapors and the residual solids.
US12/576,682 2005-07-01 2009-10-09 System and Method for Recycling Waste into Energy Abandoned US20100024696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/576,682 US20100024696A1 (en) 2005-07-01 2009-10-09 System and Method for Recycling Waste into Energy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US59541605P 2005-07-01 2005-07-01
US11/320,936 US7621226B2 (en) 2005-07-01 2005-12-29 System and method for recycling waste into energy
US12/576,682 US20100024696A1 (en) 2005-07-01 2009-10-09 System and Method for Recycling Waste into Energy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/320,936 Continuation US7621226B2 (en) 2005-07-01 2005-12-29 System and method for recycling waste into energy

Publications (1)

Publication Number Publication Date
US20100024696A1 true US20100024696A1 (en) 2010-02-04

Family

ID=37588173

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/320,936 Active 2027-03-06 US7621226B2 (en) 2005-07-01 2005-12-29 System and method for recycling waste into energy
US12/576,682 Abandoned US20100024696A1 (en) 2005-07-01 2009-10-09 System and Method for Recycling Waste into Energy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/320,936 Active 2027-03-06 US7621226B2 (en) 2005-07-01 2005-12-29 System and method for recycling waste into energy

Country Status (1)

Country Link
US (2) US7621226B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018007964A1 (en) * 2016-07-05 2018-01-11 Golden Renewable Energy, LLC System and process for converting waste plastic into fuel
US10233393B2 (en) 2016-07-08 2019-03-19 Golden Renewable Energy, LLC Heated airlock feeder unit
US10345048B2 (en) 2016-05-12 2019-07-09 Golden Renewable Energy, LLC Cyclonic condensing and cooling system
US10436525B2 (en) 2016-05-12 2019-10-08 Golden Renewable Energy, LLC Cyclonic cooling system
US10532116B2 (en) 2012-04-25 2020-01-14 Fulcrum Energy Corporation Processing unit and method for separating hydrocarbons from feedstock material
US10544367B2 (en) 2016-06-21 2020-01-28 Golden Renewable Energy, LLC Char separator and method
US10633595B2 (en) 2016-06-21 2020-04-28 Golden Renewable Energy, LLC Char separator
US10961062B2 (en) 2016-06-21 2021-03-30 Golden Renewable Energy, LLC Bag press feeder assembly

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646470B2 (en) * 2007-07-31 2014-02-11 Frito-Lay North America, Inc. Compact washing flume system
US20100275823A1 (en) * 2009-05-04 2010-11-04 I Power Energy Systems, Llc Special Pyrogen Waste treatment and electrical generation combination of systems
WO2011142829A2 (en) 2010-05-13 2011-11-17 W2Oil, Inc. Apparatus and method for the decomposition of organic matter
DK3705163T3 (en) 2010-07-08 2023-02-06 Fredrick Taylor CONVERTING ENTIRE TIRES AND OTHER SOLID CARBON MATERIALS INTO RECYCLABLE COMPONENTS
CA2861038C (en) * 2012-01-11 2021-05-25 Fredrick Taylor System and process for converting whole tires and other solid carbon materials into reclaimable and reusable components
US10023804B2 (en) 2012-01-11 2018-07-17 Fredrick Taylor System and process for converting whole tires and other solid carbon materials into reclaimable and reusable components
CN102911678B (en) * 2012-08-06 2014-01-29 山西鑫立能源科技有限公司 Method for generating combustible high-temperature waste gas by carrying out dry quenching on combustion waste gas
US9637687B2 (en) * 2013-11-27 2017-05-02 Yoichiro Yamanobe Infectious medical waste treatment system
CN104668263B (en) * 2013-12-02 2017-08-18 山野边洋一郎 Infectious Biohazard Waste processing system

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780676A (en) * 1972-05-08 1973-12-25 Air Preheater Metallic recovery system
US4308809A (en) * 1977-10-20 1982-01-05 Woods Maurice G Solid waste disposal system
US4439209A (en) * 1982-08-25 1984-03-27 Wilwerding Carl M Thermal decomposition apparatus
US4452154A (en) * 1981-08-04 1984-06-05 Onahama Seiren Kabushiki Kaisha Process and apparatus for dry distillation of discarded rubber tires
US4624417A (en) * 1983-06-17 1986-11-25 Newest, Inc. Process for converting solid waste and sewage sludge into energy sources and separate recyclable by-products
US4769149A (en) * 1985-12-05 1988-09-06 Propiorga Method for the recovery of energy from waste and residues
US4872949A (en) * 1988-03-08 1989-10-10 Wilwerding Carl M Process for treatment of drilling mud
US4882903A (en) * 1988-04-01 1989-11-28 Ch Guernsey & Company Combined cycle waste-to-energy plant
US5143000A (en) * 1991-05-13 1992-09-01 Plasma Energy Corporation Refuse converting apparatus using a plasma torch
US5221756A (en) * 1992-02-21 1993-06-22 Florasynth, Inc. Method for the recovery and purification of maltol
US5411714A (en) * 1992-04-06 1995-05-02 Wu; Arthur C. Thermal conversion pyrolysis reactor system
US5414714A (en) * 1992-03-26 1995-05-09 Motorola, Inc. Method and apparatus for scan testing an array in a data processing system
US5423456A (en) * 1994-01-03 1995-06-13 Larry V. Arendonk Apparatus for continuous flow weighing
US5429645A (en) * 1990-12-06 1995-07-04 Benson; Peter H. Solid fuel and process for combustion of the solid fuel
US5553554A (en) * 1994-10-04 1996-09-10 Urich, Jr.; Albert E. Waste disposal and energy recovery system and method
US5720232A (en) * 1996-07-10 1998-02-24 Meador; William R. Method and apparatus for recovering constituents from discarded tires
US5915308A (en) * 1996-01-18 1999-06-29 Siemens Aktiengesellschaft Discharge apparatus
US5996512A (en) * 1997-01-30 1999-12-07 Gec Alsthom Stein Industrie System for recycling refuse
US6032591A (en) * 1997-01-30 2000-03-07 Gec Alsthom Stein Industrie System for recycling refuse
US6294212B1 (en) * 1999-09-20 2001-09-25 Wenger Manufacturing Inc. Method and apparatus for the production of high viscosity paste products with added components
US6629450B2 (en) * 2001-07-13 2003-10-07 Taiwan Semiconductor Manufacturing Co., Ltd Semiconductor auto leak rate tester
US6698365B2 (en) * 2002-01-23 2004-03-02 S.T.M. Co., Ltd. Apparatus for thermal treatment using superheated steam
US20040103831A1 (en) * 2002-05-17 2004-06-03 Pope Michael G. Apparatus for waste gasification
US20040192980A1 (en) * 2003-03-28 2004-09-30 Appel Brian S. Process for conversion of organic, waste, or low-value materials into useful products
US20050005772A1 (en) * 2003-07-12 2005-01-13 Spani Wayne W. Multi-phase separation system
US6848375B2 (en) * 2000-03-24 2005-02-01 Organic Power Asa Method and device for combustion of solid fuel
US20050082144A1 (en) * 2003-10-14 2005-04-21 Maupin Daniel D. High speed food product peeling or cleaning machine and method
US6938562B2 (en) * 2002-05-17 2005-09-06 Senreq, Llc Apparatus for waste gasification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662659B2 (en) * 1992-10-12 1997-10-15 川崎重工業株式会社 Method of supplying constant weight of waste in fluidized bed waste incinerator

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780676A (en) * 1972-05-08 1973-12-25 Air Preheater Metallic recovery system
US4308809A (en) * 1977-10-20 1982-01-05 Woods Maurice G Solid waste disposal system
US4452154A (en) * 1981-08-04 1984-06-05 Onahama Seiren Kabushiki Kaisha Process and apparatus for dry distillation of discarded rubber tires
US4439209A (en) * 1982-08-25 1984-03-27 Wilwerding Carl M Thermal decomposition apparatus
US4624417A (en) * 1983-06-17 1986-11-25 Newest, Inc. Process for converting solid waste and sewage sludge into energy sources and separate recyclable by-products
US4769149A (en) * 1985-12-05 1988-09-06 Propiorga Method for the recovery of energy from waste and residues
US4857458A (en) * 1985-12-05 1989-08-15 Propiorga Installation and plant for the recovery of energy from waste and residues
US4872949A (en) * 1988-03-08 1989-10-10 Wilwerding Carl M Process for treatment of drilling mud
US4882903A (en) * 1988-04-01 1989-11-28 Ch Guernsey & Company Combined cycle waste-to-energy plant
US5429645A (en) * 1990-12-06 1995-07-04 Benson; Peter H. Solid fuel and process for combustion of the solid fuel
US5143000A (en) * 1991-05-13 1992-09-01 Plasma Energy Corporation Refuse converting apparatus using a plasma torch
US5221756A (en) * 1992-02-21 1993-06-22 Florasynth, Inc. Method for the recovery and purification of maltol
US5414714A (en) * 1992-03-26 1995-05-09 Motorola, Inc. Method and apparatus for scan testing an array in a data processing system
US5411714A (en) * 1992-04-06 1995-05-02 Wu; Arthur C. Thermal conversion pyrolysis reactor system
US5423456A (en) * 1994-01-03 1995-06-13 Larry V. Arendonk Apparatus for continuous flow weighing
US5553554A (en) * 1994-10-04 1996-09-10 Urich, Jr.; Albert E. Waste disposal and energy recovery system and method
US5915308A (en) * 1996-01-18 1999-06-29 Siemens Aktiengesellschaft Discharge apparatus
US5720232A (en) * 1996-07-10 1998-02-24 Meador; William R. Method and apparatus for recovering constituents from discarded tires
US5996512A (en) * 1997-01-30 1999-12-07 Gec Alsthom Stein Industrie System for recycling refuse
US6032591A (en) * 1997-01-30 2000-03-07 Gec Alsthom Stein Industrie System for recycling refuse
US6294212B1 (en) * 1999-09-20 2001-09-25 Wenger Manufacturing Inc. Method and apparatus for the production of high viscosity paste products with added components
US6848375B2 (en) * 2000-03-24 2005-02-01 Organic Power Asa Method and device for combustion of solid fuel
US6629450B2 (en) * 2001-07-13 2003-10-07 Taiwan Semiconductor Manufacturing Co., Ltd Semiconductor auto leak rate tester
US6698365B2 (en) * 2002-01-23 2004-03-02 S.T.M. Co., Ltd. Apparatus for thermal treatment using superheated steam
US20040103831A1 (en) * 2002-05-17 2004-06-03 Pope Michael G. Apparatus for waste gasification
US6938562B2 (en) * 2002-05-17 2005-09-06 Senreq, Llc Apparatus for waste gasification
US20040192980A1 (en) * 2003-03-28 2004-09-30 Appel Brian S. Process for conversion of organic, waste, or low-value materials into useful products
US20050005772A1 (en) * 2003-07-12 2005-01-13 Spani Wayne W. Multi-phase separation system
US20050082144A1 (en) * 2003-10-14 2005-04-21 Maupin Daniel D. High speed food product peeling or cleaning machine and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532116B2 (en) 2012-04-25 2020-01-14 Fulcrum Energy Corporation Processing unit and method for separating hydrocarbons from feedstock material
US10345048B2 (en) 2016-05-12 2019-07-09 Golden Renewable Energy, LLC Cyclonic condensing and cooling system
US10436525B2 (en) 2016-05-12 2019-10-08 Golden Renewable Energy, LLC Cyclonic cooling system
US10544367B2 (en) 2016-06-21 2020-01-28 Golden Renewable Energy, LLC Char separator and method
US10633595B2 (en) 2016-06-21 2020-04-28 Golden Renewable Energy, LLC Char separator
US10961062B2 (en) 2016-06-21 2021-03-30 Golden Renewable Energy, LLC Bag press feeder assembly
US11542434B2 (en) 2016-06-21 2023-01-03 Golden Renewable Energy, LLC Char separator and method
WO2018007964A1 (en) * 2016-07-05 2018-01-11 Golden Renewable Energy, LLC System and process for converting waste plastic into fuel
US10731082B2 (en) 2016-07-05 2020-08-04 Braven Environmental, Llc System and process for converting waste plastic into fuel
US11773330B2 (en) 2016-07-05 2023-10-03 Braven Environmental, Llc System and process for converting waste plastic into fuel
US10233393B2 (en) 2016-07-08 2019-03-19 Golden Renewable Energy, LLC Heated airlock feeder unit

Also Published As

Publication number Publication date
US7621226B2 (en) 2009-11-24
US20070000768A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
US7621226B2 (en) System and method for recycling waste into energy
US5242245A (en) Method and apparatus for vacuum enhanced thermal desorption of hydrocarbon and other contaminants from soils
US8545679B2 (en) System and method for recovery of hydrocarbons in tar sands
US20200002630A1 (en) Pyrolysis processing of solid waste from a water treatment plant
US5225044A (en) Pyrolytic conversion system
CN109477010B (en) System and process for converting waste plastics into fuel
CN104496136B (en) Indirect heating and thermal desorption treatment device and method for oily solid waste
RU2129237C1 (en) Device for transportation of wastes and method of check of wastes transportation passage
JP2008517738A (en) Apparatus and method for separating and concentrating organic and / or non-organic substances
RU2100402C1 (en) Device for transporting waste in pyrolysis reactor
WO1991008275A1 (en) Process for recovery and treatment of a diverse waste stream
US5342421A (en) Pyrolytic gas treatment system
CN108251148A (en) A kind of dangerous waste, solid waste oil-containing mud sand Thermal desorption comprehensive utilization method of disposal
US4348211A (en) Gas generating system
CN105861032A (en) Processing unit and method for separating hydrocarbons from feedstock material
US5388537A (en) System for burning refuse-derived fuel
CN104371752A (en) Peristaltic solid-phase reactor and combined module
US20100043684A1 (en) Refuse Processing and Energy Recovery System and Method
KR102456546B1 (en) Pyrolysis system of waste synthetic-highly polymerized compound
RU2768809C1 (en) Mobile pyrolysis reactor module for thermal processing of wastes
CN106675592A (en) Energy-efficient indirect thermal desorption carbonization device and treatment method thereof
CN106047383A (en) Shaftless screw biomass thermal cracking reaction device
AU2013201145B2 (en) Flue device of non-condensable gas, integrated gasification combined cycle, and flue method of non-condensable gas
AU2013201118A1 (en) Fluidized bed drying apparatus, integrated gasification combined cycle system, drainage treating method, and lifetime determining method of activated carbon adsorption layer
JP4724052B2 (en) Packaged pyrolysis equipment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION