US20100178802A1 - Plug connector and multilayer board - Google Patents

Plug connector and multilayer board Download PDF

Info

Publication number
US20100178802A1
US20100178802A1 US12/386,641 US38664109A US2010178802A1 US 20100178802 A1 US20100178802 A1 US 20100178802A1 US 38664109 A US38664109 A US 38664109A US 2010178802 A1 US2010178802 A1 US 2010178802A1
Authority
US
United States
Prior art keywords
plug connector
signal
contact
contact elements
multilayer board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/386,641
Other versions
US7901248B2 (en
Inventor
Juergen Lappoehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERNI Production and Co KG GmbH
Original Assignee
ERNI Electronics GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERNI Electronics GmbH and Co KG filed Critical ERNI Electronics GmbH and Co KG
Assigned to ERNI ELECTRONICS GMBH reassignment ERNI ELECTRONICS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAPPOEHN, JUERGEN
Publication of US20100178802A1 publication Critical patent/US20100178802A1/en
Application granted granted Critical
Publication of US7901248B2 publication Critical patent/US7901248B2/en
Assigned to ERNI PRODUCTION GMBH & CO. KG reassignment ERNI PRODUCTION GMBH & CO. KG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ERNI ELECTRONICS GMBH & CO. KG
Assigned to ERNI ELECTRONICS GMBH & CO. KG reassignment ERNI ELECTRONICS GMBH & CO. KG CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ERNI ELECTRONICS GMBH
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6585Shielding material individually surrounding or interposed between mutually spaced contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/72Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures
    • H01R12/722Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits
    • H01R12/724Coupling devices for rigid printing circuits or like structures coupling with the edge of the rigid printed circuits or like structures coupling devices mounted on the edge of the printed circuits containing contact members forming a right angle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/093Layout of power planes, ground planes or power supply conductors, e.g. having special clearance holes therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09663Divided layout, i.e. conductors divided in two or more parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10189Non-printed connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/1059Connections made by press-fit insertion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/306Lead-in-hole components, e.g. affixing or retention before soldering, spacing means
    • H05K3/308Adaptations of leads

Definitions

  • the present invention relates to a multipolar plug connector for establishing contact with a multilayer board as defined in the preamble of the independent claim.
  • Each signal contact element is assigned a screen or mass contact element.
  • the orientation of the contact elements is selected so as to allow impedance matching.
  • U.S. Pat. No. 6,976,886 B2 describes a plug connector by which a high screening effect between the signal lines one relative to the other, and of the plug connector generally is to be achieved, by a special arrangement and/or orientation of the signal and screen contact elements one relative to the other.
  • the known plug connector is especially well suited for high-frequency signals, and in addition the arrangement of the signal and mass contact elements is especially defined so that a specific surge impedance is provided.
  • the multipolar high-frequency plug connection described by DE 39 36 466 A1 comprises a plug connector having a metallic screen that is connected with two contact elements intended for contact-making with a circuit board.
  • the two mass contact elements are arranged on both outer surfaces of the plug connector.
  • the screen is not especially assigned to a selected signal contact element.
  • DE 29 49 013 A2 describes a frequency-optimized connector between a coaxial cable and a circuit board.
  • the neutral conductor of one coaxial cable is connected with a strip conductor arranged on a board. Screening of the coaxial cable results in a mass surface which, in the area of the signal strip conductor, is subdivided into two mass conductor strips arranged adjacent to the signal conductor strip.
  • a multipolar plug connector is fixed on the board by soldering.
  • a plug connector contact element is soldered to the signal strip conductors.
  • four neighboring contact elements are soldered to the mass surface of the strip conductor arrangement.
  • DE 39 04 461 C1 and DE 39 36 466 A1 describe multipolar high-frequency plug connectors where at least one of the corresponding plug connectors comprises a metallic screen connected with two contact elements intended for establishing contact with a circuit board.
  • the two mass contact elements are arranged on both outer surfaces of the plug connector.
  • the multipolar plug connector for establishing contact with a multilayer board which comprises signal contacts that are assigned a first and at least one second screen contact element and are arranged adjacent to the signal contact, distinguishes itself by the fact that recesses are provided at least on the upper layer of the multilayer board which are suitably sized so as to receive and lead through at least two screen contact elements assigned to neighboring signal contacts.
  • the multilayer board is provided with through-holes that are properly sized to receive and to lead through the at least two screen contact elements.
  • the plug connector in combination with the multilayer board equipped with the plug connector, is generally suited for carrying signal frequencies up to the upper GHz range.
  • the simulation results could be confirmed by experiments.
  • the signal contact which is screened by at least two screen contact elements comprises a pair of signal contact elements which, according to a further development of that embodiment, are suitably connected for carrying differential signals.
  • an electrically conductive screening ring is provided at least in the area of the rear outlet of the contact elements from the plug connector housing, which ring encloses, at least in part, the signal contact to be screened. That feature is suitable to improve the screening effect especially when the screening ring is in contact with the first and the second screen contact element, as provided by a further development of that embodiment. According to another further development of that embodiment, a plurality of screening rings may be connected one with the other.
  • One embodiment provides that the screen contact elements assigned to one signal contact, as well the at least one signal contact element of the signal contact, are arranged one beside the other in a row and/or a column of the plug connector, at least approximately.
  • the uniform geometric arrangement increases the homogeneity of the surge impedance within the plug connector, including the multilayer board equipped with the plug connector.
  • the screen contact elements are in contact with mass surfaces provided on one or more layers of the multilayer board, in which case the mass surfaces may be subdivided into a plurality of partial areas in order to influence the screening effect and/or the surge impedance as required.
  • a preferred use of the plug connector with the multilayer board provided for contact-making provides for the use of the multilayer board as a backplane. Details in this respect can be derived from the cited prior art as known from DE 198 07 713 A1.
  • the plug connector is assembled from segments that contain the signal contacts and screen contact elements arranged in a row or column one beside the other.
  • the different segments may comprise a screening sheet at least on one side.
  • the multilayer board comprises at least a single continuous recess intended to receive and to lead through a pair of signal contact elements.
  • Production of the multilayer board is rendered especially easy if instead of certain individual recesses intended to receive and to lead through each pair of signal contact elements, such receiving and lead-through recesses are provided for every pair of signal contact elements.
  • FIG. 1 shows a three-dimensional representation of a plug connector showing especially a view of the contact-making ends of the contact element
  • FIG. 2 shows a three-dimensional view of a corresponding plug connector, likewise providing a view of the contact-making ends of the contact elements;
  • FIG. 3 shows a detail of the representation of FIG. 2 ;
  • FIG. 4 shows a greatly enlarged detail of the representation of FIG. 2 ;
  • FIG. 5 shows a segment of the plug connector shown in FIG. 1 ;
  • FIG. 6 shows an isometric diagrammatic representation of a multilayer board with a first configuration of recesses for contact elements
  • FIG. 7 shows an isometric diagrammatic representation of a multilayer board with a second configuration of recesses for contact elements.
  • FIG. 1 shows a three-dimensional representation of a multipolar plug connector 10 a , providing a view especially of the rear ends of contact elements intended for making contact with a multilayer board not shown in FIG. 1 .
  • a first signal contact 11 a and a neighboring signal contact 12 a are arranged in one row or column, by way of example.
  • One signal contact may comprise one or more signal contact elements.
  • Contact between the multipolar plug connector 10 a and the multilayer board preferably is established by press-in connection. Alternatively, or additionally, soldering may be used.
  • the first signal contact 11 a comprises a first and a second signal contact element 13 a , 14 a
  • the neighboring signal contact 12 a likewise comprises a first and a second signal contact element 15 a , 16 a.
  • both signal contacts 11 a , 12 a are implemented as pairs of signal contact elements by way of example.
  • At least certain selected signal contacts 11 a , 12 a of the plug connector 10 a should be screened. Screening is effected by screen contact elements. Instead of assigning one signal contact a single screen contact element only, it is provided to assign the signal contacts a first and at least one second screen contact element.
  • the first signal contact 11 a is assigned a first screen contact element 17 a and at least one second screen contact element 17 a ′, the first screen contact element 17 a being arranged on the one side of the signal contact 11 a and the other screen contact element 17 a ′ being arranged on the other side of the signal contact 11 a , so that the signal contact 11 a is enclosed by its associated screen contact elements 17 a , 17 a ′ at least in part.
  • the first screen contact element 18 a and the at least one second screen contact element 18 a ′ are assigned to the neighboring signal contact 12 a.
  • FIG. 2 shows a plug connector 10 b corresponding to the plug connector 10 a shown in FIG. 1 .
  • the plug connector 10 a shown in FIG. 1 comprises spring contacts
  • the corresponding plug connector 10 b shown in FIG. 2 is equipped with the matching blade contacts.
  • Those parts in FIG. 2 that correspond to the parts illustrated in FIG. 1 are indicated by the same reference numerals, with the index “a” replaced by index “b”. That convention will be followed also in the description of the following Figures.
  • the corresponding plug connector 10 b illustrated in FIG. 2 shows an embodiment using a screening ring 20 that encloses the signal contacts 11 b , 12 b at least in part.
  • the screening ring 20 exists at least in the area of the rear portion of the plug connector 10 b which is intended to establish contact with the multi-layer board. Additionally or alternatively, the screening ring 20 may also be provided in the inner area of the plug connector 10 b . Of course such a screening ring may also be provided in the plug connector 10 a configured according to FIG. 1 .
  • FIG. 3 shows a detail of FIG. 2 viewed from a different perspective.
  • FIG. 3 shows another configuration which provides that the screening ring 20 , enclosing the signal contacts 11 b , 12 b at least in part, interconnects the screen contact elements 17 b , 17 b ′; 18 b , 18 b ′ associated with the signal contact 11 b , 12 b .
  • the screen contact elements 17 b , 17 b ′; 18 b , 18 b ′ of a plurality of signal contacts 11 b , 12 b are interconnected by the screening ring 20 .
  • FIG. 4 shows a greatly enlarged detail of FIG. 2 in which the screening ring 20 can be seen with particular clarity.
  • the screen contact elements 17 b , 17 b ′ assigned to one signal contact 11 b are interconnected in an electrically conductive manner by the screening ring 20 .
  • that Figure likewise shows the embodiment where the screening ring 20 interconnects the screen contact elements 17 b , 17 b ′, 18 b respectively assigned to neighboring signal contacts.
  • FIG. 5 shows one segment 30 of the plug connector 10 a illustrated in FIG. 1 .
  • the design by segments allows the plug connector 10 a to be formed from a plurality of segments 30 arranged in series. This allows the production of the plug connector 10 a to be considerably facilitated.
  • FIG. 5 shows a screening sheet 31 which covers all contact elements 13 a , 13 b , 14 a , 14 b , 15 a , 15 b ; 16 a , 16 b , 17 a ; 17 b , 17 a ′, 17 b ′; 18 a , 18 b , 18 a ′, 18 b ′, thereby screening them from the neighboring corresponding contact elements of the next segment 30 , not shown in the drawing.
  • FIG. 6 shows a first embodiment of a multilayer board 40 comprising a plurality of layers 41 , 42 , 43 .
  • the multilayer board 40 is prepared for contact-making with the plug connector 10 b according to FIG. 1 , or with the plug connector 10 b according to FIG. 2 . Accordingly, those parts that correspond to the parts illustrated in FIGS. 1 and 2 are again indicated by the same reference numerals.
  • the representation of FIG. 6 corresponds to a section along the surface of the uppermost layer 41 of the multilayer board 40 with assembled plug connector 10 a , 10 b.
  • the signal contact elements 13 a , 13 b , 14 a , 14 b ; 15 a , 15 b , 16 a , 16 b are respectively located in the recesses 50 , 51 , 52 , 53 .
  • the screen contact elements 17 a ′, 17 b ′, 18 a , 18 b which are assigned to neighboring signal contacts 11 a , 11 b ; 12 a , 12 b , are located in a single continuous recess 45 , 45 ′, 45 ′′ according to the invention.
  • the screen contact elements 17 a , 17 b , 17 a ′, 17 b ′; 18 a , 18 b , 18 a ′, 18 b ′ are preferably in contact with mass surfaces 55 , 56 , 57 that may be arranged on different layers 41 , 42 , 43 of the multilayer board 40 . Contact is made preferably by a press-in connection in this case as well. Alternatively or additionally, soldering may be applied.
  • the dimensions of the mass surfaces 55 , 56 , 57 may vary depending on the particular requirements. For example, the mass surface 55 arranged on the second layer 42 , and the mass surface 56 arranged on the lowermost layer 42 are subdivided into several partial areas.
  • the two signal contact elements 13 a , 13 b , 14 a , 14 b ; 15 a , 15 b , 16 a , 16 b which respectively form a signal contact 11 a , 11 b ; 12 a , 12 b , are interconnected in the form of differential contact pairs where one signal contact element 13 a , 13 b ; 15 a , 15 b carries a first signal pattern related to a reference potential, while the second signal contact element 14 a , 14 b ; 16 a , 16 b of the signal contact 11 a , 11 b ; 12 a , 12 b carries an inverted signal pattern.
  • the one signal contact element 13 a , 13 b ; 15 a , 15 b is designated by a plus sign while the other signal contact element 14 a , 14 b ; 16 a , 16 b is designated by a minus sign.
  • FIG. 6 shows a further embodiment according to which the two signal contact elements 13 a , 13 b , 14 a , 14 b ; 15 a , 15 b , 16 a , 16 b of at least certain individual signal contacts 11 a , 11 b ; 12 a , 12 b are likewise arranged in a continuous recess 58 , 59 .
  • the recesses 54 , 54 ′; 54 ′′, 58 , 59 are provided at least in the uppermost layer 41 of the multilayer board 40 and, if required, also in lower layers 42 , 43 .
  • FIG. 7 shows another embodiment of the multilayer board 40 which likewise comprises a plurality of layers 41 , 42 , 43 .
  • the multilayer board 40 is provided with an embodiment of the plug connector 10 a , 10 b where the signal contact 11 a , 11 b ; 12 a , 12 b comprises only a single signal contact element 62 , 61 each.
  • the further embodiments may be configured in accordance with the multilayer board 40 shown in FIG. 6 .
  • the plug connector 10 a , 10 b and the multilayer board 40 it is possible, though with increased production input, to configure the plug connector 10 a , 10 b and the multilayer board 40 to be contacted in such a way that part of the signal contact elements 13 a , 13 b , 14 a , 14 b ; 15 a , 15 b , 16 a , 16 b of the signal contacts 11 a , 1 l b ; 12 a , 12 b contain only a single signal contact element 60 , 61 while another part of the signal contact elements 11 a , 11 b ; 12 a , 12 b contain pairs of signal contact elements 13 a , 13 b , 14 a , 14 b ; 15 a , 15 b , 16 a , 16 b.

Abstract

The invention relates to a multipolar plug connector (10 a, 10 b) for establishing contact with a multilayer board (40), which comprises signal contacts (11 a, 11 b; 12 a, 12 b) that are assigned a first and at least one second screen contact element (17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′) and are arranged adjacent to the signal contact (11 a, 11 b; 12 a, 12 b). The plug connector (10 a, 19 b) is characterized in that recesses (54, 54′, 54″) are provided at least on the uppermost layer (41) of the multilayer board (40) which are suitably sized so as to receive and to lead through at least two screen contact elements (17a′, 17 b′; 18 a, 18 b) assigned to neighboring signal contacts (11 a, 11 b; 12 a, 12 b).

Description

  • The present invention relates to a multipolar plug connector for establishing contact with a multilayer board as defined in the preamble of the independent claim.
  • PRIOR ART
  • DE 699 15 882 T2 describes a plug connector suited for high-frequency data transmission. Each signal contact element is assigned a screen or mass contact element. The orientation of the contact elements is selected so as to allow impedance matching.
  • U.S. Pat. No. 6,976,886 B2 describes a plug connector by which a high screening effect between the signal lines one relative to the other, and of the plug connector generally is to be achieved, by a special arrangement and/or orientation of the signal and screen contact elements one relative to the other. The known plug connector is especially well suited for high-frequency signals, and in addition the arrangement of the signal and mass contact elements is especially defined so that a specific surge impedance is provided.
  • The multipolar high-frequency plug connection described by DE 39 36 466 A1 comprises a plug connector having a metallic screen that is connected with two contact elements intended for contact-making with a circuit board. The two mass contact elements are arranged on both outer surfaces of the plug connector. The screen is not especially assigned to a selected signal contact element.
  • DE 29 49 013 A2 describes a frequency-optimized connector between a coaxial cable and a circuit board. The neutral conductor of one coaxial cable is connected with a strip conductor arranged on a board. Screening of the coaxial cable results in a mass surface which, in the area of the signal strip conductor, is subdivided into two mass conductor strips arranged adjacent to the signal conductor strip. At the other end of the board, a multipolar plug connector is fixed on the board by soldering. A plug connector contact element is soldered to the signal strip conductors. At the side of the signal contact element four neighboring contact elements are soldered to the mass surface of the strip conductor arrangement.
  • DE 39 04 461 C1 and DE 39 36 466 A1 describe multipolar high-frequency plug connectors where at least one of the corresponding plug connectors comprises a metallic screen connected with two contact elements intended for establishing contact with a circuit board. The two mass contact elements are arranged on both outer surfaces of the plug connector.
  • DE 198 07 713 A1 describes a plug connector comprising a large number of contact elements. The known plug connector is intended to establish plug connections between backplanes and plug-in cards of what is known as compact PCI systems.
  • Now, it is the object of the present invention to provide a plug connector for establishing contact with a multilayer board, in combination with a multilayer board, which together allow efficient screening up to the upper high frequency range.
  • This object is achieved by the features defined in the independent claim.
  • DISCLOSURE OF THE INVENTION
  • The multipolar plug connector for establishing contact with a multilayer board, which comprises signal contacts that are assigned a first and at least one second screen contact element and are arranged adjacent to the signal contact, distinguishes itself by the fact that recesses are provided at least on the upper layer of the multilayer board which are suitably sized so as to receive and lead through at least two screen contact elements assigned to neighboring signal contacts.
  • It was found by simulation that distributing the screening to at least two screen contact elements assigned to one signal contact considerably improves the screen rate compared with a single screen contact element. In order to adapt the multilayer board to a plug connector, the multilayer board is provided with through-holes that are properly sized to receive and to lead through the at least two screen contact elements.
  • Further, by assigning at least two screen contact elements to each of the signal contacts, uniform local inductivity is achieved within the plug connector, and within the multilayer board as well. Correspondingly, the characteristic or surge impedance is homogeneously distributed within the plug connector and within the multilayer board.
  • Due to that arrangement, the plug connector, in combination with the multilayer board equipped with the plug connector, is generally suited for carrying signal frequencies up to the upper GHz range. The simulation results could be confirmed by experiments.
  • Advantageous embodiments and further developments of the plug connector according to invention for establishing contact to a multilayer board, in combination with an especially designed multilayer board, are apparent from the dependent claims.
  • One embodiment provides that the signal contact which is screened by at least two screen contact elements comprises a pair of signal contact elements which, according to a further development of that embodiment, are suitably connected for carrying differential signals.
  • Another embodiment provides that an electrically conductive screening ring is provided at least in the area of the rear outlet of the contact elements from the plug connector housing, which ring encloses, at least in part, the signal contact to be screened. That feature is suitable to improve the screening effect especially when the screening ring is in contact with the first and the second screen contact element, as provided by a further development of that embodiment. According to another further development of that embodiment, a plurality of screening rings may be connected one with the other.
  • One embodiment provides that the screen contact elements assigned to one signal contact, as well the at least one signal contact element of the signal contact, are arranged one beside the other in a row and/or a column of the plug connector, at least approximately. The uniform geometric arrangement increases the homogeneity of the surge impedance within the plug connector, including the multilayer board equipped with the plug connector.
  • According to another embodiment, the screen contact elements are in contact with mass surfaces provided on one or more layers of the multilayer board, in which case the mass surfaces may be subdivided into a plurality of partial areas in order to influence the screening effect and/or the surge impedance as required.
  • A preferred use of the plug connector with the multilayer board provided for contact-making provides for the use of the multilayer board as a backplane. Details in this respect can be derived from the cited prior art as known from DE 198 07 713 A1.
  • A further development provides that the plug connector is assembled from segments that contain the signal contacts and screen contact elements arranged in a row or column one beside the other. The different segments may comprise a screening sheet at least on one side. Those features allow easy production of the plug connector.
  • Another further development provides that the multilayer board comprises at least a single continuous recess intended to receive and to lead through a pair of signal contact elements. Production of the multilayer board is rendered especially easy if instead of certain individual recesses intended to receive and to lead through each pair of signal contact elements, such receiving and lead-through recesses are provided for every pair of signal contact elements.
  • Other advantageous further developments and embodiments of the plug connector provided for establishing contact with the multilayer board, including the multilayer board, may be derived from the embodiments described in the following, and from the drawings.
  • SHORT DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a three-dimensional representation of a plug connector showing especially a view of the contact-making ends of the contact element;
  • FIG. 2 shows a three-dimensional view of a corresponding plug connector, likewise providing a view of the contact-making ends of the contact elements;
  • FIG. 3 shows a detail of the representation of FIG. 2;
  • FIG. 4 shows a greatly enlarged detail of the representation of FIG. 2;
  • FIG. 5 shows a segment of the plug connector shown in FIG. 1;
  • FIG. 6 shows an isometric diagrammatic representation of a multilayer board with a first configuration of recesses for contact elements; and
  • FIG. 7 shows an isometric diagrammatic representation of a multilayer board with a second configuration of recesses for contact elements.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 shows a three-dimensional representation of a multipolar plug connector 10 a, providing a view especially of the rear ends of contact elements intended for making contact with a multilayer board not shown in FIG. 1. A first signal contact 11 a and a neighboring signal contact 12 a are arranged in one row or column, by way of example. One signal contact may comprise one or more signal contact elements. Contact between the multipolar plug connector 10 a and the multilayer board preferably is established by press-in connection. Alternatively, or additionally, soldering may be used.
  • In the illustrated embodiment the first signal contact 11 a comprises a first and a second signal contact element 13 a, 14 a, and the neighboring signal contact 12 a likewise comprises a first and a second signal contact element 15 a, 16 a.
  • Accordingly, both signal contacts 11 a, 12 a are implemented as pairs of signal contact elements by way of example.
  • At least certain selected signal contacts 11 a, 12 a of the plug connector 10a should be screened. Screening is effected by screen contact elements. Instead of assigning one signal contact a single screen contact element only, it is provided to assign the signal contacts a first and at least one second screen contact element. In the illustrated embodiment, the first signal contact 11 a is assigned a first screen contact element 17 a and at least one second screen contact element 17 a′, the first screen contact element 17 a being arranged on the one side of the signal contact 11 a and the other screen contact element 17 a′ being arranged on the other side of the signal contact 11 a, so that the signal contact 11 a is enclosed by its associated screen contact elements 17 a, 17 a′ at least in part.
  • The first screen contact element 18 a and the at least one second screen contact element 18 a′ are assigned to the neighboring signal contact 12 a.
  • FIG. 2 shows a plug connector 10 b corresponding to the plug connector 10 a shown in FIG. 1. While the plug connector 10 a shown in FIG. 1 comprises spring contacts, for example, the corresponding plug connector 10 b shown in FIG. 2 is equipped with the matching blade contacts. Those parts in FIG. 2 that correspond to the parts illustrated in FIG. 1 are indicated by the same reference numerals, with the index “a” replaced by index “b”. That convention will be followed also in the description of the following Figures.
  • The corresponding plug connector 10 b illustrated in FIG. 2 shows an embodiment using a screening ring 20 that encloses the signal contacts 11 b, 12 b at least in part. The screening ring 20 exists at least in the area of the rear portion of the plug connector 10 b which is intended to establish contact with the multi-layer board. Additionally or alternatively, the screening ring 20 may also be provided in the inner area of the plug connector 10 b. Of course such a screening ring may also be provided in the plug connector 10 a configured according to FIG. 1.
  • FIG. 3 shows a detail of FIG. 2 viewed from a different perspective. Especially, FIG. 3 shows another configuration which provides that the screening ring 20, enclosing the signal contacts 11 b, 12 b at least in part, interconnects the screen contact elements 17 b, 17 b′; 18 b, 18 b′ associated with the signal contact 11 b, 12 b. In addition, there can be seen another embodiment which provides that the screen contact elements 17 b, 17 b′; 18 b, 18 b′ of a plurality of signal contacts 11 b, 12 b are interconnected by the screening ring 20.
  • FIG. 4 shows a greatly enlarged detail of FIG. 2 in which the screening ring 20 can be seen with particular clarity. In this embodiment, too, the screen contact elements 17 b, 17 b′ assigned to one signal contact 11 b are interconnected in an electrically conductive manner by the screening ring 20. In addition, that Figure likewise shows the embodiment where the screening ring 20 interconnects the screen contact elements 17 b, 17 b′, 18 b respectively assigned to neighboring signal contacts.
  • FIG. 5 shows one segment 30 of the plug connector 10 a illustrated in FIG. 1. The design by segments allows the plug connector 10 a to be formed from a plurality of segments 30 arranged in series. This allows the production of the plug connector 10 a to be considerably facilitated. FIG. 5 shows a screening sheet 31 which covers all contact elements 13 a, 13 b, 14 a, 14 b, 15 a, 15 b; 16 a, 16 b, 17 a; 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′, thereby screening them from the neighboring corresponding contact elements of the next segment 30, not shown in the drawing.
  • FIG. 6 shows a first embodiment of a multilayer board 40 comprising a plurality of layers 41, 42, 43. The multilayer board 40 is prepared for contact-making with the plug connector 10 b according to FIG. 1, or with the plug connector 10 b according to FIG. 2. Accordingly, those parts that correspond to the parts illustrated in FIGS. 1 and 2 are again indicated by the same reference numerals. The representation of FIG. 6 corresponds to a section along the surface of the uppermost layer 41 of the multilayer board 40 with assembled plug connector 10 a, 10 b.
  • Accordingly, there can be seen in the drawing only those parts of the contact elements 13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b; 17 a, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′ that are located in the multilayer board 40. The signal contact elements 13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b are respectively located in the recesses 50, 51, 52, 53. The screen contact elements 17 a′, 17 b′, 18 a, 18 b, which are assigned to neighboring signal contacts 11 a, 11 b; 12 a, 12 b, are located in a single continuous recess 45, 45′, 45″ according to the invention.
  • The screen contact elements 17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′ are preferably in contact with mass surfaces 55, 56, 57 that may be arranged on different layers 41, 42, 43 of the multilayer board 40. Contact is made preferably by a press-in connection in this case as well. Alternatively or additionally, soldering may be applied. The dimensions of the mass surfaces 55, 56, 57 may vary depending on the particular requirements. For example, the mass surface 55 arranged on the second layer 42, and the mass surface 56 arranged on the lowermost layer 42 are subdivided into several partial areas.
  • According to one embodiment, the two signal contact elements 13 a,13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b, which respectively form a signal contact 11 a, 11 b; 12 a, 12 b, are interconnected in the form of differential contact pairs where one signal contact element 13 a, 13 b; 15 a, 15 b carries a first signal pattern related to a reference potential, while the second signal contact element 14 a, 14 b; 16 a, 16 b of the signal contact 11 a, 11 b; 12 a, 12 b carries an inverted signal pattern. For greater clarity, the one signal contact element 13 a, 13 b; 15 a, 15 b is designated by a plus sign while the other signal contact element 14 a, 14 b; 16 a, 16 b is designated by a minus sign.
  • FIG. 6 shows a further embodiment according to which the two signal contact elements 13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b of at least certain individual signal contacts 11 a, 11 b; 12 a, 12 b are likewise arranged in a continuous recess 58, 59.
  • The recesses 54, 54′; 54″, 58, 59 are provided at least in the uppermost layer 41 of the multilayer board 40 and, if required, also in lower layers 42, 43.
  • FIG. 7 shows another embodiment of the multilayer board 40 which likewise comprises a plurality of layers 41, 42, 43. For contact-making the multilayer board 40 is provided with an embodiment of the plug connector 10 a, 10 b where the signal contact 11 a, 11 b; 12 a, 12 b comprises only a single signal contact element 62, 61 each. The further embodiments may be configured in accordance with the multilayer board 40 shown in FIG. 6.
  • In principle it is possible, though with increased production input, to configure the plug connector 10 a, 10 b and the multilayer board 40 to be contacted in such a way that part of the signal contact elements 13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b of the signal contacts 11 a, 1 lb; 12 a, 12 b contain only a single signal contact element 60, 61 while another part of the signal contact elements 11 a, 11 b; 12 a, 12 b contain pairs of signal contact elements 13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b.

Claims (12)

1. Multipolar plug connector for establishing contact with a multilayer board (40), which comprises signal contacts (11 a, 11 b; 12 a, 12 b) that are assigned a first and at least one second screen contact element (17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′) and are arranged adjacent to the signal contact (11 a, 11 b; 12 a, 12 b), wherein recesses (54, 54′, 54″) are provided at least on the uppermost layer (41) of the multilayer board (40) which are suitably sized so as to receive and to lead through at least two screen contact elements (17 a′, 17 b′; 18 a, 18 b) assigned to neighboring signal contacts (11 a, 11 b; 12 a, 12 b).
2. The multipolar plug connector as defined in claim 1, wherein the signal contact (11 a, 11 b; 12 a, 12 b) which is screened by at least two screen contact elements (17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′) comprises a pair of signal contact elements (13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b).
3. The multipolar plug connector as defined in claim 1, wherein an electrically conductive screening ring (20) is provided at least in the area of the contact elements (13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b, 17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′; 60; 61), which ring encloses, at least in part, the signal contact (11 a, 11 b; 12 a, 12 b) to be screened.
4. The multipolar plug connector as defined in claim 3, wherein the screening ring (20) contacts the first and the second screening contact element (17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′).
5. The multipolar plug connector as defined in claim 4, wherein a plurality of screening rings (20) are connected one with the other.
6. The multipolar plug connector as defined in claim 1, wherein the screen contact elements (17 a, 17 b, 17 a′, 17 b,; 18 a, 18 b, 18 a′, 18 b′) assigned to a signal contact (11 a, 11 b; 12 a, 12 b) as well as the at least one signal contact element (13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b; 60; 61) of the signal contact (11 a, 11 b; 12 a, 12 b). are arranged one beside the other in a row and/or a column of the plug connector (10 a, 10 b), at least approximately.
7. The multipolar plug connector as defined in claim 1, wherein the screen contact elements (17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′) are in contact with a mass surface (55, 56, 57) provided on one layer (41, 42, 43) of the multilayer board (40).
8. The multipolar plug connector as defined in claim 1, wherein the plug connector (10 a, 10 b) is contacted with a multilayer board (40) used as a backplane.
9. The multipolar plug connector as defined in claim 2, wherein the pairs of signal contact elements(13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b) carry differential signals.
10. The multipolar plug connector as defined in claim 1, wherein the plug connector (10 a) is assembled from segments (30) that contain the signal contacts (11 a, 11 b; 12 a, 12 b) and the screen contact elements (17 a, 17 b, 17 a′, 17 b′; 18 a, 18 b, 18 a′, 18 b′) arranged in a row or in a column one beside the other.
11. The multipolar plug connector as defined in claim 10, wherein the segments (30) each comprise a screening sheet (31) at least on one side.
12. The multipolar plug connector as defined in claim 2, wherein the multilayer board (40) comprises at least a single continuous recess (58, 59) intended to receive and to lead through at least individual pairs of signal contact elements (13 a, 13 b, 14 a, 14 b; 15 a, 15 b, 16 a, 16 b).
US12/386,641 2009-01-12 2009-04-21 Plug connector and multilayer board Expired - Fee Related US7901248B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009004684 2009-01-12
DE102009004684.4 2009-01-12
DE102009004684 2009-01-12

Publications (2)

Publication Number Publication Date
US20100178802A1 true US20100178802A1 (en) 2010-07-15
US7901248B2 US7901248B2 (en) 2011-03-08

Family

ID=42101761

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/386,641 Expired - Fee Related US7901248B2 (en) 2009-01-12 2009-04-21 Plug connector and multilayer board

Country Status (4)

Country Link
US (1) US7901248B2 (en)
EP (1) EP2207244B1 (en)
DK (1) DK2207244T3 (en)
ES (1) ES2457865T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184115A1 (en) * 2009-08-31 2012-07-19 Erni Electronics Gmbh Plug connector and multi-layer circuit board
US8449330B1 (en) * 2011-12-08 2013-05-28 Tyco Electronics Corporation Cable header connector
CN104718666A (en) * 2012-08-27 2015-06-17 富加宜(亚洲)私人有限公司 High speed electrical connector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920194B2 (en) * 2011-07-01 2014-12-30 Fci Americas Technology Inc. Connection footprint for electrical connector with printed wiring board
US8840431B2 (en) 2012-10-26 2014-09-23 Tyco Electronics Corporation Electrical connector systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899566B2 (en) * 2002-01-28 2005-05-31 Erni Elektroapparate Gmbh Connector assembly interface for L-shaped ground shields and differential contact pairs

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1273636B (en) * 1965-10-09 1968-07-25 Telefunken Patent Arrangement for fastening and fixing a transistor on a printed circuit board
DE2949013C2 (en) 1979-12-06 1985-05-02 ANT Nachrichtentechnik GmbH, 7150 Backnang Transition from a coaxial cable to a multi-pin connector
DE3904461C1 (en) 1989-02-15 1990-09-06 Erni Elektroapparate Gmbh, 7327 Adelberg, De Multipole radio-frequency plug connection
DE3936466C2 (en) 1989-11-02 1994-06-09 Erni Elektroapp Multi-pole high-frequency connector
DE29721401U1 (en) 1997-12-06 1998-02-05 Erni Elektroapp Connectors for backplanes and plug-in cards in so-called Compact PCI systems
US6394822B1 (en) 1998-11-24 2002-05-28 Teradyne, Inc. Electrical connector
US6527587B1 (en) * 1999-04-29 2003-03-04 Fci Americas Technology, Inc. Header assembly for mounting to a circuit substrate and having ground shields therewithin
CN100483886C (en) 2001-11-14 2009-04-29 Fci公司 Cross talk reduction for electrical connectors
US6642460B2 (en) * 2002-01-23 2003-11-04 Eaton Corporation Switch assembly employing an external customizing printed circuit board
US6776659B1 (en) * 2003-06-26 2004-08-17 Teradyne, Inc. High speed, high density electrical connector
DE102004014034A1 (en) * 2004-03-19 2005-10-06 Endress + Hauser Gmbh + Co. Kg Printed circuit board with at least one connection hole for a lead or pin of a wired electronic component
US7108556B2 (en) * 2004-07-01 2006-09-19 Amphenol Corporation Midplane especially applicable to an orthogonal architecture electronic system
US7806729B2 (en) * 2008-02-12 2010-10-05 Tyco Electronics Corporation High-speed backplane connector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899566B2 (en) * 2002-01-28 2005-05-31 Erni Elektroapparate Gmbh Connector assembly interface for L-shaped ground shields and differential contact pairs

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120184115A1 (en) * 2009-08-31 2012-07-19 Erni Electronics Gmbh Plug connector and multi-layer circuit board
US8622751B2 (en) * 2009-08-31 2014-01-07 Erni Electronics Gmbh & Co. Kg Plug connector and multi-layer circuit board
US8449330B1 (en) * 2011-12-08 2013-05-28 Tyco Electronics Corporation Cable header connector
CN104718666A (en) * 2012-08-27 2015-06-17 富加宜(亚洲)私人有限公司 High speed electrical connector
TWI607604B (en) * 2012-08-27 2017-12-01 安姆芬諾爾富加宜(亞洲)私人有限公司 High speed electrical connector
US10038282B2 (en) 2012-08-27 2018-07-31 Amphenol Fci Asia Pte. Ltd. High speed electrical connector
CN109004398A (en) * 2012-08-27 2018-12-14 安费诺富加宜(亚洲)私人有限公司 High-speed electrical connectors

Also Published As

Publication number Publication date
EP2207244B1 (en) 2014-01-15
EP2207244A2 (en) 2010-07-14
EP2207244A3 (en) 2011-09-21
US7901248B2 (en) 2011-03-08
ES2457865T3 (en) 2014-04-29
DK2207244T3 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
CN100541922C (en) Electric connector
US5525067A (en) Ground plane interconnection system using multiple connector contacts
CN101194397B (en) Electrical connector
US6935870B2 (en) Connector having signal contacts and ground contacts in a specific arrangement
US7651342B1 (en) Dual-interface electrical connector with anti-crosstalk means therebetween
CN105659441B (en) The connector directly adhered to
US9660369B2 (en) Assembly of cable and connector
EP2838164B1 (en) Communication connector and electronic device using communication connector
EP2701471B1 (en) High speed input/output connection interface element and interconnection system with reduced cross-talk
US7131862B2 (en) Electrical connector with horizontal ground plane
CN104466538B (en) Electric connector
EP1876675A1 (en) Electric connector
US11063379B2 (en) Electrical cable assembly
US7901248B2 (en) Plug connector and multilayer board
US6281451B1 (en) Electrical cable device
EP0074205B1 (en) A connector for coaxially shielded cable
US20140051300A1 (en) Connector and connector unit
US20110287642A1 (en) Cable connector assembly employing separate inter connecting conductors and method for assembling the same
US9131632B2 (en) Relief plug-in connector and multilayer circuit board
US6783400B2 (en) Electrical connector assembly having contacts configured for high-speed signal transmission
US20020090862A1 (en) High density RJ connector assembly
TWI769682B (en) Electrical connector with electromagnetic shielding function
US7273393B2 (en) Connector shell for a multiple wire cable assembly
US20050153584A1 (en) Flex strips for high frequency connectors
CN215645094U (en) Circuit board connector and connecting assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: ERNI ELECTRONICS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAPPOEHN, JUERGEN;REEL/FRAME:022639/0418

Effective date: 20090406

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ERNI ELECTRONICS GMBH & CO. KG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:ERNI ELECTRONICS GMBH;REEL/FRAME:032725/0259

Effective date: 20130125

Owner name: ERNI PRODUCTION GMBH & CO. KG, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:ERNI ELECTRONICS GMBH & CO. KG;REEL/FRAME:032725/0245

Effective date: 20140108

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230308