US20100069422A1 - Methods and compositions for promoting bone and joint health - Google Patents

Methods and compositions for promoting bone and joint health Download PDF

Info

Publication number
US20100069422A1
US20100069422A1 US12/626,392 US62639209A US2010069422A1 US 20100069422 A1 US20100069422 A1 US 20100069422A1 US 62639209 A US62639209 A US 62639209A US 2010069422 A1 US2010069422 A1 US 2010069422A1
Authority
US
United States
Prior art keywords
cyclopent
dihydroxy
methylbutanoyl
hydroxy
methylpent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/626,392
Inventor
Matthew L. Tripp
Veera Konda
Anu Desai
Amy J. Hall
Jeffrey S. Bland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MetaProteomics LLC
Original Assignee
MetaProteomics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MetaProteomics LLC filed Critical MetaProteomics LLC
Priority to US12/626,392 priority Critical patent/US20100069422A1/en
Assigned to METAPROTEOMICS, LLC reassignment METAPROTEOMICS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESAI, ANU, KONDA, VEERA, HALL, AMY J., TRIPP, MATTHEW L., BLAND, JEFFREY S.
Publication of US20100069422A1 publication Critical patent/US20100069422A1/en
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: META PROTEOMICS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/82Theaceae (Tea family), e.g. camellia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators

Definitions

  • the present invention relates generally to methods and compositions that can be used to promote bone and joint health through amelioration, stabilization or repair of damage associated with various pathophysiological conditions.
  • Osteoarthritis, rheumatoid arthritis, and osteoporosis represent the most prevalent diseases influencing bone and joint health.
  • other diseases not generally associated with bone or joint health such as systemic lupus erythematosus, for example, may have elements affecting bones or joints structure and function.
  • Osteoarthritis is an age-related joint disorder that affects more than 40 million Americans (Hinton et al, “Osteoarthritis: Diagnosis and therapeutic considerations.” Am Fam Physician. 65:841-8, 2002; Lawrence et al, “Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States.” Arthritis Rheum. 41:778-99; 2004).
  • the disease affects the entire joint structure, and is characterized pathologically by focal areas of articular cartilage loss in synovial joints, varying degrees of osteophyte formation (bony outgrowths at the cartilage margins), subchondral bone change, and synovitis.
  • OA synovial inflammation is present in the many symptoms of OA: joint swelling and effusion, stiffness and occasional redness, especially at proximal and distal interpharyngeal joints. Further, elevated levels of inflammatory cytokines (interleukin-1 beta [IL-1 ⁇ ] and tumor necrosis factor alpha [TNF ⁇ ]) have been observed in OA synovial fluid.
  • IL-1 ⁇ interleukin-1 beta
  • TNF ⁇ tumor necrosis factor alpha
  • cytokines which are primarily synthesized by chondrocytes, appear to play a major part in the destruction of cartilage tissue through the induction of matrix metalloproteinases (MMPs), nitric oxide (NO) and prostaglandin E 2 (PGE 2 ).
  • MMPs matrix metalloproteinases
  • NO nitric oxide
  • PGE 2 prostaglandin E 2
  • Rheumatoid arthritis is a systemic inflammatory disorder that affects 1% of the American population, and approximately three times as many women as men are affected by this disorder.
  • RA which can be a self-limiting condition or a debilitating chronic disease leading to joint destruction and deformity, is characterized by joint inflammation, and the predominant symptoms include pain, stiffness and swelling of peripheral joints.
  • the sequence of events in RA is thought to be initiated by CD4+ T cells, which upon recognizing arthritogenic antigens in synovial tissue, activate macrophages, monocytes and synovial fibroblasts.
  • the activated macrophages, monocytes and synovial fibroblasts then secrete numerous inflammatory cytokines like interleukin-1 (IL-1), IL-6 and tumor necrosis factor ⁇ ; in addition, these activated cells also secrete matrix metalloproteinases, which are responsible for the proteolytic breakdown of bone and cartilage tissue.
  • IL-1 interleukin-1
  • IL-6 tumor necrosis factor ⁇
  • matrix metalloproteinases which are responsible for the proteolytic breakdown of bone and cartilage tissue.
  • Other mediators of inflammation induced by the pro-inflammatory cytokines, and which contribute to the pathology in affected joints include prostaglandin E 2 (PGE 2 ) and nitric oxide.
  • Osteoporosis is a disease characterized by low bone mass and deterioration of bone structure resulting in bone fragility and increased risk of fracture.
  • the World Health Organization has defined osteoporosis as a bone mineral density (BMD) value more than 2.5 standard deviations below the mean for normal young White women.
  • BMD bone mineral density
  • Individuals with osteoporosis arc at high risk of suffering one or more fractures, injuries that can often be physically debilitating and potentially lead to a downward spiral in physical and mental health.
  • Newer methods and compositions for promoting bone and joint health are required since many of the conditions of impaired bone or joint health are or become chronic in nature, thereby necessitating long term therapies.
  • One area for exploration would include botanical based products having proven long term histories of safe use.
  • Two potential candidates are berberine and substituted 1,3-cyclopentadione compounds which may either be isolated from hops or derived from hops.
  • Berberine has also been used septic shock and graft versus host disease (Upadhyay, S., et al., U.S. Pat. No. 6,291,483) and investigated for its anti-inflammatory properties as a potential arthritis treatment modality (Ivanovska, N., and Philipov, S., “Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids.”, Int. J. Immunopharmac., 18(10: 553-561, 1996).
  • the inventors have previously reported on a number of compounds either isolated from hops or derived from hops (alpha acids, beta acids, prenylflavonoids, chalcones, isoalpha acids, and reduced isoalpha acids) which display activity against numerous conditions including inflammation, minor pain, and arthritic conditions (see, for example, U.S. 2003/0008021; US 2003/0113393; US 2004/0115290; or US 2004/0151792).
  • the inventors have found and report herein among other things the unexpected results that berberine may act synergistically with substituted 1,3-cyclopentadione compounds which may either be isolated from hops or derived from hops to promote bone and joint health.
  • the inventors additionally report on combinations of botanically derived compounds which may be used to promote joint and bone health.
  • the present invention relates generally to methods and compositions for promoting bone and joint health in mammals.
  • the subject may have a disease or condition such as osteoarthritis, rheumatoid arthritis, an autoimmune disorder, or osteoporosis.
  • the promotion of bone and joint health may be effectuated through a reduction or cessation of the conditions or factors producing deleterious effects in the affected tissue.
  • the present invention may be used modulate repair mechanism processes to either retard or stabilize tissue damage or to promote repair in the affected tissues.
  • the methods and compositions described employ combinations of berberine and substituted 1,3-cyclopentadione compounds (which may either be isolated from hops or derived from hops), or alternatively, combinations of botanically derived compounds which may be used to promote joint and bone health.
  • a first embodiment of the invention provides methods to promote bone and joint health in a mammal in need.
  • the method comprises comprising administering to the mammal a composition comprising a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • a second embodiment provides compositions to promote bone and joint health in a mammal where the compositions comprise a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • compositions of the method comprise from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-5-(3-methylbutyl)
  • Composition for promoting bone and joint health in a mammal in need comprising from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentan
  • compositions of the methods comprise from about 9 mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylp
  • compositions to promote bone and joint health in a mammal in need wherein the composition comprises from about 9mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof are described, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,
  • Another embodiment further describes methods to promote bone and joint health in a mammal in need.
  • the methods of this embodiment comprise administering to the mammal a composition comprising therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granat
  • compositions to promote bone and joint health in a mammal in need comprise therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Quercetin, Red yeast rice, Resveratrol,
  • FIG. 1 graphically displays the chemical structure of 7,8,13,13a-tetrahydro-9,10-dimethoxy-2,3-(methylenedioxy)-berbinium; also known as berberine.
  • the present invention relates generally to methods and compositions for promoting bone and joint health in mammals in need.
  • the subject may have a disease or condition such as osteoarthritis, rheumatoid arthritis, an autoimmune disorder, or osteoporosis.
  • the promotion of bone and joint health may be effectuated through a reduction or cessation of the conditions or factors producing deleterious effects in the affected tissue.
  • the present invention may be used modulate repair mechanism processes to either retard or stabilize tissue damage or to promote repair in the affected tissues.
  • compositions described employ combinations of berberine and substituted 1,3-cyclopentadione compounds (which may either be isolated from hops or derived from hops), or alternatively, combinations of botanically derived compounds which may be used to promote joint and bone health.
  • Standard reference works setting forth the general principles of DNA technology include Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, New York (1989); and Kaufman et al., Eds., Handbook of Molecular and Cellular Methods in Biology in Medicine, CRC Press, Boca Raton (1995). Standard reference works setting forth the general principles of pharmacology include Goodman and Gilman's The Pharmacological Basis of Therapeutics, 11th Ed., McGraw Hill Companies Inc., New York (2006).
  • variable can be equal to any integer value of the numerical range, including the end-points of the range.
  • variable can be equal to any real value of the numerical range, including the end-points of the range.
  • a variable which is described as having values between 0 and 2 can be 0, 1 or 2 for variables which are inherently discrete, and can be 0.0, 0.1, 0.01, 0.001, or any other real value for variables which are inherently continuous.
  • mammals or “mammal in need” include humans as well as non-human mammals, particularly domesticated animals including, without limitation, cats, dogs, and horses.
  • a first embodiment of the invention describes methods to promote bone and joint health in a mammal in need.
  • the methods comprise administering to the mammal a composition comprising a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • the composition of the method comprises a first component and a second component in a synergistic ratio.
  • the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1
  • the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R
  • the second component is derived from hops
  • the compositions further comprise a pharmaceutically acceptable excipient selected from the group consisting of coatings, isotonic and absorption delaying agents, binders, adhesives, lubricants, disintergrants, coloring agents, flavoring agents, sweetening agents, absorbants, detergents, and emulsifying agents.
  • the composition further comprises one or more members selected from the group consisting of antioxidants, vitamins, minerals, proteins, fats, and carbohydrates.
  • the method comprises administering to the mammal a composition which comprises from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)
  • the method comprises administering to the mammal a composition which comprises from about 9 mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(
  • the phrase “promote bone health” shall refer to those conditions wherein the methods and compositions of the invention may result in (a) reduced localized pain and inflammation at a site of bone damage; (b) stabilization of bone structure and integrity; (c) modulation of the mechanism(s) to prevent cell based destruction of bone tissue; (d) enhancing repair of damaged bone tissue by increasing bone mineralization; or (e) modulation of the equilibrium between normal bone deposition and reformation.
  • Representative diseases or conditions wherein use of the methods and compositions of the invention include, without limitation, osteoporosis, osteopenia, rickets, osteoarthritis, autoimmune diseases, and rheumatoid arthritis.
  • the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases “having at least” or “including at least”.
  • the term “comprising” means that the process includes at least the recited steps, but may include additional steps.
  • the term “comprising” means that the compound or composition includes at least the recited features or compounds, but may also include additional features or compounds.
  • derivatives or a matter “derived” refer to a chemical substance related structurally to another substance and theoretically obtainable from it, i.e. a substance that can be made from another substance.
  • Derivatives can include compounds obtained via a chemical reaction.
  • berine refers to 7,8,13,13a-tetrahydro-9,10-dimethoxy-2,3-(methylenedioxy)-berbinium. Berberine, an alkaloid, is most commonly associated with but not limited to extracts from plants of the Berberis species.
  • substituted 1,3-cyclopentadione compounds refers to those compounds generally described as reduced isoalpha acids commonly associated with hops and beer production.
  • the substituted 1,3-cyclopentadione compounds refers to the dihydroisoalpha acids (RIAA), tetrahydroisoalpha acids (“THIAA”) and hexahydroisalpha acids (“HHIAA”).
  • reduced isoalpha acids include without limitation dihydroisoalpha acids, more specifically Rho dihydroisoalpha acids (Table 1), tetrahydroisoalpha acid (Table 2), and hexahydroisoalpha acids (Table 3), and their derivatives.
  • Rho refers to those reduced isoalpha acids wherein the reduction is a reduction of the carbonyl group in the 4-methyl-3-pentenoyl side chain.
  • Rho dihydroisoalpha acids Chemical Name Synonym Structure (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6S) cis n iso-alpha acid (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6R) cis n iso-alpha acid (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methyl
  • the compounds of the second component are derived from hops. See Verzele, M. and De Keukeleire, D., Developments in Food Science 27: Chemistry and Analysis of Hop and Beer Bitter Acids, Elsevier Science Pub. Co., 1991, New York, USA, herein incorporated by reference in its entirety, for a detailed discussion of hops chemistry.
  • pharmaceutically acceptable is used in the sense of being compatible with the other ingredients of the compositions and not deleterious to the recipient thereof.
  • “compounds” may be identified either by their chemical structure, chemical name, or common name. When the chemical structure and chemical or common name conflict, the chemical structure is determinative of the identity of the compound.
  • the compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers or diastereomers. Accordingly, the chemical structures depicted herein encompass all possible enantiomers and stereoisomers of the illustrated or identified compounds including the stereoisomerically pure form (e.g., geometrically pure, enantiomerically pure or diastereomerically pure) and enantiomeric and stereoisomeric mixtures.
  • Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan.
  • the compounds may also exist in several tautomeric forms including the enol form, the keto form and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated or identified compounds.
  • the compounds described also encompass isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature. Examples of isotopes that may be incorporated into the compounds of the invention include, but are not limited to, 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, etc.
  • Compounds may exist in unsolvated forms as well as solvated forms, including hydrated forms and as N-oxides. In general, compounds may be hydrated, solvated or N-oxides. Certain compounds may exist in multiple crystalline or amorphous forms. Also contemplated within the scope of the invention are congeners, analogs, hydrolysis products, metabolites and precursor or prodrugs of the compound. In general, unless otherwise indicated, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the present invention.
  • a “pharmaceutically acceptable salt” of the invention is a combination of a compound of the invention and either an acid or a base that forms a salt (such as, for example, the magnesium salt, denoted herein as “Mg” or “Mag”) with the compound and is tolerated by a subject under therapeutic conditions.
  • a pharmaceutically acceptable salt of a compound of the invention will have a therapeutic index (the ratio of the lowest toxic dose to the lowest therapeutically effective dose) of 1 or greater. The person skilled in the art will recognize that the lowest therapeutically effective dose will vary from subject to subject and from indication to indication, and will thus adjust accordingly.
  • hop refers to plant cones of the genus Humulus which contains a bitter aromatic oil which is used in the brewing industry to prevent bacterial action and add the characteristic bitter taste to beer. More preferably, the hops used are derived from Humulus lupulus.
  • compositions according to the invention are optionally formulated in a pharmaceutically acceptable vehicle with any of the well known pharmaceutically acceptable carriers, including diluents and excipients (see Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, Mack Publishing Co., Easton, Pa. 1990 and Remington: The Science and Practice of Pharmacy, Lippincott, Williams & Wilkins, 1995). While the type of pharmaceutically acceptable carrier/vehicle employed in generating the compositions of the invention will vary depending upon the mode of administration of the composition to a mammal, generally pharmaceutically acceptable carriers are physiologically inert and non-toxic. Formulations of compositions according to the invention may contain more than one type of compound of the invention), as well any other pharmacologically active ingredient useful for the treatment of the symptom/condition being treated.
  • compositions of the invention can be administered by standard routes.
  • the compositions of the invention include those suitable for oral, inhalation, rectal, ophthalmic (including intravitreal or intracameral), nasal, topical (including buccal and sublingual), vaginal, or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and intratracheal).
  • polymers may be added according to standard methodologies in the art for sustained release of a given compound.
  • compositions used to treat a disease or condition will use a pharmaceutical grade compound and that the composition will further comprise a pharmaceutically acceptable carrier. It is further contemplated that these compositions of the invention may be prepared in unit dosage forms appropriate to both the route of administration and the disease and patient to be treated.
  • the compositions may conveniently be presented in dosage unit form be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the vehicle which constitutes one or more auxiliary constituents, In general, the compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid vehicle or a finely divided solid vehicle or both, and then, if necessary, shaping the product into the desired composition.
  • drug unit is understood to mean a unitary, i.e. a single dose which is capable of being administered to a patient, and which may be readily handled and packed, remaining as a physically and chemically stable unit dose comprising either the active ingredient as such or a mixture of it with solid or liquid pharmaceutical vehicle materials.
  • compositions suitable for oral administration may be in the form of discrete units as capsules, sachets, tablets, soft gels or lozenges, each containing a predetermined amount of the active ingredient; in the form of a powder or granules; in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid, such as ethanol or glycerol; or in the form of an oil-in-water emulsion or a water-in-oil emulsion.
  • oils may be edible oils, such as e.g. cottonseed oil, sesame oil, coconut oil or peanut oil.
  • Suitable dispersing or suspending agents for aqueous suspensions include synthetic or natural gums such as tragacanth, alginate, gum arabic, dextran, sodium carboxymethylcellulose, gelatin, methylcellulose and polyvinylpyrrolidone.
  • the active ingredient may also be administered in the form of a bolus, electuary or paste.
  • Transdermal compositions may be in the form of a plaster, microstructured arrays, sometimes called microneedles, iontophoresis (which uses low voltage electrical current to drive charged drugs through the skin), electroporation (which uses short electrical pulses of high voltage to create transient aqueous pores in the skin), sonophoresis (which uses low frequency ultrasonic energy to disrupt the stratum corneum), and thermal energy (which uses heat to make the skin more permeable and to increase the energy of drug molecules), or via polymer patch.
  • iontophoresis which uses low voltage electrical current to drive charged drugs through the skin
  • electroporation which uses short electrical pulses of high voltage to create transient aqueous pores in the skin
  • sonophoresis which uses low frequency ultrasonic energy to disrupt the stratum corneum
  • thermal energy which uses heat to make the skin more permeable and to increase the energy of drug molecules
  • Liposomal compositions or biodegradable polymer systems may also be used to present the active ingredient for ophthalmic administration.
  • compositions suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, gels, and oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops.
  • compositions of the invention may also be formulated as a depot preparation.
  • Such long-acting compositions may be administered by implantation (e.g. subcutaneously, intraabdominally, or intramuscularly) or by intramuscular injection.
  • the active ingredient may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in a pharmaceutically acceptable oil), or an ion exchange resin.
  • treating is meant reducing, preventing, and/or reversing the symptoms in the individual to which a compound of the invention has been administered, as compared to the symptoms of an individual not being treated according to the invention.
  • a practitioner will appreciate that the compounds, compositions, and methods described herein are to be used in concomitance with continuous clinical evaluations by a skilled practitioner (physician or veterinarian) to determine subsequent therapy. Hence, following treatment the practitioners will evaluate any improvement in the treatment of the pulmonary inflammation according to standard methodologies. Such evaluation will aid and inform in evaluating whether to increase, reduce or continue a particular treatment dose, mode of administration, etc.
  • a compound of the invention may be administered prophylactically, prior to any development of symptoms.
  • the term “therapeutic,” “therapeutically,” and permutations of these terms are used to encompass therapeutic, palliative as well as prophylactic uses.
  • by “treating or alleviating the symptoms” is meant reducing, preventing, and/or reversing the symptoms of the individual to which a compound of the invention has been administered, as compared to the symptoms of an individual receiving no such administration.
  • therapeutically effective amount is used to denote treatments at dosages effective to achieve the therapeutic result sought.
  • therapeutically effective amount of the compound of the invention may be lowered or increased by fine tuning and/or by administering more than one compound of the invention, or by administering a compound of the invention with another compound. See, for example, Meiner, C. L., “Clinical Trials: Design, Conduct, and Analysis,” Monographs in Epidemiology and Biostatistics, Vol. 8 Oxford University Press, USA (1986).
  • the invention therefore provides a method to tailor the administration/treatment to the particular exigencies specific to a given mammal.
  • therapeutically effective amounts may be easily determined for example empirically by starting at relatively low amounts and by step-wise increments with concurrent evaluation of beneficial effect.
  • the number of administrations of the compounds according to the invention will vary from patient to patient based on the particular medical status of that patient at any given time including other clinical factors such as age, weight and condition of the mammal and the route of administration chosen.
  • symptom denotes any sensation or change in bodily function that is experienced by a patient and is associated with a particular disease, i.e., anything that accompanies “X” and is regarded as an indication of “X”'s existence. It is recognized and understood that symptoms will vary from disease to disease or condition to condition.
  • compositions to promote bone and joint health in a mammal comprise a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • the first component and the second component are in a synergistic ratio.
  • the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[ 7 (1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1
  • the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R
  • the second component of the composition is derived from hops while in other aspects the composition further comprises a pharmaceutically acceptable excipient selected from the group consisting of coatings, isotonic and absorption delaying agents, binders, adhesives, lubricants, disintergrants, coloring agents, flavoring agents, sweetening agents, absorbants, detergents, and emulsifying agents. Additionally, in still other aspects the composition further comprises one or more members selected from the group consisting of antioxidants, vitamins, minerals, proteins, fats, and carbohydrates.
  • compositions comprising from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one;
  • the composition comprises from about 9mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-hydroxy-4-methyl
  • Another embodiment of the invention describes methods to promote bone and joint health in a mammal in need where the method comprises administering to the mammal a composition comprising therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Qu
  • composition utilized is a medical food.
  • compositions to promote bone and joint health in a mammal in need comprise therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Quercetin, Red yeast rice, Resver
  • “medical food” refers to those compositions wherein all of the components are generally regarded as safe (GRAS) and the composition meets the statutory and regulatory requirements for a medical food within the jurisdiction of enforcement.
  • GRAS safe
  • the Model The SW1353 human chondrocyte cell line was used as described below.
  • Test compounds were prepared in dimethyl sufoxide (DMSO) and stored at ⁇ 20° C.
  • DMSO dimethyl sufoxide
  • Human TNF ⁇ was purchased from Sigma Chemicals (St. Louis, Mo.).
  • MMP-13 kits were purchased from Amersham Biosciences (Piscataway, N.J.).
  • the human chondrocyte cell line, SW 1353 was purchased from ATCC (Manassas, Va.) and maintained in L-15 medium in the presence of 10% serum according to manufacturer instructions. Cells were grown and subcultured in 96-well plates at a density of 8 ⁇ 10 4 cells per well and allowed to reach ⁇ 80% confluence overnight. Test compounds in medium were added to the cells at a final concentration of 0.1% DMSO. Following one hour of incubation with the test compounds, TNF ⁇ (10 ng/ml) or medium alone was added to the cell wells and incubation continued for 24 hours. The supernatant media was subsequently collected for MMP-13 determination.
  • MMP-13 A commercial, non-radioactive procedure for quantification of MMP-13 was used according to the manufacturer's instructions using MMP-13 as a standard. A minimum of 3 wells were used for each test condifion.
  • the amount of MMP-13 release into the medium was determined by comparison of the MMP-13 generated in the presence or absence of TNF ⁇ and test compounds. A minimum of three wells were used for each test condition. The basal MMP-13 levels without INF ⁇ , stimulation was subtracted from TNF stimulation to determine the TNF ⁇ induced MMP-13 expression in the medium and the levels normalized to 100%. The percent activity of test compounds was measured in the presence of TNF ⁇ and referred as TNF ⁇ induced MMP-13 expression.
  • Results TNF ⁇ induced MMP-13 expression (Table 4) in human chondrocyte cells, SW 1353.
  • the Model The SW1353 human chondrocyte cell line model as described in Example 1.
  • Example 1 Cell Culture and treatment—Standard chemicals used were described in Example 1. Following one hour of incubation with the test compounds (RIAA, curcumin, DHEA withania, resveratrol, ipriflavone, astragalus, purariae radix, bonistein and parthanolide at multiple concentrations (20, 10, 5 and 1 ug/ml)), the human chondrocyte cell line, SW 1353 was stimulated with TNF ⁇ (10 ng/ml) for 24 hrs. MMP-13 levels were measured in the medium as described in the Example 1.
  • test compounds RIAA, curcumin, DHEA withania, resveratrol, ipriflavone, astragalus, purariae radix, bonistein and parthanolide at multiple concentrations (20, 10, 5 and 1 ug/ml)
  • TNF ⁇ 10 ng/ml
  • MMP-13 levels in the medium were measured as described in Example 1.
  • f a is the factional inhibition of the reaction.
  • IC 50 median inhibitory concentration
  • Results Test compounds RIAA, curcumin, DHEA, withania, resveratrol, ipriflavone, astragalus, purariae radix, bonistein and parthanolide were dose dependently (20, 10, 5 and 1 ug/m1) inhibited TNFa induced MMP-13 expression (Table 5).
  • the Model The SW1353 human chondrocyte cell line model as described in Example 1.
  • Example 1 Cell Culture and treatment—Standard chemicals used were described in Example 1. Following one hour of incubation with the various test compounds as listed in the table (table 3) human chondrocyte cell line, SW 1353 was stimulated with TNF ⁇ (10 ng/ml) for 24 hrs and MMP-13 were measured in the medium as described in the. Example 1.
  • MMP-13 levels in the medium was measured as described in Example 1.
  • TNFa Stimulated % Activity IC50 Test Compounds ug/mL average SD ug/mL TNF Neg 0 0% 0% (95% CI) TNF pos 100% 7% RIAA 20 44% 3% 25.79 10 75% 14% (9.2-72.0) 5 83% 8% 1 91% 13% Berberine sulfate 1 ⁇ 1% 0% 0.15 0.5 4% 2% (0.05-0.5) 0.1 50% 6% 0.05 99% 13% Barberry stem 5 15% 8% 2.00 bark 10:1 2.5 37% 8% (1.6-2.5) 1.0 74% 5% 0.1 101% 5% Coptis Chinensis 5 ⁇ 2% 1% 0.48 extract 20% 2.5 3% 2% (0.3-0.8) 1.0 28% 3% 0.1 97% 14% Oregon grape root 5 130% 13% extract 4:1 2.5 121% 1% 1.0 192% 9% 0.1 180% 14%
  • the Model The SW1353 human chondrocyte cell line was used as described in Example 1.
  • THIAA and berberine was used at various ratios (10:0; 1:10; 5:1; 2:1; 1:1; 1:2; 1:5; 1:10; 0:10) and added to the cells in medium at a final concentration of 0.1% DMSO. Following one hour of incubation with various concentrations of test compounds, TNFa (10 ng/ml) was added to the cell wells and incubation continued for 24 hours, the supernatant media was collected for MMP-13 determination.
  • MMP-13 levels in the medium was measured as described in Example 1.
  • f a is the factional inhibition of the reaction.
  • IC 50 median inhibitory concentration
  • Synergy- Combinational Index (CI) values were measured using CalcuSyn (Biosoft, Ferguson, Mo.). CI values less than I represent synergy and more than 1 represent non-synergy combinations (Greco, W. R., Bravo, G., and Parsons, J. C. (1995).
  • test compounds were provided by Metagenics Inc (San Clemente, Calif.). Test compounds were prepared in dimethyl sufoxide (DMSO) and stored at ⁇ 20° C. sRANKL (Receptor activated NF- ⁇ B ligand), was purchased from Peprotech (Rockey Hill, N.J.). TRAP activity measurement kit was purchased from Sigma Chemicals (St Louis, Mo.)
  • the murine macrophage cell line, RAW 264.7 was purchased from ATCC (Manassas, Va.) and maintained in ⁇ -MEM containing 10% FBS and plated at a concentration of 1 ⁇ 10 4 /well in 48 well culture plate (Corning, N.Y.).
  • test compounds (10 and 5 ⁇ g/ml) were added to the cells in medium at a final concentration of 0.1% DMSO.
  • sRANKL 50 ng/ml
  • medium alone was added to the cell wells. The medium was replaced after 2 days with test compounds and sRANKL and incubation was continued for 3 additional days.
  • TRAP activity in cell lysates was determined by using TRAP solution from the kit (Sigma 387A1 kit), according to the manufacturers instructions. A 100 ⁇ l cell lysates was added to 100 ⁇ l of TRAP solution in 96 well plate and incubated at 37° C. for 1 hr. The absorbance was measured at 555 nm using a plate reader. The protein concentration was estimated using BCA reagent (Sigma) and the final activity was normalized for equal protein.
  • TRAP activity was determined by comparison of the TRAP activity in the presence of with and with out test compounds in sRANKL activated osteoclasts. A minimum of two wells were used for each concentration.
  • test compounds 10, 5 and 1 ⁇ g/ml were used to determine the effect on sRANKL induced TRAP activity.
  • TRAP activity was determined by comparison in the presence of with and with out test compounds in sRANKL activated osteoclasts. A minimum of two wells were used for each concentration. The basal TRAP activity levels with out sRANKL stimulation was subtracted from sRANKL stimulation to get the sRANKL induced TRAP activity and the activity was normalized to 100%. The percent activity of test compounds was measured in the presence of sRANKL and referred as sRANKL induced TRAP activity.
  • IC 50 median inhibitory concentration
  • Questionnaires were administered at baseline prior to body work and administration of two tablets prior to initial manipulation of a composition comprising 100 mg of berberine and 100 mg of tetrahydroisoalpha acids as the active moieties, and thereafter immediately following body work, and at 1 hour, 6 hours, 24 hours, and 7 days time points after body work (1-3 tablets per day). Subjects were asked to score using Likert scales of 1-10 the severity of their pain and lack of flexibility. On the pain scale, a score of 10 represented the highest level of pain. On the flexibility scale, a score of 1 represented the least level of flexibility. The results are presented in Table 10 below.

Abstract

Methods and compositions that can be used to promote bone and joint health through amelioration, stabilization and repair of damage associated with various pathophysiological conditions are disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a Divisional of U.S. Ser. No. 12/048,613, filed on Mar. 14, 2008, which claims priority to U.S. provisional application Ser. No. 60/918,727, filed on Mar. 19, 2007. The contents of each of these earlier applications are hereby incorporated by reference as if recited herein in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to methods and compositions that can be used to promote bone and joint health through amelioration, stabilization or repair of damage associated with various pathophysiological conditions.
  • 2. Description of the Related Art
  • Millions daily suffer damage to joint and bone tissues, either from the normal bumps and bruises of every day life or as a result of various disease conditions. Osteoarthritis, rheumatoid arthritis, and osteoporosis represent the most prevalent diseases influencing bone and joint health. Furthermore, other diseases not generally associated with bone or joint health, such as systemic lupus erythematosus, for example, may have elements affecting bones or joints structure and function.
  • Osteoarthritis (OA) is an age-related joint disorder that affects more than 40 million Americans (Hinton et al, “Osteoarthritis: Diagnosis and therapeutic considerations.” Am Fam Physician. 65:841-8, 2002; Lawrence et al, “Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States.” Arthritis Rheum. 41:778-99; 2004). The disease affects the entire joint structure, and is characterized pathologically by focal areas of articular cartilage loss in synovial joints, varying degrees of osteophyte formation (bony outgrowths at the cartilage margins), subchondral bone change, and synovitis. Although OA was historically regarded solely as a degenerative form of arthritis, there is increasing evidence for inflammation as a vital component of OA. Signs of synovial inflammation are present in the many symptoms of OA: joint swelling and effusion, stiffness and occasional redness, especially at proximal and distal interpharyngeal joints. Further, elevated levels of inflammatory cytokines (interleukin-1 beta [IL-1β] and tumor necrosis factor alpha [TNFα]) have been observed in OA synovial fluid. These cytokines, which are primarily synthesized by chondrocytes, appear to play a major part in the destruction of cartilage tissue through the induction of matrix metalloproteinases (MMPs), nitric oxide (NO) and prostaglandin E2 (PGE2). (see, for example, Dieppe & Lohmander, “Pathogenesis and management of pain in osteoarthritis.” Lancet. 365:965-73; 2005; Felson et al, “Osteoarthritis: New insights”. Ann Intern Med. 133:635-46; 2000; Goldring, “The role of the chondrocyte in osteoarthritis.” Arthritis Rheum. 43:1916-26; 2000; van der Kraan & van der Berg, “Anabolic and destructive mediators in osteoarthritis.” Curr Opin Nutr Metab Care. 3:205-11; 2000; Pelletier et al, “Osteoarthritis, an inflammatory disease: Potential implication for the selection of new therapeutic targets.” Arthritis Rheum. 44:1237-47; 2001; Iannonne F, Lapadula G. “The pathophysiology of osteoarthritis.” Aging Clin Exp Res. 15:364-72; 2003).
  • Rheumatoid arthritis (RA) is a systemic inflammatory disorder that affects 1% of the American population, and approximately three times as many women as men are affected by this disorder. RA, which can be a self-limiting condition or a debilitating chronic disease leading to joint destruction and deformity, is characterized by joint inflammation, and the predominant symptoms include pain, stiffness and swelling of peripheral joints. (see, for example, Lee D M, Weinblatt M E. “Rheumatoid arthritis”. Lancet. 358:903-11; 2001; Rindfleisch J A, Muller D. “Diagnosis and management of rheumatoid arthritis.” Am Fam Physician. 72:1049-50; 2005; and Doan T, and Massarotti E. “Rheumatoid arthritis: An overview of new and emerging therapies.” J Clin Pharmacol. 45:751-62; 2005).
  • The sequence of events in RA is thought to be initiated by CD4+ T cells, which upon recognizing arthritogenic antigens in synovial tissue, activate macrophages, monocytes and synovial fibroblasts. The activated macrophages, monocytes and synovial fibroblasts then secrete numerous inflammatory cytokines like interleukin-1 (IL-1), IL-6 and tumor necrosis factor α; in addition, these activated cells also secrete matrix metalloproteinases, which are responsible for the proteolytic breakdown of bone and cartilage tissue. Other mediators of inflammation induced by the pro-inflammatory cytokines, and which contribute to the pathology in affected joints include prostaglandin E2 (PGE2) and nitric oxide. (see, for example, Lee D M, Weinblatt M E. “Rheumatoid arthritis.” Lancet. 358:903-11; 2001; Bingham 3rd CO. “The pathogenesis of rheumatoid arthritis: Pivotal cytokines involved in bone degradation and inflammation.” J Rheumatol. 29 (suppl 65):3-9; 2002; and Doan T, and Massarotti E. “Rheumatoid arthritis: An overview of new and emerging therapies.” J Clin Pharmacol. 45:751-62; 2005).
  • Osteoporosis is a disease characterized by low bone mass and deterioration of bone structure resulting in bone fragility and increased risk of fracture. The World Health Organization has defined osteoporosis as a bone mineral density (BMD) value more than 2.5 standard deviations below the mean for normal young White women. Individuals with osteoporosis arc at high risk of suffering one or more fractures, injuries that can often be physically debilitating and potentially lead to a downward spiral in physical and mental health. There are a variety of different types of osteoporosis. “Primary osteoporosis” is the most common form of the disease and is characterized as osteoporosis that is not caused by some other specific disorder. If the bone loss has been caused by specific diseases or medications then it is referred to as “secondary osteoporosis.”
  • According to the Surgeon General of the United States “the 1.5 million osteoporotic fractures in the United States each year lead to more than half a million hospitalizations, over 800,000 emergency room encounters, more than 2,600,000 physician office visits, and the placement of nearly 180,000 individuals into nursing homes. Hip fractures are by far the most devastating type of fracture, accounting for about 300,000 hospitalizations each year. Caring for these fractures is expensive. Studies show that annual direct care expenditures for osteoporotic fractures range from $12 to $18 billion per year in 2002 dollars. Indirect costs (e.g., lost productivity for patients and caregivers) likely add billions of dollars to this figure. These costs could double or triple in the coming decades.” See “Bone Health and Osteoporosis: A Report of the Surgeon General (2004)” published at http://www.surgeongeneral.gov/library/bonehealth/content.html (last viewed on Feb. 26, 2008).
  • Newer methods and compositions for promoting bone and joint health are required since many of the conditions of impaired bone or joint health are or become chronic in nature, thereby necessitating long term therapies. One area for exploration would include botanical based products having proven long term histories of safe use. Two potential candidates are berberine and substituted 1,3-cyclopentadione compounds which may either be isolated from hops or derived from hops.
  • Berberine (7,8,13,13a-tetrahydro-9,10-dimethoxy-2,3-(methylenedioxy)-berbinium), an alkaloid most commonly associated with extracts from plants of the Berberis species, has a history of safety and has known widespread use in traditional medicine for the treatment of a number of conditions ranging from diabetes (See, for example, Leng, S H., et al., “Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion.” Acta Pharmacol Sin. 25(4):496-502; 2004), or for protozoal, bacterial, or fungal infections (see, for example, Sabir, M., et al., “Experimental study of the antitrachoma action of berberine”, Indian J Med Res. 64(8):1160-7, 1976; Mohan, M., et al., “Berberine in trachoma. (A clinical trial).” Indian J Ophthalmol. 30(2):69-75, 1982.); Mekawi, M., “Effect of berberine alkaloid on cholera Vibro and its endotoxin.” J Egypt Med Assoc. 49(8):554-9, 1966; or Albal, M V., et al., “Clinical evaluation of berberine in mycotic infections.” Indian J Ophthalmol. 34:91-2; 1986). Berberine has also been used septic shock and graft versus host disease (Upadhyay, S., et al., U.S. Pat. No. 6,291,483) and investigated for its anti-inflammatory properties as a potential arthritis treatment modality (Ivanovska, N., and Philipov, S., “Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids.”, Int. J. Immunopharmac., 18(10: 553-561, 1996).
  • The inventors have previously reported on a number of compounds either isolated from hops or derived from hops (alpha acids, beta acids, prenylflavonoids, chalcones, isoalpha acids, and reduced isoalpha acids) which display activity against numerous conditions including inflammation, minor pain, and arthritic conditions (see, for example, U.S. 2003/0008021; US 2003/0113393; US 2004/0115290; or US 2004/0151792). The inventors have found and report herein among other things the unexpected results that berberine may act synergistically with substituted 1,3-cyclopentadione compounds which may either be isolated from hops or derived from hops to promote bone and joint health. The inventors additionally report on combinations of botanically derived compounds which may be used to promote joint and bone health.
  • SUMMARY OF THE INVENTION
  • The present invention relates generally to methods and compositions for promoting bone and joint health in mammals. In some instances the subject may have a disease or condition such as osteoarthritis, rheumatoid arthritis, an autoimmune disorder, or osteoporosis. The promotion of bone and joint health may be effectuated through a reduction or cessation of the conditions or factors producing deleterious effects in the affected tissue. Alternatively, the present invention may be used modulate repair mechanism processes to either retard or stabilize tissue damage or to promote repair in the affected tissues. The methods and compositions described employ combinations of berberine and substituted 1,3-cyclopentadione compounds (which may either be isolated from hops or derived from hops), or alternatively, combinations of botanically derived compounds which may be used to promote joint and bone health.
  • A first embodiment of the invention provides methods to promote bone and joint health in a mammal in need. Here the method comprises comprising administering to the mammal a composition comprising a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • A second embodiment provides compositions to promote bone and joint health in a mammal where the compositions comprise a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • Methods to promote bone and joint health in a mammal in need are described in another embodiment. Here the compositions of the method comprise from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
  • Composition for promoting bone and joint health in a mammal in need comprising from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one are described in yet another embodiment.
  • In still further embodiments of the invention, methods to promote bone and joint health in a mammal in need are described where the compositions of the methods comprise from about 9 mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one ; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one ; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one.
  • Additionally, compositions to promote bone and joint health in a mammal in need wherein the composition comprises from about 9mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof are described, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one.
  • Another embodiment further describes methods to promote bone and joint health in a mammal in need. The methods of this embodiment comprise administering to the mammal a composition comprising therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Quercetin, Red yeast rice, Resveratrol, RIAA, Rosemary, Rutin, THIAA, Vitamin K2, and Withania.
  • A further embodiment provides compositions to promote bone and joint health in a mammal in need. These compositions comprise therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Quercetin, Red yeast rice, Resveratrol, RIAA, Rosemary, Rutin, THIAA, Vitamin K2, and Withania.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 graphically displays the chemical structure of 7,8,13,13a-tetrahydro-9,10-dimethoxy-2,3-(methylenedioxy)-berbinium; also known as berberine.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates generally to methods and compositions for promoting bone and joint health in mammals in need. In some instances the subject may have a disease or condition such as osteoarthritis, rheumatoid arthritis, an autoimmune disorder, or osteoporosis. The promotion of bone and joint health may be effectuated through a reduction or cessation of the conditions or factors producing deleterious effects in the affected tissue. Alternatively, the present invention may be used modulate repair mechanism processes to either retard or stabilize tissue damage or to promote repair in the affected tissues. The methods and compositions described employ combinations of berberine and substituted 1,3-cyclopentadione compounds (which may either be isolated from hops or derived from hops), or alternatively, combinations of botanically derived compounds which may be used to promote joint and bone health.
  • The patents, published applications, and scientific literature referred to herein establish the knowledge of those with skill in the art and are hereby incorporated by reference in their entirety to the same extent as if each was specifically and individually indicated to be incorporated by reference. Any conflict between any reference cited herein and the specific teachings of this specification shall be resolved in favor of the latter. Likewise, any conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be resolved in favor of the latter.
  • Technical and scientific terms used herein have the meaning commonly understood by one of skill in the art to which the present invention pertains, unless otherwise defined. Reference is made herein to various methodologies and materials known to those of skill in the art. Standard reference works setting forth the general principles of DNA technology include Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, New York (1989); and Kaufman et al., Eds., Handbook of Molecular and Cellular Methods in Biology in Medicine, CRC Press, Boca Raton (1995). Standard reference works setting forth the general principles of pharmacology include Goodman and Gilman's The Pharmacological Basis of Therapeutics, 11th Ed., McGraw Hill Companies Inc., New York (2006).
  • In the specification and the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise. As used in this specification, the singular forms “a,” “an” and “the” specifically also encompass the plural forms of the terms to which they refer, unless the content clearly dictates otherwise. Additionally, as used herein, unless specifically indicated otherwise, the word “or” is used in the “inclusive” sense of “and/or” and not the “exclusive” sense of “either/or.” The term “about” is used herein to mean approximately, in the region of, roughly, or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20%.
  • As used herein, the recitation of a numerical range for a variable is intended to convey that the invention may be practiced with the variable equal to any of the values within that range. Thus, for a variable which is inherently discrete, the variable can be equal to any integer value of the numerical range, including the end-points of the range. Similarly, for a variable which is inherently continuous, the variable can be equal to any real value of the numerical range, including the end-points of the range. As an example, a variable which is described as having values between 0 and 2, can be 0, 1 or 2 for variables which are inherently discrete, and can be 0.0, 0.1, 0.01, 0.001, or any other real value for variables which are inherently continuous.
  • Reference is made hereinafter in detail to specific embodiments of the invention. While the invention will be described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to such specific embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail, in order not to unnecessarily obscure the present invention.
  • Any suitable materials and/or methods known to those of skill can be utilized in carrying out the present invention. However, preferred materials and methods are described. Materials, reagents and the like to which reference are made in the following description and examples are obtainable from commercial sources, unless otherwise noted.
  • The methods and compositions of the present invention are intended for use with any mammal that may experience the benefits of the methods of the invention. Foremost among such mammals are humans, although the invention is not intended to be so limited, and is applicable to veterinary uses. Thus, in accordance with the invention, “mammals” or “mammal in need” include humans as well as non-human mammals, particularly domesticated animals including, without limitation, cats, dogs, and horses.
  • A first embodiment of the invention describes methods to promote bone and joint health in a mammal in need. In this embodiment the methods comprise administering to the mammal a composition comprising a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • In some aspects of this embodiment, the composition of the method comprises a first component and a second component in a synergistic ratio.
  • In other aspects, the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one.
  • In still other aspects of this embodiment, the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
  • In some aspects the second component is derived from hops, while in other aspects the compositions further comprise a pharmaceutically acceptable excipient selected from the group consisting of coatings, isotonic and absorption delaying agents, binders, adhesives, lubricants, disintergrants, coloring agents, flavoring agents, sweetening agents, absorbants, detergents, and emulsifying agents. In yet other aspects the composition further comprises one or more members selected from the group consisting of antioxidants, vitamins, minerals, proteins, fats, and carbohydrates.
  • In another aspect, the method comprises administering to the mammal a composition which comprises from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
  • In yet another aspect, the method comprises administering to the mammal a composition which comprises from about 9 mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one
  • As used herein, the phrase “promote bone health” shall refer to those conditions wherein the methods and compositions of the invention may result in (a) reduced localized pain and inflammation at a site of bone damage; (b) stabilization of bone structure and integrity; (c) modulation of the mechanism(s) to prevent cell based destruction of bone tissue; (d) enhancing repair of damaged bone tissue by increasing bone mineralization; or (e) modulation of the equilibrium between normal bone deposition and reformation. Representative diseases or conditions wherein use of the methods and compositions of the invention include, without limitation, osteoporosis, osteopenia, rickets, osteoarthritis, autoimmune diseases, and rheumatoid arthritis.
  • As used in this specification, whether in a transitional phrase or in the body of the claim, the terms “comprise(s)” and “comprising” are to be interpreted as having an open-ended meaning. That is, the terms are to be interpreted synonymously with the phrases “having at least” or “including at least”. When used in the context of a process, the term “comprising” means that the process includes at least the recited steps, but may include additional steps. When used in the context of a compound or composition, the term “comprising” means that the compound or composition includes at least the recited features or compounds, but may also include additional features or compounds.
  • As used herein, the terms “derivatives” or a matter “derived” refer to a chemical substance related structurally to another substance and theoretically obtainable from it, i.e. a substance that can be made from another substance. Derivatives can include compounds obtained via a chemical reaction.
  • As used herein, “berberine” refers to 7,8,13,13a-tetrahydro-9,10-dimethoxy-2,3-(methylenedioxy)-berbinium. Berberine, an alkaloid, is most commonly associated with but not limited to extracts from plants of the Berberis species.
  • As used herein, “substituted 1,3-cyclopentadione compounds” refers to those compounds generally described as reduced isoalpha acids commonly associated with hops and beer production. The substituted 1,3-cyclopentadione compounds refers to the dihydroisoalpha acids (RIAA), tetrahydroisoalpha acids (“THIAA”) and hexahydroisalpha acids (“HHIAA”). Examples of reduced isoalpha acids (RIAA) include without limitation dihydroisoalpha acids, more specifically Rho dihydroisoalpha acids (Table 1), tetrahydroisoalpha acid (Table 2), and hexahydroisoalpha acids (Table 3), and their derivatives. “Rho” refers to those reduced isoalpha acids wherein the reduction is a reduction of the carbonyl group in the 4-methyl-3-pentenoyl side chain.
  • TABLE 1
    Rho dihydroisoalpha acids
    Chemical Name Synonym Structure
    (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6S) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00001
    (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6R) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00002
    (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6R) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00003
    (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6S) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00004
    (4R,5R)-3,4-dihydroxy-4-](1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6R) cis rho n iso-alpha acid
    Figure US20100069422A1-20100318-C00005
    (4R,5R)-3,4-dihydroxy-4-](1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6S) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00006
    (4S,5R)-3,4-dihydroxy-4-](1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one (6S) trans rho n iso-alpha acid
    Figure US20100069422A1-20100318-C00007
    (4S,5R)-3,4-dihydroxy-4-](1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(3- methylbutanoyl)-5-(3-methylbut-2-en-1- yl)cyclopent-2-en-1-one rho (6R) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00008
    (4S,5S)-3,4-dihydroxy-4-](1S)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methylpropanoyl)cyclopent- 2-en-1-one rho (6S) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00009
    (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methylpropanoyl)cyclopent- 2-en-1-one rho (6R) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00010
    (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methylpropanoyl)cyclopent- 2-en-1-one rho (6R) trans co iso-alpha acid
    Figure US20100069422A1-20100318-C00011
    (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methylpropanoyl)cyclopent- 2-en-1-one rho (6S) trans co iso-alpha acid
    Figure US20100069422A1-20100318-C00012
    (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methylpropanoyl)cyclopent- 2-en-1-one rho (6R) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00013
    (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methylpropanoyl)cyclopent- 2-en-1-one rho (6S) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00014
    (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylpropanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6S) trans co iso-alpha acid
    Figure US20100069422A1-20100318-C00015
    (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-5-(3-methylbut-2- en-1-yl)-2-(2-methyl- propanoyl)cyclopent-2-en-1-one rho (6R) trans co iso-alpha acid
    Figure US20100069422A1-20100318-C00016
    (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6S) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00017
    (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6R) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00018
    (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6R) trans ad iso-alpha acid
    Figure US20100069422A1-20100318-C00019
    (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6S) trans ad iso-alpha acid
    Figure US20100069422A1-20100318-C00020
    (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6R) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00021
    (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6S) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00022
    (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6S) trans ad iso-alpha acid
    Figure US20100069422A1-20100318-C00023
    (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4- methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut-2-en- 1-yl)cyclopent-2-en-1-one rho (6R) trans ad iso-alpha acid
    Figure US20100069422A1-20100318-C00024
  • TABLE 2
    Tetrahydroisoalpha acids
    Chemical Name Synonym Structure
    (4R,5S)-3,4-dihydroxy-2-(3- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00025
    (4S,5S)-3,4-dihydroxy-2-(3- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00026
    (4S,5R)-3,4-dihydroxy-2-(3- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00027
    (4R,5R)-3,4-dihydroxy-2-(3- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00028
    (4R,5S)-3,4-dihydroxy-5-(3-methylbutyl)-4- (4-methylpentanoyl)-2-(3- methylpropanoyl)cyclopent-2-en-1-one tetrahydro cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00029
    (4S,5S)-3,4-dihydroxy-5-(3-methylbutyl)-4- (4-methylpentanoyl)-2-(3- methylpropanoyl)cyclopent-2-en-1-one tetrahydro trans co iso-alpha acid
    Figure US20100069422A1-20100318-C00030
    (4S,5R)-3,4-dihydroxy-5-(3-methylbutyl)-4- (4-methylpentanoyl)-2-(3- methylpropanoyl)cyclopent-2-en-1-one tetrahydro cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00031
    (4R,5R)-3,4-dihydroxy-5-(3-methylbutyl)-4- (4-methylpentanoyl)-2-(3- methylpropanoyl)cyclopent-2-en-1-one tetrahydro trans co iso-alpha acid
    Figure US20100069422A1-20100318-C00032
    (4R,5S)-3,4-dihydroxy-2-(2- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00033
    (4S,5S)-3,4-dihydroxy-2-(2- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro trans ad iso-alpha acid
    Figure US20100069422A1-20100318-C00034
    (4S,5R)-3,4-dihydroxy-2-(2- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00035
    (4R,5R)-3,4-dihydroxy-2-(2- methylbutanoyl)-5-(3-methylbutyl)-4-(4- methylpentanoyl)cyclopent-2-en-1-one tetrahydro trans ad iso-alpha acid
    Figure US20100069422A1-20100318-C00036
  • TABLE 3
    Hexahydroisoalpha acids
    Chemical Name Synonym Structure
    (4S,5S)-3,4-dihydroxy-4-[(1S)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6S) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00037
    (4S,5S)-3,4-dihydroxy-4-[(1R)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6R) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00038
    (4R,5S)-3,4-dihydroxy-4-[(1R)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6R) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00039
    (4R,5S)-3,4-dihydroxy-4-[(1S)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6S) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00040
    (4R,5R)-3,4-dihydroxy-4-[(1R)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6R) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00041
    (4R,5R)-3,4-dihydroxy-4-[(1S)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6S) cis n iso-alpha acid
    Figure US20100069422A1-20100318-C00042
    (4S,5R)-3,4-dihydroxy-4-[(1S)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6S) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00043
    (4S,5R)-3,4-dihydroxy-4-[(1R)-1-hydroxy- 4-methylpentyl]-2-(3-methylbutanoyl)-5- (3-methylbutyl)cyclopent-2-en-1-one hexahydro (6R) trans n iso-alpha acid
    Figure US20100069422A1-20100318-C00044
    (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6S) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00045
    (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6R) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00046
    (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6R) trans co iso- alpha acid
    Figure US20100069422A1-20100318-C00047
    (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6S) trans co iso- alpha acid
    Figure US20100069422A1-20100318-C00048
    (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6R) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00049
    (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6S) cis co iso-alpha acid
    Figure US20100069422A1-20100318-C00050
    (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylpropanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6S) trans co iso- alpha acid
    Figure US20100069422A1-20100318-C00051
    (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-5-(3- methylbut-2-en-1-yl)-2-(2- methylpropanoyl)cyclopent-2-en-1-one hexahydro (6R) trans co iso- alpha acid
    Figure US20100069422A1-20100318-C00052
    (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6S) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00053
    (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6R) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00054
    (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6R) trans ad iso- alpha acid
    Figure US20100069422A1-20100318-C00055
    (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6S) trans ad iso- alpha acid
    Figure US20100069422A1-20100318-C00056
    (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6R) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00057
    (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6S) cis ad iso-alpha acid
    Figure US20100069422A1-20100318-C00058
    (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6S) trans ad iso- alpha acid
    Figure US20100069422A1-20100318-C00059
    (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy- 4-methylpent-3-en-1-yl]-2-(2- methylbutanoyl)-5-(3-methylbut- 2-en-1-yl)cyclopent-2-en-1-one hexahydro (6R) trans ad iso- alpha acid
    Figure US20100069422A1-20100318-C00060
  • In some instances the compounds of the second component are derived from hops. See Verzele, M. and De Keukeleire, D., Developments in Food Science 27: Chemistry and Analysis of Hop and Beer Bitter Acids, Elsevier Science Pub. Co., 1991, New York, USA, herein incorporated by reference in its entirety, for a detailed discussion of hops chemistry.
  • The term “pharmaceutically acceptable” is used in the sense of being compatible with the other ingredients of the compositions and not deleterious to the recipient thereof.
  • As used herein, “compounds” may be identified either by their chemical structure, chemical name, or common name. When the chemical structure and chemical or common name conflict, the chemical structure is determinative of the identity of the compound. The compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers or diastereomers. Accordingly, the chemical structures depicted herein encompass all possible enantiomers and stereoisomers of the illustrated or identified compounds including the stereoisomerically pure form (e.g., geometrically pure, enantiomerically pure or diastereomerically pure) and enantiomeric and stereoisomeric mixtures. Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan. The compounds may also exist in several tautomeric forms including the enol form, the keto form and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated or identified compounds. The compounds described also encompass isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature. Examples of isotopes that may be incorporated into the compounds of the invention include, but are not limited to, 2H, 3H, 13C, 14C, 15N, 18O, 17O, etc. Compounds may exist in unsolvated forms as well as solvated forms, including hydrated forms and as N-oxides. In general, compounds may be hydrated, solvated or N-oxides. Certain compounds may exist in multiple crystalline or amorphous forms. Also contemplated within the scope of the invention are congeners, analogs, hydrolysis products, metabolites and precursor or prodrugs of the compound. In general, unless otherwise indicated, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the present invention.
  • Compounds according to the invention may be present as salts. In particular, pharmaceutically acceptable salts of the compounds are contemplated. A “pharmaceutically acceptable salt” of the invention is a combination of a compound of the invention and either an acid or a base that forms a salt (such as, for example, the magnesium salt, denoted herein as “Mg” or “Mag”) with the compound and is tolerated by a subject under therapeutic conditions. In general, a pharmaceutically acceptable salt of a compound of the invention will have a therapeutic index (the ratio of the lowest toxic dose to the lowest therapeutically effective dose) of 1 or greater. The person skilled in the art will recognize that the lowest therapeutically effective dose will vary from subject to subject and from indication to indication, and will thus adjust accordingly.
  • As used herein “hop” or “hops” refers to plant cones of the genus Humulus which contains a bitter aromatic oil which is used in the brewing industry to prevent bacterial action and add the characteristic bitter taste to beer. More preferably, the hops used are derived from Humulus lupulus.
  • The compounds according to the invention are optionally formulated in a pharmaceutically acceptable vehicle with any of the well known pharmaceutically acceptable carriers, including diluents and excipients (see Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, Mack Publishing Co., Easton, Pa. 1990 and Remington: The Science and Practice of Pharmacy, Lippincott, Williams & Wilkins, 1995). While the type of pharmaceutically acceptable carrier/vehicle employed in generating the compositions of the invention will vary depending upon the mode of administration of the composition to a mammal, generally pharmaceutically acceptable carriers are physiologically inert and non-toxic. Formulations of compositions according to the invention may contain more than one type of compound of the invention), as well any other pharmacologically active ingredient useful for the treatment of the symptom/condition being treated.
  • The compositions of the invention can be administered by standard routes. The compositions of the invention include those suitable for oral, inhalation, rectal, ophthalmic (including intravitreal or intracameral), nasal, topical (including buccal and sublingual), vaginal, or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and intratracheal). In addition, polymers may be added according to standard methodologies in the art for sustained release of a given compound.
  • It is contemplated within the scope of the invention that compositions used to treat a disease or condition will use a pharmaceutical grade compound and that the composition will further comprise a pharmaceutically acceptable carrier. It is further contemplated that these compositions of the invention may be prepared in unit dosage forms appropriate to both the route of administration and the disease and patient to be treated. The compositions may conveniently be presented in dosage unit form be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the vehicle which constitutes one or more auxiliary constituents, In general, the compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid vehicle or a finely divided solid vehicle or both, and then, if necessary, shaping the product into the desired composition.
  • The term “dosage unit” is understood to mean a unitary, i.e. a single dose which is capable of being administered to a patient, and which may be readily handled and packed, remaining as a physically and chemically stable unit dose comprising either the active ingredient as such or a mixture of it with solid or liquid pharmaceutical vehicle materials.
  • Compositions suitable for oral administration may be in the form of discrete units as capsules, sachets, tablets, soft gels or lozenges, each containing a predetermined amount of the active ingredient; in the form of a powder or granules; in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid, such as ethanol or glycerol; or in the form of an oil-in-water emulsion or a water-in-oil emulsion. Such oils may be edible oils, such as e.g. cottonseed oil, sesame oil, coconut oil or peanut oil. Suitable dispersing or suspending agents for aqueous suspensions include synthetic or natural gums such as tragacanth, alginate, gum arabic, dextran, sodium carboxymethylcellulose, gelatin, methylcellulose and polyvinylpyrrolidone. The active ingredient may also be administered in the form of a bolus, electuary or paste.
  • Transdermal compositions may be in the form of a plaster, microstructured arrays, sometimes called microneedles, iontophoresis (which uses low voltage electrical current to drive charged drugs through the skin), electroporation (which uses short electrical pulses of high voltage to create transient aqueous pores in the skin), sonophoresis (which uses low frequency ultrasonic energy to disrupt the stratum corneum), and thermal energy (which uses heat to make the skin more permeable and to increase the energy of drug molecules), or via polymer patch.
  • Liposomal compositions or biodegradable polymer systems may also be used to present the active ingredient for ophthalmic administration.
  • Compositions suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, gels, and oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops.
  • In addition to the compositions described above, the compositions of the invention may also be formulated as a depot preparation. Such long-acting compositions may be administered by implantation (e.g. subcutaneously, intraabdominally, or intramuscularly) or by intramuscular injection. Thus, for example, the active ingredient may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in a pharmaceutically acceptable oil), or an ion exchange resin.
  • As used herein, by “treating” is meant reducing, preventing, and/or reversing the symptoms in the individual to which a compound of the invention has been administered, as compared to the symptoms of an individual not being treated according to the invention. A practitioner will appreciate that the compounds, compositions, and methods described herein are to be used in concomitance with continuous clinical evaluations by a skilled practitioner (physician or veterinarian) to determine subsequent therapy. Hence, following treatment the practitioners will evaluate any improvement in the treatment of the pulmonary inflammation according to standard methodologies. Such evaluation will aid and inform in evaluating whether to increase, reduce or continue a particular treatment dose, mode of administration, etc.
  • It will be understood that the subject to which a compound of the invention is administered need not suffer from a specific traumatic state. Indeed, the compounds of the invention may be administered prophylactically, prior to any development of symptoms. The term “therapeutic,” “therapeutically,” and permutations of these terms are used to encompass therapeutic, palliative as well as prophylactic uses. Hence, as used herein, by “treating or alleviating the symptoms” is meant reducing, preventing, and/or reversing the symptoms of the individual to which a compound of the invention has been administered, as compared to the symptoms of an individual receiving no such administration.
  • The term “therapeutically effective amount” is used to denote treatments at dosages effective to achieve the therapeutic result sought. Furthermore, one of skill will appreciate that the therapeutically effective amount of the compound of the invention may be lowered or increased by fine tuning and/or by administering more than one compound of the invention, or by administering a compound of the invention with another compound. See, for example, Meiner, C. L., “Clinical Trials: Design, Conduct, and Analysis,” Monographs in Epidemiology and Biostatistics, Vol. 8 Oxford University Press, USA (1986). The invention therefore provides a method to tailor the administration/treatment to the particular exigencies specific to a given mammal. As illustrated in the following examples, therapeutically effective amounts may be easily determined for example empirically by starting at relatively low amounts and by step-wise increments with concurrent evaluation of beneficial effect.
  • It will be appreciated by those of skill in the art that the number of administrations of the compounds according to the invention will vary from patient to patient based on the particular medical status of that patient at any given time including other clinical factors such as age, weight and condition of the mammal and the route of administration chosen.
  • As used herein, “symptom” denotes any sensation or change in bodily function that is experienced by a patient and is associated with a particular disease, i.e., anything that accompanies “X” and is regarded as an indication of “X”'s existence. It is recognized and understood that symptoms will vary from disease to disease or condition to condition.
  • A second embodiment of the invention describes compositions to promote bone and joint health in a mammal. Here the compositions comprise a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
  • In some aspects of this embodiment the first component and the second component are in a synergistic ratio.
  • The rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[7(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S, 5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one is utilized in other aspects of this embodiment.
  • In another aspect of this embodiment the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
  • In some aspects the second component of the composition is derived from hops while in other aspects the composition further comprises a pharmaceutically acceptable excipient selected from the group consisting of coatings, isotonic and absorption delaying agents, binders, adhesives, lubricants, disintergrants, coloring agents, flavoring agents, sweetening agents, absorbants, detergents, and emulsifying agents. Additionally, in still other aspects the composition further comprises one or more members selected from the group consisting of antioxidants, vitamins, minerals, proteins, fats, and carbohydrates.
  • Another aspect describes compositions comprising from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
  • In yet another aspect, the composition comprises from about 9mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S),-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one.
  • Another embodiment of the invention describes methods to promote bone and joint health in a mammal in need where the method comprises administering to the mammal a composition comprising therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Quercetin, Red yeast rice, Resveratrol, Rosemary, Rutin, Vitamin K2, and Withania.
  • In some aspects of the embodiment the composition utilized is a medical food.
  • A further embodiment describes compositions to promote bone and joint health in a mammal in need. In this embodiment the compositions comprise therapeutically effective amounts of at least two members selected from the group consisting of Abelmoschus, Acacia extract, African Devil's claw, Arthred bovine, Arthred porcine, Astragalus, Berberine, Black cohosh, Bonepep, Bonestein, Chicken Collagen, Curcumin, Devil's Claw, DHEA, Dioscorea, Flaxseed, FOS, Fructus Ligustri, Genistein, Glabridin, Glucosamine, Green tea, Green Tea Polyphenols, Hesperidin, Hyaluronic Acid, Inulin, Ipriflavone, Linoleic Acid, MBP, MCHA, Oleanolic Acid, Oleuropein, Olive oil, Osteosine, Parthinolide, Perilla oil, Phloridzin, Puerariae radix, Punica granatum, Quercetin, Red yeast rice, Resveratrol, Rosemary, Rutin, Vitamin K2, and Withania. In some aspects of this embodiment the composition is a medical food.
  • As used herein, “medical food” refers to those compositions wherein all of the components are generally regarded as safe (GRAS) and the composition meets the statutory and regulatory requirements for a medical food within the jurisdiction of enforcement.
  • The following examples are intended to further illustrate certain preferred embodiments of the invention and are not limiting in nature. Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein.
  • EXAMPLES Example 1 Modified Hop Extracts and Herbal Extracts Modulate TNFα Induced MMP-13 Expression in Human Chondrocyte Cell Line, SW1353.
  • The Model—The SW1353 human chondrocyte cell line was used as described below.
  • Materials—All test materials were provided by Metagenics Inc (San Clemente, Calif.). Test compounds were prepared in dimethyl sufoxide (DMSO) and stored at −20° C. Human TNFα was purchased from Sigma Chemicals (St. Louis, Mo.). MMP-13 kits were purchased from Amersham Biosciences (Piscataway, N.J.).
  • Cell Culture and treatment—The human chondrocyte cell line, SW 1353 was purchased from ATCC (Manassas, Va.) and maintained in L-15 medium in the presence of 10% serum according to manufacturer instructions. Cells were grown and subcultured in 96-well plates at a density of 8×104 cells per well and allowed to reach ˜80% confluence overnight. Test compounds in medium were added to the cells at a final concentration of 0.1% DMSO. Following one hour of incubation with the test compounds, TNFα (10 ng/ml) or medium alone was added to the cell wells and incubation continued for 24 hours. The supernatant media was subsequently collected for MMP-13 determination.
  • Determination of MMP-13: A commercial, non-radioactive procedure for quantification of MMP-13 was used according to the manufacturer's instructions using MMP-13 as a standard. A minimum of 3 wells were used for each test condifion.
  • Statistical analysis—The amount of MMP-13 release into the medium was determined by comparison of the MMP-13 generated in the presence or absence of TNFα and test compounds. A minimum of three wells were used for each test condition. The basal MMP-13 levels without INFα , stimulation was subtracted from TNF stimulation to determine the TNFα induced MMP-13 expression in the medium and the levels normalized to 100%. The percent activity of test compounds was measured in the presence of TNFα and referred as TNFα induced MMP-13 expression.
  • Results—Test compounds at 10 μg/ml or 20 μg/ml were modulated TNFα induced MMP-13 expression (Table 4) in human chondrocyte cells, SW 1353.
  • TABLE 4
    Effect of modified hop extracts and herbal extracts on TNFα induced MMP-13 expression
    TNFa TNFa
    Stimulated Stimulated
    MMP-13 MMP-13
    Test Compounds ug/mL average SD Test Compounds ug/mL average SD
    TNF Neg 0% 17% Black cohosh 20 63% 20%
    TNF pos  0 100% 28% Salvia 20 118% 17%
    RIAA 10 20% 11% Red yeast rice 20 85% 50%
    RIAA 20 0% 7% Glabridin 20 79% 61%
    Kaprex 10 37% 12% Resveratrol 20 −42% 6%
    THIAA 10 34% 34% Ipriflavone 20 −42% 7%
    THIAA 20 3% 24% Abelmoschus 20 56% 53%
    Tetrex 10 26 11% DHA 20 265% 41%
    Acacia 10 73% 7% Perilla oil 20 100% 61%
    Rosemary 10 25% 14% Pelicosanol 20 489% 687%
    Oleanolic Acid 10 17% 23% Camellia Sinensis 20 159% 13%
    Curcumin 10 −11% 0% Green Tea 20 74% 16%
    Trimax 10 −8% 4% Dioscorea 20 48% 54%
    Hyaluronic Acid 20 105% 55% Quercetin 20 −65% 18%
    Glucosamine 20 77% 41% Hesperidin 20 13% 29%
    Green Tea Polyphenols 20 53% 15% Berberine 20 −39% 63%
    Punica granatum 20 84% 30% Flaxseed 20 −24% 1%
    African Devil's claw 20 58% 9% Oleuropein 20 −31% 18%
    Parthenolide 20 28% 22% Olive oil 20 −23% 6%
    Vitamin C 20 370% 94% Rutin 20 −7% 49%
    MBP 20 90% 38% FOS 20 −12% 12%
    Bonepep 20 114% 65% Inulin 20 33% 61%
    Bonistein 20 −30% 16% Linoleic Acid 20 23% 22%
    Genistein 20 27% 18% Astragalus 20 −8% 44%
    Vitamin K2 20 56% 41% Chicken Collagen 20 −6% 15%
    DHEA 20 −2% 45% Arthred Bovine 20 109% 143%
    Withania 20 −11% 11% Arthred Porcine 20 −12% 22%
    Potassium Citrate 20 95% 26% Osteosine 20 −4% 43%
    Fructus Ligustri 20 56% 26% MCHA 20 11% 31%
    Phloridzin 20 77% 40% Prune PE 20 321% 130%
    Puerariae radix 20 70% 37%
    *formula components:
    Kaprex (RIAA:Rosemary:Oleanolic acid; 225:112.5:1)
    Tetrex (THIAA:Rosemary:Oleanolic acid; 225:112.5:1)
    Trimax (RIAA:Curcumin:Rosemary; 2:2:1)
  • Example 2 Modified Hop Extracts and Herbal Extracts Dose Dependently Modulate TNFα Induced MMP-13 Expression in Human Chondrocyte Cell Line, SW1353
  • The Model—The SW1353 human chondrocyte cell line model as described in Example 1.
  • Cell Culture and treatment—Standard chemicals used were described in Example 1. Following one hour of incubation with the test compounds (RIAA, curcumin, DHEA withania, resveratrol, ipriflavone, astragalus, purariae radix, bonistein and parthanolide at multiple concentrations (20, 10, 5 and 1 ug/ml)), the human chondrocyte cell line, SW 1353 was stimulated with TNFα (10 ng/ml) for 24 hrs. MMP-13 levels were measured in the medium as described in the Example 1.
  • Determination of MMP-13 expression- The MMP-13 levels in the medium were measured as described in Example 1.
  • Calculations—The percent of MMP-13 levels in the medium was measured as described in Example 1 in the presence and absence of TNFα.
  • Median Effect Calculations—Median effect calculations were performed using CalcuSyn (Biosoft, Ferguson, Mo.). This program utilizes the Median Effects Model of Chou and Talalay (Adv Enzym Regul (1984) 22:27-5S) and fits the equation:

  • log C01 log [f a/(1−f a)]=ε
  • where fa is the factional inhibition of the reaction. A minimum of three concentrations were used to determine the dose-response curve and a median inhibitory concentration (IC50).
  • Results—Test compounds RIAA, curcumin, DHEA, withania, resveratrol, ipriflavone, astragalus, purariae radix, bonistein and parthanolide were dose dependently (20, 10, 5 and 1 ug/m1) inhibited TNFa induced MMP-13 expression (Table 5).
  • TABLE 5
    Screening of test compounds for MMP-13 expression at multiple doses
    TNFa TNFa
    Stimulated Stimulated
    Test MMP-13 Test ug/ MMP-13
    Compounds ug/mL average SD Compounds mL n = 1
    TNF Neg 0% 1% TNF Nag 0%
    TNF pos 100% 14% TNF pos 100%
    RIAA 20 45% 6% Berberine 20 −4%
    10 74% 5% 10 −4%
    5 94% 2% 5 −4%
    1 120% 7% 1 −1%
    Curcumin 20 −2% 0% THIAA 20 −4%
    10 −1% 1% 10 14%
    5 11% 3% 5 58%
    1 89% 2% 1 101%
    Bonistein 20 1% 1% Rosemary 20 8%
    10 23% 4% 10 33%
    5 71% 4% 5 55%
    1 109% 7% 1 93%
    DHEA 20 5% 3% Oleanolic 20 26%
    10 64% 1% acid 10 43%
    5 108% 17% 5 38%
    1 111% 8% 1 95%
    Whithania 20 76% 8% Glucosamine 20 105%
    10 94% 12% 10 107%
    5 136% 18% 5 137%
    1 178% 21% 1 126%
    Resveratol 20 45% 12%
    10 53% 13%
    5 88% 11%
    1 96% 15%
    Ipriflavone 20 3% 2%
    10 0% 2%
    5 20% 3%
    1 86% 16%
    Astragalus 20 82% 12%
    10 88% 14%
    5 79% 2%
    1 92% 13%
    Puerariae 20 61% 4%
    radix 10 76% 15%
    5 67% 4%
    1 81% 24%
    Parthenolide 20 47% 3%
    std 10 72% 3%
    5 101% 8%
    1 119% 1%
  • Example 3 Modified Hop Extract RIAA and Herbal Extracts Dose Dependently Modulate TNFα Induced MMP-13 Expression in Human Chondrocyte Cell Line, SW1353.
  • The Model—The SW1353 human chondrocyte cell line model as described in Example 1.
  • Cell Culture and treatment—Standard chemicals used were described in Example 1. Following one hour of incubation with the various test compounds as listed in the table (table 3) human chondrocyte cell line, SW 1353 was stimulated with TNFα (10 ng/ml) for 24 hrs and MMP-13 were measured in the medium as described in the. Example 1.
  • Determination of MMP-13 expression—The MMP-13 levels in the medium was measured as described in Example 1.
  • Median Effect Calculations—Median effect calculations and inhibitory concentrations (IC50) were performed using CalcuSyn as described in Example 2.
  • Results—Test compounds RIAA, berberine sulfate, barberry stem bark (10:1), coptis chinensis extract (20%) and Oregon grape root extract (4:1) were dose dependently modulated TNFα induced MMP-13 expression (Table 6) in human chondrocyte cells, SW 1353.
  • TABLE 6
    Test compounds dose dependently inhibited
    TNFa induced MMP-13 expression.
    TNFa Stimulated % Activity IC50
    Test Compounds ug/mL average SD ug/mL
    TNF Neg 0 0% 0% (95% CI)
    TNF pos 100% 7%
    RIAA 20 44% 3% 25.79 
    10 75% 14%  (9.2-72.0)
    5 83% 8%
    1 91% 13%
    Berberine sulfate 1 −1% 0% 0.15
    0.5 4% 2% (0.05-0.5) 
    0.1 50% 6%
    0.05 99% 13%
    Barberry stem 5 15% 8% 2.00
    bark 10:1 2.5 37% 8% (1.6-2.5)
    1.0 74% 5%
    0.1 101% 5%
    Coptis Chinensis 5 −2% 1% 0.48
    extract 20% 2.5 3% 2% (0.3-0.8)
    1.0 28% 3%
    0.1 97% 14%
    Oregon grape root 5 130% 13%
    extract 4:1 2.5 121% 1%
    1.0 192% 9%
    0.1 180% 14%
  • Example 4 Modified Hop Extract THIAA and Berberine Sulfate Synergistically Inhibited TNFα Induced MMP-13 Expression in Human Chondrocyte Cell Line, SW1353.
  • The Model—The SW1353 human chondrocyte cell line was used as described in Example 1.
  • Materials—All test materials were provided by Metagenics Inc (San Clemente, Calif.). All other chemicals used as described in Example 1.
  • Cell Culture and treatment—The human chondrocyte cell line, SW 1353 were maintained and treatments conditions were described in Example 1. THIAA and berberine was used at various ratios (10:0; 1:10; 5:1; 2:1; 1:1; 1:2; 1:5; 1:10; 0:10) and added to the cells in medium at a final concentration of 0.1% DMSO. Following one hour of incubation with various concentrations of test compounds, TNFa (10 ng/ml) was added to the cell wells and incubation continued for 24 hours, the supernatant media was collected for MMP-13 determination.
  • Determination of MMP-13 expression- The MMP-13 levels in the medium was measured as described in Example 1.
  • Statistical analysis and Median Effect Calculations—Median effect calculations were performed using CalcuSyn (Biosoft, Ferguson, Mo.). This program utilizes the Median Effects Model of Chou and Talalay (Adv Enzym Regul (1984) 22:27-55) and fits the equation:

  • log C01 log [f a/(1−f a)]=ε
  • where fa is the factional inhibition of the reaction. A minimum of three concentrations were used to determine the dose-response curve and a median inhibitory concentration (IC50).
  • Synergy- Combinational Index (CI) values were measured using CalcuSyn (Biosoft, Ferguson, Mo.). CI values less than I represent synergy and more than 1 represent non-synergy combinations (Greco, W. R., Bravo, G., and Parsons, J. C. (1995).
  • Results—CI value less than 1 showed synergy. All the combinations of THIAA and berberine sulfate exhibited synergy for TNFa induced MMP-13 expression at one or more concentrations tested (Table 7A). Non synergistic combinations were highlighted. THIAA and berberine sulfate inhibited TNFα induced MMP-13 expression with IC50 of 16.424 and 0.254 ug/ml respectively (Table 7B).
  • TABLE 7A
    Synergistic effect of THIAA and berberine TNFα induced MMP-13 expression
    in human chondrocyte cell line, SW1353
    Figure US20100069422A1-20100318-C00061
    Non-synergistic combinations are highlighted.
  • TABLE 7B
    THIAA and berberine sulfate inhibited
    TNFα induced MMP-13 expression
    Drug Dm r
    THIAA 16.42401 0.98789
    Berberine sulfate 0.25411 0.99815
  • Example 5
  • Modified Hop Extracts and Herbal Extracts Modulate sRANKL Mediated Osteoclastogenesis
  • The Model—sRANKL mediated osteoclastogenesis as described by Rahman, M. M., et al., (Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling. J. Lipid Res. 47(8): 1739-1748, 2006).
  • Materials—All test compounds were provided by Metagenics Inc (San Clemente, Calif.). Test compounds were prepared in dimethyl sufoxide (DMSO) and stored at −20° C. sRANKL (Receptor activated NF-κB ligand), was purchased from Peprotech (Rockey Hill, N.J.). TRAP activity measurement kit was purchased from Sigma Chemicals (St Louis, Mo.)
  • Cell Culture and treatment—The murine macrophage cell line, RAW 264.7 was purchased from ATCC (Manassas, Va.) and maintained in α-MEM containing 10% FBS and plated at a concentration of 1×104/well in 48 well culture plate (Corning, N.Y.). Next day, test compounds (10 and 5μg/ml) were added to the cells in medium at a final concentration of 0.1% DMSO. Following overnight incubation with the test compounds, sRANKL (50 ng/ml) or medium alone was added to the cell wells. The medium was replaced after 2 days with test compounds and sRANKL and incubation was continued for 3 additional days.
  • Determination of TRAP (tartrate resistant acid phsophatase) activity—The cells were washed twice with ice cold PBS and lysed in 150 μl of 0.2% triton x-100 in PBS. TRAP activity in cell lysates was determined by using TRAP solution from the kit (Sigma 387A1 kit), according to the manufacturers instructions. A 100 μl cell lysates was added to 100 μl of TRAP solution in 96 well plate and incubated at 37° C. for 1 hr. The absorbance was measured at 555 nm using a plate reader. The protein concentration was estimated using BCA reagent (Sigma) and the final activity was normalized for equal protein.
  • Statistical analysis—Inhibition of TRAP activity was determined by comparison of the TRAP activity in the presence of with and with out test compounds in sRANKL activated osteoclasts. A minimum of two wells were used for each concentration.
  • Results—Test compounds which modulated sRANKL mediated TRAP activity are presented in Table 8.
  • TABLE 8
    Modulation of sRANKL mediated TRAP activity
    % TRAP % TRAP
    Activity Activity
    Test Compounds ug/mL average SD Test Compounds ug/mL average SD
    Control 0% 0% Black cohosh 10 38% 17%
    RANKL 100% 23% 5 45% 1%
    RIAA 10 65% 4% Salvia miltiorrhiza 10 87% 7%
    5 78% 9% 5 69% 4%
    Kaprex 10 22% 3% Red Yeast Rice 10 54% 3%
    5 36% 11% 5 76% 4%
    THIAA 10 0% 3% Glabridin 10 75% 4%
    5 54% 4% 5 82% 0%
    Tetrex 10 8% 2% Resveratol 10 2% 4%
    5 46% 2% 5 11% 7%
    Acacia 10 64% 7% Abelmoschus manihot 10 83% 16%
    5 110% 3% 5 108% 13%
    Rosemary 10 0% 6% DHA 10 105% 9%
    5 23% 3% 5 120% 8%
    Oleanolic Acid 10 35% 1% Perilla oil 10 84% 0%
    5 61% 1% 5 71% 3%
    Curcumin 10 −22% 0% Camellia sinesis 10 94% 1%
    5 −17% 3% 5 113% 9%
    Hyaluronic Acid 10 2% 5% Green tea 10 73% 16%
    5 35% 17% 5 88% 11%
    Glucosamine 10 48% 20% Dioscorea spogiosa 10 71% 4%
    5 75% 20% 5 67% 1%
    Green Tea 10 79% 11% Quercetin 10 62% 5%
    Polyphenols 5 65% 4% 5 73% 4%
    Punica Granatum 10 240% 33% Hesperidin 10 76% 2%
    5 215% 26% 5 81% 2%
    Devil's Claw 10 67% 2% Berberine 10 −8% 2%
    5 67% 13% 5 4% 6%
    Parthenolide 10 8% 1% Flax seed extract 10 102% 0%
    5 50% 2% 5 97% 4%
    MBP 10 101% 7% Oleuropein 10 81% 1%
    5 99% 2% 5 82% 10%
    Bonepep 10 89% 3% Olive oil 10 61% 6%
    5 79% 7% 5 74% 15%
    Bonestein 10 −3% 2% Rutin 10 74% 7%
    5 128% 37% 5 106% 20%
    Genistein 10 72% 3% FOS 10 98% 22%
    5 91% 2% 5 79% 2%
    DHEA 10 33% 6% Inulin 10 69% 1%
    5 46% 0% 5 87% 4%
    Fructus Ligustri 10 81% 6% Arthred bovine 10 66% 17%
    5 77% 5% 5 100% 33%
    Phloridizin 10 150% 10% Arthred porcine 10 72% 7%
    5 103% 20% 5 68% 0%
    Puerariae radix 10 43% 8%
    5 49% 11%
  • Example 6
  • Modified Hop Extracts and Herbal Extracts Dose Dependently Modulate sRANKL Osteoclastogenesis
  • The Model—sRANKL mediated osteoclastogenesis as described in Example 5.
  • Materials—All test compounds were provided by Metagenics Inc (San Clemente, Calif.). Purchase of other chemicals was described in Example 5.
  • Cell Culture and treatment—The maintenance of murine macrophage cell line, RAW 264.7 and cell treatment was described in Example 5. Multiple concentration of test compounds (10, 5 and 1 μg/ml) were used to determine the effect on sRANKL induced TRAP activity.
  • Determination of TRAP activity—Determination of TRAP activity was described in Example 5.
  • Statistical analysis—Inhibition of TRAP activity was determined by comparison in the presence of with and with out test compounds in sRANKL activated osteoclasts. A minimum of two wells were used for each concentration. The basal TRAP activity levels with out sRANKL stimulation was subtracted from sRANKL stimulation to get the sRANKL induced TRAP activity and the activity was normalized to 100%. The percent activity of test compounds was measured in the presence of sRANKL and referred as sRANKL induced TRAP activity.
  • A minimum of three concentrations were used to determine median inhibitory concentration (IC50). IC50 values were measured using CalcuSyn program (Biosoft, Fergusson, Mo.) as described in Example 2.
  • Results—Test compounds inhibited sRANKL mediated TRAP activity as indicated in Table 9 below.
  • TABLE 9
    Hop and herbal extracts dose dependently modulated sRANKL mediated TRAP activity.
    % TRAP % TRAP
    activity activity
    Test Compounds ug/mL average SD Test Compounds ug/mL average SD
    Control 0 0% 1% Withania somnitera 10 69% 0%
    RANKL 0 100% 16% 5 87% 9%
    1 120% 0%
    RIAA 10 69% 6% Puerariae radix 10 87% 6%
    5 112% 5% 5 108% 0%
    1 90% 52% 1 114% 9%
    THIAA 10 4% 3% Black Cohosh 10 103% 14%
    5 65% 4% 5 128% 15%
    1 113% 8% 1 154% 2%
    HHIAA 10 22% 15% Resveratol 10 16% 2%
    5 104% 1% 5 17% 30%
    1 120% 16% 1 117% 1%
    Rosemary 10 7% 5% Ipriflavone 10 82% 5%
    5 39% 3% 5 164% 34%
    1 117% 10% 1 168% 5%
    Oleanolic acid 10 32% 1% Policosanol 10 103% 1%
    5 63% 6% 5 139% 6%
    1 139% 1% 1 152% 15%
    Acacia 10 91% 17% Berberine 10 7% 1%
    5 176% 14% 5 15% 5%
    1 169% 1% 1 68% 9%
    Curcumin 5 −1% 9% Conjugated Linoleic 10 79% 15%
    2.5 46% 25% acid 5 81% 8%
    1 92% 17% 1 86% 1%
    Parthenolide Std 5 70% 14% Chicken Collagen 10 87% 9%
    2.5 85% 12% Type II Kolla2 5 125% 4%
    1 117% 45% 1 102% 8%
    Hyaluronic acid 10 111% 17% OsteoSine 10 38% 5%
    5 130% 1% 5 53% 1%
    1 122% 4% 1 68% 6%
    Glucosamine 10 269% 188% MCHA 10 105% 17%
    5 183% 13% 5 111% 1%
    1 179% 58% 1 105% 1%
    African Devil's claw 10 119% 31% Prune (PLUM) PE 10 142% 3%
    5 197% 43% 5 141% 11%
    1 153% 19% 1 101% 4%
    Parthenolide 10 29% 6% Epimedium 10 77% 3%
    5 78% 3% 5 89% 4%
    1 106% 10% 1 84% 2%
    Bonistein 10 18% 45% Black rice 10 72% 4%
    5 346% 13% 5 20%
    1 184% 1% 1 63% 2%
  • Example 7 Clinical Effects on Pain Reduction and Flexibility of a Berberine/Tetrahydroisoalpha Acid Composition
  • The purpose of this experiment was to determine the effects of a berberine/tetrahydroisoalpha acid composition on joint pain and flexibility in volunteers.
  • A small, open label, non-controlled study was conducted on 12 volunteer subjects whose clinical history and exam indicated that additional therapeutics were necessary beyond bodywork (here chiropractic manipulation). Examples included patients in whom bodywork had only been of brief help previously requiring repeated adjustments, patients with active inflammatory challenges including chronic and acute pain states, and patients with poor tissue integrity secondary to chronicity, fibrosis (fibromyalgia), and hypothyroidism.
  • Questionnaires were administered at baseline prior to body work and administration of two tablets prior to initial manipulation of a composition comprising 100 mg of berberine and 100 mg of tetrahydroisoalpha acids as the active moieties, and thereafter immediately following body work, and at 1 hour, 6 hours, 24 hours, and 7 days time points after body work (1-3 tablets per day). Subjects were asked to score using Likert scales of 1-10 the severity of their pain and lack of flexibility. On the pain scale, a score of 10 represented the highest level of pain. On the flexibility scale, a score of 1 represented the least level of flexibility. The results are presented in Table 10 below.
  • TABLE 10
    Clinical effects on pain reduction and flexibility
    of a berberine/tetrahydroisoalpha acid composition
    Likert Scores Pain Flexibility
    Averages BEFORE Visit: 6.67 4.08
    IMMEDIATELY AFTER Visit: 2.67 6.58
    ~1 HOUR AFTER Visit: 2.67 6.58
    ~6 HOURS AFTER Visit: 2.92 6.58
    ~24 HOURS AFTER Visit: 3.50 6.83
    ~7 DAYS AFTER Visit: 3.92
    % change BEFORE Visit:
    IMMEDIATELY AFTER Visit: −60.0% 61.2%
    ~1 HOUR AFTER Visit: −60.0% 61.2%
    ~6 HOURS AFTER Visit: −56.3% 61.2%
    ~24 HOURS AFTER Visit: −47.5% 67.3%
    ~7 DAYS AFTER Visit: −41.3%
  • The significant reduction in pain (41-60%) and improvements in flexibility (61%-67%) and the persistence of this benefit were considered to represent a significant clinical response.
  • Side effects noted by 2 subjects were minimal GI discomfort after taking the product on an empty stomach. This was addressed by taking with food. One subject had more persistent GI discomfort including a presumed episode of GERD.
  • Three subjects were followed for 2-3 week intervals as they used the product. Moderate clinical improvement was noted by the clinician. His comments included “that with less trigger point tenderness, he was more effectively able to address the issue using body work” in one case.

Claims (9)

1. A composition to promote bone and joint health in a mammal in need thereof, said composition comprising a therapeutically effective amount of berberine or a pharmaceutically acceptable salt thereof as a first component and as a second component a therapeutically effective amount of a substituted 1,3-cyclopentadione compound selected from the group from the group consisting of rho dihydroisoalpha acids and tetrahydroisoalpha acids or pharmaceutically acceptable salts thereof.
2. The composition of claim 1, wherein the first component and the second component are in a synergistic ratio
3. The composition according to claim 1, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R, 5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl] -2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R, 5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-ethylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en- l -yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one.
4. The composition according to claim 1, wherein the tetrahydroisoalpha acid is selected from the group consisting of 4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R ,5 S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R, 5 S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
5. The composition according to claim 1, wherein the second component is derived from hops.
6. The composition according to claim 1, wherein the composition further comprises a pharmaceutically acceptable excipient selected from the group consisting of coatings, isotonic and absorption delaying agents, binders, adhesives, lubricants, disintergrants, coloring agents, flavoring agents, sweetening agents, absorbants, detergents, and emulsifying agents.
7. The composition according to claim 1, wherein the composition further comprises one or more members selected from the group consisting of antioxidants, vitamins, minerals, proteins, fats, and carbohydrates.
8. The composition according to claim 1, wherein the composition comprises from about 10 mg to about 800 mg of berberine or a pharmaceutically acceptable salt thereof and from about 10 mg to about 800 mg of a tetrahydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the tetrahydroisoalpha acid is selected from the group consisting of (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R ,5 S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-444-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one; and (4R,5S)-3,4-dihydroxy-2-(3-methylbutanoyl)-5-(3-methylbutyl)-4-(4-methylpentanoyl)cyclopent-2-en-1-one.
9. The composition according to claim 1, wherein the composition comprises from about 9 mg to about 720 mg of berberine or a pharmaceutically acceptable salt thereof and from about 20 mg to about 1600 mg of a rho dihydroisoalpha acid or a pharmaceutically acceptable salt thereof, wherein the rho dihydroisoalpha acid is selected from the group consisting of (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one ; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one ; (4R,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4R ,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylpropanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5R)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(3-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1R)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one; (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-2-(2-methylbutanoyl)-5-(3-methylbut-2-en-1-yl)cyclopent-2-en-1-one; and (4S,5S)-3,4-dihydroxy-4-[(1S)-hydroxy-4-methylpent-3-en-1-yl]-5-(3-methylbut-2-en-1-yl)-2-(2-methylpropanoyl)cyclopent-2-en-1-one.
US12/626,392 2007-03-19 2009-11-25 Methods and compositions for promoting bone and joint health Abandoned US20100069422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/626,392 US20100069422A1 (en) 2007-03-19 2009-11-25 Methods and compositions for promoting bone and joint health

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US91872707P 2007-03-19 2007-03-19
US12/048,613 US8815306B2 (en) 2007-03-19 2008-03-14 Methods and compositions for promoting bone and joint health
US12/626,392 US20100069422A1 (en) 2007-03-19 2009-11-25 Methods and compositions for promoting bone and joint health

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/048,613 Division US8815306B2 (en) 2007-03-19 2008-03-14 Methods and compositions for promoting bone and joint health

Publications (1)

Publication Number Publication Date
US20100069422A1 true US20100069422A1 (en) 2010-03-18

Family

ID=39766361

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/048,613 Active US8815306B2 (en) 2007-03-19 2008-03-14 Methods and compositions for promoting bone and joint health
US12/626,392 Abandoned US20100069422A1 (en) 2007-03-19 2009-11-25 Methods and compositions for promoting bone and joint health

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/048,613 Active US8815306B2 (en) 2007-03-19 2008-03-14 Methods and compositions for promoting bone and joint health

Country Status (9)

Country Link
US (2) US8815306B2 (en)
EP (2) EP2136827A4 (en)
JP (1) JP2010522190A (en)
CN (1) CN101711161A (en)
AU (1) AU2008229110A1 (en)
CA (1) CA2679847A1 (en)
MX (1) MX2009010049A (en)
NZ (1) NZ579340A (en)
WO (1) WO2008115783A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110218151A1 (en) * 2010-03-04 2011-09-08 Joar Opheim Substances for promoting healthy joint function comprising omega-3 polyunsaturated fatty acids or drivatives thereof, undenatured type ii collagen and, optionally, glucosamine sulfate

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711161A (en) 2007-03-19 2010-05-19 麦特普罗泰欧米克斯有限公司 Promote the method and composition of skeleton and articulation health
BRPI1007711A2 (en) 2009-05-04 2016-11-29 Cimtech Pty Ltd one or more extracts of vigna marina, cocos nucifera l. or terminalia catappa l. for the treatment of wounds, skin disorders and hair loss
CN102770148B (en) 2009-12-10 2015-04-01 库克岛医学技术有限公司 Methods and compositions for bone and cartilage repair
TW201141536A (en) 2009-12-21 2011-12-01 Colgate Palmolive Co Oral care compositions and methods
US20110217370A1 (en) * 2010-03-04 2011-09-08 Joar Opheim Substances for promoting healthy joint function comprising glucosamine sulfate, omega-3 polyunsaturated fatty acids or derivatives thereof, and undenatured type ii collagen
CN110200955A (en) 2010-10-30 2019-09-06 金戴克斯治疗学有限责任公司 The iso- α acid derivative of tetrahydro, composition and method
CN102813202A (en) * 2012-09-06 2012-12-12 苏州谷力生物科技有限公司 Health-care product for preventing osteoporosis
US20160101125A1 (en) * 2013-05-29 2016-04-14 Nestec S.A. Compositions for use in cartilage breakdown
BR112015029611B1 (en) * 2013-05-29 2023-01-17 Société Des Produits Nestlé S.A USE OF A COMPOSITION COMPRISING OLEUROPEAN
CN105611935A (en) * 2013-10-14 2016-05-25 雀巢产品技术援助有限公司 Anti-inflammatory phytonutrients for use in the treatment or prevention of synovitis
CN104257762B (en) * 2014-10-17 2016-07-06 长春工业大学 A kind of pharmaceutical composition and prevention thereof and the osteoporotic purposes for the treatment of
US20160129068A1 (en) * 2014-11-10 2016-05-12 Caliway Biomedical Co., Ltd. Composition of plant extract and its pharmaceutical composition and application thereof
ITUB20150541A1 (en) 2015-03-03 2016-09-03 Acraf Composition comprising natural substances and / or extracts
CN105520135A (en) * 2015-12-20 2016-04-27 雷西云 Healthy food with function of treating osteoporosis
US11357250B2 (en) 2016-08-15 2022-06-14 Summit Innovation Labs LLC Treatment and prevention of diabetes and obesity
US11344575B2 (en) * 2016-08-15 2022-05-31 Summit Innovation Labs, LLC Vascular calcification prevention and treatment
CN106620659A (en) * 2016-12-19 2017-05-10 江苏红瑞制药有限公司 Food composition beneficial to bone health
CN106727652A (en) * 2016-12-30 2017-05-31 福建中医药大学 A kind of molecule Chinese medicine sustained release tablets for relief from osteoarthritis pain and preparation method thereof
KR101826780B1 (en) * 2017-05-24 2018-02-07 경희대학교 산학협력단 Hyaluronic acid-based hydrogel composition
US20190015448A1 (en) * 2017-07-13 2019-01-17 Summit Innovation Labs LLC Treatment and Prevention of Bone and Joint Disorders
US11007171B2 (en) * 2017-07-13 2021-05-18 Summit Innovation Labs, LLC Treatment and prevention of joint disorders
CN107823633B (en) * 2017-11-16 2020-06-23 安徽大学 Pharmaceutical composition for treating arthralgia
CA3112205A1 (en) 2018-09-25 2020-04-02 Ponce De Leon Health Designated Activity Company Process for making calcium alpha-ketoglutarate
WO2022015374A1 (en) * 2020-07-17 2022-01-20 Bioderm Inc. Topical composition for the treatment of psoriasis and related skin disorders

Citations (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451821A (en) * 1965-03-01 1969-06-24 Kalamazoo Spice Extract Co Increasing the utilization of hops and improving flavor control of malt beverages and the like
US3536495A (en) * 1968-03-13 1970-10-27 Miller Brewing Ammonia complexes of hop alpha acids and modified alpha acids
US3552975A (en) * 1965-03-01 1971-01-05 Kalamazoo Spice Extract Co Hop flavors for malt beverages and the like
US3720517A (en) * 1970-12-21 1973-03-13 Hamm T Brewing Co Preparation of a fermented malt champagne
US3932303A (en) * 1973-06-04 1976-01-13 Calgon Corporation Corrosion inhibition with triethanolamine phosphate ester compositions
US3933919A (en) * 1964-12-15 1976-01-20 Geoffrey Wilkinson Hydroformylation of mono-α-olefins and mono-α-acetylenes
US3965188A (en) * 1972-01-10 1976-06-22 Miller Brewing Company Hop extract process and product
US4123561A (en) * 1977-02-01 1978-10-31 S.S. Steiner, Inc. Method for processing hops for brewing
US4133903A (en) * 1975-12-04 1979-01-09 Siegfried Aktiengesellschaft Process for preparing bitter beverages
US4148873A (en) * 1976-11-05 1979-04-10 S. S. Steiner, Inc. Method for treating the skin with extracts of hops
US4170636A (en) * 1977-12-29 1979-10-09 Minnesota Mining And Manufacturing Company Composition and method for inhibiting plaque formation
US4389421A (en) * 1981-10-30 1983-06-21 Busch Industrial Products Corporation Method for controlling light stability in malt beverages and product thereof
US4401684A (en) * 1981-10-01 1983-08-30 Australian Hop Marketers Pty. Ltd. Preservation of hops utilizing ascorbic acid
US4473551A (en) * 1982-08-23 1984-09-25 Faxon Pharmaceuticals, Inc. Anti-inflammatory composition
US4544084A (en) * 1981-12-03 1985-10-01 Cleland Robert K Beverage dispenser
US4590296A (en) * 1984-01-25 1986-05-20 Miller Brewing Company Process for separation of beta-acids from extract containing alpha-acids and beta-acids
US4692280A (en) * 1986-12-01 1987-09-08 The United States Of America As Represented By The Secretary Of Commerce Purification of fish oils
US4758445A (en) * 1985-04-12 1988-07-19 Hopstabil Hopfenverarbeitungs-Gesellschaft Mbh Process for the production of isohumulones
US4767640A (en) * 1985-10-29 1988-08-30 Miller Brewing Company Light stable hop extracts and method of preparation
US4857554A (en) * 1987-08-17 1989-08-15 Georgios Kallimanis Method for the treatment of psoriasis
US5006337A (en) * 1987-04-16 1991-04-09 Marbert Gmbh Medicinal compositions based on spent brewers' grains extract, a process for the preparation thereof, and the use of spent brewers' grains extract for the preparation of cosmetic compositions, and a special brewers' grains extract
US5013571A (en) * 1990-01-31 1991-05-07 Pfizer Inc. Methods for making tetrahydroisoalpha and hexahydroisoalpha acids
US5041300A (en) * 1987-04-03 1991-08-20 Kalamazoo Holdings, Inc. Hop flavor which is odor forming impurity free
US5082975A (en) * 1988-08-15 1992-01-21 Kalamazoo Holdings, Inc. Synthesis of hexahydrolupulone, novel forms thereof, and its use as a selective inhibitor of cell growth and multiplication
US5155276A (en) * 1990-09-10 1992-10-13 Hopstabil Hopfenverarbeitungs Gmbh Process for the isomerization of humulone in a carbon dioxide-hops extract and a process for the isolation of isohumulone from it
US5286506A (en) * 1992-10-29 1994-02-15 Bio-Technical Resources Inhibition of food pathogens by hop acids
US5296637A (en) * 1992-12-31 1994-03-22 Kalamazoo Holdings, Inc. Production of odor-free tetrahydroisohumulates from alpha acids via their tetrahydrohumulates and subsequent isomerization
US5387425A (en) * 1992-02-03 1995-02-07 Rhone-Poulenc Specialty Chemicals Co. Method and composition for enhancing foam properties of fermented malt beverages
US5604263A (en) * 1994-04-12 1997-02-18 Hoechst Japan Limited Treating osteoporosis with humulones
US5624236A (en) * 1994-04-08 1997-04-29 Kabushiki Kaisha Kobe Seiko Sho Oil cooled air compressor
US5641517A (en) * 1992-07-29 1997-06-24 Drymed As Composition comprising fertilized shell eggs
US5827895A (en) * 1996-02-27 1998-10-27 Regents Of The University Of Minnesota Hexahydrolupulones useful as anticancer agents
US5866162A (en) * 1993-08-10 1999-02-02 Smithkline Beecham P.L.C. Pharmaceutical composition containing a drug/β-cyclodextrin complex in combination with an acid-base couple
US5919813A (en) * 1998-03-13 1999-07-06 Johns Hopkins University, School Of Medicine Use of a protein tyrosine kinase pathway inhibitor in the treatment of diabetic retinopathy
US5968539A (en) * 1997-06-04 1999-10-19 Procter & Gamble Company Mild, rinse-off antimicrobial liquid cleansing compositions which provide residual benefit versus gram negative bacteria
US6020019A (en) * 1996-03-26 2000-02-01 Miller Brewing Company Hydrogenation of hop soft resins using CO2
US6129907A (en) * 1999-08-04 2000-10-10 Colgate Palmolive Company Stable hydrogenated lupulone antibacterial oral compositions
US6200594B1 (en) * 1999-12-29 2001-03-13 Vital Dynamics, Inc. Breast-enhancing, herbal compositions and methods of using same
US6210701B1 (en) * 1999-04-30 2001-04-03 Healthcomm International, Inc. Medical food for treating inflammation-related diseases
US6224871B1 (en) * 1998-03-11 2001-05-01 Reliv International, Inc. Dietary supplement for nutritionally promoting healthy joint function
US6264995B1 (en) * 1999-10-19 2001-07-24 Thomas Newmark Herbal composition for reducing inflammation and methods of using same
US6291483B1 (en) * 1996-02-14 2001-09-18 National Institute Of Immunology Methods for prevention and treatment of septic shock
US20020028852A1 (en) * 1999-09-21 2002-03-07 Geetha Ghai Resveratrol analogs for prevention of disease
US6383527B1 (en) * 1999-03-04 2002-05-07 Nps Pharmaceuticals, Inc. Compositions comprising valerian extracts, isovaleric acid or derivatives thereof with a NSAID
US6391346B1 (en) * 2001-04-05 2002-05-21 Thomas Newmark Anti-inflammatory, sleep-promoting herbal composition and method of use
US20020076452A1 (en) * 2000-08-01 2002-06-20 Ashni Naturaceuticals, Inc. Combinations of sesquiterpene lactones and ditepene lactones or triterpenes for synergistic inhibition of cyclooxygenase-2
US20020077299A1 (en) * 2000-08-01 2002-06-20 Babish John G. Combinations of sesquiterpene lactones and ditepene triepoxide lactones for synergistic inhibition of cyclooxygenase-2
US20020086070A1 (en) * 2000-03-11 2002-07-04 Kuhrts Eric Hauser Anti-inflammatory and connective tissue repair formulations
US20020086062A1 (en) * 2000-02-01 2002-07-04 Kuhrts Eric Hauser Microencapsulated delivery system for high viscosity fluids
US6440465B1 (en) * 2000-05-01 2002-08-27 Bioderm, Inc. Topical composition for the treatment of psoriasis and related skin disorders
US6447762B1 (en) * 1999-01-29 2002-09-10 Colomer Group Spain, S.L. Hair lotion useful for treatment of hair loss and stimulating hair growth
US20020156087A1 (en) * 1998-06-19 2002-10-24 Nuss John M. Inhibitors of glycogen synthase kinase 3
US20030003212A1 (en) * 2001-06-13 2003-01-02 Givaudan Sa Taste modifiers
US20030008021A1 (en) * 2001-06-20 2003-01-09 Ashni Naturaceuticals, Inc. Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20030035851A1 (en) * 2001-02-08 2003-02-20 Sophie Chen Anti-cancer agents and method of use thereof
US20030077313A1 (en) * 2000-10-17 2003-04-24 Robert Schwartz Anti-stress composition intended for incorporation mainly in nutritional vehicles
US20030096027A1 (en) * 2001-10-26 2003-05-22 Babish John G. Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
US6583322B1 (en) * 2000-02-25 2003-06-24 Kalamazoo Holdings, Inc. Dihydro and hexahydro isoalpha acids having a high ratio of trans to cis isomers, production thereof, and products containing the same
US20030133958A1 (en) * 2000-03-31 2003-07-17 Noriyasu Kuno External agent for the skin and whitening agent
US20030180402A1 (en) * 2002-03-22 2003-09-25 Unigen Pharmaceuticals, Inc. Isolation of a dual COX-2 and 5-lipoxygenase inhibitor from Acacia
US20040072900A1 (en) * 1996-08-30 2004-04-15 Nps Pharmaceuticals Treating a variety of pathological conditions, including spasticity and convulsions, by effecting a modulation of CNS activity with isovaleramide, isovaleric acid, or a related compound
US20040086580A1 (en) * 2002-10-21 2004-05-06 Tripp Matthew L. Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US20040115290A1 (en) * 2001-06-20 2004-06-17 Tripp Matthew L. Modulation of inflammation by hops fractions and derivatives
US20040137096A1 (en) * 2003-01-09 2004-07-15 Kuhrts Eric H. Anti-inflammatory cyclooxygenase-2 selective inhibitors
US20040151792A1 (en) * 2001-06-20 2004-08-05 Tripp Matthew L. Compositions that treat or inhibit pathological conditions associated with inflammatory response
US6790459B1 (en) * 2000-11-03 2004-09-14 Andrx Labs, Llc Methods for treating diabetes via administration of controlled release metformin
US6801860B1 (en) * 1999-02-15 2004-10-05 Genetics Institute, Llc Crystal structure of cPLA2 and methods of identifying agonists and antagonists using same
US20050129791A1 (en) * 2001-10-26 2005-06-16 Babish John G. Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
US20050191375A1 (en) * 2004-02-27 2005-09-01 Babish John G. Synergistic anti-inflammatory pharmaceutical compositions and related methods using curcuminoids or methylxanthines
US20050192356A1 (en) * 2004-02-27 2005-09-01 Babish John G. Synergistic anti-inflammatory pharmaceutical compositions and methods of use
US20060074052A1 (en) * 1999-02-23 2006-04-06 Isaac Eliaz Compositions and methods for treating mammals with modified alginates and modified pectins
US7076062B1 (en) * 2000-09-14 2006-07-11 Microsoft Corporation Methods and arrangements for using a signature generating device for encryption-based authentication
US20060233902A1 (en) * 2002-02-14 2006-10-19 Kirin Beer Kabushiki Kaisha Compositions and foods for improving lipid metabolism
US20070020352A1 (en) * 2001-06-20 2007-01-25 Matthew Tripp Treatment modalities for autoimmune diseases
US20070065456A1 (en) * 2005-09-20 2007-03-22 Woods Cindy J Nutritional supplements
US20070154576A1 (en) * 2005-12-09 2007-07-05 Tripp Matthew L Protein kinase modulation by hops and Acacia products
US20070160692A1 (en) * 2002-10-21 2007-07-12 Tripp Matthew L Compositions that treat or inhibit pathological conditions associated with inflammatory response
US20070166418A1 (en) * 2001-06-20 2007-07-19 Metaproteomics, Llc Treatment modalities for autoimmune diseases
US20070184133A1 (en) * 2001-06-20 2007-08-09 Metaproteomics, Llc Compositions that treat or inhibit pathological conditions associated with inflammatory response
US20080127720A1 (en) * 2006-10-20 2008-06-05 Pauli Guido F Selection and rational development of solvent systems in counter-current chromatograph
US20090118373A1 (en) * 2001-06-20 2009-05-07 Tripp Matthew L Inhibition of COX-2 and/or 5-LOX activity by fractions isolated or derived from hops

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372932A (en) 1971-03-15 1974-11-06 Gen Foods Corp Anti-caries compositions
US3932603A (en) * 1971-05-28 1976-01-13 General Foods Corporation Oral preparations for reducing the incidence of dental caries
US4170638A (en) 1976-11-05 1979-10-09 S. S. Steiner, Inc. Method for producing a deodorant
BE896610A (en) * 1982-05-06 1983-08-16 Hop Developments Ltd EXTRACTION OF PLANT MATERIAL USING CARBONIC ANHYDRIDE
US4644084A (en) * 1984-01-25 1987-02-17 Miller Brewing Company Preparation of tetrahydroisohumulones
GB2187755B (en) * 1984-02-28 1990-03-28 Kalamazoo Holdings Inc Separation of the constituents of co2 hop extracts
SU1247011A1 (en) 1985-02-20 1986-07-30 Специальное Конструкторское Бюро Химизации Научно-Производственного Объединения "Аэрозоль" Agent for hair care
US5166449A (en) * 1988-08-15 1992-11-24 Kalamazoo Holdings, Inc. Synthesis of hexahydrolupulone, novel forms thereof, and its use as a selective inhibitor of cell growth and multiplication
DE3931147A1 (en) 1989-09-19 1991-03-28 Solong Natural Ltd New nerve tonic contg. extract of avena sativa - used to treat frigidity and increase libido in women
JP3155003B2 (en) 1990-11-06 2001-04-09 サントリー株式会社 Method for producing hop extract and hop extract obtained by the method
MY107664A (en) * 1991-01-17 1996-05-30 Kao Corp Novel alkaline proteinase and process for producing the same
RU2045955C1 (en) 1992-02-24 1995-10-20 Никитина Татьяна Ивановна Method for treating adnexites
US5370863A (en) 1992-12-16 1994-12-06 Miller Brewing Company Oral care compositions containing hop acids and method
AT404469B (en) 1994-05-06 1998-11-25 Tulln Zuckerforschung Gmbh METHOD FOR THE PRESERVATION OF SUGAR-BASED PLANT EXTRACTS OR. JUICES
US6251461B1 (en) 1997-10-10 2001-06-26 S. S. Steiner, Inc. Antimicrobial activity of hops extract against Clostridium botulinum, Clostridium difficile and Helicobacter pylori
DE19841615A1 (en) 1998-09-11 2000-03-16 Fritz Armin Mueller Medicinal wine for alleviating pain and other symptoms of premenstrual syndrome, comprising mixture of extracts of different plants in dry white wine
JP4173606B2 (en) * 1999-06-18 2008-10-29 サントリー株式会社 Method for producing low acid beverage
US20040219240A1 (en) * 2001-06-20 2004-11-04 Babish John G. Anti-inflammatory pharmaceutical compositions for reducing inflammation and the treatment or prevention of gastric toxicity
JP2005527551A (en) 2002-03-28 2005-09-15 アルコン,インコーポレイテッド DHA and rosemary cobeadlets and methods of their use.
CN101711161A (en) 2007-03-19 2010-05-19 麦特普罗泰欧米克斯有限公司 Promote the method and composition of skeleton and articulation health

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933919A (en) * 1964-12-15 1976-01-20 Geoffrey Wilkinson Hydroformylation of mono-α-olefins and mono-α-acetylenes
US3552975A (en) * 1965-03-01 1971-01-05 Kalamazoo Spice Extract Co Hop flavors for malt beverages and the like
US3451821A (en) * 1965-03-01 1969-06-24 Kalamazoo Spice Extract Co Increasing the utilization of hops and improving flavor control of malt beverages and the like
US3536495A (en) * 1968-03-13 1970-10-27 Miller Brewing Ammonia complexes of hop alpha acids and modified alpha acids
US3720517A (en) * 1970-12-21 1973-03-13 Hamm T Brewing Co Preparation of a fermented malt champagne
US3965188A (en) * 1972-01-10 1976-06-22 Miller Brewing Company Hop extract process and product
US3932303A (en) * 1973-06-04 1976-01-13 Calgon Corporation Corrosion inhibition with triethanolamine phosphate ester compositions
US4133903A (en) * 1975-12-04 1979-01-09 Siegfried Aktiengesellschaft Process for preparing bitter beverages
US4148873A (en) * 1976-11-05 1979-04-10 S. S. Steiner, Inc. Method for treating the skin with extracts of hops
US4123561A (en) * 1977-02-01 1978-10-31 S.S. Steiner, Inc. Method for processing hops for brewing
US4154865A (en) * 1977-02-01 1979-05-15 S. S. Steiner, Inc. Method for processing hops for brewing
US4170636A (en) * 1977-12-29 1979-10-09 Minnesota Mining And Manufacturing Company Composition and method for inhibiting plaque formation
US4401684A (en) * 1981-10-01 1983-08-30 Australian Hop Marketers Pty. Ltd. Preservation of hops utilizing ascorbic acid
US4389421A (en) * 1981-10-30 1983-06-21 Busch Industrial Products Corporation Method for controlling light stability in malt beverages and product thereof
US4544084A (en) * 1981-12-03 1985-10-01 Cleland Robert K Beverage dispenser
US4473551A (en) * 1982-08-23 1984-09-25 Faxon Pharmaceuticals, Inc. Anti-inflammatory composition
US4590296A (en) * 1984-01-25 1986-05-20 Miller Brewing Company Process for separation of beta-acids from extract containing alpha-acids and beta-acids
US4758445A (en) * 1985-04-12 1988-07-19 Hopstabil Hopfenverarbeitungs-Gesellschaft Mbh Process for the production of isohumulones
US4767640A (en) * 1985-10-29 1988-08-30 Miller Brewing Company Light stable hop extracts and method of preparation
US4692280A (en) * 1986-12-01 1987-09-08 The United States Of America As Represented By The Secretary Of Commerce Purification of fish oils
US5041300A (en) * 1987-04-03 1991-08-20 Kalamazoo Holdings, Inc. Hop flavor which is odor forming impurity free
US5006337A (en) * 1987-04-16 1991-04-09 Marbert Gmbh Medicinal compositions based on spent brewers' grains extract, a process for the preparation thereof, and the use of spent brewers' grains extract for the preparation of cosmetic compositions, and a special brewers' grains extract
US4857554A (en) * 1987-08-17 1989-08-15 Georgios Kallimanis Method for the treatment of psoriasis
US5082975A (en) * 1988-08-15 1992-01-21 Kalamazoo Holdings, Inc. Synthesis of hexahydrolupulone, novel forms thereof, and its use as a selective inhibitor of cell growth and multiplication
US5013571A (en) * 1990-01-31 1991-05-07 Pfizer Inc. Methods for making tetrahydroisoalpha and hexahydroisoalpha acids
US5155276A (en) * 1990-09-10 1992-10-13 Hopstabil Hopfenverarbeitungs Gmbh Process for the isomerization of humulone in a carbon dioxide-hops extract and a process for the isolation of isohumulone from it
US5387425A (en) * 1992-02-03 1995-02-07 Rhone-Poulenc Specialty Chemicals Co. Method and composition for enhancing foam properties of fermented malt beverages
US5641517A (en) * 1992-07-29 1997-06-24 Drymed As Composition comprising fertilized shell eggs
US5286506A (en) * 1992-10-29 1994-02-15 Bio-Technical Resources Inhibition of food pathogens by hop acids
US5296637A (en) * 1992-12-31 1994-03-22 Kalamazoo Holdings, Inc. Production of odor-free tetrahydroisohumulates from alpha acids via their tetrahydrohumulates and subsequent isomerization
US5866162A (en) * 1993-08-10 1999-02-02 Smithkline Beecham P.L.C. Pharmaceutical composition containing a drug/β-cyclodextrin complex in combination with an acid-base couple
US5624236A (en) * 1994-04-08 1997-04-29 Kabushiki Kaisha Kobe Seiko Sho Oil cooled air compressor
US5604263A (en) * 1994-04-12 1997-02-18 Hoechst Japan Limited Treating osteoporosis with humulones
US6291483B1 (en) * 1996-02-14 2001-09-18 National Institute Of Immunology Methods for prevention and treatment of septic shock
US5827895A (en) * 1996-02-27 1998-10-27 Regents Of The University Of Minnesota Hexahydrolupulones useful as anticancer agents
US6020019A (en) * 1996-03-26 2000-02-01 Miller Brewing Company Hydrogenation of hop soft resins using CO2
US20040072900A1 (en) * 1996-08-30 2004-04-15 Nps Pharmaceuticals Treating a variety of pathological conditions, including spasticity and convulsions, by effecting a modulation of CNS activity with isovaleramide, isovaleric acid, or a related compound
US5968539A (en) * 1997-06-04 1999-10-19 Procter & Gamble Company Mild, rinse-off antimicrobial liquid cleansing compositions which provide residual benefit versus gram negative bacteria
US6224871B1 (en) * 1998-03-11 2001-05-01 Reliv International, Inc. Dietary supplement for nutritionally promoting healthy joint function
US5919813C1 (en) * 1998-03-13 2002-01-29 Univ Johns Hopkins Med Use of a protein tyrosine kinase pathway inhibitor in the treatment of diabetic retinopathy
US5919813A (en) * 1998-03-13 1999-07-06 Johns Hopkins University, School Of Medicine Use of a protein tyrosine kinase pathway inhibitor in the treatment of diabetic retinopathy
US20020156087A1 (en) * 1998-06-19 2002-10-24 Nuss John M. Inhibitors of glycogen synthase kinase 3
US6447762B1 (en) * 1999-01-29 2002-09-10 Colomer Group Spain, S.L. Hair lotion useful for treatment of hair loss and stimulating hair growth
US6801860B1 (en) * 1999-02-15 2004-10-05 Genetics Institute, Llc Crystal structure of cPLA2 and methods of identifying agonists and antagonists using same
US20060074052A1 (en) * 1999-02-23 2006-04-06 Isaac Eliaz Compositions and methods for treating mammals with modified alginates and modified pectins
US6383527B1 (en) * 1999-03-04 2002-05-07 Nps Pharmaceuticals, Inc. Compositions comprising valerian extracts, isovaleric acid or derivatives thereof with a NSAID
US6210701B1 (en) * 1999-04-30 2001-04-03 Healthcomm International, Inc. Medical food for treating inflammation-related diseases
US6129907A (en) * 1999-08-04 2000-10-10 Colgate Palmolive Company Stable hydrogenated lupulone antibacterial oral compositions
US20020028852A1 (en) * 1999-09-21 2002-03-07 Geetha Ghai Resveratrol analogs for prevention of disease
US6264995B1 (en) * 1999-10-19 2001-07-24 Thomas Newmark Herbal composition for reducing inflammation and methods of using same
US6200594B1 (en) * 1999-12-29 2001-03-13 Vital Dynamics, Inc. Breast-enhancing, herbal compositions and methods of using same
US20020086062A1 (en) * 2000-02-01 2002-07-04 Kuhrts Eric Hauser Microencapsulated delivery system for high viscosity fluids
US6689388B2 (en) * 2000-02-01 2004-02-10 Lipoprotein Technologies, Inc. Microencapsulated delivery system for high viscosity fluids
US6583322B1 (en) * 2000-02-25 2003-06-24 Kalamazoo Holdings, Inc. Dihydro and hexahydro isoalpha acids having a high ratio of trans to cis isomers, production thereof, and products containing the same
US20020086070A1 (en) * 2000-03-11 2002-07-04 Kuhrts Eric Hauser Anti-inflammatory and connective tissue repair formulations
US20030133958A1 (en) * 2000-03-31 2003-07-17 Noriyasu Kuno External agent for the skin and whitening agent
US6440465B1 (en) * 2000-05-01 2002-08-27 Bioderm, Inc. Topical composition for the treatment of psoriasis and related skin disorders
US20020076452A1 (en) * 2000-08-01 2002-06-20 Ashni Naturaceuticals, Inc. Combinations of sesquiterpene lactones and ditepene lactones or triterpenes for synergistic inhibition of cyclooxygenase-2
US20020077299A1 (en) * 2000-08-01 2002-06-20 Babish John G. Combinations of sesquiterpene lactones and ditepene triepoxide lactones for synergistic inhibition of cyclooxygenase-2
US7076062B1 (en) * 2000-09-14 2006-07-11 Microsoft Corporation Methods and arrangements for using a signature generating device for encryption-based authentication
US20030077313A1 (en) * 2000-10-17 2003-04-24 Robert Schwartz Anti-stress composition intended for incorporation mainly in nutritional vehicles
US6790459B1 (en) * 2000-11-03 2004-09-14 Andrx Labs, Llc Methods for treating diabetes via administration of controlled release metformin
US20030035851A1 (en) * 2001-02-08 2003-02-20 Sophie Chen Anti-cancer agents and method of use thereof
US6391346B1 (en) * 2001-04-05 2002-05-21 Thomas Newmark Anti-inflammatory, sleep-promoting herbal composition and method of use
US20030003212A1 (en) * 2001-06-13 2003-01-02 Givaudan Sa Taste modifiers
US20060127512A1 (en) * 2001-06-20 2006-06-15 Tripp Matthew L Modulation of inflammation by hops fractions and derivatives
US20060127516A1 (en) * 2001-06-20 2006-06-15 Tripp Matthew L Modulation of inflammation by hops fractions and derivatives
US20090118373A1 (en) * 2001-06-20 2009-05-07 Tripp Matthew L Inhibition of COX-2 and/or 5-LOX activity by fractions isolated or derived from hops
US20040151792A1 (en) * 2001-06-20 2004-08-05 Tripp Matthew L. Compositions that treat or inhibit pathological conditions associated with inflammatory response
US7332185B2 (en) * 2001-06-20 2008-02-19 Metaproteomics, Llc Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US7195785B2 (en) * 2001-06-20 2007-03-27 Metaproteomics, Llc Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20050042317A1 (en) * 2001-06-20 2005-02-24 Babish John G Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20060193933A1 (en) * 2001-06-20 2006-08-31 Tripp Matthew L Modulation of inflammation by hops fractions and derivatives
US7270835B2 (en) * 2001-06-20 2007-09-18 Metaproteomics, Llc Compositions that treat or inhibit pathological conditions associated with inflammatory response
US20070184133A1 (en) * 2001-06-20 2007-08-09 Metaproteomics, Llc Compositions that treat or inhibit pathological conditions associated with inflammatory response
US20030113393A1 (en) * 2001-06-20 2003-06-19 Babish John G. Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20070020352A1 (en) * 2001-06-20 2007-01-25 Matthew Tripp Treatment modalities for autoimmune diseases
US20030008021A1 (en) * 2001-06-20 2003-01-09 Ashni Naturaceuticals, Inc. Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20060127511A1 (en) * 2001-06-20 2006-06-15 Tripp Matthew L Modulation of inflammation by hops fractions and derivatives
US20070172532A1 (en) * 2001-06-20 2007-07-26 Metaproteomics, Llc Complex Mixtures Exhibiting Selective Inhibition of Cyclooxygenase-2
US20070166418A1 (en) * 2001-06-20 2007-07-19 Metaproteomics, Llc Treatment modalities for autoimmune diseases
US7205151B2 (en) * 2001-06-20 2007-04-17 Metaproteomics, Llc Complex mixtures exhibiting selective inhibition of cyclooxygenase-2
US20040115290A1 (en) * 2001-06-20 2004-06-17 Tripp Matthew L. Modulation of inflammation by hops fractions and derivatives
US20030096027A1 (en) * 2001-10-26 2003-05-22 Babish John G. Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
US20050129791A1 (en) * 2001-10-26 2005-06-16 Babish John G. Curcuminoid compositions exhibiting synergistic inhibition of the expression and/or activity of cyclooxygenase-2
US20060233902A1 (en) * 2002-02-14 2006-10-19 Kirin Beer Kabushiki Kaisha Compositions and foods for improving lipid metabolism
US20030180402A1 (en) * 2002-03-22 2003-09-25 Unigen Pharmaceuticals, Inc. Isolation of a dual COX-2 and 5-lipoxygenase inhibitor from Acacia
US20060127513A1 (en) * 2002-10-21 2006-06-15 Tripp Matthew L Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US20060127514A1 (en) * 2002-10-21 2006-06-15 Tripp Matthew L Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US20070160692A1 (en) * 2002-10-21 2007-07-12 Tripp Matthew L Compositions that treat or inhibit pathological conditions associated with inflammatory response
US20060127517A1 (en) * 2002-10-21 2006-06-15 Tripp Matthew L Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US20060127515A1 (en) * 2002-10-21 2006-06-15 Tripp Matthew L Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US20040086580A1 (en) * 2002-10-21 2004-05-06 Tripp Matthew L. Synergistic compositions that treat or inhibit pathological conditions associated with inflammatory response
US20070003646A1 (en) * 2003-01-09 2007-01-04 Kuhrts Eric H Methods of administering anti-inflammatory cyclooxygenase-2 selective inhibitors
US20040137096A1 (en) * 2003-01-09 2004-07-15 Kuhrts Eric H. Anti-inflammatory cyclooxygenase-2 selective inhibitors
US20050192356A1 (en) * 2004-02-27 2005-09-01 Babish John G. Synergistic anti-inflammatory pharmaceutical compositions and methods of use
US20050191375A1 (en) * 2004-02-27 2005-09-01 Babish John G. Synergistic anti-inflammatory pharmaceutical compositions and related methods using curcuminoids or methylxanthines
US20070065456A1 (en) * 2005-09-20 2007-03-22 Woods Cindy J Nutritional supplements
US20070154576A1 (en) * 2005-12-09 2007-07-05 Tripp Matthew L Protein kinase modulation by hops and Acacia products
US20080127720A1 (en) * 2006-10-20 2008-06-05 Pauli Guido F Selection and rational development of solvent systems in counter-current chromatograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110218151A1 (en) * 2010-03-04 2011-09-08 Joar Opheim Substances for promoting healthy joint function comprising omega-3 polyunsaturated fatty acids or drivatives thereof, undenatured type ii collagen and, optionally, glucosamine sulfate

Also Published As

Publication number Publication date
NZ579340A (en) 2012-05-25
CA2679847A1 (en) 2008-09-25
CN101711161A (en) 2010-05-19
EP2626077A2 (en) 2013-08-14
JP2010522190A (en) 2010-07-01
AU2008229110A1 (en) 2008-09-25
EP2626077A3 (en) 2013-11-20
US20080242690A1 (en) 2008-10-02
MX2009010049A (en) 2010-03-04
EP2136827A4 (en) 2012-06-27
US8815306B2 (en) 2014-08-26
EP2136827A1 (en) 2009-12-30
WO2008115783A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US8815306B2 (en) Methods and compositions for promoting bone and joint health
US10966953B2 (en) Compositions comprising a cannabinoid and spilanthol
US8029831B2 (en) Formulations containing thymoquinone for urinary health
JP2020002145A (en) Compositions and methods for managing or improving bone disorders, cartilage disorders, or both
EP2596798B1 (en) Plectranthus amboinicus fraction having anti-arthritis activity
JP6036193B2 (en) Inflammasome activity regulator
US8609156B2 (en) Compositions and methods of treatment that include plant extracts
JP2007534747A5 (en)
JP2012140437A (en) Use of pregnane glycoside in treatment/management of obesity, obesity-related disorder, and other disorder
Zhang et al. Erythrina variegata extract exerts osteoprotective effects by suppression of the process of bone resorption
JP2018519361A (en) Formulations for the treatment of oral, throat and airway disorders
Joshi et al. Different chemo types of Gokhru (Tribulus terrestris): A herb used for improving physique and physical performance
KR20150010923A (en) Composition for prevention, improvement or treatment of osteoporosis comprising kirenol or extract of Sigesbeckia spp.
EP3159003A2 (en) Composition for enhancing bone growth, preventing bone resorption disorders and for joint health
US20240050510A1 (en) Combination therapy comprising uncaria for treating anxiety and depression
EP3888669A1 (en) Composition for preventing or treating metabolic bone diseases or menopausal symptoms
JP7271016B2 (en) Use of a composition containing CHP (cyclo-hyspro) and parathyroid hormone for the prevention, amelioration or treatment of bone loss diseases
Sharma et al. Effect of Citrus Limon (L.), Citrus Aurantium And Citrus Medica On Ethylene Glycol Induced Urolithiasis In Rats
Harfouch Antiviral Effects of Propolis Against SARS-COV 2. A Mini Review Article (TEP)
Srivastav et al. Pharmacology of Glycyrrhiza glabra (Mulhatti): The grandfather of herbs
Kiruthika et al. Clinical Evaluation of Meghasaanthi Chooranam in the treatment of Uthiravaathasuronitham (Rheumatoid Arthritis)-Single Case Study
CN116940343A (en) Supplement for arthritis and psoriasis
RO130615A2 (en) Lymphatic drainage phototherapy product
UA60645A (en) Herbal drug "vitastim"

Legal Events

Date Code Title Description
AS Assignment

Owner name: METAPROTEOMICS, LLC,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRIPP, MATTHEW L.;KONDA, VEERA;DESAI, ANU;AND OTHERS;SIGNING DATES FROM 20080420 TO 20080425;REEL/FRAME:023696/0885

AS Assignment

Owner name: BANK OF AMERICA, N.A., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:META PROTEOMICS, LLC;REEL/FRAME:024957/0394

Effective date: 20100831

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION