US20100025536A1 - Boom Force Absorber Systems and Methods for Aerial Refueling - Google Patents

Boom Force Absorber Systems and Methods for Aerial Refueling Download PDF

Info

Publication number
US20100025536A1
US20100025536A1 US11/557,892 US55789206A US2010025536A1 US 20100025536 A1 US20100025536 A1 US 20100025536A1 US 55789206 A US55789206 A US 55789206A US 2010025536 A1 US2010025536 A1 US 2010025536A1
Authority
US
United States
Prior art keywords
absorber
assembly
refueling
conduit
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/557,892
Other versions
US8590840B2 (en
Inventor
Steven B. Schroeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US11/557,892 priority Critical patent/US8590840B2/en
Assigned to BOEING COMPANY, THE reassignment BOEING COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHROEDER, STEVEN B.
Publication of US20100025536A1 publication Critical patent/US20100025536A1/en
Application granted granted Critical
Publication of US8590840B2 publication Critical patent/US8590840B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • B64D39/06Connecting hose to aircraft; Disconnecting hose therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D39/00Refuelling during flight
    • B64D39/04Adaptations of hose construction

Definitions

  • the present invention generally relates to aerial refueling, and more specifically, to systems and methods that reduce incidental impact forces exerted by a refueling boom during aerial refueling.
  • Aircraft in flight are commonly refueled from a refueling aircraft.
  • Many refueling aircraft use a system of fixed and extendable tubing, often referred to as a refueling boom, for refueling a receiving aircraft.
  • a refueling boom typically has control surfaces (fins or airfoils) to allow the refueling operator to “fly” the refueling boom into engagement with a refueling receptacle on the receiving aircraft.
  • a distal end of the refueling boom may be extendable to allow the operator to extend the refueling boom into engagement with the refueling receptacle.
  • Examples of prior art aerial refueling systems include those systems described in U.S. Pat. No. 6,966,525 B1 issued to Schroeder, and U.S. Pat. No. 6,651,933 B1 issued to von Thal et al.
  • the refueling boom may inadvertently contact portions of the receiving aircraft other than the refueling receptacle. Such inadvertent contacts may result in damage to the receiving aircraft and to the refueling boom.
  • Existing devices for absorbing boom forces that may be exerted between the refueling aircraft and the receiving aircraft through the boom are typically configured to operate when such forces reach relatively high magnitudes (e.g. several thousand pounds of compression force) and are intended to avert potentially extreme or catastrophic events. Such existing devices do not alleviate damages that may result from relatively lower magnitude forces that result from relatively normal, incidental contacts between the boom and the receiving aircraft that typically occur in day-to-day aerial refueling operations.
  • Embodiments of systems and methods for aerial refueling in accordance with the present invention are configured to absorb compression forces experienced by a refueling boom. More specifically, embodiments of the present invention may advantageously absorb both relatively large compression forces (typically associated with potentially extreme events), as well as relatively smaller compression forces that result from normal, incidental contacts that occur in day-to-day aerial refueling operations. In this way, embodiments of systems and methods in accordance with the present invention may reduce operational expenses associated with repairs of aircraft and in-flight refueling assemblies, in comparison with prior art aerial refueling systems.
  • an aerial refueling system includes a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, and a force absorbing assembly operatively coupled to the first and second conduit portions.
  • the force absorbing assembly includes a first absorber portion and a second absorber portion engaged with the first absorber portion.
  • the first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit.
  • the second absorber portion is configured to compress when the longitudinal component exceeds the first limit.
  • the first and second conduit portions form an internal passage
  • at least one of the first and second absorber portions includes at least one of a coil spring disposed about the internal passage, a plurality of fluidic shock absorbers concentrically disposed about the internal passage, a plurality of springs concentrically disposed about the internal passage, a tubular resilient member concentrically disposed about the internal passage, and an inflatable member concentrically disposed about the internal passage.
  • a refueling boom assembly in another embodiment, includes a base portion having a first passage configured to receive a fuel stream; an extendible portion having a second passage fluidly coupled to the first passage and configured to receive the fuel stream; and a compression absorber assembly operatively coupled to at least one of the base and extendible portions.
  • the compression absorber assembly includes a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, the first and second conduit portions being configured to receive the fuel stream; and a force absorbing assembly operatively coupled to the first and second conduit portions.
  • the force absorbing assembly includes a first absorber portion and a second absorber portion engaged with the first absorber portion.
  • the first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit.
  • the second absorber portion is configured to compress when the longitudinal component exceeds the first limit.
  • an aerial refueling aircraft in still another embodiment, includes a fuselage; a fuel tank disposed within the fuselage; and a refueling boom assembly operatively coupled to the fuselage and fluidly coupled to the fuel tank.
  • the refueling boom assembly includes a base portion having a first passage configured to receive a fuel stream; an extendible portion having a second passage fluidly coupled to the first passage and configured to receive the fuel stream; and a compression absorber assembly operatively coupled to at least one of the base and extendible portions, the compression absorber assembly including: a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, the first and second conduit portions being configured to receive the fuel stream; and a force absorbing assembly operatively coupled to the first and second conduit portions and having a first absorber portion and a second absorber portion engaged with the first absorber portion.
  • the first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit.
  • the second absorber portion is configured to compress when the longitudinal component exceeds the first limit.
  • a method of aerial refueling comprises providing a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis; providing a force absorbing assembly operatively coupled to the first and second conduit portions; absorbing a longitudinal component of a compression force using a first absorber portion of the force absorbing assembly, the longitudinal component being approximately aligned with the longitudinal axis and tending to urge the first conduit portion toward the second conduit portion; and after the longitudinal component exceeds a first limit, compressing a second absorber portion of the force absorbing assembly operatively engaged with the first absorber portion.
  • FIG. 1 is a side elevational view of an aerial refueling system in accordance with an embodiment of the invention
  • FIG. 2 is an enlarged side elevational view of a portion of an in-flight refueling assembly of the aerial refueling system of FIG. 1 ;
  • FIG. 3 is an enlarged, partial cross-sectional view of a boom force absorber assembly in accordance with an embodiment of the invention
  • FIG. 4 is a partially-exploded side elevational view of a compressible assembly of the boom force absorber assembly of FIG. 3 ;
  • FIG. 5 is a front elevational view of a load transfer plate of the boom force absorber assembly of FIG. 3 ;
  • FIGS. 6 and 7 are enlarged side elevational views of in-flight refueling assemblies in accordance with additional embodiments of the invention.
  • FIGS. 8 through 11 are side elevational views of boom force absorber assemblies in accordance with further embodiments of the invention.
  • the present invention relates to methods and systems for aerial refueling that absorb compression forces experienced by a refueling boom.
  • Many specific details of certain embodiments of the invention are set forth in the following description and in FIGS. 1-11 to provide a thorough understanding of such embodiments.
  • One skilled in the art, however, will understand that the present invention may have additional embodiments, or that the present invention may be practiced without several of the details described in the following description.
  • embodiments of systems and methods in accordance with the present invention may advantageously absorb both relatively high magnitude compression forces, as well as relatively lower magnitude compression forces that result from relatively normal, incidental contacts that occur in day-to-day aerial refueling operations.
  • embodiments of the invention may reduce damage to receiving aircraft due to incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 , such as the fuselage, cockpit windows, antenna, and other portions of the receiving aircraft 120 . Operational costs associated with repairs of aircraft and aerial refueling systems, and expenses associated with aircraft downtime, may thereby be reduced.
  • FIG. 1 is a side elevational view of an aerial refueling system 100 in accordance with an embodiment of the present invention.
  • a refueling aircraft (or tanker) 110 is equipped with an in-flight refueling assembly 130 that includes a refueling boom 114 .
  • the refueling boom 114 is configured to be guided into alignment with a refueling receptacle 126 of a receiving aircraft 120 .
  • the refueling boom 114 includes a base portion 115 and an extendable portion 116 that may be extended into engagement with (and retracted from) the refueling receptacle 126 , fluidly coupling the refueling aircraft 110 with the receiving aircraft 120 .
  • the refueling aircraft 110 is a KC-135 Stratotanker, or a KC-767 Global Tanker Transport Aircraft, manufactured by The Boeing Company of Chicago, Ill.
  • the refueling aircraft 110 may be any suitable refueling aircraft, including an automated refueling aircraft such as the experimental F/A-18A “tanker” aircraft operated by the NASA Dryden Research Center, or any tanker aircraft that partially or fully satisfies the specifications of the KC-X Aerial Refueling Tanker Aircraft program conducted by the U.S. Department of the Air Force, or the Future Strategic Tanker Aircraft program conducted by the Royal Air Force of the United Kingdom, or any other suitable type of manned or unmanned aerial refueling aircraft.
  • FIG. 2 is an enlarged side elevational view of the in-flight refueling assembly 130 of FIG. 1 .
  • a gimble assembly 132 is coupled to the refueling boom 114 , enabling a controller 111 to controllably adjust the position of the refueling boom 114 .
  • the refueling boom 114 may be guided into alignment with the refueling receptacle 126 by adjusting one or more airfoils 118 disposed on the refueling boom 114 .
  • the controller 111 may be a human operator, or alternately, may be an automated or semi-automated control device that includes one or more processors (or other computer devices) configured to adjustably control the position of the refueling boom 114 .
  • the control device may further include input and output devices such that an operator of the in-flight refueling system 100 may monitor and override the operation of the controller 111 .
  • the controller 111 may be in communication with the airfoils 118 via various devices and methods suitable for controlling the airfoils 118 , including hydraulic lines, electromechanical devices, electronic or wireless connections, or any other suitable control devices.
  • the in-flight refueling assembly 130 includes a boom force absorber assembly 140 coupled between the gimble assembly 132 and the refueling boom 114 .
  • the boom force absorber assembly 140 is configured to alleviate damages that may result from relatively lower magnitude forces that result from relatively normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 that typically occur in day-to-day aerial refueling operations.
  • FIG. 3 is an enlarged, partial cross-sectional view of the boom force absorber assembly 140 in accordance with one embodiment of the invention.
  • the boom force absorber assembly 140 includes a first housing 142 having a first end 144 configured to be coupled to the gimble assembly 132 , and a second housing 146 having a second end 148 configured to be coupled to the refueling boom 114 .
  • the first and second housings 142 , 146 are aligned along a longitudinal axis 145 and moveably coupled such that the second housing 146 may move axially along the longitudinal axis 145 relative to the first housing 142 (or vice versa) as depicted by double-headed arrow M.
  • a portion of the second housing 146 slidably engages into the first housing 142 (or vice versa).
  • the first and second housings 142 , 146 are also configured to define an internal passage 147 that extends through the boom force absorber assembly 140 .
  • the internal passage 147 fluidly couples the refueling boom 114 with the gimble assembly 132 or one or more other components that are, in turn, fluidly coupled to a fuel tank 115 ( FIG. 1 ) within the refueling aircraft 110 .
  • the boom force absorber assembly 140 also includes a compressible assembly 150 having an insertion spring 152 disposed in the second housing 146 , and a primary spring 154 disposed in the first housing 142 .
  • a load transfer plate 156 is disposed between the insertion spring 152 and the primary spring 154 .
  • the load transfer plate 156 includes an approximately flat ring-shaped member 158 having a central aperture 160 disposed therethrough. The central aperture 160 is configured to receive the internal passage 147 .
  • Layers 162 of relatively low friction material may be applied to the inner and outer edges of the ring-shaped member 158 to reduce wear due to friction as the ring-shaped member 158 moves within the first housing 142 (or second housing 146 ) along the longitudinal axis 145 (arrow M).
  • the compressible assembly 150 is advantageously configured to absorb relatively high magnitude compression forces (e.g. several hundred or several thousand pounds of compression force) typically associated with potentially extreme or catastrophic events, as well as relatively lower magnitude forces (e.g. up to and including a couple of hundred pounds of compression force) that result from relatively normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 that typically occur in day-to-day aerial refueling operations.
  • relatively high magnitude compression forces e.g. several hundred or several thousand pounds of compression force
  • relatively lower magnitude forces e.g. up to and including a couple of hundred pounds of compression force
  • the insertion spring 152 is configured to absorb up to approximately 100 pounds of compression force, corresponding to an insertion and extraction force design criteria of a Universal Aerial Refueling receptacle presently used on many types of modern military aircraft.
  • the primary spring 154 is configured to absorb approximately 3000 pounds, a force magnitude conventionally used as a design criteria for abnormal, relatively extreme compression forces within the refueling boom 114 .
  • the insertion spring 152 and the primary spring 154 may be configured to absorb other magnitudes of compression forces corresponding to different circumstances and designs of aerial refueling receptacles, and correspondingly different anticipated compression forces.
  • the insertion spring 152 may be replaced with two or more springs.
  • FIG. 4 is a partially-exploded view of an embodiment of the compressible assembly 150 wherein the insertion spring 152 has been replaced by a first spring 151 and a second spring 153 .
  • Another load transfer plate 156 is disposed between the first and second springs 151 , 153 .
  • the first spring 151 may be configured to absorb compression forces between a lower limit (e.g. approximately 100 pounds) and an upper limit (e.g. approximately 1000 pounds) of compression force
  • the second spring 153 may be configured to absorb a relatively smaller magnitude, such as up to a lower limit at which the first spring 151 begins to compress (e.g. up to 100 pounds).
  • the first spring 151 is configured to absorb between approximately 100 pounds and 720 pounds of compression force, and the second spring is configured to absorb up to approximately 100 pounds of compression.
  • either the primary spring 154 or the insertion spring 152 , or both may comprise a plurality of springs.
  • the second spring 153 may be configured to approximately match an insertion forces of a standard refueling receptacle 124
  • the first spring 151 may be configured to provide a relatively small amount of additional spring force that may be needed in case the extendible portion 116 of the refueling boom 114 does not latch with the refueling receptacle 124 . In such a case, the first spring 151 maintains contact between the refueling boom 114 and the refueling receptacle 124 in a practice referred to as “forced refueling.”
  • the controller 111 may lower the in-flight refueling boom 114 to await the rendezvous of the receiving aircraft 120 with a position substantially aft and below the refueling aircraft 110 .
  • the controller 111 may maintain the position of the in-flight refueling boom 114 relative to the refueling aircraft 110 while awaiting the approach of the receiving aircraft 120 .
  • incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 create relatively lower magnitude compression forces within the in-flight refueling assembly 130 which are absorbed by the insertion spring 152 of the boom force absorption assembly 140 .
  • the controller 111 may extend the extendable portion 116 of the refueling boom 114 to engage the refueling boom 114 with the refueling receptacle 126 .
  • the insertion force necessary to insert the refueling boom 114 into the refueling receptacle 126 may be approximately absorbed by the insertion spring 152 , creating a “zero force” insertion condition within the in-flight aerial refueling assembly 130 .
  • the insertion spring 152 may become mostly or completely compressed, and the greater-than-nominal compression force acting through the load transfer plate 156 may begin compressing the primary spring 154 .
  • the boom force absorption assembly 140 may be configured to absorb both relatively high magnitude compression forces (typically associated with potentially extreme events), as well as relatively lower magnitude forces that result from relatively normal, incidental contacts that occur in day-to-day aerial refueling operations.
  • in-flight aerial refueling may be performed. More specifically, the controller 111 may cause fuel to flow from the fuel tank 115 within the refueling aircraft 110 through the boom force absorber assembly 140 , through the refueling boom 114 , and into the refueling receptacle 126 of the receiving aircraft 120 . During the refueling process, the boom force absorber assembly 140 may continue to absorb compression forces that may arise within the in-flight refueling assembly 130 due to the relative movement between the refueling aircraft 110 and the receiving aircraft 120 . When refueling of the receiving aircraft 120 , the controller 111 may disengage the refueling boom 114 from the refueling receptacle 126 , and the refueling process is completed.
  • Embodiments of the present invention may provide significant advantages over the prior art.
  • the boom force absorbing assembly 140 is configured to absorb both relatively high magnitude compression forces, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts that occur in day-to-day aerial refueling operations
  • the in-flight refueling assembly 130 may result in less damage to the receiving aircraft 120 .
  • Incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 such as the fuselage, cockpit windows, antenna, and other portions of the receiving aircraft 120 in the vicinity of the refueling receptacle 126 , may be absorbed by the boom force absorption assembly 140 , resulting in reduced repair costs and reduced downtime of the receiving aircraft 120 .
  • safety of the in-flight refueling assembly 130 may be improved because the boom force absorber assembly 140 absorbs not only relatively high magnitude forces, but also relatively lower magnitude forces.
  • boom force absorber assembly 140 may be located at any suitable position to absorb compression forces exerted on the refueling boom 114 , and is not limited to the particular position described above and shown in FIG. 2 .
  • FIG. 6 is an enlarged side elevational view of an in-flight refueling assembly 230 in accordance with another embodiment of the invention.
  • the boom force absorber assembly 140 is spaced apart from the gimble assembly 132 and is situated along the length of about refueling boom 214 . More specifically, the boom force absorber assembly 140 is disposed between the base portion 115 and the extendable portion 116 of the refueling boom 214 .
  • FIG. 7 shows an in-flight refueling assembly 250 in which the boom force absorber assembly 140 is positioned at a distal end of the refueling boom 264 . Specifically, in the embodiment shown in FIG.
  • the boom force absorber assembly 140 is disposed at the distal end of the extendable portion 116 of the refueling boom 264 .
  • the boom force absorber assembly 140 may be positioned at any location along the refueling boom, including anywhere along the length of the base portion 115 , or the length of the extendable portion 116 .
  • boom force absorber assemblies may also be conceived in accordance with alternate embodiments of the present invention.
  • the roles of the primary and insertion spring's 154 , 152 may be reversed.
  • the primary spring 154 may be configured to absorb relatively lower magnitude compression forces associated with incidental contacts between the refueling boom 114 and the receiving aircraft 120
  • the insertion spring 152 may be configured to absorb relatively higher magnitude compression forces associated with potentially extreme conditions.
  • boom force absorbing assembly may be configured to absorb both relatively high magnitude compression forces, as well as relatively lower magnitude forces that result from normal, incidental contacts that occur in aerial refueling operations.
  • FIG. 8 shows a side elevational view of a boom force absorber assembly 340 in accordance with another embodiment of the invention.
  • the boom force absorber assembly 340 includes a first conduit 342 having a first flange 344 configured to be coupled to the gimble assembly 132 , and a second conduit 346 having a second flange 348 configured to be coupled to the refueling boom 114 .
  • the first and second conduits 342 , 346 are coupled such that the second conduit 346 may move axially along the longitudinal axis 145 relative to the first conduit 342 (or vice versa) as depicted by double-headed arrow M.
  • An internal passage 147 extends through the first and second conduits 342 , 346 .
  • the boom force absorber assembly 340 also includes a compressible assembly 350 having an insertion spring 352 disposed about the second conduit 346 , and a primary spring 354 disposed about the first conduit 342 .
  • a load transfer plate 356 is disposed between the insertion spring 352 and the primary spring 354 , and is configured to slideably move along the longitudinal axis 145 (arrow M) over one or both of the first and second conduits 342 , 346 .
  • the compressible assembly 350 is advantageously configured to absorb relatively high magnitude compression forces typically associated with potentially extreme or catastrophic events, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 during aerial refueling operations.
  • the boom force absorber assembly 340 may be lighter than other, previously-described embodiments (e.g. assembly 140 of FIG. 3 ) because the first and second housings 142 , 146 have been eliminated.
  • a boom force absorber assembly 440 in accordance with another alternate embodiment includes a compressible assembly 450 having a plurality of shock absorbers 452 disposed about the second conduit 346 and coupled between the second end 348 and the load transfer plate 356 .
  • the plurality of shock absorbers 452 may be concentrically disposed about the second conduit 346 .
  • the plurality of shock absorbers 452 are equi-distally spaced about the second conduit 346 .
  • the shock absorbers 452 may be pneumatic, hydraulic, magnetic, or any other suitable type of shock absorbers.
  • the shock absorbers 452 may be of a passive type, such as the type typically found in an automotive suspension system.
  • the shock absorbers 452 may be coupled to a fluid supply 457 via one or more supply lines 459 , and may be actively controlled by a control component (e.g. the controller 111 ).
  • the boom force absorber assembly 440 is configured such that the plurality of shock absorbers 452 cooperatively absorb the relatively lower magnitude forces that result from normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 , and the primary spring 454 absorbs the relatively higher magnitude compression forces that are greater than those caused by normal, incidental contacts (e.g. of the type associated with extreme or catastrophic events).
  • the roles of the shock absorbers 452 and the primary spring 454 are reversed such that the plurality of shock absorbers 452 absorb the relatively higher magnitude compression forces, and the primary spring 454 absorbs the relatively lower magnitude compression forces associated with normal, incidental contacts.
  • FIG. 10 shows a side elevational view of a boom force absorber assembly 340 in accordance with another embodiment of the invention.
  • the boom force absorber assembly 540 includes a first conduit 342 having a first flange 344 configured to be coupled to the gimble assembly 132 , and a second conduit 346 having a second flange 348 configured to be coupled to the refueling boom 114 .
  • the first and second conduits 342 , 346 are coupled such that the conduits 342 , 346 may move axially relative to each other along the longitudinal axis 145 (arrow M).
  • the internal passage 147 extends through the first and second conduits 342 , 346 .
  • the boom force absorber assembly 540 includes a compressible assembly 550 having a resilient member 552 disposed about the second conduit 346 , and an inflatable member 554 disposed about the first conduit 342 .
  • the resilient member 552 may be an approximately tubular member, and may be formed of any suitable resilient material, including rubber or other elastomeric materials, fiberous materials (e.g. cotton or wood-based materials), or any other suitable materials or combinations of materials.
  • a load transfer plate 356 is disposed between the resilient member 552 and the inflatable member 554 , and is configured to slideably move over one or both of the first and second conduits 342 , 346 along the longitudinal axis 145 (arrow M).
  • the inflatable member 554 is coupled to a controllable fluid supply 557 via one or more supply lines 559 , and may be actively controlled by a control component (e.g. the controller 111 ).
  • the compressible assembly 550 is configured to absorb both relatively high magnitude compression forces typically associated with potentially extreme events, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts during aerial refueling operations. More specifically, as the controller 111 guides the refueling boom 114 into engagement with the refueling receptacle 126 of the receiving aircraft 120 , incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 create relatively lower magnitude compression forces which are absorbed by the resilient member 552 of the boom force absorption assembly 540 .
  • the resilient member 552 may become mostly or completely compressed, and the greater-than-nominal compression force acting through the load transfer plate 156 may begin compressing the inflatable member 554 .
  • a fluid medium within the inflatable member 554 e.g. pneumatic or hydraulic
  • the fluid medium may be expelled through the supply line 559 and into the fluid supply 557 .
  • the fluid medium may be expelled from a pressure relief valve 555 fluidly coupled to the inflatable member 554 .
  • the inflatable member 554 absorbs the greater-than-nominal compression force.
  • the inflatable member 554 may be re-inflated by the fluid supply 557 via the supply line 559 (e.g. by the controller 111 ) to a nominal operating pressure for continued aerial refueling operations.
  • FIG. 11 shows a boom force absorber assembly 640 in accordance with yet another embodiment of the invention.
  • the boom force absorber assembly 640 includes a first housing 642 having a first end 644 configured to be coupled to the gimble assembly 132 , and a second housing 646 having a second end 648 configured to be coupled to the refueling boom 114 .
  • the first and second housings 642 , 646 are moveably coupled and are configured to move axially relative to each other along the longitudinal axis 145 (arrow M).
  • the internal passage 147 extends through the first and second housings 642 , 646 .
  • the boom force absorber assembly 640 includes a compressible assembly 650 having a plurality of first springs 652 circumferentially disposed about an inner peripheral surface of the first housing 642 , and a plurality of second springs 654 circumferentially disposed about an outer peripheral surface of the second housing 646 .
  • a load transfer plate 656 is disposed between the plurality of first springs 652 and the plurality of second springs 654 .
  • the load transfer plate 656 is configured to slideably move over one or both of the first and second housings 642 , 646 along the longitudinal axis 145 (arrow M).
  • the boom force absorption assembly 640 is configured to absorb both relatively high magnitude compression forces typically associated with potentially extreme events, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts during aerial refueling operations. More specifically, as incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 create relatively lower magnitude compression forces, such incidental forces are absorbed by the plurality of second springs 654 . In the event that a greater-than-nominal compression force is experienced, the plurality of second springs 654 reach a first limit and become mostly or completely compressed. The greater-than-nominal compression force acting through the load transfer plate 156 then begins to compress the plurality of first springs 652 . The plurality of first springs 652 may be configured to absorb greater-than-nominal compression forces up to a second limit. In some embodiments, the second limit is at least one order of magnitude greater than the first limit.

Abstract

Systems and methods for aerial refueling are disclosed. In one embodiment, an aerial refueling system includes a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, and a force absorbing assembly operatively coupled to the first and second conduit portions. The force absorbing assembly includes a first absorber portion and a second absorber portion engaged with the first absorber portion. The first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit. The second absorber portion is configured to compress when the longitudinal component exceeds the first limit.

Description

    FIELD OF THE INVENTION
  • The present invention generally relates to aerial refueling, and more specifically, to systems and methods that reduce incidental impact forces exerted by a refueling boom during aerial refueling.
  • BACKGROUND OF THE INVENTION
  • Aircraft in flight are commonly refueled from a refueling aircraft. Many refueling aircraft use a system of fixed and extendable tubing, often referred to as a refueling boom, for refueling a receiving aircraft. Typically, an operator in the refueling aircraft controls the refueling boom into alignment with the receiving aircraft, either visually or with the assistance of camera equipment. The refueling boom typically has control surfaces (fins or airfoils) to allow the refueling operator to “fly” the refueling boom into engagement with a refueling receptacle on the receiving aircraft. A distal end of the refueling boom may be extendable to allow the operator to extend the refueling boom into engagement with the refueling receptacle. Examples of prior art aerial refueling systems include those systems described in U.S. Pat. No. 6,966,525 B1 issued to Schroeder, and U.S. Pat. No. 6,651,933 B1 issued to von Thal et al.
  • Although desirable results have been achieved using such prior art systems, there is room for improvement. For example, as the refueling boom is being positioned for insertion into the refueling receptacle on the receiving aircraft, the refueling boom may inadvertently contact portions of the receiving aircraft other than the refueling receptacle. Such inadvertent contacts may result in damage to the receiving aircraft and to the refueling boom. Existing devices for absorbing boom forces that may be exerted between the refueling aircraft and the receiving aircraft through the boom are typically configured to operate when such forces reach relatively high magnitudes (e.g. several thousand pounds of compression force) and are intended to avert potentially extreme or catastrophic events. Such existing devices do not alleviate damages that may result from relatively lower magnitude forces that result from relatively normal, incidental contacts between the boom and the receiving aircraft that typically occur in day-to-day aerial refueling operations.
  • SUMMARY OF THE INVENTION
  • Embodiments of systems and methods for aerial refueling in accordance with the present invention are configured to absorb compression forces experienced by a refueling boom. More specifically, embodiments of the present invention may advantageously absorb both relatively large compression forces (typically associated with potentially extreme events), as well as relatively smaller compression forces that result from normal, incidental contacts that occur in day-to-day aerial refueling operations. In this way, embodiments of systems and methods in accordance with the present invention may reduce operational expenses associated with repairs of aircraft and in-flight refueling assemblies, in comparison with prior art aerial refueling systems.
  • In one embodiment, an aerial refueling system includes a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, and a force absorbing assembly operatively coupled to the first and second conduit portions. The force absorbing assembly includes a first absorber portion and a second absorber portion engaged with the first absorber portion. The first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit. The second absorber portion is configured to compress when the longitudinal component exceeds the first limit.
  • In alternate embodiments, the first and second conduit portions form an internal passage, and at least one of the first and second absorber portions includes at least one of a coil spring disposed about the internal passage, a plurality of fluidic shock absorbers concentrically disposed about the internal passage, a plurality of springs concentrically disposed about the internal passage, a tubular resilient member concentrically disposed about the internal passage, and an inflatable member concentrically disposed about the internal passage.
  • In another embodiment, a refueling boom assembly includes a base portion having a first passage configured to receive a fuel stream; an extendible portion having a second passage fluidly coupled to the first passage and configured to receive the fuel stream; and a compression absorber assembly operatively coupled to at least one of the base and extendible portions. The compression absorber assembly includes a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, the first and second conduit portions being configured to receive the fuel stream; and a force absorbing assembly operatively coupled to the first and second conduit portions. The force absorbing assembly includes a first absorber portion and a second absorber portion engaged with the first absorber portion. The first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit. The second absorber portion is configured to compress when the longitudinal component exceeds the first limit.
  • In still another embodiment, an aerial refueling aircraft includes a fuselage; a fuel tank disposed within the fuselage; and a refueling boom assembly operatively coupled to the fuselage and fluidly coupled to the fuel tank. The refueling boom assembly includes a base portion having a first passage configured to receive a fuel stream; an extendible portion having a second passage fluidly coupled to the first passage and configured to receive the fuel stream; and a compression absorber assembly operatively coupled to at least one of the base and extendible portions, the compression absorber assembly including: a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, the first and second conduit portions being configured to receive the fuel stream; and a force absorbing assembly operatively coupled to the first and second conduit portions and having a first absorber portion and a second absorber portion engaged with the first absorber portion. The first absorber portion is configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit. The second absorber portion is configured to compress when the longitudinal component exceeds the first limit.
  • In another alternate embodiment, a method of aerial refueling comprises providing a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis; providing a force absorbing assembly operatively coupled to the first and second conduit portions; absorbing a longitudinal component of a compression force using a first absorber portion of the force absorbing assembly, the longitudinal component being approximately aligned with the longitudinal axis and tending to urge the first conduit portion toward the second conduit portion; and after the longitudinal component exceeds a first limit, compressing a second absorber portion of the force absorbing assembly operatively engaged with the first absorber portion.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present invention are described in detail below with reference to the following drawings.
  • FIG. 1 is a side elevational view of an aerial refueling system in accordance with an embodiment of the invention;
  • FIG. 2 is an enlarged side elevational view of a portion of an in-flight refueling assembly of the aerial refueling system of FIG. 1;
  • FIG. 3 is an enlarged, partial cross-sectional view of a boom force absorber assembly in accordance with an embodiment of the invention;
  • FIG. 4 is a partially-exploded side elevational view of a compressible assembly of the boom force absorber assembly of FIG. 3;
  • FIG. 5 is a front elevational view of a load transfer plate of the boom force absorber assembly of FIG. 3;
  • FIGS. 6 and 7 are enlarged side elevational views of in-flight refueling assemblies in accordance with additional embodiments of the invention; and
  • FIGS. 8 through 11 are side elevational views of boom force absorber assemblies in accordance with further embodiments of the invention.
  • DETAILED DESCRIPTION
  • The present invention relates to methods and systems for aerial refueling that absorb compression forces experienced by a refueling boom. Many specific details of certain embodiments of the invention are set forth in the following description and in FIGS. 1-11 to provide a thorough understanding of such embodiments. One skilled in the art, however, will understand that the present invention may have additional embodiments, or that the present invention may be practiced without several of the details described in the following description.
  • In general, embodiments of systems and methods in accordance with the present invention may advantageously absorb both relatively high magnitude compression forces, as well as relatively lower magnitude compression forces that result from relatively normal, incidental contacts that occur in day-to-day aerial refueling operations. Thus, embodiments of the invention may reduce damage to receiving aircraft due to incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120, such as the fuselage, cockpit windows, antenna, and other portions of the receiving aircraft 120. Operational costs associated with repairs of aircraft and aerial refueling systems, and expenses associated with aircraft downtime, may thereby be reduced.
  • FIG. 1 is a side elevational view of an aerial refueling system 100 in accordance with an embodiment of the present invention. In this embodiment, a refueling aircraft (or tanker) 110 is equipped with an in-flight refueling assembly 130 that includes a refueling boom 114. The refueling boom 114 is configured to be guided into alignment with a refueling receptacle 126 of a receiving aircraft 120. The refueling boom 114 includes a base portion 115 and an extendable portion 116 that may be extended into engagement with (and retracted from) the refueling receptacle 126, fluidly coupling the refueling aircraft 110 with the receiving aircraft 120.
  • In some embodiments, the refueling aircraft 110 is a KC-135 Stratotanker, or a KC-767 Global Tanker Transport Aircraft, manufactured by The Boeing Company of Chicago, Ill. Alternately, the refueling aircraft 110 may be any suitable refueling aircraft, including an automated refueling aircraft such as the experimental F/A-18A “tanker” aircraft operated by the NASA Dryden Research Center, or any tanker aircraft that partially or fully satisfies the specifications of the KC-X Aerial Refueling Tanker Aircraft program conducted by the U.S. Department of the Air Force, or the Future Strategic Tanker Aircraft program conducted by the Royal Air Force of the United Kingdom, or any other suitable type of manned or unmanned aerial refueling aircraft.
  • FIG. 2 is an enlarged side elevational view of the in-flight refueling assembly 130 of FIG. 1. In this embodiment, a gimble assembly 132 is coupled to the refueling boom 114, enabling a controller 111 to controllably adjust the position of the refueling boom 114. In some embodiments, the refueling boom 114 may be guided into alignment with the refueling receptacle 126 by adjusting one or more airfoils 118 disposed on the refueling boom 114. The controller 111 may be a human operator, or alternately, may be an automated or semi-automated control device that includes one or more processors (or other computer devices) configured to adjustably control the position of the refueling boom 114. The control device may further include input and output devices such that an operator of the in-flight refueling system 100 may monitor and override the operation of the controller 111. The controller 111 may be in communication with the airfoils 118 via various devices and methods suitable for controlling the airfoils 118, including hydraulic lines, electromechanical devices, electronic or wireless connections, or any other suitable control devices.
  • As further shown in FIGS. 1 and 2, the in-flight refueling assembly 130 includes a boom force absorber assembly 140 coupled between the gimble assembly 132 and the refueling boom 114. The boom force absorber assembly 140 is configured to alleviate damages that may result from relatively lower magnitude forces that result from relatively normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 that typically occur in day-to-day aerial refueling operations.
  • More specifically, FIG. 3 is an enlarged, partial cross-sectional view of the boom force absorber assembly 140 in accordance with one embodiment of the invention. In this embodiment, the boom force absorber assembly 140 includes a first housing 142 having a first end 144 configured to be coupled to the gimble assembly 132, and a second housing 146 having a second end 148 configured to be coupled to the refueling boom 114. The first and second housings 142, 146 are aligned along a longitudinal axis 145 and moveably coupled such that the second housing 146 may move axially along the longitudinal axis 145 relative to the first housing 142 (or vice versa) as depicted by double-headed arrow M. For example, in some embodiments, a portion of the second housing 146 slidably engages into the first housing 142 (or vice versa). The first and second housings 142, 146 are also configured to define an internal passage 147 that extends through the boom force absorber assembly 140. The internal passage 147 fluidly couples the refueling boom 114 with the gimble assembly 132 or one or more other components that are, in turn, fluidly coupled to a fuel tank 115 (FIG. 1) within the refueling aircraft 110.
  • In this embodiment, the boom force absorber assembly 140 also includes a compressible assembly 150 having an insertion spring 152 disposed in the second housing 146, and a primary spring 154 disposed in the first housing 142. A load transfer plate 156 is disposed between the insertion spring 152 and the primary spring 154. As best shown in FIG. 5, in one embodiment, the load transfer plate 156 includes an approximately flat ring-shaped member 158 having a central aperture 160 disposed therethrough. The central aperture 160 is configured to receive the internal passage 147. Layers 162 of relatively low friction material may be applied to the inner and outer edges of the ring-shaped member 158 to reduce wear due to friction as the ring-shaped member 158 moves within the first housing 142 (or second housing 146) along the longitudinal axis 145 (arrow M).
  • The compressible assembly 150 is advantageously configured to absorb relatively high magnitude compression forces (e.g. several hundred or several thousand pounds of compression force) typically associated with potentially extreme or catastrophic events, as well as relatively lower magnitude forces (e.g. up to and including a couple of hundred pounds of compression force) that result from relatively normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 that typically occur in day-to-day aerial refueling operations. In the embodiment shown in FIG. 3, this is accomplished by having different spring constants for the primary and insertion springs 154, 152. For example, in some embodiments, the insertion spring 152 is configured to absorb relatively lower magnitude compression forces, and the primary spring 154 is configured to absorb relatively higher magnitude compression forces.
  • More specifically, in some embodiments, the insertion spring 152 is configured to absorb up to approximately 100 pounds of compression force, corresponding to an insertion and extraction force design criteria of a Universal Aerial Refueling receptacle presently used on many types of modern military aircraft. Similarly, in some embodiments, the primary spring 154 is configured to absorb approximately 3000 pounds, a force magnitude conventionally used as a design criteria for abnormal, relatively extreme compression forces within the refueling boom 114. Of course, in alternate embodiments, the insertion spring 152 and the primary spring 154 may be configured to absorb other magnitudes of compression forces corresponding to different circumstances and designs of aerial refueling receptacles, and correspondingly different anticipated compression forces.
  • In an alternate embodiment, the insertion spring 152 may be replaced with two or more springs. For example, FIG. 4 is a partially-exploded view of an embodiment of the compressible assembly 150 wherein the insertion spring 152 has been replaced by a first spring 151 and a second spring 153. Another load transfer plate 156 is disposed between the first and second springs 151, 153. In this embodiment, the first spring 151 may be configured to absorb compression forces between a lower limit (e.g. approximately 100 pounds) and an upper limit (e.g. approximately 1000 pounds) of compression force, and the second spring 153 may be configured to absorb a relatively smaller magnitude, such as up to a lower limit at which the first spring 151 begins to compress (e.g. up to 100 pounds). In one specific embodiment, the first spring 151 is configured to absorb between approximately 100 pounds and 720 pounds of compression force, and the second spring is configured to absorb up to approximately 100 pounds of compression. Of course, in further embodiments, either the primary spring 154 or the insertion spring 152, or both, may comprise a plurality of springs. Also, in the embodiment shown in FIG. 4, the second spring 153 may be configured to approximately match an insertion forces of a standard refueling receptacle 124, while the first spring 151 may be configured to provide a relatively small amount of additional spring force that may be needed in case the extendible portion 116 of the refueling boom 114 does not latch with the refueling receptacle 124. In such a case, the first spring 151 maintains contact between the refueling boom 114 and the refueling receptacle 124 in a practice referred to as “forced refueling.”
  • In operation, the controller 111 may lower the in-flight refueling boom 114 to await the rendezvous of the receiving aircraft 120 with a position substantially aft and below the refueling aircraft 110. The controller 111 may maintain the position of the in-flight refueling boom 114 relative to the refueling aircraft 110 while awaiting the approach of the receiving aircraft 120. As the controller 111 guides the refueling boom 114 into engagement with the refueling receptacle 126 of the receiving aircraft 120, incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 create relatively lower magnitude compression forces within the in-flight refueling assembly 130 which are absorbed by the insertion spring 152 of the boom force absorption assembly 140.
  • Once the refueling boom 114 is in a position suitable for engagement with the refueling receptacle 126, the controller 111 may extend the extendable portion 116 of the refueling boom 114 to engage the refueling boom 114 with the refueling receptacle 126. Assuming an approximately linear alignment between the refueling boom 114 and the refueling receptacle 126, in those embodiments in which the insertion spring 152 is configured to approximately match an insertion force design criteria of the refueling receptacle 126, the insertion force necessary to insert the refueling boom 114 into the refueling receptacle 126 may be approximately absorbed by the insertion spring 152, creating a “zero force” insertion condition within the in-flight aerial refueling assembly 130.
  • In the event that a greater-than-nominal compression force is experienced by the refueling boom 114, the insertion spring 152 may become mostly or completely compressed, and the greater-than-nominal compression force acting through the load transfer plate 156 may begin compressing the primary spring 154. For example, if the insertion spring 152 is configured to absorb up to 100 pounds, and a compression force of 500 pounds is experienced within the refueling boom 114, the insertion spring 152 may become mostly or completely compressed, and the compression force of 500 pounds may begin compressing the primary spring 154. In this way, the boom force absorption assembly 140 may be configured to absorb both relatively high magnitude compression forces (typically associated with potentially extreme events), as well as relatively lower magnitude forces that result from relatively normal, incidental contacts that occur in day-to-day aerial refueling operations.
  • After the refueling boom 114 is engaged with the refueling receptacle 126, in-flight aerial refueling may be performed. More specifically, the controller 111 may cause fuel to flow from the fuel tank 115 within the refueling aircraft 110 through the boom force absorber assembly 140, through the refueling boom 114, and into the refueling receptacle 126 of the receiving aircraft 120. During the refueling process, the boom force absorber assembly 140 may continue to absorb compression forces that may arise within the in-flight refueling assembly 130 due to the relative movement between the refueling aircraft 110 and the receiving aircraft 120. When refueling of the receiving aircraft 120, the controller 111 may disengage the refueling boom 114 from the refueling receptacle 126, and the refueling process is completed.
  • Embodiments of the present invention may provide significant advantages over the prior art. For example, because the boom force absorbing assembly 140 is configured to absorb both relatively high magnitude compression forces, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts that occur in day-to-day aerial refueling operations, the in-flight refueling assembly 130 may result in less damage to the receiving aircraft 120. Incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120, such as the fuselage, cockpit windows, antenna, and other portions of the receiving aircraft 120 in the vicinity of the refueling receptacle 126, may be absorbed by the boom force absorption assembly 140, resulting in reduced repair costs and reduced downtime of the receiving aircraft 120. Furthermore, safety of the in-flight refueling assembly 130 may be improved because the boom force absorber assembly 140 absorbs not only relatively high magnitude forces, but also relatively lower magnitude forces.
  • It will be appreciated that various embodiments of methods and systems for in-flight refueling in accordance with the present invention may be conceived, and that the invention is not limited to the particular embodiments described above. For example, the boom force absorber assembly 140 may be located at any suitable position to absorb compression forces exerted on the refueling boom 114, and is not limited to the particular position described above and shown in FIG. 2.
  • FIG. 6 is an enlarged side elevational view of an in-flight refueling assembly 230 in accordance with another embodiment of the invention. In this embodiment, the boom force absorber assembly 140 is spaced apart from the gimble assembly 132 and is situated along the length of about refueling boom 214. More specifically, the boom force absorber assembly 140 is disposed between the base portion 115 and the extendable portion 116 of the refueling boom 214. Alternately, FIG. 7 shows an in-flight refueling assembly 250 in which the boom force absorber assembly 140 is positioned at a distal end of the refueling boom 264. Specifically, in the embodiment shown in FIG. 7, the boom force absorber assembly 140 is disposed at the distal end of the extendable portion 116 of the refueling boom 264. Of course, in further embodiments, the boom force absorber assembly 140 may be positioned at any location along the refueling boom, including anywhere along the length of the base portion 115, or the length of the extendable portion 116.
  • Various embodiments of boom force absorber assemblies may also be conceived in accordance with alternate embodiments of the present invention. For example, referring again to FIG. 3, in an alternate embodiment, the roles of the primary and insertion spring's 154, 152 may be reversed. The primary spring 154 may be configured to absorb relatively lower magnitude compression forces associated with incidental contacts between the refueling boom 114 and the receiving aircraft 120, and the insertion spring 152 may be configured to absorb relatively higher magnitude compression forces associated with potentially extreme conditions. Thus, incidental contacts that occur during normal day-to-day aerial refueling operations will compress the primary spring 154, and compression forces (overload or secondary forces) which exceed the relatively lower magnitude forces associated with incidental contacts will either partially or completely compress the primary spring 154 and will also begin to compress the insertion spring 152. In this way, such an alternate embodiment of the boom force absorbing assembly may be configured to absorb both relatively high magnitude compression forces, as well as relatively lower magnitude forces that result from normal, incidental contacts that occur in aerial refueling operations.
  • As with almost every aerospace system, it may be desirable to reduce the weight of the boom force absorber assembly. FIG. 8 shows a side elevational view of a boom force absorber assembly 340 in accordance with another embodiment of the invention. In this embodiment, the boom force absorber assembly 340 includes a first conduit 342 having a first flange 344 configured to be coupled to the gimble assembly 132, and a second conduit 346 having a second flange 348 configured to be coupled to the refueling boom 114. The first and second conduits 342, 346 are coupled such that the second conduit 346 may move axially along the longitudinal axis 145 relative to the first conduit 342 (or vice versa) as depicted by double-headed arrow M. An internal passage 147 extends through the first and second conduits 342, 346.
  • As further shown in FIG. 8, the boom force absorber assembly 340 also includes a compressible assembly 350 having an insertion spring 352 disposed about the second conduit 346, and a primary spring 354 disposed about the first conduit 342. A load transfer plate 356 is disposed between the insertion spring 352 and the primary spring 354, and is configured to slideably move along the longitudinal axis 145 (arrow M) over one or both of the first and second conduits 342, 346. As described more fully above, the compressible assembly 350 is advantageously configured to absorb relatively high magnitude compression forces typically associated with potentially extreme or catastrophic events, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120 during aerial refueling operations. The boom force absorber assembly 340 may be lighter than other, previously-described embodiments (e.g. assembly 140 of FIG. 3) because the first and second housings 142, 146 have been eliminated.
  • In further embodiments, one or both of the coil springs 352, 354 of the compressible assembly 350 may be replaced (or augmented) with other types of compression absorbing devices. In the embodiment shown in FIG. 9, for example, a boom force absorber assembly 440 in accordance with another alternate embodiment includes a compressible assembly 450 having a plurality of shock absorbers 452 disposed about the second conduit 346 and coupled between the second end 348 and the load transfer plate 356. The plurality of shock absorbers 452 may be concentrically disposed about the second conduit 346.
  • In some embodiments, the plurality of shock absorbers 452 are equi-distally spaced about the second conduit 346. The shock absorbers 452 may be pneumatic, hydraulic, magnetic, or any other suitable type of shock absorbers. In some embodiments, the shock absorbers 452 may be of a passive type, such as the type typically found in an automotive suspension system. Alternately, the shock absorbers 452 may be coupled to a fluid supply 457 via one or more supply lines 459, and may be actively controlled by a control component (e.g. the controller 111).
  • In one particular aspect of the embodiment shown in FIG. 9, the boom force absorber assembly 440 is configured such that the plurality of shock absorbers 452 cooperatively absorb the relatively lower magnitude forces that result from normal, incidental contacts between the refueling boom 114 and the receiving aircraft 120, and the primary spring 454 absorbs the relatively higher magnitude compression forces that are greater than those caused by normal, incidental contacts (e.g. of the type associated with extreme or catastrophic events). In an alternate aspect, the roles of the shock absorbers 452 and the primary spring 454 are reversed such that the plurality of shock absorbers 452 absorb the relatively higher magnitude compression forces, and the primary spring 454 absorbs the relatively lower magnitude compression forces associated with normal, incidental contacts.
  • FIG. 10 shows a side elevational view of a boom force absorber assembly 340 in accordance with another embodiment of the invention. As in the embodiments described above with respect to FIGS. 8 and 9, the boom force absorber assembly 540 includes a first conduit 342 having a first flange 344 configured to be coupled to the gimble assembly 132, and a second conduit 346 having a second flange 348 configured to be coupled to the refueling boom 114. The first and second conduits 342, 346 are coupled such that the conduits 342, 346 may move axially relative to each other along the longitudinal axis 145 (arrow M). The internal passage 147 extends through the first and second conduits 342, 346.
  • In the embodiment shown in FIG. 10, the boom force absorber assembly 540 includes a compressible assembly 550 having a resilient member 552 disposed about the second conduit 346, and an inflatable member 554 disposed about the first conduit 342. The resilient member 552 may be an approximately tubular member, and may be formed of any suitable resilient material, including rubber or other elastomeric materials, fiberous materials (e.g. cotton or wood-based materials), or any other suitable materials or combinations of materials. A load transfer plate 356 is disposed between the resilient member 552 and the inflatable member 554, and is configured to slideably move over one or both of the first and second conduits 342, 346 along the longitudinal axis 145 (arrow M). The inflatable member 554 is coupled to a controllable fluid supply 557 via one or more supply lines 559, and may be actively controlled by a control component (e.g. the controller 111).
  • The compressible assembly 550 is configured to absorb both relatively high magnitude compression forces typically associated with potentially extreme events, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts during aerial refueling operations. More specifically, as the controller 111 guides the refueling boom 114 into engagement with the refueling receptacle 126 of the receiving aircraft 120, incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 create relatively lower magnitude compression forces which are absorbed by the resilient member 552 of the boom force absorption assembly 540.
  • In the event that a greater-than-nominal compression force is experienced by the boom force absorption assembly 540, the resilient member 552 may become mostly or completely compressed, and the greater-than-nominal compression force acting through the load transfer plate 156 may begin compressing the inflatable member 554. As the pressure within the inflatable member 554 increases, a fluid medium within the inflatable member 554 (e.g. pneumatic or hydraulic) may be expelled from the inflatable member 554. In some embodiments, the fluid medium may be expelled through the supply line 559 and into the fluid supply 557. Alternately, the fluid medium may be expelled from a pressure relief valve 555 fluidly coupled to the inflatable member 554. Thus, the inflatable member 554 absorbs the greater-than-nominal compression force. Once the compression forces on the boom force absorber assembly 540 are relieved, the inflatable member 554 may be re-inflated by the fluid supply 557 via the supply line 559 (e.g. by the controller 111) to a nominal operating pressure for continued aerial refueling operations.
  • FIG. 11 shows a boom force absorber assembly 640 in accordance with yet another embodiment of the invention. In this embodiment, the boom force absorber assembly 640 includes a first housing 642 having a first end 644 configured to be coupled to the gimble assembly 132, and a second housing 646 having a second end 648 configured to be coupled to the refueling boom 114. The first and second housings 642, 646 are moveably coupled and are configured to move axially relative to each other along the longitudinal axis 145 (arrow M). The internal passage 147 extends through the first and second housings 642, 646.
  • As further shown in FIG. 11, the boom force absorber assembly 640 includes a compressible assembly 650 having a plurality of first springs 652 circumferentially disposed about an inner peripheral surface of the first housing 642, and a plurality of second springs 654 circumferentially disposed about an outer peripheral surface of the second housing 646. A load transfer plate 656 is disposed between the plurality of first springs 652 and the plurality of second springs 654. The load transfer plate 656 is configured to slideably move over one or both of the first and second housings 642, 646 along the longitudinal axis 145 (arrow M).
  • As in the previously-described embodiments, the boom force absorption assembly 640 is configured to absorb both relatively high magnitude compression forces typically associated with potentially extreme events, as well as relatively lower magnitude forces that result from relatively normal, incidental contacts during aerial refueling operations. More specifically, as incidental contacts between the refueling boom 114 and portions of the receiving aircraft 120 create relatively lower magnitude compression forces, such incidental forces are absorbed by the plurality of second springs 654. In the event that a greater-than-nominal compression force is experienced, the plurality of second springs 654 reach a first limit and become mostly or completely compressed. The greater-than-nominal compression force acting through the load transfer plate 156 then begins to compress the plurality of first springs 652. The plurality of first springs 652 may be configured to absorb greater-than-nominal compression forces up to a second limit. In some embodiments, the second limit is at least one order of magnitude greater than the first limit.
  • While preferred and alternate embodiments of the invention have been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of these preferred and alternate embodiments. Instead, the invention should be determined entirely by reference to the claims that follow.

Claims (28)

1. An aerial refueling system, comprising:
a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis; and
a force absorbing assembly operatively coupled to the first and second conduit portions and having:
a first absorber portion for absorbing loads resulting from incidental contact during refueling, the first absorber portion configured to compress when subjected to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first force limit; and
a second absorber portion for absorbing substantially greater loads during refueling, the second absorber portion operatively engaged with the first absorber portion and configured to compress when the longitudinal component exceeds the first force limit.
2. The system of claim 1, wherein the second absorber portion is further configured to compress until the longitudinal component reaches a second force limit, the second limit being greater than the first limit.
3. The system of claim 2, wherein the first limit is an anticipated maximum nominal force created by an incidental contact during an aerial refueling operation, and the second limit is an anticipated extreme force created by a non-incidental contact.
4. The system of claim 1, wherein the first absorber portion comprises a first coil spring disposed about the first conduit portion, and the second absorber portion comprises a second coil spring disposed about the second conduit portion.
5. The system of claim 1, wherein the first absorber portion comprises a plurality of coil springs disposed about the first conduit portion, a first one of the plurality of coil springs being configured to approximately match an anticipated insertion force of a refueling receptacle of a receiving aircraft, and a second one of the plurality of coil springs being configured to provide a forced refueling force to maintain contact with the refueling receptacle.
6. The system of claim 1, wherein the first and second conduit portions form an internal passage, and wherein at least one of the first and second absorber portions comprises at least one of a coil spring disposed about the internal passage, a plurality of fluidic shock absorbers concentrically disposed about the internal passage, a plurality of springs concentrically disposed about the internal passage, a tubular resilient member concentrically disposed about the internal passage, and an inflatable member concentrically disposed about the internal passage.
7. The system of claim 1, wherein the first absorber portion comprises a plurality of shock absorbers disposed about the first conduit portion, the plurality of shock absorbers being operatively coupled to a fluid supply.
8. The system of claim 1, wherein the second absorber portion comprises an inflatable member disposed about the second conduit portion, the inflatable member being operatively coupled to a fluid supply.
9. The system of claim 1, further comprising an annular plate disposed between the first and second absorber portions, the annular plate being moveable along the longitudinal axis.
10. A refueling boom assembly, comprising:
a base portion having a first passage configured to receive a fuel stream;
an extendible portion having a second passage fluidly coupled to the first passage and configured to receive the fuel stream; and
a compression absorber assembly operatively coupled to at least one of the base and extendible portions, the compression absorber assembly including:
a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, the first and second conduit portions being configured to receive the fuel stream; and
a force absorbing assembly operatively coupled to the first and second conduit portions and having:
a first absorber portion configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit; and
a second absorber portion operatively engaged with the first absorber portion and configured to compress when the longitudinal component exceeds the first limit.
11. The assembly of claim 10, wherein the second absorber portion is further configured to compress until the longitudinal component reaches a second limit, the second limit being greater than the first limit.
12. The assembly of claim 11, wherein the first limit is an anticipated maximum nominal force created by an incidental contact during an aerial refueling operation, and the second limit is an anticipated extreme force created by a non-incidental contact.
13. The assembly of claim 10, wherein the first absorber portion comprises at least one first coil spring disposed about the first conduit portion, and the second absorber portion comprises a second coil spring disposed about the second conduit portion.
14. The assembly of claim 10, wherein the first and second conduit portions form an internal passage, and wherein at least one of the first and second absorber portions comprises at least one of a coil spring disposed about the internal passage, a plurality of fluidic shock absorbers concentrically disposed about the internal passage, a plurality of springs concentrically disposed about the internal passage, a tubular resilient member concentrically disposed about the internal passage, and an inflatable member concentrically disposed about the internal passage.
15. The assembly of claim 10, wherein the compression absorber assembly is coupled to a first end of the base portion and the extendible portion is coupled to a second end of the base portion.
16. The assembly of claim 10, wherein the compression absorber assembly is coupled between the base portion and the extendible portion.
17. The assembly of claim 10, wherein the compression absorber assembly is coupled to a distal end of the extendible portion and the base portion is coupled to a proximal end of the extendible portion.
18. The assembly of claim 10, further comprising a gimble assembly coupleable to a refueling aircraft and operatively coupled to at least one of the base portion and the compression absorber assembly.
19. The assembly of claim 10, wherein the compression absorber assembly further includes an annular plate disposed between the first and second absorber portions, the annular plate being moveable along the longitudinal axis.
20. An aerial refueling aircraft, comprising:
a fuselage;
a fuel tank disposed within the fuselage;
a refueling boom assembly operatively coupled to the fuselage and fluidly coupled to the fuel tank, the refueling boom assembly including:
a base portion having a first passage configured to receive a fuel stream;
an extendible portion having a second passage fluidly coupled to the first passage and configured to receive the fuel stream; and
a compression absorber assembly operatively coupled to at least one of the base and extendible portions, the compression absorber assembly including:
a first conduit portion moveably coupled to a second conduit portion and moveable relative to the second conduit portion along a longitudinal axis, the first and second conduit portions being configured to receive the fuel stream; and
a force absorbing assembly operatively coupled to the first and second conduit portions and having:
a first absorber portion configured to compress when subject to a compression force having a longitudinal component at least approximately aligned with the longitudinal axis, the longitudinal component tending to urge the first conduit portion toward the second conduit portion and causing absorption of at least a portion of the longitudinal component by the first absorber portion until the longitudinal component reaches a first limit; and
a second absorber portion operatively engaged with the first absorber portion and configured to compress when the longitudinal component exceeds the first limit.
21. The aircraft of claim 20, wherein the second absorber portion is further configured to compress until the longitudinal component reaches a second limit, the first limit being an anticipated maximum nominal force created by an incidental contact during an aerial refueling operation, and the second limit being an anticipated extreme force created by a non-incidental contact.
22. The aircraft of claim 20, wherein the compression absorber assembly further includes an annular plate disposed between the first and second absorber portions, the annular plate being moveable along the longitudinal axis.
23. The aircraft of claim 20, wherein the compression absorber assembly is coupled to a first end of the base portion and the extendible portion is coupled to a second end of the base portion.
24. The aircraft of claim 20, wherein the compression absorber assembly is coupled between the base portion and the extendible portion.
25. The aircraft of claim 20, wherein the compression absorber assembly is coupled to a distal end of the extendible portion and the base portion is coupled to a proximal end of the extendible portion.
26. The aircraft of claim 20, wherein the refueling boom assembly further comprises a gimble assembly coupled to the fuselage and operatively coupled to at least one of the base portion and the compression absorber assembly.
27-35. (canceled)
36. An aerial refueling system, comprising:
an aerial boom; and
a force absorbing assembly coupled to the boom, the assembly including a first compressible portion for absorbing loads resulting from incidental contact of the boom during refueling, and a second compressible portion for absorbing substantially greater loads on the boom during refueling;
wherein the first portion is fully compressed as the second portion is absorbing the substantially greater loads.
US11/557,892 2006-11-08 2006-11-08 Boom force absorber systems and methods for aerial refueling Active 2032-05-22 US8590840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/557,892 US8590840B2 (en) 2006-11-08 2006-11-08 Boom force absorber systems and methods for aerial refueling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/557,892 US8590840B2 (en) 2006-11-08 2006-11-08 Boom force absorber systems and methods for aerial refueling

Publications (2)

Publication Number Publication Date
US20100025536A1 true US20100025536A1 (en) 2010-02-04
US8590840B2 US8590840B2 (en) 2013-11-26

Family

ID=41607342

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/557,892 Active 2032-05-22 US8590840B2 (en) 2006-11-08 2006-11-08 Boom force absorber systems and methods for aerial refueling

Country Status (1)

Country Link
US (1) US8590840B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447160A1 (en) * 2010-10-27 2012-05-02 EADS Construcciones Aeronauticas, S.A. Adaptable boom refuelling system.
KR20140114004A (en) * 2012-01-04 2014-09-25 이스라엘 에어로스페이스 인더스트리즈 리미티드 Devices, systems and methods for refueling air vehicles
US8905355B2 (en) 2011-09-21 2014-12-09 The Boeing Company Wireless refueling boom
US11465768B2 (en) * 2017-07-10 2022-10-11 Israel Aerospace Industries Ltd. Refueling device
US11919655B2 (en) 2017-06-18 2024-03-05 Israel Aerospace Industries Ltd. System and method for refueling air vehicles

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818138A (en) * 1927-09-26 1931-08-11 Levi S Howland Dirigible coupling means
US1848372A (en) * 1929-05-08 1932-03-08 James G Moran Airplane refueling device
US2287257A (en) * 1940-04-05 1942-06-23 Lear Avia Inc Antenna drag cup
US2663523A (en) * 1949-08-02 1953-12-22 Boeing Co Aircraft interconnecting mechanism
US2716527A (en) * 1950-08-29 1955-08-30 Flight Refueling Ltd Apparatus for aircraft-refuelling in flight and aircraft-towing
US2852216A (en) * 1954-09-16 1958-09-16 Melville F Peters Refueling conduit
US3976100A (en) * 1974-05-13 1976-08-24 The Boeing Company Aerial refueling apparatus
US6398198B1 (en) * 1999-08-20 2002-06-04 Shozo Okamoto Bellows type air spring and vehicle height adjustable suspension using the same
US20030205643A1 (en) * 2002-05-01 2003-11-06 Von Thal German Boom load alleviation using visual means
US20040221404A1 (en) * 2003-04-28 2004-11-11 Brian Bender Double-wall inflatable column assembly for a dock leveler
US6905126B1 (en) * 2001-01-03 2005-06-14 Jesse A. Jurrens Air-bag suspension system
US6966525B1 (en) * 2004-06-28 2005-11-22 The Boeing Company In-flight refueling system, alignment system, and method for automatic alignment and engagement of an in-flight refueling boom
US20060038076A1 (en) * 2004-07-22 2006-02-23 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
US7077052B2 (en) * 2004-08-06 2006-07-18 Arvinmeritor Technology, Llc Strut assembly with inverted air spring configuration

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818138A (en) * 1927-09-26 1931-08-11 Levi S Howland Dirigible coupling means
US1848372A (en) * 1929-05-08 1932-03-08 James G Moran Airplane refueling device
US2287257A (en) * 1940-04-05 1942-06-23 Lear Avia Inc Antenna drag cup
US2663523A (en) * 1949-08-02 1953-12-22 Boeing Co Aircraft interconnecting mechanism
US2716527A (en) * 1950-08-29 1955-08-30 Flight Refueling Ltd Apparatus for aircraft-refuelling in flight and aircraft-towing
US2852216A (en) * 1954-09-16 1958-09-16 Melville F Peters Refueling conduit
US3976100A (en) * 1974-05-13 1976-08-24 The Boeing Company Aerial refueling apparatus
US6398198B1 (en) * 1999-08-20 2002-06-04 Shozo Okamoto Bellows type air spring and vehicle height adjustable suspension using the same
US6905126B1 (en) * 2001-01-03 2005-06-14 Jesse A. Jurrens Air-bag suspension system
US20030205643A1 (en) * 2002-05-01 2003-11-06 Von Thal German Boom load alleviation using visual means
US6651933B1 (en) * 2002-05-01 2003-11-25 The Boeing Company Boom load alleviation using visual means
US20040221404A1 (en) * 2003-04-28 2004-11-11 Brian Bender Double-wall inflatable column assembly for a dock leveler
US6966525B1 (en) * 2004-06-28 2005-11-22 The Boeing Company In-flight refueling system, alignment system, and method for automatic alignment and engagement of an in-flight refueling boom
US20060038076A1 (en) * 2004-07-22 2006-02-23 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
US20060278762A1 (en) * 2004-07-22 2006-12-14 The Boeing Company In-flight refueling system, damping device and method for damping oscillations in in-flight refueling system components
US7077052B2 (en) * 2004-08-06 2006-07-18 Arvinmeritor Technology, Llc Strut assembly with inverted air spring configuration

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447160A1 (en) * 2010-10-27 2012-05-02 EADS Construcciones Aeronauticas, S.A. Adaptable boom refuelling system.
US8905355B2 (en) 2011-09-21 2014-12-09 The Boeing Company Wireless refueling boom
US10479523B2 (en) 2012-01-04 2019-11-19 Israel Aerospace Industries Ltd. Systems and methods for air vehicles
KR20140114003A (en) * 2012-01-04 2014-09-25 이스라엘 에어로스페이스 인더스트리즈 리미티드 Devices, systems and methods for refueling air vehicles
US10421556B2 (en) 2012-01-04 2019-09-24 Israel Aerospace Industries Ltd. Devices, systems and methods for refueling air vehicles
US10427801B2 (en) 2012-01-04 2019-10-01 Israel Aerospace Industries Ltd. Devices, systems and methods for refueling air vehicles
KR20140114004A (en) * 2012-01-04 2014-09-25 이스라엘 에어로스페이스 인더스트리즈 리미티드 Devices, systems and methods for refueling air vehicles
US10543929B2 (en) 2012-01-04 2020-01-28 Israel Aerospace Industries Ltd. Systems and method for air vehicles
KR102157089B1 (en) * 2012-01-04 2020-09-17 이스라엘 에어로스페이스 인더스트리즈 리미티드 Devices, systems and methods for refueling air vehicles
KR102166624B1 (en) * 2012-01-04 2020-10-19 이스라엘 에어로스페이스 인더스트리즈 리미티드 Devices, systems and methods for refueling air vehicles
US11167860B2 (en) 2012-01-04 2021-11-09 Israel Aerospace Industries Ltd. Devices, systems and methods for refueling air vehicles
US11180262B2 (en) 2012-01-04 2021-11-23 Israel Aerospace Industries Ltd. Devices, systems and methods for refueling air vehicles
US11834192B2 (en) 2012-01-04 2023-12-05 Israel Aerospace Industries Ltd. Devices, systems and methods for refueling air vehicles
US11919655B2 (en) 2017-06-18 2024-03-05 Israel Aerospace Industries Ltd. System and method for refueling air vehicles
US11465768B2 (en) * 2017-07-10 2022-10-11 Israel Aerospace Industries Ltd. Refueling device

Also Published As

Publication number Publication date
US8590840B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
US8590840B2 (en) Boom force absorber systems and methods for aerial refueling
EP1780123A2 (en) Systems and methods for reducing surge loads in hose assemblies, including aircraft refueling hose assemblies
EP3708503B1 (en) Spacecraft docking system
EP3437990B1 (en) Upper torque link central latch mechanism
EP1765670B2 (en) In-flight refueling system and method for facilitating emergency separation of in-flight refueling system components
EP2035275B1 (en) Adjusting device for adjusting a high-lift flap and airfoil wing comprising such an adjusting device
EP1754660B1 (en) Flexible air refueling boom extendable tube
US20140374538A1 (en) Aircraft landing gear
US9963237B2 (en) Latch hooks, latch housings, and latch assemblies
JP6356848B2 (en) Storage / extension of landing gear in aircraft
CN107089317B (en) Load release pull rod
CN101626845B (en) Safety coupling
US10214297B2 (en) Remote power source pump system
EP3362362B1 (en) Low engagement force aerial refueling coupling
EP2551200A2 (en) A snorkel for a pressure holding valve for an aircraft fuel tank
EP3630612B1 (en) Flying boom mast for multi-purpose aerial refueling aircraft
US9676495B2 (en) Hydrant coupler with articulating handle assembly
EP3342716A1 (en) Aircraft refueling boom system with nozzle security means
EP3486521B1 (en) Shock strut with integral shrink piston actuator
US20150284106A1 (en) Aerial refueling boom with pressure limiting valve
Huliraj et al. Aircraft Mechanical Systems
CN114963866A (en) Chuck assembly for coupling a carrier to a manipulating panel of a ground station

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOEING COMPANY, THE,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHROEDER, STEVEN B.;REEL/FRAME:018517/0001

Effective date: 20061108

Owner name: BOEING COMPANY, THE, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHROEDER, STEVEN B.;REEL/FRAME:018517/0001

Effective date: 20061108

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8