US20100032139A1 - Wind-guiding cover - Google Patents

Wind-guiding cover Download PDF

Info

Publication number
US20100032139A1
US20100032139A1 US12/425,863 US42586309A US2010032139A1 US 20100032139 A1 US20100032139 A1 US 20100032139A1 US 42586309 A US42586309 A US 42586309A US 2010032139 A1 US2010032139 A1 US 2010032139A1
Authority
US
United States
Prior art keywords
airflow
wind
heat exchange
guiding cover
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/425,863
Inventor
Wen-Bin Tian
Tsai-Kuei Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventec Corp
Original Assignee
Inventec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventec Corp filed Critical Inventec Corp
Assigned to INVENTEC CORPORATION reassignment INVENTEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, TSAI-KUEI, TIAN, WEN-BIN
Publication of US20100032139A1 publication Critical patent/US20100032139A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a wind-guiding cover, and more particularly, to a wind-guiding cover applied to an electronic device for guiding wind to dissipate heat generated by electronic components in the electronic device.
  • a conventional wind-guiding cover 1 is a hallow body with a top board 10 and two side boards 11 , downwardly extended from the top board 10 , wherein an air inlet 12 and an air outlet 13 are provided on its two ends.
  • the conventional wind-guiding cover 1 is mounted over a main board 14 of an electronic device to cover a heat generating component 15 to allow the heat generating component 15 to be placed within the wind-guiding cover 1 .
  • An airflow 160 driven from the air inlet 12 to the air outlet 13 , is generated by the heat-dissipating fans 16 to achieve the heat dissipation effect thereby.
  • the heat dissipation effect of the wind-guiding cover 1 only relies on a straight air passage formed by the top board 10 and two side boards 11 . While the heat dissipation is subject to the airflow 160 running through the wind-guiding cover 1 , it would not be efficient. The result often leads to insufficient dissipation of heat from the heat generating component 15 , thereby causing adverse effect to the operation of the heat generating component 15 .
  • the present invention provides a wind-guiding cover, which is capable of improving heat dissipation effect.
  • the present invention also provides a wind-guiding cover, which is capable of improving heat exchange efficiency by the provision of a higher heat exchange coefficient.
  • the present invention provides a wind-guiding cover, which is capable of reducing an air resistance.
  • the present invention proposes a wind-guiding cover applied to a heat generating component installed on a main board, the heat generating component is covered with the wind-guiding cover forming an air passage with the main board, the wind-guiding cover comprises: an air inlet portion having an air inlet provided on a first end of the air passage and coupled with the fan module; an air outlet portion having an air outlet provided on a second end of the air passage and opposite to the air inlet; and a heat exchange zone provided between the air inlet portion and the air outlet portion and allowing the heat generating component to be situated within the heat exchange zone, the heat exchange zone having an airflow disturbing portion adjacent to the air inlet portion.
  • An airflow pressing section is further formed between the air inlet and the heat exchange zone within the air inlet portion, for allowing the airflow to be pressed downwards in the heat exchange zone for acceleration.
  • an air diffusion section may be alternatively formed between the airflow disturbing portion and the air outlet portion to reduce air resistance of the airflow passing therethrough.
  • the airflow disturbing portion has at least a V-shaped intersection.
  • the airflow disturbing portion is formed by a first inclined plane and a second inclined plane.
  • the first inclined plane is connected to the air inlet portion is formed on an inner top wall of the heat exchange zone to extend downwards alongside the airflow direction
  • the second inclined plane opposite to the air inlet portion is formed on the inner top wall of the heat exchange zone to extend upwards alongside the airflow direction.
  • the first inclined plane and the second inclined plane has a V-shaped structure in combination.
  • the airflow pressing section which is formed with a second sloped plane to extend downwards, is connected to the first inclined plane of the airflow disturbing portion . It thus allows the airflow pressing section to have a slope equal to that of the first inclined plane in the airflow disturbing portion.
  • the air diffusion section is provided between the second inclined plane and the air outlet portion.
  • the air diffusion section is formed with a first sloped plane disposed on the inner top wall of the heat exchange zone to extend upwards alongside the airflow direction, with an inclined angle equal to that of the second inclined plane.
  • the slope of the air diffusion section against a horizontal plane is 30 degrees or less.
  • the air passage between the airflow disturbing portion and the heat generating component can be formed.
  • the heat convection and exchange efficiency will be superior to that of the prior art.
  • the heat generated by the heat generating component can be efficiently dissipated as a consequence.
  • the air resistance in the present invention will be reduced due to a more spacious air passage through the design of the air diffusion section.
  • FIGS. 1A and 1B are schematic diagrams illustrating applications of a conventional wind-guiding cover
  • FIG. 2A shows a perspective diagram according to a first preferred embodiment of the present invention
  • FIG. 2B shows a schematic diagram according to the first preferred embodiment of the present invention applied to an electronic device
  • FIG. 3 shows a schematic diagram according to a second preferred embodiment of the present invention applied to an electronic device
  • FIG. 4 shows a schematic diagram according to a third preferred embodiment of the present invention applied to an electronic device.
  • FIGS. 2A and 2B schematic diagrams according to a first preferred embodiment of the present invention are illustrated. It is to be noted that the drawings are simplified diagrams and only show components relating to the present invention. All the designs for an electronic device comprising a heat exchange zone with an airflow disturbing portion to agitate the air running through, as well as an air inlet portion and an air outlet portion opposing to each other, are applicable to the invention.
  • FIG. 2A indicates a bottomless wind-guiding cover 2 that consists of a top board 2 a and two side boards 2 b extended downwards from the top board 2 a to form a bottomless housing.
  • the two side boards 2 b are respectively integrally formed with the top boards 2 a.
  • the foregoing wind-guiding cover 2 comprises an air inlet portion 21 , an air outlet portion 22 opposing to the air inlet portion 21 , and a heat exchange zone 20 provided between the air inlet portion 21 and the air outlet portion 22 .
  • the air inlet portion 21 has an air inlet 210
  • the air outlet portion 22 has an air outlet 220 .
  • An airflow disturbing portion 200 is also formed in the heat exchange zone 20 , which is adjacent to the air inlet portion 21 .
  • the wind-guiding cover 2 is shown applied to an electronic device with a heat generating component 3 .
  • the heat generating component 3 is installed on a main board 4 and covered by the wind-guiding cover 2 , in a manner that the heat generating component 3 is received in the heat exchange zone 20 of the wind guiding cover 2 and therefore, an air passage 6 is formed between the wind-guiding cover 2 and the main board 4 .
  • the air inlet 210 is connected with a fan module 5 , which allows a cool airflow 50 driven by the fan module 5 to enter the air passage 6 via the air inlet 210 .
  • On a second end of the air passage 6 is resided by the air outlet 220 .
  • the heat exchange zone 20 between the air inlet 210 and the air outlet 220 is located above the heat generating component 3 .
  • the heat exchange zone 20 allows heat exchange of the cool airflow 50 entering from the air inlet 210 with the heat generating component 3 .
  • the cool airflow 50 changes into hot airflow by the heat generating component 3 to be exhausted through the air outlet 220 to the ambient.
  • the airflow disturbing portion 200 is formed with a first inclined planed plane 200 a and a second inclined planed plane 200 b , the first inclined planed plane 200 a connected to the air inlet portion 21 is formed on an inner top wall of the heat exchange zone 20 to extend downwards alongside the airflow direction, and the second inclined planed plane 200 b opposite to the air inlet portion 21 is formed on the inner top wall of the heat exchange zone 20 to extend upwards alongside the airflow direction.
  • the first inclined plane 200 a is sloped to a direction opposite to and connected to the second inclined plane 200 b , the airflow disturbing portion 200 is thus formed in a V-shaped folded structure.
  • the airflow disturbing portion 200 includes any folded structure bending towards the heat generating component 3 (described as below) as long as it is formed in the heat exchange zone 20 to increase the air disturbance above the heat generating component 3 by allowing more cool airflow 50 to heat exchange with the heat generating component 3 in the heat exchange zone 20 .
  • the heat exchange coefficient and efficiency will be improved accordingly with the application of the wind-guiding cover of the present invention.
  • the airflow disturbing portion 200 is provided adjacent to the air inlet portion 21 to allow a higher air disturbance right after the entrance of the cool airflow 50 into the heat exchange zone 20 , thus, the heat exchange coefficient and its efficiency can be improved even further.
  • the electronic device is exemplified by, but not limited to, a server in the embodiment.
  • a memory illustrated in the invention as the heat generating component 3 mounted by the wind-guiding cover 2 is also an instance which can be other heat generating components such as central processing unit (CPU), North Bridge, Integrated Circuit (IC), and power supply.
  • CPU central processing unit
  • IC Integrated Circuit
  • the heat convection and exchange coefficient in the present invention which improves the heat dissipation effect, are superior to those of the prior art due to the design of an airflow disturbing portion. Because the airflow disturbing portion 200 leads to a greater air disturbance under the circumstances of the same amount of the cool airflow 50 flowing through the heat exchange zone 20 .
  • FIG. 3 shows a schematic diagram according to a second preferred embodiment of the present invention, with only one major distinction in the structure of the heat exchange zone 20 if compared to the first embodiment. It is to be noted that the detailed descriptions are omitted here for the same of brevity.
  • two V-shaped folded structures are formed in an airflow disturbing portion 200 ′ of the heat exchange zone 20 in order to increase disturbance of the cool airflow 50 so that the heat dissipation effect can be improved (described as below).
  • the length and slope angle of each first inclined plane 200 a , 200 a ′ are allowed to be equal to each other or not.
  • the length and slope angle of each second inclined plane 200 b , 200 b ′ are allowed to be equal to each other or not.
  • different length, slope angle, and depth of the V-shaped folded structure or other folded structures are all applicable in practice.
  • An air diffusion section 201 is formed between an airflow disturbing portion 200 ′ and the air outlet portion 22 to allow a sufficient airflow space by enlarging the air passage 6 . Therefore, the air resistance is so reduced that the airflow can be conducted outside through the air outlet 220 more efficiently to dissipate the heat.
  • the air diffusion section 201 is formed with a first sloped plane formed on the inner top wall of the heat exchange zone 20 to extend upwards alongside the airflow direction, with connecting to the second inclined plane 200 b ′.
  • the slope angle of the air diffusion section 201 and that of the second inclined plane 200 b ′ are equal to each other, which is 30 degrees or less against a horizontal plane.
  • FIG. 4 shows a schematic diagram according to a third preferred embodiment of the present invention, with only one major distinction in the structure of an air inlet portion 21 ′ if compared to the second embodiment. It is to be noted that the detailed descriptions are omitted here for the same of brevity.
  • an airflow pressing section 211 is formed in the air inlet portion 21 ′ between the air inlet 210 and the heat exchange zone 20 to concentrate the airflow. A higher airflow velocity is then produced by massing and pressing downwards the cool airflow 50 , which is generated by the fan module 5 , onto the heat exchange zone 20 .
  • the airflow pressing section 211 is formed by a part of the air inlet portion 21 ′, which is formed with a second sloped plane to extend downwards and connected to the first inclined plane 200 a of the air disturbing portion 200 ′.
  • the slope angle of the airflow pressing section 211 and that of the first inclined plane 200 a are equal to each other.
  • both second and third embodiments two V-shaped folded structures are illustrated in the airflow disturbing portion 200 ′ and combined with the heat generating component 3 to form a narrow space.
  • the increased air disturbance of the cool airflow flowing through the narrow space improves the heat exchange coefficient as well as the heat dissipation effect.
  • test experiments on the prior art and the present invention with one or two V-shaped folded structure are conducted to verify their heat dissipation effects respectively.
  • the results are listed below, wherein DIMM 1-12 represent different heat generating components; F represents results tested from front sides of the generating components, while B represents results tested from back sides of the generating components.
  • the standard temperature of 85 degrees indicates the temperature during these tests cannot go beyond 85 degrees.
  • the air disturbance increases as the air passage between the airflow disturbing portion and the heat generating component is narrowed. Therefore, the heat exchange effect will be improved by the enhanced heat convection and exchange coefficient.
  • the air resistance in the present invention will be reduced due to a more spacious air passage through the design of the air diffusion section to further improve the heat exchange effect.

Abstract

A wind guiding cover applied to an electronic device is provided, which has an air inlet portion and an air outlet portion opposing to the air inlet portion. A heat exchange zone is formed between the air inlet and the air outlet, and an airflow disturbing portion, adjacent to the air inlet portion, is formed within the heat exchange zone. The airflow disturbing portion in the present invention allows a greater air disturbance of the airflow passing therethrough, as a result, it improves the heat exchange coefficient and increases the heat exchange effect in the present invention.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a wind-guiding cover, and more particularly, to a wind-guiding cover applied to an electronic device for guiding wind to dissipate heat generated by electronic components in the electronic device.
  • BACKGROUND OF THE INVENTION
  • Interior overheating problems tend to happen on commercially available electronic devices due to frequent and long-time operations, which may result in malfunctions. Moreover, the better operational speed and data processing abilities imply the higher breakdown probability caused by heat generating components, such as Central Processing Unit (CPU), memory, North Bridge and power supply, when they are overheated. In order to prevent such a problem beforehand, heat-dissipating fans are installed inside the electronic devices to dissipate the heat generated by heat generating components. This may reduce the chance of failures of heat generating components at a high temperature, and consequently, reduce the chance of instability as the electronic devices are working.
  • However, during the heat dissipating process, the cooling efficiency achieved merely by heat-dissipating fans is far from satisfactory, in other words, the optimal heat dissipation effect has not been realized. The malfunctions of heat generating components owing to overheating were partially solved by a conventional wind-guiding cover mounted over them, which creates an airflow passage and concentrates the air. The increased airflow density from heat-dissipating fans in the conventional wind-guiding cover can further facilitate the heat conduction to improve its heat dissipating performance of the heat-dissipating fans. Therefore, a wind-guiding cover has become essential to the heat generating system.
  • Referring to FIGS. 1A and 1B, a conventional wind-guiding cover 1 is a hallow body with a top board 10 and two side boards 11, downwardly extended from the top board 10, wherein an air inlet 12 and an air outlet 13 are provided on its two ends. The conventional wind-guiding cover 1 is mounted over a main board 14 of an electronic device to cover a heat generating component 15 to allow the heat generating component 15 to be placed within the wind-guiding cover 1. An airflow 160, driven from the air inlet 12 to the air outlet 13, is generated by the heat-dissipating fans 16 to achieve the heat dissipation effect thereby.
  • Nevertheless, the heat dissipation effect of the wind-guiding cover 1 only relies on a straight air passage formed by the top board 10 and two side boards 11. While the heat dissipation is subject to the airflow 160 running through the wind-guiding cover 1, it would not be efficient. The result often leads to insufficient dissipation of heat from the heat generating component 15, thereby causing adverse effect to the operation of the heat generating component 15.
  • Thus, a solution to overcome the drawbacks in the prior art as well as to provide a more efficient wind-guiding cover is of great urgency nowadays.
  • SUMMARY OF THE INVENTION
  • In light of the foregoing drawbacks in the prior art, the present invention provides a wind-guiding cover, which is capable of improving heat dissipation effect.
  • The present invention also provides a wind-guiding cover, which is capable of improving heat exchange efficiency by the provision of a higher heat exchange coefficient.
  • Moreover, the present invention provides a wind-guiding cover, which is capable of reducing an air resistance.
  • In accordance with the above and other provisions, the present invention proposes a wind-guiding cover applied to a heat generating component installed on a main board, the heat generating component is covered with the wind-guiding cover forming an air passage with the main board, the wind-guiding cover comprises: an air inlet portion having an air inlet provided on a first end of the air passage and coupled with the fan module; an air outlet portion having an air outlet provided on a second end of the air passage and opposite to the air inlet; and a heat exchange zone provided between the air inlet portion and the air outlet portion and allowing the heat generating component to be situated within the heat exchange zone, the heat exchange zone having an airflow disturbing portion adjacent to the air inlet portion.
  • An airflow pressing section is further formed between the air inlet and the heat exchange zone within the air inlet portion, for allowing the airflow to be pressed downwards in the heat exchange zone for acceleration. Then, an air diffusion section may be alternatively formed between the airflow disturbing portion and the air outlet portion to reduce air resistance of the airflow passing therethrough. In addition, the airflow disturbing portion has at least a V-shaped intersection.
  • According to the wind-guiding cover of the present invention, the airflow disturbing portion is formed by a first inclined plane and a second inclined plane. the first inclined plane is connected to the air inlet portion is formed on an inner top wall of the heat exchange zone to extend downwards alongside the airflow direction, and the second inclined plane opposite to the air inlet portion is formed on the inner top wall of the heat exchange zone to extend upwards alongside the airflow direction. Preferably, the first inclined plane and the second inclined plane has a V-shaped structure in combination.
  • According to the structure mentioned above, the airflow pressing section, which is formed with a second sloped plane to extend downwards, is connected to the first inclined plane of the airflow disturbing portion . It thus allows the airflow pressing section to have a slope equal to that of the first inclined plane in the airflow disturbing portion.
  • Likewise, the air diffusion section is provided between the second inclined plane and the air outlet portion. The air diffusion section is formed with a first sloped plane disposed on the inner top wall of the heat exchange zone to extend upwards alongside the airflow direction, with an inclined angle equal to that of the second inclined plane. Preferably, the slope of the air diffusion section against a horizontal plane is 30 degrees or less.
  • By applying the airflow disturbing portion within the heat exchange zone to the present invention, the air passage between the airflow disturbing portion and the heat generating component can be formed. Thus its heat convection and exchange efficiency will be superior to that of the prior art. The heat generated by the heat generating component can be efficiently dissipated as a consequence. Moreover, the air resistance in the present invention will be reduced due to a more spacious air passage through the design of the air diffusion section.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
  • FIGS. 1A and 1B (PRIOR ART) are schematic diagrams illustrating applications of a conventional wind-guiding cover;
  • FIG. 2A shows a perspective diagram according to a first preferred embodiment of the present invention;
  • FIG. 2B shows a schematic diagram according to the first preferred embodiment of the present invention applied to an electronic device;
  • FIG. 3 shows a schematic diagram according to a second preferred embodiment of the present invention applied to an electronic device;
  • FIG. 4 shows a schematic diagram according to a third preferred embodiment of the present invention applied to an electronic device.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The preferred embodiments of a wind-guiding cover proposed in the present invention are described in detail as follows. Not only its advantages but also the effectiveness can be easily understood through the content being disclosed in the invention.
  • First Preferred Embodiment
  • As shown in FIGS. 2A and 2B, schematic diagrams according to a first preferred embodiment of the present invention are illustrated. It is to be noted that the drawings are simplified diagrams and only show components relating to the present invention. All the designs for an electronic device comprising a heat exchange zone with an airflow disturbing portion to agitate the air running through, as well as an air inlet portion and an air outlet portion opposing to each other, are applicable to the invention.
  • FIG. 2A indicates a bottomless wind-guiding cover 2 that consists of a top board 2 a and two side boards 2 b extended downwards from the top board 2 a to form a bottomless housing. Preferably, the two side boards 2 b are respectively integrally formed with the top boards 2 a.
  • The foregoing wind-guiding cover 2 comprises an air inlet portion 21, an air outlet portion 22 opposing to the air inlet portion 21, and a heat exchange zone 20 provided between the air inlet portion 21 and the air outlet portion 22. The air inlet portion 21 has an air inlet 210, while the air outlet portion 22 has an air outlet 220. An airflow disturbing portion 200 is also formed in the heat exchange zone 20, which is adjacent to the air inlet portion 21.
  • Referring to FIG. 2B, the wind-guiding cover 2 is shown applied to an electronic device with a heat generating component 3. The heat generating component 3 is installed on a main board 4 and covered by the wind-guiding cover 2, in a manner that the heat generating component 3 is received in the heat exchange zone 20 of the wind guiding cover 2 and therefore, an air passage 6 is formed between the wind-guiding cover 2 and the main board 4.
  • On a first end of the air passage 6, the air inlet 210 is connected with a fan module 5, which allows a cool airflow 50 driven by the fan module 5 to enter the air passage 6 via the air inlet 210. On a second end of the air passage 6 is resided by the air outlet 220. Further, the heat exchange zone 20 between the air inlet 210 and the air outlet 220, is located above the heat generating component 3. The heat exchange zone 20 allows heat exchange of the cool airflow 50 entering from the air inlet 210 with the heat generating component 3. The cool airflow 50 changes into hot airflow by the heat generating component 3 to be exhausted through the air outlet 220 to the ambient.
  • the airflow disturbing portion 200 is formed with a first inclined planed plane 200 a and a second inclined planed plane 200 b, the first inclined planed plane 200 a connected to the air inlet portion 21 is formed on an inner top wall of the heat exchange zone 20 to extend downwards alongside the airflow direction, and the second inclined planed plane 200 b opposite to the air inlet portion 21 is formed on the inner top wall of the heat exchange zone 20 to extend upwards alongside the airflow direction. In the preferred embodiment, the first inclined plane 200 a is sloped to a direction opposite to and connected to the second inclined plane 200 b, the airflow disturbing portion 200 is thus formed in a V-shaped folded structure. Although there is only one V-shaped folded structure shown in the drawings to indicate the airflow disturbing portion 200, two or more fold structures in a different or the same shape that forms the airflow disturbing portion 200 are applicable in practice. In other words, the airflow disturbing portion 200 according to the present invention includes any folded structure bending towards the heat generating component 3 (described as below) as long as it is formed in the heat exchange zone 20 to increase the air disturbance above the heat generating component 3 by allowing more cool airflow 50 to heat exchange with the heat generating component 3 in the heat exchange zone 20. Thus, the heat exchange coefficient and efficiency will be improved accordingly with the application of the wind-guiding cover of the present invention.
  • Preferably, the airflow disturbing portion 200 is provided adjacent to the air inlet portion 21 to allow a higher air disturbance right after the entrance of the cool airflow 50 into the heat exchange zone 20, thus, the heat exchange coefficient and its efficiency can be improved even further.
  • It is to be noted that the electronic device is exemplified by, but not limited to, a server in the embodiment. A memory illustrated in the invention as the heat generating component 3 mounted by the wind-guiding cover 2, is also an instance which can be other heat generating components such as central processing unit (CPU), North Bridge, Integrated Circuit (IC), and power supply. Besides, since the heat generating component 3 and the fan module 5 have been disclosed in the prior art with their known structures and mechanisms, they are used hereby only for illustrating the embodiment of the present invention.
  • However, it should be highlighted that the heat convection and exchange coefficient in the present invention, which improves the heat dissipation effect, are superior to those of the prior art due to the design of an airflow disturbing portion. Because the airflow disturbing portion 200 leads to a greater air disturbance under the circumstances of the same amount of the cool airflow 50 flowing through the heat exchange zone 20.
  • Second Preferred Embodiment
  • FIG. 3 shows a schematic diagram according to a second preferred embodiment of the present invention, with only one major distinction in the structure of the heat exchange zone 20 if compared to the first embodiment. It is to be noted that the detailed descriptions are omitted here for the same of brevity.
  • As illustrated in FIG. 3, two V-shaped folded structures are formed in an airflow disturbing portion 200′ of the heat exchange zone 20 in order to increase disturbance of the cool airflow 50 so that the heat dissipation effect can be improved (described as below). In addition, the length and slope angle of each first inclined plane 200 a, 200 a′ are allowed to be equal to each other or not. Likewise, the length and slope angle of each second inclined plane 200 b,200 b′ are allowed to be equal to each other or not. In other practices, different length, slope angle, and depth of the V-shaped folded structure or other folded structures are all applicable in practice.
  • An air diffusion section 201 is formed between an airflow disturbing portion 200′ and the air outlet portion 22 to allow a sufficient airflow space by enlarging the air passage 6. Therefore, the air resistance is so reduced that the airflow can be conducted outside through the air outlet 220 more efficiently to dissipate the heat. In the embodiment, the air diffusion section 201 is formed with a first sloped plane formed on the inner top wall of the heat exchange zone 20 to extend upwards alongside the airflow direction, with connecting to the second inclined plane 200 b′. Preferably, the slope angle of the air diffusion section 201 and that of the second inclined plane 200 b′ are equal to each other, which is 30 degrees or less against a horizontal plane.
  • Third Preferred Embodiment
  • FIG. 4 shows a schematic diagram according to a third preferred embodiment of the present invention, with only one major distinction in the structure of an air inlet portion 21′ if compared to the second embodiment. It is to be noted that the detailed descriptions are omitted here for the same of brevity.
  • It is discovered that the height of the inlet portion 21′ should be raised as the height of the fan module 5 against the heat generating component 3 increases. As illustrated in FIG. 4, an airflow pressing section 211 is formed in the air inlet portion 21′ between the air inlet 210 and the heat exchange zone 20 to concentrate the airflow. A higher airflow velocity is then produced by massing and pressing downwards the cool airflow 50, which is generated by the fan module 5, onto the heat exchange zone 20. In the embodiment, the airflow pressing section 211 is formed by a part of the air inlet portion 21′, which is formed with a second sloped plane to extend downwards and connected to the first inclined plane 200 a of the air disturbing portion 200′. Preferably, the slope angle of the airflow pressing section 211 and that of the first inclined plane 200 a are equal to each other.
  • In both second and third embodiments, two V-shaped folded structures are illustrated in the airflow disturbing portion 200′ and combined with the heat generating component 3 to form a narrow space. Thus, the increased air disturbance of the cool airflow flowing through the narrow space improves the heat exchange coefficient as well as the heat dissipation effect.
  • Additionally, test experiments on the prior art and the present invention with one or two V-shaped folded structure are conducted to verify their heat dissipation effects respectively. The results are listed below, wherein DIMM 1-12 represent different heat generating components; F represents results tested from front sides of the generating components, while B represents results tested from back sides of the generating components. The standard temperature of 85 degrees indicates the temperature during these tests cannot go beyond 85 degrees.
  • Wind- Wind-
    guiding guiding
    cover cover Wind-guiding
    without with one cover with two Standard
    Test location fold structure fold structure fold structures temperature
    DIMM 1F 67.7 58.8 57.3 85.0
    DIMM 1B 79.6 68.8 64.7 85.0
    DIMM 2F 81.0 73.1 69.0 85.0
    DIMM 2B 79.7 72.0 69.8 85.0
    DIMM 3F 78.4 67.9 66.6 85.0
    DIMM 3B 78.6 72.0 72.7 85.0
    DIMM 4F 78.8 69.2 69.0 85.0
    DIMM 4B 81.3 84.8 76.7 85.0
    DIMM 5F 80.5 87.9 80.1 85.0
    DIMM 5B 85.2 83.2 80.7 85.0
    DIMM 6F 82.8 75.1 74.5 85.0
    DIMM 6B 77.2 61.6 61.0 85.0
    DIMM 7F 72.3 87.6 79.6 85.0
    DIMM 7B 87.7 81.3 73.1 85.0
    DIMM 8F 90.4 93.0 80.9 85.0
    DIMM 8B 89.7 91.5 81.7 85.0
    DIMM 9F 87.8 86.0 77.6 85.0
    DIMM 9B 84.4 90.1 78.6 85.0
    DIMM 10F 85.7 81.7 76.6 85.0
    DIMM 10B 89.9 84.1 76.8 85.0
    DIMM 11F 94.6 82.4 78.7 85.0
    DIMM 11B 96.5 84.5 77.9 85.0
    DIMM 12F 90.4 79.4 83.1 85.0
    DIMM 12B 76.0 84.8 79.5 85.0
  • From the experiment results listed in the above table, adding two V-shaped folded structures increase the air disturbance of the heat generating component 3 so that the temperature is lowered more evidently. However, the results do not imply more V-shaped folded structure bring about a greater temperature difference. As a matter of fact, the cooling effect of the two V-shaped folded structures is similar to that of the three V-shaped folded structures from the experimental results, which are not indicated here.
  • In conclusion, by applying the design of the airflow disturbing portion to the present invention, the air disturbance increases as the air passage between the airflow disturbing portion and the heat generating component is narrowed. Therefore, the heat exchange effect will be improved by the enhanced heat convection and exchange coefficient.
  • Moreover, the air resistance in the present invention will be reduced due to a more spacious air passage through the design of the air diffusion section to further improve the heat exchange effect.
  • The present invention has been described by exemplary preferred embodiments, however, it is to be understood that the scope of the present invention is not limited to them. On the contrary, it is intended to cover various modifications and similar changes. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (12)

1. A wind-guiding cover applied to an electronic device having at least one heat generating component, wherein the electronic device has a fan module and a main board for the heat generating component to be installed thereon, and the heat generating component is covered with the wind-guiding cover forming an air passage with the main board, the wind-guiding cover comprising:
an air inlet portion having an air inlet provided on a first end of the air passage and coupled with the fan module, allowing a cool airflow driven by the fan module to enter the air passage via the air inlet;
an air outlet portion having an air outlet provided on a second end of the air passage and opposite to the air inlet; and
a heat exchange zone provided between the air inlet portion and the air outlet portion and allowing the heat generating component to be situated within the heat exchange zone, the heat exchange zone having an airflow disturbing portion adjacent to the air inlet portion to enhance the airflow disturbance and increase the heat exchange coefficient, wherein the cool airflow makes heat exchange with the heat generating component to form a hot airflow in the heat exchange zone and discharge the hot airflow from the air outlet.
2. The wind-guiding cover of claim 1, wherein an airflow pressing section is further formed between the air inlet and the heat exchange zone, wherein the cool airflow is pressed downwards in the heat exchange zone for acceleration.
3. The wind-guiding cover of claim 1, wherein an air diffusion section is further formed between the airflow disturbing portion and the air outlet portion to reduce the air resistance.
4. The wind-guiding cover of claim 1, wherein the airflow disturbing portion has at least a V-shaped folded structure.
5. The wind-guiding cover of claim 1, wherein the airflow disturbing portion is formed with a first inclined planed plane and a second inclined plane, the first inclined plane connected to the air inlet portion is formed on an inner top wall of the heat exchange zone to extend downwards alongside the airflow direction, and the second inclined plane opposite to the air inlet portion is formed on the inner top wall of the heat exchange zone to extend upwards alongside the airflow direction.
6. The wind-guiding cover of claim 5, wherein the first inclined plane and the second inclined plane has a V-shaped structure in combination.
7. The wind-guiding cover of claim 5, wherein the heat exchange zone has an air diffusion section provided between the second inclined plane and the air outlet portion.
8. The wind-guiding cover of claim 7, wherein the air diffusion section is formed with a first sloped plane disposed on the inner top wall of the heat exchange zone to extend upwards alongside the airflow direction, with an inclined angle equal to that of the second inclined plane.
9. The wind-guiding cover of claim 8, wherein a slope angle of the air diffusion section against a horizontal plane is less than 30 degrees.
10. The wind-guiding cover of claim 5, wherein the air inlet portion has an airflow pressing section which is formed with a second sloped plane to extend downwards, disposed between the air inlet and the airflow disturbing portion.
11. The wind-guiding cover of claim 10, wherein the airflow pressing section is connected to the first inclined plane of the airflow disturbing portion.
12. The wind-guiding cover of claim 10, wherein the airflow pressing section and the first inclined plane respectively have a same slope angle.
US12/425,863 2008-08-07 2009-04-17 Wind-guiding cover Abandoned US20100032139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW097130002A TWI359635B (en) 2008-08-07 2008-08-07 Wind-guiding cover
TW097130002 2008-08-07

Publications (1)

Publication Number Publication Date
US20100032139A1 true US20100032139A1 (en) 2010-02-11

Family

ID=41651828

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/425,863 Abandoned US20100032139A1 (en) 2008-08-07 2009-04-17 Wind-guiding cover

Country Status (2)

Country Link
US (1) US20100032139A1 (en)
TW (1) TWI359635B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311725A1 (en) * 2011-11-02 2014-10-23 National University Of Singapore Heat sink assembly apparatus
US20150075430A1 (en) * 2013-09-16 2015-03-19 Applied Materials, Inc. Epi pre-heat ring
US20150181756A1 (en) * 2012-09-05 2015-06-25 Panasonic Intellectual Property Management Co., Ltd. Cooling device, electric automobile and electronic device equipped with said cooling device
US20170229093A1 (en) * 2016-02-05 2017-08-10 Advoli Limited Display system for an array of video displays
US20190239393A1 (en) * 2018-01-26 2019-08-01 Super Micro Computer Inc. Wind shroud and server using the same
CN113050763A (en) * 2019-12-28 2021-06-29 鸿富锦精密工业(武汉)有限公司 Wind scooper and heat dissipation system
US11362017B2 (en) * 2018-05-02 2022-06-14 Fuji Electric Co., Ltd. Cooling apparatus, semiconductor module, and vehicle
CN117395853A (en) * 2023-10-08 2024-01-12 广州南威电子有限公司 Air-cooled radiating power amplification plate radiator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261396A (en) * 1963-11-13 1966-07-19 Staver Co Heat dissipator for electronic circuitry
US3462553A (en) * 1966-06-02 1969-08-19 Columbia Broadcasting Syst Inc Solid-state amplifier,and control panel assembly incorporated therein
JPS6465372A (en) * 1987-09-01 1989-03-10 Saginomiya Seisakusho Inc Temperature type pressure regulating valve
JPH10200278A (en) * 1997-01-13 1998-07-31 Yaskawa Electric Corp Cooler
JP2000059058A (en) * 1998-08-04 2000-02-25 Sony Corp Cooling device
US20030002256A1 (en) * 2001-06-27 2003-01-02 Ichiro Tano Cooling device for cooling ICs
US6678157B1 (en) * 2002-09-17 2004-01-13 Sun Microsystems, Inc. Electronics assembly with cooling arrangement
JP2005044857A (en) * 2003-07-23 2005-02-17 Kyocera Corp Cooling mechanism
US7061761B2 (en) * 2004-07-30 2006-06-13 Hewlett-Packard Development Company, L.P. System and method for cooling components in an electronic device
US20060162904A1 (en) * 2005-01-21 2006-07-27 Bhatti Mohinder S Liquid cooled thermosiphon for electronic components
US7180740B2 (en) * 2004-09-30 2007-02-20 Datech Technology Co., Ltd. Method and apparatus for side-type heat dissipation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261396A (en) * 1963-11-13 1966-07-19 Staver Co Heat dissipator for electronic circuitry
US3462553A (en) * 1966-06-02 1969-08-19 Columbia Broadcasting Syst Inc Solid-state amplifier,and control panel assembly incorporated therein
JPS6465372A (en) * 1987-09-01 1989-03-10 Saginomiya Seisakusho Inc Temperature type pressure regulating valve
JPH10200278A (en) * 1997-01-13 1998-07-31 Yaskawa Electric Corp Cooler
JP2000059058A (en) * 1998-08-04 2000-02-25 Sony Corp Cooling device
US20030002256A1 (en) * 2001-06-27 2003-01-02 Ichiro Tano Cooling device for cooling ICs
US6678157B1 (en) * 2002-09-17 2004-01-13 Sun Microsystems, Inc. Electronics assembly with cooling arrangement
JP2005044857A (en) * 2003-07-23 2005-02-17 Kyocera Corp Cooling mechanism
US7061761B2 (en) * 2004-07-30 2006-06-13 Hewlett-Packard Development Company, L.P. System and method for cooling components in an electronic device
US7180740B2 (en) * 2004-09-30 2007-02-20 Datech Technology Co., Ltd. Method and apparatus for side-type heat dissipation
US20060162904A1 (en) * 2005-01-21 2006-07-27 Bhatti Mohinder S Liquid cooled thermosiphon for electronic components

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140311725A1 (en) * 2011-11-02 2014-10-23 National University Of Singapore Heat sink assembly apparatus
US10420254B2 (en) * 2011-11-02 2019-09-17 National University Of Singapore Heat sink assembly apparatus
US20150181756A1 (en) * 2012-09-05 2015-06-25 Panasonic Intellectual Property Management Co., Ltd. Cooling device, electric automobile and electronic device equipped with said cooling device
US20150075430A1 (en) * 2013-09-16 2015-03-19 Applied Materials, Inc. Epi pre-heat ring
US10047457B2 (en) * 2013-09-16 2018-08-14 Applied Materials, Inc. EPI pre-heat ring
US20170229093A1 (en) * 2016-02-05 2017-08-10 Advoli Limited Display system for an array of video displays
US20190239393A1 (en) * 2018-01-26 2019-08-01 Super Micro Computer Inc. Wind shroud and server using the same
US10555441B2 (en) * 2018-01-26 2020-02-04 Super Micro Computer Inc. Winds shroud and server using the same
US11362017B2 (en) * 2018-05-02 2022-06-14 Fuji Electric Co., Ltd. Cooling apparatus, semiconductor module, and vehicle
CN113050763A (en) * 2019-12-28 2021-06-29 鸿富锦精密工业(武汉)有限公司 Wind scooper and heat dissipation system
CN117395853A (en) * 2023-10-08 2024-01-12 广州南威电子有限公司 Air-cooled radiating power amplification plate radiator

Also Published As

Publication number Publication date
TWI359635B (en) 2012-03-01
TW201008458A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
US20100032139A1 (en) Wind-guiding cover
US6288895B1 (en) Apparatus for cooling electronic components within a computer system enclosure
US7864523B2 (en) Cooling device for accommodated printed circuit board in a chassis
US6459576B1 (en) Fan based heat exchanger
US20110075360A1 (en) Electronic apparatus
US9036344B2 (en) Electronic device
US8482916B2 (en) Mobile computing apparatus
US7286357B2 (en) Computer system with cooling device for CPU
TWI510895B (en) Heat dissipation device and electronic device having the same
KR20150005338A (en) Air conditioner
US20070159792A1 (en) Heat-dissipating structure inside the computer mainframe
US20130206367A1 (en) Heat dissipating module
TW201314425A (en) Radiator device and electronic device using same
TW200821807A (en) A system for cooling a heat-generating electronic device with increased air flow
JP2016157906A (en) Air-cooling laser device with l-shaped heat conduction member including radiation fin
US7564686B2 (en) Heat-dissipating module
JP2007123641A (en) Electronic device and case therefor
TW201422135A (en) Electronic device
TWI487474B (en) Electronic device
US9516782B2 (en) Arrangement for cooling electronic components and/or assemblies
TWI671869B (en) Heat dissipation structure of electronic device
US20050189088A1 (en) Circulation structure of heat dissipation device
TWI501719B (en) Heat dissipation device
TWI832530B (en) Electronic circuit module
TWI784820B (en) Graphic card assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: INVENTEC CORPORATION,TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TIAN, WEN-BIN;CHENG, TSAI-KUEI;REEL/FRAME:022561/0636

Effective date: 20081103

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION