US20100029766A1 - Blends Comprising a Substituted Fatty Acid or a Derivative Thereof - Google Patents

Blends Comprising a Substituted Fatty Acid or a Derivative Thereof Download PDF

Info

Publication number
US20100029766A1
US20100029766A1 US12/508,635 US50863509A US2010029766A1 US 20100029766 A1 US20100029766 A1 US 20100029766A1 US 50863509 A US50863509 A US 50863509A US 2010029766 A1 US2010029766 A1 US 2010029766A1
Authority
US
United States
Prior art keywords
shqa
acid
oil
fatty acid
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/508,635
Inventor
Scott Sinclair Barclay
John Anthony Bosley
Frederick William Cain
Claudia Koenen
Julia Sarah Rogers
Ulrike Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loders Croklaan USA LLC
Original Assignee
Loders Croklaan USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loders Croklaan USA LLC filed Critical Loders Croklaan USA LLC
Priority to US12/508,635 priority Critical patent/US20100029766A1/en
Assigned to UNILEVER PATENT HOLDINGS reassignment UNILEVER PATENT HOLDINGS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARCLAY, SCOTT SINCLAIR, BOSLEY, JOHN ANTHONY, CAIN, FREDERICK WILLIAM, KOENEN, CLAUDIA, ROGERS, JULIA SARAH, SCHMID, ULRIKE
Assigned to LC USA LLC reassignment LC USA LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNILEVER PATENT HOLDINGS B.V.
Assigned to LODERS CROKLAAN USA LLC reassignment LODERS CROKLAAN USA LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LC USA LLC
Publication of US20100029766A1 publication Critical patent/US20100029766A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/36Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds
    • A23G3/40Sweetmeats, confectionery or marzipan; Processes for the preparation thereof characterised by the composition containing organic or inorganic compounds characterised by the fats used
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/16Fatty acid esters
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0053Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/343Products for covering, coating, finishing, decorating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/346Finished or semi-finished products in the form of powders, paste or liquids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/327Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by the fatty product used, e.g. fat, fatty acid, fatty alcohol, their esters, lecithin, glycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/52Liquid products; Solid products in the form of powders, flakes or granules for making liquid products ; Finished or semi-finished solid products, frozen granules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/117Flakes or other shapes of ready-to-eat type; Semi-finished or partly-finished products therefor
    • A23L7/122Coated, filled, multilayered or hollow ready-to-eat cereals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/117Flakes or other shapes of ready-to-eat type; Semi-finished or partly-finished products therefor
    • A23L7/126Snacks or the like obtained by binding, shaping or compacting together cereal grains or cereal pieces, e.g. cereal bars
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/11Coating with compositions containing a majority of oils, fats, mono/diglycerides, fatty acids, mineral oils, waxes or paraffins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/10Anti-acne agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G2200/00COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF containing organic compounds, e.g. synthetic flavouring agents

Definitions

  • Kombo nut seed fat is a known product that can be obtained from the seeds of Pycnanthus angolensis (cf WO 96/39130). The components present in this fat were analysed by different groups and a number of terpenoid acid type ingredients were identified. One of these ingredients was identified as a novel polyprenylated hydroquinone substituted carboxylic acid named kombic acid which was identified as having a structure mentioned in Lok c.s. Phytochemistry 22, p. 1973 from 1983 (i.e. 16-(2 1 ,5 1 -dihydroxy-3 1 methylphenyl)-2,6,10,14 tetramethyl-2,6,10,14 hexadecatetraenoic acid).
  • kombo nut oil containing its terpenoid acid type ingredient is disclosed as useful and having a number of health benefits such as hypoglycemic activity, activity against fungal skin infections; activity for the treatment of shingles; or against leprosy; headaches; body aches; chest pains; or as an anti sterility agent for women; or as an antihelmintic; or poison antidote; or as an anti toothache agent; or as an anti bleeding agent; etc (of WO 96/39130) no relation is given between the presence of a specific component and the occurrence of a specific health effect.
  • U.S. Pat. No. 3,615,588 discloses blends made from oils, rich in trimyristin and other oils.
  • the trimyristin used can be obtained from Kombo nut oil.
  • This compound SHQA is normally applied in combination with glycerides.
  • glycerides can be the triglycerides present in kombo nut oil but also other glycerides can be used in combination with SHQA.
  • our invention in the first instance concerns blends comprising a substituted organic acid or a derivative thereof and a glyceride wherein the blends comprise
  • the derivatives of the substituted fatty acid preferably are selected from esters of the hydroquinone substituted polyunsaturated fatty acid and a straight chain saturated and/or unsaturated alcohol with 2 to 20 carbon atoms, preferably with 14 to 18 carbon atoms.
  • esters made from the hydroquinone substituted poly unsaturated fatty acid and a fatty acid with 2 to 32 carbon atoms by esterifying at least one of the hydroxy groups of the substituted acid.
  • the other glycerides can be selected from or derived from a wide range of natural glycerides e.g. the triglycerides selected from the group consisting of palm oil; cocoa butter; coconut oil; palm kernel oil; soy bean oil, olive oil; sunflower oil; rape seed oil; safflower oil; corn oil; cotton seed oil; cocoa butter equivalents or cocoa butter replacers; fish oil; borage oil, pine nut oil; coriander oil; fungal oils, or high oleic varieties thereof, or fractions thereof, or hardened varieties thereof, or fractions of the hardened varieties or mixtures of one or more of these oils and fats.
  • the triglycerides selected from the group consisting of palm oil; cocoa butter; coconut oil; palm kernel oil; soy bean oil, olive oil; sunflower oil; rape seed oil; safflower oil; corn oil; cotton seed oil; cocoa butter equivalents or cocoa butter replacers; fish oil; borage oil, pine nut oil; cori
  • a triglyceride that provides a blend with a suitable unstabilised N-value as measured by NMR pulse techniques, because this will make the application of these blends in food products far easier.
  • Unstabilised meaning that the N-value is measured after first melting the blend above 80° C., whereupon the melt is cooled to 0° C. and kept at 0° C. for 30 min, then the blend is heated to measurement temperature and kept at that temperature for 30 min, whereupon the N-value is measured.
  • CLA conjugated linoleic acid
  • linoleic acid both alpha and gamma
  • fish oils fatty acids or other poly unsaturated fatty acids such as punicic acid, eleostearic acid, parinaric acid etc.
  • hydroquinone substituted poly unsaturated fatty acid component can be obtained along different routes including synthetic routes starting from suitable materials it is preferred to isolate these components from natural sources.
  • a preferred natural source that contains this acid in substantial amounts is the oil from the nuts of Pycnanthus angolensis .
  • Another natural source is brown algae (Chemistry Letters 1987, 1365-1366).
  • Suitable anti-oxidants can be selected from the group consisting of natural or synthetic tocopherols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids.
  • the amounts wherein the anti-oxidants are applied can be indicated as effective amounts, the actual amount will depend on factors like type of anti-oxidant, type of poly unsaturated acid present; type of food; presence of other components etc. However the effective amount for each specific situation can easily be determined by the man skilled in the art.
  • the substituted acid preferably being the acid as obtained from kombo nut oil.
  • the food product can be any food product that can be combined with the substituted acids or their derivatives.
  • this component in food products selected from the group consisting of margarine; fat continuous or water continuous or bicontinuous spreads, fat reduced spreads; confectionery products such as chocolate or chocolate coatings or chocolate fillings or bakery fillings, ice creams, ice cream coatings, ice cream inclusions, dressings, mayonnaises, cheese, cream alternatives, dry soups, drinks, cereal bars, sauces, bakery products and snack bars.
  • the encapsulating material for the supplements is preferably selected from the group consisting of gelatin; starch, modified starch, flour, modified flour, sugars, in particular sucrose, lactose, glucose and fructose.
  • our newly identified acid components have a number of useful health benefits. Therefore our invention also concerns the use of a composition comprising a hydroquinone substituted poly unsaturated fatty acid as present in kombo nut oil or extracts thereof or a derivative thereof as an active ingredient for the preparation of food compositions or food supplements with a health effect, wherein the health effects include acting as a lipase inhibitor, in particular as an inhibitor for pancreatic lipase or gastric lipase and/or acting as a ligand for peroxisome proliferator activated receptors subtype alpha or gamma and/or reducing and/or preventing ageing, in particular ageing of the skin and/or acting on photo damaged skin; and/or promoting the formation of decorin in the dermis of the skin and/or treating/preventing acne and/or treating/preventing cellulite and/or enhancing body or oral freshness.
  • a lipase inhibitor in particular as an inhibitor for pancreatic lipase or gastric lipase and/or
  • compositions can also be applied in topical compositions for cosmetics.
  • hydroquinone substituted poly unsaturated fatty acid have unexpected good anti oxidant activity which was even higher than for other well known anti oxidants such as tocopherols.
  • This anti oxidant activity resulted in the delay of oxidation of fats and oils and could further be used to prevent or retard the development of diseases related to the presence of free radicals.
  • SHQA or its derivatives is used to prevent or retard the development of cancer and/or of Alzheimer disease and/or of arthritis and/or of cardiovascular diseases.
  • Preferred derivatives that are used herefor are esters of the hydroquinone substituted poly unsaturated fatty acid and a straight chain saturated and/or unsaturated alcohol with 6 to 20 carbon atoms, preferably with 14 to 18 carbon atoms.
  • Other preferred derivatives are the hydroquinone substituted poly unsaturated fatty acid salts of Na or K or Ca, because these derivatives dissolve better and moreover also provide minerals upon use.
  • esters of the hydroquinone substituted poly unsaturated fatty acid such as SHQA wherein the hydroxy group or groups of the hydroquinone substituted poly unsaturated fatty acid is (are) esterified with a straight chain saturated and/or unsaturated fatty acid with 6 to 20 carbon atoms.
  • novel ingredients are very effective as anti oxidant we also found that synergies can be achieved by using mixtures thereof with other known anti oxidants. Therefore we prefer to apply a mix of our SHQA derivative with an effective amount of one or more other anti oxidants, preferably selected from the group consisting of natural or synthetic tocopherols, tocotrienols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids.
  • anti oxidants preferably selected from the group consisting of natural or synthetic tocopherols, tocotrienols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids.
  • these substituted acids also have beneficial acetylcholine esterase activity. Therefore these compounds also can be used in Alzheimer disease for enhancing cognitive function, myasthenia gravis, glaucoma and for enhancing learning and memory.
  • Pancreatic lipase inhibitors such as Xenical (Orlistat) are known to decrease fat hydrolysis in the gastrointestinal tract and fat absorption reducing body weight in vivo. Therefore our compositions have the ability to prevent/reduce the accumulation of body fat and help to prevent/treat obesity.
  • the substituted acids will have effects on promoting leaness and have mild laxative effects.
  • Insulin is a hormone essential for maintaining blood glucose levels within normal and healthy limits. If insulin action is impaired, as found in the human condition of insulin resistance, this can lead to a number of health problems. Short term the types of problems associated with insulin resistance comprise cognitive impairment (poor memory), chronic fatigue (lack of energy) and mood swings. More long term, the onset of diseases such as cardiovascular disease, type-2 diabetes and polycystic ovary syndrome are common.
  • Peroxisome proliferator activated receptor gamma is a nuclear hormone receptor which forms part of the PPAR group of transcription factors. These are ligand activated transcription factors which bind DNA in a heterodimeric complex with a second nuclear hormone receptor RXR. PPAR gamma is thought to play a role in the control of insulin sensitivity, blood sugar levels, along with other biological effects including inflammation, cancer, cognition and cellular differentiation. PPAR gamma is also known to be an important regulator of lipid metabolism.
  • our substituted fatty acids will display beneficial effects on insulin resistance and related disorders such as polycystic ovary syndrome, type-2 diabetes, gestational diabetes, Syndrome X, hypertension, stroke, glucose metabolism. Effects will include reducing blood glucose levels and cognitive performance.
  • the substituted acids also have anti inflammatory activities and activities for the prevention or treatment of cardiovascular diseases, joint diseases, arthritis, peptic ulcer disease, inflammatory bowel disease, inflammatory skin conditions, neurodegenerative diseases and allergies.
  • the skin anti ageing properties are very useful to boost the levels of dermal proteins collagen or decorin having benefits in reducing the wrinkling, sagging, lining of the skin.
  • benefits in reducing age spots enhancing tissue repair, soothing of irritated, red or sensitive skin and improvement of texture, smoothness and firmness of the skin can be achieved by the use of our compositions.
  • our novel compositions can also be used as flavouring agent to achieve a bitter taste e.g. inbiter drinks or in bittersweet chocolate.
  • our invention also concerns a process for the enrichment of a hydroquinone substituted poly unsaturated fatty acid, in particular of SHQA, as present in kombo nut oil or derivatives thereof in a glyceride surrounding wherein:
  • FIG. 1 graphically shows the % inhibition of pancreatic lipase using sargahydroquinoic acid (SHQA);
  • FIG. 2 graphically compares the effects of retinoic acid and SHQA in decorin synthesis
  • FIG. 3 graphically shows the effects of SHQA on PPAR ⁇
  • FIG. 4 graphically shows the effects of SHQA on PPAR ⁇ (reporter gene assay).
  • FIG. 5 graphically shows the inhibiting effect of SHQA on the conversion of cholesterol
  • FIG. 6 shows the inhibiting effect of SHQA on acetylcholinesterase activity
  • FIG. 7 shows the anti-inflammatory activity of kombo nut oil saponifiables which contain SHQA.
  • This assay is developed from the colormetric Sigma assay (Lipase-PSTM) for the quantitative kinetic determination of pancreatic lipase activity in serum at 550 nm.
  • Serum pancreatic lipase catalyses the hydrolysis of a natural 1,2-Diglyceride to form monoglyceride and fatty acid.
  • the monoglyceride is hydrolysed by monoglyceride lipase (MGLP) to form glycerol and fatty acid.
  • Glycerol is then phosphorylated by glycerol kinase (GK) in the presence of ATP to form glycerol-3-phosphate which is oxidised by glycerol-3-phosphate oxidase (GPO) to form dihydroxyacetone phosphate (DAP) and hydrogen peroxide (H 2 O 2 ).
  • H 2 O 2 reacts with 4-aminoantipyrine (4-AAP) and sodium N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluide (TOOS) in the presence of peroxidase (POD) to form a quinone diimine dye.
  • the dye absorbs light at 550 nm.
  • the rate of increase in absorbance at 550 nm is directly proportional to the pancreatic lipase activity in the sample.
  • the Sigma diagnostics lipase-PS Reagents are reconstituted according to the instructions.
  • Substrate solution reagent 145 ⁇ l
  • 20 ⁇ l blank solvent ethanol/THF/acetone; 60:20:20
  • samples in solvent sargahydroquinoic acid
  • Plates are incubated at room temperature for 8 minutes with agitation.
  • Lipase-PS activator 50 ⁇ l is added to all wells and absorbance at 550 nm measured kinetically on the microtitre reader for 0-30 minutes, with readings every 60 seconds and shaking before each reading.
  • DMEM Dulbeccos Modified Eagles Medium
  • Test reagents retinoic acid or Sargahydroquinoic acid
  • vehicle controls in DMSO
  • This fibroblast conditioned medium was either analysed immediately or snap frozen in liquid nitrogen and stored at ⁇ 70° C. for future analysis. The cells were then counted and data from the dot-blot analysis subsequently standardised to cell number.
  • Samples of conditioned medium from dermal fibroblasts treated with vehicle (as a control) or test reagents were supplemented with 20 mM dithiothreitol (1:10 dilution of 200 mM stock solution) and 0.1% sodium dodecylsulphate (1:100 dilution of 10% stock solution), mixed well and then incubated at 75° C. for 2 minutes.
  • a standard for the assay was generated by serial dilution of neat fibroblast conditioned medium from fibroblasts seeded at 10000 cells/cm 2 in a 175 cm 2 flask and maintained in serum free DMEM as described above.
  • Membranes prepared for decorin analysis were blocked with 3% (w/v) BSA/0.1% (v/v) Tween 20 in PBS. The following day, the membranes were probed with 1:10000 dilution of primary antibodies to human decorin (rabbit polyclonal Biogenisis) for 2 hours at room temperature. The membranes were subsequently washed with TBS/0.05% Tween 20 (3 ⁇ 5 minutes) and then incubated with 1:1000 dilution of 125 I-conjugated anti-rat or anti-rabbit F(ab′)2 fragments (Amersham) as required for 1 hour at room temperature.
  • the level of decorin in skin is associated with improved condition and appearance of skin. Increasing the level of decorin in skin is important for controlled and correct deposition of collagen in skin which is associated with many skin benefits such as wrinkle effacement and dermal repair of photodamaged skin. Sargahydroquinoic acid enhances decorin production and this effect is similar to that observed for retinoic acid.
  • Cos-7 cells (ECACC No. 87021302) were routinely grown in DMEM with 10% FCS (foetal calf serum) at 37° C., 5% CO 2 to 80% confluency. Transient transfections were performed as described by the manufacturers (GibcoBRL). Briefly, cells were plated out in 24 well plates at 50,000 cells per well and incubated overnight in DMEM with 10% FCS at 37° C., 5% CO 2 . Cells were then transfected using the LipofectAMINE reagent.
  • DNA mix for “control” cells pPPRE 3 TK-luc 0.40 ⁇ g; pRL-TK 0.04 ⁇ g; pcDNA3.1( ⁇ ) 0.03 ⁇ g; pRSV 0.03 ⁇ g; for “plus RXR” cells pPPRE 3 TK-luc 0.40 ⁇ g; pRL-TK 0.04 ⁇ g; pcDNA3.1( ⁇ ) 0.03 ⁇ g; pRSV/RXR ⁇ 0.03 ⁇ g; for “plus PPAR ⁇ ” cells pPPRE 3 TK-luc 0.40 ⁇ g; pRL-TK 0.04 ⁇ g; pcDNA3.1( ⁇ )/PPAR ⁇ 0.03 ⁇ g; pRSV 0.03 ⁇ g) in 25 ⁇ l of DMEM was incubated with 1 ⁇ l LipofectAMINE, and also in 25 ⁇ l of DMEM for 45 minutes.
  • the mixture was then made up to 250 ⁇ l per well and added to the cells, which had been washed with 1 ml of DMEM. Cells were then incubated for 5 hours at 37° C., 5% CO 2 and 250 ⁇ l DMEM with 20% SBCS (charcoal stripped bovine calf serum; Sigma) added. Cells were allowed to recover for 18 hours at 37° C., 5% CO 2 before being treated. The transfection mix was removed from the cells and replaced with treatment mix (DMSO or 10 ⁇ M Sargahydroquinoic acid) and incubated for 24 hours at 37° C., 5% CO 2 .
  • treatment mix DMSO or 10 ⁇ M Sargahydroquinoic acid
  • Sargahydroquinoic acid was made up as 10 mM stock in DMSO and diluted 1000-fold into DMEM containing 10% SBCS (500 ⁇ l per well) immediately before being added to the cells. Each treatment was performed in triplicate. Cells were then washed with 1 ml of PBS (without calcium or magnesium) and lysed with 100 ⁇ l per well of 1 ⁇ Passive Lysis Buffer (as supplied with Promega Dual Luciferase assay kit). Lysis was allowed to continue for 15 minutes and then the lysate was assayed for Firefly and Renilla luciferase activity using the Promega Dual Luciferase assay kit. For the assay 20 ⁇ l of lysate was taken and assayed as described in the kit instructions using a MLX microtiter plate luminometer (Dynex).
  • SHQA is a PPAR alpha rather than an RXR ligand.
  • Health effects associated with PPAR alpha activation will include optimising lipid metabolism, prevention and treatment of cancer, anti-inflammatory effects.
  • cos-7 cells (ECACC No. 87021302) were seeded in 24-well plates at a density of 0.325 ⁇ 10 5 cells/well. Cells were grown overnight at 37° C./5% CO 2 in DMEM containing 10% FCS, 2 mM L-glutamine, 100 iu/ml penicillin and 100 g/ml streptomycin.
  • plasmids a PPAR-responsive firefly luciferase reporter gene (pPPRE3TK-luc); mammalian expression plasmids (pcDNA3/hPPAR ⁇ 1 and pRSV/hRXR ⁇ ) containing human PPAR ⁇ 1 and RXR ⁇ cDNAs respectively and a control plasmid (pRLTK, Promega) which constitutatively expresses the renilla luciferase gene. Transfection was performed using Lipofectamine (Gibco Brl) as directed by the manufacturers.
  • Transfected cells were incubated for 6 h at 37° C./5% CO 2 and then for a further 46 hours in the presence or absence of ligand. After 46 hours cell lysates were prepared and the level of firefly and renilla luciferase determined using the Dual luciferase assay system (Promega) and a MLX microtitre plate luminometer (Dynex). The level of firefly luciferase (normalised against the renilla luciferase control) provides a measure of reporter gene activity. This in turn reflects the level of PPAR ⁇ activation.
  • FIG. 4 illustrates that Sargahydroquinoic acid gives good activation of PPAR ⁇ .
  • SHQA will have benefits in a range of conditions, including in the short term, chronic fatigue, cognitive impairment (memory) and mood swings. Long term benefits would be focused on cardiovascular disease (lipid lowering), type-2 diabetes (common in older age) and polycystic ovary syndrome.
  • the reduction in microflora on the body or within the mouth and inhibition of the biotransformation of fatty acids to volatile fatty acids has benefits in the reduction of body or oral malodor.
  • the in vitro model system reproducing fatty acid catabolism by Ceorynebacteria A, consisted of 250 ml baffled shake flasks, to which were added 30 ml semi-synthetic medium (see below) supplemented with fatty acid substrate (2.0 mg/ml pentadecanoic acid) and non-fatty acid substrate (0.5 mg/ml glucose).
  • This system was employed to evaluate sargahydroquinoic acid as a potential deodorant active; to each flask (other than the control) was added a specific dose of sargahydroquinoic acid, from a 25 g/l stock emulsion in semi-synthetic medium supplemented with 5.0 mg/ml Gum Arabic (formed by ultra-homogenisation at 24000 rpm for 1 min). Flasks were inoculated with fresh bacterial biomass ( Corynebacterium A NCIMB 40928 ), pre-grown for 24 h in TSBT (see below), to give starting optical densities (A 590 ) of ⁇ 1.0.
  • a ‘sub-lethal’ effect is defined as significant inhibition of fatty acid catabolism, typically greater than 50% inhibition of pentadecanoic acid utilisation, without concomitant reductions in Corynebacterium A viability ( ⁇ 1 log 10 CFU/ml reduction) or glucose utilisation ( ⁇ 10% reduction). Outside one or both of these defined boundaries, the effect may be described as ‘antimicrobial’, where ‘antimicrobial’ includes both bacteriostatic & bactericidal effects.
  • Tween-supplemented Tryptone soya broth & agar used for growth & maintenance of axillary bacteria (g/l): Tryptone soya broth (30.0); Yeast Extract (Beta Lab) (10.0); Tween 80TM (1.0); ⁇ Agar (20.0).
  • composition of semi-synthetic medium used in in vitro system simulating fatty acid catabolism by corynebacteria A (g/l): KH 2 PO 4 (1.6); (NH 4 ) 2 HPO 4 (5.0); Na 2 SO 4 (0.38); Yeast Nitrogen Base (Difco) (3.35); Yeast Extract (Beta Lab) (0.5); Tween 80TM (0.2); Triton X-100TM (0.2); MgCl 2 .6H 2 O (0.5).
  • Fatty acid levels in the flasks were determined by capillary GC analysis. Initially, 5.0 ml aliquots from each flask were transferred into universal tubes; an internal standard (lauric acid, 1.0 mg/ml final concentration) was added to each tube and the culture medium acidified (pH ⁇ 2) by the addition of hydrochloric acid. Liquid-liquid extraction was then carried out using 2 vol (10 ml) ethyl acetate; organic and aqueous phases were resolved by centrifugation (2000 rpm, 3 min).
  • the temperature programme for fatty acid analysis was 80° C. (2 min); 80-250° C. (20° C./min); 250° C. (5 min). Sample size for injection was 0.5-1.0 ⁇ l. Fatty acid levels in the flasks were quantified by comparison of peak areas with known levels of both internal (lauric acid) and externally-run (pentadecanoic acid) standards.
  • the method describes the determination of the oxidative stability of an oil or fat by means of the Swift Induction period test.
  • a flow of purified air is led through the sample that is heated between 90° C. and 140° C.
  • the released gasses formed by oxidation are led by an air flow through a measurement vessel with water.
  • the conductivity of the water is measured by Metrohm rancimat and registered.
  • An increase of the conductivity due to degradation components means the end of the induction period.
  • the Swift Induction period is measured in hours.
  • thermometer acetone molecular sieve petrol ether Metrohm rancimat 743 legally stamped thermometer
  • the sample must be closed immediately using plugs made of glass or cork and stored in the refrigerator.
  • the Rancimat is measured as soon as possible.
  • SHQA Sargahydroquinoic Acid
  • Cholesterol, oleic acid and SHQA were weighed into an 8 mL vial with enough diethyl ether to dissolve the mixture (0.018 g cholesterol, between 0.009 g and 0.036 g of SHQA and 0.09 g oleic acid in 6 mls of diethyl ether).
  • the ether was evaporated to dryness using a stream of dry nitrogen.
  • Sodium taurocholate, bovine serum albumin and ammonium chloride were dissolved in a 0.154 mM phosphate buffer at pH6.2 (typically 0.52 g sodium taurocholate, 0.23 g bovine serum albumin and 0.18 g ammonium chloride were dissolved in 50 mls of buffer).
  • Cholesterol esterase (ex Biozyme, source pig pancreas) was dissolved in 0.154M phosphate buffer at pH6.2.
  • Assay buffer (6 mls) was added to the dried lipid mixture mixed using a whirlimixer then placed in an ultrasonic bath at 60° C. for 30 minutes. The vials were sealed and transferred to a shaking water bath (200 shake/min) at 37° C. for 15 minutes. 6 mls of esterase solution were added and the vials resealed and shaken at 37° C. 1 ml samples were taken, immediately after addition of the esterase and after shaking for 1 hour, which were added to 3 mls of isopropanol and heated at 80° C. for 30 minutes to destroy esterase activity and to precipitate protein material.
  • the samples were acidified with concentrated hydrochloric acid, 4 mls of water added and the lipids extracted with two aliquots of warm diethyl ether then dried with sodium sulphate.
  • the diethyl ether was removed and the extracted lipids silylated by heating with 200 ⁇ l bis(trimethylsilyl) tri fluoroacetamide (BSFTA) and 100 ⁇ l pyridine for 30 minutes, then analysed by carbon number GC.
  • BFTA bis(trimethylsilyl) tri fluoroacetamide
  • the presence of SHQA inhibited the conversion of cholesterol to cholesterol oleate. This reflects an inhibition of cholesterol esterase.
  • Acetylcholine esterase activity was measured using 96-well microplate reader based on Ellmans method (G. I Ellman, D. Courtney, V. Andres Jr., R. M. Featherstone Biochem. Pharmacol. 7 (1961) 88).
  • the SHQA purified by silica chromatography was dissolved in a mixture of ethanol/tetrahydrofuran/acetone 60/20/20 at a concentration of 100 mg/ml. Serial dilutions were then made as required. These solutions were further diluted 1 in 10 using 50 mM Tris-HCL buffer pH 8.
  • SHQA solutions (20 ⁇ l), acetylthiocholine iodide (ACTI; 25 ⁇ l 15 mM in water), dithiobisnitrobenzoic acid (DNTB; 125 ⁇ l 3 mM in 50 mM Tris-HCL buffer pH 8 containing 0.1M NaCl and 0.02M MgCl 2 .6H 2 O), Tris-HCL buffer (50 ⁇ l; 50 mM pH 8 containing 0.1% bovine serum albumin) were placed in wells together with acetyl choline esterase from electric eel (Sigma type VI-s lyophilised powder) (20 ⁇ l 1.5 ⁇ g/ml in 50 mM Tris-HCL pH 8 buffer containing 0.1% bovine serum albumin).
  • ACTI acetylthiocholine iodide
  • DNTB dithiobisnitrobenzoic acid
  • Tris-HCL buffer 50 ⁇ l; 50 mM pH 8 containing 0.1% bovine serum album
  • the absorbance was measured at 410 nm every 13 s for 8 times.
  • the rate of change of OD of the test materials was compared to the blank solutions.
  • SHQA was shown to inhibit acetylcholinesterase activity.
  • PGE2 Prostaglandin E2
  • PMA Phorbol myristate acetate
  • PGE2 Prostaglandin E2 assay Volumes of 50 ⁇ l culture medium were taken for PGE2 assay after gently shaking the culture plate. PGE2 levels in the medium were determined with a Biotrak PGE2 immunoassay kit (Amersham, UK). The assay is based on the competition between unlabelled PGE2 in the sample and a fixed quantity of horseradish peroxidase labelled PGE2 for a limited amount of fixed PGE2 specific antibody. Concentrations of unlabelled sample PGE2 are determined according to a standard curve which was obtained at the same time.
  • FIG. 7 The effects of Kombo nut oil saponifiables on PGE2 levels is shown in FIG. 7 .
  • the graph ( FIG. 7 ) demonstrates that challenging fibroblast cells with an inflammatory stimulus such as PMA causes an increase in the inflammatory response as measured by PGE2 production.
  • Kombo nut oil saponifiables (saps) which contain sargahydroquinoic acid, even at the levels of 0.1 ng/ml, dramatically reduces the inflammatory response as measured by PGE2 production—good anti-inflammatory activity.
  • the purity of the SHQA was approximately 75%. The remaining 25% consisted primarily of glycerides, ffa, and water.
  • the yeast previously dispersed in 85% of the water, was mixed with the flour and the salt.
  • the SHQA extract and the remaining water were added and mixing was continued until a dough was formed.
  • SHQA- Percentage (SQA- Percentage (Reference- Ingredient recipe) recipe) Palm oil 30.4% 32.0% SHQA 1.6% 0.0% Skimmed milk powder 10.0% 10.0% Sugar 10.0% 10.0% Lecithin 48.0% 48.0% Cream vanillin 0.4% 0.4%
  • Muesli bars were coated and cooled in a cooling tunnel.
  • Bars coated with the SHQA enriched coating were compared to the bars coated with a standard coating.
  • the sugar, the milk powder and the dextrose were mixed and added to the water.
  • the mixture was heated to 70° C. and the syrup was added.
  • a fat/SHQA blend and the emulsifier were then added.
  • the emulsion was stirred with an ultra-turrax, cooled down to 20° C. and stirred again with the ultra-turrax.
  • the emulsion was left overnight in the refrigerator at 7° C.
  • the emulsion was then stirred for 40 min in the ice cream machine, previously cooled down for 24 h at ⁇ 20° C.
  • the ice cream without SHQA was used as reference.
  • the SHQA enriched ice cream was compared to the reference ice cream.
  • SHQA- Percentage (Reference- Ingredient recipe) recipe) 96% bean oil/4% palm oil 28.5% 30.0% SHQA 1.5% 0.0% Full cream milk powder 12.0% 12.0% Skimmed milk powder 10.0% 10.0% Sugar 48.0% 48.0% Lecithin 0.4% 0.4% Cream vanillin 0.03% 0.03% Mint flavour 0.1% 0.1% Green colour 1 drop 1 drop
  • the spread containing the SHQA was compared to the reference spread.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nutrition Science (AREA)
  • Diabetes (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Obesity (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Oncology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Psychiatry (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Vascular Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The invention concerns blends of a hydroquinone substituted poly unsaturated fatty acid (as present in Kombo nut oil) or a derivative thereof, which blends comprised:
  • (i) 0.1-99.9 wt % of the substituted acid
  • (ii) 0-99.8 wt % of Kombo butter glycerides
  • (iii) 0.1-99.9 wt % of other triglycerides
Food products and food supplements comprising such hydroquinone substituted acids are also part of the invention.
The substituted acids display many useful health benefits.

Description

  • This application is a continuation of application Ser. No. 10/230,352, filed Aug. 29, 2002 and claiming priority based on European Application No. 01307523.9, filed Sep. 4, 2001 and European Application No. 02251500.1, filed Mar. 4, 2002.
  • Kombo nut seed fat is a known product that can be obtained from the seeds of Pycnanthus angolensis (cf WO 96/39130). The components present in this fat were analysed by different groups and a number of terpenoid acid type ingredients were identified. One of these ingredients was identified as a novel polyprenylated hydroquinone substituted carboxylic acid named kombic acid which was identified as having a structure mentioned in Lok c.s. Phytochemistry 22, p. 1973 from 1983 (i.e. 16-(21,51-dihydroxy-31 methylphenyl)-2,6,10,14 tetramethyl-2,6,10,14 hexadecatetraenoic acid). Although kombo nut oil, containing its terpenoid acid type ingredient is disclosed as useful and having a number of health benefits such as hypoglycemic activity, activity against fungal skin infections; activity for the treatment of shingles; or against leprosy; headaches; body aches; chest pains; or as an anti sterility agent for women; or as an antihelmintic; or poison antidote; or as an anti toothache agent; or as an anti bleeding agent; etc (of WO 96/39130) no relation is given between the presence of a specific component and the occurrence of a specific health effect.
  • U.S. Pat. No. 3,615,588 discloses blends made from oils, rich in trimyristin and other oils. The trimyristin used can be obtained from Kombo nut oil.
  • We analysed the kombo nut fat further and found that this fat contains an ingredient which was identified by mass spectroscopy and 13C-NMR as sargahydroquinoic acid (=SHQA) [(CA name: 12-(21,51-dihydroxy-31-methylphenyl)-6,10 dimethyl-2-(41-methyl-31-pentenyl)-2E, 6E, 10E dodecatrienoic acid)] and that this compound and a number of its derivatives displays useful health benefits.
  • This compound SHQA is normally applied in combination with glycerides. These glycerides can be the triglycerides present in kombo nut oil but also other glycerides can be used in combination with SHQA.
  • Therefore our invention in the first instance concerns blends comprising a substituted organic acid or a derivative thereof and a glyceride wherein the blends comprise
      • (i) 0.1 to 99.9 wt %, preferably 2 to 95 wt % more preferably 10 to 80 wt % of a hydroquinone substituted poly unsaturated fatty acid as present in kombo nut oil, in particular being sargahydroquinoic acid (=SHQA) or a derivative thereof, such as esters of these fatty acids with alcohols with 1 to 32 carbon atoms, or food acceptable salts thereof
      • (ii) 0 to 99.8 wt %, preferably 4 to 97 wt %, more preferably 10 to 80 wt % of kombo butter glycerides and
      • (iii) 0.1 to 99.9 wt %, preferably 1 to 94 wt %, more preferably 10 to 80 wt % of other triglycerides.
  • The derivatives of the substituted fatty acid preferably are selected from esters of the hydroquinone substituted polyunsaturated fatty acid and a straight chain saturated and/or unsaturated alcohol with 2 to 20 carbon atoms, preferably with 14 to 18 carbon atoms.
  • Other preferred derivatives are the Na or K or Ca salts of the hydroquinone substituted poly unsaturated fatty acid. These products are easily made from the free acid by esterification with the required alcohol under well known conditions respectively by neutralisation of the acids with the required base.
  • It is also possible to use esters made from the hydroquinone substituted poly unsaturated fatty acid and a fatty acid with 2 to 32 carbon atoms by esterifying at least one of the hydroxy groups of the substituted acid.
  • The other glycerides can be selected from or derived from a wide range of natural glycerides e.g. the triglycerides selected from the group consisting of palm oil; cocoa butter; coconut oil; palm kernel oil; soy bean oil, olive oil; sunflower oil; rape seed oil; safflower oil; corn oil; cotton seed oil; cocoa butter equivalents or cocoa butter replacers; fish oil; borage oil, pine nut oil; coriander oil; fungal oils, or high oleic varieties thereof, or fractions thereof, or hardened varieties thereof, or fractions of the hardened varieties or mixtures of one or more of these oils and fats.
  • For foods it is however preferred to use a triglyceride that provides a blend with a suitable unstabilised N-value as measured by NMR pulse techniques, because this will make the application of these blends in food products far easier. Unstabilised meaning that the N-value is measured after first melting the blend above 80° C., whereupon the melt is cooled to 0° C. and kept at 0° C. for 30 min, then the blend is heated to measurement temperature and kept at that temperature for 30 min, whereupon the N-value is measured. Preferred N-values for the blend are an N5=5 to 80, preferably 10 to 70 and N35=less than 20, preferably 1 to 5.
  • Instead of blending the substituted acid with glycerides we also can blend them with free fatty acids such as conjugated linoleic acid (=CLA), linoleic acid (both alpha and gamma), fish oils fatty acids, or other poly unsaturated fatty acids such as punicic acid, eleostearic acid, parinaric acid etc.
  • Although the hydroquinone substituted poly unsaturated fatty acid component can be obtained along different routes including synthetic routes starting from suitable materials it is preferred to isolate these components from natural sources. A preferred natural source that contains this acid in substantial amounts is the oil from the nuts of Pycnanthus angolensis. Another natural source is brown algae (Chemistry Letters 1987, 1365-1366).
  • As the acids according to the invention are poly unsaturated these acids will be subject to deterioration due to oxidation. Therefore it is advisable to use these acids in combination with an anti oxidant. Suitable anti-oxidants can be selected from the group consisting of natural or synthetic tocopherols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids. The amounts wherein the anti-oxidants are applied can be indicated as effective amounts, the actual amount will depend on factors like type of anti-oxidant, type of poly unsaturated acid present; type of food; presence of other components etc. However the effective amount for each specific situation can easily be determined by the man skilled in the art.
  • According to another embodiment of our invention our invention also concerns food products that comprise an effective amount of a health component wherein the health component is a hydroquinone substituted poly unsaturated fatty acid as present in kombo nut oil or extracts thereof or a derivative thereof, in particular being sargahydroquinoic acid (=SHQA) or a derivative thereof. The substituted acid preferably being the acid as obtained from kombo nut oil.
  • In principle the food product can be any food product that can be combined with the substituted acids or their derivatives. However we prefer to use this component in food products selected from the group consisting of margarine; fat continuous or water continuous or bicontinuous spreads, fat reduced spreads; confectionery products such as chocolate or chocolate coatings or chocolate fillings or bakery fillings, ice creams, ice cream coatings, ice cream inclusions, dressings, mayonnaises, cheese, cream alternatives, dry soups, drinks, cereal bars, sauces, bakery products and snack bars.
  • Instead of using the substituted acids in food products we can also use them in food supplements. Therefore part of our invention are also food supplements comprising an effective amount of a hydroquinone substituted poly unsaturated fatty acid, as present in kombo nut oil or extracts or a derivative thereof in particular being sargahydroquinoic acid (=SHQA) or a derivative thereof in an encapsulating material or in granules or in powder form. The encapsulating material for the supplements is preferably selected from the group consisting of gelatin; starch, modified starch, flour, modified flour, sugars, in particular sucrose, lactose, glucose and fructose.
  • We found that our newly identified acid components have a number of useful health benefits. Therefore our invention also concerns the use of a composition comprising a hydroquinone substituted poly unsaturated fatty acid as present in kombo nut oil or extracts thereof or a derivative thereof as an active ingredient for the preparation of food compositions or food supplements with a health effect, wherein the health effects include acting as a lipase inhibitor, in particular as an inhibitor for pancreatic lipase or gastric lipase and/or acting as a ligand for peroxisome proliferator activated receptors subtype alpha or gamma and/or reducing and/or preventing ageing, in particular ageing of the skin and/or acting on photo damaged skin; and/or promoting the formation of decorin in the dermis of the skin and/or treating/preventing acne and/or treating/preventing cellulite and/or enhancing body or oral freshness.
  • Alternatively the compositions can also be applied in topical compositions for cosmetics.
  • Other health effects that we found are the following:
  • the hydroquinone substituted poly unsaturated fatty acid have unexpected good anti oxidant activity which was even higher than for other well known anti oxidants such as tocopherols. This anti oxidant activity resulted in the delay of oxidation of fats and oils and could further be used to prevent or retard the development of diseases related to the presence of free radicals.
  • Therefore our invention also concerns the use of a hydroquinone substituted poly unsaturated fatty acid as present in kombo nut oil, in particular being sargahydroquinoic acid (=SHQA) or a derivative thereof, such as esters of fatty acids with 1 to 32 carbon atoms, or food acceptable salts thereof wherein the hydroquinone substituted poly unsaturated fatty acid or derivative thereof is used to prevent the formation of free radicals and/or to delay the oxidation of fats and oils and/or to help prevent or retard the development of diseases in mammals related to the presence of free radicals. In particular the SHQA or its derivatives is used to prevent or retard the development of cancer and/or of Alzheimer disease and/or of arthritis and/or of cardiovascular diseases.
  • Preferred derivatives that are used herefor are esters of the hydroquinone substituted poly unsaturated fatty acid and a straight chain saturated and/or unsaturated alcohol with 6 to 20 carbon atoms, preferably with 14 to 18 carbon atoms. Other preferred derivatives are the hydroquinone substituted poly unsaturated fatty acid salts of Na or K or Ca, because these derivatives dissolve better and moreover also provide minerals upon use.
  • Other preferred derivatives that can be applied are the esters of the hydroquinone substituted poly unsaturated fatty acid such as SHQA wherein the hydroxy group or groups of the hydroquinone substituted poly unsaturated fatty acid is (are) esterified with a straight chain saturated and/or unsaturated fatty acid with 6 to 20 carbon atoms.
  • Although the novel ingredients are very effective as anti oxidant we also found that synergies can be achieved by using mixtures thereof with other known anti oxidants. Therefore we prefer to apply a mix of our SHQA derivative with an effective amount of one or more other anti oxidants, preferably selected from the group consisting of natural or synthetic tocopherols, tocotrienols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids.
  • We further found that these substituted acids also have beneficial acetylcholine esterase activity. Therefore these compounds also can be used in Alzheimer disease for enhancing cognitive function, myasthenia gravis, glaucoma and for enhancing learning and memory. Pancreatic lipase inhibitors such as Xenical (Orlistat) are known to decrease fat hydrolysis in the gastrointestinal tract and fat absorption reducing body weight in vivo. Therefore our compositions have the ability to prevent/reduce the accumulation of body fat and help to prevent/treat obesity. Furthermore the substituted acids will have effects on promoting leaness and have mild laxative effects.
  • Other health effects include the action of our substituted acids acting as a ligand for peroxisome proliferator activated receptors such as subtype alpha or gamma. These transcription factors are key regulators of both lipid and glucose metabolism and our substituted acids will help optimise these. Effects of our substituted acids which could be attributed to PPAR alpha will include improving lipid metabolism, control of hyperlipedimia and assisting in both the prevention and treatment of cancer.
  • Insulin is a hormone essential for maintaining blood glucose levels within normal and healthy limits. If insulin action is impaired, as found in the human condition of insulin resistance, this can lead to a number of health problems. Short term the types of problems associated with insulin resistance comprise cognitive impairment (poor memory), chronic fatigue (lack of energy) and mood swings. More long term, the onset of diseases such as cardiovascular disease, type-2 diabetes and polycystic ovary syndrome are common.
  • Peroxisome proliferator activated receptor gamma (PPAR gamma) is a nuclear hormone receptor which forms part of the PPAR group of transcription factors. These are ligand activated transcription factors which bind DNA in a heterodimeric complex with a second nuclear hormone receptor RXR. PPAR gamma is thought to play a role in the control of insulin sensitivity, blood sugar levels, along with other biological effects including inflammation, cancer, cognition and cellular differentiation. PPAR gamma is also known to be an important regulator of lipid metabolism. Because of its interaction with PPAR gamma our substituted fatty acids will display beneficial effects on insulin resistance and related disorders such as polycystic ovary syndrome, type-2 diabetes, gestational diabetes, Syndrome X, hypertension, stroke, glucose metabolism. Effects will include reducing blood glucose levels and cognitive performance. The substituted acids also have anti inflammatory activities and activities for the prevention or treatment of cardiovascular diseases, joint diseases, arthritis, peptic ulcer disease, inflammatory bowel disease, inflammatory skin conditions, neurodegenerative diseases and allergies.
  • The skin anti ageing properties are very useful to boost the levels of dermal proteins collagen or decorin having benefits in reducing the wrinkling, sagging, lining of the skin. In addition benefits in reducing age spots, enhancing tissue repair, soothing of irritated, red or sensitive skin and improvement of texture, smoothness and firmness of the skin can be achieved by the use of our compositions. Further our novel compositions can also be used as flavouring agent to achieve a bitter taste e.g. inbiter drinks or in bittersweet chocolate.
  • As a last embodiment of our invention our invention also concerns a process for the enrichment of a hydroquinone substituted poly unsaturated fatty acid, in particular of SHQA, as present in kombo nut oil or derivatives thereof in a glyceride surrounding wherein:
      • (i) a kombo nut oil is selected containing a sufficient amount of the desired acid or acid derivative thereof
      • (ii) the oil is refined by neutralization by adding a base at a temperature of 40 to 60° C., preferably 45 to 50° C.
      • (iii) the crude reaction product is separated in an organic phase and a water phase
      • (iv) the water phase of step (iii) is acidified to a pH of 0 to 4, preferably 0.5 to 1.5 and the oily layer is drained off
      • (v) a product is recovered that contains the hydroquinone substituted poly unsaturated fatty acid in amounts of more than 20 wt %.
    BRIEF DESCRIPTION OF DRAWINGS
  • The invention is further exemplified by the following disclosure and related drawings wherein:
  • FIG. 1 graphically shows the % inhibition of pancreatic lipase using sargahydroquinoic acid (SHQA);
  • FIG. 2 graphically compares the effects of retinoic acid and SHQA in decorin synthesis;
  • FIG. 3 graphically shows the effects of SHQA on PPARα;
  • FIG. 4 graphically shows the effects of SHQA on PPARγ (reporter gene assay);
  • FIG. 5 graphically shows the inhibiting effect of SHQA on the conversion of cholesterol;
  • FIG. 6 shows the inhibiting effect of SHQA on acetylcholinesterase activity; and
  • FIG. 7 shows the anti-inflammatory activity of kombo nut oil saponifiables which contain SHQA.
  • EXAMPLES Example 1 Effects of Sargahydroquinoic Acid on Pancreatic Lipase Lipase Inhibition Assay Methodology
  • This assay is developed from the colormetric Sigma assay (Lipase-PS™) for the quantitative kinetic determination of pancreatic lipase activity in serum at 550 nm.
  • Reactions: Serum pancreatic lipase catalyses the hydrolysis of a natural 1,2-Diglyceride to form monoglyceride and fatty acid. The monoglyceride is hydrolysed by monoglyceride lipase (MGLP) to form glycerol and fatty acid. Glycerol is then phosphorylated by glycerol kinase (GK) in the presence of ATP to form glycerol-3-phosphate which is oxidised by glycerol-3-phosphate oxidase (GPO) to form dihydroxyacetone phosphate (DAP) and hydrogen peroxide (H2O2). Subsequently H2O2 reacts with 4-aminoantipyrine (4-AAP) and sodium N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-toluide (TOOS) in the presence of peroxidase (POD) to form a quinone diimine dye. The dye absorbs light at 550 nm. The rate of increase in absorbance at 550 nm is directly proportional to the pancreatic lipase activity in the sample.
  • Reagents:
  • The Sigma diagnostics lipase-PS Reagents, are reconstituted according to the instructions. Substrate solution reagent (145 μl), along with either 5 μl of water (blank wells) or lipase-PS standard, and 20 μl blank solvent (ethanol/THF/acetone; 60:20:20) or samples in solvent (Sargahydroquinoic acid) in triplicate are added to each of the wells. Plates are incubated at room temperature for 8 minutes with agitation. Lipase-PS activator (50 μl) is added to all wells and absorbance at 550 nm measured kinetically on the microtitre reader for 0-30 minutes, with readings every 60 seconds and shaking before each reading. The slope of the readings in the 6-24 minute linear range is calculated, minus the average slope of the blanks. Results are expressed as mOD/min, less than or greater than the +ve control. Final results expressed as % inhibition of the control sample, are illustrated by FIG. 1.
  • Example 2 Antiageing Effects Procedure for Measuring Procollagen-I and Decorin Synthesis in Human Dermal Fibroblasts Preparation of Dermal Fibroblast Conditioned Medium
  • Primary human foreskin fibroblasts at passage 2 (P2) were seeded into 12-well plates at 10000 cells/cm2 and maintained for 24 hours in an atmosphere of 5% carbon dioxide and 4% oxygen in Dulbeccos Modified Eagles Medium (DMEM) supplemented with 10% foetal calf serum. After this time the cells were washed with serum free DMEM and then incubated in fresh serum free DMEM for a further 60 hours. The fibroblast monolayers were then washed again with serum free DMEM. Test reagents (retinoic acid or Sargahydroquinoic acid) and vehicle controls (in DMSO) were added to the cells in triplicate in a final volume of 0.4 ml/well fresh serum free DMEM and incubated for a further 24 hours. This fibroblast conditioned medium was either analysed immediately or snap frozen in liquid nitrogen and stored at −70° C. for future analysis. The cells were then counted and data from the dot-blot analysis subsequently standardised to cell number.
  • Dot Blot Assay for Procollagen-I and Decorin Protein in Dermal Fibroblast Conditioned Medium
  • Samples of conditioned medium from dermal fibroblasts treated with vehicle (as a control) or test reagents were supplemented with 20 mM dithiothreitol (1:10 dilution of 200 mM stock solution) and 0.1% sodium dodecylsulphate (1:100 dilution of 10% stock solution), mixed well and then incubated at 75° C. for 2 minutes. A standard for the assay was generated by serial dilution of neat fibroblast conditioned medium from fibroblasts seeded at 10000 cells/cm2 in a 175 cm2 flask and maintained in serum free DMEM as described above.
  • Assay samples were subsequently applied in triplicate to a pre-wetted sheet of Immobilon-P transfer membrane using the 96-well Bio-Dot Apparatus from Bio-Rad as described in the manufacturers' guidelines. Approximately 200 μl of medium was applied per well. The medium was allowed to filter through the membrane under gravity (30 minutes) after which the membrane was washed twice with PBS (200 μl). These PBS washes were allowed to filter through the membrane under gravity (2×15 minutes). The Bio-Dot apparatus was then attached to a vacuum manifold and a third and final PBS wash carried out under suction. The apparatus was disassembled, the membrane removed and quickly cut as required before being placed in blocking buffer overnight at 4° C.
  • Membranes prepared for decorin analysis were blocked with 3% (w/v) BSA/0.1% (v/v) Tween 20 in PBS. The following day, the membranes were probed with 1:10000 dilution of primary antibodies to human decorin (rabbit polyclonal Biogenisis) for 2 hours at room temperature. The membranes were subsequently washed with TBS/0.05% Tween 20 (3×5 minutes) and then incubated with 1:1000 dilution of 125I-conjugated anti-rat or anti-rabbit F(ab′)2 fragments (Amersham) as required for 1 hour at room temperature.
  • Following this the Immobilon strips were again washed with TBS/Tween 20 (3×5 minutes) before being allowed to dry in air at room temperature. The dried membranes were wrapped in cellophane and exposed to a Molecular Dynamics storage phosphor screen for 16-18 hours. At the end of this time the exposed screen was scanned by a phosphorimager (Molecular Dynamics Phosphorimager SF) using ImageQuant™ software. Dot intensity was assessed by computer-assisted image analysis using the quantification tools in ImageQuant™, standardised to cell number and the effects of actives such as SHQA on decorin synthesis were determined relative to a vehicle treated control value of 100 arbitrary units. A comparison of the effects of retinoic acid vs Sargahydroquinoic acid are shown in FIG. 2.
  • The level of decorin in skin is associated with improved condition and appearance of skin. Increasing the level of decorin in skin is important for controlled and correct deposition of collagen in skin which is associated with many skin benefits such as wrinkle effacement and dermal repair of photodamaged skin. Sargahydroquinoic acid enhances decorin production and this effect is similar to that observed for retinoic acid.
  • Example 3 Effects of Sargahydroquinoic Acid on PPARα (Reporter Gene Assay) Cell Culture and Reporter Gene Assay
  • Cos-7 cells (ECACC No. 87021302) were routinely grown in DMEM with 10% FCS (foetal calf serum) at 37° C., 5% CO2 to 80% confluency. Transient transfections were performed as described by the manufacturers (GibcoBRL). Briefly, cells were plated out in 24 well plates at 50,000 cells per well and incubated overnight in DMEM with 10% FCS at 37° C., 5% CO2. Cells were then transfected using the LipofectAMINE reagent. For each well, 0.5 μg of DNA mix (for “control” cells pPPRE3TK-luc 0.40 μg; pRL-TK 0.04 μg; pcDNA3.1(−) 0.03 μg; pRSV 0.03 μg; for “plus RXR” cells pPPRE3TK-luc 0.40 μg; pRL-TK 0.04 μg; pcDNA3.1(−) 0.03 μg; pRSV/RXRα 0.03 μg; for “plus PPARα” cells pPPRE3TK-luc 0.40 μg; pRL-TK 0.04 μg; pcDNA3.1(−)/PPARα 0.03 μg; pRSV 0.03 μg) in 25 μl of DMEM was incubated with 1 μl LipofectAMINE, and also in 25 μl of DMEM for 45 minutes. The mixture was then made up to 250 μl per well and added to the cells, which had been washed with 1 ml of DMEM. Cells were then incubated for 5 hours at 37° C., 5% CO2 and 250 μl DMEM with 20% SBCS (charcoal stripped bovine calf serum; Sigma) added. Cells were allowed to recover for 18 hours at 37° C., 5% CO2 before being treated. The transfection mix was removed from the cells and replaced with treatment mix (DMSO or 10 μM Sargahydroquinoic acid) and incubated for 24 hours at 37° C., 5% CO2. Sargahydroquinoic acid was made up as 10 mM stock in DMSO and diluted 1000-fold into DMEM containing 10% SBCS (500 μl per well) immediately before being added to the cells. Each treatment was performed in triplicate. Cells were then washed with 1 ml of PBS (without calcium or magnesium) and lysed with 100 μl per well of 1× Passive Lysis Buffer (as supplied with Promega Dual Luciferase assay kit). Lysis was allowed to continue for 15 minutes and then the lysate was assayed for Firefly and Renilla luciferase activity using the Promega Dual Luciferase assay kit. For the assay 20 μl of lysate was taken and assayed as described in the kit instructions using a MLX microtiter plate luminometer (Dynex).
  • As shown in FIG. 3 SHQA is a PPAR alpha rather than an RXR ligand. Health effects associated with PPAR alpha activation will include optimising lipid metabolism, prevention and treatment of cancer, anti-inflammatory effects.
  • Example 4 Effects of Sargahydroquinoic Acid on PPARγ (Reporter Gene Assay) Reporter Gene Assay
  • This assay is based on that described by Kliewer et al (Nature 358 771-774 1992). In brief, cos-7 cells (ECACC No. 87021302) were seeded in 24-well plates at a density of 0.325×105 cells/well. Cells were grown overnight at 37° C./5% CO2 in DMEM containing 10% FCS, 2 mM L-glutamine, 100 iu/ml penicillin and 100 g/ml streptomycin. Cells were washed with transfection media (DMEM containing 2 mM L-glutamine) then transiently transfected with 4 plasmids: a PPAR-responsive firefly luciferase reporter gene (pPPRE3TK-luc); mammalian expression plasmids (pcDNA3/hPPARγ1 and pRSV/hRXRα) containing human PPARγ1 and RXRα cDNAs respectively and a control plasmid (pRLTK, Promega) which constitutatively expresses the renilla luciferase gene. Transfection was performed using Lipofectamine (Gibco Brl) as directed by the manufacturers. Transfected cells were incubated for 6 h at 37° C./5% CO2 and then for a further 46 hours in the presence or absence of ligand. After 46 hours cell lysates were prepared and the level of firefly and renilla luciferase determined using the Dual luciferase assay system (Promega) and a MLX microtitre plate luminometer (Dynex). The level of firefly luciferase (normalised against the renilla luciferase control) provides a measure of reporter gene activity. This in turn reflects the level of PPARγ activation.
  • FIG. 4 illustrates that Sargahydroquinoic acid gives good activation of PPARγ. SHQA will have benefits in a range of conditions, including in the short term, chronic fatigue, cognitive impairment (memory) and mood swings. Long term benefits would be focused on cardiovascular disease (lipid lowering), type-2 diabetes (common in older age) and polycystic ovary syndrome.
  • Example 5 Effects of Sargahydroquinoic Acid on Microbial Number and Biotranformations
  • The reduction in microflora on the body or within the mouth and inhibition of the biotransformation of fatty acids to volatile fatty acids has benefits in the reduction of body or oral malodor.
  • In Vitro Evaluation of Sargahydroquinoic as a Deodorant Active
  • The in vitro model system, reproducing fatty acid catabolism by Ceorynebacteria A, consisted of 250 ml baffled shake flasks, to which were added 30 ml semi-synthetic medium (see below) supplemented with fatty acid substrate (2.0 mg/ml pentadecanoic acid) and non-fatty acid substrate (0.5 mg/ml glucose). This system was employed to evaluate sargahydroquinoic acid as a potential deodorant active; to each flask (other than the control) was added a specific dose of sargahydroquinoic acid, from a 25 g/l stock emulsion in semi-synthetic medium supplemented with 5.0 mg/ml Gum Arabic (formed by ultra-homogenisation at 24000 rpm for 1 min). Flasks were inoculated with fresh bacterial biomass (Corynebacterium A NCIMB 40928), pre-grown for 24 h in TSBT (see below), to give starting optical densities (A590) of ˜1.0. Following inoculation, flasks were incubated aerobically at 35° C., with agitation (130 rpm), and analysed after 24 h. Culture viability was determined by total viable count (TVC) analysis on TSAT plates (see below) following serial dilution in quarter-strength Ringers solution. Fatty acid concentrations were determined by capillary gas chromatography (GC) (see below), while residual glucose levels were measured with blood glucose test strips (BM-Test 1-44; Boehringer Mannheim) used in conjunction with a ReflofluxS glucose meter (Boehringer Mannheim). A ‘sub-lethal’ effect is defined as significant inhibition of fatty acid catabolism, typically greater than 50% inhibition of pentadecanoic acid utilisation, without concomitant reductions in Corynebacterium A viability (≦1 log10 CFU/ml reduction) or glucose utilisation (≦10% reduction). Outside one or both of these defined boundaries, the effect may be described as ‘antimicrobial’, where ‘antimicrobial’ includes both bacteriostatic & bactericidal effects.
  • Composition of Tween-supplemented Tryptone soya broth & agar (TSBT & TSAT) used for growth & maintenance of axillary bacteria (g/l): Tryptone soya broth (30.0); Yeast Extract (Beta Lab) (10.0); Tween 80™ (1.0); ±Agar (20.0).
  • Composition of semi-synthetic medium used in in vitro system simulating fatty acid catabolism by corynebacteria A (g/l): KH2PO4 (1.6); (NH4)2HPO4 (5.0); Na2SO4 (0.38); Yeast Nitrogen Base (Difco) (3.35); Yeast Extract (Beta Lab) (0.5); Tween 80™ (0.2); Triton X-100™ (0.2); MgCl2.6H2O (0.5).
  • Fatty acid levels in the flasks were determined by capillary GC analysis. Initially, 5.0 ml aliquots from each flask were transferred into universal tubes; an internal standard (lauric acid, 1.0 mg/ml final concentration) was added to each tube and the culture medium acidified (pH˜2) by the addition of hydrochloric acid. Liquid-liquid extraction was then carried out using 2 vol (10 ml) ethyl acetate; organic and aqueous phases were resolved by centrifugation (2000 rpm, 3 min). ˜0.75 ml of each organic (upper) phase was then transferred to a sampling vial prior to analysis on a Perkin Elmer 8000 (Series 2) GC fitted with a 15 m×0.32 mm (internal diameter) FFAP (nitroterephalic acid modified PEG/siloxane copolymer) fused silica capillary column (film thickness 0.25 mm) (Quadrex). This column was attached to the split-splitless injector and flame ionisation detector (FID) of the GC; injector and detector temperatures were each 300° C. Carrier gas for the column was helium (6 psi), while hydrogen (17 psi) and air (23 psi) supplied the FID. The temperature programme for fatty acid analysis was 80° C. (2 min); 80-250° C. (20° C./min); 250° C. (5 min). Sample size for injection was 0.5-1.0 μl. Fatty acid levels in the flasks were quantified by comparison of peak areas with known levels of both internal (lauric acid) and externally-run (pentadecanoic acid) standards.
  • Results
  • [Sargahydro- TVC Glucose Pentadecanoic Acid
    quinoic acid] (log10 Utilisation Inhibition of
    (g/l) CFU/ml) (%) Utilisation (%) Utilisation (%)
    0.0 8.40 100 100  0
    0.05 8.67 100 99  (1)
    0.1 8.83 100 58 42
    0.25 7.93 >90 15 85
    0.5 7.85 100 19 81
    1.0 7.3 >90 5 95
    2.5 <3.0 7 25 75
  • Effects in bold denote sub-lethal inhibition of pentadecanoic acid utilisation; other effects are due to antimicrobial (bacteriostatic or bactericidal) inhibition or, where in parentheses, are not significant.
  • Example 6 Antioxidant Activity of Sargahydroquinoic Acid (SHQA) Containing Extract from Kombo Nuts Method of Analysis: Rancimat
  • All oils and fats have a resistance to oxidation which depends on the degree of saturation, natural or added antioxidants and prooxidants. Oxidation is slow until this resistance is overcome, at which point oxidation accelerates and becomes very rapid. The length of time before this rapid acceleration of oxidation is the measure of the resistance to oxidation and is commonly referred to as the “induction period”.
  • Method for the determination of the oxidative stability of animal and vegetable oils and fats.
  • The method describes the determination of the oxidative stability of an oil or fat by means of the Swift Induction period test. A flow of purified air is led through the sample that is heated between 90° C. and 140° C. The released gasses formed by oxidation are led by an air flow through a measurement vessel with water. The conductivity of the water is measured by Metrohm rancimat and registered. An increase of the conductivity due to degradation components means the end of the induction period. The Swift Induction period is measured in hours.
  • Reagents and Equipment
  • acetone
    molecular sieve
    petrol ether
    Metrohm rancimat 743
    legally stamped thermometer
  • Sample Preparation
  • To sunflower oil different concentrations of tocomix and SHQA containing extract were added (see table). Sample size: ˜3 g
  • Sample Storage
  • Between preparation and measurement of the rancimat, the sample must be closed immediately using plugs made of glass or cork and stored in the refrigerator. The Rancimat is measured as soon as possible.
  • ~56% SHQA Swift
    Tocomix (50% containing induction
    Sunflower oil tocopherol) extract period
    Sample
    1  100% 3 hours
    (Reference)
    Sample 2 99.975%  0.025%  3 hours
    Sample
    3 99.95%  0.05% 3 hours
    Sample
    4 99.8%  0.2% 4 hours
    Sample
    5 99.5% 0.5 4 hours
    Sample 6 99.975%  0.025%  4 hours
    Sample 7 99.95%  0.05% 6 hours
    Sample
    8 99.8%  0.2% 12 hours 
    Sample 9 99.5% 0.5 17 hours 
  • CONCLUSION
  • In all cases for the sunflower oil containing SHQA extract a longer swift induction period was measured as compared with sunflower oil containing tocomix. Therefor for the SHQA containing extract a higher antioxidant activity then for tocomix has been demonstrated.
  • Example 7 Sargahydroquinoic Acid (SHQA) as a Cholesterol Esterase Inhibitor Methodology
  • All assay materials were obtained from Sigma, except cholesterol esterase which was obtained from Biozyme Laboratories Ltd. Sargahydroquinoic acid (SHQA, ˜90% purity) was obtained by hexane extraction of kombo nuts, followed by silica chromatography.
  • Preparation of Fat Phase
  • Cholesterol, oleic acid and SHQA were weighed into an 8 mL vial with enough diethyl ether to dissolve the mixture (0.018 g cholesterol, between 0.009 g and 0.036 g of SHQA and 0.09 g oleic acid in 6 mls of diethyl ether). The ether was evaporated to dryness using a stream of dry nitrogen.
  • Preparation of Assay Buffer
  • Sodium taurocholate, bovine serum albumin and ammonium chloride were dissolved in a 0.154 mM phosphate buffer at pH6.2 (typically 0.52 g sodium taurocholate, 0.23 g bovine serum albumin and 0.18 g ammonium chloride were dissolved in 50 mls of buffer).
  • Preparation of Esterase Solution
  • Cholesterol esterase (ex Biozyme, source pig pancreas) was dissolved in 0.154M phosphate buffer at pH6.2.
  • Assay Method
  • Assay buffer (6 mls) was added to the dried lipid mixture mixed using a whirlimixer then placed in an ultrasonic bath at 60° C. for 30 minutes. The vials were sealed and transferred to a shaking water bath (200 shake/min) at 37° C. for 15 minutes. 6 mls of esterase solution were added and the vials resealed and shaken at 37° C. 1 ml samples were taken, immediately after addition of the esterase and after shaking for 1 hour, which were added to 3 mls of isopropanol and heated at 80° C. for 30 minutes to destroy esterase activity and to precipitate protein material. The samples were acidified with concentrated hydrochloric acid, 4 mls of water added and the lipids extracted with two aliquots of warm diethyl ether then dried with sodium sulphate. The diethyl ether was removed and the extracted lipids silylated by heating with 200 μl bis(trimethylsilyl) tri fluoroacetamide (BSFTA) and 100 μl pyridine for 30 minutes, then analysed by carbon number GC.
  • As shown in FIG. 5, the presence of SHQA inhibited the conversion of cholesterol to cholesterol oleate. This reflects an inhibition of cholesterol esterase.
  • Effect of the Addition of SHQA on the Activity of Acetylcholine Esterase
  • Acetylcholine esterase activity was measured using 96-well microplate reader based on Ellmans method (G. I Ellman, D. Courtney, V. Andres Jr., R. M. Featherstone Biochem. Pharmacol. 7 (1961) 88).
  • The SHQA (purified by silica chromatography) was dissolved in a mixture of ethanol/tetrahydrofuran/acetone 60/20/20 at a concentration of 100 mg/ml. Serial dilutions were then made as required. These solutions were further diluted 1 in 10 using 50 mM Tris-HCL buffer pH 8.
  • SHQA solutions (20 μl), acetylthiocholine iodide (ACTI; 25 μl 15 mM in water), dithiobisnitrobenzoic acid (DNTB; 125 μl 3 mM in 50 mM Tris-HCL buffer pH 8 containing 0.1M NaCl and 0.02M MgCl2.6H2O), Tris-HCL buffer (50 μl; 50 mM pH 8 containing 0.1% bovine serum albumin) were placed in wells together with acetyl choline esterase from electric eel (Sigma type VI-s lyophilised powder) (20 μl 1.5 μg/ml in 50 mM Tris-HCL pH 8 buffer containing 0.1% bovine serum albumin).
  • The absorbance was measured at 410 nm every 13 s for 8 times. The rate of change of OD of the test materials was compared to the blank solutions.
  • As shown in FIG. 6, SHQA was shown to inhibit acetylcholinesterase activity.
  • Example 8 The Anti-Inflammatory Effects of Kombo Nut Oil
  • The anti-inflammatory effects were determined by in vitro tests wherein the production of Prostaglandin E2 (=PGE2) production by the human skin fibroblasts is measured after being induced by the inflammatory modulus Phorbol myristate acetate (PMA). A reduction in the levels of PGE2 is indicative for the anti-inflammatory effect.
  • Primary human foreskin fibroblasts at passage 2 (P2) were seeded into 96-well plates at 10000 cells/well and maintained for 24 hours in an atmosphere of 5% carbon dioxide in Dulbeccos Modified Eagles Medium (DMEM) supplemented with 10% foetal calf serum. Kombo nut oil saponifiables (containing SHQA) were added to fresh cell media in ethanol (final concentration 1%) in triplicate and incubated for a further 24 hours. PMA in ethanol/cell media was added to the media and the cells incubated for a further 24 hours. PMA represents an external stressor which induces oxidative stress and inflammatory responses in cells. The fibroblasts/media were then analysed as described below immediately or snap frozen in liquid nitrogen and stored at −70° C. for future analysis.
  • Prostaglandin E2 (PGE2) assay Volumes of 50 μl culture medium were taken for PGE2 assay after gently shaking the culture plate. PGE2 levels in the medium were determined with a Biotrak PGE2 immunoassay kit (Amersham, UK). The assay is based on the competition between unlabelled PGE2 in the sample and a fixed quantity of horseradish peroxidase labelled PGE2 for a limited amount of fixed PGE2 specific antibody. Concentrations of unlabelled sample PGE2 are determined according to a standard curve which was obtained at the same time.
  • The effects of Kombo nut oil saponifiables on PGE2 levels is shown in FIG. 7. The graph (FIG. 7) demonstrates that challenging fibroblast cells with an inflammatory stimulus such as PMA causes an increase in the inflammatory response as measured by PGE2 production. Kombo nut oil saponifiables (saps), which contain sargahydroquinoic acid, even at the levels of 0.1 ng/ml, dramatically reduces the inflammatory response as measured by PGE2 production—good anti-inflammatory activity.
  • Example 9 On Food Applications Material and Methods Production of SHQA
  • The production of SHQA was carried out as follows:
      • Deshelling of Kombo nuts
      • Pressing of the deshelled Kombo nuts to extract the oil
        • Filtration of the oil
        • Neutralisation of the filtered oil to obtain SHQA-salts
        • Recovery of SHQA by acidification
  • The purity of the SHQA was approximately 75%. The remaining 25% consisted primarily of glycerides, ffa, and water.
  • Panelling
  • Food products enriched with SHQA were compared to those made with a reference wherein SHQA was absent
  • A: Muesli Bars
  • Preparation of the Binding Mixture
  • Percentage (SHQA- Percentage (Reference-
    Ingredient recipe) recipe)
    Bean oil 40.8%  43.0% 
    SHQA 2.2% 0.0%
    Skimmed milk powder 8.0% 8.0%
    Sugar 49.0%  49.0% 
    Lecithin 0.4% 0.4%
    Cream vanillin 0.03%  0.03% 
  • Approximately 89% of the fat was mixed with the skimmed milk powder, the crystal sugar, the cream vanillin, and the lecithin for 40 min in a ball mill. The SHQA was homogeneously mixed by stirring with the remaining fat and then added to the binding mix. A binding mix without SHQA was used as reference.
  • Preparation of the Muesli Bars
  • Bars were made by mixing 55% of the binding mixture with 25% of the muesli mixture (supermarket type), 10% biscuit rework, and 10% of rice crisps. The mixture was then pressed in the moulds, cooled, de-moulded, coated, and cooled.
  • The following attributes were evaluated:
  • Crunchiness of the muesli bars
    Overall appearance
    Overall texture
  • Conclusions
  • From the results of the panelling the following conclusions could be drawn:
      • the overall texture, crunchiness and overall appearance of the bars were comparable in the bars containing the SHQA enriched binding mix and in the reference bars;
      • the addition of the SHQA to the binding mixture made the mixture slightly sticky, and therefore it had a minor negative effect on the de-moulding process. The higher stickiness did not, however, negatively effect the quality of the bars.
  • B: Preparation of the Bread
  • Percentage (SHQA- Percentage (Reference-
    Ingredient recipe) recipe)
    Flour 62.0%  62.0% 
    SHQA-extract 1.4% 0.0%
    Water 33.0%  33.0% 
    Yeast 2.5% 2.5%
    Salt 1.2% 1.2%
  • The yeast, previously dispersed in 85% of the water, was mixed with the flour and the salt. The SHQA extract and the remaining water were added and mixing was continued until a dough was formed.
  • After fermentation for 40 min and rework, carried out for three times, the bread was baked at 270° C. for 35 min. Bread without SHQA was used as reference.
  • Panelling
  • The following attributes were evaluated in bread:
      • Dough consistency
      • Structure
      • Overall appearance
      • Flavour
      • Softness and volume
      • Chewiness
    Conclusions
  • From the results of the trial the following conclusions could be drawn:
      • The dough consistency, structure, softness, volume and chewiness were comparable in the SHQA enriched bread and in the reference bread.
      • Minor differences in the colour of the SHQA enriched bread were detected, nevertheless without affecting the quality of the bread.
      • The addition of the SHQA to the bread did not effect the characteristics of the dough during production and baking.
  • C: Coating for Muesli Bars
  • Preparation of the Coating
  • Percentage (SHQA- Percentage (Reference-
    Ingredient recipe) recipe)
    Palm oil 30.4% 32.0%
    SHQA  1.6%  0.0%
    Skimmed milk powder 10.0% 10.0%
    Sugar 10.0% 10.0%
    Lecithin 48.0% 48.0%
    Cream vanillin  0.4%  0.4%
  • All ingredients except the fat, the SHQA and the lecithin were mixed in a Hobart mixer. As little as possible fat was added very slowly into the mix until a dough was formed. The dough was then refined and conched, adding the remaining fat, except 6% of the total fat, into the conche. The lecithin was finally added 15 min before the end of the conching process. The SHQA was homogeneously mixed by stirring with the fat left and then added to the coating mix. A coating without SHQA was used as reference.
  • Preparation of the Muesli Bars
  • Muesli bars were coated and cooled in a cooling tunnel.
  • Panelling
  • Bars coated with the SHQA enriched coating were compared to the bars coated with a standard coating.
  • The following attributes were evaluated in the coating:
      • Overall appearance
      • Overall texture
    Conclusions
  • From the results of the panelling the following conclusions could be drawn:
      • The addition of the SHQA to the coating mix did not effect the characteristics of the coating mix during the production and coating steps.
      • The overall texture of the SHQA enriched bars was comparable to that of the reference bars.
      • The colour of the coating of the SHQA enriched bars was slightly darker than that of the reference bars. Nevertheless the colour difference was not viewed as negative.
  • D: Ice Cream
  • Preparation of the Ice Cream
  • Percentage (SHQA- Percentage (Reference-
    Ingredient recipe) recipe)
    Palm oil 9.5% 10.0% 
    SHQA-extract 0.5% 0.0%
    Skimmed milk powder 10.0%  10.0% 
    Crystal sugar 12.0%  12.0% 
    Clear syrup 4.0% 4.0%
    Dextrose anhydrate 2.0% 2.0%
    Dimodan PVP 0.6% 0.6%
    Water 61.4%  61.4% 
  • The sugar, the milk powder and the dextrose were mixed and added to the water. The mixture was heated to 70° C. and the syrup was added. A fat/SHQA blend and the emulsifier were then added. The emulsion was stirred with an ultra-turrax, cooled down to 20° C. and stirred again with the ultra-turrax. The emulsion was left overnight in the refrigerator at 7° C. The emulsion was then stirred for 40 min in the ice cream machine, previously cooled down for 24 h at −20° C. The ice cream without SHQA was used as reference.
  • Panelling
  • The SHQA enriched ice cream was compared to the reference ice cream.
  • The following attributes were evaluated in the ice cream:
      • Overall appearance
      • Meltdown
      • Overall texture
    Conclusions
  • From the results of the trial the following conclusions could be drawn:
      • The meltdown of the SHQA enriched ice cream was comparable to that of the reference ice cream.
      • Minor differences in the colour and texture of the SHQA enriched ice cream were detected if compared to the reference ice cream. Nevertheless such differences did not compromise the overall quality of the ice cream.
      • The addition of the SHQA to the ice cream did not effect the characteristics of the ice cream mix during processing.
  • E: Fat Based Spreads
  • Preparation of Fat Based Mint Spread
  • Percentage (SHQA- Percentage (Reference-
    Ingredient recipe) recipe)
    96% bean oil/4% palm oil 28.5% 30.0%
    SHQA  1.5%  0.0%
    Full cream milk powder 12.0% 12.0%
    Skimmed milk powder 10.0% 10.0%
    Sugar 48.0% 48.0%
    Lecithin  0.4%  0.4%
    Cream vanillin 0.03% 0.03%
    Mint flavour  0.1%  0.1%
    Green colour
    1 drop 1 drop
  • Approximately 93% of the fat was mixed with the full cream milk powder, the skimmed milk powder, the crystal sugar, the cream vanillin, and the lecithin for 40 min in a ball mill. The SHQA was homogeneously mixed to the remaining fat by stirring and then added to the spread mix. A spread without SHQA was used as reference.
  • Panelling
  • The spread containing the SHQA was compared to the reference spread.
  • The following attributes were evaluated in the spread:
      • Overall texture
      • Overall appearance
      • Spreadability
    Conclusions
  • From the results of the panelling the following conclusions could be drawn:
      • The overall texture, spreadability and overall appearance of the fat based mint spread enriched with SHQA were comparable to those of the reference.
      • A minor difference in colour was detected between the reference and the enriched spread but without affecting negatively the quality of the spread.

Claims (28)

1-34. (canceled)
35. A blend comprising a substituted organic acid, or a derivative thereof and a glyceride wherein the blend comprises:
(i) 0.1 to 99.9 wt % of a hydroquinone substituted poly unsaturated fatty acid or a derivative of said acid,
(ii) 0 to 99.8 wt % of kombo butter glycerides obtainable from kombo butter and
(iii) 0.1 to 99.9 wt % of other triglycerides.
36. A blend according to claim 35 wherein (i) is sargahydroquinoic acid (SHQA), a C1 to C32 acid or alcohol ester thereof or a food acceptable salt thereof.
37. A blend according to claim 35 wherein (i) is an ester or food acceptable salt of said hydroquinone substituted polyunsaturated fatty acid.
38. A blend according to claim 35 wherein the acid derivative is an ester of the hydroquinone substituted poly unsaturated fatty acid and a straight chain saturated and/or unsaturated alcohol with 2 to 20 carbon atoms.
39. A blends according to claim 35 wherein the hydroquinone substituted poly unsaturated fatty acid derivative is a Na or K or Ca salt.
40. A blend according to claim 35 wherein components (i) and (ii) are obtained from kombo nut oil.
41. A blend according to claim 35, wherein the other glycerides (iii) are selected from the group consisting of palm oil; cocoa butter; coconut oil; palm kernel oil; soy bean oil, olive oil; sunflower oil; rape seed oil; safflower oil; corn oil, cotton seed oil; cocoa butter equivalents or cocoa butter replacers; fish oil; borage oil, pine nut oil; coriander oil; fungal oils, or high oleic varieties thereof, or fractions thereof, or hardened varieties thereof, or fractions of the hardened varieties or mixtures of one or more of these oils and fats.
42. A blend according to claim 35 wherein the blend displays a solid fat content, measured by NMR pulse on a non stabilized blend at the temperature indicated of N5=5 to 80 and N35=less than 20.
43. A blend according to claim 35 wherein the hydroquinone substituted poly unsaturated fatty acid is isolated from Pycnanthus angolensis nut oil.
44. A blend according to claim 35 wherein the blend comprises an effective amount of an oxidation stabiliser selected from the group consisting of natural or synthetic tocopherols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids.
45. A food composition comprising an effective amount of a health component wherein the health component is a hydroquinone substituted poly unsaturated fatty acid or a derivative thereof.
46. A food composition according to claim 45 wherein said fatty acid or derivative thereof is SHQA or an ester or food acceptable salt thereof.
47. A food composition according to claim 45 which is selected from the group consisting of margarine; fat continuous or water continuous or bicontinuous spreads, fat reduced spreads; confectionery products, ice creams, ice cream coatings, ice cream inclusions, dressings, mayonnaises, cheese, cream alternatives, dry soups, drinks, cereal bars, sauces and snack bars.
48. A food supplement comprising an effective amount of a hydroquinone substituted poly unsaturated fatty acid or a derivative thereof in an encapsulating material or in granule or powder form.
49. A food supplement according to claim 48 wherein the acid is SHQA or ester or food acceptable salt thereof and the encapsulating material is selected from the group consisting of gelatin, starch, modified starch, flour, modified flour, sucrose, lactose, glucose and fructose.
50. The method of treatment which comprises administering to a host in need of treatment, a blend according to claim 35, a food composition or food supplement according to claim 45 or claim 48 in an amount effective to obtain at least one of the following health effects:
(i) acting as a lipase inhibitor for pancreatic lipase
(ii) acting as a ligand for peroxisome proliferator activated receptors subtype alpha or gamma
(iii) reducing or helping prevent ageing or photo damage of the skin
(iv) promoting the formation of decorin in the skin
(v) reducing/helping to prevent acne
(vi) reducing/helping to prevent cellulite
(vii) enhancing body or oral freshness
(viii) preventing the formation of free radicals, delaying the oxidation of fats and oils and/or to help prevent or retard the development of diseases in mammals related to the presence of free radicals
(ix) improving glucose metabolism and/or reducing blood glucose levels;
(x) treating or preventing insulin resistance;
(xi) treating or preventing Type 2 diabetes;
(xii) treating or preventing Syndrome X;
(xiii) treating or preventing stroke;
(xiv) treating or preventing hypertension.
51. The method of claim 50 wherein the hydroquinone substituted poly unsaturated fatty acid in said blend, food composition or food supplement is sargahydroquinoic acid (SHQA) or ester or salt derivative thereof and said composition is administered to prevent or retard the development of cancer, Alzheimer disease, arthritis and/or cardiovascular diseases.
52. The method of claim 51 wherein the derivative is a C6 to C20 acid or alcohol ester of SHQA.
53. The method of claim 51 wherein the hydroquinone substituted poly unsaturated fatty acid derivative is a Na or K or Ca salt of SHQA.
54. The method of claim 50 wherein the derivatives are used as a mix with an effective amount of one or more other anti oxidants selected from the group consisting of natural or synthetic tocopherols, BHT, TBHQ, BHA, propylgallate; free radical scavengers, enzymes with anti oxidant properties and ascorbyl esters of fatty acids.
55. Process for the enrichment of a hydroquinone substituted poly unsaturated fatty acid present in kombo nut oil or derivatives thereof in a glyceride surrounding which comprises:
(i) selecting a kombo nut oil containing a sufficient amount of the desired acid or acid derivative
(ii) refining the oil by neutralization by adding a base at a temperature of 40 to 60° C.
(iii) separating the crude reaction produce in an organic phase and an aqueous phase
(iv) acidifying the water phase of step (iii) to a pH of 0 to 4 and draining off the organic phase, and
(v) recovering a product that contains the hydroquinone substituted poly unsaturated fatty acid in an amount of more than 20 wt %.
56. The method of claim 50 wherein the blend, food composition or food supplement is administered to treat or prevent Type 2 diabetes.
57. The method of claim 50 wherein the blend, food composition or food supplement is administered to treat or prevent impaired glucose tolerance.
58. A method of obtaining an improved health effect which comprises administering to a subject in need of such improved health effect an effective amount of at least one member of the group consisting of SHQA, a C1 to C32 acid or alcohol ester of SHQA and food acceptable salts of SHQA.
59. A method according to claim 58 for treating or preventing Type 2 diabetes comprising administering an effective amount of a SHQA or ester or salt derivative thereof to a mammal in need of such treatment or prevention.
60. A composition for improving health comprising an effective amount of a blend according to claim 35.
61. A composition for improving health comprising an effective amount of SHQA extracted from kombo nut oil or ester or food acceptable salt thereof.
US12/508,635 2001-09-04 2009-07-24 Blends Comprising a Substituted Fatty Acid or a Derivative Thereof Abandoned US20100029766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/508,635 US20100029766A1 (en) 2001-09-04 2009-07-24 Blends Comprising a Substituted Fatty Acid or a Derivative Thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP01307523.9 2001-09-04
EP01307523 2001-09-04
EP02251500.1 2002-03-04
EP02251500 2002-03-04
US10/230,352 US7582317B2 (en) 2001-09-04 2002-08-29 Food supplements comprising, as a health component, sargahydroquinoic acid or derivative thereof
US12/508,635 US20100029766A1 (en) 2001-09-04 2009-07-24 Blends Comprising a Substituted Fatty Acid or a Derivative Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/230,352 Continuation US7582317B2 (en) 2001-09-04 2002-08-29 Food supplements comprising, as a health component, sargahydroquinoic acid or derivative thereof

Publications (1)

Publication Number Publication Date
US20100029766A1 true US20100029766A1 (en) 2010-02-04

Family

ID=26077171

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/230,352 Expired - Fee Related US7582317B2 (en) 2001-09-04 2002-08-29 Food supplements comprising, as a health component, sargahydroquinoic acid or derivative thereof
US12/508,635 Abandoned US20100029766A1 (en) 2001-09-04 2009-07-24 Blends Comprising a Substituted Fatty Acid or a Derivative Thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/230,352 Expired - Fee Related US7582317B2 (en) 2001-09-04 2002-08-29 Food supplements comprising, as a health component, sargahydroquinoic acid or derivative thereof

Country Status (8)

Country Link
US (2) US7582317B2 (en)
EP (1) EP1287825B1 (en)
JP (2) JP4191447B2 (en)
AT (1) ATE322256T1 (en)
DE (1) DE60210382T2 (en)
DK (1) DK1287825T3 (en)
ES (1) ES2264463T3 (en)
PT (1) PT1287825E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160279A1 (en) * 2013-03-13 2014-10-02 Viroxis Corporation Stabilized cream formulations comprising sandalwood oil
US9105766B2 (en) 2012-03-22 2015-08-11 Stmicroelectronics (Grenoble 2) Sas Optical electronic package
US10857191B2 (en) 2015-10-07 2020-12-08 Santalis Pharmaceuticals, Inc. Sandalwood oil and its uses related to oral mucositis

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223877B2 (en) * 2001-07-19 2007-05-29 Leonard Edward C Uses of hydroquinone substituted polyunsaturated fatty acids as antioxidants
US7371413B2 (en) * 2003-05-05 2008-05-13 Rutgers, The State University Antioxidant and anti-inflammatory activity of compounds and preparations from African nutmeg seeds
EP1512331B1 (en) * 2003-09-02 2007-11-21 IPC Process Center GmbH & Co. Dietary supplement
WO2005072722A2 (en) 2004-01-20 2005-08-11 Nutrition Therapeutics, Inc. Method of using punicic acid to enhance immune response and prevent metabolic disorders
MY140578A (en) * 2005-12-07 2009-12-31 Malaysian Agricultural Res And Dev Inst Mardi Modified coconut oils with broad antimicrobial spectrum
KR100812827B1 (en) 2006-10-10 2008-03-17 재단법인서울대학교산학협력재단 A composition comprising an extract of sargassum sagamianum showing anti-inflammatory activity, anti-allergic and anti-asthmatic activity
WO2008150169A1 (en) * 2007-06-08 2008-12-11 Sime Darby Malaysia Berhad Biscuits and crackers containing reduced levels of saturated fat and method for the manufacture thereof
KR100839225B1 (en) 2007-06-22 2008-06-17 가톨릭대학교 산학협력단 Cosmetic composition containing sargachromenol for preventing or improving skin diseases
US20100004334A1 (en) 2008-07-01 2010-01-07 Mead Johnson Nutrition Company Nutritional Compositions Containing Punicalagins
WO2010111584A1 (en) * 2009-03-26 2010-09-30 Rutgers, The State University Of New Jersey Neuroprotective compositions and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001876A (en) * 1959-01-09 1961-09-26 Crest Foods Co Inc Protein-hydrocolloid powder and process for producing the same
US3615588A (en) * 1967-07-28 1971-10-26 Henkel & Cie Gmbh Glyceride mixture and plastic edible fats prepared therefrom
US4451488A (en) * 1981-06-22 1984-05-29 The Quaker Oats Company Food bar
US5674900A (en) * 1995-06-06 1997-10-07 Shaman Pharmaceuticals, Inc. Terpenoid-type quinones for treatment of diabetes
US6267985B1 (en) * 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US6489494B1 (en) * 2001-07-19 2002-12-03 Edward C. Leonard Uses of kombic acid as an antioxidant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143132A (en) 1984-08-06 1986-03-01 Takeda Chem Ind Ltd Quinone derivative, its preparation, and pharmaceutical composition containing same
JPH08169826A (en) 1994-08-12 1996-07-02 Takeda Chem Ind Ltd Preventive and therapeutic agent for cachexia
JPH09118665A (en) 1995-08-21 1997-05-06 Takeda Chem Ind Ltd Quinone compound, its production and use
CA2328344A1 (en) 1998-04-16 1999-10-21 Thomas Dosomu-Jonhson Method for the treatment of asthma

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001876A (en) * 1959-01-09 1961-09-26 Crest Foods Co Inc Protein-hydrocolloid powder and process for producing the same
US3615588A (en) * 1967-07-28 1971-10-26 Henkel & Cie Gmbh Glyceride mixture and plastic edible fats prepared therefrom
US4451488A (en) * 1981-06-22 1984-05-29 The Quaker Oats Company Food bar
US5674900A (en) * 1995-06-06 1997-10-07 Shaman Pharmaceuticals, Inc. Terpenoid-type quinones for treatment of diabetes
US6267985B1 (en) * 1999-06-30 2001-07-31 Lipocine Inc. Clear oil-containing pharmaceutical compositions
US6489494B1 (en) * 2001-07-19 2002-12-03 Edward C. Leonard Uses of kombic acid as an antioxidant
US6713512B1 (en) * 2001-07-19 2004-03-30 Edward C. Leonard Uses of kombic acid as an anticancer and cholesterol-lowering agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105766B2 (en) 2012-03-22 2015-08-11 Stmicroelectronics (Grenoble 2) Sas Optical electronic package
WO2014160279A1 (en) * 2013-03-13 2014-10-02 Viroxis Corporation Stabilized cream formulations comprising sandalwood oil
US9861670B2 (en) 2013-03-13 2018-01-09 Santalis Healthcare Corporation Stabilized cream formulations comprising sandalwood oil
US10857191B2 (en) 2015-10-07 2020-12-08 Santalis Pharmaceuticals, Inc. Sandalwood oil and its uses related to oral mucositis

Also Published As

Publication number Publication date
PT1287825E (en) 2006-06-30
DE60210382T2 (en) 2007-02-01
US7582317B2 (en) 2009-09-01
JP2007044046A (en) 2007-02-22
JP2003119493A (en) 2003-04-23
ATE322256T1 (en) 2006-04-15
EP1287825B1 (en) 2006-04-05
DK1287825T3 (en) 2006-05-01
EP1287825A1 (en) 2003-03-05
DE60210382D1 (en) 2006-05-18
JP4444935B2 (en) 2010-03-31
US20030129294A1 (en) 2003-07-10
JP4191447B2 (en) 2008-12-03
ES2264463T3 (en) 2007-01-01

Similar Documents

Publication Publication Date Title
US20100029766A1 (en) Blends Comprising a Substituted Fatty Acid or a Derivative Thereof
Andersen et al. Margarine
Temme et al. Effects of medium chain fatty acids (MCFA), myristic acid, and oleic acid on serum lipoproteins in healthy subjects
Berrougui et al. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats
JP4995377B2 (en) Oil composition
US5059622A (en) Method for reducing blood pressure levels in hypertensive persons
JP4053724B2 (en) Compositions containing pinolenic acid and their use as healthful ingredients
Ramadan et al. Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit-seeds of buttercup tree [Madhuca longifolia (Koenig)]
US6365175B1 (en) Petroselinic acid and its use in food
JP2005518421A (en) Fractionation of phytosterol esters in oil
KR20170060180A (en) Satiety-inducing composition
Chen et al. The characterization of soybean germ oil and the antioxidative activity of its phytosterols
SE523094C2 (en) Process for the preparation of a fat composition containing sterol esters, free sterols and glycerides, fat composition prepared by the process and use of the fat composition
Khurana et al. Sunflower (Helianthus annuus) seed
JPH03169835A (en) Diol lipid analog as substitute of edible fat
JPH02268659A (en) Tris-hydroxymethyl lower alkane ester as fat similar substance
TWI395551B (en) Compositions for oils and fats containing baking products
EP1304925B1 (en) Solid phase glycerolysis
EP1402785A1 (en) Ximenynic acid
US5045338A (en) Secondary amide esters as low calorie fat mimetics
US5059442A (en) Primary amide esters as low calorie fat mimetics
US20040115331A1 (en) Ximenynic acid compositions, methods for their production and uses thereof
AU770436B2 (en) Use of prenylated flavones
CA1334002C (en) Essential fatty acid compositions and methods for the modulation of prostaglandin levels in mammals
AU6534799A (en) Petroselinic acid and its use in food

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNILEVER PATENT HOLDINGS,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARCLAY, SCOTT SINCLAIR;BOSLEY, JOHN ANTHONY;CAIN, FREDERICK WILLIAM;AND OTHERS;REEL/FRAME:023001/0188

Effective date: 20020904

Owner name: LC USA LLC,ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNILEVER PATENT HOLDINGS B.V.;REEL/FRAME:023001/0249

Effective date: 20021129

Owner name: LODERS CROKLAAN USA LLC,ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:LC USA LLC;REEL/FRAME:023001/0282

Effective date: 20021224

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION