US20100114079A1 - Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation - Google Patents

Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation Download PDF

Info

Publication number
US20100114079A1
US20100114079A1 US12/685,850 US68585010A US2010114079A1 US 20100114079 A1 US20100114079 A1 US 20100114079A1 US 68585010 A US68585010 A US 68585010A US 2010114079 A1 US2010114079 A1 US 2010114079A1
Authority
US
United States
Prior art keywords
lens
microsphere
eye
ocular
presbyopia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/685,850
Inventor
Raymond I. Myers
Ronald Krueger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Sight Laser Tech Inc
Original Assignee
Second Sight Laser Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/897,585 external-priority patent/US20020049450A1/en
Application filed by Second Sight Laser Tech Inc filed Critical Second Sight Laser Tech Inc
Priority to US12/685,850 priority Critical patent/US20100114079A1/en
Publication of US20100114079A1 publication Critical patent/US20100114079A1/en
Priority to US13/243,406 priority patent/US20120016350A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00838Correction of presbyopia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00895Presbyopia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses

Definitions

  • the invention comprises the use of electromagnetic energy to make physical and biochemical alterations to the ocular lens of a mammalian eye for the correction of visual impairments, particularly presbyopia and including other ametropias such as myopia, hyperopia and regular and irregular astigmatism, and the retardation of cataract development.
  • Vision impairment is an exceedingly common problem in humans. Nearly 100% of people over age 50 have some form of vision impairment. The need for corrected vision (e.g., the need for glasses or contacts) is also very common among younger people. In a vast majority of people needing vision correction the problem is associated with the crystalline lens of the eye. Two primary problems that occur in the crystalline lens are (a) insufficient flexibility resulting in the inability to correctly focus incoming light and (b) light scattering also resulting in blurred vision.
  • ametropias The common errors of focusing of the eye fall into a class of visual impairments termed ametropias, which include myopia, hyperopia, astigmatism (regular and irregular) and presbyopia. These impairments generally cause visual blurring, and are most commonly corrected with eyeglasses or contact lenses, and sometimes with surgery.
  • Myopia is the ocular condition where light from a distant object focuses in front of the retina resulting in blurred distance vision, while visual images of near objects are generally clear.
  • Myopia is the most common reason for vision correction in a population under age 30.
  • hyperopia an image of a distant object is focused behind the retina, making distance and near vision blurred, except where described later.
  • Hyperopia although exceedingly common, is not normally corrected until the fortieth decade when presbyopia makes correction necessary.
  • Astigmatism is a refractive error that results in the eye's inability to focus along a first axis in a plane perpendicular to the line of sight being different from the eye's ability to focus along a second axis in the same plane perpendicular to the first axis, thus producing an image incapable of focusing at any distance.
  • Astigmatism generally occurs as a second impairment along with either myopia or hyperopia, but is occasionally the only reason for needing visual correction.
  • Astigmatism is subdivided by type and includes regular and irregular astigmatism as well as aberration.
  • irregular astigmatism there are other distortions or aberrations which are in some persons corrected by considering its effect upon the wavefront function.
  • the wavefront function characterizes the refractive profile of the eye and defines irregular astigmatism, which is considered a higher order optical aberration such as spherical aberration, coma, trifoil, and others often characterized by Zernicke polynomials above the fourth order.
  • irregular astigmatism is considered a higher order optical aberration such as spherical aberration, coma, trifoil, and others often characterized by Zernicke polynomials above the fourth order.
  • presbyopia stands out as a significant problem because of its prevalence and because it is not corrected as successfully as are myopia and hyperopia with the current treatment methods.
  • Presbyopia is the focusing error caused by a loss of flexibility of the ocular lens. Lens flexibility allows for accommodation, which is the primary mechanism by which the eye changes focus. Accommodation is the change in shape of the ocular lens as it responds to neural feedback, ideally to focus light precisely on the back of the retina, allowing the perceived image to be seen in sharp focus.
  • Presbyopia generally causes clinically significant blurred vision in humans starting between the ages of 40 and 50 years, and is one of the few human disorders with a prevalence of 100% in the population that reaches the age of the mid-50's.
  • loss of accommodation is a life long process through which the ability of the ocular lens to change shape to allow for focused vision continually decreases starting essentially at birth.
  • the Helmholz theory first proposed in 1909 basically defines the crystalline lens as being held in resting tension by the ciliary muscle when the lens is focused for a distance object. When the lens focuses on nearer objects, it is through the relaxation of the ciliary muscle, and releasing of any tension on the lens, yielding a thicker or more convex lens.
  • presbyopia In addition to presbyopia, it is well known that another process occurs within the ocular lens throughout a normal human life that also generally becomes clinically diagnosable during the fourth decade of life. This second degenerative process manifests as the scattering of light as it passes through the lens. The process that leads to light scattering is the first step to cataract development.
  • Cataracts are areas of opacification of the ocular lens of sufficient size to interfere with vision. They have been extensively studied because of their high prevalence in a geriatric population. Cataracts in the aged (senile cataracts) are the most common type, and are often thought to be due to an acceleration of the previously mentioned light scatter. Cataracts occur to varying extents in all humans over the age of 50 years, but generally do not cause significant visual dysfunction until the ages of 60-80 years. Cataracts, however, can occur much earlier as a result of risk factors including disease, trauma, and family history.
  • FIG. 2 is presented as an aid to understanding the visual impairments related to the ocular lens ( 3 ).
  • the ocular lens ( 3 ) is a multi-structural system as illustrated in FIG. 2 .
  • the macroscopic lens structure includes a cortex ( 13 ) just inside a capsule ( 14 ), which is an outer membrane that envelopes the other interior structures of the lens.
  • the nuclei are formed from successive additions of the cortex ( 13 ) to the nuclear regions, which are subdivided into a deep fetal nucleus ( 22 ), which develops in the womb, an infantile nucleus ( 24 ), a juvenile nucleus ( 26 ), and the adult nucleus ( 28 ).
  • the lens is a biconvex shape as shown in FIG. 2 .
  • the cortex and the different nuclei have specific structures that are consistent through different ages for specific cell sizes, compactions, and clarity.
  • the lens epithelium ( 23 ) forms at the lens equatorial region ( 21 ) generating ribbon-like cells or fibrils that grow anteriorly and posteriorly around the ocular lens.
  • the unique formation of the crystalline lens is the biconvex shape where the ends of the cells align to form a suture in the central and paracentral areas both anteriorly and posteriorly.
  • Transparency is maintained by the regular architecture of the fibrils. As long as the regular architecture is maintained, light passes unobstructed through the lens. The older tissue in both the cortex and nucleus has reduced cellular function, having lost their cell nuclei and other organelles several months after cell formation.
  • the aqueous ( 17 ) the liquid in the anterior chamber between the lens and cornea flows very slowly through the lens capsule ( 14 ) and the sutures into more remote areas of the lens and provides the nutrients needed for minimal cellular life functions, including the removal of toxic and oxidative byproducts.
  • the microstructure of the fibrils contains interconnections between the ribbon-like fibrils called balls and sockets and interdigitations and imprints, which to some extent inhibit the relative motion of fibrils with respect to one another. Still, the fibrils are relatively free to move in relation to each other in the young, flexible crystalline lens. As the eye ages, there are age related changes to these structures that include the development of intermolecular bonding, mostly disulfide bonding, the compaction of tissue, the breakdown of some of the original attachments, and the yellowing or darkening of older lens areas.
  • Changes in the size and shape of the macroscopic lens components throughout life include both the increased curvature and general enlargement of the biconvex lens with age.
  • the thickness of the posterior portion increases more than the anterior portion. Additionally, thickness increases are proportionately greater in the periphery.
  • disulfide bonding immobilizes the oldest and deepest lens tissue, characteristically seen in the nuclear regions.
  • disulfide bonds are weak chemical bonds, and are subject to modification and breakage with relatively little energy.
  • the disulfide bonds are largely formed by the effects of ambient ultraviolet (UV) light from the atmosphere and from the continual, unrelenting reduction in lens movement with age (presbyopia).
  • UV ambient ultraviolet
  • the lens absorbs fluids from the aqueous, a process enhanced by lens accommodation, e.g., the undulating movement of the younger crystalline lens.
  • the aqueous normally contains antioxidants that aid in preventing disulfide bond formation that further inhibits lens movement.
  • FIG. 1 a cross sectional view of the eye.
  • the sclera ( 31 ) is the white tissue that surrounds the lens except at the cornea.
  • the cornea ( 1 ) is the transparent tissue that comprises the exterior surface of the eye through which light first enters the eye.
  • the iris ( 2 ) is a colored, contractible membrane that controls the amount of light entering the eye by changing the size of the circular aperture at its center (the pupil).
  • the ocular or crystalline lens ( 3 ), a more detailed picture of which is shown in FIG. 2 is located just posterior to the iris. Generally the ocular lens changes shape through the action of the ciliary muscle ( 8 ) to allow for focusing of a visual image.
  • a neural feedback mechanism from the brain allows the ciliary muscle ( 8 ), acting through the attachment of the zonules ( 11 ), to change the shape of the ocular lens.
  • sight occurs when light enters the eye through the cornea ( 1 ) and pupil, then proceeds past the ocular lens ( 3 ) through the vitreous ( 10 ) along the visual axis ( 4 ), strikes the retina ( 5 ) at the back of the eye, forming an image at the macula ( 6 ) that is transferred by the optic nerve ( 7 ) to the brain.
  • the space between the cornea and the retina is filled with a liquid called the aqueous in the anterior chamber ( 9 ) and the vitreous ( 10 ), a gel-like, clear substance posterior to the lens.
  • the traditional solution for the correction of presbyopia and other refractive errors is to provide distance glasses, reading glasses, or a combination of the two called bifocals.
  • Other forms of correction include the following: a) variable focus bifocal or progressive spectacles, b) contact lenses, c) aspheric corneal refractive surgery, and d) intraocular implant lenses for aphakic (absence of the ocular lens) individuals.
  • Bifocal contact lenses are uncommonly used because, for fitting or for technical reasons, they are optically inferior to bifocal spectacles.
  • An additional corrective method using contact lenses called “monovision” corrects one eye for near and the other for far, and the wearer learns to alternate using each eye with both open.
  • Aspheric photorefractive keratectomy provides variable focus capabilities through an aspheric reshaping of the cornea. Similar to this optical correction, some aspherical intraocular implant lenses take the place of the natural ocular lens in individuals whose lens has been removed during cataract surgery.
  • LASIK requires an incision in the cornea to create a flap of tissue that is peeled back to expose the interior of the cornea, which is then precisely sculpted to focus light on the retina.
  • presbyopia Another development in photorefractive treatment of presbyopia is Bille (U.S. Pat. No. 4,907,586), which primarily describes a quasi-continuous laser reshaping the eye, namely the cornea and secondarily the crystalline lens in order to correct myopia, hyperopia, and astigmatism.
  • Bille also proposed that presbyopia might be corrected by semi-liquification or evaporation of lens tissue through treatment with a quasi-continuous laser.
  • Gwon described a method to correct presbyopia, myopia, and hyperopia with an ultrashort laser pulse that produced volumetric reductions of lens tissue. While various methods to replace the clear crystalline lens with a flexible or gel intraocular implant have been developed as an alternate lenticular technology, Gwon's patented method was the only major milestone in direct treatment of the natural lens.
  • crystallin lens modification technology has developed slowly is that ophthalmic professionals are accustomed to wholly removing the crystalline lens during cataract surgery, the most commonly performed surgery in the United States (greater than one million per year). Modifying the crystalline lens is considered the antithesis of the prevailing thought about lens removal. Also, ophthalmic professionals have traditionally looked upon the crystalline lens as susceptible to cataract development from a wide variety of causes especially trauma such as that of surgery directly on this tissue.
  • cataracts in the crystalline lens including ultraviolet, infrared, and ultrasound energy; incisional surgery from the anterior (e.g., cornea) or the posterior (e.g., retina); many systemic diseases including diabetic changes from hyper- to hypo-glycemic conditions; trauma; toxic chemicals and pharmacological drugs; and malnutrition and vitamin deficiencies.
  • a reason that laser surgery is of particular interest is that much of the ocular media is transparent to the visible light spectrum, i.e., wavelengths of 400-700 nanometers (nm); thus, light of wavelengths in this range pass through the anterior eye without effect. While the near-visible spectrum on either side of the visible range, including ultraviolet and infrared light, has certain absorptive characteristics in various ocular tissues and may cause changes in the tissue, the safety of light irradiation can be specified according to a threshold energy level below which particular tissues will not be adversely affected. Above the threshold, ultraviolet or infrared light can cause damage to the eye, including the establishment of cataracts or even tissue destruction.
  • light energy can be focused to a specific point, where the energy level at that point (expressed as a energy density) is at or above the threshold for tissue destruction. Energy in the light beam prior to focusing can be maintained at a energy density below the threshold for tissue destruction.
  • This “pre-focused” light can be referred to using the term subthreshold bundles (described by L'Esperance, U.S. Pat. No. 4,538,608, the entire disclosure of which is specifically incorporated herein by reference to the extent not inconsistent with the disclosures of this patent), wherein the “bundles” are not destructive to tissue.
  • Lasers have been used widely to correct many ocular pathological conditions, including the suppression of hemorrhaging, the repair of retinal detachments, the correction of abnormal growth of the lens capsule after cataract surgery (posterior capsulotomy), and the reduction in intraocular pressure. Therefore, various laser sources providing numerous and even continuously variable wavelengths of laser light are well know in the art. The characteristics of the laser, including its wavelength and pulsewidth make different types of lasers valuable for specific purposes. For example, an excimer laser with pulsed UV light of 193 nm has been selected for photorefractive keratectomy (PRK) because it yields an ablation with very little heat release, and because it treats the corneal surface without penetrating the cornea. There are other excimer lasers that use wavelengths from 300-350 nm that will pass through the cornea and into the lens.
  • PRK photorefractive keratectomy
  • High energy light having a wavelength in the range from 100-3000 nm can be produced by various types of laser sources, including those using gases to produce the laser energy, such as the KrF excimer laser; solid state lasers, such as the Nd-YAG and Nd-YLF laser; and tunable dye lasers.
  • the laser source the physical and chemical effects of coherent light from a laser upon ocular tissue vary according to a number of laser parameters, including wavelength, energy, energy density, focal point size, and frequency.
  • Photodisruption and photoablation describe laser-tissue interactions in which some tissue is destroyed.
  • the term photoablation has been used to describe tissue destruction for photorefractive keratectomy using an excimer laser, as well as for tissue destruction using infrared lasers. Within this application, the term photodisruption is used as described below in the Detailed Description, and may be used herein similarly to uses of the term photoablation in other references.
  • infrared nanosecond and picosecond pulsed lasers such as the Nd-YAG and Nd-YLF have been used on the lens because they can focus for treatment deep in a transparent system, and because they remove tissue with minimal effect upon adjacent tissues.
  • the size of the initial tissue destruction using these lasers is relatively large, however.
  • New generation infrared lasers performing in the femtosecond range (10 ⁇ 15 seconds) can produce a smaller tissue disruption. (See Lin, U.S. Pat. No. 5,520,679).
  • the invention consists of methods for treating the clear, intact crystalline lens of an eye through the creation of microspheres, i.e., small, generally spherical pockets of gas within the lens (i.e., bubbles) for the purpose of correcting presbyopia, other refractive errors such as but not limited to myopia, hyperopia, regular and irregular astigmatism, for the retardation and prevention of cataracts, and treatment of other ocular anomalies.
  • microspheres i.e., small, generally spherical pockets of gas within the lens (i.e., bubbles) for the purpose of correcting presbyopia, other refractive errors such as but not limited to myopia, hyperopia, regular and irregular astigmatism, for the retardation and prevention of cataracts, and treatment of other ocular anomalies.
  • microspheres i.e., small, generally spherical pockets of gas within the lens (i.e., bubbles) for the purpose of correcting presbyopia, other refractive errors such as but
  • Changes provided by the creation of microspheres generally improve visual acuity of the eye in a manner exemplified by but not limited to the ability to focus more clearly and with a greater range, and to transmit light without scatter and without distortion.
  • the invention recognizes that the intact crystalline lens safely can be treated with a focused, scanning laser, and that treatment of the crystalline lens for correction of ametropias (including presbyopia) may be a superior methodology to refractive surgery on other structures of the eye, including the cornea or sclera, or the implantation of a flexible intraocular (crystalline) lens implant or gel.
  • the present invention may include concomitant use of antioxidative therapy to minimize any possible side-effects of acute laser radiation exposure during treatment.
  • the creation of microspheres occurs through a mechanism that may be referred to as photodisruption.
  • the photodisruption mechanism used to create microspheres which is described in detail in the following section, produces the beneficial visual effects mentioned above (correction of presbyopia and other refractive errors, retardation and prevention of cataracts, and treatment of other ocular anomalies) via two primary modes of action that are termed (1) photophacomodulation and (2) photophacoreduction.
  • Photophacomodulation refers to any mechanism of light-induced change in crystalline lens tissue that affects its chemical and physical properties and thereby alters the dynamic properties of the crystalline lens including its ability to change shape.
  • Photophacoreduction refers to any mechanism of light-induced change in the crystalline lens whereby the change primarily effects a reduction in the mass or volume of crystalline lens tissue. While these two terms are intended to be used consistently throughout this patent, they may be referred to elsewhere respectively using the terms crystalline lens modulation and volumetric reduction, or in combination using the umbrella term photorefractive lensectomy. By either mode of action, the beneficial effects of the invention are principally achieved through generation of microspheres (as noted above).
  • Embodiments of the invention that utilize the photophacomodulation mode generally generate individual microspheres essentially independent from one another, or may generate individual microspheres that interact, for example by coalescence after generation.
  • the methods of the invention use the photophacomodulation mode to change lens tissue within the older areas of the ocular lens such as the nucleus, and particularly within specific regions of the juvenile and adult nucleus, since older, more compact tissues are thought to be most responsible for loss in accommodation.
  • the present invention can be contrasted with disclosures of the Schachar patents previously cited, in which Schachar proposes treatment of the epithelium, an outer cortex layer, to impair the growth of the epithelium.
  • Embodiments of the invention that utilize the photophacoreduction mode generally generate microspheres that overlap on formation because their respective sites of photodisruption are contiguous as described below.
  • the methods of the invention use the photophacoreduction mode to reduce lens tissue volume within the younger cortical areas of the ocular lens, often for the purpose of changing the topography of the exterior surface of the lens.
  • the photophacoreduction mode may be used within the nuclear regions as well.
  • the methods of the invention such as photophacomodulation or photophacoreduction can be performed as outpatient ophthalmic procedure without the use of general anesthesia and without outside exposure of incised tissue with possible consequent infection.
  • a further benefit of the present invention for presbyopic correction is that it may actually restore natural accommodation (i.e., the ability of the lens to change its focusing dynamics), instead of attempting to correct for presbyopia through the use of aspherical optics on external lenses, implanted lenses, or the cornea, or requiring the gaze of the eyes to be translated to two or more locations as when using bifocal, trifocal, or progressive lenses.
  • treatment according to this invention makes possible the retardation of cataract development.
  • Koretz observed in 1994 that an inverse relationship exists between lens accommodation and light scatter development, and that the processes leading to light scatter accelerate with decreasing accommodation.
  • embodiments of the present invention may reduce current and anticipated future increases in light scatter. It is hypothesized that such a reduced rate for the processes leading to light scatter is achieved, at least in part, through increased aqueous circulation within the crystalline lens, which results from increased accommodation.
  • the present invention encompasses the creation of microchannels through the photodisruption process that would enhance aqueous circulation within the lens and thereby lead to reduced light scatter.
  • This cataract retardation effect is differentiated from cataract removal (partial or full) and cataract prevention.
  • Cataract retardation has been suggested elsewhere through the use of pharmaceuticals such as antioxidants used over long periods of time that allow for maintaining the transparency of the lens.
  • antioxidants used over long periods of time that allow for maintaining the transparency of the lens.
  • cataract removal traditionally has meant the total removal of the lens except for the posterior capsule
  • Gwon U.S. Pat. No. 6,322,556
  • has proposed removing partial cataracts both complete and partial removal are different from cataract retardation, which is a benefit of embodiments of this invention.
  • FIG. 1 shows the gross anatomy of the eye.
  • FIG. 2 is an enlarged view of the crystalline lens showing its internal structure.
  • FIG. 3 shows a general schematic of the instrumentation used in embodiments of the present invention.
  • FIG. 4 depicts the mechanism of microsphere formation by photodisruption.
  • FIG. 5 illustrates examples of the results of treatment by the individual microsphere formation methodology.
  • FIG. 6 depicts a mechanism of individual microsphere interaction producing a beneficial separation of lens fibrils.
  • FIG. 7 depicts microchannels created in a lens.
  • FIG. 8 depicts the results of cavity formation or volume reduction within the lens, resulting in a new lens surface topography.
  • FIG. 3 provides a basic illustration of the instrument ( 400 ) used to perform lenticular refractive surgery (LRS).
  • a laser ( 402 ) produces a collimated beam ( 410 ) of light having essentially a single wavelength.
  • the laser ( 402 ) preferably generates a beam of short duration, high frequency pulses such as discussed in Lin (U.S. Pat. No. 5,520,679), the entire disclosure of which is specifically incorporated herein by reference to the extent not inconsistent with the disclosures of this patent, but may be any laser that provides a beam of sufficient energy and that can be controlled to perform the treatment herein described.
  • the laser beam ( 410 ) passes through a beam control system ( 406 ), likely comprising mirrors and lenses, for example mirrors ( 405 ) and lenses ( 407 ), that direct the light in three spatial dimensions and create vergence in the beam.
  • the output from the beam control system ( 406 ) is a converging beam ( 412 ) that passes through a patient's cornea ( 420 ) and is focused on the surface of or within a patient's ocular lens ( 424 ) for purposes of treating ametropias and retarding cataractogenesis.
  • the focal point ( 426 ) of the converging beam ( 412 ) is capable of traversing any point within the three-dimensional space occupied by the ocular lens ( 424 ).
  • the surgeon combines knowledge of the patient, the expected ametropias (including presbyopia) to be altered, and lens biometric measurements determined by standard ophthalmic instruments to develop a treatment strategy. Certain of this data is transformed by a computer algorithm that controls the instrument ( 400 ) during the treatment, including control of laser parameters such as focal point location, energy level, and pulse duration and frequency. Focal point location during treatment is determined by a scanning program that may be used to reduce unwanted, short-term effects on lens tissue by moving the laser focal point among various areas of the lens, instead of treating immediately adjacent lens areas.
  • a detailed description of an instrument similar to the one shown in FIG. 3 , but used for cataract removal, is provided by L'Esperance, Jr. in U.S. Pat. No.
  • the LRS patient is prepared as in cataract surgery or other laser refractive surgical procedure (e.g., PRK).
  • the anterior segment of the eye is prepared by procedures that are common to regular vision testing, including topical anesthetic, dilating drops, and cycloplegia (temporary paralysis of accommodation).
  • Biometric measurements of the lens are taken by A-scan, high frequency ultrasound (B-scan), optical coherency tomography (OCT), or similar instrumental procedures to determine the exact dimensions of the lens, including the geometric center, thickness, and other contour measurements of the nucleus and cortex. Then the eye is held stationary by patient fixation on a coaxial light source.
  • Fixation can be further controlled by a transparent applanation plate fixed to a suction ring on the anesthetized cornea and coupled to the optical pathway of the instrument.
  • the surgeon aligns the instrument and the eye using at least one non-therapeutic helium-neon laser ( 404 ), which is focused by the surgeon in the lens at the focal point ( 426 ). Once the patient is prepared and the instrument aligned, treatment may begin.
  • LRS treatment The basis of LRS treatment is the laser induced photodisruption process occurring in the crystalline lens and depicted in FIG. 4 .
  • the ocular lens with all of its internal structure forms a single unitary structure such that reference to locations “in” or “within” the lens include locations “on” the lens, and the former terms (in and within) will generally be used throughout this patent to include the latter (on).
  • the photodisruption process is described as follows, beginning with reference to FIG. 3 .
  • the convergent laser beam ( 412 ) enters the eye through the cornea ( 420 ) as light waves, which have been described by L'Esperance (U.S. Pat. No. 4,538,608) as bundles of energy.
  • the laser beam ( 412 ) passes through the cornea ( 420 ) without damage to that tissue because the energy density (referred to generally as “energy” and also called fluence or fluxure) of the laser within this tissue is at subthreshold levels. That is, only above a threshold energy density not obtained by the laser beam ( 412 ) within the cornea ( 420 ) will tissue damage occur. See Lin (U.S. Pat. No.
  • the threshold energy level (energy density) is attained or surpassed at the focal point ( 426 ) of the converging laser beam ( 412 ) within the ocular lens ( 424 ). Given that sufficient energy is incident at the focal point ( 426 ) the process of photodisruption occurs.
  • Photodisruption as the term is used herein is a complex, multistep, sequential process, as illustrated in FIG. 4 .
  • a laser pulse ( 502 ) traveling the path of the converging beam ( 412 ) reaches a first focal point ( 426 ) a very small amount of lens tissue ( 510 ) is destroyed in a volume essentially centered on that first focal point ( 426 ).
  • the volume of lens tissue ( 510 ) destroyed depends upon the characteristics of the particular laser pulse ( 502 ) (pulse width, wavelength, energy, etc.) incident on the lens ( 424 ) and the characteristics of the lens tissue itself.
  • the volume is likely in a range from about 0.1-500 ⁇ m 3 (e.g., a sphere having a diameter of 0.5-10 ⁇ m).
  • the laser energy incident at the first focal point ( 426 ) breaks molecular bonds and ionizes molecules and atoms, converting the tissue ( 510 ) at the first focal point ( 426 ) from a solid to a plasma ( 512 ).
  • the matter that has been converted occupies significantly more volume than it did as the solid tissue.
  • shock wave ( 514 ) that resonates outwardly from the first focal point ( 426 ) into the surrounding tissue.
  • the shock wave may extend from about 10-500 ⁇ m from the focal point. Note that the distance the shock wave travels is highly dependent on the pulse width of the laser.
  • the focal point of the laser is moved to a different location in the lens according to the scanning program, and the plasma ( 512 ) about the first focal point ( 426 ) rapidly converts to a gas ( 516 ).
  • the gas ( 516 ) fairly rapidly obtains a state of relative equilibrium as compared with the state of the high energy plasma ( 512 ).
  • the volume occupied by the gas ( 516 ), which is essentially centered on the first focal point ( 426 ), is referred to herein as a microsphere.
  • the volume of the microsphere ( 516 ) depends on all of the laser parameters as well as the tissue characteristics, but for typical LRS procedures using today's laser technology the size of the microsphere will typically be in the range of about 60-15,000 ⁇ m 3 (e.g., a sphere of diameter 5-30 ⁇ m).
  • the volume of the microsphere may be less than the maximum volume occupied by the plasma ( 512 ) immediately after expansion due to the altered lenticular system arriving at a state of relative equilibrium after the shock ( 514 ) of plasma creation, but could be of greater volume than the plasma ( 512 ).
  • the gas in the microsphere is not likely to be in a true equilibrium and eventually likely will be absorbed by the lens tissue causing the microsphere to collapse. Absorption of the gas in the microsphere may occur almost instantaneously, may take up to several days, or may take a longer time. It is possible that in some circumstances the microsphere will not collapse during an extended period of time.
  • FIGS. 5-8 The various methodologies of the invention include (1) individual microsphere formation ( FIGS. 5-6 ), (2) microchannel formation ( FIG. 7 ), and (3) cavity formation or volume reduction ( FIG. 8 ). Each of these methodologies, while distinct, has the potential to both increase the accommodation of the ocular lens and concurrently, consequently, or alternatively, to increase the fluid volume that passes through the various layers of the ocular lens in a given period of time. Such changes likely are the mechanisms whereby embodiments of the present invention effect treatment of ametropias, including presbyopia, and prevention or retardation of light scattering and cataractogenesis.
  • FIGS. 5A-E numerous individual microspheres ( 520 ) are created within the ocular lens ( 522 ) in a pattern of predetermined form.
  • the numbers of individual microspheres that are applied to the crystalline lens may vary from a few to hundreds of thousands or more. In the experiments described in the Examples below the number of microspheres applied to a lens has exceeded 300,000. It is generally believed that the application of greater numbers of microspheres is more beneficial. Particularly as technology advances and the microspheres can be made smaller the number of microspheres applied to a lens during a single treatment regimen can be expected to increase further. An anticipated limit to the number of microspheres applied may be provided by the ratio of a minimum microsphere volume that is effective for producing visual improvement in a patient and the volume of the lens being treated.
  • FIG. 5A depicts a lens ( 522 ) treated with microspheres ( 520 ) having an aggregate pattern that is an annulus.
  • individual microspheres ( 520 ) may be created at positions within the lens that are separated by sufficient distance so that the microspheres remain predominantly separate, i.e., as a result of the lens tissue characteristics the majority of individual microspheres do not coalesce with an adjacent microsphere.
  • the distance between microspheres necessary to maintain their individual nature will vary, depending on lens and laser characteristics, from about 1 ⁇ m to about 1 mm, but when using today's technology in the preferred embodiment it will generally be in the range of 10-15 ⁇ m.
  • the more posterior microsphere will be applied first in order to keep the more anterior microsphere from interfering with the creation of the more posterior microsphere.
  • FIGS. 5A-E show various examples of microsphere patterns in an ocular lens ( 522 ).
  • FIGS. 5A-D show a cross section of a crystalline lens laterally oriented as though viewed through a dilated eye and pupil (coronally).
  • FIG. 5 E is a cross section of the lens oriented sagittally (ninety degrees rotated from FIGS. 5A-D ).
  • FIG. 5A shows an annulus
  • FIG. 5B shows a disk
  • FIG. 5C shows radially aligned wedges
  • FIG. 5D shows radial lines
  • FIG. 5E shows the annulus of FIG.
  • the patterns of microspheres ( 520 ) may be applied to the lens essentially throughout the lens volume, except that treatment by LRS generally is intended not to violate the lens capsule ( 14 ), which maintains the physiological integrity of the lens and the surrounding aqueous ( 17 ) and vitreous ( 10 ).
  • FIGS. 6A-D An illustration of how an individual microsphere may act in concert with another microsphere through coalescence is provided in FIGS. 6A-D .
  • the fibrils ( 612 ) of the lens are depicted as straight lines equidistant from one another. Note that the elements of FIG. 6 are not drawn to scale, but are depicted in a manner that enhances the illustration of this written description.
  • the converging laser beam ( 412 ) is focused at the focal point ( 426 ) within the lens, and by the process of photodisruption a first microsphere ( 516 ) is created, pushing apart or cleaving the fibrils ( 612 ) in the vicinity of the first microsphere ( 516 ).
  • the energy of creation of the first microsphere is in the first instant contained within the fibrils adjacent to the first focal point and the interstices therebetween as shown if FIG. 6B .
  • the forces resulting from microsphere creation, including plasma formation and the consequent shock wave ( 514 ) will likely cleave the laminar fibrils of the crystalline lens along the boundary between the fibrils.
  • cleavage of laminar fibrils of the crystalline lens by a dull surgical tool has been described by Eisner in Eye Surgery (1980), which is explicitly incorporated herein by reference to the extent not inconsistent with the disclosures of this patent.
  • a second microsphere ( 517 ) is created, cleaving fibrils in its vicinity.
  • the forces of microsphere creation that cleave fibrils ( 612 ) are such as to extend the separation between the fibrils ( 612 ) along the distance between the microspheres ( 516 and 517 ).
  • the separation may extend along the entire distance between the microspheres ( 516 and 517 ) as shown in FIG. 6D .
  • the microspheres will merge into a single expanded microsphere ( 515 ), as shown in FIG. 6D .
  • FIG. 6 Also shown in FIG. 6 is a representation of the interconnections ( 518 and 519 ) between fibrils ( 612 ). These interconnections could be any form of engagement between fibrils, including interdigitations, van der Waals attractions, or disulfide bonds.
  • the separation of fibrils ( 612 ) may be such that the interconnections ( 518 and 519 ) are disrupted to the extent that they no longer act to connect the fibrils ( 612 ), as shown in FIG. 6D . Both the separation of fibrils and the disruption or disengagement of the interconnections ( 518 and 519 ) allows a greater range of motion of fibrils ( 612 ) with respect to one another, including a greater ability to translate relative to one another.
  • the present invention is theorized to effect increased accommodation by decreasing tissue density and disrupting fibril interconnections.
  • FIG. 6 While it is shown in FIG. 6 that disengagement of the fibril interconnections occurs as a result of the interaction or coalescence of microspheres ( FIG. 6D ), the same disruption or disengagement can and does occur via application of a single microsphere. As described above the creation of a microsphere will likely cleave the laminar fibrils along the fibril boundary. Because cleavage along fibril boundaries may occur whether or not microspheres coalesce, similar beneficial results (e.g., increased accommodation) may be achieved in either instance.
  • microspheres are generally applied to areas of the crystalline lens which are the least flexible.
  • the juvenile nucleus ( 26 ) and the adult nucleus ( 28 ), seen in FIG. 2 are denser tissues within the lens and are considered the least flexible, and therefore are likely areas of treatment.
  • Treatment of these older, denser, and less flexible areas is likely to have greater benefit than treatment elsewhere in the lens since the fibril structure of the older, denser lens areas is known to contain greater chemical cross-linking, more interfibril engagements, more compaction, and less transparency. Therefore, treatment of these less flexible areas with individual microspheres as described above may well achieve a decoupling of fibrils, i.e., a tearing apart of the macromolecular structures that form in the older lens tissue by breaking cross-linkages, disengaging interfibril engagements and generally separating the compacted layers of the lens tissue (e.g., as shown in FIGS. 6A-D ).
  • microspheres to the lens i.e., the creation of microspheres in the lens as just described, is a technique that induces a softening of lens tissue.
  • the creation of microspheres in the ocular lens and the consequent disruption of fibril interconnections ( 518 and 519 ) can lead to a greater flexibility and an increased range of motion of the fibrils ( 612 ), which, in turn, may generate an increase in lens accommodation or allow for the maintenance of the present level of accommodation for a longer period of time, and therein may be a treatment for visual impairments, especially for presbyopia.
  • Using the methodology of individual microsphere formation to treat a presbyopic lens may generate increased accommodation in the range from 0-8 Diopters, which can have the effect of providing a 45 year-old lens with the flexibility of a typical 35 year-old lens. As described above, when discussing Koretz's observations, such an increase in or maintenance of accommodation may also aid in reducing light scatter or reducing the rate at which light scatter is created.
  • increasing accommodative potential may correct some amount of myopia, hyperopia, astigmatism, or aberration. That is, an increase in accommodation may provide the lens the added flexure and biomechanical changes needed to correctly focus an image in response to neural feedback, thereby correcting myopia, hyperopia, astigmatism, or aberration.
  • biomechanical differentials may include differential flexibility or thickness between regions. Purposely creating a lens wherein certain regions are more flexible or thicker than others may allow for improved focusing capability. For example, for the correction of hyperopia, achieving more flexure along the visual axis ( 4 ), as opposed to the periphery of the lens, would allow a greater range in lens shape through the center of the lens so that when tension on the crystalline lens was relaxed, the lens would be more convex than before treatment, correcting the hyperopia to at least some extent.
  • myopia might be corrected by the application of individual microspheres to achieve targeted biomechanical changes in the ocular lens at the periphery, the visual axis, or at some other location, so as to allow for a less convex lens shape when the crystalline lens is under full constriction as it would be when viewing a distant object.
  • biomechanical differentials in flexibility and thickness are particularly important with respect to the treatment of astigmatism because the focusing potential of the lens must be the same in the all focal planes.
  • microspheres are created within the ocular lens ( 3 ) in close proximity to one another in a generally sequential pattern from posterior to anterior positions in the lens.
  • the microspheres are created at positions within the lens that are separated by an insufficient distance to maintain the individuality of the microspheres.
  • the small volumes of tissue removed e.g., volume 510 in FIG. 4
  • the small volumes of tissue removed are contiguous.
  • an open channel ( 530 ) in the lens tissue can be created.
  • This open channel ( 530 ) is referred to as a microchannel ( 530 ) and is different from the embodiment described above and illustrated in FIG. 6 in which the microspheres are placed close enough to coalesce but in which the small volumes of tissue removed are not contiguous.
  • An additional difference from the embodiment illustrated in FIG. 6 is that a microchannel of this embodiment traverses a path generally perpendicular to the length of the fibers. Even though some of the gas created in the microchannel during the photodisruption process may be absorbed by the remaining lens tissue, sufficient lens tissue mass has been removed along the path of the microchannel that even with some reduction in channel volume due to gas absorption, the channel remains generally open. Also different from the embodiment of FIG. 6 , the microchannels of this embodiment are created in such dimension—i.e., sufficient tissue volume is removed—that they remain as open channels long after the surgery, possibly on the order of years or longer.
  • the microchannel ( 530 ) is generally characterized by a path length from the starting point ( 534 ) to the endpoint ( 532 ) that is greater in distance than any channel dimension perpendicular thereto. That is, if the microchannel is created having a generally circular cross section, its length is greater than the cross section diameter.
  • the starting and ending points ( 534 and 532 ) for the microchannels may be the sutures which are known to be a part of the fluid flow system of the lens. While the length of a microchannel is generally along a path essentially parallel to the visual axis, the microchannel may follow a non-linear path along a length in the general direction from posterior to anterior. As well, although the circular cross section is the preferred shape, any feasible cross sectional shape may be used.
  • the microchannels aid in fluid transport through the structures of the ocular lens, thereby allowing an exchange of antioxidants, nutrients, and metabolic by-products between the aqueous and portions of the lens to which there was previously insufficient fluid flow.
  • the older tissues in the lens primarily in the nucleus ( 12 ) are generally more dense and show a build-up of cellular by-products.
  • the increased fluid transport in these older tissues such as is allowed by the microchannels may retard or reverse the processes that lead to declining accommodation (i.e., presbyopia) and light scattering.
  • the microchannels may be used alone as a treatment strategy or may be used to supplement the enhanced fluid flow generated by increasing the flexure of the lens for the correction of presbyopia.
  • mass and volume reduction of the lens tissue generally at the periphery is accomplished through the creation of microspheres in such proximity that the small volumes of tissue removed (e.g., volume 510 in FIG. 4 ) in the photodisruption process are contiguous.
  • This methodology is generally referred to as photophacoreduction. While the methodology is essentially the same as in the previous embodiment in which microchannels are created through tissue removal, the location, geometry, and purpose of the volume removal of this embodiment is substantially different.
  • FIG. 8A shows the location of the cavity ( 15 ) in the lens ( 3 ) where the lens ( 3 ) is still in the shape it had prior to cavity ( 15 ) formation.
  • the cavities ( 15 ) can follow the contour of a fibril layer of the lens to reduce the numbers of fibers that are interrupted, or may be created to maximize the number of fibers interrupted.
  • the result of the procedure of this embodiment is a collapse of the capsule ( 14 ) in the region of the tissue removal wherein the path of the capsule ( 16 ) prior to the collapse is longer and located generally anterior to the path of the capsule ( 18 ) after collapse.
  • FIG. 8B shows the lens shape after collapse of the cavity ( 15 ), at which time, as a result of the collapse, the cavity ( 15 ) is no longer present in the lens as remaining lens tissue has collapsed into the cavity ( 15 ). Due to cavity ( 15 ) formation the lenticular capsule ( 14 ) may also loosen causing a reduction in the useful energy imparted to the lens by the zonules. If necessary the capsule can be tightened by thermoplasty using infrared radiation without opening a hole in the capsule.
  • thermoplasty reduces the length of the lens capsule ( 14 ) in the region about the volume reduction. Collapse of the lens ( 3 ) may occur naturally as a result of volume removal, or may be induced as a result of capsule thermoplasty. Treatment by photophacoreduction may best be accomplished in the less dense tissues of the cortex ( 13 ) or the infantile nucleus ( 24 ), but otherwise may be performed in essentially any lens location.
  • the procedure will be performed for the purpose of altering the exterior topography of the ocular lens as a method for correcting ametropias other than presbyopia.
  • the beneficial effect of this embodiment may be a change in the refractive power of the lens at the location at which a topography change occurs so as to lessen or remove completely the myopic, hyperopic or astigmatic condition of a person's vision.
  • Cavities toward the optical center cause a surface collapse that produce a less convex anterior or posterior surface, and that reduce myopia.
  • placing the cavity toward the equator may reduce hyperopia.
  • Creating a cavity of varying thickness induces lenticular astigmatism which may counteract an existing astigmatism.
  • the lens capsule collapse may also cause a different angular insertion to the zonules and may thereby provide a more efficient ciliary muscle action allowing for some correction of myopia, hyperopia, and presbyopia.
  • An additional benefit to the removal of lens mass and volume near the periphery may be an increase in accommodation.
  • a further alternative embodiment is the prevention of cataract formation through any of the methodologies described above: 1) individual microsphere formation, 2) microchannel formation, and 3) volume removal. While there is a connection between presbyopia and the development of light scatter and lens opacification, success in cataract retardation may be independent of the success of treatment for presbyopia.
  • the application of numerous individual microspheres may produce a combined net increase upon the lens thickness that will also result in an increase in accommodation.
  • the additional volume that results from microsphere formation may vary as the lens is pulled upon by the ciliary muscle and alternately relaxed. Due to the effects of tension on the lens, the additional volume from microsphere formation may be greatest when the lens is relaxed. The result of this kind of relaxed volume change depending on the tension in the lens is actually an increase in accommodation.
  • a still further alternate embodiment is the concomitant use of drugs to reduce inflammation and the effects of free radicals and debris within the lens portions of the eye before, during, and after the procedure.
  • Antioxidative drugs such as galactose, glutathione, and penicillamine, can react locally with any active by-products and facilitate the reduction of free radicals generated during the surgery.
  • These drugs enter the circulatory, lympathic, and intraocular systems after oral or topical administration, then naturally penetrate the lens matrix from the aqueous. After treatment according to an embodiment of this invention, their transport may be aided by the newly gained flexure as well as newly created microchannels.
  • anesthetics mydriatics and cycloplegics are used at the time of the treatment as in other intraocular surgeries.
  • NSAIDS non-steroidal anti-inflammatory drugs
  • the light used may be in wavelengths from ultraviolet through visible and into the infrared regions of the electromagnetic spectrum, any of which wavelengths may be useful in carrying out embodiments of this invention.
  • a range of wavelengths from about 100 nm to about 2000 nm may be useful in embodiments of this invention.
  • the preferred wavelength ranges do not include the visible wavelengths but are in the ultraviolet region from about 310-350 nm and in the infrared region from about 700-1500 nm.
  • the most preferred wavelengths, and those which have been most extensively tested for use in embodiments of this invention are the infrared wavelengths from about 800-1300 nm, and particularly from about 800-1000 nm.
  • the preferred pulse width is in the range from about 1 fs to about 500 ps, with the more preferred range being from about 50 fs to about 500 fs.
  • the preferred pulse energy has the range of about 0.1 mJ to about 10 mJ per pulse with the more preferred range being from about 0.5 to about 50 mJ per pulse.
  • the preferred frequency for pulse delivery has the range of about 1 Hz to about 50,000 Hz, with a more preferred range of about 1,000 Hz to about 20,000 Hz.
  • the pulse energy would be within the range of about 0.25 mJ/pulse to about 1 J/pulse, the more preferred range being from about 0.5 mJ/pulse to about 50 mJ/pulse.
  • Steps included in embodiments of the present invention to maximize the safety and efficacy to the lens and other vital parts of the eye during treatment include maintaining the lens capsule intact, i.e., keep from physically destroying the lens capsule, which would otherwise thereby allow the lens contents to have an opening to the aqueous, which is well known to cause cataract.
  • Another safety procedure is to control the cone angle of the laser beam such that extraneous light not absorbed by interactions at the focal point is masked by inert posterior matter from damaging other tissue.
  • Preferred cone angles range from about 2 degrees to about 40 degrees, with the more preferred cone angles being from about 5 degrees to about 15 degrees.
  • control of light energy parameters e.g., wavelength, pulse frequency, etc.
  • pharmacological agents may be used to minimize pathological changes to the cornea, equatorial (germinal) lens epithelium and fibril, ciliary body, and the perimacular region of the retina.
  • any mechanism through which a microsphere as described herein can be created may work to produce the beneficial results described herein.
  • the various mechanisms by which a microsphere may be created in the crystalline lens include those that result from the application of a wide variety of energy sources. Discussed in detail herein is the use of laser light (particularly in the infrared and ultraviolet wavelengths) as an energy source for creation of a microsphere, but any energy source and delivery method that can be used to create a microsphere in the crystalline lens may be suitable for use in this invention.
  • Alternate sources of energy include but are not limited to mechanical sources such as a water jet or scalpel, sound or ultrasound energy, and heat.
  • any of the above described methodologies can be performed with the use of a probe inserted through a corneal incision for the purpose of delivering the energy necessary to create the microspheres.
  • Use of a probe to deliver energy would allow light energy and various other methods of transferring mechanical energy, such as by water jet, to be utilized in embodiments of this invention.
  • the probe for delivery of energy may abut the lenticular surface or may be held at some distance therefrom. This alternative embodiment is preferred for the delivery of sources of energy that are not efficiently transported through the anterior portions of the eye.
  • the preferred group of patients on which to carry out this treatment is emmotropic low hyperopic subjects with spectacle prescriptions of less than 3.00 D.
  • Preferred patients are pre-presbyopic, in their early 40's, with 3-5 Diopters of accommodation, and have undergone a full-dilated eye exam to determine the following: a) no prior history of eye disease, trauma, cataracts, or collagen vascular disease; b) normal gonioscopic findings; and c) no significant systemic diseases.
  • the properties of the crystalline lens and lasers identified herein allow for treating the clear, intact, crystalline lens for the purpose of correcting presbyopia, refractive errors, higher order aberrations, and other disease conditions including cataract prevention and retardation.
  • a multiplicity of methodologies makes it possible to address the various probable causes of presbyopia.
  • the result of treatment for presbyopia according to an embodiment of this invention is likely to restore from five to eight diopters of accommodation and to postpone presbyopic development for 5-8 years or more.
  • the same processes of lenticular hardening and enlargement will continue after treatment and will eventually cause a reduction in accommodation, resulting in delayed presbyopia onset after treatment. An additional treatment may prove safe and efficacious, which would further delay presbyopia.
  • all of the changes to the crystalline lens are made under the control of a computerized laser, which can make specific modifications either separately or together for the treatment of presbyopia, myopia, hyperopia, and astigmatism, as well as for cataract prevention and retardation.
  • a precision technique was verified on 36 human cadaver lenses, where the age-dependent, flexural characteristics of the lenses were compared with results in studies of other designs.
  • an Nd-YAG laser was used to produce a 2-4 mm annulus in one of a pair of lenses from 11 donors while the fellow lens was kept as the control.
  • the Nd-YAG pulse produced microspheres in the range of 50-500 ⁇ m diameter.
  • An annular laser pulse pattern of 100 suprathreshold pulses were placed in the center of the treated lens, to produce a doughnut shaped pattern of microspheres.
  • a simulated accommodation was created using a rotating base upon which the lens revolved at up to 1000 rpm.
  • Rotational deformation was measured by changes in the central thickness and in anterior lens curvature as measured by two different techniques. When comparing the matched lenses, lens flexibility differences were demonstrated by statistically significant differences in lens curvature and thickness. That is, rotational deformation flattened the curvature and decreased the thickness of the treated lens, compared to the untreated, less flexible lens. Dioptric changes were calculated at as much as 8 diopters of change. The greater lens formation among laser treated lenses compared to their fellow untreated control lenses showed that the first demonstrated example of increasing flexure and accommodation by laser treatment of the crystalline lens, and therefore photophakomodulation may be a possible lens treatment for presbyopia.

Abstract

Methods for the creation of microspheres treat the clear, intact crystalline lens of the eye with energy pulses, such as from lasers, for the purpose of correcting presbyopia, other refractive errors, and for the retardation and prevention of cataracts. Microsphere formation in non-contiguous patterns or in contiguous volumes works to change the flexure, mass, or shape of the crystalline lens in order to maintain or reestablish the focus of light passing through the ocular lens onto the macular area, and to maintain or reestablish fluid transport within the ocular lens.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The application claims benefit to and is a Continuation-in-Part of U.S. patent application Ser. No. 09/897,585 filed Jun. 29, 2001, now abandoned, which is a Continuation of U.S. patent application Ser. No. 09/312,518, filed May 14, 1999, now abandoned, which in turn is a Continuation of U.S. patent application Ser. No. 08/821,903, filed Mar. 21, 1997, now abandoned, which claims priority to U.S. Provisional Application No. 60/036,904, filed Feb. 5, 1997, and U.S. Provisional Application No. 60/013,791, filed Mar. 21, 1996.
  • BACKGROUND
  • 1. Field of Invention
  • The invention comprises the use of electromagnetic energy to make physical and biochemical alterations to the ocular lens of a mammalian eye for the correction of visual impairments, particularly presbyopia and including other ametropias such as myopia, hyperopia and regular and irregular astigmatism, and the retardation of cataract development.
  • 2. Description of Related Art
  • Vision impairment is an exceedingly common problem in humans. Nearly 100% of people over age 50 have some form of vision impairment. The need for corrected vision (e.g., the need for glasses or contacts) is also very common among younger people. In a vast majority of people needing vision correction the problem is associated with the crystalline lens of the eye. Two primary problems that occur in the crystalline lens are (a) insufficient flexibility resulting in the inability to correctly focus incoming light and (b) light scattering also resulting in blurred vision.
  • The common errors of focusing of the eye fall into a class of visual impairments termed ametropias, which include myopia, hyperopia, astigmatism (regular and irregular) and presbyopia. These impairments generally cause visual blurring, and are most commonly corrected with eyeglasses or contact lenses, and sometimes with surgery. Myopia is the ocular condition where light from a distant object focuses in front of the retina resulting in blurred distance vision, while visual images of near objects are generally clear. Myopia is the most common reason for vision correction in a population under age 30. In hyperopia, an image of a distant object is focused behind the retina, making distance and near vision blurred, except where described later. Hyperopia, although exceedingly common, is not normally corrected until the fortieth decade when presbyopia makes correction necessary. Astigmatism is a refractive error that results in the eye's inability to focus along a first axis in a plane perpendicular to the line of sight being different from the eye's ability to focus along a second axis in the same plane perpendicular to the first axis, thus producing an image incapable of focusing at any distance. Astigmatism generally occurs as a second impairment along with either myopia or hyperopia, but is occasionally the only reason for needing visual correction. Astigmatism is subdivided by type and includes regular and irregular astigmatism as well as aberration. In irregular astigmatism there are other distortions or aberrations which are in some persons corrected by considering its effect upon the wavefront function. The wavefront function characterizes the refractive profile of the eye and defines irregular astigmatism, which is considered a higher order optical aberration such as spherical aberration, coma, trifoil, and others often characterized by Zernicke polynomials above the fourth order. (See, for example, Rae, Krueger & Applegate, Customized Corneal Ablation (2001), which is specifically incorporated herein by reference).
  • Of the ametropias, presbyopia stands out as a significant problem because of its prevalence and because it is not corrected as successfully as are myopia and hyperopia with the current treatment methods. Presbyopia is the focusing error caused by a loss of flexibility of the ocular lens. Lens flexibility allows for accommodation, which is the primary mechanism by which the eye changes focus. Accommodation is the change in shape of the ocular lens as it responds to neural feedback, ideally to focus light precisely on the back of the retina, allowing the perceived image to be seen in sharp focus. Presbyopia generally causes clinically significant blurred vision in humans starting between the ages of 40 and 50 years, and is one of the few human disorders with a prevalence of 100% in the population that reaches the age of the mid-50's.
  • Functionally, loss of accommodation is a life long process through which the ability of the ocular lens to change shape to allow for focused vision continually decreases starting essentially at birth. This change is evidenced in the following typical data comparing the eye's focusing ability, here measured by the eye's shortest focal length in units of diopters (the reciprocal of focal length measured in meters) to the age of an eye: 14 D. (focal length at 7 cm) at 10 years; 8.00 D. (f=12.5 cm) at 30 years, 4.00 D. (f=25 cm) at 45 years, and 1.00 D. (f=100 cm) at 52 years.
  • Until absolute presbyopia (i.e., no accommodation) occurs, focusing on close objects is achieved through the control of the ciliary muscle. Two theories of how this occurs have coexisted for more than 100 years, and have only recently been clarified by direct observation with sophisticated cameras and ultrasound systems. The Helmholz theory first proposed in 1909 basically defines the crystalline lens as being held in resting tension by the ciliary muscle when the lens is focused for a distance object. When the lens focuses on nearer objects, it is through the relaxation of the ciliary muscle, and releasing of any tension on the lens, yielding a thicker or more convex lens.
  • In addition to presbyopia, it is well known that another process occurs within the ocular lens throughout a normal human life that also generally becomes clinically diagnosable during the fourth decade of life. This second degenerative process manifests as the scattering of light as it passes through the lens. The process that leads to light scattering is the first step to cataract development.
  • Cataracts are areas of opacification of the ocular lens of sufficient size to interfere with vision. They have been extensively studied because of their high prevalence in a geriatric population. Cataracts in the aged (senile cataracts) are the most common type, and are often thought to be due to an acceleration of the previously mentioned light scatter. Cataracts occur to varying extents in all humans over the age of 50 years, but generally do not cause significant visual dysfunction until the ages of 60-80 years. Cataracts, however, can occur much earlier as a result of risk factors including disease, trauma, and family history.
  • FIG. 2 is presented as an aid to understanding the visual impairments related to the ocular lens (3). The ocular lens (3) is a multi-structural system as illustrated in FIG. 2. The macroscopic lens structure includes a cortex (13) just inside a capsule (14), which is an outer membrane that envelopes the other interior structures of the lens. The nuclei are formed from successive additions of the cortex (13) to the nuclear regions, which are subdivided into a deep fetal nucleus (22), which develops in the womb, an infantile nucleus (24), a juvenile nucleus (26), and the adult nucleus (28). On the microscopic level the structure of the nuclei is layered, resembling the structure of an onion with the oldest layers and oldest cells towards the center. Rather than being spherical, the lens is a biconvex shape as shown in FIG. 2. The cortex and the different nuclei have specific structures that are consistent through different ages for specific cell sizes, compactions, and clarity. The lens epithelium (23) forms at the lens equatorial region (21) generating ribbon-like cells or fibrils that grow anteriorly and posteriorly around the ocular lens. The unique formation of the crystalline lens is the biconvex shape where the ends of the cells align to form a suture in the central and paracentral areas both anteriorly and posteriorly. Transparency is maintained by the regular architecture of the fibrils. As long as the regular architecture is maintained, light passes unobstructed through the lens. The older tissue in both the cortex and nucleus has reduced cellular function, having lost their cell nuclei and other organelles several months after cell formation. The aqueous (17), the liquid in the anterior chamber between the lens and cornea flows very slowly through the lens capsule (14) and the sutures into more remote areas of the lens and provides the nutrients needed for minimal cellular life functions, including the removal of toxic and oxidative byproducts.
  • The microstructure of the fibrils contains interconnections between the ribbon-like fibrils called balls and sockets and interdigitations and imprints, which to some extent inhibit the relative motion of fibrils with respect to one another. Still, the fibrils are relatively free to move in relation to each other in the young, flexible crystalline lens. As the eye ages, there are age related changes to these structures that include the development of intermolecular bonding, mostly disulfide bonding, the compaction of tissue, the breakdown of some of the original attachments, and the yellowing or darkening of older lens areas.
  • Changes in the size and shape of the macroscopic lens components throughout life include both the increased curvature and general enlargement of the biconvex lens with age. The thickness of the posterior portion increases more than the anterior portion. Additionally, thickness increases are proportionately greater in the periphery.
  • The above mentioned disulfide bonding immobilizes the oldest and deepest lens tissue, characteristically seen in the nuclear regions. However, disulfide bonds are weak chemical bonds, and are subject to modification and breakage with relatively little energy. The disulfide bonds are largely formed by the effects of ambient ultraviolet (UV) light from the atmosphere and from the continual, unrelenting reduction in lens movement with age (presbyopia). The lens absorbs fluids from the aqueous, a process enhanced by lens accommodation, e.g., the undulating movement of the younger crystalline lens. The aqueous normally contains antioxidants that aid in preventing disulfide bond formation that further inhibits lens movement.
  • Just as for the mechanism of presbyopia, light scattering and cataractogenesis results from interfibril attachment. On the cellular level, all cataracts begin with oxidative changes of the crystalline tissue. The changes in the lens tissue that lead to light scattering occur when individual fibers combine to form large, light-disrupting macromolecular complexes.
  • The two different processes that lead to presbyopia and light scattering occur simultaneously and continuously but at different rates. The possible connection between the two processes was clarified by a 1994 report by Koretz et al. (Invest. Ophthal. Vis. Science (1994)), the entirety of which is specifically incorporated herein by reference to the extent not inconsistent with the disclosures of this patent. Koretz et al. studied extensively the presence of zones of light scatter. They not only confirmed that older lenses had more light scatter, but also they reported an acceleration in the rate of formation of light-scattering macromolecular complexes starting in the fourth decade of life. Since certain natural antioxidants within the lens are known to counteract the changes that produce light scatter, Koretz theorized that reduced lens movement due to decreased accommodation reduces the flow of fluids carrying the antioxidants and thereby exacerbates the process leading to light scattering.
  • As further foundation for this discussion, the anatomical structures of the eye are shown in FIG. 1, a cross sectional view of the eye. The sclera (31) is the white tissue that surrounds the lens except at the cornea. The cornea (1) is the transparent tissue that comprises the exterior surface of the eye through which light first enters the eye. The iris (2) is a colored, contractible membrane that controls the amount of light entering the eye by changing the size of the circular aperture at its center (the pupil). The ocular or crystalline lens (3), a more detailed picture of which is shown in FIG. 2, is located just posterior to the iris. Generally the ocular lens changes shape through the action of the ciliary muscle (8) to allow for focusing of a visual image. A neural feedback mechanism from the brain allows the ciliary muscle (8), acting through the attachment of the zonules (11), to change the shape of the ocular lens. Generally, sight occurs when light enters the eye through the cornea (1) and pupil, then proceeds past the ocular lens (3) through the vitreous (10) along the visual axis (4), strikes the retina (5) at the back of the eye, forming an image at the macula (6) that is transferred by the optic nerve (7) to the brain. The space between the cornea and the retina is filled with a liquid called the aqueous in the anterior chamber (9) and the vitreous (10), a gel-like, clear substance posterior to the lens.
  • The traditional solution for the correction of presbyopia and other refractive errors is to provide distance glasses, reading glasses, or a combination of the two called bifocals. Other forms of correction include the following: a) variable focus bifocal or progressive spectacles, b) contact lenses, c) aspheric corneal refractive surgery, and d) intraocular implant lenses for aphakic (absence of the ocular lens) individuals. Bifocal contact lenses are uncommonly used because, for fitting or for technical reasons, they are optically inferior to bifocal spectacles. An additional corrective method using contact lenses called “monovision” corrects one eye for near and the other for far, and the wearer learns to alternate using each eye with both open. Aspheric photorefractive keratectomy (such as is described in Ruiz, U.S. Pat. No. 5,533,997 and King, U.S. Pat. No. 5,395,356, the entire disclosures of which are specifically incorporated herein by reference to the extent not inconsistent with the disclosures of this patent) provides variable focus capabilities through an aspheric reshaping of the cornea. Similar to this optical correction, some aspherical intraocular implant lenses take the place of the natural ocular lens in individuals whose lens has been removed during cataract surgery. All of these techniques have one or more of the following disadvantages: a) they do not have the continuous range of focusing that natural accommodation provides; b) they are external devices placed on the face or eye; or c) they cut down the amount of light that normally focuses in the eye for any one particular distance, a particular problem because middle-aged individuals actually need more light because of light loss due to the development of light scattering, as described above.
  • Further treatments founded on using nutritional supplements have been considered to enhance accommodation and retard cataract development. Additionally, behavioral optometrists proposed many years ago the use of focusing exercises to slow down the deterioration of lens accommodation. None of these treatments has been widely accepted.
  • Alternative treatment methods to glasses have been more successful in correcting such refractive errors as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism compared with their limited success in treating presbyopia. Such alternative treatments use photorefractive procedures in an attempt to correct refractive errors and avoid the necessity of external lenses (e.g., spectacles and contact lenses), including the currently FDA-approved procedures of photorefractive keratectomy (PRK) and laser-assisted keratomileusis (LASIK). PRK and LASIK treatments use a laser to produce a unique shape in the static cornea of the eye that is calculated to precisely focus light at the retina taking into account the dimensions and limitations of other structures of the eye, especially the crystalline lens. These procedures are of limited utility specifically because they treat the static cornea and do not account for the dynamics of the crystalline lens, which change over time as evidenced by the occurrence of presbyopia.
  • Another disadvantage of the present photorefractive procedures is that they generally involve fairly invasive surgery. For instance, LASIK requires an incision in the cornea to create a flap of tissue that is peeled back to expose the interior of the cornea, which is then precisely sculpted to focus light on the retina.
  • For presbyopic correction specifically, current methods generally require surgical incision and physical penetration of a portion of the eye. For instance, Werblin (U.S. Pat. No. 5,222,981) proposed the surgical removal of the clear, intact crystalline lens for the purpose of correcting presbyopia and other ametropias, and substituting a multiple interchangeable components-intraocular lens. Removal of the lens requires an incision through which it can be removed.
  • Another development in photorefractive treatment of presbyopia is Bille (U.S. Pat. No. 4,907,586), which primarily describes a quasi-continuous laser reshaping the eye, namely the cornea and secondarily the crystalline lens in order to correct myopia, hyperopia, and astigmatism. Bille, however, also proposed that presbyopia might be corrected by semi-liquification or evaporation of lens tissue through treatment with a quasi-continuous laser.
  • In WO95/04509 and again later in U.S. Pat. No. 6,322,556, Gwon described a method to correct presbyopia, myopia, and hyperopia with an ultrashort laser pulse that produced volumetric reductions of lens tissue. While various methods to replace the clear crystalline lens with a flexible or gel intraocular implant have been developed as an alternate lenticular technology, Gwon's patented method was the only major milestone in direct treatment of the natural lens.
  • Scleral expansion is a presbyopia treatment method proposed in patents by Schachar (U.S. Pat. Nos. 5,529,076, 5,503,165, 5,489,299, and 5,465,737). In these patents, Schachar discloses a method of stretching the sclera, which restores accommodation by shifting the attachment of the cilliary muscle, allowing the lens to stretch its diameter. In addition, he suggests an alternative embodiment involving the use of laser irradiation of the lens to destroy the germinal epithelium to remove the source of growth of the crystalline lens. Schachar's method has been described to work according to the Tscherning mechanism, an alternative mechanism to the Helmholz theory and is an example of the multiplicity of presbyopia theories present in the field through the late 1990s.
  • Development of crystalline lens modification technology and presbyopia correction specifically may have been slow after 1990 because the Bille patent was directed (as was other research in the field) primarily toward the cornea, a simpler system than the dynamic crystalline lens because it a static refractive surface.
  • Another reason that crystallin lens modification technology has developed slowly is that ophthalmic professionals are accustomed to wholly removing the crystalline lens during cataract surgery, the most commonly performed surgery in the United States (greater than one million per year). Modifying the crystalline lens is considered the antithesis of the prevailing thought about lens removal. Also, ophthalmic professionals have traditionally looked upon the crystalline lens as susceptible to cataract development from a wide variety of causes especially trauma such as that of surgery directly on this tissue. A summary consisting of sixty-nine pages in Dayson's The Eye (1980), illustrates the wide breadth of causes of cataracts in the crystalline lens, including ultraviolet, infrared, and ultrasound energy; incisional surgery from the anterior (e.g., cornea) or the posterior (e.g., retina); many systemic diseases including diabetic changes from hyper- to hypo-glycemic conditions; trauma; toxic chemicals and pharmacological drugs; and malnutrition and vitamin deficiencies.
  • A reason that laser surgery is of particular interest is that much of the ocular media is transparent to the visible light spectrum, i.e., wavelengths of 400-700 nanometers (nm); thus, light of wavelengths in this range pass through the anterior eye without effect. While the near-visible spectrum on either side of the visible range, including ultraviolet and infrared light, has certain absorptive characteristics in various ocular tissues and may cause changes in the tissue, the safety of light irradiation can be specified according to a threshold energy level below which particular tissues will not be adversely affected. Above the threshold, ultraviolet or infrared light can cause damage to the eye, including the establishment of cataracts or even tissue destruction. The ability to destroy ocular tissue, however, can be made to be quite beneficial, and is a major premise underlying eye surgeries using light energy. As described below, light energy can be focused to a specific point, where the energy level at that point (expressed as a energy density) is at or above the threshold for tissue destruction. Energy in the light beam prior to focusing can be maintained at a energy density below the threshold for tissue destruction. This “pre-focused” light can be referred to using the term subthreshold bundles (described by L'Esperance, U.S. Pat. No. 4,538,608, the entire disclosure of which is specifically incorporated herein by reference to the extent not inconsistent with the disclosures of this patent), wherein the “bundles” are not destructive to tissue.
  • Lasers have been used widely to correct many ocular pathological conditions, including the suppression of hemorrhaging, the repair of retinal detachments, the correction of abnormal growth of the lens capsule after cataract surgery (posterior capsulotomy), and the reduction in intraocular pressure. Therefore, various laser sources providing numerous and even continuously variable wavelengths of laser light are well know in the art. The characteristics of the laser, including its wavelength and pulsewidth make different types of lasers valuable for specific purposes. For example, an excimer laser with pulsed UV light of 193 nm has been selected for photorefractive keratectomy (PRK) because it yields an ablation with very little heat release, and because it treats the corneal surface without penetrating the cornea. There are other excimer lasers that use wavelengths from 300-350 nm that will pass through the cornea and into the lens.
  • High energy light having a wavelength in the range from 100-3000 nm can be produced by various types of laser sources, including those using gases to produce the laser energy, such as the KrF excimer laser; solid state lasers, such as the Nd-YAG and Nd-YLF laser; and tunable dye lasers. No matter the laser source, the physical and chemical effects of coherent light from a laser upon ocular tissue vary according to a number of laser parameters, including wavelength, energy, energy density, focal point size, and frequency. Photodisruption and photoablation describe laser-tissue interactions in which some tissue is destroyed. The term photoablation has been used to describe tissue destruction for photorefractive keratectomy using an excimer laser, as well as for tissue destruction using infrared lasers. Within this application, the term photodisruption is used as described below in the Detailed Description, and may be used herein similarly to uses of the term photoablation in other references.
  • Of the various sources, infrared nanosecond and picosecond pulsed lasers such as the Nd-YAG and Nd-YLF have been used on the lens because they can focus for treatment deep in a transparent system, and because they remove tissue with minimal effect upon adjacent tissues. The size of the initial tissue destruction using these lasers is relatively large, however. New generation infrared lasers performing in the femtosecond range (10−15 seconds) can produce a smaller tissue disruption. (See Lin, U.S. Pat. No. 5,520,679).
  • SUMMARY OF THE INVENTION
  • The invention consists of methods for treating the clear, intact crystalline lens of an eye through the creation of microspheres, i.e., small, generally spherical pockets of gas within the lens (i.e., bubbles) for the purpose of correcting presbyopia, other refractive errors such as but not limited to myopia, hyperopia, regular and irregular astigmatism, for the retardation and prevention of cataracts, and treatment of other ocular anomalies. The creation of microspheres in the crystalline lens provides for changes in an ocular lens that may include but are not limited to changes in flexure, mass, and shape. Changes provided by the creation of microspheres generally improve visual acuity of the eye in a manner exemplified by but not limited to the ability to focus more clearly and with a greater range, and to transmit light without scatter and without distortion. The invention recognizes that the intact crystalline lens safely can be treated with a focused, scanning laser, and that treatment of the crystalline lens for correction of ametropias (including presbyopia) may be a superior methodology to refractive surgery on other structures of the eye, including the cornea or sclera, or the implantation of a flexible intraocular (crystalline) lens implant or gel. To enhance safety, the present invention may include concomitant use of antioxidative therapy to minimize any possible side-effects of acute laser radiation exposure during treatment.
  • In a preferred embodiment, the creation of microspheres occurs through a mechanism that may be referred to as photodisruption. The photodisruption mechanism used to create microspheres, which is described in detail in the following section, produces the beneficial visual effects mentioned above (correction of presbyopia and other refractive errors, retardation and prevention of cataracts, and treatment of other ocular anomalies) via two primary modes of action that are termed (1) photophacomodulation and (2) photophacoreduction. Photophacomodulation refers to any mechanism of light-induced change in crystalline lens tissue that affects its chemical and physical properties and thereby alters the dynamic properties of the crystalline lens including its ability to change shape. Photophacoreduction refers to any mechanism of light-induced change in the crystalline lens whereby the change primarily effects a reduction in the mass or volume of crystalline lens tissue. While these two terms are intended to be used consistently throughout this patent, they may be referred to elsewhere respectively using the terms crystalline lens modulation and volumetric reduction, or in combination using the umbrella term photorefractive lensectomy. By either mode of action, the beneficial effects of the invention are principally achieved through generation of microspheres (as noted above).
  • Embodiments of the invention that utilize the photophacomodulation mode (effecting a change in the dynamic properties of the crystalline lens) generally generate individual microspheres essentially independent from one another, or may generate individual microspheres that interact, for example by coalescence after generation. Generally, the methods of the invention use the photophacomodulation mode to change lens tissue within the older areas of the ocular lens such as the nucleus, and particularly within specific regions of the juvenile and adult nucleus, since older, more compact tissues are thought to be most responsible for loss in accommodation. In this respect, the present invention can be contrasted with disclosures of the Schachar patents previously cited, in which Schachar proposes treatment of the epithelium, an outer cortex layer, to impair the growth of the epithelium.
  • Embodiments of the invention that utilize the photophacoreduction mode (effecting volume reduction in the crystalline lens) generally generate microspheres that overlap on formation because their respective sites of photodisruption are contiguous as described below. Generally, the methods of the invention use the photophacoreduction mode to reduce lens tissue volume within the younger cortical areas of the ocular lens, often for the purpose of changing the topography of the exterior surface of the lens. The photophacoreduction mode, however, may be used within the nuclear regions as well.
  • In a preferred embodiment the methods of the invention such as photophacomodulation or photophacoreduction can be performed as outpatient ophthalmic procedure without the use of general anesthesia and without outside exposure of incised tissue with possible consequent infection.
  • A further benefit of the present invention for presbyopic correction is that it may actually restore natural accommodation (i.e., the ability of the lens to change its focusing dynamics), instead of attempting to correct for presbyopia through the use of aspherical optics on external lenses, implanted lenses, or the cornea, or requiring the gaze of the eyes to be translated to two or more locations as when using bifocal, trifocal, or progressive lenses.
  • In another embodiment, treatment according to this invention makes possible the retardation of cataract development. As mentioned above, Koretz observed in 1994 that an inverse relationship exists between lens accommodation and light scatter development, and that the processes leading to light scatter accelerate with decreasing accommodation. In view of the corollary that maintaining or increasing accommodation limits the increase of or reduces light scatter, by surgically increasing accommodation, as mentioned above, embodiments of the present invention may reduce current and anticipated future increases in light scatter. It is hypothesized that such a reduced rate for the processes leading to light scatter is achieved, at least in part, through increased aqueous circulation within the crystalline lens, which results from increased accommodation. As well, the present invention encompasses the creation of microchannels through the photodisruption process that would enhance aqueous circulation within the lens and thereby lead to reduced light scatter. This cataract retardation effect is differentiated from cataract removal (partial or full) and cataract prevention. Cataract retardation has been suggested elsewhere through the use of pharmaceuticals such as antioxidants used over long periods of time that allow for maintaining the transparency of the lens. In this invention, we disclose the use of antioxidants, but only for treatment of the acute or immediate effects of the laser therapy during and after lens irradiation. It is the longer term effects of laser therapy that may lead to a reduction in cataract development through use of certain embodiments of this invention. Whereas cataract removal traditionally has meant the total removal of the lens except for the posterior capsule, and Gwon (U.S. Pat. No. 6,322,556) has proposed removing partial cataracts, both complete and partial removal are different from cataract retardation, which is a benefit of embodiments of this invention.
  • Further objects and advantages of the invention will become apparent from a consideration of the drawings and ensuing description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the gross anatomy of the eye.
  • FIG. 2 is an enlarged view of the crystalline lens showing its internal structure.
  • FIG. 3 shows a general schematic of the instrumentation used in embodiments of the present invention.
  • FIG. 4 depicts the mechanism of microsphere formation by photodisruption.
  • FIG. 5 illustrates examples of the results of treatment by the individual microsphere formation methodology.
  • FIG. 6 depicts a mechanism of individual microsphere interaction producing a beneficial separation of lens fibrils.
  • FIG. 7 depicts microchannels created in a lens.
  • FIG. 8 depicts the results of cavity formation or volume reduction within the lens, resulting in a new lens surface topography.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 3 provides a basic illustration of the instrument (400) used to perform lenticular refractive surgery (LRS). A laser (402) produces a collimated beam (410) of light having essentially a single wavelength. The laser (402) preferably generates a beam of short duration, high frequency pulses such as discussed in Lin (U.S. Pat. No. 5,520,679), the entire disclosure of which is specifically incorporated herein by reference to the extent not inconsistent with the disclosures of this patent, but may be any laser that provides a beam of sufficient energy and that can be controlled to perform the treatment herein described. The laser beam (410) passes through a beam control system (406), likely comprising mirrors and lenses, for example mirrors (405) and lenses (407), that direct the light in three spatial dimensions and create vergence in the beam. The output from the beam control system (406) is a converging beam (412) that passes through a patient's cornea (420) and is focused on the surface of or within a patient's ocular lens (424) for purposes of treating ametropias and retarding cataractogenesis. The focal point (426) of the converging beam (412) is capable of traversing any point within the three-dimensional space occupied by the ocular lens (424). The surgeon combines knowledge of the patient, the expected ametropias (including presbyopia) to be altered, and lens biometric measurements determined by standard ophthalmic instruments to develop a treatment strategy. Certain of this data is transformed by a computer algorithm that controls the instrument (400) during the treatment, including control of laser parameters such as focal point location, energy level, and pulse duration and frequency. Focal point location during treatment is determined by a scanning program that may be used to reduce unwanted, short-term effects on lens tissue by moving the laser focal point among various areas of the lens, instead of treating immediately adjacent lens areas. A detailed description of an instrument similar to the one shown in FIG. 3, but used for cataract removal, is provided by L'Esperance, Jr. in U.S. Pat. No. 4,538,608, the entire contents of which are specifically incorporated herein to the extent not inconsistent with the disclosures of this patent. Note that in a preferred embodiment the surgeon would receive real-time feedback regarding the precise location of the focal point within the ocular lens and the structural changes as they are occurring. Such data may be obtained by the surgeon through the use of instruments and methods now known to one skilled in the art, or which may be later developed. Advances in eye surgical procedure may easily be incorporated into a procedure that utilizes an embodiment of the present invention.
  • In an embodiment, the LRS patient is prepared as in cataract surgery or other laser refractive surgical procedure (e.g., PRK). The anterior segment of the eye is prepared by procedures that are common to regular vision testing, including topical anesthetic, dilating drops, and cycloplegia (temporary paralysis of accommodation). Biometric measurements of the lens are taken by A-scan, high frequency ultrasound (B-scan), optical coherency tomography (OCT), or similar instrumental procedures to determine the exact dimensions of the lens, including the geometric center, thickness, and other contour measurements of the nucleus and cortex. Then the eye is held stationary by patient fixation on a coaxial light source. Fixation can be further controlled by a transparent applanation plate fixed to a suction ring on the anesthetized cornea and coupled to the optical pathway of the instrument. The surgeon aligns the instrument and the eye using at least one non-therapeutic helium-neon laser (404), which is focused by the surgeon in the lens at the focal point (426). Once the patient is prepared and the instrument aligned, treatment may begin.
  • The basis of LRS treatment is the laser induced photodisruption process occurring in the crystalline lens and depicted in FIG. 4. Note that the ocular lens with all of its internal structure (shown in FIG. 2) forms a single unitary structure such that reference to locations “in” or “within” the lens include locations “on” the lens, and the former terms (in and within) will generally be used throughout this patent to include the latter (on).
  • The photodisruption process is described as follows, beginning with reference to FIG. 3. The convergent laser beam (412) enters the eye through the cornea (420) as light waves, which have been described by L'Esperance (U.S. Pat. No. 4,538,608) as bundles of energy. The laser beam (412) passes through the cornea (420) without damage to that tissue because the energy density (referred to generally as “energy” and also called fluence or fluxure) of the laser within this tissue is at subthreshold levels. That is, only above a threshold energy density not obtained by the laser beam (412) within the cornea (420) will tissue damage occur. See Lin (U.S. Pat. No. 5,520,679) and L'Esperance (U.S. Pat. No. 4,538,608). During LRS treatment, however, the threshold energy level (energy density) is attained or surpassed at the focal point (426) of the converging laser beam (412) within the ocular lens (424). Given that sufficient energy is incident at the focal point (426) the process of photodisruption occurs.
  • Photodisruption as the term is used herein is a complex, multistep, sequential process, as illustrated in FIG. 4. When a laser pulse (502) traveling the path of the converging beam (412) reaches a first focal point (426) a very small amount of lens tissue (510) is destroyed in a volume essentially centered on that first focal point (426). The volume of lens tissue (510) destroyed depends upon the characteristics of the particular laser pulse (502) (pulse width, wavelength, energy, etc.) incident on the lens (424) and the characteristics of the lens tissue itself. For typical LRS procedures using today's laser technology this volume is likely in a range from about 0.1-500 μm3 (e.g., a sphere having a diameter of 0.5-10 μm). The laser energy incident at the first focal point (426) breaks molecular bonds and ionizes molecules and atoms, converting the tissue (510) at the first focal point (426) from a solid to a plasma (512). At the relatively high energy level of the plasma (512), the matter that has been converted occupies significantly more volume than it did as the solid tissue. Thus, there is a substantial, rapid expansion of the volume occupied by the converted matter, which generates a “hole” in the lens (occupied by the plasma (512)) and creates a shock wave (514) that resonates outwardly from the first focal point (426) into the surrounding tissue. For typical LRS procedures using today's laser technology the shock wave may extend from about 10-500 μm from the focal point. Note that the distance the shock wave travels is highly dependent on the pulse width of the laser.
  • As the procedure continues, the focal point of the laser is moved to a different location in the lens according to the scanning program, and the plasma (512) about the first focal point (426) rapidly converts to a gas (516). The gas (516) fairly rapidly obtains a state of relative equilibrium as compared with the state of the high energy plasma (512). The volume occupied by the gas (516), which is essentially centered on the first focal point (426), is referred to herein as a microsphere. Just as for the volume of tissue (510) destroyed at the focal point (426), the volume of the microsphere (516) depends on all of the laser parameters as well as the tissue characteristics, but for typical LRS procedures using today's laser technology the size of the microsphere will typically be in the range of about 60-15,000 μm3 (e.g., a sphere of diameter 5-30 μm). The volume of the microsphere may be less than the maximum volume occupied by the plasma (512) immediately after expansion due to the altered lenticular system arriving at a state of relative equilibrium after the shock (514) of plasma creation, but could be of greater volume than the plasma (512). The gas in the microsphere, however, is not likely to be in a true equilibrium and eventually likely will be absorbed by the lens tissue causing the microsphere to collapse. Absorption of the gas in the microsphere may occur almost instantaneously, may take up to several days, or may take a longer time. It is possible that in some circumstances the microsphere will not collapse during an extended period of time.
  • The creation of a microsphere is common to multiple embodiments disclosed herein, yet there are several different methodologies for utilizing the creation of microspheres in performing lenticular refractive surgery (LRS) as is illustrated in FIGS. 5-8. The various methodologies of the invention include (1) individual microsphere formation (FIGS. 5-6), (2) microchannel formation (FIG. 7), and (3) cavity formation or volume reduction (FIG. 8). Each of these methodologies, while distinct, has the potential to both increase the accommodation of the ocular lens and concurrently, consequently, or alternatively, to increase the fluid volume that passes through the various layers of the ocular lens in a given period of time. Such changes likely are the mechanisms whereby embodiments of the present invention effect treatment of ametropias, including presbyopia, and prevention or retardation of light scattering and cataractogenesis.
  • In an embodiment of the present invention using the individual microsphere formation methodology, the results of which are illustrated in FIGS. 5A-E, numerous individual microspheres (520) are created within the ocular lens (522) in a pattern of predetermined form. The numbers of individual microspheres that are applied to the crystalline lens may vary from a few to hundreds of thousands or more. In the experiments described in the Examples below the number of microspheres applied to a lens has exceeded 300,000. It is generally believed that the application of greater numbers of microspheres is more beneficial. Particularly as technology advances and the microspheres can be made smaller the number of microspheres applied to a lens during a single treatment regimen can be expected to increase further. An anticipated limit to the number of microspheres applied may be provided by the ratio of a minimum microsphere volume that is effective for producing visual improvement in a patient and the volume of the lens being treated.
  • As an example of this individual microsphere methodology, FIG. 5A depicts a lens (522) treated with microspheres (520) having an aggregate pattern that is an annulus. When using this methodology, individual microspheres (520) may be created at positions within the lens that are separated by sufficient distance so that the microspheres remain predominantly separate, i.e., as a result of the lens tissue characteristics the majority of individual microspheres do not coalesce with an adjacent microsphere. The distance between microspheres necessary to maintain their individual nature will vary, depending on lens and laser characteristics, from about 1 μm to about 1 mm, but when using today's technology in the preferred embodiment it will generally be in the range of 10-15 μm. Additionally, when the placement of microspheres occurs in locations such that a microsphere is anterior to a more posterior microsphere, the more posterior microsphere will be applied first in order to keep the more anterior microsphere from interfering with the creation of the more posterior microsphere.
  • The useful patterns of microsphere creation in the lens are essentially limited only by the skill of the surgeon operating the instrument. Shown in FIGS. 5A-E are various examples of microsphere patterns in an ocular lens (522). FIGS. 5A-D show a cross section of a crystalline lens laterally oriented as though viewed through a dilated eye and pupil (coronally). FIG. 5 E is a cross section of the lens oriented sagittally (ninety degrees rotated from FIGS. 5A-D). FIG. 5A shows an annulus; FIG. 5B shows a disk; FIG. 5C shows radially aligned wedges; FIG. 5D shows radial lines; and FIG. 5E shows the annulus of FIG. 5A or the radial lines of FIG. 5D from a sagittal view. The patterns of microspheres (520) may be applied to the lens essentially throughout the lens volume, except that treatment by LRS generally is intended not to violate the lens capsule (14), which maintains the physiological integrity of the lens and the surrounding aqueous (17) and vitreous (10).
  • There may be some hesitancy among practitioners to treat the center of the ocular lens along the visual axis, such as by utilizing the disk pattern shown in FIG. 5B. Such hesitancy may arise because of a perceived risk to disrupting lens tissue in the central region of vision (i.e., along the visual axis). Yet, because the microspheres generally collapse in due time, leaving in their absence a volume of lens tissue in the immediate vicinity of the once present microsphere that transmits light without visual disruption, there may be no clinical reason not to apply microspheres within the visual axis.
  • In an alternate embodiment individual microspheres are created at such distances from one another that at least some microspheres do coalesce. An illustration of how an individual microsphere may act in concert with another microsphere through coalescence is provided in FIGS. 6A-D. In FIG. 6 the fibrils (612) of the lens are depicted as straight lines equidistant from one another. Note that the elements of FIG. 6 are not drawn to scale, but are depicted in a manner that enhances the illustration of this written description. As described above, the converging laser beam (412) is focused at the focal point (426) within the lens, and by the process of photodisruption a first microsphere (516) is created, pushing apart or cleaving the fibrils (612) in the vicinity of the first microsphere (516). The energy of creation of the first microsphere is in the first instant contained within the fibrils adjacent to the first focal point and the interstices therebetween as shown if FIG. 6B. However, the forces resulting from microsphere creation, including plasma formation and the consequent shock wave (514) will likely cleave the laminar fibrils of the crystalline lens along the boundary between the fibrils. The cleavage of laminar fibrils of the crystalline lens by a dull surgical tool has been described by Eisner in Eye Surgery (1980), which is explicitly incorporated herein by reference to the extent not inconsistent with the disclosures of this patent. As LRS treatment continues, a second microsphere (517) is created, cleaving fibrils in its vicinity. The forces of microsphere creation that cleave fibrils (612) are such as to extend the separation between the fibrils (612) along the distance between the microspheres (516 and 517). The separation may extend along the entire distance between the microspheres (516 and 517) as shown in FIG. 6D. At the point that the separation between fibrils (612) has extended along the entire distance between microspheres (516 and 517), the microspheres will merge into a single expanded microsphere (515), as shown in FIG. 6D.
  • Also shown in FIG. 6 is a representation of the interconnections (518 and 519) between fibrils (612). These interconnections could be any form of engagement between fibrils, including interdigitations, van der Waals attractions, or disulfide bonds. The separation of fibrils (612) may be such that the interconnections (518 and 519) are disrupted to the extent that they no longer act to connect the fibrils (612), as shown in FIG. 6D. Both the separation of fibrils and the disruption or disengagement of the interconnections (518 and 519) allows a greater range of motion of fibrils (612) with respect to one another, including a greater ability to translate relative to one another. This greater range of motion, in turn, leads to increased flexibility of the crystalline lens as a whole, or at least in the region treated, which results in greater accommodation and, therefore, correction of presbyopia. Thus, the present invention is theorized to effect increased accommodation by decreasing tissue density and disrupting fibril interconnections.
  • While it is shown in FIG. 6 that disengagement of the fibril interconnections occurs as a result of the interaction or coalescence of microspheres (FIG. 6D), the same disruption or disengagement can and does occur via application of a single microsphere. As described above the creation of a microsphere will likely cleave the laminar fibrils along the fibril boundary. Because cleavage along fibril boundaries may occur whether or not microspheres coalesce, similar beneficial results (e.g., increased accommodation) may be achieved in either instance.
  • When using the individual microsphere formation methodology, microspheres are generally applied to areas of the crystalline lens which are the least flexible. In particular the juvenile nucleus (26) and the adult nucleus (28), seen in FIG. 2, are denser tissues within the lens and are considered the least flexible, and therefore are likely areas of treatment. In addition, it may be advantageous to treat other areas of the nucleus, including the infantile nucleus (24) where the older tissue is not so compacted, and even the cortex (13). Treatment of these older, denser, and less flexible areas is likely to have greater benefit than treatment elsewhere in the lens since the fibril structure of the older, denser lens areas is known to contain greater chemical cross-linking, more interfibril engagements, more compaction, and less transparency. Therefore, treatment of these less flexible areas with individual microspheres as described above may well achieve a decoupling of fibrils, i.e., a tearing apart of the macromolecular structures that form in the older lens tissue by breaking cross-linkages, disengaging interfibril engagements and generally separating the compacted layers of the lens tissue (e.g., as shown in FIGS. 6A-D).
  • The presentation of microspheres to the lens, i.e., the creation of microspheres in the lens as just described, is a technique that induces a softening of lens tissue. In particular, the creation of microspheres in the ocular lens and the consequent disruption of fibril interconnections (518 and 519) can lead to a greater flexibility and an increased range of motion of the fibrils (612), which, in turn, may generate an increase in lens accommodation or allow for the maintenance of the present level of accommodation for a longer period of time, and therein may be a treatment for visual impairments, especially for presbyopia. Using the methodology of individual microsphere formation to treat a presbyopic lens may generate increased accommodation in the range from 0-8 Diopters, which can have the effect of providing a 45 year-old lens with the flexibility of a typical 35 year-old lens. As described above, when discussing Koretz's observations, such an increase in or maintenance of accommodation may also aid in reducing light scatter or reducing the rate at which light scatter is created.
  • In alternate embodiments of the individual microsphere formation methodology, in addition to or as an alternative to the benefits in relation to reducing presbyopia, increasing accommodative potential may correct some amount of myopia, hyperopia, astigmatism, or aberration. That is, an increase in accommodation may provide the lens the added flexure and biomechanical changes needed to correctly focus an image in response to neural feedback, thereby correcting myopia, hyperopia, astigmatism, or aberration.
  • In a further embodiment using the individual microsphere formation methodology, it is also possible to achieve targeted flexural changes in the ocular lens, that is, flexural changes at specific locations or within certain regions, so as to generate useful biomechanical differentials across the lens volume. These biomechanical differentials may include differential flexibility or thickness between regions. Purposely creating a lens wherein certain regions are more flexible or thicker than others may allow for improved focusing capability. For example, for the correction of hyperopia, achieving more flexure along the visual axis (4), as opposed to the periphery of the lens, would allow a greater range in lens shape through the center of the lens so that when tension on the crystalline lens was relaxed, the lens would be more convex than before treatment, correcting the hyperopia to at least some extent. Similarly, myopia might be corrected by the application of individual microspheres to achieve targeted biomechanical changes in the ocular lens at the periphery, the visual axis, or at some other location, so as to allow for a less convex lens shape when the crystalline lens is under full constriction as it would be when viewing a distant object. The creation of biomechanical differentials in flexibility and thickness are particularly important with respect to the treatment of astigmatism because the focusing potential of the lens must be the same in the all focal planes.
  • In another embodiment of the present invention, the results of which are illustrated in FIG. 7, microspheres are created within the ocular lens (3) in close proximity to one another in a generally sequential pattern from posterior to anterior positions in the lens. In this embodiment the microspheres are created at positions within the lens that are separated by an insufficient distance to maintain the individuality of the microspheres. Not only are the individual microspheres created close enough to one another that they do coalesce, but also according to this embodiment the small volumes of tissue removed (e.g., volume 510 in FIG. 4) are contiguous. By moving the laser focal point generally in an anterior direction from the starting point (534), and removing contiguous volumes of tissue (e.g., volume 510 in FIG. 4), an open channel (530) in the lens tissue can be created. This open channel (530) is referred to as a microchannel (530) and is different from the embodiment described above and illustrated in FIG. 6 in which the microspheres are placed close enough to coalesce but in which the small volumes of tissue removed are not contiguous. An additional difference from the embodiment illustrated in FIG. 6 is that a microchannel of this embodiment traverses a path generally perpendicular to the length of the fibers. Even though some of the gas created in the microchannel during the photodisruption process may be absorbed by the remaining lens tissue, sufficient lens tissue mass has been removed along the path of the microchannel that even with some reduction in channel volume due to gas absorption, the channel remains generally open. Also different from the embodiment of FIG. 6, the microchannels of this embodiment are created in such dimension—i.e., sufficient tissue volume is removed—that they remain as open channels long after the surgery, possibly on the order of years or longer.
  • The microchannel (530) is generally characterized by a path length from the starting point (534) to the endpoint (532) that is greater in distance than any channel dimension perpendicular thereto. That is, if the microchannel is created having a generally circular cross section, its length is greater than the cross section diameter. The starting and ending points (534 and 532) for the microchannels may be the sutures which are known to be a part of the fluid flow system of the lens. While the length of a microchannel is generally along a path essentially parallel to the visual axis, the microchannel may follow a non-linear path along a length in the general direction from posterior to anterior. As well, although the circular cross section is the preferred shape, any feasible cross sectional shape may be used.
  • The microchannels aid in fluid transport through the structures of the ocular lens, thereby allowing an exchange of antioxidants, nutrients, and metabolic by-products between the aqueous and portions of the lens to which there was previously insufficient fluid flow. As described in the Background section the older tissues in the lens, primarily in the nucleus (12), are generally more dense and show a build-up of cellular by-products. The increased fluid transport in these older tissues such as is allowed by the microchannels may retard or reverse the processes that lead to declining accommodation (i.e., presbyopia) and light scattering. The microchannels may be used alone as a treatment strategy or may be used to supplement the enhanced fluid flow generated by increasing the flexure of the lens for the correction of presbyopia.
  • In another embodiment, illustrated in FIG. 8, mass and volume reduction of the lens tissue generally at the periphery is accomplished through the creation of microspheres in such proximity that the small volumes of tissue removed (e.g., volume 510 in FIG. 4) in the photodisruption process are contiguous. This methodology is generally referred to as photophacoreduction. While the methodology is essentially the same as in the previous embodiment in which microchannels are created through tissue removal, the location, geometry, and purpose of the volume removal of this embodiment is substantially different.
  • In this embodiment the removal of contiguous volumes by photodisruption creates a cavity (15) in the cortex (13) as opposed to the nucleus (12) of the ocular lens (3). FIG. 8A shows the location of the cavity (15) in the lens (3) where the lens (3) is still in the shape it had prior to cavity (15) formation. The cavities (15) can follow the contour of a fibril layer of the lens to reduce the numbers of fibers that are interrupted, or may be created to maximize the number of fibers interrupted. The result of the procedure of this embodiment is a collapse of the capsule (14) in the region of the tissue removal wherein the path of the capsule (16) prior to the collapse is longer and located generally anterior to the path of the capsule (18) after collapse. FIG. 8B shows the lens shape after collapse of the cavity (15), at which time, as a result of the collapse, the cavity (15) is no longer present in the lens as remaining lens tissue has collapsed into the cavity (15). Due to cavity (15) formation the lenticular capsule (14) may also loosen causing a reduction in the useful energy imparted to the lens by the zonules. If necessary the capsule can be tightened by thermoplasty using infrared radiation without opening a hole in the capsule. Using thermoplasty reduces the length of the lens capsule (14) in the region about the volume reduction. Collapse of the lens (3) may occur naturally as a result of volume removal, or may be induced as a result of capsule thermoplasty. Treatment by photophacoreduction may best be accomplished in the less dense tissues of the cortex (13) or the infantile nucleus (24), but otherwise may be performed in essentially any lens location.
  • Generally, in the embodiment shown in FIG. 8, the procedure will be performed for the purpose of altering the exterior topography of the ocular lens as a method for correcting ametropias other than presbyopia. The beneficial effect of this embodiment may be a change in the refractive power of the lens at the location at which a topography change occurs so as to lessen or remove completely the myopic, hyperopic or astigmatic condition of a person's vision. Cavities toward the optical center cause a surface collapse that produce a less convex anterior or posterior surface, and that reduce myopia. Alternatively, placing the cavity toward the equator may reduce hyperopia. Creating a cavity of varying thickness induces lenticular astigmatism which may counteract an existing astigmatism. While a change in refractive power is a possible benefit, the lens capsule collapse may also cause a different angular insertion to the zonules and may thereby provide a more efficient ciliary muscle action allowing for some correction of myopia, hyperopia, and presbyopia. An additional benefit to the removal of lens mass and volume near the periphery, however, may be an increase in accommodation.
  • A further alternative embodiment is the prevention of cataract formation through any of the methodologies described above: 1) individual microsphere formation, 2) microchannel formation, and 3) volume removal. While there is a connection between presbyopia and the development of light scatter and lens opacification, success in cataract retardation may be independent of the success of treatment for presbyopia.
  • In an alternative embodiment, the application of numerous individual microspheres may produce a combined net increase upon the lens thickness that will also result in an increase in accommodation. The additional volume that results from microsphere formation may vary as the lens is pulled upon by the ciliary muscle and alternately relaxed. Due to the effects of tension on the lens, the additional volume from microsphere formation may be greatest when the lens is relaxed. The result of this kind of relaxed volume change depending on the tension in the lens is actually an increase in accommodation.
  • A still further alternate embodiment is the concomitant use of drugs to reduce inflammation and the effects of free radicals and debris within the lens portions of the eye before, during, and after the procedure. Antioxidative drugs, such as galactose, glutathione, and penicillamine, can react locally with any active by-products and facilitate the reduction of free radicals generated during the surgery. These drugs enter the circulatory, lympathic, and intraocular systems after oral or topical administration, then naturally penetrate the lens matrix from the aqueous. After treatment according to an embodiment of this invention, their transport may be aided by the newly gained flexure as well as newly created microchannels. Also, anesthetics, mydriatics and cycloplegics are used at the time of the treatment as in other intraocular surgeries. Miotics for pressure control, corticosteroids and/or non-steroidal anti-inflammatory drugs (NSAIDS) also may be used after surgery.
  • Each of the methodologies just described can be carried out using lasers for which the emitted light has a variety of physical parameters. The light used may be in wavelengths from ultraviolet through visible and into the infrared regions of the electromagnetic spectrum, any of which wavelengths may be useful in carrying out embodiments of this invention. A range of wavelengths from about 100 nm to about 2000 nm may be useful in embodiments of this invention. Because of the general transparency of the tissues of the anterior portions of the eye to visible light (allowing visible light to pass through the eye and to be focused on the retina), the preferred wavelength ranges do not include the visible wavelengths but are in the ultraviolet region from about 310-350 nm and in the infrared region from about 700-1500 nm. There are advantages and disadvantages to each of these ranges as mentioned previously. The most preferred wavelengths, and those which have been most extensively tested for use in embodiments of this invention are the infrared wavelengths from about 800-1300 nm, and particularly from about 800-1000 nm.
  • Preferred ranges for other laser parameters include the following. The preferred pulse width is in the range from about 1 fs to about 500 ps, with the more preferred range being from about 50 fs to about 500 fs. The preferred pulse energy has the range of about 0.1 mJ to about 10 mJ per pulse with the more preferred range being from about 0.5 to about 50 mJ per pulse. The preferred frequency for pulse delivery has the range of about 1 Hz to about 50,000 Hz, with a more preferred range of about 1,000 Hz to about 20,000 Hz. The pulse energy would be within the range of about 0.25 mJ/pulse to about 1 J/pulse, the more preferred range being from about 0.5 mJ/pulse to about 50 mJ/pulse.
  • Steps included in embodiments of the present invention to maximize the safety and efficacy to the lens and other vital parts of the eye during treatment include maintaining the lens capsule intact, i.e., keep from physically destroying the lens capsule, which would otherwise thereby allow the lens contents to have an opening to the aqueous, which is well known to cause cataract. Another safety procedure is to control the cone angle of the laser beam such that extraneous light not absorbed by interactions at the focal point is masked by inert posterior matter from damaging other tissue. Preferred cone angles range from about 2 degrees to about 40 degrees, with the more preferred cone angles being from about 5 degrees to about 15 degrees. Further, control of light energy parameters (e.g., wavelength, pulse frequency, etc.) and the use of pharmacological agents may be used to minimize pathological changes to the cornea, equatorial (germinal) lens epithelium and fibril, ciliary body, and the perimacular region of the retina.
  • While a fairly specific mechanism has been described for the process of photodisruption, other mechanisms are encompassed by this invention. Any mechanism through which a microsphere as described herein can be created may work to produce the beneficial results described herein. The various mechanisms by which a microsphere may be created in the crystalline lens include those that result from the application of a wide variety of energy sources. Discussed in detail herein is the use of laser light (particularly in the infrared and ultraviolet wavelengths) as an energy source for creation of a microsphere, but any energy source and delivery method that can be used to create a microsphere in the crystalline lens may be suitable for use in this invention. Alternate sources of energy include but are not limited to mechanical sources such as a water jet or scalpel, sound or ultrasound energy, and heat.
  • In an alternate embodiment, any of the above described methodologies can be performed with the use of a probe inserted through a corneal incision for the purpose of delivering the energy necessary to create the microspheres. Use of a probe to deliver energy would allow light energy and various other methods of transferring mechanical energy, such as by water jet, to be utilized in embodiments of this invention. In this alternate embodiment the probe for delivery of energy may abut the lenticular surface or may be held at some distance therefrom. This alternative embodiment is preferred for the delivery of sources of energy that are not efficiently transported through the anterior portions of the eye.
  • Presently, the preferred group of patients on which to carry out this treatment is emmotropic low hyperopic subjects with spectacle prescriptions of less than 3.00 D. Preferred patients are pre-presbyopic, in their early 40's, with 3-5 Diopters of accommodation, and have undergone a full-dilated eye exam to determine the following: a) no prior history of eye disease, trauma, cataracts, or collagen vascular disease; b) normal gonioscopic findings; and c) no significant systemic diseases.
  • The properties of the crystalline lens and lasers identified herein allow for treating the clear, intact, crystalline lens for the purpose of correcting presbyopia, refractive errors, higher order aberrations, and other disease conditions including cataract prevention and retardation. A multiplicity of methodologies makes it possible to address the various probable causes of presbyopia. The result of treatment for presbyopia according to an embodiment of this invention is likely to restore from five to eight diopters of accommodation and to postpone presbyopic development for 5-8 years or more. The same processes of lenticular hardening and enlargement will continue after treatment and will eventually cause a reduction in accommodation, resulting in delayed presbyopia onset after treatment. An additional treatment may prove safe and efficacious, which would further delay presbyopia. In at least one embodiment, all of the changes to the crystalline lens are made under the control of a computerized laser, which can make specific modifications either separately or together for the treatment of presbyopia, myopia, hyperopia, and astigmatism, as well as for cataract prevention and retardation.
  • Examples Cadaver Lens Study
  • As a first step, a precision technique was verified on 36 human cadaver lenses, where the age-dependent, flexural characteristics of the lenses were compared with results in studies of other designs. In the second step, an Nd-YAG laser was used to produce a 2-4 mm annulus in one of a pair of lenses from 11 donors while the fellow lens was kept as the control. The Nd-YAG pulse produced microspheres in the range of 50-500 μm diameter. An annular laser pulse pattern of 100 suprathreshold pulses were placed in the center of the treated lens, to produce a doughnut shaped pattern of microspheres. A simulated accommodation was created using a rotating base upon which the lens revolved at up to 1000 rpm. Rotational deformation was measured by changes in the central thickness and in anterior lens curvature as measured by two different techniques. When comparing the matched lenses, lens flexibility differences were demonstrated by statistically significant differences in lens curvature and thickness. That is, rotational deformation flattened the curvature and decreased the thickness of the treated lens, compared to the untreated, less flexible lens. Dioptric changes were calculated at as much as 8 diopters of change. The greater lens formation among laser treated lenses compared to their fellow untreated control lenses showed that the first demonstrated example of increasing flexure and accommodation by laser treatment of the crystalline lens, and therefore photophakomodulation may be a possible lens treatment for presbyopia.
  • Saftey Study
  • Six rabbits were treated in one eye with a femtosecond laser generating approximately 300,000 microspheres in either of two patterns, an annulus or radial lines, and at various degrees of microsphere separation. The study was set up to observe cataractogenic potential of microspheres in live animals three months after laser treatment. The animals were sacrificed at three months and their lenses were examined for early and advanced cataract formation through gross viewing, light and electron microscopy. Furthermore, optical quality tests using known scanning laser light scattering techniques over the full cross section of the lens demonstrated no increase in light scatter or refractive distortion in treated lenses relative to their match controls. The results and implications of this study to the invention were as follows.
      • a) Ultrashort low energy pulses can be efficiently delivered transcorneally into the lens nucleus and cortex of living subjects.
      • b) Femtosecond laser pulses of low energy produce very limited lens tissue disruption with a myriad of small microspheres. Initially, a ground glass appearance over the treated area is seen, was not present grossly or under magnification after three months.
      • c) No optical distortion was seen using exacting, diffractional techniques three months after the lens was treated and compared with its control lens.
      • d) No cataractous changes were seen grossly in the lenses, except in one instance where both the treated and untreated excised lenses developed cataracts.
      • e) Electron microscopy showed limited disruption of lens tissue adjacent to the treated area. There is small electron dense film at the juncture of the microsphere and other tissue.
  • While the present invention has been disclosed in connection with certain preferred embodiments, this description should not be taken as limiting the invention to all of the provided details. Modifications and variations of the described embodiments may be made without departing from the scope and spirit of the invention. Various and multiple alternate embodiments are encompassed in the present invention disclosure as would be understood by one of ordinary skill in the art.

Claims (29)

1. A method for increasing the flexibility of an ocular lens of an eye, comprising:
a) selecting a location within an ocular lens of an eye;
b) creating a microsphere at the selected location, wherein said microsphere comprises a gas-filled bubble of generally spherical shape; and
c) repeating processes a) and b) of selecting and creating at a plurality of locations within said ocular lens so as to increase flexibility of said ocular lens, wherein said microsphere created in one process b) of creating remains separate from any other microsphere created during another process b) of creating.
2. The method of claim 1 wherein said increase in flexibility corrects an optical anomaly of said eye.
3. The method of claim 2 wherein said optical anomaly comprises a refractive error.
4. The method of claim 3 wherein said refractive error is selected from the group consisting of: myopia, hyperopia, presbyopia, regular astigmatism, irregular astigmatism, and aberrations.
5. The method of claim 4, wherein said repeating generates at least one change in said ocular lens resulting in at least one effect selected from the group consisting of: alteration of lens surface curvature, increased lens flexibility, increased accommodation, reduced light scatter, reduced rate of increase in light scatter, and reduced rate of loss of accommodation.
6. The method of claim 1 wherein said increase in flexibility increases accommodation of said ocular lens.
7. The method of claim 1 further including: allowing said microsphere and said any other microsphere to collapse while maintaining said increase in flexibility.
8. The method of claim 7 wherein said collapse decreases an anterior to posterior thickness of said ocular lens.
9. The method of claim 1 wherein said increase in flexibility creates no significant change in an anterior to posterior thickness of said ocular lens.
10. (canceled)
11. The method of claim 1 wherein said microsphere and said any other microsphere are created with a separation in a range of about 2 μm to about 20 μm.
12-14. (canceled)
15. The method of claim 1, further comprising: presenting antioxidants to said eye.
16. The method of claim 15 wherein said antioxidants mediate changes to said ocular lens or other ocular structures and contents.
17. The method of claim 1, further comprising altering a lens capsule of said ocular lens.
18. The method of claim 17, whereby a surface area of said lens capsule is reduced by thermoplasty.
19. The method of claim 1, wherein said selecting primarily includes selecting locations within adult and juvenile nuclei of said eye.
20-36. (canceled)
37. The method of claim 4 wherein said refractive error is myopia.
38. The method of claim 4 wherein said refractive error is hyperopia.
39. The method of claim 4 wherein said refractive error is presbyopia.
40. The method of claim 4 wherein said refractive error is regular astigmatism.
41. The method of claim 4 wherein said refractive error is irregular astigmatism.
42. The method of claim 4 wherein said refractive error is aberrations.
43. The method of claim 5, wherein said at least one effect is alteration of lens surface curvature.
44. The method of claim 5, wherein said at least one effect is increased lens flexibility.
45. The method of claim 5, wherein said at least one effect is increased accommodation.
46. The method of claim 5, wherein said at least one effect is reduced light scatter.
47. The method of claim 5, wherein said at least one effect is reduced rate of increase in light scatter.
US12/685,850 1996-03-21 2010-01-12 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation Abandoned US20100114079A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/685,850 US20100114079A1 (en) 1996-03-21 2010-01-12 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US13/243,406 US20120016350A1 (en) 1996-03-21 2011-09-23 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US1379196P 1996-03-21 1996-03-21
US3690497P 1997-02-05 1997-02-05
US82190397A 1997-03-21 1997-03-21
US31251899A 1999-05-14 1999-05-14
US09/897,585 US20020049450A1 (en) 1996-03-21 2001-06-29 Correction of presbyopia, other refractive errors and cataract retardation
US10/750,789 US7655002B2 (en) 1996-03-21 2004-01-02 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US12/685,850 US20100114079A1 (en) 1996-03-21 2010-01-12 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/750,789 Continuation US7655002B2 (en) 1996-03-21 2004-01-02 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/243,406 Continuation US20120016350A1 (en) 1996-03-21 2011-09-23 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Publications (1)

Publication Number Publication Date
US20100114079A1 true US20100114079A1 (en) 2010-05-06

Family

ID=46300638

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/750,789 Expired - Lifetime US7655002B2 (en) 1996-03-21 2004-01-02 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US12/685,850 Abandoned US20100114079A1 (en) 1996-03-21 2010-01-12 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US13/243,406 Abandoned US20120016350A1 (en) 1996-03-21 2011-09-23 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/750,789 Expired - Lifetime US7655002B2 (en) 1996-03-21 2004-01-02 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/243,406 Abandoned US20120016350A1 (en) 1996-03-21 2011-09-23 Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation

Country Status (1)

Country Link
US (3) US7655002B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070185475A1 (en) * 2006-01-20 2007-08-09 Frey Rudolph W System and method for providing the shaped structural weakening of the human lens with a laser
US20080161781A1 (en) * 2005-02-19 2008-07-03 Mcardle George J Apparatus and Processes For Preventing or Delaying Onset or Progression of Age-Related Cataract
US20110160622A1 (en) * 2008-03-31 2011-06-30 Mcardle George J Processes and apparatus for preventing, delaying or ameliorating one or more symptoms of presbyopia
US20110160709A1 (en) * 2004-11-02 2011-06-30 Lenticular Research Group Llc Apparatus and Processes for Preventing or Delaying One or More Symptoms of Presbyopia
US20120150157A1 (en) * 2010-12-10 2012-06-14 Wolfel Mathias Laser device for ophthalmological laser surgery
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
US8465478B2 (en) 2009-07-24 2013-06-18 Lensar, Inc. System and method for performing LADAR assisted procedures on the lens of an eye
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8556425B2 (en) 2010-02-01 2013-10-15 Lensar, Inc. Purkinjie image-based alignment of suction ring in ophthalmic applications
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
US20140185889A1 (en) * 2012-12-28 2014-07-03 Canon Kabushiki Kaisha Image Processing Apparatus and Image Processing Method
US8801186B2 (en) 2010-10-15 2014-08-12 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
US9180051B2 (en) 2006-01-20 2015-11-10 Lensar Inc. System and apparatus for treating the lens of an eye
US9375349B2 (en) 2006-01-20 2016-06-28 Lensar, Llc System and method for providing laser shot patterns to the lens of an eye
US9393154B2 (en) * 2011-10-28 2016-07-19 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US9592157B2 (en) 2012-11-09 2017-03-14 Bausch & Lomb Incorporated System and method for femto-fragmentation of a crystalline lens
US9629750B2 (en) 2012-04-18 2017-04-25 Technolas Perfect Vision Gmbh Surgical laser unit with variable modes of operation
US9889043B2 (en) 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655002B2 (en) 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
DE19940712A1 (en) * 1999-08-26 2001-03-01 Aesculap Meditec Gmbh Method and device for treating opacities and / or hardening of an unopened eye
CA2446143C (en) 2000-05-19 2010-01-19 Michael S. Berlin Delivery system and method of use for the eye
US8679089B2 (en) 2001-05-21 2014-03-25 Michael S. Berlin Glaucoma surgery methods and systems
US9603741B2 (en) 2000-05-19 2017-03-28 Michael S. Berlin Delivery system and method of use for the eye
US20050149006A1 (en) * 2001-11-07 2005-07-07 Peyman Gholam A. Device and method for reshaping the cornea
ES2289276T3 (en) * 2002-03-23 2008-02-01 Intralase Corp. IMPROVED MATERIAL PROCESSING SYSTEM USING A LASER RAY.
US8186357B2 (en) * 2004-01-23 2012-05-29 Rowiak Gmbh Control device for a surgical laser
US8394084B2 (en) * 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US9072589B2 (en) 2005-11-17 2015-07-07 Wavelight Gmbh Assembly and method for performing surgical laser treatments of the eye
ES2374819T3 (en) * 2005-11-17 2012-02-22 Wavelight Gmbh PROVISION TO PERFORM SURGICAL TREATMENTS WITH LASER EYE.
US10213340B2 (en) * 2006-01-20 2019-02-26 Lensar, Inc. Methods and systems to provide excluded defined zones for increasing accommodative amplitude
US10709610B2 (en) 2006-01-20 2020-07-14 Lensar, Inc. Laser methods and systems for addressing conditions of the lens
EP3711719B1 (en) * 2006-01-20 2023-06-07 Lensar, Inc. System for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US9248047B2 (en) * 2006-01-23 2016-02-02 Ziemer Holding Ag System for protecting tissue in the treatment of eyes
EP1810646A1 (en) * 2006-01-23 2007-07-25 SIE AG, Surgical Instrument Engineering Apparatus for protecting tissue during eye surgery
US20080015660A1 (en) * 2006-07-13 2008-01-17 Priavision, Inc. Method And Apparatus For Photo-Chemical Oculoplasty/Keratoplasty
DE102006036800A1 (en) 2006-08-07 2008-02-14 Carl Zeiss Meditec Ag Device for individual treatment planning and positionally accurate modification of an optical element
EP1897520B1 (en) * 2006-09-07 2010-11-10 Ziemer Holding AG Ophthalmological device for the refractive correction of an eye.
EP2649971B1 (en) 2007-03-13 2016-08-31 Optimedica Corporation Apparatus for creating ocular surgical and relaxing incisions
DE102007035850A1 (en) * 2007-07-31 2009-02-05 Carl Zeiss Meditec Ag laser system
JP5623907B2 (en) * 2007-09-05 2014-11-12 アルコン レンゼックス, インコーポレーテッド Laser-induced protective shield in laser surgery
US9456925B2 (en) 2007-09-06 2016-10-04 Alcon Lensx, Inc. Photodisruptive laser treatment of the crystalline lens
ES2673575T3 (en) 2007-09-06 2018-06-22 Alcon Lensx, Inc. Precise fixation of surgical photo-disruption objective
JP2010538699A (en) * 2007-09-06 2010-12-16 アルコン レンゼックス, インコーポレーテッド Photodestructive treatment of the lens
WO2009039315A2 (en) * 2007-09-18 2009-03-26 Lensx Lasers, Inc. Methods and apparatus for laser treatment of the crystalline lens
US20170360609A9 (en) 2007-09-24 2017-12-21 Ivantis, Inc. Methods and devices for increasing aqueous humor outflow
WO2009059251A2 (en) * 2007-11-02 2009-05-07 Lensx Lasers, Inc. Methods and apparatus for improved post-operative ocular optical peformance
US20090177189A1 (en) * 2008-01-09 2009-07-09 Ferenc Raksi Photodisruptive laser fragmentation of tissue
JP2011513002A (en) 2008-03-05 2011-04-28 イバンティス インコーポレイテッド Method and apparatus for treating glaucoma
US10080684B2 (en) 2008-03-13 2018-09-25 Optimedica Corporation System and method for laser corneal incisions for keratoplasty procedures
US9901503B2 (en) 2008-03-13 2018-02-27 Optimedica Corporation Mobile patient bed
US9060847B2 (en) * 2008-05-19 2015-06-23 University Of Rochester Optical hydrogel material with photosensitizer and method for modifying the refractive index
DE102008027358A1 (en) 2008-06-05 2009-12-10 Carl Zeiss Meditec Ag Ophthalmic laser system and operating procedures
US10182942B2 (en) 2008-06-05 2019-01-22 Carl Zeiss Meditec Ag Ophthalmological laser system and operating method
US11185226B2 (en) 2008-07-25 2021-11-30 Lensar, Inc. System and method for measuring tilt in the crystalline lens for laser phaco fragmentation
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
EP2349148A1 (en) * 2008-08-08 2011-08-03 Glostrup Hospital System and method for treatment of lens related disorders
DE102008049692B4 (en) * 2008-09-19 2010-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser-based device for non-contact scanning of eyes and corresponding laser-based scanning method
US20100082017A1 (en) 2008-09-26 2010-04-01 Advanced Medical Optics, Inc. Laser modification of intraocular lens
DE102009012873B4 (en) 2009-03-12 2021-08-19 Carl Zeiss Meditec Ag Ophthalmic laser system and control unit
AU2010271274B2 (en) 2009-07-09 2015-05-21 Alcon Inc. Single operator device for delivering an ocular implant
AU2010271218B2 (en) 2009-07-09 2017-02-02 Alcon Inc. Ocular implants and methods for delivering ocular implants into the eye
WO2011011400A1 (en) * 2009-07-24 2011-01-27 Lensar, Inc. Liquid holding interface device for ophthalmic laser procedures
US10772499B2 (en) 2009-07-25 2020-09-15 Lensar, Inc. System and method for measuring tilt
US9504608B2 (en) 2009-07-29 2016-11-29 Alcon Lensx, Inc. Optical system with movable lens for ophthalmic surgical laser
US8267925B2 (en) * 2009-07-29 2012-09-18 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US8262647B2 (en) * 2009-07-29 2012-09-11 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US20110028949A1 (en) * 2009-07-29 2011-02-03 Lensx Lasers, Inc. Optical System for Ophthalmic Surgical Laser
US8518028B2 (en) * 2009-09-30 2013-08-27 Abbott Medical Optics Inc. Methods for enhancing accommodation of a natural lens of an eye
US9278026B2 (en) * 2009-09-30 2016-03-08 Abbott Medical Optics Inc. Capsular membrane treatments to increase accommodative amplitude
US9445889B2 (en) 2009-09-30 2016-09-20 Abbott Medical Optics Inc. Capsular membrane implants to increase accommodative amplitude
US8506559B2 (en) * 2009-11-16 2013-08-13 Alcon Lensx, Inc. Variable stage optical system for ophthalmic surgical laser
US20110122144A1 (en) * 2009-11-24 2011-05-26 Ofer Gabay Automatically Adaptive Display Eliminating Need For Vision Correction Aids
AU2011203989B2 (en) 2010-01-08 2015-06-11 Amo Development, Llc System for modifying eye tissue and intraocular lenses
US10085886B2 (en) 2010-01-08 2018-10-02 Optimedica Corporation Method and system for modifying eye tissue and intraocular lenses
JP5763681B2 (en) 2010-01-22 2015-08-12 オプティメディカ・コーポレイション Device for automatic placement of capsulotomy by scanning laser
EP2531090A4 (en) * 2010-02-01 2014-11-12 Lensar Inc Placido ring measurement of astigmatism axis and laser marking of astigmatism axis
US9278028B2 (en) 2010-02-08 2016-03-08 Optimedica Corporation System and method for plasma-mediated modification of tissue
US20160074221A1 (en) * 2010-06-14 2016-03-17 Marie-Jose B. Tassignon Femtosecond laser apparatus for plasma induced vitreous ablation in the eye
US9161857B2 (en) * 2010-07-29 2015-10-20 Eos Holdings, Llc Presbyopic vision correction with controlled 3-D patterned mechanical weakening of scleral tissue
JP5694537B2 (en) 2010-09-02 2015-04-01 オプティメディカ・コーポレイションOptimedica Corporation Patient interface for ophthalmic diagnosis and intervention
EP2468226A1 (en) * 2010-12-23 2012-06-27 Rowiak GmbH Controller for a surgical laser
US10143589B2 (en) 2011-02-22 2018-12-04 Anita Nevyas-Wallace Method and apparatus for making improved surgical incisions in corrective eye surgery
US10251781B2 (en) 2011-03-21 2019-04-09 Adventus Technologies, Inc. Restoration of accommodation by lens refilling
WO2012135073A2 (en) 2011-03-25 2012-10-04 Board Of Trustees Of Michigan State University Adaptive laser system for ophthalmic use
US20120283557A1 (en) 2011-05-05 2012-11-08 Berlin Michael S Methods and Apparatuses for the Treatment of Glaucoma using visible and infrared ultrashort laser pulses
US8657776B2 (en) 2011-06-14 2014-02-25 Ivantis, Inc. Ocular implants for delivery into the eye
US9095414B2 (en) * 2011-06-24 2015-08-04 The Regents Of The University Of California Nonlinear optical photodynamic therapy (NLO-PDT) of the cornea
US9301806B2 (en) 2011-10-21 2016-04-05 Nusite Technologies Llc Methods and patterns for increasing amplitude of accommodations in a human lens
US9044302B2 (en) 2011-10-21 2015-06-02 Optimedica Corp. Patient interface for ophthalmologic diagnostic and interventional procedures
US9237967B2 (en) 2011-10-21 2016-01-19 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US8863749B2 (en) 2011-10-21 2014-10-21 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US8663150B2 (en) 2011-12-19 2014-03-04 Ivantis, Inc. Delivering ocular implants into the eye
US9393155B2 (en) 2011-12-28 2016-07-19 Technolas Perfect Vision Gmbh System and method for postoperative capsular bag control
US8807752B2 (en) 2012-03-08 2014-08-19 Technolas Perfect Vision Gmbh System and method with refractive corrections for controlled placement of a laser beam's focal point
US8852177B2 (en) 2012-03-09 2014-10-07 Alcon Lensx, Inc. Spatio-temporal beam modulator for surgical laser systems
US10182943B2 (en) 2012-03-09 2019-01-22 Alcon Lensx, Inc. Adjustable pupil system for surgical laser systems
DE102012007272B4 (en) * 2012-04-12 2013-10-24 Wavelight Gmbh Laser device and method for configuring such a laser device
US9358156B2 (en) 2012-04-18 2016-06-07 Invantis, Inc. Ocular implants for delivery into an anterior chamber of the eye
JP5890582B2 (en) * 2012-04-20 2016-03-22 バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus, method and computer program for control of corneal ablation laser
US20140148737A1 (en) * 2012-04-25 2014-05-29 Stroma Medical Corporation Application of Electromagnetic Radiation to the Human Iris
US10548771B2 (en) * 2012-09-06 2020-02-04 Carl Zeiss Meditec Ag Device and procedure to treat presbyopia
US10143590B2 (en) 2012-09-07 2018-12-04 Optimedica Corporation Methods and systems for performing a posterior capsulotomy and for laser eye surgery with a penetrated cornea
US20140114296A1 (en) 2012-10-24 2014-04-24 Optimedica Corporation Graphical user interface for laser eye surgery system
CA2890080A1 (en) 2012-11-02 2014-05-08 Optimedica Corporation Optical surface identification for laser eye surgery
US10292863B2 (en) 2012-11-02 2019-05-21 Optimedica Corporation Interface force feedback in a laser eye surgery system
US9445946B2 (en) 2012-11-02 2016-09-20 Optimedica Corporation Laser eye surgery system
US10285860B2 (en) 2012-11-02 2019-05-14 Optimedica Corporation Vacuum loss detection during laser eye surgery
US10624786B2 (en) 2012-11-02 2020-04-21 Amo Development, Llc Monitoring laser pulse energy in a laser eye surgery system
US9987165B2 (en) 2012-11-02 2018-06-05 Optimedica Corporation Liquid optical interface for laser eye surgery system
US10617558B2 (en) 2012-11-28 2020-04-14 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US10758413B2 (en) * 2012-12-07 2020-09-01 Cesacar Participacions, S.L. Femto second multi shooting for eye surgery
JP6338256B2 (en) 2013-03-13 2018-06-06 オプティメディカ・コーポレイションOptimedica Corporation Laser surgery system
CN107456313B (en) 2013-03-13 2020-11-17 光学医疗公司 Free floating patient interface for laser surgery system
US20150216598A1 (en) * 2013-03-13 2015-08-06 Cynosure, Inc. Controlled photomechanical and photothermal tissue treatment in the picosecond regime
US9554891B2 (en) 2013-03-14 2017-01-31 Amo Groningen B.V. Apparatus, system, and method for providing an implantable ring for altering a shape of the cornea
EP2967999B1 (en) 2013-03-14 2017-04-19 Optimedica Corporation Laser capsulovitreotomy
EP2968003B1 (en) 2013-03-15 2022-07-13 AMO Development, LLC Microfemtotomy systems
US9241901B2 (en) 2013-03-15 2016-01-26 Amo Wavefront Sciences, Llc Non-invasive refractive treatment using nanoparticles
AU2014253904B2 (en) 2013-04-17 2018-11-08 Amo Development, Llc Laser fiducials for axis alignment in cataract surgery
US10369053B2 (en) 2013-04-17 2019-08-06 Optimedica Corporation Corneal topography measurements and fiducial mark incisions in laser surgical procedures
CA2909717C (en) 2013-04-18 2021-12-14 Optimedica Corporation Corneal topography measurement and alignment of corneal surgical procedures
EP3646774A1 (en) 2013-07-25 2020-05-06 Optimedica Corporation In situ determination of refractive index of materials
US9844465B2 (en) 2013-07-29 2017-12-19 Lensar, Inc. Second pass femtosecond laser for incomplete laser full or partial thickness corneal incisions
EP3590479A3 (en) 2013-07-29 2020-03-11 Lensar, Inc. Patient interface device for ophthalmic laser procedures
EP3054907B1 (en) 2013-10-08 2019-04-03 Optimedica Corporation Laser eye surgery system calibration
EP3424405B1 (en) 2014-02-04 2020-08-12 AMO Development, LLC System for laser corneal incisions for keratoplasty procedures
AU2015214443B2 (en) 2014-02-04 2019-11-28 Amo Development, Llc Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface
US10363173B2 (en) 2014-02-04 2019-07-30 Optimedica Corporation Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface
CA2943632A1 (en) 2014-03-24 2015-10-01 Optimedica Corporation Automated calibration of laser system and tomography system with fluorescent imaging of scan pattern
WO2015147925A1 (en) 2014-03-26 2015-10-01 Optimedica Corporation Confocal laser eye surgery system
US10441463B2 (en) 2014-03-26 2019-10-15 Optimedica Corporation Confocal laser eye surgery system and improved confocal bypass assembly
US10441465B2 (en) 2014-03-26 2019-10-15 Optimedica Corporation Registration of LOI fiducials with camera
WO2016011056A1 (en) 2014-07-14 2016-01-21 Ivantis, Inc. Ocular implant delivery system and method
EP3197338B1 (en) * 2014-09-25 2020-11-04 AMO Development, LLC Methods and systems for corneal topography, blink detection and laser eye surgery
CA2964798A1 (en) 2014-10-17 2016-04-21 Optimedica Corporation Automatic patient positioning within a laser eye surgery system
WO2016061552A1 (en) 2014-10-17 2016-04-21 Optimedica Corporation Vacuum loss detection during laser eye surgery
WO2016061511A1 (en) 2014-10-17 2016-04-21 Optimedica Corporation Laser eye surgery lens fragmentation
USD900316S1 (en) 2014-12-03 2020-10-27 Amo Development, Llc Docking assembly
US10406032B2 (en) 2014-12-19 2019-09-10 Optimedica Corporation Liquid loss detection during laser eye surgery
JP6827615B2 (en) 2015-02-06 2021-02-10 エーエムオー ディベロップメント エルエルシー Closed Loop Laser Eye Surgery
AU2015387450A1 (en) 2015-03-25 2017-10-12 Optimedica Corporation Multiple depth optical coherence tomography system and method and laser eye surgery system incorporating the same
US10485705B2 (en) 2015-07-01 2019-11-26 Optimedica Corporation Sub-nanosecond laser cataract surgery system
US11083625B2 (en) 2015-07-01 2021-08-10 Amo Development, Llc Sub-nanosecond laser surgery system utilizing multiple pulsed laser beams
WO2017007503A1 (en) 2015-07-08 2017-01-12 Optimedica Corporation Laser surgical systems with laser scan location verification
AU2015401596A1 (en) 2015-07-08 2018-01-18 Optimedica Corporation Image processing method and system for edge detection and laser eye surgery system incorporating the same
EP4265231A3 (en) 2015-08-14 2023-12-20 Alcon Inc. Ocular implant with pressure sensor
AU2016341984B2 (en) 2015-10-21 2021-10-14 Amo Development, Llc Laser beam calibration and beam quality measurement in laser surgery systems
AU2016355599A1 (en) * 2015-11-20 2018-07-05 Lenticular Research Group, Llc Processes and apparatus for preventing, delaying or ameliorating one or more symptoms presbyopia
US10219948B2 (en) 2016-02-24 2019-03-05 Perfect Ip, Llc Ophthalmic laser treatment system and method
DE102016208012A1 (en) * 2016-05-10 2017-11-16 Carl Zeiss Meditec Ag Eye surgery procedure
US10555835B2 (en) 2016-05-10 2020-02-11 Optimedica Corporation Laser eye surgery systems and methods of treating vitreous and ocular floaters
CA3041662A1 (en) 2016-10-26 2018-05-03 Optimedica Corporation Ophthalmic laser delivery apparatus using mems micromirror arrays for scanning and focusing laser beam
CA3052147A1 (en) 2017-01-31 2018-08-09 Optimedica Corporation Methods and systems for laser ophthalmic surgery that provide for iris exposures below a predetermined exposure limit
WO2018145114A1 (en) 2017-02-06 2018-08-09 Optimedica Corporation Additive manufacturing inside the human eye
DE102017125422A1 (en) * 2017-10-30 2019-05-02 Rowiak Gmbh Device for producing an aperture diaphragm in the eye
AU2019226595A1 (en) * 2018-03-02 2020-10-15 Lensar, Inc. Laser methods and systems for addressing, mitigating and reversing presbyopia
WO2021202247A1 (en) * 2020-03-30 2021-10-07 Clerio Vision, Inc. Ophthalmic lens with depth-modulated optical structures and methods of forming
JP2024503989A (en) 2021-01-11 2024-01-30 アルコン インコーポレイティド Systems and methods for viscoelastic delivery

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074407A (en) * 1956-09-17 1963-01-22 Marguerite Barr Moon Eye Res F Surgical devices for keratoplasty and methods thereof
US4309998A (en) * 1978-06-08 1982-01-12 Aron Rosa Daniele S Process and apparatus for ophthalmic surgery
US4502816A (en) * 1983-06-27 1985-03-05 Creter Vault Corp. Shoreline breakwater
US4565197A (en) * 1983-11-22 1986-01-21 Lasers For Medicine Laser ophthalmic surgical system
US4573193A (en) * 1983-07-25 1986-02-25 Mitsubishi Denki Kabushiki Kaisha Individual identification apparatus
US4573778A (en) * 1983-03-16 1986-03-04 Boston University Aqueous fluorophotometer
US4576160A (en) * 1982-07-15 1986-03-18 Tokyo Kogaku Kikai Kabushiki Kaisha Phototherapeutic apparatus with spot size regulating means
US4633866A (en) * 1981-11-23 1987-01-06 Gholam Peyman Ophthalmic laser surgical method
US4638801A (en) * 1983-07-06 1987-01-27 Lasers For Medicine Laser ophthalmic surgical system
US4644948A (en) * 1983-05-27 1987-02-24 Carl-Zeiss-Stiftung Apparatus for dose measurement upon photocoagulation in the fundus of the eye
US4648400A (en) * 1985-05-06 1987-03-10 Rts Laboratories, Inc. Ophthalmic surgery system
US4718418A (en) * 1983-11-17 1988-01-12 Lri L.P. Apparatus for ophthalmological surgery
US4719912A (en) * 1983-02-28 1988-01-19 Promed Technology, Inc. Apparatus for controlling the photocoagulation of biological tissue
US4721379A (en) * 1985-01-16 1988-01-26 Lri L.P. Apparatus for analysis and correction of abnormal refractive errors of the eye
US4724522A (en) * 1986-05-27 1988-02-09 Belgorod Barry M Method and apparatus for modification of corneal refractive properties
US4729373A (en) * 1986-12-18 1988-03-08 Peyman Gholam A Laser-powered surgical device with a vibrating crystalline tip
US4729372A (en) * 1983-11-17 1988-03-08 Lri L.P. Apparatus for performing ophthalmic laser surgery
US4732148A (en) * 1983-11-17 1988-03-22 Lri L.P. Method for performing ophthalmic laser surgery
US4732460A (en) * 1986-07-01 1988-03-22 Coherent, Inc. Beam selector for a photocoagulator
US4798204A (en) * 1987-05-13 1989-01-17 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4891043A (en) * 1987-05-28 1990-01-02 Board Of Trustees Of The University Of Illinois System for selective release of liposome encapsulated material via laser radiation
US4900145A (en) * 1987-04-09 1990-02-13 Kowa Company Ltd. Ophthalmic disease detection apparatus
US4900143A (en) * 1988-03-09 1990-02-13 Electro-Optics Laboratory, Inc. Ophthalmoscope handpiece with laser delivery system
US4902124A (en) * 1988-09-06 1990-02-20 Roy Sr Frederick H Cataract monitoring method and means
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4903695A (en) * 1988-11-30 1990-02-27 Lri L.P. Method and apparatus for performing a keratomileusis or the like operation
US4905711A (en) * 1988-03-08 1990-03-06 Taunton Technologies, Inc. Eye restraining device
US4907586A (en) * 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4911160A (en) * 1986-04-30 1990-03-27 Meditec Reinhardt Thyzel Gmbh Apparatus for laser surgery on a patient lying on an operating table
US4911711A (en) * 1986-12-05 1990-03-27 Taunton Technologies, Inc. Sculpture apparatus for correcting curvature of the cornea
US4988348A (en) * 1989-05-26 1991-01-29 Intelligent Surgical Lasers, Inc. Method for reshaping the cornea
US4994058A (en) * 1986-03-19 1991-02-19 Summit Technology, Inc. Surface shaping using lasers
US5000751A (en) * 1985-06-29 1991-03-19 Aesculap Ag Apparatus for laser surgery and particularly for the keratotomy of the cornea (III)
US5000561A (en) * 1988-10-06 1991-03-19 Lasag Ag Control arrangement for an apparatus for ophthalmological treatment
US5002571A (en) * 1989-02-06 1991-03-26 Donnell Jr Francis E O Intraocular lens implant and method of locating and adhering within the posterior chamber
US5090798A (en) * 1987-04-27 1992-02-25 Canon Kabushiki Kaisha Applied intensity distribution controlling apparatus
US5092863A (en) * 1990-04-09 1992-03-03 St. Louis University Ophthalmological surgery apparatus and methods
US5094521A (en) * 1990-11-07 1992-03-10 Vision Research Laboratories Apparatus for evaluating eye alignment
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5178635A (en) * 1992-05-04 1993-01-12 Allergan, Inc. Method for determining amount of medication in an implantable device
US5188631A (en) * 1983-11-17 1993-02-23 Visx, Incorporated Method for opthalmological surgery
US5194948A (en) * 1991-04-26 1993-03-16 At&T Bell Laboratories Article alignment method and apparatus
US5196027A (en) * 1990-05-02 1993-03-23 Thompson Keith P Apparatus and process for application and adjustable reprofiling of synthetic lenticules for vision correction
US5196006A (en) * 1989-04-25 1993-03-23 Summit Technology, Inc. Method and apparatus for excision endpoint control
US5246435A (en) * 1992-02-25 1993-09-21 Intelligent Surgical Lasers Method for removing cataractous material
US5275593A (en) * 1992-04-30 1994-01-04 Surgical Technologies, Inc. Ophthalmic surgery probe assembly
US5277911A (en) * 1990-08-07 1994-01-11 Mediventures, Inc. Ablatable mask of polyoxyalkylene polymer and ionic polysaccharide gel for laser reprofiling of the cornea
US5279611A (en) * 1992-03-13 1994-01-18 Mcdonnell Peter J Laser shaping of ocular surfaces using ablation mask formed in situ
US5279298A (en) * 1992-11-20 1994-01-18 The Johns Hopkins University Method and apparatus to identify and treat neovascular membranes in the eye
US5281211A (en) * 1989-06-07 1994-01-25 University Of Miami, School Of Medicine, Dept. Of Ophthalmology Noncontact laser microsurgical apparatus
US5282798A (en) * 1992-02-12 1994-02-01 Heraeus Surgical, Inc. Apparatus for supporting an orbicularly tipped surgical laser fiber
US5284477A (en) * 1987-06-25 1994-02-08 International Business Machines Corporation Device for correcting the shape of an object by laser treatment
US5288293A (en) * 1992-09-24 1994-02-22 Donnell Jr Francis E O In vivo modification of refractive power of an intraocular lens implant
US5290272A (en) * 1992-03-16 1994-03-01 Helios Inc. Method for the joining of ocular tissues using laser light
US5295989A (en) * 1991-05-31 1994-03-22 Nidek Co., Ltd. Light cable for use in an apparatus for ophthalmic operation using a laser beam
US5391165A (en) * 1990-08-22 1995-02-21 Phoenix Laser Systems, Inc. System for scanning a surgical laser beam
US5395356A (en) * 1993-06-04 1995-03-07 Summit Technology, Inc. Correction of presbyopia by photorefractive keratectomy
US5480396A (en) * 1994-12-09 1996-01-02 Simon; Gabriel Laser beam ophthalmological surgery method and apparatus
US5484432A (en) * 1985-09-27 1996-01-16 Laser Biotech, Inc. Collagen treatment apparatus
US5489299A (en) * 1992-07-15 1996-02-06 Schachar; Ronald A. Treatment of presbyopia and other eye disorders
US5594753A (en) * 1994-04-25 1997-01-14 Autonomous Technology Corporation Cartridge excimer laser system
US5607472A (en) * 1995-05-09 1997-03-04 Emory University Intraocular lens for restoring accommodation and allows adjustment of optical power
US5709868A (en) * 1995-09-20 1998-01-20 Perricone; Nicholas V. Lipoic acid in topical compositions
US5722970A (en) * 1991-04-04 1998-03-03 Premier Laser Systems, Inc. Laser surgical method using transparent probe
US5731909A (en) * 1995-05-12 1998-03-24 Schachar; Ronald A. Method for increasing the power of an elastically deformable lens
US5886768A (en) * 1995-03-15 1999-03-23 Knopp; Carl F. Apparatus and method of imaging interior structures of the eye
US6013101A (en) * 1994-11-21 2000-01-11 Acuity (Israel) Limited Accommodating intraocular lens implant
US6022088A (en) * 1996-08-29 2000-02-08 Bausch & Lomb Surgical, Inc. Ophthalmic microsurgical system
US6027494A (en) * 1997-06-06 2000-02-22 Autonomous Technologies Corporation Ablatement designed for dark adaptability
US6186148B1 (en) * 1998-02-04 2001-02-13 Kiyoshi Okada Prevention of posterior capsular opacification
US6197056B1 (en) * 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
US6197018B1 (en) * 1996-08-12 2001-03-06 O'donnell, Jr. Francis E. Laser method for restoring accommodative potential
US20020004658A1 (en) * 1998-04-17 2002-01-10 Audrey Munnerlyn Multiple beam laser sculpting system and method
US6344040B1 (en) * 1999-03-11 2002-02-05 Intralase Corporation Device and method for removing gas and debris during the photodisruption of stromal tissue
US20020025311A1 (en) * 2000-08-16 2002-02-28 Till Jonathan S. Presbyopia treatment by lens alteration
US20020110549A1 (en) * 2000-08-16 2002-08-15 Till Jonathan S. Presbyopia treatment by lens alteration
US20030029053A1 (en) * 2001-07-26 2003-02-13 Shibuya Machinery Co., Ltd Method and apparatus for centrifugally dehydrating workpiece
US20030050629A1 (en) * 2001-09-07 2003-03-13 Kadziauskas Kenneth E Cataract extraction apparatus and method
US20030055412A1 (en) * 1998-10-02 2003-03-20 Scientific Optics, Inc. Method for diagnosing and improving vision
US6610686B1 (en) * 1999-03-17 2003-08-26 Ausimont S.P.A. Use of pirenoxine for the protection of corneal tissues in photokeractomy
US6693927B1 (en) * 2002-09-13 2004-02-17 Intralase Corp. Method and apparatus for oscillator start-up control for mode-locked laser
US6849091B1 (en) * 2000-05-19 2005-02-01 Eyeonics, Inc. Lens assembly for depth of focus
US7171908B2 (en) * 2003-03-19 2007-02-06 Wabtec Holding Corp. High/Low passenger ingress and egress conversion for transit vehicle
US7182759B2 (en) * 2001-09-07 2007-02-27 Advanced Medical Optics, Inc. Cataract extraction apparatus and method with rapid pulse phaco power
USRE40002E1 (en) * 1998-11-10 2008-01-15 Surgilight, Inc. Treatment of presbyopia and other eye disorders using a scanning laser system
US7479106B2 (en) * 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
US20100004643A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US20100002837A1 (en) * 2006-12-13 2010-01-07 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US20100004641A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and apparatus for delivering a laser beam to the lens of an eye
US20100022995A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for removal and replacement of lens material from the lens of an eye
US20100022994A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Liquid filled index matching device for ophthalmic laser procedures
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US7655002B2 (en) * 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US20110022035A1 (en) * 2009-07-24 2011-01-27 Porter Gerrit N Liquid holding interface device for ophthalmic laser procedures
US20110022036A1 (en) * 2009-07-24 2011-01-27 Frey Rudolph W System and method for performing ladar assisted procedures on the lens of an eye
US20110028950A1 (en) * 2009-07-29 2011-02-03 Lensx Lasers, Inc. Optical System for Ophthalmic Surgical Laser
US20110040293A1 (en) * 2009-02-09 2011-02-17 Amo Development Llc. System and method for intrastromal refractive correction

Family Cites Families (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971382A (en) 1973-12-11 1976-07-27 Krasnov Mikhail M Method of non-surgical treatment of cataracts
US3982541A (en) 1974-07-29 1976-09-28 Esperance Jr Francis A L Eye surgical instrument
US4024852A (en) * 1976-02-05 1977-05-24 Esperance Paul M L Solar energy reflector-collector
US4263893A (en) * 1978-10-03 1981-04-28 Consuntrator, Inc. Solar energy collector construction
US4477159A (en) 1980-11-06 1984-10-16 Nidek Co., Ltd. Photocoagulator
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
US4394144A (en) 1981-09-03 1983-07-19 Kaken Chemical Co., Ltd. Dehumidifying container
FR2513873B1 (en) * 1981-10-02 1985-10-25 Essilor Int OPHTHALMOLOGICAL LASER SURGERY APPARATUS
US4583539A (en) * 1982-01-12 1986-04-22 Cornell Research Foundation, Inc. Laser surgical system
US4461294A (en) 1982-01-20 1984-07-24 Baron Neville A Apparatus and process for recurving the cornea of an eye
US4712543A (en) 1982-01-20 1987-12-15 Baron Neville A Process for recurving the cornea of an eye
FR2524298A1 (en) 1982-04-01 1983-10-07 Essilor Int LASER OPHTHALMOLOGICAL SURGICAL APPARATUS
US4883351A (en) 1982-09-10 1989-11-28 Weiss Jeffrey N Apparatus for the detection of diabetes and other abnormalities affecting the lens of the eye
US4715703A (en) 1982-10-12 1987-12-29 Rodenstock Instrument Corporation Ocular-fundus analyzer
US4537193A (en) 1982-10-28 1985-08-27 Hgm, Inc. Laser endocoagulator apparatus
DE3245939C2 (en) * 1982-12-11 1985-12-19 Fa. Carl Zeiss, 7920 Heidenheim Device for generating an image of the fundus
US4770162A (en) 1983-05-26 1988-09-13 Phillips Petroleum Company Solar energy collecting system
DE3331431C2 (en) 1983-08-31 1986-03-27 Optische Werke G. Rodenstock, 8000 München Device for coupling operating light into an eye examination device
DE3331586A1 (en) * 1983-09-01 1985-03-28 Fa. Carl Zeiss, 7920 Heidenheim OPHTHALMOLOGICAL COMBINATION DEVICE FOR DIAGNOSIS AND THERAPY
US4669839A (en) 1983-09-16 1987-06-02 Carl-Zeiss-Stiftung Optical system for therapeutic use of laser light
US4870952A (en) 1983-10-28 1989-10-03 Miquel Martinez Fiber optic illuminator for use in surgery
US4561436A (en) 1983-10-28 1985-12-31 Cooper Lasersonics, Inc. Optical system for surgical ophthalmic laser instrument
US4862888A (en) 1983-10-28 1989-09-05 Bausch & Lomb Incorporated Laser system
DE3339370A1 (en) 1983-10-29 1985-05-09 Meditec GmbH, 8501 Heroldsberg PULSE LASER FOR MEDICAL APPLICATIONS
US4770172A (en) 1983-11-17 1988-09-13 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4773414A (en) 1983-11-17 1988-09-27 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4665913A (en) * 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
US5207668A (en) * 1983-11-17 1993-05-04 Visx Incorporated Method for opthalmological surgery
US5219343A (en) 1983-11-17 1993-06-15 Visx Incorporated Apparatus for performing ophthalmogolical surgery
US5108388B1 (en) * 1983-12-15 2000-09-19 Visx Inc Laser surgery method
US4711540A (en) 1984-01-04 1987-12-08 Tokyo Kogaku Kikai Kabushiki Kaisha Eye disease inspecting instrument
US4686979A (en) 1984-01-09 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Excimer laser phototherapy for the dissolution of abnormal growth
JPS60148537A (en) 1984-01-12 1985-08-05 興和株式会社 Opththalimic measuring apparatus utilizing laser beam
US4711541A (en) 1984-02-02 1987-12-08 Tokyo Kogaku Kikai Kabushiki Kaisha Slit lamp and accessory device thereof
US4601288A (en) 1984-02-24 1986-07-22 Myers John D Laser device and method
US4538608A (en) 1984-03-23 1985-09-03 Esperance Jr Francis A L Method and apparatus for removing cataractous lens tissue by laser radiation
US4588505A (en) 1984-05-07 1986-05-13 Frontier Technology, Inc. Water scavenger pouch
US4601037A (en) 1984-06-13 1986-07-15 Britt Corporation Pulsed laser system
US4580559A (en) * 1984-07-24 1986-04-08 Esperance Francis A L Indirect ophthalmoscopic photocoagulation delivery system for retinal surgery
FR2576780B1 (en) 1985-02-04 1991-06-14 Azema Alain APPARATUS FOR CHANGING THE CURVATURE OF THE EYE CORNEA OVER THE WHOLE PUPILLARY SURFACE BY PHOTOCHEMICAL ABLATION OF THE SAME
US4657013A (en) * 1985-03-25 1987-04-14 Carl-Zeiss-Stiftung Illuminance dosage device for an operation microscope
US4682595A (en) 1985-03-25 1987-07-28 Carl-Zeiss-Stiftung Illuminance dosage device
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4820264A (en) * 1985-05-01 1989-04-11 Tokyo Kogaku Kikai Kabushiki Kaisha Infusion instrument
US4686992A (en) 1985-05-03 1987-08-18 Coopervision, Inc. Ophthalmic beam director
US4628416A (en) 1985-05-03 1986-12-09 Coopervision, Inc. Variable spot size illuminator with constant convergence angle
JPS61268230A (en) 1985-05-22 1986-11-27 興和株式会社 Ophthalmic measuring apparatus
US4758081A (en) 1985-07-18 1988-07-19 Bausch & Lomb Incorporated Control of laser photocoagulation using Raman radiation
EP0236377B1 (en) 1985-09-11 1992-06-03 G. Rodenstock Instrumente Gmbh Device for generating a laser spot of controllable size
AU606315B2 (en) 1985-09-12 1991-02-07 Summit Technology, Inc. Surface erosion using lasers
US4770486A (en) 1985-09-26 1988-09-13 Alcon Laboratories, Inc. Optical system for powered surgical instrument system
US5137530A (en) 1985-09-27 1992-08-11 Sand Bruce J Collagen treatment apparatus
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5304169A (en) * 1985-09-27 1994-04-19 Laser Biotech, Inc. Method for collagen shrinkage
JPS6294154A (en) * 1985-10-18 1987-04-30 興和株式会社 Laser beam coagulation apparatus
JPS6294153A (en) 1985-10-18 1987-04-30 興和株式会社 Laser beam coagulation apparatus
CA1284823C (en) 1985-10-22 1991-06-11 Kenneth K. York Systems and methods for creating rounded work surfaces by photoablation
DE8601287U1 (en) 1986-01-20 1986-02-27 Carl Zeiss, 89518 Heidenheim Extended slit lamp device for eye treatment using laser beams
CH671329A5 (en) 1986-01-21 1989-08-31 Interzeag Ag
US5423801A (en) 1986-03-19 1995-06-13 Summit Technology, Inc. Laser corneal surgery
US4856513A (en) 1987-03-09 1989-08-15 Summit Technology, Inc. Laser reprofiling systems and methods
US4747612A (en) * 1986-03-26 1988-05-31 Deere & Company Quick attach coupling
US4775361A (en) 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4865029A (en) 1986-04-24 1989-09-12 Eye Research Institute Of Retina Foundation Endophotocoagulation probe
US4838266A (en) 1986-09-08 1989-06-13 Koziol Jeffrey E Lens shaping device using a laser attenuator
US4837857A (en) 1986-11-06 1989-06-06 Storz Instrument Company Foot pedal assembly for ophthalmic surgical instrument
JPS63135128A (en) * 1986-11-27 1988-06-07 興和株式会社 Ophthalmic measuring apparatus
US4840175A (en) 1986-12-24 1989-06-20 Peyman Gholam A Method for modifying corneal curvature
US4830483A (en) * 1987-02-07 1989-05-16 Canon Kabushiki Kaisha Laser applying apparatus
US5019074A (en) * 1987-03-09 1991-05-28 Summit Technology, Inc. Laser reprofiling system employing an erodable mask
US5324281A (en) 1987-03-09 1994-06-28 Summit Technology, Inc. Laser reprofiling system employing a photodecomposable mask
US4866243A (en) 1987-04-30 1989-09-12 Canon Kabushiki Kaisha Laser applying apparatus
US5403307A (en) * 1987-05-01 1995-04-04 Zelman; Jerry Apparatus, system, and method for softening and extracting cataractous tissue
EP0293126A1 (en) * 1987-05-20 1988-11-30 Keeler Limited Photocoagulation apparatus
US4846172A (en) 1987-05-26 1989-07-11 Berlin Michael S Laser-delivery eye-treatment method
US4887592A (en) 1987-06-02 1989-12-19 Hanspeter Loertscher Cornea laser-cutting apparatus
FR2617986B1 (en) 1987-07-08 1989-10-27 Synthelabo OPTICAL SYSTEM AND SURGICAL APPARATUS COMPRISING SAID SYSTEM
DE3724283A1 (en) 1987-07-22 1989-02-16 Rodenstock Instr DEVICE FOR LASER TREATMENT OF THE EYES
US5163934A (en) 1987-08-05 1992-11-17 Visx, Incorporated Photorefractive keratectomy
EP0310045B1 (en) * 1987-09-30 1993-02-03 Canon Kabushiki Kaisha Ophthalmologic apparatus
US5133708A (en) 1988-01-14 1992-07-28 Smith Robert F Method for controlled corneal ablation
US5112328A (en) * 1988-01-25 1992-05-12 Refractive Laser Research & Development Program, Ltd. Method and apparatus for laser surgery
US4931053A (en) 1988-01-27 1990-06-05 L'esperance Medical Technologies, Inc. Method and apparatus for enhanced vascular or other growth
US4881808A (en) 1988-02-10 1989-11-21 Intelligent Surgical Lasers Imaging system for surgical lasers
US4848340A (en) 1988-02-10 1989-07-18 Intelligent Surgical Lasers Eyetracker and method of use
US4966577A (en) 1988-03-16 1990-10-30 Allergan, Inc. Prevention of lens-related tissue growth in the eye
US5425727A (en) 1988-04-01 1995-06-20 Koziol; Jeffrey E. Beam delivery system and method for corneal surgery
US5364388A (en) 1988-04-01 1994-11-15 Koziol Jeffrey E Beam delivery system for corneal surgery
US5423798A (en) 1988-04-20 1995-06-13 Crow; Lowell M. Ophthalmic surgical laser apparatus
US5102409A (en) * 1988-04-22 1992-04-07 Balgorod Barry M Method and apparatus for modification of corneal refractive properties
US5364390A (en) 1988-05-19 1994-11-15 Refractive Laser Research And Development, Inc. Handpiece and related apparatus for laser surgery and dentistry
US5219344A (en) 1988-06-09 1993-06-15 Visx, Incorporated Methods and apparatus for laser sculpture of the cornea
ES2014730A6 (en) 1988-07-11 1990-07-16 Mezhotraslevoi Nt Komplex Mikr Device for correcting ocular refraction anomalies
US5215104A (en) 1988-08-16 1993-06-01 Steinert Roger F Method for corneal modification
DE3830378C2 (en) 1988-09-07 1997-11-27 Zeiss Carl Fa Ophthalmic device
DE3831141A1 (en) 1988-09-13 1990-03-22 Zeiss Carl Fa METHOD AND DEVICE FOR MICROSURGERY ON EYE BY LASER RADIATION
CH676786A5 (en) * 1988-10-06 1991-03-15 Lasag Ag
CH676419A5 (en) 1988-10-06 1991-01-31 Lasag Ag
US5147349A (en) 1988-10-07 1992-09-15 Spectra-Physics, Inc. Diode laser device for photocoagulation of the retina
DE3838253A1 (en) * 1988-11-11 1990-05-23 Krumeich Joerg H Suction ring for operations on the human eye
US6099522A (en) 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
IL89874A0 (en) 1989-04-06 1989-12-15 Nissim Nejat Danon Apparatus for computerized laser surgery
US5263951A (en) 1989-04-21 1993-11-23 Kerus Medical Systems Correction of the optical focusing system of the eye using laser thermal keratoplasty
JP2933945B2 (en) 1989-05-29 1999-08-16 株式会社トプコン Laser therapy equipment
US5041134A (en) 1989-08-11 1991-08-20 Donnell Francis E O Intraocular lens assembly
US5201730A (en) * 1989-10-24 1993-04-13 Surgical Technologies, Inc. Tissue manipulator for use in vitreous surgery combining a fiber optic endoilluminator with an infusion/aspiration system
US5203353A (en) * 1989-10-24 1993-04-20 Surgical Technologies, Inc. Method of penetrating and working in the vitreous humor of the eye
US4972836A (en) 1989-12-18 1990-11-27 General Electric Company Motion detector for high-resolution magnetic resonance imaging
US5627162A (en) 1990-01-11 1997-05-06 Gwon; Arlene E. Methods and means for control of proliferation of remnant cells following surgery
JP2980938B2 (en) 1990-04-12 1999-11-22 株式会社ニデック Lens system for condensing semiconductor laser light
US5048946A (en) 1990-05-15 1991-09-17 Phoenix Laser Systems, Inc. Spectral division of reflected light in complex optical diagnostic and therapeutic systems
US5408484A (en) * 1990-05-30 1995-04-18 Weimel; Erich Switchable energy supply for a laser system
US5128509A (en) 1990-09-04 1992-07-07 Reliant Laser Corp. Method and apparatus for transforming and steering laser beams
AU647533B2 (en) 1990-10-16 1994-03-24 Summit Technology, Inc. Laser thermokeratoplasty methods and apparatus
US5171242A (en) 1990-10-26 1992-12-15 Coherent, Inc. Combination lens system for retinal photocoagulator laser system
IT1242932B (en) 1990-11-14 1994-05-18 Guido Maria Nizzola PRESBYOPIA CORRECTION EQUIPMENT BY MODELING THE CORNEAL SURFACE FOR PHOTO ABLATION
JP3165146B2 (en) * 1990-11-16 2001-05-14 株式会社ニデック Laser therapy equipment
US5258025A (en) 1990-11-21 1993-11-02 Fedorov Svjatoslav N Corrective intraocular lens
JP3206923B2 (en) 1991-01-30 2001-09-10 株式会社ニデック Ophthalmic laser surgery device
JPH06505906A (en) 1991-03-13 1994-07-07 アイリス メディカル インスツルメンツ インコーポレイテッド Contact probe for laser cyclophotocoagulation
US5152055A (en) 1991-04-26 1992-10-06 At&T Bell Laboratories Article alignment method
US5300063A (en) * 1991-05-11 1994-04-05 Nidek Co., Ltd. Ophthalmic laser apparatus
US5300020A (en) * 1991-05-31 1994-04-05 Medflex Corporation Surgically implantable device for glaucoma relief
US5174021A (en) 1991-05-31 1992-12-29 At&T Bell Laboratories Device manipulation apparatus and method
US5257988A (en) 1991-07-19 1993-11-02 L'esperance Medical Technologies, Inc. Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment
US5263950A (en) 1991-07-24 1993-11-23 L'esperance Medical Technologies, Inc. Phaco-extractor for fragmenting cataractous-lens situs of fragmentation
JP3165186B2 (en) 1991-07-31 2001-05-14 株式会社ニデック Light therapy equipment
US5222981A (en) 1991-08-15 1993-06-29 Werblin Research & Development Corp. Multi-component intraocular lens
US5217459A (en) 1991-08-27 1993-06-08 William Kamerling Method and instrument for performing eye surgery
US5300061A (en) * 1991-08-29 1994-04-05 Surgical Technologies, Inc. Laser delivery probe having a mechanically free floating sheath
JP3164236B2 (en) 1991-10-04 2001-05-08 株式会社ニデック Light therapy equipment
EP0536951B1 (en) 1991-10-10 1997-08-27 Coherent, Inc. Apparatus for delivering a defocused laser beam having a sharp-edged cross-section
CA2122373C (en) * 1991-10-30 2007-01-16 Arlene E. Gwon Method of laser photoablation of lenticular tissue for the correction of vision problems
US6322556B1 (en) 1991-10-30 2001-11-27 Arlene E. Gwon Method of laser photoablation of lenticular tissue for the correction of vision problems
US20020103478A1 (en) 1991-10-30 2002-08-01 Gwon Arlene E. Method of laser photoablation of lenticular tissue for the correction of vision problems
US5213092A (en) * 1991-10-31 1993-05-25 Martin Uram Aspirating endoscope
US5318560A (en) 1991-11-06 1994-06-07 Surgical Technologies, Inc. Laser delivery system
US6325792B1 (en) 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
IT1253489B (en) 1991-11-21 1995-08-08 Guido Maria Nizzola EQUIPMENT FOR CORRECTION OF ASTIGMATISM BY MODELING THE CORNEAL SURFACE FOR PHOTO ABLATION.
US5462739A (en) 1991-11-21 1995-10-31 Yeda Research And Development Co., Ltd. Microdelivery device and method for enhanced drug administration to the eye
US5246436A (en) 1991-12-18 1993-09-21 Alcon Surgical, Inc. Midinfrared laser tissue ablater
CN1037580C (en) * 1992-01-09 1998-03-04 孙汉军 Light pulsed and acoustic amblyopia therapeutic instrument
BR9305734A (en) 1992-01-14 1997-01-28 Keravision Inc Corneal ring of varying thickness and process for selecting an intra-stromal corneal ring
US5224942A (en) 1992-01-27 1993-07-06 Alcon Surgical, Inc. Surgical method and apparatus utilizing laser energy for removing body tissue
US5412561A (en) 1992-01-28 1995-05-02 Rosenshein; Joseph S. Method of analysis of serial visual fields
US5439462A (en) 1992-02-25 1995-08-08 Intelligent Surgical Lasers Apparatus for removing cataractous material
DE69331381T2 (en) * 1992-04-10 2002-08-08 Surgilight Inc DEVICE FOR PERFORMING EYE SURGERY
US5356407A (en) 1992-04-30 1994-10-18 Infinitech, Inc. Ophthalmic surgery probe assembly
US5370641A (en) 1992-05-22 1994-12-06 O'donnell, Jr.; Francis E. Laser trabeculodissection
US5465737A (en) 1992-07-15 1995-11-14 Schachar; Ronald A. Treatment of presbyopia and other eye disorders
ES2167331T3 (en) 1992-08-10 2002-05-16 Noel Ami Alpins APPARATUS FOR PERFORMING CORNEAL SURGERY.
DE4227390C2 (en) 1992-08-19 1994-06-30 Zeiss Carl Fa Ophthalmic device
JP2907656B2 (en) 1992-08-31 1999-06-21 株式会社ニデック Laser surgery device
WO1994005225A1 (en) 1992-09-02 1994-03-17 Epstein Robert L Instrument for ophthalmological surgery
US5323788A (en) 1992-09-21 1994-06-28 Keravision Overlapping split ring device for corneal curvature adjustment
JP2515675B2 (en) 1992-09-29 1996-07-10 向井 克彦 Corneal surface water absorbent
US5437658A (en) 1992-10-07 1995-08-01 Summit Technology, Incorporated Method and system for laser thermokeratoplasty of the cornea
US5423800A (en) 1992-10-19 1995-06-13 The University Of Miami Laser scleral buckling method and instruments therefor
JP3197375B2 (en) 1992-11-07 2001-08-13 株式会社ニデック Corneal ablation device
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
US5312393A (en) 1992-12-31 1994-05-17 Douglas Mastel Ring lighting system for microsurgery
US5336215A (en) 1993-01-22 1994-08-09 Intelligent Surgical Lasers Eye stabilizing mechanism for use in ophthalmic laser surgery
US5350374A (en) 1993-03-18 1994-09-27 Smith Robert F Topography feedback control system for photoablation
US5342370A (en) 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
US5345948A (en) 1993-04-08 1994-09-13 Donnell Jr Francis E O Method of performing translactrimal laser dacryocystorhinostomy
US5441496A (en) 1993-04-15 1995-08-15 Infinitech, Inc. Laser delivery system with soft tip
US5413555A (en) 1993-04-30 1995-05-09 Mcmahan; William H. Laser delivery system
US5460627A (en) 1993-05-03 1995-10-24 O'donnell, Jr.; Francis E. Method of evaluating a laser used in ophthalmological surgery
US5507740A (en) * 1993-05-03 1996-04-16 O'donnell, Jr.; Francis E. Corneal topography enhancement device
US5556395A (en) 1993-05-07 1996-09-17 Visx Incorporated Method and system for laser treatment of refractive error using an offset image of a rotatable mask
US5360424A (en) 1993-06-04 1994-11-01 Summit Technology, Inc. Tracking system for laser surgery
US5461212A (en) 1993-06-04 1995-10-24 Summit Technology, Inc. Astigmatic laser ablation of surfaces
US5411501A (en) 1993-06-04 1995-05-02 Summit Technology, Inc. Laser reprofiling system for correction of astigmatisms
US5527774A (en) 1993-07-12 1996-06-18 Girard; Louis J. Dislocation of cataractous lens by enzymatic zonulolysis
US5474548A (en) 1993-07-14 1995-12-12 Knopp; Carl F. Method of establishing a unique machine independent reference frame for the eye
US5376086A (en) 1993-10-26 1994-12-27 Khoobehi; Bahram Laser surgical method of sculpting a patient's cornea and associated intermediate controlling mask
SE9303627D0 (en) 1993-11-03 1993-11-03 Kabi Pharmacia Ab Method and means for the prevention of cataract
US5425730A (en) 1994-02-16 1995-06-20 Luloh; K. P. Illumination cannula system for vitreous surgery
US5591773A (en) 1994-03-14 1997-01-07 The Trustees Of Columbia University In The City Of New York Inhibition of cataract formation, diseases resulting from oxidative stress, and HIV replication by caffeic acid esters
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US5632742A (en) 1994-04-25 1997-05-27 Autonomous Technologies Corp. Eye movement sensing method and system
US5849006A (en) 1994-04-25 1998-12-15 Autonomous Technologies Corporation Laser sculpting method and system
US5980513A (en) 1994-04-25 1999-11-09 Autonomous Technologies Corp. Laser beam delivery and eye tracking system
US5442412A (en) 1994-04-25 1995-08-15 Autonomous Technologies Corp. Patient responsive eye fixation target method and system
US5752950A (en) 1994-04-25 1998-05-19 Autonomous Technologies Corp. System for automatically inhibiting ophthalmic treatment laser
DE9409616U1 (en) 1994-06-17 1994-08-04 Zeiss Carl Fa Applicator for the treatment of increased intraocular pressure using laser radiation
US5533997A (en) 1994-06-29 1996-07-09 Ruiz; Luis A. Apparatus and method for performing presbyopia corrective surgery
US6059772A (en) 1995-03-10 2000-05-09 Candela Corporation Apparatus and method for treating glaucoma using a gonioscopic laser trabecular ablation procedure
US5684560A (en) 1995-05-04 1997-11-04 Johnson & Johnson Vision Products, Inc. Concentric ring single vision lens designs
US6312424B1 (en) 1995-07-25 2001-11-06 Allergan Method of vision correction
US20020049450A1 (en) 1996-03-21 2002-04-25 Second Sight Laser Technologies, Inc. Correction of presbyopia, other refractive errors and cataract retardation
US6252595B1 (en) 1996-06-16 2001-06-26 Ati Technologies Inc. Method and apparatus for a multi-state window
US6271914B1 (en) 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US6233545B1 (en) 1997-05-01 2001-05-15 William E. Datig Universal machine translator of arbitrary languages utilizing epistemic moments
US6325791B1 (en) 1997-06-10 2001-12-04 Yutaka Shimoji Method of using a cordless medical laser to cure composites
US5907908A (en) 1997-10-01 1999-06-01 Tetra Technologies, Inc. Dehumidifying pouch
US6007578A (en) 1997-10-08 1999-12-28 Ras Holding Corp Scleral prosthesis for treatment of presbyopia and other eye disorders
US6132424A (en) 1998-03-13 2000-10-17 Lasersight Technologies Inc. Smooth and uniform laser ablation apparatus and method
US5843184A (en) 1998-01-26 1998-12-01 Cionni; Robert J. Endocapsular tension ring and method of implanting same
DE19814095C2 (en) 1998-03-30 2003-08-14 Zeiss Carl Jena Gmbh Method and arrangement for checking and controlling the treatment parameters on an ophthalmic treatment device
US6319274B1 (en) 1998-06-22 2001-11-20 John H. Shadduck Devices and techniques for light-mediated stimulation of trabecular meshwork in glaucoma therapy
US6254595B1 (en) 1998-10-15 2001-07-03 Intralase Corporation Corneal aplanation device
US6623476B2 (en) 1998-10-15 2003-09-23 Intralase Corp. Device and method for reducing corneal induced aberrations during ophthalmic laser surgery
FR2787991B1 (en) 1998-12-31 2001-05-25 Medicale De Prec S M P Sa Soc DEVICE FOR TREATING PRESBYGIA OR OTHER EYE CONDITION
US6373571B1 (en) 1999-03-11 2002-04-16 Intralase Corp. Disposable contact lens for use with an ophthalmic laser system
US20010029363A1 (en) 1999-05-03 2001-10-11 Lin J. T. Methods and apparatus for presbyopia correction using ultraviolet and infrared lasers
DE19940712A1 (en) 1999-08-26 2001-03-01 Aesculap Meditec Gmbh Method and device for treating opacities and / or hardening of an unopened eye
US6324191B1 (en) 2000-01-12 2001-11-27 Intralase Corp. Oscillator with mode control
US6460997B1 (en) 2000-05-08 2002-10-08 Alcon Universal Ltd. Apparatus and method for objective measurements of optical systems using wavefront analysis
US6648877B1 (en) 2000-06-30 2003-11-18 Intralase Corp. Method for custom corneal corrections
US6607527B1 (en) * 2000-10-17 2003-08-19 Luis Antonio Ruiz Method and apparatus for precision laser surgery
WO2002076356A2 (en) 2001-03-22 2002-10-03 Newlens, Llc Presbyopia treatment by scleral compression
US20020140903A1 (en) 2001-03-28 2002-10-03 Ras Holding Corp System and method for providing an improved test for determining the resolving power of the eye
USD459807S1 (en) 2001-04-11 2002-07-02 Intralase Corporation Patient interface gripper for ophthalmic laser surgery
USD462443S1 (en) 2001-04-11 2002-09-03 Intralase Corporation Applanation lens cone for ophthalmic laser surgery
USD459806S1 (en) 2001-04-11 2002-07-02 Intralase Corporation Patient interface gripper for ophthalmic laser surgery
USD462442S1 (en) 2001-04-11 2002-09-03 Intralase Corporation Suction ring for ophthalmic laser surgery
CA2505046A1 (en) 2001-11-09 2003-05-15 Surgilight, Inc. Methods and systems for treating presbyopia via laser ablation
US7097660B2 (en) 2001-12-10 2006-08-29 Valdemar Portney Accommodating intraocular lens
US7025783B2 (en) 2002-01-14 2006-04-11 Advanced Medical Optics, Inc. Accommodating intraocular lens with integral capsular bag ring
US20030139737A1 (en) 2002-01-24 2003-07-24 J.T. Lin Method and apparatus for treatment of presbyopia by lens relaxation and anterior shift
US20050107775A1 (en) 2002-03-04 2005-05-19 The Cleveland Clinic Foundation Method and apparatus for controlling ablation in refractive surgery
ES2289276T3 (en) 2002-03-23 2008-02-01 Intralase Corp. IMPROVED MATERIAL PROCESSING SYSTEM USING A LASER RAY.
US6992765B2 (en) 2002-10-11 2006-01-31 Intralase Corp. Method and system for determining the alignment of a surface of a material in relation to a laser beam
US8186357B2 (en) 2004-01-23 2012-05-29 Rowiak Gmbh Control device for a surgical laser
ITMI20041625A1 (en) 2004-08-06 2004-11-06 Roberto Pinelli PRESBYOPIA CORRECTION APPARATUS
US7252662B2 (en) 2004-11-02 2007-08-07 Lenticular Research Group Llc Apparatus and processes for preventing or delaying one or more symptoms of presbyopia
US7892225B2 (en) * 2004-12-17 2011-02-22 Technolas Perfect Vision Gmbh Devices and methods for separating layers of materials having different ablation thresholds
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US20070291277A1 (en) * 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system

Patent Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074407A (en) * 1956-09-17 1963-01-22 Marguerite Barr Moon Eye Res F Surgical devices for keratoplasty and methods thereof
US4309998A (en) * 1978-06-08 1982-01-12 Aron Rosa Daniele S Process and apparatus for ophthalmic surgery
US4633866A (en) * 1981-11-23 1987-01-06 Gholam Peyman Ophthalmic laser surgical method
US4576160A (en) * 1982-07-15 1986-03-18 Tokyo Kogaku Kikai Kabushiki Kaisha Phototherapeutic apparatus with spot size regulating means
US4719912A (en) * 1983-02-28 1988-01-19 Promed Technology, Inc. Apparatus for controlling the photocoagulation of biological tissue
US4573778A (en) * 1983-03-16 1986-03-04 Boston University Aqueous fluorophotometer
US4644948A (en) * 1983-05-27 1987-02-24 Carl-Zeiss-Stiftung Apparatus for dose measurement upon photocoagulation in the fundus of the eye
US4502816A (en) * 1983-06-27 1985-03-05 Creter Vault Corp. Shoreline breakwater
US4638801A (en) * 1983-07-06 1987-01-27 Lasers For Medicine Laser ophthalmic surgical system
US4573193A (en) * 1983-07-25 1986-02-25 Mitsubishi Denki Kabushiki Kaisha Individual identification apparatus
US4729372A (en) * 1983-11-17 1988-03-08 Lri L.P. Apparatus for performing ophthalmic laser surgery
US5188631A (en) * 1983-11-17 1993-02-23 Visx, Incorporated Method for opthalmological surgery
US4718418A (en) * 1983-11-17 1988-01-12 Lri L.P. Apparatus for ophthalmological surgery
US4732148A (en) * 1983-11-17 1988-03-22 Lri L.P. Method for performing ophthalmic laser surgery
US4565197A (en) * 1983-11-22 1986-01-21 Lasers For Medicine Laser ophthalmic surgical system
US4721379A (en) * 1985-01-16 1988-01-26 Lri L.P. Apparatus for analysis and correction of abnormal refractive errors of the eye
US4648400A (en) * 1985-05-06 1987-03-10 Rts Laboratories, Inc. Ophthalmic surgery system
US5000751A (en) * 1985-06-29 1991-03-19 Aesculap Ag Apparatus for laser surgery and particularly for the keratotomy of the cornea (III)
US5484432A (en) * 1985-09-27 1996-01-16 Laser Biotech, Inc. Collagen treatment apparatus
US4994058A (en) * 1986-03-19 1991-02-19 Summit Technology, Inc. Surface shaping using lasers
US4911160A (en) * 1986-04-30 1990-03-27 Meditec Reinhardt Thyzel Gmbh Apparatus for laser surgery on a patient lying on an operating table
US4724522A (en) * 1986-05-27 1988-02-09 Belgorod Barry M Method and apparatus for modification of corneal refractive properties
US4732460A (en) * 1986-07-01 1988-03-22 Coherent, Inc. Beam selector for a photocoagulator
US4911711A (en) * 1986-12-05 1990-03-27 Taunton Technologies, Inc. Sculpture apparatus for correcting curvature of the cornea
US4729373A (en) * 1986-12-18 1988-03-08 Peyman Gholam A Laser-powered surgical device with a vibrating crystalline tip
US4900145A (en) * 1987-04-09 1990-02-13 Kowa Company Ltd. Ophthalmic disease detection apparatus
US5090798A (en) * 1987-04-27 1992-02-25 Canon Kabushiki Kaisha Applied intensity distribution controlling apparatus
US4798204A (en) * 1987-05-13 1989-01-17 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4891043A (en) * 1987-05-28 1990-01-02 Board Of Trustees Of The University Of Illinois System for selective release of liposome encapsulated material via laser radiation
US5284477A (en) * 1987-06-25 1994-02-08 International Business Machines Corporation Device for correcting the shape of an object by laser treatment
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4905711A (en) * 1988-03-08 1990-03-06 Taunton Technologies, Inc. Eye restraining device
US4900143A (en) * 1988-03-09 1990-02-13 Electro-Optics Laboratory, Inc. Ophthalmoscope handpiece with laser delivery system
US4907586A (en) * 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US4902124A (en) * 1988-09-06 1990-02-20 Roy Sr Frederick H Cataract monitoring method and means
US5000561A (en) * 1988-10-06 1991-03-19 Lasag Ag Control arrangement for an apparatus for ophthalmological treatment
US4903695A (en) * 1988-11-30 1990-02-27 Lri L.P. Method and apparatus for performing a keratomileusis or the like operation
US4903695C1 (en) * 1988-11-30 2001-09-11 Lri L P Method and apparatus for performing a keratomileusis or the like operation
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5002571A (en) * 1989-02-06 1991-03-26 Donnell Jr Francis E O Intraocular lens implant and method of locating and adhering within the posterior chamber
US5196006A (en) * 1989-04-25 1993-03-23 Summit Technology, Inc. Method and apparatus for excision endpoint control
US4988348A (en) * 1989-05-26 1991-01-29 Intelligent Surgical Lasers, Inc. Method for reshaping the cornea
US5281211A (en) * 1989-06-07 1994-01-25 University Of Miami, School Of Medicine, Dept. Of Ophthalmology Noncontact laser microsurgical apparatus
US5092863A (en) * 1990-04-09 1992-03-03 St. Louis University Ophthalmological surgery apparatus and methods
US5196027A (en) * 1990-05-02 1993-03-23 Thompson Keith P Apparatus and process for application and adjustable reprofiling of synthetic lenticules for vision correction
US5277911A (en) * 1990-08-07 1994-01-11 Mediventures, Inc. Ablatable mask of polyoxyalkylene polymer and ionic polysaccharide gel for laser reprofiling of the cornea
US5391165A (en) * 1990-08-22 1995-02-21 Phoenix Laser Systems, Inc. System for scanning a surgical laser beam
US5094521A (en) * 1990-11-07 1992-03-10 Vision Research Laboratories Apparatus for evaluating eye alignment
US5722970A (en) * 1991-04-04 1998-03-03 Premier Laser Systems, Inc. Laser surgical method using transparent probe
US5194948A (en) * 1991-04-26 1993-03-16 At&T Bell Laboratories Article alignment method and apparatus
US5295989A (en) * 1991-05-31 1994-03-22 Nidek Co., Ltd. Light cable for use in an apparatus for ophthalmic operation using a laser beam
US5282798A (en) * 1992-02-12 1994-02-01 Heraeus Surgical, Inc. Apparatus for supporting an orbicularly tipped surgical laser fiber
US5246435A (en) * 1992-02-25 1993-09-21 Intelligent Surgical Lasers Method for removing cataractous material
US5279611A (en) * 1992-03-13 1994-01-18 Mcdonnell Peter J Laser shaping of ocular surfaces using ablation mask formed in situ
US5290272A (en) * 1992-03-16 1994-03-01 Helios Inc. Method for the joining of ocular tissues using laser light
US5275593A (en) * 1992-04-30 1994-01-04 Surgical Technologies, Inc. Ophthalmic surgery probe assembly
US5178635A (en) * 1992-05-04 1993-01-12 Allergan, Inc. Method for determining amount of medication in an implantable device
US6197056B1 (en) * 1992-07-15 2001-03-06 Ras Holding Corp. Segmented scleral band for treatment of presbyopia and other eye disorders
US5489299A (en) * 1992-07-15 1996-02-06 Schachar; Ronald A. Treatment of presbyopia and other eye disorders
US5722952A (en) * 1992-07-15 1998-03-03 Schachar; Ronald A. Treatment of presbyopia and other eye disorders
US5288293A (en) * 1992-09-24 1994-02-22 Donnell Jr Francis E O In vivo modification of refractive power of an intraocular lens implant
US5279298A (en) * 1992-11-20 1994-01-18 The Johns Hopkins University Method and apparatus to identify and treat neovascular membranes in the eye
US5395356A (en) * 1993-06-04 1995-03-07 Summit Technology, Inc. Correction of presbyopia by photorefractive keratectomy
US5594753A (en) * 1994-04-25 1997-01-14 Autonomous Technology Corporation Cartridge excimer laser system
US6013101A (en) * 1994-11-21 2000-01-11 Acuity (Israel) Limited Accommodating intraocular lens implant
US5480396A (en) * 1994-12-09 1996-01-02 Simon; Gabriel Laser beam ophthalmological surgery method and apparatus
US5886768A (en) * 1995-03-15 1999-03-23 Knopp; Carl F. Apparatus and method of imaging interior structures of the eye
US5607472A (en) * 1995-05-09 1997-03-04 Emory University Intraocular lens for restoring accommodation and allows adjustment of optical power
US5731909A (en) * 1995-05-12 1998-03-24 Schachar; Ronald A. Method for increasing the power of an elastically deformable lens
US5709868A (en) * 1995-09-20 1998-01-20 Perricone; Nicholas V. Lipoic acid in topical compositions
US7655002B2 (en) * 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US20120016350A1 (en) * 1996-03-21 2012-01-19 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US6197018B1 (en) * 1996-08-12 2001-03-06 O'donnell, Jr. Francis E. Laser method for restoring accommodative potential
US6022088A (en) * 1996-08-29 2000-02-08 Bausch & Lomb Surgical, Inc. Ophthalmic microsurgical system
US6190375B1 (en) * 1997-06-06 2001-02-20 Autonomous Technologies Corporation Corneal tissue ablation designed for dark adaptability
US6027494A (en) * 1997-06-06 2000-02-22 Autonomous Technologies Corporation Ablatement designed for dark adaptability
US6186148B1 (en) * 1998-02-04 2001-02-13 Kiyoshi Okada Prevention of posterior capsular opacification
US20020004658A1 (en) * 1998-04-17 2002-01-10 Audrey Munnerlyn Multiple beam laser sculpting system and method
US20030055412A1 (en) * 1998-10-02 2003-03-20 Scientific Optics, Inc. Method for diagnosing and improving vision
USRE40002E1 (en) * 1998-11-10 2008-01-15 Surgilight, Inc. Treatment of presbyopia and other eye disorders using a scanning laser system
US6676653B2 (en) * 1999-03-11 2004-01-13 Intralase Corp. Device and method for removing gas and debris during the photodisruption of stromal tissue
US6344040B1 (en) * 1999-03-11 2002-02-05 Intralase Corporation Device and method for removing gas and debris during the photodisruption of stromal tissue
US6610686B1 (en) * 1999-03-17 2003-08-26 Ausimont S.P.A. Use of pirenoxine for the protection of corneal tissues in photokeractomy
US6849091B1 (en) * 2000-05-19 2005-02-01 Eyeonics, Inc. Lens assembly for depth of focus
US20020110549A1 (en) * 2000-08-16 2002-08-15 Till Jonathan S. Presbyopia treatment by lens alteration
US20020025311A1 (en) * 2000-08-16 2002-02-28 Till Jonathan S. Presbyopia treatment by lens alteration
US20030029053A1 (en) * 2001-07-26 2003-02-13 Shibuya Machinery Co., Ltd Method and apparatus for centrifugally dehydrating workpiece
US20030050629A1 (en) * 2001-09-07 2003-03-13 Kadziauskas Kenneth E Cataract extraction apparatus and method
US7182759B2 (en) * 2001-09-07 2007-02-27 Advanced Medical Optics, Inc. Cataract extraction apparatus and method with rapid pulse phaco power
US6693927B1 (en) * 2002-09-13 2004-02-17 Intralase Corp. Method and apparatus for oscillator start-up control for mode-locked laser
US7171908B2 (en) * 2003-03-19 2007-02-06 Wabtec Holding Corp. High/Low passenger ingress and egress conversion for transit vehicle
US7479106B2 (en) * 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
US20100004643A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US20100004641A1 (en) * 2006-01-20 2010-01-07 Frey Rudolph W System and apparatus for delivering a laser beam to the lens of an eye
US20100002837A1 (en) * 2006-12-13 2010-01-07 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US20100022994A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Liquid filled index matching device for ophthalmic laser procedures
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US20100042079A1 (en) * 2008-07-25 2010-02-18 Frey Rudolph W Method and System for Removal and Replacement of Lens Material fron the Lens of an Eye
US20100022995A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for removal and replacement of lens material from the lens of an eye
US20110040293A1 (en) * 2009-02-09 2011-02-17 Amo Development Llc. System and method for intrastromal refractive correction
US20110022035A1 (en) * 2009-07-24 2011-01-27 Porter Gerrit N Liquid holding interface device for ophthalmic laser procedures
US20110022036A1 (en) * 2009-07-24 2011-01-27 Frey Rudolph W System and method for performing ladar assisted procedures on the lens of an eye
US20110028950A1 (en) * 2009-07-29 2011-02-03 Lensx Lasers, Inc. Optical System for Ophthalmic Surgical Laser

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Koretz et al; "The Zones of Discontinuity in the Human Lens: Developement and Distribution with Age"; Vision Res.; Vol 34, No. 22; pp2955-2962; 1994 *
Vogel et al; "Intraocular Photodisruption With Picosecond and Nanosecond Laser Pulses: Tissue Effects in Cornea, Lens, and Retina"; Invest. Ophthal. & Vis. Sci; Vol 35, No. 7; pp 3032-3044; June 1994 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647334B2 (en) * 2004-11-02 2014-02-11 Lenticular Research Group Llc Apparatus and processes for preventing or delaying one or more symptoms of presbyopia
US20110160709A1 (en) * 2004-11-02 2011-06-30 Lenticular Research Group Llc Apparatus and Processes for Preventing or Delaying One or More Symptoms of Presbyopia
US20080161781A1 (en) * 2005-02-19 2008-07-03 Mcardle George J Apparatus and Processes For Preventing or Delaying Onset or Progression of Age-Related Cataract
US9649224B2 (en) 2005-02-19 2017-05-16 Lenticular Research Group Llc Apparatus and processes for preventing or delaying onset or progression of age-related cataract
US9889043B2 (en) 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US10842675B2 (en) 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US9375349B2 (en) 2006-01-20 2016-06-28 Lensar, Llc System and method for providing laser shot patterns to the lens of an eye
US9180051B2 (en) 2006-01-20 2015-11-10 Lensar Inc. System and apparatus for treating the lens of an eye
US20070185475A1 (en) * 2006-01-20 2007-08-09 Frey Rudolph W System and method for providing the shaped structural weakening of the human lens with a laser
US20110160622A1 (en) * 2008-03-31 2011-06-30 Mcardle George J Processes and apparatus for preventing, delaying or ameliorating one or more symptoms of presbyopia
US8991401B2 (en) 2008-03-31 2015-03-31 Lenticular Research Group, Llc Processes and apparatus for preventing, delaying or ameliorating one or more symptoms of presbyopia
US8708491B2 (en) 2008-07-25 2014-04-29 Lensar, Inc. Method and system for measuring an eye
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
US8465478B2 (en) 2009-07-24 2013-06-18 Lensar, Inc. System and method for performing LADAR assisted procedures on the lens of an eye
US8758332B2 (en) 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
US8617146B2 (en) 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
US8556425B2 (en) 2010-02-01 2013-10-15 Lensar, Inc. Purkinjie image-based alignment of suction ring in ophthalmic applications
US8801186B2 (en) 2010-10-15 2014-08-12 Lensar, Inc. System and method of scan controlled illumination of structures within an eye
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
US8430869B2 (en) * 2010-12-10 2013-04-30 Wavelight Gmbh Laser device for ophthalmological laser surgery
US20120150157A1 (en) * 2010-12-10 2012-06-14 Wolfel Mathias Laser device for ophthalmological laser surgery
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US9393154B2 (en) * 2011-10-28 2016-07-19 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US9937078B2 (en) 2011-10-28 2018-04-10 Raymond I Myers Laser methods for creating an antioxidant sink in the crystalline lens for the maintenance of eye health and physiology and slowing presbyopia development
US9629750B2 (en) 2012-04-18 2017-04-25 Technolas Perfect Vision Gmbh Surgical laser unit with variable modes of operation
US9592157B2 (en) 2012-11-09 2017-03-14 Bausch & Lomb Incorporated System and method for femto-fragmentation of a crystalline lens
US9619874B2 (en) * 2012-12-28 2017-04-11 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US9161686B2 (en) * 2012-12-28 2015-10-20 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US20140185889A1 (en) * 2012-12-28 2014-07-03 Canon Kabushiki Kaisha Image Processing Apparatus and Image Processing Method
US20160012575A1 (en) * 2012-12-28 2016-01-14 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Also Published As

Publication number Publication date
US20120016350A1 (en) 2012-01-19
US7655002B2 (en) 2010-02-02
US20040199149A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US7655002B2 (en) Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US6322556B1 (en) Method of laser photoablation of lenticular tissue for the correction of vision problems
US20020103478A1 (en) Method of laser photoablation of lenticular tissue for the correction of vision problems
Aristeidou et al. The evolution of corneal and refractive surgery with the femtosecond laser
US20020049450A1 (en) Correction of presbyopia, other refractive errors and cataract retardation
JP5184888B2 (en) Laser apparatus for preventing or delaying one or more symptoms of presbyopia
US9649224B2 (en) Apparatus and processes for preventing or delaying onset or progression of age-related cataract
US8991401B2 (en) Processes and apparatus for preventing, delaying or ameliorating one or more symptoms of presbyopia
Thompson et al. Therapeutic and diagnostic application of lasers in ophthalmology
Han et al. Application of femtosecond laser in anterior segment surgery
US10758413B2 (en) Femto second multi shooting for eye surgery
Kohnen et al. Basic knowledge of refractive surgery: correction of refractive errors using modern surgical procedures
US10548771B2 (en) Device and procedure to treat presbyopia
CA2122373C (en) Method of laser photoablation of lenticular tissue for the correction of vision problems
Krueger et al. Ultrashort-pulse lasers treating the crystalline lens: will they cause vision-threatening cataract?(An American Ophthalmological Society thesis)
Esquenazi et al. Surgical correction of hyperopia
Chen A Review of Femtosecond Laser Assisted Cataract Surgery for Hawai ‘i
Yu et al. New applications of femtosecond laser in cataract surgery
Wilson et al. Pediatric cataract surgery: operative and postoperative issues
Pašta Laser therapy in ophthalmology
Kaimbo Refractive surgery for myopia
US20230200977A1 (en) Optical Implant And Methods Of Implantation
Abd Allah et al. Comparing efficacy, safety and stability of Femtosecond assisted LASIK and implantable collamer lens implantation in correction of high myopia
Tyson TECHNIQUES OF CATARACT SURGERY
Vadhar et al. REFRACTIVE SURGERY

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION