US20100058029A1 - Invoking Multi-Library Applications on a Multiple Processor System - Google Patents

Invoking Multi-Library Applications on a Multiple Processor System Download PDF

Info

Publication number
US20100058029A1
US20100058029A1 US12/549,505 US54950509A US2010058029A1 US 20100058029 A1 US20100058029 A1 US 20100058029A1 US 54950509 A US54950509 A US 54950509A US 2010058029 A1 US2010058029 A1 US 2010058029A1
Authority
US
United States
Prior art keywords
opes
ope
fpe
library
instruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/549,505
Inventor
Hui Li
Hong Bo Peng
Bai Ling Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, BAI LING, LI, HUI, PENG, HONG BO
Publication of US20100058029A1 publication Critical patent/US20100058029A1/en
Priority to US13/452,129 priority Critical patent/US8694756B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/485Task life-cycle, e.g. stopping, restarting, resuming execution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/52Program synchronisation; Mutual exclusion, e.g. by means of semaphores
    • G06F9/522Barrier synchronisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/509Offload

Definitions

  • the present invention generally relates to computer software technology and particularly to an invoking multi-library applications on a multiple processor system.
  • a multiple processor system may comprise a Power Processing Element (PPE) and a plurality of Synergistic Processing Elements (SPEs).
  • PPE Power Processing Element
  • SPEs Synergistic Processing Elements
  • the PPE and the plurality of SPEs share the main memory and each SPE has its own memory.
  • IBM's Cell Broadband Engine is one kind of MPS.
  • IBM's CBE is a MPS on a single chip, as shown in FIG. 1 , having 9 processing units that share the same main memory, in which one is a (PPE) and the other eight are (SPEs).
  • PPE a
  • SPE the other eight are
  • the CBE can provide terrific system capabilities and CBE overcomes the three important performance limitations that are on other MPSs, i.e., power usage, memory usage and processor frequency. Therefore, the CBE has been widely used in signal processing, pattern matching, model building, object determining, mapping, communication, and encryption, etc.
  • CBE has taken a leading position, especially in High Performance Computing. For high performance computing or other computation sensitive applications, more and more libraries have been rewritten to be suitable for running on CBE. However, the running efficiency and development efficiency that multiple libraries run on a single CBE is becoming an obvious problem.
  • Each computation sensitive application running on CBE mainly depends on an SPE to execute computing. Before an SPE begins to compute, the SPE will create a system thread and an SPE thread, and then destroy these threads after the SPE finishes computing. For invoking a multi-library application, thread creation and destruction has to be completed when invoking the first library; and the same applies when invoking the second and follow on libraries. Thread creation and destruction needs time. For huge computing tasks, the time for thread creation and destruction may not be significant. However, for small and computation sensitive applications that invoke dense libraries, such creation and destruction will consume a lot of time, which lowers the efficiency of the whole system and tasks.
  • a mechanism for invoking a multi-library application on a multiple processor system.
  • the multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Elements (SPEs), in a single chip.
  • the multi-library application including multi-libraries that run in memory on the PPE.
  • the illustrative embodiment maintains a status of each of the plurality of SPEs in the multi-library application running on the PPE.
  • the illustrative embodiment determines whether a number of available SPEs of the plurality of SPEs for invoking the library is adequate based on a current status of each of the SPEs in the plurality of SPEs. Responsive to the number of available SPEs being adequate, the illustrative embodiment sends a run instruction to selected SPEs. After finishing an invocation of all libraries, the illustrative embodiment sends termination instructions to all of the selected SPEs.
  • a computer program product comprising a computer useable or readable medium having a computer readable program.
  • the computer readable program when executed on a computing device, causes the computing device to perform various ones, and combinations of, the operations outlined above with regard to the method illustrative embodiment.
  • a system/apparatus may comprise one or more processors and a memory coupled to the one or more processors.
  • the memory may comprise instructions which, when executed by the one or more processors, cause the one or more processors to perform various ones, and combinations of, the operations outlined above with regard to the method illustrative embodiment.
  • FIG. 1 shows the exemplary system diagram of CBE
  • FIG. 2 shows the PPE and SPE process when invoking a library in CBE system in accordance with an illustrative embodiment
  • FIG. 3 shows the PPE and SPE process when invoking multi-library in CBE system in accordance with an illustrative embodiment
  • FIG. 4 shows the PPE and SPE process when invoking multi-library in CBE system in accordance with an illustrative embodiment
  • FIG. 5 shows the PPE and SPE detailed process when invoking multi-library in CBE system in accordance with an illustrative embodiment
  • FIG. 6 shows a system for invoking multi-library in accordance with an illustrative embodiment.
  • step S 201 the PPE starts to invoke the SPE process; in step S 202 , the PPE creates an operation system thread, and then sends the instruction of creating an SPE thread to an SPE in step S 203 . After sending the instruction, the PPE waits for an acknowledgement from the SPE in step S 204 . After the SPE sends an acknowledgement, the PPE receives the acknowledgement and determines whether the resource is adequate in step S 205 .
  • PPE Power Processing Element
  • SPE Synergistic Processing Elements
  • step S 202 the creation of the operating system thread is continued. If the resource is adequate, the PPE enters step S 206 , in which data are prepared and an instruction is sent to the SPE. In step S 207 , the PPE waits for the termination of the SPE thread. Once the SPE thread ends, the PPE releases the corresponding SPE resource, and then in step S 209 , the process ends.
  • FIG. 2 also shows the corresponding SPE process.
  • the SPE In response to the PPE request, the SPE is started in step S 210 .
  • the SPE initializes its environment in step S 211 .
  • the SPE sends the acknowledgement to confirm that the initialization has ended.
  • step S 213 the SPE waits for data and the instruction from the PPE and then in response to the step S 206 in the PPE, the SPE processes the received data and returns results in step S 214 .
  • the SPE process ends in step S 215 .
  • FIG. 3 in which the PPE and SPE processes for invoking a multi-library application in a CBE system is shown in accordance with an illustrative embodiment.
  • the PPE starts its process in step S 301 .
  • the PPE will invoke a multi-library application, here we suppose that N libraries will be invoked.
  • step S 302 library 1 is invoked.
  • the SPE process is the same as the SPE process shown in FIG. 2 .
  • step S 303 library 2 is invoked, . . . and in step S 304 , library N is invoked.
  • the PPE process in each library invocation is the same as the PPE process in FIG.
  • step S 305 the PPE determines whether the problem has been solved, i.e. whether all libraries that should be invoked have been invoked. If yes, the PPE enters step S 306 , in which the PPE process ends. Otherwise, the PPE continues to invoke libraries, here, library 1 is shown as an example. Comparing FIG. 3 with FIG. 2 , one of ordinary skill in the art would understand that for every library invocation, the step of creating operating system thread (S 202 ) and the step of instructing to create SPE thread (S 203 ) are repeated from the PPE perspective.
  • step of initializing the SPE environment and step of destroying the SPE thread are repeated from the SPE perspective. All these processes and the communication established between PPE/SPE consume a lot of time. Although the time may not be significant for huge computing tasks, the required time may not be ignored for those small and computation sensitive applications. The processes of frequently creating and destroying threads consume a lot of time and lower the efficiency of the whole system and tasks.
  • the core idea of the illustrative embodiments is that, when invoking a multi-library application, the processes of creating and destroying threads are cancelled. The created thread is kept until all the libraries are invoked and instructed by the PPE to terminate. With the illustrative embodiments, the process of frequently creating and destroying threads may be avoided, thus the efficiency of the whole system and tasks may be improved.
  • FIG. 4 shows the PPE and SPE process for invoking multi-library in a CBE system in accordance with an illustrative embodiment.
  • the process presents a method for invoking multi-library applications on a multiple processor system, wherein the multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Element (SPE).
  • Applications including multiple libraries run in the memory of the PPE.
  • PPE Power Processing Element
  • SPE Synergistic Processing Element
  • Applications including multiple libraries run in the memory of the PPE.
  • step S 400 the PPE process starts and then in step S 402 , status of each SPE are maintained in the application running on the PPE, wherein there are SPE agents in the SPEs that have been started, for capturing the instructions from the PPE.
  • SPE agents The function of SPE agents will be described in detail later.
  • step S 406 the PPE checks the status of each SPE.
  • step S 408 the PPE determines, based on the current status of each SPE, whether the number of available SPEs is adequate for invoking the library. If the number of available SPEs is adequate, the PPE sends a run instruction to selected SPEs in Step S 410 .
  • step S 412 the PPE receives results that SPE has processed. Then in step S 414 , the PPE checks whether there is a need to invoke the next library. The PPE will not send the termination instruction to all started SPEs until all libraries have been invoked, as shown in step S 416 .
  • Each SPE corresponding process is: the SPE waits for a run instruction or a termination instruction from the PPE in step S 422 , and the PPE determines the type of instruction in step S 424 . If the instruction is not a termination instruction, the SPE processes according to the run instruction in step S 426 , i.e., processing data and returning results. If the instruction is a termination instruction, the SPE terminates itself in step S 428 .
  • the PPE determines how many SPEs may support current library invocation by maintaining the status of each SPE. Only when the number of the current SPEs that are in IDLE status is not adequate, the SPEs that have not been started will be started, such that the SPEs do not need to be created and destroyed frequently.
  • step S 500 the PPE process starts.
  • step S 501 the PPE establishes and maintains the status of each SPE.
  • the status of each SPE includes BUSY, IDLE, and NOT STARTED, where the NOT STARTED status denotes that the SPE has not been started; the BUSY status denotes that the SPE has been started and is executing tasks; and the IDLE status denotes that the SPE has been started and is not executing tasks.
  • each SPE may be stored in cache or memory, and may be updated according to the status change of each SPE so that the latest status could be maintained.
  • the PPE creates an operation system thread first, and then sends out an instruction to an SPE to create an SPE thread.
  • the SPE agent that receives the instruction from the PPE determines the type of instruction.
  • the PPE waits for an acknowledgement from the SPE to confirm that above operations have been done in step S 504 .
  • the PPE checks the status of each SPE in step S 505 and determines whether the number of available SPEs is adequate for invoking the library in step S 506 .
  • the number of required SPEs for invoking the current library is determined first based on current SPE status; and then the number of SPEs in IDLE status is determined; if the number of SPEs that are in IDLE status is more than the number of required SPEs for invoking the current library, then the number of available SPEs for invoking the library is adequate. If the number of available SPEs for invoking the library is adequate, the PPE sends the task of invoking the library to selected SPEs. That is, the SPEs that are in IDLE status.
  • the PPE sends the run instruction to the selected SPEs in step S 507 , and then updates the SPE status as BUSY.
  • the PPE receives the result from the SPEs, the PPE updates the SPE status as IDLE in step S 508 . Then the PPE determines whether there is a need to invoke the next library in step S 509 . If needed, the PPE process returns to step s 505 .
  • Step S 502 the PPE process returns to Step S 502 from Step S 506 , in which another SPE is started. If all SPEs have been started, the process has to wait in step S 506 . If all the libraries have been invoked, the PPE sends a termination instruction, in step S 510 , to all SPEs started, and waits for the termination of all SPE threads in step S 511 . After all SPE threads are terminated, the PPE releases the resource of each SPE in step S 512 . Then the PPE process ends in step S 513 .
  • step S 515 in response to the PPE request, the SPE initializes its environment and creates an SPE agent to capture the PPE instruction and determine the type of instruction. Then the SPE sends an acknowledgement that the SPE initialization process has ended in step S 516 .
  • the SPE agent begins to run in step S 517 , the SPE agent will capture a run instruction or termination instruction. In the existing technology, there is no such kind of agent, so the SPE termination is not controlled by the PPE. That is, after the SPE finishes its task, the SPE will be terminated and the PPE is notified automatically.
  • the objective is to control the SPE by the PPE by creating such SPE agent in the SPE.
  • the SPE agent for capturing the instructions from the PPE, executes the following steps: receiving an instruction from the PPE; determining whether the instruction is a termination instruction or a run instruction; if the instruction is a termination instruction, terminating the SPE; if the instruction is a run instruction, instructing the SPE to execute the instruction. That is, to process the received data and send the result back in response to the PPE request.
  • a system for invoking multi-library applications on a multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Element (SPE), e.g. 600 - 1 , 600 - 2 , . . . , 600 -N.
  • Application 601 includes multi-libraries (M libraries) running in the memory of the PPE.
  • the M libraries are shown as 6001 , 6002 . . . , 600 M in FIG. 6 .
  • the PPE also comprises SPE status maintaining module 602 , for maintaining the status of each SPE in the application of PPE; SPE agent creating module 603 , for creating an SPE agent for capturing instructions from the PPE; and instruction sending module 604 , in response to a request for invoking a library, for determining whether the number of available SPEs for invoking the library is adequate based on the current status of each SPE. If the number of available SPEs is adequate, the PPE sends a run instruction to selected SPEs. After finishing the invocation of all libraries, the PPE sends a termination instruction to all SPEs started, wherein the SPEs started comprise the SPE agents for capturing the instructions from the PPE.
  • the SPE status maintaining module 602 in the PPE creates and maintains the status of each SPE.
  • the SPE status includes BUSY, IDLE, and NOT STARTED, wherein the NOT STARTED status denotes that the SPE has not been started; the BUSY status denotes that the SPE has been started and is executing tasks; and the IDLE status denotes that the SPE has been started and is not executing tasks.
  • the status of each SPE may be stored in cache or memory, and may be updated according to status changes of SPEs such that the latest SPE status is maintained.
  • PPE 600 creates an operation system thread first, then the SPE agent creating module 603 instructs the SPE to create an SPE agent, which receives instructions from the PPE and determines the type of the instructions. Then PPE 600 waits for the acknowledgement from the SPE to confirm that the above operations have been done. After receiving the acknowledgement, PPE 600 checks the status of each SPE with the SPE status maintaining module 602 . And the instruction sending module 604 determines whether the number of available SPEs for invoking the library is adequate.
  • the instruction sending module 604 first determines the number of required SPEs for invoking the current library based on the current SPE status, and then determines the number of SPEs that are in IDLE status; if the number of SPEs that are in IDLE status are more than the number of required SPEs for invoking the current library, then the number of available SPEs for invoking the library is adequate. If the number of available SPEs for invoking the library is adequate, the instruction sending module 604 sends the task of invoking the library to selected SPEs. That is, the SPEs in IDLE status.
  • the instruction sending module 604 sends the run instruction to the selected SPEs, and then the SPE status maintaining module 602 updates the SPE status as BUSY status.
  • the SPE status maintaining module 602 updates the SPE status as IDLE status. Then the instruction sending module 604 determines whether there is a need to invoke the next library, if needed, the SPEs that are in NOT STARTED status will be started.
  • the process waits. If all the libraries have been invoked, the instruction sending module 604 sends a termination instruction to all SPEs started, and waits until the termination of all SPE threads. After all SPE threads are terminated, the instruction sending module 604 releases the resource of each SPE, and the PPE process ends.
  • SPE responses to the PPE request initializes SPE environments and creates an SPE agent for capturing PPE instructions and determining the type of the instructions. Then, the SPE sends the acknowledgement that the SPE initialization process has ended.
  • the SPE agent begins to run, the SPE agent will capture the run instruction or termination instruction.
  • the SPE termination is not controlled by the PPE, that is, after the SPE finishes its task, the SPE will be terminated and the PPE is notified automatically.
  • the objective to control SPEs by the PPE is obtained by creating such SPE agent in the SPEs.
  • the SPE agent for capturing the instructions from the PPE executes the following steps: receiving an instruction from the PPE; determining whether the instruction is a termination instruction or a run instruction; if the instruction is a termination instruction, terminating the SPE; if the instruction is a run instruction, instructing the SPE to execute the instruction, that is to process the received data and send the result back in response to the PPE request.
  • modules in the system of the illustrative embodiments may be implemented by hardware circuitry such as Very Large Scale Integrated Circuit or gate array, semiconductors such as logic chips and transistors, or programmable hardware devices such as field programmable gate array, programmable logic device, or by software executing on various types of processors, or by the combination of above hardware circuitry and software.
  • hardware circuitry such as Very Large Scale Integrated Circuit or gate array
  • semiconductors such as logic chips and transistors
  • programmable hardware devices such as field programmable gate array, programmable logic device, or by software executing on various types of processors, or by the combination of above hardware circuitry and software.
  • the present invention also provides a program product, which comprises the program code implementing the above methods and medium for storing the program code.
  • the medium is a tangible computer readable storage medium having the program code, which may also be referred to as a computer readable program, recorded thereon.

Abstract

A mechanism is provided for invoking a multi-library application on a multiple processor system, wherein the multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Element (SPE). Applications including multi-libraries run in the memory of the PPE. The mechanism comprises maintaining the status of each SPE in the application running on the PPE, where there are SPE agents for capturing the instructions from the PPE in the SPEs that have been started. In response to a request for invoking a library, the PPE determines whether the number of available SPEs for invoking the library is adequate based on the current status of SPEs. If the number of available SPEs is adequate, the PPE sends a run instruction to selected SPEs. After finishing the invocation of all libraries, the PPE sends termination instructions to all started SPEs. IBM confidential

Description

    BACKGROUND
  • The present invention generally relates to computer software technology and particularly to an invoking multi-library applications on a multiple processor system.
  • A multiple processor system (MPS) may comprise a Power Processing Element (PPE) and a plurality of Synergistic Processing Elements (SPEs). The PPE and the plurality of SPEs share the main memory and each SPE has its own memory. IBM's Cell Broadband Engine is one kind of MPS.
  • IBM's CBE is a MPS on a single chip, as shown in FIG. 1, having 9 processing units that share the same main memory, in which one is a (PPE) and the other eight are (SPEs). Based on such system architecture, the CBE can provide terrific system capabilities and CBE overcomes the three important performance limitations that are on other MPSs, i.e., power usage, memory usage and processor frequency. Therefore, the CBE has been widely used in signal processing, pattern matching, model building, object determining, mapping, communication, and encryption, etc. CBE has taken a leading position, especially in High Performance Computing. For high performance computing or other computation sensitive applications, more and more libraries have been rewritten to be suitable for running on CBE. However, the running efficiency and development efficiency that multiple libraries run on a single CBE is becoming an obvious problem.
  • Each computation sensitive application running on CBE mainly depends on an SPE to execute computing. Before an SPE begins to compute, the SPE will create a system thread and an SPE thread, and then destroy these threads after the SPE finishes computing. For invoking a multi-library application, thread creation and destruction has to be completed when invoking the first library; and the same applies when invoking the second and follow on libraries. Thread creation and destruction needs time. For huge computing tasks, the time for thread creation and destruction may not be significant. However, for small and computation sensitive applications that invoke dense libraries, such creation and destruction will consume a lot of time, which lowers the efficiency of the whole system and tasks.
  • SUMMARY
  • In one illustrative embodiment, a mechanism is provided for invoking a multi-library application on a multiple processor system. In the illustrative embodiment, the multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Elements (SPEs), in a single chip. In the illustrative embodiment, the multi-library application including multi-libraries that run in memory on the PPE. The illustrative embodiment maintains a status of each of the plurality of SPEs in the multi-library application running on the PPE. In the illustrative embodiment, there are SPE agents for capturing instructions from the PPE in each of the plurality of SPEs that have been started. In response to a request for invoking a library in the multi-library application, the illustrative embodiment determines whether a number of available SPEs of the plurality of SPEs for invoking the library is adequate based on a current status of each of the SPEs in the plurality of SPEs. Responsive to the number of available SPEs being adequate, the illustrative embodiment sends a run instruction to selected SPEs. After finishing an invocation of all libraries, the illustrative embodiment sends termination instructions to all of the selected SPEs.
  • In other illustrative embodiments, a computer program product comprising a computer useable or readable medium having a computer readable program is provided. The computer readable program, when executed on a computing device, causes the computing device to perform various ones, and combinations of, the operations outlined above with regard to the method illustrative embodiment.
  • In yet another illustrative embodiment, a system/apparatus is provided. The system/apparatus may comprise one or more processors and a memory coupled to the one or more processors. The memory may comprise instructions which, when executed by the one or more processors, cause the one or more processors to perform various ones, and combinations of, the operations outlined above with regard to the method illustrative embodiment.
  • These and other features and advantages of the present invention will be described in, or will become apparent to those of ordinary skill in the art in view of, the following detailed description of the example embodiments of the present invention.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of exemplary embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the invention.
  • FIG. 1 shows the exemplary system diagram of CBE;
  • FIG. 2 shows the PPE and SPE process when invoking a library in CBE system in accordance with an illustrative embodiment;
  • FIG. 3 shows the PPE and SPE process when invoking multi-library in CBE system in accordance with an illustrative embodiment;
  • FIG. 4 shows the PPE and SPE process when invoking multi-library in CBE system in accordance with an illustrative embodiment;
  • FIG. 5 shows the PPE and SPE detailed process when invoking multi-library in CBE system in accordance with an illustrative embodiment; and
  • FIG. 6 shows a system for invoking multi-library in accordance with an illustrative embodiment.
  • DETAILED DESCRIPTION
  • Preferred embodiments of the present invention will now be described more fully hereinafter in more detail with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
  • Referring to FIG. 2, in which the Power Processing Element (PPE) and Synergistic Processing Elements (SPE) processes for invoking a library in Cell Broadband Engine (CBE) system is shown in accordance with an illustrative embodiment. The following steps are in the PPE process. In step S201, the PPE starts to invoke the SPE process; in step S202, the PPE creates an operation system thread, and then sends the instruction of creating an SPE thread to an SPE in step S203. After sending the instruction, the PPE waits for an acknowledgement from the SPE in step S204. After the SPE sends an acknowledgement, the PPE receives the acknowledgement and determines whether the resource is adequate in step S205. If the resource is not adequate, the PPE returns to step S202, in which the creation of the operating system thread is continued. If the resource is adequate, the PPE enters step S206, in which data are prepared and an instruction is sent to the SPE. In step S207, the PPE waits for the termination of the SPE thread. Once the SPE thread ends, the PPE releases the corresponding SPE resource, and then in step S209, the process ends.
  • FIG. 2 also shows the corresponding SPE process. In response to the PPE request, the SPE is started in step S210. The SPE initializes its environment in step S211. In response to the step S204 in the PPE, the SPE sends the acknowledgement to confirm that the initialization has ended. In step S213, the SPE waits for data and the instruction from the PPE and then in response to the step S206 in the PPE, the SPE processes the received data and returns results in step S214. The SPE process ends in step S215.
  • From FIG. 2, those skilled in the art know that once the PPE invokes a library, the PPE needs to create an operating system thread and instruction to create an SPE thread, and needs to release this kind of resource after invoking.
  • Now referring to FIG. 3, in which the PPE and SPE processes for invoking a multi-library application in a CBE system is shown in accordance with an illustrative embodiment. In FIG. 3, the PPE starts its process in step S301. The PPE will invoke a multi-library application, here we suppose that N libraries will be invoked. In step S302, library 1 is invoked. The SPE process is the same as the SPE process shown in FIG. 2. And in step S303, library 2 is invoked, . . . and in step S304, library N is invoked. The PPE process in each library invocation is the same as the PPE process in FIG. 2, and the SPE process in each library invocation is the same as the SPE process in FIG. 2. In step S305, the PPE determines whether the problem has been solved, i.e. whether all libraries that should be invoked have been invoked. If yes, the PPE enters step S306, in which the PPE process ends. Otherwise, the PPE continues to invoke libraries, here, library 1 is shown as an example. Comparing FIG. 3 with FIG. 2, one of ordinary skill in the art would understand that for every library invocation, the step of creating operating system thread (S202) and the step of instructing to create SPE thread (S203) are repeated from the PPE perspective. And the step of initializing the SPE environment and step of destroying the SPE thread are repeated from the SPE perspective. All these processes and the communication established between PPE/SPE consume a lot of time. Although the time may not be significant for huge computing tasks, the required time may not be ignored for those small and computation sensitive applications. The processes of frequently creating and destroying threads consume a lot of time and lower the efficiency of the whole system and tasks.
  • The core idea of the illustrative embodiments is that, when invoking a multi-library application, the processes of creating and destroying threads are cancelled. The created thread is kept until all the libraries are invoked and instructed by the PPE to terminate. With the illustrative embodiments, the process of frequently creating and destroying threads may be avoided, thus the efficiency of the whole system and tasks may be improved.
  • FIG. 4 shows the PPE and SPE process for invoking multi-library in a CBE system in accordance with an illustrative embodiment. The process presents a method for invoking multi-library applications on a multiple processor system, wherein the multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Element (SPE). Applications including multiple libraries run in the memory of the PPE. In step S400, the PPE process starts and then in step S402, status of each SPE are maintained in the application running on the PPE, wherein there are SPE agents in the SPEs that have been started, for capturing the instructions from the PPE. The function of SPE agents will be described in detail later. In step S406, the PPE checks the status of each SPE. In step S408, the PPE determines, based on the current status of each SPE, whether the number of available SPEs is adequate for invoking the library. If the number of available SPEs is adequate, the PPE sends a run instruction to selected SPEs in Step S410. In step S412, the PPE receives results that SPE has processed. Then in step S414, the PPE checks whether there is a need to invoke the next library. The PPE will not send the termination instruction to all started SPEs until all libraries have been invoked, as shown in step S416. Each SPE corresponding process is: the SPE waits for a run instruction or a termination instruction from the PPE in step S422, and the PPE determines the type of instruction in step S424. If the instruction is not a termination instruction, the SPE processes according to the run instruction in step S426, i.e., processing data and returning results. If the instruction is a termination instruction, the SPE terminates itself in step S428.
  • Thus, in this illustrative embodiment, the PPE determines how many SPEs may support current library invocation by maintaining the status of each SPE. Only when the number of the current SPEs that are in IDLE status is not adequate, the SPEs that have not been started will be started, such that the SPEs do not need to be created and destroyed frequently.
  • Turning to FIG. 5, in which the PPE and SPE process for invoking multi-library applications in a CBE system in accordance with an illustrative embodiment, is shown in detail. In step S500, the PPE process starts. And in step S501, the PPE establishes and maintains the status of each SPE. The status of each SPE includes BUSY, IDLE, and NOT STARTED, where the NOT STARTED status denotes that the SPE has not been started; the BUSY status denotes that the SPE has been started and is executing tasks; and the IDLE status denotes that the SPE has been started and is not executing tasks. The status of each SPE may be stored in cache or memory, and may be updated according to the status change of each SPE so that the latest status could be maintained. When the library begins to be invoked, in step S502, the PPE creates an operation system thread first, and then sends out an instruction to an SPE to create an SPE thread. The SPE agent that receives the instruction from the PPE determines the type of instruction. Then the PPE waits for an acknowledgement from the SPE to confirm that above operations have been done in step S504. After receiving the acknowledgement, the PPE checks the status of each SPE in step S505 and determines whether the number of available SPEs is adequate for invoking the library in step S506. In the determination process, the number of required SPEs for invoking the current library is determined first based on current SPE status; and then the number of SPEs in IDLE status is determined; if the number of SPEs that are in IDLE status is more than the number of required SPEs for invoking the current library, then the number of available SPEs for invoking the library is adequate. If the number of available SPEs for invoking the library is adequate, the PPE sends the task of invoking the library to selected SPEs. That is, the SPEs that are in IDLE status. There may be a plurality of current SPEs that are in IDLE status, and there may be many methods to select SPEs, for example, to select SPEs randomly, or according to SPE sequence number, or any other methods known to those skilled in the art. After selection, the PPE sends the run instruction to the selected SPEs in step S507, and then updates the SPE status as BUSY. When the PPE receives the result from the SPEs, the PPE updates the SPE status as IDLE in step S508. Then the PPE determines whether there is a need to invoke the next library in step S509. If needed, the PPE process returns to step s505. If the number of available SPEs for invoking the library is not adequate, more SPEs need to be started. In more detailed description, the PPE process returns to Step S502 from Step S506, in which another SPE is started. If all SPEs have been started, the process has to wait in step S506. If all the libraries have been invoked, the PPE sends a termination instruction, in step S510, to all SPEs started, and waits for the termination of all SPE threads in step S511. After all SPE threads are terminated, the PPE releases the resource of each SPE in step S512. Then the PPE process ends in step S513.
  • Referring to FIG. 5 again, a responding SPE process is also shown, in which an SPE is started in Step S514. In step S515, in response to the PPE request, the SPE initializes its environment and creates an SPE agent to capture the PPE instruction and determine the type of instruction. Then the SPE sends an acknowledgement that the SPE initialization process has ended in step S516. When the SPE agent begins to run in step S517, the SPE agent will capture a run instruction or termination instruction. In the existing technology, there is no such kind of agent, so the SPE termination is not controlled by the PPE. That is, after the SPE finishes its task, the SPE will be terminated and the PPE is notified automatically. In the illustrative embodiments, the objective is to control the SPE by the PPE by creating such SPE agent in the SPE. The SPE agent, for capturing the instructions from the PPE, executes the following steps: receiving an instruction from the PPE; determining whether the instruction is a termination instruction or a run instruction; if the instruction is a termination instruction, terminating the SPE; if the instruction is a run instruction, instructing the SPE to execute the instruction. That is, to process the received data and send the result back in response to the PPE request.
  • Based on the same illustrative embodiment concept, there is provided a system for invoking multi-library applications on a multiple processor system. Referring to FIG. 6, a system for invoking multi-library applications is shown in accordance with an illustrative embodiment. The system for invoking multi-library applications on a multiple processor system comprises a Power Processing Element (PPE) and a plurality of Synergistic Processing Element (SPE), e.g. 600-1, 600-2, . . . , 600-N. Application 601 includes multi-libraries (M libraries) running in the memory of the PPE. The M libraries are shown as 6001, 6002 . . . , 600M in FIG. 6. The PPE also comprises SPE status maintaining module 602, for maintaining the status of each SPE in the application of PPE; SPE agent creating module 603, for creating an SPE agent for capturing instructions from the PPE; and instruction sending module 604, in response to a request for invoking a library, for determining whether the number of available SPEs for invoking the library is adequate based on the current status of each SPE. If the number of available SPEs is adequate, the PPE sends a run instruction to selected SPEs. After finishing the invocation of all libraries, the PPE sends a termination instruction to all SPEs started, wherein the SPEs started comprise the SPE agents for capturing the instructions from the PPE.
  • When the SPEs are instructed to start by the PPE, the SPE status maintaining module 602 in the PPE creates and maintains the status of each SPE. The SPE status includes BUSY, IDLE, and NOT STARTED, wherein the NOT STARTED status denotes that the SPE has not been started; the BUSY status denotes that the SPE has been started and is executing tasks; and the IDLE status denotes that the SPE has been started and is not executing tasks. The status of each SPE may be stored in cache or memory, and may be updated according to status changes of SPEs such that the latest SPE status is maintained.
  • When the library begins to be invoked, PPE600 creates an operation system thread first, then the SPE agent creating module 603 instructs the SPE to create an SPE agent, which receives instructions from the PPE and determines the type of the instructions. Then PPE 600 waits for the acknowledgement from the SPE to confirm that the above operations have been done. After receiving the acknowledgement, PPE 600 checks the status of each SPE with the SPE status maintaining module 602. And the instruction sending module 604 determines whether the number of available SPEs for invoking the library is adequate. In the determination process, the instruction sending module 604 first determines the number of required SPEs for invoking the current library based on the current SPE status, and then determines the number of SPEs that are in IDLE status; if the number of SPEs that are in IDLE status are more than the number of required SPEs for invoking the current library, then the number of available SPEs for invoking the library is adequate. If the number of available SPEs for invoking the library is adequate, the instruction sending module 604 sends the task of invoking the library to selected SPEs. That is, the SPEs in IDLE status. There may be a plurality of current SPEs that are in IDLE status, and there may be many methods to select SPEs, for example, to select SPEs randomly, or according to an SPE sequence number, or any other methods known to those skilled in the art, etc. After selection, the instruction sending module 604 sends the run instruction to the selected SPEs, and then the SPE status maintaining module 602 updates the SPE status as BUSY status. When the PPE receives the result from an SPE, the SPE status maintaining module 602 updates the SPE status as IDLE status. Then the instruction sending module 604 determines whether there is a need to invoke the next library, if needed, the SPEs that are in NOT STARTED status will be started. If the number of available SPEs for invoking the library is not adequate, more SPEs need to be started. If all SPEs have been started, the process waits. If all the libraries have been invoked, the instruction sending module 604 sends a termination instruction to all SPEs started, and waits until the termination of all SPE threads. After all SPE threads are terminated, the instruction sending module 604 releases the resource of each SPE, and the PPE process ends.
  • There is a corresponding SPE process, in which SPE responses to the PPE request, initializes SPE environments and creates an SPE agent for capturing PPE instructions and determining the type of the instructions. Then, the SPE sends the acknowledgement that the SPE initialization process has ended. When the SPE agent begins to run, the SPE agent will capture the run instruction or termination instruction. In the existing technology, there is no such kind of agent, so the SPE termination is not controlled by the PPE, that is, after the SPE finishes its task, the SPE will be terminated and the PPE is notified automatically. In the illustrative embodiments, the objective to control SPEs by the PPE is obtained by creating such SPE agent in the SPEs. The SPE agent for capturing the instructions from the PPE executes the following steps: receiving an instruction from the PPE; determining whether the instruction is a termination instruction or a run instruction; if the instruction is a termination instruction, terminating the SPE; if the instruction is a run instruction, instructing the SPE to execute the instruction, that is to process the received data and send the result back in response to the PPE request.
  • A point should be made that the modules in the system of the illustrative embodiments may be implemented by hardware circuitry such as Very Large Scale Integrated Circuit or gate array, semiconductors such as logic chips and transistors, or programmable hardware devices such as field programmable gate array, programmable logic device, or by software executing on various types of processors, or by the combination of above hardware circuitry and software.
  • The present invention also provides a program product, which comprises the program code implementing the above methods and medium for storing the program code. The medium is a tangible computer readable storage medium having the program code, which may also be referred to as a computer readable program, recorded thereon.
  • Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present invention is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one of ordinary skill in the related are without departing from the scope or spirit of the invention. All such changes and modifications are intended to be included within the scope of the invention as described by the appended claims.

Claims (22)

1. A method for invoking a multi-library application on a multiple processor system, wherein the multiple processor system comprises a First Processing Element (FPE) and a plurality of Other Processing Elements (OPEs), in a single chip, the multi-library application including multi-libraries that run in memory on the FPE, comprising:
maintaining a status of each of the plurality of OPEs in the multi-library application running on the FPE, wherein there are OPE agents for capturing instructions from the FPE in each of the plurality of OPEs that have been started;
in response to a request for invoking a library in the multi-library application, determining, by the FPE, whether a number of available OPEs of the plurality of OPEs for invoking the library is adequate based on a current status of each of the OPEs in the plurality of the OPEs;
responsive to the number of available OPEs being adequate, sending by the FPE, a run instruction to selected OPEs; and
after finishing an invocation of all libraries, sending, by the FPE, termination instructions to all of the selected OPEs.
2. The method as recited in claim 1, wherein the FPE is a Power Processing Element and the OPEs are a Synergistic Processing Element wherein the OPEs have a different instruction set from the FPE.
3. The method as recited in claim 1, wherein in response to invoking a library, responsive to determining that the number of available OPEs for invoking the library is not adequate, starting more OPEs by the FPE.
4. The method as recited in claims claim 3, wherein the status of the plurality of OPEs include BUSY, IDLE, and NOT STARTED, wherein the NOT STARTED status denotes that the OPE has not been started, wherein the BUSY status denotes that the OPE has been started and is executing tasks, and wherein the IDLE status denotes that the OPE has been started and is not executing tasks.
5. The method as recited in claim 4, wherein starting the OPE by the FPE, comprises:
starting by the FPE, the OPE and creating an OPE thread; and
instructing, by the FPE, the started OPEs to create OPE agents for capturing the instructions from the FPE.
6. The method as recited in claim 4, wherein the step of the FPE determining whether the number of available OPEs for invoking the library is adequate further comprises:
determining a number of required OPEs for invoking the current library;
determining a number of OPEs that are in IDLE status; and
if the number of OPEs that are in IDLE status is more than the number of required OPE for invoking the current library, then determining that the number of available OPEs for invoking the library is adequate.
7. (canceled)
8. The method as recited in claim 1, wherein the OPEs are selected either randomly or according to an OPE sequence number.
9. The method as recited in claims 6, wherein after sending a run instruction to selected OPEs that are in IDLE status, updating the OPE status as BUSY status.
10. The method as recited in claim 1, wherein the OPE agent for capturing the instructions from the FPE executes the following steps:
receiving an instruction from the FPE;
determining whether the instruction is a termination instruction or a run instruction;
if the instruction is run instruction, instructing the OPE to execute the instruction and send the result back; and
if the instruction is termination instruction, terminating the OPE.
11. A multiple processor system for invoking a multi-library application, wherein the multiple processor system comprises a First Processing Element (FPE) and a plurality of Other Processing Elements (OPEs), on a single chip, the multi-library application including multi-libraries that run in memory on the FPE, the system comprising:
a FPL, comprising:
a OPE status maintaining module, for maintaining status of each of the plurality of OPEs in the multi-library application running on the FPE;
OPE agent creating module, for creating an OPE agent to capture instructions from the FPE;
instruction sending module, for determining whether the number of available OPEs for invoking a library is adequate based on the current status of each of the OPEs in the plurality of OPEs;
responsive the available OPE number being adequate, the FPE for sending a run instruction to selected OPEs; and
after finishing an invocation of all libraries, the FPE for sending a termination instruction to all of the selected OPEs,
wherein the OPEs that have been started comprising the OPE agents for capturing the instructions from FPE.
12. The system as recited in claim 11, wherein if the instruction sending module determines that the number of available OPEs for invoking the library is not adequate, more OPEs are started by the FPE.
13. The system as recited in claim 11, wherein the OPEs have a different instruction set from the FPE.
14. The system as recited in claim 12, wherein the status of OPE includes BUSY, IDLE, and NOT STARTED, wherein the NOT STARTED status denotes that the OPE has not been started, wherein the BUSY status denotes that the OPE has been started and is executing tasks, and wherein the IDLE status denotes that the OPE has been started and is not executing tasks.
15. The system as recited in claim 14, wherein the FPE starts one or more OPEs and creates an OPE thread for each OPE; and then the OPE creating module instructs the started OPEs to create OPE agents for capturing the instructions from the FPE.
16. The system as recited in claim 14, wherein the instruction sending module determines whether the number of available OPEs for invoking the library is adequate by:
determining a number of required OPE for invoking the current library;
determining a number of OPEs that have been started and are in IDLE status;
if the number of OPEs that have been started and are in IDLE status is more than the number of required OPE for invoking the current library, then the number of available OPEs for invoking the library is adequate.
17. (canceled)
18. The system as recited in claims 16, wherein the OPEs are selected either randomly or according to OPE sequence number.
19. The system as recited in claims 16, wherein after sending run instruction to selected OPEs that are in IDLE status, the instruction sending module updates the OPE status as BUSY status.
20. The system as recited in claims 11, wherein the OPE agent for capturing the instructions from the FPE executes:
receiving an instruction from the FPE;
determining whether the instruction is a termination instruction or a run instruction;
if the instruction is run instruction, instructing the OPE to execute the instruction and send the result back;
if the instruction is termination instruction, terminating the OPE.
21. A program product comprising a computer readable storage medium having a computer readable program recorded thereon, wherein the computer readable program, when executed on a computing device, causes the computing device to:
maintain a status of each of a plurality of Other Processing Elements (OPEs) in a multi-library application running on a First Processing Element (FPE), wherein there are OPE agents for capturing instructions from the FPE in each of the plurality of OPEs that have been started;
in response to a request for invoking a library in the multi-library application, determine whether a number of available OPEs of the plurality of OPEs for invoking the library is adequate based on a current status of each of the OPEs in the plurality of OPEs;
responsive to the number of available OPEs being adequate, send a run instruction to selected OPEs; and
after finishing an invocation of all libraries, send termination instructions to all of the selected OPEs.
22. The program product as recited in claim 21, wherein in response to invoking a library, responsive to determining that the number of available OPEs for invoking the library is not adequate, the computer readable program further causes the computing device to start more OPEs by the FPE, wherein the status of the plurality of OPEs include BUSY, IDLE, and NOT STARTED, wherein the NOT STARTED status denotes that the OPE has not been started, wherein the BUSY status denotes that the OPE has been started and is executing tasks, wherein the IDLE status denotes that the OPE has been started and is not executing tasks, and wherein the computer readable program to start the OPE by the FPE, further causes the computing device to:start the OPE and create a OPE thread; and
instruct the started OPEs to create OPE agents for capturing the instructions from the FPE.
US12/549,505 2008-08-28 2009-08-28 Invoking Multi-Library Applications on a Multiple Processor System Abandoned US20100058029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/452,129 US8694756B2 (en) 2008-08-28 2012-04-20 Starting other processing elements (OPEs) responsive to a determination that currently-running OPEs are inadequate to invoke a library for a multi-library application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810214486.3A CN101661405B (en) 2008-08-28 2008-08-28 Multi-database function invoking method and system based on multiprocessor system
CN200810214486.3 2008-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/452,129 Continuation US8694756B2 (en) 2008-08-28 2012-04-20 Starting other processing elements (OPEs) responsive to a determination that currently-running OPEs are inadequate to invoke a library for a multi-library application

Publications (1)

Publication Number Publication Date
US20100058029A1 true US20100058029A1 (en) 2010-03-04

Family

ID=41727023

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/549,505 Abandoned US20100058029A1 (en) 2008-08-28 2009-08-28 Invoking Multi-Library Applications on a Multiple Processor System
US13/452,129 Expired - Fee Related US8694756B2 (en) 2008-08-28 2012-04-20 Starting other processing elements (OPEs) responsive to a determination that currently-running OPEs are inadequate to invoke a library for a multi-library application

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/452,129 Expired - Fee Related US8694756B2 (en) 2008-08-28 2012-04-20 Starting other processing elements (OPEs) responsive to a determination that currently-running OPEs are inadequate to invoke a library for a multi-library application

Country Status (2)

Country Link
US (2) US20100058029A1 (en)
CN (1) CN101661405B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257372A (en) * 1990-12-19 1993-10-26 Cray Research, Inc. Methods for efficient distribution of parallel tasks to slave processes in a multiprocessing system
US5349682A (en) * 1992-01-31 1994-09-20 Parallel Pcs, Inc. Dynamic fault-tolerant parallel processing system for performing an application function with increased efficiency using heterogeneous processors
US20030115495A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Conserving energy in a data processing system by selectively powering down processors
US7418703B2 (en) * 2002-03-20 2008-08-26 Nec Corporation Parallel processing system by OS for single processor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794119B2 (en) * 1997-08-29 2006-07-05 ソニー株式会社 Data processing method, recording medium, and data processing apparatus
US7234144B2 (en) * 2002-01-04 2007-06-19 Microsoft Corporation Methods and system for managing computational resources of a coprocessor in a computing system
CN101165655A (en) * 2006-10-20 2008-04-23 国际商业机器公司 Multiple processor computation system and its task distribution method
CN101013388A (en) * 2007-01-26 2007-08-08 浙江大学 Heterogeneous multi-core system-oriented process scheduling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257372A (en) * 1990-12-19 1993-10-26 Cray Research, Inc. Methods for efficient distribution of parallel tasks to slave processes in a multiprocessing system
US5349682A (en) * 1992-01-31 1994-09-20 Parallel Pcs, Inc. Dynamic fault-tolerant parallel processing system for performing an application function with increased efficiency using heterogeneous processors
US20030115495A1 (en) * 2001-12-13 2003-06-19 International Business Machines Corporation Conserving energy in a data processing system by selectively powering down processors
US7418703B2 (en) * 2002-03-20 2008-08-26 Nec Corporation Parallel processing system by OS for single processor

Also Published As

Publication number Publication date
US8694756B2 (en) 2014-04-08
CN101661405A (en) 2010-03-03
CN101661405B (en) 2012-08-29
US20120204003A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US7788668B2 (en) System and method for implementing distributed priority inheritance
US10877766B2 (en) Embedded scheduling of hardware resources for hardware acceleration
US7814295B2 (en) Moving processing operations from one MIMD booted SIMD partition to another to enlarge a SIMD partition
US7058950B2 (en) Callback event listener mechanism for resource adapter work executions performed by an application server thread
RU2630171C2 (en) Method of initialization of computer system with plurality of central processors
US8595736B2 (en) Parsing an application to find serial and parallel data segments to minimize mitigation overhead between serial and parallel compute nodes
EP2962192B1 (en) System and method thereof to optimize boot time of computers having multiple cpus
US20110213942A1 (en) Parallel memory migration
US11886302B1 (en) System and method for execution of applications in a container
US7831802B2 (en) Executing Multiple Instructions Multiple Data (‘MIMD’) programs on a Single Instruction Multiple Data (‘SIMD’) machine
US20050188068A1 (en) System and method for monitoring and controlling server nodes contained within a clustered environment
EP3724776A1 (en) Method, function manager and arrangement for handling function calls
US20220075628A1 (en) System and Method for Supervising Processes Among Embedded Systems
US20080148095A1 (en) Automated memory recovery in a zero copy messaging system
US11334436B2 (en) GPU-based advanced memory diagnostics over dynamic memory regions for faster and efficient diagnostics
US8694756B2 (en) Starting other processing elements (OPEs) responsive to a determination that currently-running OPEs are inadequate to invoke a library for a multi-library application
CN114817107B (en) PCIE equipment switching system, method and device, computer equipment and storage medium
US20060156291A1 (en) System and method for managing processor execution in a multiprocessor system
US20090089809A1 (en) Automatic generation of parallelizable application units system and method
CN116528300B (en) Task issuing method, device, system and communication equipment
CN110622164A (en) Execution of driver code subsets in separate protection domains
US11842057B2 (en) Seamless creation of raid arrays with optimized boot time
US11182228B2 (en) System and method for remote procedure call for key-value target over non-volatile memory express over fabrics
US20240111579A1 (en) Termination of sidecar containers
KR102505996B1 (en) Apparatus for remote processing for virtual machine processor and method for the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION,NEW YO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, HUI;PENG, HONG BO;WANG, BAI LING;SIGNING DATES FROM 20090819 TO 20090901;REEL/FRAME:023184/0985

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION