US20100043659A1 - Method for registering patterns on a web - Google Patents

Method for registering patterns on a web Download PDF

Info

Publication number
US20100043659A1
US20100043659A1 US12/610,584 US61058409A US2010043659A1 US 20100043659 A1 US20100043659 A1 US 20100043659A1 US 61058409 A US61058409 A US 61058409A US 2010043659 A1 US2010043659 A1 US 2010043659A1
Authority
US
United States
Prior art keywords
web
controlling
error
lateral
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/610,584
Inventor
Randolph C. Brost
Robert L. Walton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/054,680 external-priority patent/US7100510B2/en
Application filed by Individual filed Critical Individual
Priority to US12/610,584 priority Critical patent/US20100043659A1/en
Publication of US20100043659A1 publication Critical patent/US20100043659A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/02Conveying or guiding webs through presses or machines
    • B41F13/025Registering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/10Forme cylinders
    • B41F13/12Registering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F1/00Platen presses, i.e. presses in which printing is effected by at least one essentially-flat pressure-applying member co-operating with a flat type-bed
    • B41F1/26Details
    • B41F1/28Sheet-conveying, -aligning or -clamping devices
    • B41F1/34Registering devices, e.g. gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0403Drying webs
    • B41F23/0423Drying webs by convection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J15/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in continuous form, e.g. webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • B41J11/46Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering by marks or formations on the paper being fed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J15/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in continuous form, e.g. webs
    • B41J15/16Means for tensioning or winding the web
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the invention relates to a method for registering multiple patterns on a web of material, and more particularly, a web of polyethylene terephthalate (PET) which exhibits poor dimensional stability relative to requirements, for display manufacture for example.
  • PET polyethylene terephthalate
  • FIGS. 1 and 2 show Several manufacturing processes require application of a pattern or patterns to web materials. Examples include printing, and the manufacture of electronic assemblies on flexible substrates. When multiple patterns are applied in sequence, proper alignment or registration must be achieved between patterns. Registration errors can cause misalignment between process steps or layers, as shown in FIGS. 1 and 2 .
  • the “+” and “ ⁇ ” symbols represent patterns applied in different process steps.
  • FIG. 1 shows correct registration, where all “+” and “ ⁇ ” symbols are aligned.
  • FIG. 2 shows registration error resulting from positional misalignment between the two process steps.
  • Registration precision is limited by manufacturing process hardware, and also by the dimensional stability of the web substrate.
  • the web material is dimensionally unstable, then no amount of precise position control will lead to correct registration. This is shown in FIG. 3 where the web has undergone a dimensional change between process steps. As a result, most points are not correctly aligned, even though points on the left side near the web centerline are correctly positioned.
  • PET polyethylene terephthalate
  • a method for registering patterns on a web comprises the steps of: routing the web over a first roller; routing the web over a second roller and stabilizing the web; applying a pattern to the web using process hardware; measuring registration of the pattern and providing an error signal; controlling lateral position error using the error signal; controlling longitudinal position error using the error signal; controlling lateral scale error using the error signal; and controlling longitudinal scale error using the error signal.
  • the method of the present invention provides independent scale control in both the lateral and longitudinal web directions. Independent scale control avoids non-linear distortions that might be imposed by attempting to accomplish both corrections by stretching the web in both directions.
  • the method of precisely registering multiple patterns on a web allows webs with limited dimensional stability, such as PET, to be used.
  • FIG. 1 illustrates multiple patterns on a web with correct registration
  • FIG. 2 illustrates multiple patterns on a web with incorrect registration wherein the “+” and “ ⁇ ” patterns are not aligned atop one another;
  • FIG. 3 illustrates multiple patterns on a dimensionally unstable web with incorrect registration wherein some of the “+” and “ ⁇ ” patterns are not aligned atop one another;
  • FIG. 4 is a diagram illustrating the web conveyance path with apparatus for controlling position and scale wherein patterning is applied using a printing process
  • FIG. 5 is a diagram illustrating the web conveyance path with apparatus for controlling position and scale wherein patterning is applied using a deposition process.
  • Registration errors may correspond to an error in position, scale, or both in combination.
  • FIG. 1 shows an example of a pattern with no errors. Each “ ⁇ ” symbol is perfectly superimposed over its corresponding “+” symbol.
  • FIG. 2 every “ ⁇ ” symbol is shifted a uniform distance away from its corresponding “+” symbol.
  • FIG. 2 thus shows a pure position error; the array of “ ⁇ ” symbols may be brought into correct registration by a pure translation.
  • FIG. 2 shows a position error in both the lateral direction 2 and longitudinal direction 4 .
  • the “ ⁇ ” symbol or dot 6 at the left side is aligned correctly; all others are off by an error distance that increases with distance from dot 6 .
  • This error may be corrected by scaling the array of “ ⁇ ” symbols.
  • the scale error is anisotropic, meaning that the magnitude of the scale error is different in the lateral and longitudinal directions.
  • a web 10 passes first over an entrance idler roller 12 , then a compensating roller 14 , a stabilizing roller 16 and finally an exit idler roller 18 .
  • Compensating roller 14 moves, as indicated by the arrow, toward and from stabilizing roller 16 to adjust web tension.
  • Compensating roller 14 and stabilizing roller 16 may be temperature controlled, either by passing through a temperature-controlled fluid or by some other means well known to those skilled in the art.
  • a number of air jets 20 maybe directed toward web 10 as it passes over roller 14 to assist with temperature control.
  • Additional temperature control may optionally be provided with a heater, such as radiant heater 22 , positioned to heat the web or portions thereof as needed.
  • a thermographic sensor 24 may be positioned downstream of radiant heater 22 to sense web temperature and provide a signal to enable heater 22 .
  • the process hardware 26 may be an ink jet print head, or some other patterning device.
  • Other patterning devices may include offset lithographic devices, gravure coaters, flexographic printing devices, screen printing devices, and radiant energy beam patterning devices such as electron beam patterning devices or laser patterning device.
  • Laser patterning devices may include those that pattern by mass transfer to the substrate, ablation of material on the substrate, adhesion transfer or changing the surface to allow preferential material growth. Laser patterning equipment and methods for changing the surface to allow preferential material growth include those described in J. Vac. Sci. Technol. A 3(3), 904 (1985) and Appl. Phys. Lett. 45(6), 617 (1984).
  • Process hardware 26 includes some means of actively adjusting the length of the pattern it creates in the lateral direction. This may be accomplished by applying tension to the process hardware to vary its length, or by adjusting the temperature of the process hardware so its length changes due to thermal expansion. If the latter is chosen, fluid passages may be included in process hardware 26 to allow passage of a temperature-controlled fluid. For radiant energy beam patterning devices such as electron beam patterning devices and laser patterning devices, pattern adjustments may be conveniently performed by controlling positioning of an applied radiant energy beam as it is scanned across the substrate.
  • One or more cameras 28 are provided to measure current registration to provide an error signal that is fed back to a controller 30 .
  • a controller 30 typically two cameras are provided, one at either edge of the web, but additional cameras could be included either downstream or in other locations.
  • the cameras measure position and scale error in both the lateral and longitudinal directions.
  • the cameras are an example of a sensor for measuring current registration accuracy; other sensors with different operating modalities could be provided instead of, or in addition to the cameras.
  • Other sensors, such as encoders and load cells, would naturally also be included in the system, but are not shown in the drawings.
  • the errors measured by the cameras 28 are communicated to the controller 30 , which determines corrections required for lateral position error, longitudinal position error, lateral scale error, and longitudinal scale error. These four errors are then corrected using independent adjustment methods.
  • Lateral position error is controlled by translating the process hardware 26 back and forth in the lateral direction, while holding the stabilizing roller 16 in a fixed position laterally.
  • An alternative method of controlling lateral position error is to steer the web using a web guider, well known to those skilled in the art.
  • Longitudinal position error is controlled by synchronizing the stabilizing roller 16 with process execution.
  • the process hardware 26 is an ink jet print head
  • the timing of ink ejection is coordinated with the web position as determined by the system sensors.
  • An alternative method for controlling longitudinal position error is to adjust web tension so the web “walks” to a new position on the stabilizing roller 16 . This latter method requires slow correction of errors.
  • Lateral scale error may be controlled by adjusting the length of the process hardware. As described above, this is accomplished by either mechanical adjusting such as by stretching, or temperature modulation which causes thermal expansion.
  • Longitudinal scale error may be controlled by varying the temperature of the compensating roller 14 and stabilizing roller 16 to effectively change the temperature of the web 10 . This results in thermal expansion of the web, changing both longitudinal and lateral scale. Since the goal is to change only longitudinal scale, the change in lateral scale must be corrected by the controller 30 and lateral scale control system.
  • a second method of controlling longitudinal scale error is to use the compensating roller 14 to adjust web tension. This slightly stretches the web, adjusting scale in the longitudinal direction. Stretching the web in the longitudinal direction also reduces the width of the web in the lateral direction, due to Poisson's ratio. This effect must be anticipated by the controller 30 and corrected by the lateral scale control system. Alternatively temperature modulation and stretching could be used together to provide lateral and longitudinal control, which would not require dimensional change of the process hardware 26 .
  • each of the lateral position error, longitudinal position error, lateral scale error, and longitudinal scale error may be controlled by controlling positioning of an applied radiant energy beam as it is scanned across the substrate, and in a particular embodiment of the invention at least one of such errors are controlled in such manner.
  • web 10 traverses a path over roller 16 where a pattern is applied by print head 26 .
  • Camera system 28 checks the pattern applied and develops an error signal that is input to controller 30 .
  • the controller uses information from the error signal to initiate corrections to yield correct registration.
  • the controller 30 can adjust the lateral position of the process hardware 26 to control lateral position error, adjust the process application timing of the process hardware 26 to control longitudinal position error, adjust the temperature of the process hardware 26 to change its length and thereby adjust lateral scale error, and adjust the position of the compensating roller 14 to vary web tension and thereby control longitudinal scale error.
  • the controller 30 can use a web guider (not shown) to steer the web to control lateral position error, adjust the compensating roller to cause the web to “walk” to control longitudinal position error, adjust stretching devices (not shown) to stretch the process hardware 26 and control lateral scale error, and adjust the temperature of the rollers 14 and 16 , optional air jets 20 , and radiant heaters 22 to vary web temperature and thereby control longitudinal scale error.
  • a web guider (not shown) to steer the web to control lateral position error
  • adjust the compensating roller to cause the web to “walk” to control longitudinal position error
  • adjust stretching devices not shown
  • the controller 30 can adjust the lateral position of the process hardware 26 to control lateral position error, adjust the process application timing of the process hardware 26 to control longitudinal position error, adjust the temperature of the rollers 14 and 16 , optional air jets 20 , and radiant heaters 22 to vary web temperature and thereby adjust lateral scale error, and adjust the position of the compensating roller 14 to vary web tension and thereby control longitudinal scale error.
  • aspects of these embodiments could be used in other combinations to control the four types of errors.
  • FIG. 5 shows an alternative embodiment where the process hardware 32 applies its process in an upward direction.
  • the pattern is achieved by deposition from a deposition source 34 ejecting material through a shadow mask 36 .
  • the deposition source may use any of a number of processes which can apply material onto a substrate through a shadow mask to form a thin film. Examples include evaporative deposition, sputtering, plasma-enhanced chemical vapor deposition, and the like.
  • the shadow mask 36 has apertures allowing the material to pass through selected locations.
  • the shadow mask 36 is held by mask rollers 38 which allow a long ribbon shadow mask to be automatically advanced to a new set of apertures.
  • a fixed shadow mask 36 is also possible, in which case the “rollers” 38 are fixed mounting points.
  • lateral scale control is accomplished by adjusting the temperature of the mask rollers 38 , which thermally expand to change their length.
  • the mask rollers 38 also conduct heat to the shadow mask 36 , thereby adjusting its temperature and causing thermal expansion of the mask. Thermal expansion of the mask causes the pattern of mask apertures to change their length, providing lateral scale control of the resulting deposited pattern.
  • Temperature control of the mask rollers 38 may be achieved by fluid flow through passageways in the rollers, for example. Additional active thermal shielding 40 is shown to reduce the thermal load from the deposition source to the mask.
  • longitudinal position control may be accomplished by synchronizing the action of the deposition source 34 with the position of the web in the longitudinal direction.
  • the action of the deposition source may be controlled by a number of methods well known to those skilled in the art, such as using a shutter (not shown).
  • An additional temperature controller 42 helps route the web.
  • the apparatus of FIG. 5 is suited to OLED manufacture.

Abstract

A method for registering patterns on a web to provide independent scale control in both the lateral and longitudinal directions is provided. The method includes routing the web over a first roller; routing the web over a second roller and stabilizing the web; applying a pattern to the web using process hardware; measuring registration of the pattern and providing an error signal; controlling lateral position error using the error signal; controlling longitudinal position error using the error signal; controlling lateral scale error using the error signal; and controlling longitudinal scale error using the error signal. The method provides independent scale control in both the lateral and longitudinal directions. Independent scale control avoids non-linear distortions otherwise imposed by attempting to accomplish both corrections by stretching the web in both directions.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/500,209 filed Aug. 7, 2006 which is a continuation-in-part of U.S. patent application Ser. No. 11/054,680 filed Feb. 9, 2005 now U.S. Pat. No. 7,100,510, issued Sep. 5, 2006.
  • FIELD OF THE INVENTION
  • The invention relates to a method for registering multiple patterns on a web of material, and more particularly, a web of polyethylene terephthalate (PET) which exhibits poor dimensional stability relative to requirements, for display manufacture for example.
  • BACKGROUND OF THE INVENTION
  • Several manufacturing processes require application of a pattern or patterns to web materials. Examples include printing, and the manufacture of electronic assemblies on flexible substrates. When multiple patterns are applied in sequence, proper alignment or registration must be achieved between patterns. Registration errors can cause misalignment between process steps or layers, as shown in FIGS. 1 and 2. In these figures, the “+” and “” symbols represent patterns applied in different process steps. FIG. 1 shows correct registration, where all “+” and “” symbols are aligned. FIG. 2 shows registration error resulting from positional misalignment between the two process steps.
  • Registration precision is limited by manufacturing process hardware, and also by the dimensional stability of the web substrate. When the web material is dimensionally unstable, then no amount of precise position control will lead to correct registration. This is shown in FIG. 3 where the web has undergone a dimensional change between process steps. As a result, most points are not correctly aligned, even though points on the left side near the web centerline are correctly positioned.
  • Commonly used web materials such as polyethylene terephthalate (PET) exhibit poor dimensional stability relative to requirements, for display manufacture for example. They have a high coefficient of thermal expansion, experience hygroscopic expansion in humid environments, and can exhibit anisotropic shrink when exposed to moderately high temperatures. These material properties prevent high-precision registration using position-controlled web conveyance systems, leading instead to results such as those shown in FIG. 3. Nonetheless, PET is desirable for some final products because of its transparency, light weight, flexibility, durability, and toughness. A method of precisely registering multiple patterns on a web with limited dimensional stability is needed.
  • SUMMARY OF THE INVENTION
  • Briefly summarized, according to one aspect of the invention, a method for registering patterns on a web comprises the steps of: routing the web over a first roller; routing the web over a second roller and stabilizing the web; applying a pattern to the web using process hardware; measuring registration of the pattern and providing an error signal; controlling lateral position error using the error signal; controlling longitudinal position error using the error signal; controlling lateral scale error using the error signal; and controlling longitudinal scale error using the error signal.
  • The method of the present invention provides independent scale control in both the lateral and longitudinal web directions. Independent scale control avoids non-linear distortions that might be imposed by attempting to accomplish both corrections by stretching the web in both directions. The method of precisely registering multiple patterns on a web allows webs with limited dimensional stability, such as PET, to be used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features, and advantages of the present invention will become more apparent when taken in conjunction with the following description and drawings wherein identical reference numerals have been used, where possible, to designate identical features that are common to the figures, and wherein:
  • FIG. 1 illustrates multiple patterns on a web with correct registration;
  • FIG. 2 illustrates multiple patterns on a web with incorrect registration wherein the “+” and “” patterns are not aligned atop one another;
  • FIG. 3 illustrates multiple patterns on a dimensionally unstable web with incorrect registration wherein some of the “+” and “” patterns are not aligned atop one another;
  • FIG. 4 is a diagram illustrating the web conveyance path with apparatus for controlling position and scale wherein patterning is applied using a printing process; and
  • FIG. 5 is a diagram illustrating the web conveyance path with apparatus for controlling position and scale wherein patterning is applied using a deposition process.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIGS. 1-3, first, specific types of registration errors will be defined. Registration errors may correspond to an error in position, scale, or both in combination. FIG. 1 shows an example of a pattern with no errors. Each “” symbol is perfectly superimposed over its corresponding “+” symbol. In FIG. 2, every “” symbol is shifted a uniform distance away from its corresponding “+” symbol. FIG. 2 thus shows a pure position error; the array of “” symbols may be brought into correct registration by a pure translation. As indicated by arrows 2 and 4, FIG. 2 shows a position error in both the lateral direction 2 and longitudinal direction 4. In FIG. 3, there is a pure scale error. The “” symbol or dot 6 at the left side is aligned correctly; all others are off by an error distance that increases with distance from dot 6. This error may be corrected by scaling the array of “” symbols. In this example, the scale error is anisotropic, meaning that the magnitude of the scale error is different in the lateral and longitudinal directions.
  • Referring to FIG. 4, a web 10 passes first over an entrance idler roller 12, then a compensating roller 14, a stabilizing roller 16 and finally an exit idler roller 18. Compensating roller 14 moves, as indicated by the arrow, toward and from stabilizing roller 16 to adjust web tension.
  • Compensating roller 14 and stabilizing roller 16 may be temperature controlled, either by passing through a temperature-controlled fluid or by some other means well known to those skilled in the art. Optionally a number of air jets 20 maybe directed toward web 10 as it passes over roller 14 to assist with temperature control. Additional temperature control may optionally be provided with a heater, such as radiant heater 22, positioned to heat the web or portions thereof as needed. Optionally a thermographic sensor 24 may be positioned downstream of radiant heater 22 to sense web temperature and provide a signal to enable heater 22.
  • Roller 16 stabilizes the web while the patterning process is applied by process hardware 26. The process hardware 26 may be an ink jet print head, or some other patterning device. Other patterning devices may include offset lithographic devices, gravure coaters, flexographic printing devices, screen printing devices, and radiant energy beam patterning devices such as electron beam patterning devices or laser patterning device. Laser patterning devices may include those that pattern by mass transfer to the substrate, ablation of material on the substrate, adhesion transfer or changing the surface to allow preferential material growth. Laser patterning equipment and methods for changing the surface to allow preferential material growth include those described in J. Vac. Sci. Technol. A 3(3), 904 (1985) and Appl. Phys. Lett. 45(6), 617 (1984). Process hardware 26 includes some means of actively adjusting the length of the pattern it creates in the lateral direction. This may be accomplished by applying tension to the process hardware to vary its length, or by adjusting the temperature of the process hardware so its length changes due to thermal expansion. If the latter is chosen, fluid passages may be included in process hardware 26 to allow passage of a temperature-controlled fluid. For radiant energy beam patterning devices such as electron beam patterning devices and laser patterning devices, pattern adjustments may be conveniently performed by controlling positioning of an applied radiant energy beam as it is scanned across the substrate.
  • One or more cameras 28 are provided to measure current registration to provide an error signal that is fed back to a controller 30. Typically two cameras are provided, one at either edge of the web, but additional cameras could be included either downstream or in other locations. The cameras measure position and scale error in both the lateral and longitudinal directions. The cameras are an example of a sensor for measuring current registration accuracy; other sensors with different operating modalities could be provided instead of, or in addition to the cameras. Other sensors, such as encoders and load cells, would naturally also be included in the system, but are not shown in the drawings.
  • The errors measured by the cameras 28 are communicated to the controller 30, which determines corrections required for lateral position error, longitudinal position error, lateral scale error, and longitudinal scale error. These four errors are then corrected using independent adjustment methods.
  • Lateral position error is controlled by translating the process hardware 26 back and forth in the lateral direction, while holding the stabilizing roller 16 in a fixed position laterally. An alternative method of controlling lateral position error is to steer the web using a web guider, well known to those skilled in the art.
  • Longitudinal position error is controlled by synchronizing the stabilizing roller 16 with process execution. For example, if the process hardware 26 is an ink jet print head, then the timing of ink ejection is coordinated with the web position as determined by the system sensors. An alternative method for controlling longitudinal position error is to adjust web tension so the web “walks” to a new position on the stabilizing roller 16. This latter method requires slow correction of errors.
  • Lateral scale error may be controlled by adjusting the length of the process hardware. As described above, this is accomplished by either mechanical adjusting such as by stretching, or temperature modulation which causes thermal expansion.
  • Longitudinal scale error may be controlled by varying the temperature of the compensating roller 14 and stabilizing roller 16 to effectively change the temperature of the web 10. This results in thermal expansion of the web, changing both longitudinal and lateral scale. Since the goal is to change only longitudinal scale, the change in lateral scale must be corrected by the controller 30 and lateral scale control system. A second method of controlling longitudinal scale error is to use the compensating roller 14 to adjust web tension. This slightly stretches the web, adjusting scale in the longitudinal direction. Stretching the web in the longitudinal direction also reduces the width of the web in the lateral direction, due to Poisson's ratio. This effect must be anticipated by the controller 30 and corrected by the lateral scale control system. Alternatively temperature modulation and stretching could be used together to provide lateral and longitudinal control, which would not require dimensional change of the process hardware 26.
  • The present invention provides independent scale control in both the lateral and longitudinal directions. Independent scale control avoids non-linear distortions that might be imposed by systems that attempt to accomplish both corrections by stretching the web in both directions. Where process hardware 26 comprises a radiant energy beam patterning device, each of the lateral position error, longitudinal position error, lateral scale error, and longitudinal scale error may be controlled by controlling positioning of an applied radiant energy beam as it is scanned across the substrate, and in a particular embodiment of the invention at least one of such errors are controlled in such manner.
  • Also note that scale changes of both increasing and decreasing magnitude will be required to remove all expected dimensional errors, so the system must be operated at an intermediate nominal tension that will allow tension to be reduced without lowering tension below minimum acceptable levels. For similar reasons, the nominal scale of the process hardware controlling scale in the lateral direction must be chosen to be near the middle of an acceptable range of achievable scale factors.
  • During operation, web 10 traverses a path over roller 16 where a pattern is applied by print head 26. Camera system 28 checks the pattern applied and develops an error signal that is input to controller 30. The controller uses information from the error signal to initiate corrections to yield correct registration.
  • In the preferred embodiment, the controller 30 can adjust the lateral position of the process hardware 26 to control lateral position error, adjust the process application timing of the process hardware 26 to control longitudinal position error, adjust the temperature of the process hardware 26 to change its length and thereby adjust lateral scale error, and adjust the position of the compensating roller 14 to vary web tension and thereby control longitudinal scale error.
  • In an alternative embodiment, the controller 30 can use a web guider (not shown) to steer the web to control lateral position error, adjust the compensating roller to cause the web to “walk” to control longitudinal position error, adjust stretching devices (not shown) to stretch the process hardware 26 and control lateral scale error, and adjust the temperature of the rollers 14 and 16, optional air jets 20, and radiant heaters 22 to vary web temperature and thereby control longitudinal scale error. In yet a third embodiment, the controller 30 can adjust the lateral position of the process hardware 26 to control lateral position error, adjust the process application timing of the process hardware 26 to control longitudinal position error, adjust the temperature of the rollers 14 and 16, optional air jets 20, and radiant heaters 22 to vary web temperature and thereby adjust lateral scale error, and adjust the position of the compensating roller 14 to vary web tension and thereby control longitudinal scale error. As can been appreciated by one with ordinary skill in the art, aspects of these embodiments could be used in other combinations to control the four types of errors.
  • FIG. 5 shows an alternative embodiment where the process hardware 32 applies its process in an upward direction. The pattern is achieved by deposition from a deposition source 34 ejecting material through a shadow mask 36. The deposition source may use any of a number of processes which can apply material onto a substrate through a shadow mask to form a thin film. Examples include evaporative deposition, sputtering, plasma-enhanced chemical vapor deposition, and the like. The shadow mask 36 has apertures allowing the material to pass through selected locations. The shadow mask 36 is held by mask rollers 38 which allow a long ribbon shadow mask to be automatically advanced to a new set of apertures. However, a fixed shadow mask 36 is also possible, in which case the “rollers” 38 are fixed mounting points. In either case, lateral scale control is accomplished by adjusting the temperature of the mask rollers 38, which thermally expand to change their length. The mask rollers 38 also conduct heat to the shadow mask 36, thereby adjusting its temperature and causing thermal expansion of the mask. Thermal expansion of the mask causes the pattern of mask apertures to change their length, providing lateral scale control of the resulting deposited pattern. Temperature control of the mask rollers 38 may be achieved by fluid flow through passageways in the rollers, for example. Additional active thermal shielding 40 is shown to reduce the thermal load from the deposition source to the mask.
  • Control of the remaining error types is accomplished using similar means to those described for FIG. 4. For example, longitudinal position control may be accomplished by synchronizing the action of the deposition source 34 with the position of the web in the longitudinal direction. The action of the deposition source may be controlled by a number of methods well known to those skilled in the art, such as using a shutter (not shown). An additional temperature controller 42 helps route the web. The apparatus of FIG. 5 is suited to OLED manufacture.
  • The invention has been described with reference to the preferred embodiments; However, it will be appreciated that variations and modifications can be effected by a person of ordinary skill in the art without departing from the scope of the invention. The fundamental idea is to use different adjustments to achieve scale control in the longitudinal and lateral directions. For example, web tension adjustment could be used to provide longitudinal scale control, while temperature modulation of the process hardware could be used to provide lateral scale control. Decoupling scale control of the two directions has the advantage of avoiding the non-linear web distortions that may result from attempting to stretch the web in both directions.
  • The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be made without departing from the invention. It is accordingly intended that the claims shall cover all such modifications and applications as they do not depart from the true spirit and scope of the invention.
  • PARTS LIST
    • 2 lateral direction
    • 4 longitudinal direction
    • 6 symbol/dot
    • 10 web
    • 12 entrance idler roller
    • 14 compensating roller
    • 16 web stabilizing roller
    • 18 exit idler roller
    • 20 air jets
    • 22 radiant heater
    • 24 thermographic sensor
    • 26 process hardware/printhead
    • 28 camera
    • 30 controller
    • 32 process hardware
    • 34 deposition source
    • 36 shadow mask
    • 38 mask rollers
    • 40 active thermal shielding
    • 42 temperature controlled roller

Claims (25)

1. A method for registering patterns on a web, comprising the steps of:
routing the web over a first roller;
routing the web over a second roller and stabilizing the web;
applying a pattern to the web using process hardware;
measuring registration of the pattern and providing an error signal;
controlling lateral position error using the error signal; and
controlling longitudinal position error using the error signal.
2. The method of claim 1 including the step of controlling the lateral position error by controlling web position with a web guider.
3. The method of claim 1 including the step of controlling the lateral position error by moving the process hardware laterally.
4. The method of claim 1 including the step of controlling the longitudinal position error by synchronizing the action of the process hardware with the longitudinal motion of the web.
5. A method for registering patterns on a web, comprising the steps of:
routing the web over a first roller;
routing the web over a second roller and stabilizing the web;
applying a pattern to the web using process hardware;
measuring registration of the pattern and providing an error signal;
controlling lateral scale error using the error signal; and
controlling longitudinal scale error using the error signal.
6. The method of claim 5 including the step of controlling the temperature of the process hardware to control lateral scale error.
7. The method of claim 5 including the step of adjusting the process hardware to control lateral scale error.
8. The method of claim 5 including the step of controlling the temperature of the first and second rollers.
9. The method of claim 5 including the step of controlling the temperature of the first and second rollers to control longitudinal scale error.
10. The method of claim 9 including the step of controlling the position of the first roller to control web tension and longitudinal position error.
11. The method of claim 5 including the step of controlling the temperature of the first and second rollers to control lateral scale error.
12. The method of claim 11 including the step of controlling the position of the first roller to control web tension and longitudinal position error.
13. The method of claim 5 where the process hardware is an ink jet print head.
14. A method for registering patterns on a web, comprising the steps of:
routing the web over a first roller;
routing the web over a second roller and stabilizing the web;
applying a pattern to the web using process hardware;
measuring registration of the pattern and providing an error signal;
controlling lateral position error using the error signal; and
controlling lateral scale error using the error signal.
15. The method of claim 14 including the step of controlling the lateral position error by controlling web position with a web guider.
16. The method of claim 14 including the step of controlling the lateral position error by moving the process hardware laterally.
17. The method of claim 14 including the step of controlling the lateral scale error by synchronizing the action of the process hardware with the lateral motion of the web.
18. A method for registering patterns on a web, comprising the steps of:
routing the web over a first roller;
routing the web over a second roller and stabilizing the web;
applying a pattern to the web using process hardware;
measuring registration of the pattern and providing an error signal;
controlling longitudinal position error using the error signal; and
controlling longitudinal scale error using the error signal.
19. The method of claim 18 including the step of controlling the temperature of the process hardware to control longitudinal scale error.
20. The method of claim 18 including the step of adjusting the process hardware to control longitudinal position error.
21. The method of claim 18 including the step of controlling the temperature of the first and second rollers.
22. The method of claim 18 including the step of controlling the temperature of the first and second rollers to control longitudinal scale error.
23. The method of claim 22 including the step of controlling the position of the first roller to control web tension and longitudinal position error.
24. The method of claim 18 including the step of controlling the temperature of the first and second rollers to control longitudinal scale error.
25. The method of claim 24 including the step of controlling the position of the first roller to control web tension and longitudinal position error.
US12/610,584 2005-02-09 2009-11-02 Method for registering patterns on a web Abandoned US20100043659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/610,584 US20100043659A1 (en) 2005-02-09 2009-11-02 Method for registering patterns on a web

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/054,680 US7100510B2 (en) 2005-02-09 2005-02-09 Method for registering patterns on a web
US11/500,209 US7650839B2 (en) 2005-02-09 2006-08-07 Method for registering patterns on a web
US12/610,584 US20100043659A1 (en) 2005-02-09 2009-11-02 Method for registering patterns on a web

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/500,209 Continuation US7650839B2 (en) 2005-02-09 2006-08-07 Method for registering patterns on a web

Publications (1)

Publication Number Publication Date
US20100043659A1 true US20100043659A1 (en) 2010-02-25

Family

ID=46325858

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/500,209 Active 2026-09-02 US7650839B2 (en) 2005-02-09 2006-08-07 Method for registering patterns on a web
US12/610,584 Abandoned US20100043659A1 (en) 2005-02-09 2009-11-02 Method for registering patterns on a web

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/500,209 Active 2026-09-02 US7650839B2 (en) 2005-02-09 2006-08-07 Method for registering patterns on a web

Country Status (1)

Country Link
US (2) US7650839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481542B2 (en) 2012-02-10 2016-11-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Foil processing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070009760A (en) * 2005-07-14 2007-01-19 삼성전자주식회사 Apparatus and method for manufacturing liquid crystal display
US8482732B2 (en) * 2007-10-01 2013-07-09 Maskless Lithography, Inc. Alignment system for various materials and material flows
ITMI20080651A1 (en) * 2008-04-11 2009-10-12 O Pac S R L MACHINE FOR IN-LINE PROCESSING OF DISPOSABLE PRODUCTS, HOT-PRINTED WITH WAXES AND COLORED PARAFFIN
CN102821868B (en) 2010-04-01 2017-06-06 3M创新有限公司 To the precise control of the web with microreplicated lens array
KR20160143371A (en) * 2015-06-05 2016-12-14 에스케이하이닉스 주식회사 Memory system and operating method thereof
EP3980270A1 (en) * 2019-06-06 2022-04-13 Bobst Italia S.P.A. Double sided register controlled printing unit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701464A (en) * 1970-10-15 1972-10-31 Harris Intertype Corp Circumferential and lateral web registration control system
USRE32967E (en) * 1982-11-24 1989-06-27 Xerox Corporation Web tracking system
US5904961A (en) * 1997-01-24 1999-05-18 Eastman Kodak Company Method of depositing organic layers in organic light emitting devices
US6579422B1 (en) * 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
US6637634B1 (en) * 1998-12-21 2003-10-28 Gerber Scientific Products, Inc. Methods for calibration and automatic alignment in friction drive apparatus
US6663740B2 (en) * 2001-05-07 2003-12-16 New Create Corporation Manufacturing method and manufacturing apparatus of thin-film laminate
US6680743B2 (en) * 1999-04-08 2004-01-20 Gerber Scientific Products, Inc. Methods and apparatus for improved thermal printing
US6685297B2 (en) * 2001-09-24 2004-02-03 Xerox Corporation Print head alignment method, test pattern used in the method, and a system thereof
US6709962B2 (en) * 2002-03-19 2004-03-23 N. Edward Berg Process for manufacturing printed circuit boards
US6766843B2 (en) * 2000-03-07 2004-07-27 Kimberly-Clark Worldwide, Inc. Apparatus for transferring a discrete portion of first web onto a second web
US6771237B1 (en) * 1993-05-24 2004-08-03 Display Science, Inc. Variable configuration video displays and their manufacture
US7219606B2 (en) * 2002-12-24 2007-05-22 Eltromat Gmbh Method and apparatus for measuring, setting and controlling longitudinal and lateral register as well as parallelness of the printing register in a multicolor printing machine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452140A (en) * 1981-02-19 1984-06-05 Crosfield Electronics Limited Printed web registration control apparatus
DE3136705C1 (en) * 1981-09-16 1982-10-28 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach Process for the production of precise prints in printing machines
US5056431A (en) * 1989-04-19 1991-10-15 Quad/Tech, Inc. Bernoulli-effect web stabilizer
US6363105B1 (en) * 1998-02-17 2002-03-26 Ericsson Inc. Flexible sliding correlator for direct sequence spread spectrum systems
JP2000141811A (en) * 1998-11-11 2000-05-23 Nec Corp Printer system
JP3688913B2 (en) * 1998-11-19 2005-08-31 シャープ株式会社 How to adjust recording deviation of serial printer
ATE288361T1 (en) * 1998-11-20 2005-02-15 Seiko Epson Corp POINT-FORMING PRINTER WITH ADJUSTABLE TIMER
CA2401350A1 (en) 2000-02-03 2001-08-09 David A. Estabrooks On demand media web electrophotographic printing apparatus
JP3546846B2 (en) * 2001-01-22 2004-07-28 セイコーエプソン株式会社 Printing equipment
JP4055380B2 (en) * 2001-07-27 2008-03-05 富士ゼロックス株式会社 Recording position adjustment pattern forming method, image recording position adjusting method, and image recording apparatus
US6908175B2 (en) * 2002-04-15 2005-06-21 Canon Kabushiki Kaisha Printing apparatus and print control method
CN100421940C (en) * 2002-07-25 2008-10-01 株式会社岛精机制作所 Printing system and printing method
US7465009B2 (en) * 2004-03-31 2008-12-16 Canon Kabushiki Kaisha Printing apparatus, printing system, and printing start position alignment method
US7100510B2 (en) * 2005-02-09 2006-09-05 Eastman Kodak Company Method for registering patterns on a web

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701464A (en) * 1970-10-15 1972-10-31 Harris Intertype Corp Circumferential and lateral web registration control system
USRE32967E (en) * 1982-11-24 1989-06-27 Xerox Corporation Web tracking system
US6771237B1 (en) * 1993-05-24 2004-08-03 Display Science, Inc. Variable configuration video displays and their manufacture
US5904961A (en) * 1997-01-24 1999-05-18 Eastman Kodak Company Method of depositing organic layers in organic light emitting devices
US6637634B1 (en) * 1998-12-21 2003-10-28 Gerber Scientific Products, Inc. Methods for calibration and automatic alignment in friction drive apparatus
US6680743B2 (en) * 1999-04-08 2004-01-20 Gerber Scientific Products, Inc. Methods and apparatus for improved thermal printing
US6579422B1 (en) * 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
US6766843B2 (en) * 2000-03-07 2004-07-27 Kimberly-Clark Worldwide, Inc. Apparatus for transferring a discrete portion of first web onto a second web
US6663740B2 (en) * 2001-05-07 2003-12-16 New Create Corporation Manufacturing method and manufacturing apparatus of thin-film laminate
US6685297B2 (en) * 2001-09-24 2004-02-03 Xerox Corporation Print head alignment method, test pattern used in the method, and a system thereof
US6709962B2 (en) * 2002-03-19 2004-03-23 N. Edward Berg Process for manufacturing printed circuit boards
US7219606B2 (en) * 2002-12-24 2007-05-22 Eltromat Gmbh Method and apparatus for measuring, setting and controlling longitudinal and lateral register as well as parallelness of the printing register in a multicolor printing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481542B2 (en) 2012-02-10 2016-11-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Foil processing device

Also Published As

Publication number Publication date
US7650839B2 (en) 2010-01-26
US20070006764A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US7100510B2 (en) Method for registering patterns on a web
US20100043659A1 (en) Method for registering patterns on a web
EP2488429B1 (en) Apparatus and method for processing long, continuous flexible substrates
US8845058B2 (en) Distortion compensation for printing
JP2018137241A5 (en)
EP2539153B1 (en) Printer component mounting and alignment system
US8757758B2 (en) Multiple sided media pattern registration system
JP5448240B2 (en) Display element manufacturing equipment
EP1827849A1 (en) Distortion compensation for printing
US20140002531A1 (en) System And Method For Process Direction Alignment Of First And Second Side Printed Images
US20160142571A1 (en) Calibration system for a conveyor mechanism and a method for calibrating a conveyor mechanism
EP1902601A2 (en) Apparatus and methods for continuously depositing a pattern of material onto a substrate
US8500234B2 (en) Registering patterns on multiple media sides
US20060174992A1 (en) Web stabilization for accurate pattern registration
US8662623B2 (en) Printing registered patterns on multiple media sides
JP2007090191A (en) Ink jet printer
US8632153B2 (en) Printing system having multiple sided pattern registration
CN109963718B (en) Roll-to-roll printing device
KR101855844B1 (en) Roll to roll reverse offset printing apparatus and method of alignment for using the same
JP6516030B2 (en) Pattern formation method
KR102277201B1 (en) Roll-to-roll electronic printing system
US20160059594A1 (en) Reducing tension fluctuations using isolated tension zones
JP2009131789A (en) Ink ejecting printing apparatus
JP5605770B2 (en) Display element manufacturing method and display element manufacturing apparatus
JP5394227B2 (en) Pattern drawing apparatus and pattern drawing method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION