US20100101219A1 - Exhaust system for a vehicle - Google Patents

Exhaust system for a vehicle Download PDF

Info

Publication number
US20100101219A1
US20100101219A1 US12/607,278 US60727809A US2010101219A1 US 20100101219 A1 US20100101219 A1 US 20100101219A1 US 60727809 A US60727809 A US 60727809A US 2010101219 A1 US2010101219 A1 US 2010101219A1
Authority
US
United States
Prior art keywords
exhaust system
swirling element
exhaust
insert
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/607,278
Inventor
Christoph Noller
Klaus Regenold
Bernhard Uhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Emissions Control Technologies Germany GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to EMCON TECHNOLOGIES GERMANY (AUGSBURG) GMBH reassignment EMCON TECHNOLOGIES GERMANY (AUGSBURG) GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOLLER, CHRISTOPH, REGENOLD, KLAUS, UHL, BERNHARD
Publication of US20100101219A1 publication Critical patent/US20100101219A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431972Mounted on an axial support member, e.g. a rod or bar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/02Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate silencers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431974Support members, e.g. tubular collars, with projecting baffles fitted inside the mixing tube or adjacent to the inner wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust system, in particular for a vehicle with a diesel engine.
  • Such exhaust systems typically include a first insert through which exhaust gas flows, a second insert through which exhaust gas flows, and which is arranged downstream thereof in the flow direction, and an injection device arranged between the inserts for injecting a fluid.
  • the inserts are filter units which are usually a block of ceramic material allowing through flow of exhaust gas.
  • the insert can merely provide a filter function and/or have catalytic properties.
  • particulate filters are built into the exhaust systems of vehicles for retaining the particles contained in the exhaust gas.
  • the filter must be regenerated from time to time. This is effected by combusting the particles accumulated on the filter surface by the addition of heat.
  • an oxidizable liquid for example, is introduced into the exhaust gas flow upstream of the particulate filter, the liquid reacting with the residual oxygen contained in the exhaust gas.
  • the combustion reaction must proceed distributed as uniformly as possible over the entire cross-section of the exhaust pipe.
  • the present invention provides an exhaust system, in particular for a vehicle with a diesel engine, including a first insert through which exhaust gas flows, a second insert through which exhaust gas flows, and which is arranged downstream thereof in the flow direction, and an injection device arranged between the first and second inserts for injecting a fluid.
  • a swirling element is provided in the flow path of the exhaust gas downstream of the first insert in the flow direction. In the swirl produced by the swirling element, the fluid introduced is mixed more homogeneously with the exhaust gas stream. This results in a more uniform distribution of the fluid over the entire flow cross-section, so that a better development of heat, and thus a more effective regeneration of the subsequent second insert are achieved.
  • the swirling element includes recesses through which the exhaust gas flows. This allows an effective control of the exhaust gas flow and, hence, a good deflection or a good swirling of the exhaust gas flow.
  • the swirling element ideally extends across the entire cross-section of the exhaust pipe.
  • a particularly uniform distribution of the fluid is attained in that the swirling element produces swirls over the entire cross-section of the exhaust pipe.
  • the swirling element includes deflector plates which are inclined in relation to the flow direction. They are arranged in the exhaust gas stream and deflect the exhaust gas stream or parts thereof, so that an eddy is produced downstream of the swirling element.
  • deflector plates The angle at which these deflector plates are disposed with respect to the exhaust gas flow has great influence on the effectiveness of the swirling element. It is therefore of advantage for the deflector plates to include at least two portions which are inclined at different angles in relation to the flow direction.
  • the deflector plates are inclined at an angle of at least 30° in relation to the flow direction.
  • the deflector elements may, for example, be arranged radially and distributed evenly over the entire cross-section.
  • the deflector elements are more particularly arranged similarly to a stator of a turbine and generate an eddy downstream of the swirling element in which the fluid introduced can be effectively distributed over the entire cross-section of the exhaust pipe.
  • the radially arranged deflector elements may, for example, enclose an opening in the middle of the swirling element, through which the exhaust gas stream can flow.
  • a baffle plate disposed perpendicularly to the flow direction, may be provided in front of this opening.
  • the baffle plate directs the exhaust gas stream onto the deflector elements.
  • the deflector elements may, however, also be arranged parallel to each other, so that as a whole they constitute a grid structure by which the exhaust gas stream is diverted.
  • the cross-sectional area of the exhaust pipe, through which exhaust gas flows tapers in a portion located directly upstream of the swirling element in the flow direction, and/or widens in a portion located directly downstream of the swirling element in the flow direction.
  • a tapering of the cross-sectional area upstream of the swirling element causes an increase in the approach velocity, so that the exhaust gas stream impinges on the swirling element at a higher velocity.
  • the reduced cross-section results in a more favorable ratio of the pipe cross-section to the vaporizer.
  • the widening of the cross-sectional area downstream of the swirling element causes the exhaust gas stream to be decelerated, so that the fluid is allowed to mix with the exhaust gas stream over a longer period of time.
  • the inserts may be particulate filters, for example, more particularly diesel particulate filters. Owing to the swirling element, a fluid introduced can combust homogeneously, so that a uniform regeneration of the entire filter surface is achieved.
  • the first insert is, e.g., a pre-filter and the second insert may be a diesel particulate filter with a diesel oxidation catalytic converter. Because of such a diesel oxidation catalytic converter, the exhaust gas temperature may be further increased, so that the subsequent filter may be regenerated more effectively.
  • the swirling element arranged upstream swirls the exhaust gas stream with the fluid contained therein, so that the entire surface area of the diesel oxidation catalytic converter can be used.
  • the injection device is part of a regeneration device.
  • a regeneration device an oxidizable liquid is introduced into the exhaust gas stream which, based on an exothermic reaction with the oxygen of the exhaust gas, leads to an increase in temperature by which a particulate filter arranged downstream can be regenerated.
  • the injection device includes a fuel vaporizer, which vaporizes the fuel before it is injected into the exhaust pipe, so that the fuel mixes well with the exhaust gas stream and reacts more readily with the residual oxygen in the exhaust gas.
  • Such an injection device may be arranged upstream or downstream of the swirling element.
  • the fluid is either introduced into the exhaust gas stream prior to the swirling and is mixed with the exhaust gas stream by the swirling element, or the fluid is introduced downstream of the swirling element into the eddy already generated.
  • the injection device may also be integrated in the swirling element, for example, for reasons of space.
  • the first insert and the second insert along with the swirling element are arranged in a shared housing. This results in a very compact design of the exhaust system.
  • the swirling element may be a static mixer, i.e. the swirling element does not have any moving parts, and no external control of, for example, the deflector plates is required.
  • the swirling element is a prefabricated component that is inserted in the exhaust pipe.
  • FIG. 1 shows a perspective partial sectional view of an exhaust system according to the invention
  • FIG. 2 shows a perspective sectional view in a longitudinal section taken through the exhaust system of FIG. 1 ;
  • FIG. 3 shows a further sectional view of the exhaust system of FIG. 1 ;
  • FIG. 4 shows a partial sectional view of a further embodiment of an exhaust system according to the invention.
  • FIG. 5 shows a third embodiment of an exhaust system according to the invention
  • FIG. 6 shows a fourth embodiment of an exhaust system according to the invention.
  • FIG. 7 shows a swirling element for the exhaust system from FIG. 1 ;
  • FIG. 8 shows a second embodiment of a swirling element
  • FIG. 9 shows a third embodiment of a swirling element
  • FIG. 10 shows a fourth embodiment of a swirling element
  • FIG. 11 shows a sectional view of an exhaust system according to the invention with the swirling element from FIG. 10 ;
  • FIG. 12 shows a fifth embodiment of a swirling element.
  • the exhaust system 10 shown in FIG. 1 of a diesel vehicle has a housing 12 including a first housing part 14 and a second housing part 16 , which are connected by a flange 18 , 20 .
  • the first housing part 14 surrounds a first insert 22 , here a pre-filter;
  • the second housing part 16 surrounds a second insert 24 , which in this case is a diesel particulate filter with a diesel oxidation catalytic converter.
  • the first and second inserts 22 , 24 are mounted in the housing 12 at a distance from each other, so that a cavity 26 FIG. 3 ) is provided between them.
  • an injection device 28 Provided on the housing 12 between the first insert 22 and the second insert 24 is an injection device 28 through which a liquid or vapor may be introduced into the cavity 26 .
  • the exhaust gas flows through the exhaust system 10 in the flow direction A and is pre-filtered by the first insert 22 before the exhaust gas flows through the second insert 24 .
  • the fluid introduced into the cavity 26 is an oxidizable liquid, in this case a fuel, which combusts with the residual oxygen present in the exhaust gas of a diesel engine in an exothermic reaction at the oxidation catalytic converter.
  • a particulate filter disposed downstream in the flow direction A can be regenerated, i.e. the residual particles accumulated in this particulate filter are combusted in a controlled manner by the heat generated. This process is assisted by the diesel oxidation filter arranged downstream of the injection device 28 , since the exhaust gas temperature is further increased by this filter.
  • a swirling element 30 is arranged in the exhaust gas stream between the injection device 28 and the second insert 24 .
  • the swirling element extends across an entire cross-section of the exhaust system 10 .
  • the swirling element 30 has a circular central opening 32 and a deflector element 34 that is arranged in the middle of the circular central opening 32 .
  • the exhaust gas stream enriched with the fluid flows through the circular central opening 32 and is swirled downstream thereof. This results in an improved mixing of the exhaust gas stream with the fluid, so that the fluid impinges in an evenly distributed state on the second insert 24 located downstream thereof in the flow direction A.
  • FIGS. 4 to 6 show further embodiments of an exhaust system 10 according to the invention.
  • the exhaust systems 10 have essentially the same components as the exhaust system 10 from FIG. 1 , so that the same reference numbers are used for like components.
  • the exhaust system 10 in FIGS. 4 to 6 includes an additional intermediate portion 36 downstream of the swirling element 30 in the flow direction.
  • This intermediate portion provides an additional cavity 38 downstream of the swirling element 30 , in which the fluid can be better mixed with the fuel.
  • the intermediate portion 36 of the exhaust system 10 shown in FIG. 5 has a markedly reduced cross-section.
  • the cross-section of the exhaust pipe is reduced immediately downstream of the swirling element 30 in the flow direction A and is widened again immediately upstream of the second insert 34 . This leads to an increase occurring in the flow velocity of the exhaust gas stream downstream of the swirling element 30 , as a result of which a better swirling can be achieved.
  • the exhaust system 10 shown in FIG. 6 has a second intermediate portion 40 disposed upstream of the swirling element 30 , which is conically tapered and opens directly into the swirling element 30 .
  • the swirling element 30 has a substantially smaller cross-sectional flow area than that of the first and second inserts 22 , 24 .
  • the intermediate portion 36 downstream of the swirling element 30 is conically widened. Owing to the reduction in the cross-section through which exhaust gas flows, an increase in the flow velocity occurs upstream of and in the swirling element 30 . The exhaust gas stream impinges upon the swirling element at a higher velocity. Upstream of the swirling element 30 , the cross-section of the exhaust system 10 conically widens in a portion 40 , so that a deceleration of the flow velocity is brought about here.
  • the injection device 28 is arranged upstream of the swirling element 30 , so that the liquid or the vapor is introduced into the exhaust gas stream prior to the swirling.
  • injection device 28 could also be arranged downstream of the swirling element 30 .
  • Embodiments in which the injection device 28 is integrated in the swirling element 30 are also conceivable.
  • the injection device 28 is part of a regeneration device and includes a fuel vaporizer by which fuel is introduced into the exhaust system 10 in a vaporous condition. But other oxidizable liquids may also be introduced into the exhaust system 10 . In particular, the liquid need not be vaporized before it is introduced into the exhaust pipe.
  • FIGS. 7 to 12 each show detail views of a swirling element 30 as inserted.
  • the swirling elements 30 each extend across the entire cross-section of the exhaust pipe and include at least one opening 32 through which the exhaust gas stream can flow. But it is also possible for the swirling element 30 to extend only across part of the cross-section. In particular, the swirling element 30 need not have an opening 32 , but may guide the exhaust gas stream past the swirling element 30 , for example.
  • the swirling element 30 in FIGS. 7 to 10 each includes a plurality of radially arranged, uniformly distributed deflector elements 34 in the shape of guide blades.
  • the deflector elements 34 in FIGS. 7 to 9 each have a plurality of portions 42 , 44 , which are inclined at different angles in relation to the flow direction A.
  • the second portion 44 of the deflector element 34 is arranged downstream of the first portion 42 in the flow direction A here and has a greater angle in relation to the exhaust gas flow.
  • the number of the deflector elements 34 and the shape and arrangement thereof in the swirling element 30 may be varied as desired.
  • the number of the portions 42 , 44 of a deflector element, as well as the angle thereof in relation to the exhaust gas stream, may be altered as desired.
  • the slope of a deflector element 34 may also be altered continuously, for example, similar to a turbine blade.
  • a baffle plate 46 is provided in the middle of each swirling element 30 .
  • the baffle plate 46 is disposed perpendicularly to the exhaust gas flow. This baffle plate 46 causes the exhaust gas stream to be directed more effectively onto the deflector elements 34 .
  • embodiments without a baffle plate 46 are also conceivable.
  • the swirling element 30 shown here likewise includes a plurality of radially arranged, blade-type deflector elements 34 .
  • the angle of the deflector element 34 continuously increases as the flow proceeds.
  • the outer casing of the swirling element 30 is designed to be conically tapered in the region of the deflector elements 34 . This results in a simultaneous increase in the flow velocity while the exhaust gas stream is deflected by the deflector elements 34 .
  • the outer casing of the swirling element 30 is conically widened here, so that a deceleration of the flow velocity is brought about again.
  • the injection device 28 is arranged downstream of the swirling element 30 which constitutes a portion of the exhaust pipe.
  • FIG. 12 A further embodiment of a swirling element 30 is apparent from FIG. 12 .
  • the deflector elements 34 here are arranged parallel to each other at the same angle relative to the exhaust gas stream and form a grid together with metal reinforcement sheets 48 . While in this case the deflector elements 34 all have the same angle in relation to the exhaust gas stream, it is also conceivable that the deflector elements 34 are arranged at different angles or include a plurality of portions 42 , 44 of different inclinations.

Abstract

An exhaust system, in particular for a vehicle with a diesel engine, has a first insert through which exhaust gas flows, a second insert through which exhaust gas flows and which is arranged downstream of the first insert in the flow direction, and an injection device arranged between the first and second inserts for injecting a fluid. A swirling element is provided in the flow path of the exhaust gas downstream of the first insert in the flow direction.

Description

    RELATED APPLICATION
  • This application claims priority to German application 10 2008 053 669.5, which was filed Oct. 29, 2008.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to an exhaust system, in particular for a vehicle with a diesel engine.
  • Such exhaust systems typically include a first insert through which exhaust gas flows, a second insert through which exhaust gas flows, and which is arranged downstream thereof in the flow direction, and an injection device arranged between the inserts for injecting a fluid. The inserts are filter units which are usually a block of ceramic material allowing through flow of exhaust gas. The insert can merely provide a filter function and/or have catalytic properties.
  • To comply with specifications as provided by environmental law, the amount of the particulate matter contained in the exhaust gas of a diesel engine needs to be reduced. To this end, particulate filters are built into the exhaust systems of vehicles for retaining the particles contained in the exhaust gas. To prevent an impairment of the function of the filter and, hence, of the exhaust system by the particles accumulating on the filter surface, the filter must be regenerated from time to time. This is effected by combusting the particles accumulated on the filter surface by the addition of heat.
  • To generate the temperatures necessary for the combustion, an oxidizable liquid, for example, is introduced into the exhaust gas flow upstream of the particulate filter, the liquid reacting with the residual oxygen contained in the exhaust gas. To achieve a uniform regeneration of the particulate filter, the combustion reaction must proceed distributed as uniformly as possible over the entire cross-section of the exhaust pipe.
  • It is the object of the present invention to provide an exhaust system which allows a uniform development of heat and thus a uniform combustion of the particles.
  • SUMMARY OF THE INVENTION
  • The present invention provides an exhaust system, in particular for a vehicle with a diesel engine, including a first insert through which exhaust gas flows, a second insert through which exhaust gas flows, and which is arranged downstream thereof in the flow direction, and an injection device arranged between the first and second inserts for injecting a fluid. A swirling element is provided in the flow path of the exhaust gas downstream of the first insert in the flow direction. In the swirl produced by the swirling element, the fluid introduced is mixed more homogeneously with the exhaust gas stream. This results in a more uniform distribution of the fluid over the entire flow cross-section, so that a better development of heat, and thus a more effective regeneration of the subsequent second insert are achieved.
  • In one example, the swirling element includes recesses through which the exhaust gas flows. This allows an effective control of the exhaust gas flow and, hence, a good deflection or a good swirling of the exhaust gas flow.
  • To influence the entire exhaust gas flow and to reach a complete mixing of the exhaust gas and the fluid, the swirling element ideally extends across the entire cross-section of the exhaust pipe.
  • A particularly uniform distribution of the fluid is attained in that the swirling element produces swirls over the entire cross-section of the exhaust pipe.
  • In one example, the swirling element includes deflector plates which are inclined in relation to the flow direction. They are arranged in the exhaust gas stream and deflect the exhaust gas stream or parts thereof, so that an eddy is produced downstream of the swirling element.
  • The angle at which these deflector plates are disposed with respect to the exhaust gas flow has great influence on the effectiveness of the swirling element. It is therefore of advantage for the deflector plates to include at least two portions which are inclined at different angles in relation to the flow direction.
  • It is especially advantageous if the angle of inclination of the portions increases in the flow direction. This allows the exhaust gas stream to be influenced very effectively.
  • Ideally, the deflector plates are inclined at an angle of at least 30° in relation to the flow direction.
  • The deflector elements may, for example, be arranged radially and distributed evenly over the entire cross-section.
  • The deflector elements are more particularly arranged similarly to a stator of a turbine and generate an eddy downstream of the swirling element in which the fluid introduced can be effectively distributed over the entire cross-section of the exhaust pipe.
  • The radially arranged deflector elements may, for example, enclose an opening in the middle of the swirling element, through which the exhaust gas stream can flow.
  • A baffle plate, disposed perpendicularly to the flow direction, may be provided in front of this opening. The baffle plate directs the exhaust gas stream onto the deflector elements.
  • The deflector elements may, however, also be arranged parallel to each other, so that as a whole they constitute a grid structure by which the exhaust gas stream is diverted.
  • To enhance the effect of the swirling element, the cross-sectional area of the exhaust pipe, through which exhaust gas flows, tapers in a portion located directly upstream of the swirling element in the flow direction, and/or widens in a portion located directly downstream of the swirling element in the flow direction. A tapering of the cross-sectional area upstream of the swirling element causes an increase in the approach velocity, so that the exhaust gas stream impinges on the swirling element at a higher velocity. In addition, the reduced cross-section results in a more favorable ratio of the pipe cross-section to the vaporizer. The widening of the cross-sectional area downstream of the swirling element, on the other hand, causes the exhaust gas stream to be decelerated, so that the fluid is allowed to mix with the exhaust gas stream over a longer period of time.
  • The inserts may be particulate filters, for example, more particularly diesel particulate filters. Owing to the swirling element, a fluid introduced can combust homogeneously, so that a uniform regeneration of the entire filter surface is achieved.
  • The first insert is, e.g., a pre-filter and the second insert may be a diesel particulate filter with a diesel oxidation catalytic converter. Because of such a diesel oxidation catalytic converter, the exhaust gas temperature may be further increased, so that the subsequent filter may be regenerated more effectively. The swirling element arranged upstream swirls the exhaust gas stream with the fluid contained therein, so that the entire surface area of the diesel oxidation catalytic converter can be used.
  • Preferably, the injection device is part of a regeneration device. By using such a regeneration device, an oxidizable liquid is introduced into the exhaust gas stream which, based on an exothermic reaction with the oxygen of the exhaust gas, leads to an increase in temperature by which a particulate filter arranged downstream can be regenerated.
  • For this purpose, the injection device includes a fuel vaporizer, which vaporizes the fuel before it is injected into the exhaust pipe, so that the fuel mixes well with the exhaust gas stream and reacts more readily with the residual oxygen in the exhaust gas.
  • Such an injection device may be arranged upstream or downstream of the swirling element. In this way, the fluid is either introduced into the exhaust gas stream prior to the swirling and is mixed with the exhaust gas stream by the swirling element, or the fluid is introduced downstream of the swirling element into the eddy already generated.
  • The injection device may also be integrated in the swirling element, for example, for reasons of space.
  • In one example, the first insert and the second insert along with the swirling element are arranged in a shared housing. This results in a very compact design of the exhaust system.
  • The swirling element may be a static mixer, i.e. the swirling element does not have any moving parts, and no external control of, for example, the deflector plates is required.
  • The swirling element is a prefabricated component that is inserted in the exhaust pipe.
  • These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a perspective partial sectional view of an exhaust system according to the invention;
  • FIG. 2 shows a perspective sectional view in a longitudinal section taken through the exhaust system of FIG. 1;
  • FIG. 3 shows a further sectional view of the exhaust system of FIG. 1;
  • FIG. 4 shows a partial sectional view of a further embodiment of an exhaust system according to the invention;
  • FIG. 5 shows a third embodiment of an exhaust system according to the invention;
  • FIG. 6 shows a fourth embodiment of an exhaust system according to the invention;
  • FIG. 7 shows a swirling element for the exhaust system from FIG. 1;
  • FIG. 8 shows a second embodiment of a swirling element;
  • FIG. 9 shows a third embodiment of a swirling element;
  • FIG. 10 shows a fourth embodiment of a swirling element;
  • FIG. 11 shows a sectional view of an exhaust system according to the invention with the swirling element from FIG. 10; and
  • FIG. 12 shows a fifth embodiment of a swirling element.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The exhaust system 10 shown in FIG. 1 of a diesel vehicle has a housing 12 including a first housing part 14 and a second housing part 16, which are connected by a flange 18, 20. As shown in FIG. 2, the first housing part 14 surrounds a first insert 22, here a pre-filter; the second housing part 16 surrounds a second insert 24, which in this case is a diesel particulate filter with a diesel oxidation catalytic converter. The first and second inserts 22, 24 are mounted in the housing 12 at a distance from each other, so that a cavity 26 FIG. 3) is provided between them. Provided on the housing 12 between the first insert 22 and the second insert 24 is an injection device 28 through which a liquid or vapor may be introduced into the cavity 26. The exhaust gas flows through the exhaust system 10 in the flow direction A and is pre-filtered by the first insert 22 before the exhaust gas flows through the second insert 24.
  • The fluid introduced into the cavity 26 is an oxidizable liquid, in this case a fuel, which combusts with the residual oxygen present in the exhaust gas of a diesel engine in an exothermic reaction at the oxidation catalytic converter. Owing to the heat produced in the process, a particulate filter disposed downstream in the flow direction A can be regenerated, i.e. the residual particles accumulated in this particulate filter are combusted in a controlled manner by the heat generated. This process is assisted by the diesel oxidation filter arranged downstream of the injection device 28, since the exhaust gas temperature is further increased by this filter.
  • A swirling element 30 is arranged in the exhaust gas stream between the injection device 28 and the second insert 24. The swirling element extends across an entire cross-section of the exhaust system 10. As can be seen in FIG. 2, the swirling element 30 has a circular central opening 32 and a deflector element 34 that is arranged in the middle of the circular central opening 32.
  • The exhaust gas stream enriched with the fluid flows through the circular central opening 32 and is swirled downstream thereof. This results in an improved mixing of the exhaust gas stream with the fluid, so that the fluid impinges in an evenly distributed state on the second insert 24 located downstream thereof in the flow direction A.
  • FIGS. 4 to 6 show further embodiments of an exhaust system 10 according to the invention. The exhaust systems 10 have essentially the same components as the exhaust system 10 from FIG. 1, so that the same reference numbers are used for like components.
  • The exhaust system 10 in FIGS. 4 to 6 includes an additional intermediate portion 36 downstream of the swirling element 30 in the flow direction. This intermediate portion provides an additional cavity 38 downstream of the swirling element 30, in which the fluid can be better mixed with the fuel.
  • Compared with the first and second housing parts 14 and 16, the intermediate portion 36 of the exhaust system 10 shown in FIG. 5 has a markedly reduced cross-section. The cross-section of the exhaust pipe is reduced immediately downstream of the swirling element 30 in the flow direction A and is widened again immediately upstream of the second insert 34. This leads to an increase occurring in the flow velocity of the exhaust gas stream downstream of the swirling element 30, as a result of which a better swirling can be achieved.
  • In addition to the intermediate portion 36 arranged downstream of the swirling element 30, the exhaust system 10 shown in FIG. 6 has a second intermediate portion 40 disposed upstream of the swirling element 30, which is conically tapered and opens directly into the swirling element 30. The swirling element 30 has a substantially smaller cross-sectional flow area than that of the first and second inserts 22, 24. The intermediate portion 36 downstream of the swirling element 30 is conically widened. Owing to the reduction in the cross-section through which exhaust gas flows, an increase in the flow velocity occurs upstream of and in the swirling element 30. The exhaust gas stream impinges upon the swirling element at a higher velocity. Upstream of the swirling element 30, the cross-section of the exhaust system 10 conically widens in a portion 40, so that a deceleration of the flow velocity is brought about here.
  • In each of the embodiments shown, the injection device 28 is arranged upstream of the swirling element 30, so that the liquid or the vapor is introduced into the exhaust gas stream prior to the swirling.
  • However, the injection device 28 could also be arranged downstream of the swirling element 30.
  • Embodiments in which the injection device 28 is integrated in the swirling element 30 are also conceivable.
  • The injection device 28 is part of a regeneration device and includes a fuel vaporizer by which fuel is introduced into the exhaust system 10 in a vaporous condition. But other oxidizable liquids may also be introduced into the exhaust system 10. In particular, the liquid need not be vaporized before it is introduced into the exhaust pipe.
  • FIGS. 7 to 12 each show detail views of a swirling element 30 as inserted. The swirling elements 30 each extend across the entire cross-section of the exhaust pipe and include at least one opening 32 through which the exhaust gas stream can flow. But it is also possible for the swirling element 30 to extend only across part of the cross-section. In particular, the swirling element 30 need not have an opening 32, but may guide the exhaust gas stream past the swirling element 30, for example.
  • The swirling element 30 in FIGS. 7 to 10 each includes a plurality of radially arranged, uniformly distributed deflector elements 34 in the shape of guide blades. The deflector elements 34 in FIGS. 7 to 9 each have a plurality of portions 42, 44, which are inclined at different angles in relation to the flow direction A. The second portion 44 of the deflector element 34 is arranged downstream of the first portion 42 in the flow direction A here and has a greater angle in relation to the exhaust gas flow.
  • The number of the deflector elements 34 and the shape and arrangement thereof in the swirling element 30 may be varied as desired. In particular, the number of the portions 42, 44 of a deflector element, as well as the angle thereof in relation to the exhaust gas stream, may be altered as desired. The slope of a deflector element 34 may also be altered continuously, for example, similar to a turbine blade.
  • A baffle plate 46 is provided in the middle of each swirling element 30. The baffle plate 46 is disposed perpendicularly to the exhaust gas flow. This baffle plate 46 causes the exhaust gas stream to be directed more effectively onto the deflector elements 34. However, embodiments without a baffle plate 46 are also conceivable.
  • Such an embodiment is shown, for example, in FIG. 10 and FIG. 11. The swirling element 30 shown here likewise includes a plurality of radially arranged, blade-type deflector elements 34. The angle of the deflector element 34 continuously increases as the flow proceeds.
  • In addition, the outer casing of the swirling element 30 is designed to be conically tapered in the region of the deflector elements 34. This results in a simultaneous increase in the flow velocity while the exhaust gas stream is deflected by the deflector elements 34.
  • In a region downstream of the deflector elements 34, the outer casing of the swirling element 30 is conically widened here, so that a deceleration of the flow velocity is brought about again. As can be seen in FIG. 11, in this embodiment the injection device 28 is arranged downstream of the swirling element 30 which constitutes a portion of the exhaust pipe.
  • A further embodiment of a swirling element 30 is apparent from FIG. 12. The deflector elements 34 here are arranged parallel to each other at the same angle relative to the exhaust gas stream and form a grid together with metal reinforcement sheets 48. While in this case the deflector elements 34 all have the same angle in relation to the exhaust gas stream, it is also conceivable that the deflector elements 34 are arranged at different angles or include a plurality of portions 42, 44 of different inclinations.
  • Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims (23)

1. An exhaust system, in particular for a vehicle with a diesel engine, comprising:
a first insert through which exhaust gas flows;
a second insert through which exhaust gas flows and which is arranged downstream of the first insert in a flow direction;
an injection device arranged between the first and the second inserts for injecting a fluid; and
a swirling element arranged downstream of the first insert in a flow path of the exhaust gas.
2. The exhaust system according to claim 1, wherein the swirling element includes recesses through which the exhaust gas flows.
3. The exhaust system according to claim 1, wherein the swirling element extends across an entire cross-section of an exhaust pipe.
4. The exhaust system according to claim 1, wherein the swirling element produces swirls over an entire cross-section of an exhaust pipe.
5. The exhaust system according to claim 1, wherein the swirling element includes deflector elements which are inclined in relation to the flow direction.
6. The exhaust system according to claim 5, wherein the deflector elements include at least two portions which are inclined at different angles of inclination in relation to the flow direction.
7. The exhaust system according to claim 6, wherein the angle of inclination of the portions increases in the flow direction.
8. The exhaust system according to claim 5, wherein the deflector elements are inclined at an angle of at least 30° in relation to the flow direction.
9. The exhaust system according to claim 5, wherein the deflector elements extend in a radial direction and are evenly distributed over an entire cross-section of an exhaust pipe.
10. The exhaust system according to claim 9, wherein the deflector elements are configured in the shape of turbine blades.
11. The exhaust system according to claim 9, wherein radially arranged deflector elements enclose an opening.
12. The exhaust system according to claim 11, including a baffle plate disposed perpendicularly to the flow direction and in front of the opening.
13. The exhaust system according to claim 5, wherein the deflector elements are arranged parallel to each other.
14. The exhaust system according to claim 1, wherein a cross-sectional area of an exhaust pipe through which exhaust gas flows, tapers in a portion located directly upstream of the swirling element in the flow direction and/or widens in a portion located directly downstream of the swirling element in the flow direction.
15. The exhaust system according to claim 1, wherein the first and second inserts are particulate filters and/or catalytic converters.
16. The exhaust system according to claim 1, wherein the first insert is a pre-filter and the second insert includes a diesel oxidation catalytic converter and/or particulate filter.
17. The exhaust system according to claim 1, wherein the injection device is part of a regeneration device.
18. The exhaust system according to claim 17, wherein the injection device includes a fuel vaporizer.
19. The exhaust system according to claim 1, wherein the injection device is arranged upstream or downstream of the swirling element.
20. The exhaust system according to claim 1, wherein the injection device is integrated in the swirling element.
21. The exhaust system according to claim 1, wherein the first insert and the second insert along with the swirling element are arranged in a shared housing.
22. The exhaust system according to claim 1, wherein the swirling element is a static mixer.
23. The exhaust system according to claim 1, wherein the swirling element is a prefabricated component that is inserted in an exhaust pipe.
US12/607,278 2008-10-29 2009-10-28 Exhaust system for a vehicle Abandoned US20100101219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008053669A DE102008053669A1 (en) 2008-10-29 2008-10-29 Exhaust system for a vehicle
DE102008053669.5 2008-10-29

Publications (1)

Publication Number Publication Date
US20100101219A1 true US20100101219A1 (en) 2010-04-29

Family

ID=42062915

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/607,278 Abandoned US20100101219A1 (en) 2008-10-29 2009-10-28 Exhaust system for a vehicle

Country Status (2)

Country Link
US (1) US20100101219A1 (en)
DE (1) DE102008053669A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110167808A1 (en) * 2010-01-14 2011-07-14 Kubota Corporation Engine with exhaust gas treatment apparatus
EP2474721A1 (en) * 2011-01-11 2012-07-11 Etablissements CAILLAU Connection device between tubes and clamping system including such connection device
DE102012224198A1 (en) * 2012-12-21 2014-06-26 Friedrich Boysen Gmbh & Co. Kg Arrangement for introducing additive into gas stream in exhaust system, has mixer blades, which are arranged and designed such that together they form opaque region, via which passage of droplets of additive is prevented by mixing device
KR20170083559A (en) * 2014-12-04 2017-07-18 파워셀 스웨덴 에이비 Carbon monoxide oxidation device
US10352220B2 (en) * 2014-05-30 2019-07-16 Futaba Industrial Co., Ltd. Exhaust gas stirring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2865861B2 (en) 2013-10-22 2019-05-15 Eberspächer Exhaust Technology GmbH & Co. KG Catalyst assembly with injection section
DE102015209712B4 (en) * 2015-05-27 2023-11-02 Bayerische Motoren Werke Aktiengesellschaft Dosing system for selective catalytic reduction, preferably in a motor vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137694A1 (en) * 2005-06-22 2006-12-28 Korea Institute Of Machinery And Materials Burner for regeneration of diesel engine particulate filter and diesel engine particulate filter having the same
US20070101703A1 (en) * 2004-07-16 2007-05-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US20080034739A1 (en) * 2004-09-17 2008-02-14 Marco Ranalli Exhaust System of a Motor Vehicle with a Diesel Engine
US20080087013A1 (en) * 2004-01-13 2008-04-17 Crawley Wilbur H Swirl-Stabilized Burner for Thermal Management of Exhaust System and Associated Method
US20080250776A1 (en) * 2007-04-16 2008-10-16 Gm Global Technology Operations, Inc. Mixing Apparatus for an Exhaust After-Treatment System
US20090000287A1 (en) * 2007-05-15 2009-01-01 Jared Dean Blaisdell Exhaust Gas Flow Device
US20090266064A1 (en) * 2008-04-25 2009-10-29 Tenneco Automotive Operating Company Inc. Exhaust gas additive/treatment system and mixer for use therein
US20100077742A1 (en) * 2008-09-30 2010-04-01 Gm Global Technology Operations Flow diffuser for an exhaust system
US20100107617A1 (en) * 2006-11-22 2010-05-06 Rolf Kaiser Mixing element and an exhaust system for an internal combustion engine
US20100218490A1 (en) * 2007-02-28 2010-09-02 Emcon Technologies Germany (Augsburg) Gmbh Static mixing element and method of producing a static mixing element
US20110162353A1 (en) * 2008-09-19 2011-07-07 Renault Trucks Mixing device in an exhaust gas pipe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087013A1 (en) * 2004-01-13 2008-04-17 Crawley Wilbur H Swirl-Stabilized Burner for Thermal Management of Exhaust System and Associated Method
US20070101703A1 (en) * 2004-07-16 2007-05-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US20080034739A1 (en) * 2004-09-17 2008-02-14 Marco Ranalli Exhaust System of a Motor Vehicle with a Diesel Engine
WO2006137694A1 (en) * 2005-06-22 2006-12-28 Korea Institute Of Machinery And Materials Burner for regeneration of diesel engine particulate filter and diesel engine particulate filter having the same
US20100077732A1 (en) * 2005-06-22 2010-04-01 Korea Institute Of Machinery And Materials Burner for regeneration of diesel engine particulate filter and diesel engine particulate filter having the same
US20100107617A1 (en) * 2006-11-22 2010-05-06 Rolf Kaiser Mixing element and an exhaust system for an internal combustion engine
US20100218490A1 (en) * 2007-02-28 2010-09-02 Emcon Technologies Germany (Augsburg) Gmbh Static mixing element and method of producing a static mixing element
US20080250776A1 (en) * 2007-04-16 2008-10-16 Gm Global Technology Operations, Inc. Mixing Apparatus for an Exhaust After-Treatment System
US20090000287A1 (en) * 2007-05-15 2009-01-01 Jared Dean Blaisdell Exhaust Gas Flow Device
US20090266064A1 (en) * 2008-04-25 2009-10-29 Tenneco Automotive Operating Company Inc. Exhaust gas additive/treatment system and mixer for use therein
US20110162353A1 (en) * 2008-09-19 2011-07-07 Renault Trucks Mixing device in an exhaust gas pipe
US20100077742A1 (en) * 2008-09-30 2010-04-01 Gm Global Technology Operations Flow diffuser for an exhaust system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110167808A1 (en) * 2010-01-14 2011-07-14 Kubota Corporation Engine with exhaust gas treatment apparatus
US8516807B2 (en) * 2010-01-14 2013-08-27 Kubota Corporation Engine with exhaust gas treatment apparatus
US8991162B2 (en) 2010-01-14 2015-03-31 Kubota Corporation Engine with exhaust gas treatment apparatus
EP2474721A1 (en) * 2011-01-11 2012-07-11 Etablissements CAILLAU Connection device between tubes and clamping system including such connection device
DE102012224198A1 (en) * 2012-12-21 2014-06-26 Friedrich Boysen Gmbh & Co. Kg Arrangement for introducing additive into gas stream in exhaust system, has mixer blades, which are arranged and designed such that together they form opaque region, via which passage of droplets of additive is prevented by mixing device
DE102012224198B4 (en) 2012-12-21 2023-07-06 Friedrich Boysen Gmbh & Co. Kg Arrangement for introducing an additive into a gas stream and exhaust system
US10352220B2 (en) * 2014-05-30 2019-07-16 Futaba Industrial Co., Ltd. Exhaust gas stirring device
KR20170083559A (en) * 2014-12-04 2017-07-18 파워셀 스웨덴 에이비 Carbon monoxide oxidation device
CN107107009A (en) * 2014-12-04 2017-08-29 瑞典电池公司 Oxidation of Carbon Monoxide device
JP2018504348A (en) * 2014-12-04 2018-02-15 パワーセル スウェーデン アーベー Carbon monoxide oxidation equipment
KR101953278B1 (en) * 2014-12-04 2019-02-28 파워셀 스웨덴 에이비 Carbon monoxide oxidation device
US10464027B2 (en) 2014-12-04 2019-11-05 Powercell Sweden Ab Carbon monoxide oxidation device

Also Published As

Publication number Publication date
DE102008053669A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US20100101219A1 (en) Exhaust system for a vehicle
US10408110B2 (en) Reductant decomposition reactor chamber
US10215076B2 (en) Mixer
US9995193B2 (en) Mixer with swirl box for a vehicle exhaust system
US9266075B2 (en) Doser and mixer for a vehicle exhaust system
EP2625398B1 (en) Arrangement for introducing a liquid medium into exhaust gases from a combustion engine
KR101658341B1 (en) Mixing chamber
CN114575976A (en) System and method for mixing exhaust gas and reductant in an aftertreatment system
US8468802B2 (en) Exhaust gas system
JPH04350315A (en) Exhaust gas system
KR20130135343A (en) Compact exhaust-gas treatment unit with mixing region, and method for mixing an exhaust gas
US10612442B2 (en) Exhaust gas treatment device for an internal combustion engine of a motor vehicle
EP3003543B1 (en) Exhaust gas aftertreatment device
US11891937B2 (en) Body mixing decomposition reactor
CN112576347A (en) Automobile exhaust aftertreatment system
WO2019147989A1 (en) Mixing device for mixing a spray from an injector into a gas and system comprising same
US20150377104A1 (en) Exhaust gas line section for supplying liquid additive
CN115053053B (en) Reducing agent delivery system for exhaust aftertreatment system
CN114458425A (en) Mixer, exhaust system and mixing method
US10907522B2 (en) Internal box flow deflector for a vehicle exhaust system mixer assembly
CN109958512B (en) Exhaust treatment system for engine
US20230265774A1 (en) Apparatus For Mixing An Additive With A Gas Flow
US11702974B2 (en) Exhaust gas/reactant mixing device
US10815855B2 (en) Mixer
CN113785109A (en) Mixer device for an exhaust gas aftertreatment system of a motor vehicle, exhaust gas aftertreatment system and motor vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMCON TECHNOLOGIES GERMANY (AUGSBURG) GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOLLER, CHRISTOPH;REGENOLD, KLAUS;UHL, BERNHARD;REEL/FRAME:023434/0894

Effective date: 20091027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION