US20100197017A1 - Method for sterilization of biological preparations - Google Patents

Method for sterilization of biological preparations Download PDF

Info

Publication number
US20100197017A1
US20100197017A1 US12/757,079 US75707910A US2010197017A1 US 20100197017 A1 US20100197017 A1 US 20100197017A1 US 75707910 A US75707910 A US 75707910A US 2010197017 A1 US2010197017 A1 US 2010197017A1
Authority
US
United States
Prior art keywords
biological
radiation
preparation
freeze
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/757,079
Inventor
Yehudit Natan
Tamir Kanias
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Dynamics Ltd
Original Assignee
Core Dynamics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Core Dynamics Ltd filed Critical Core Dynamics Ltd
Priority to US12/757,079 priority Critical patent/US20100197017A1/en
Publication of US20100197017A1 publication Critical patent/US20100197017A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0047Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0035Gamma radiation

Definitions

  • the invention relates to the sterilization of biological preparations. More specifically the present invention relates to a method for the sterilization of biological preparations and to sterilized biological preparations.
  • Contaminants are such agents that may damage the biological material during preservation and/or harm the recipient when the product is used (e.g. transfused, injected or eaten).
  • white blood cells WBC
  • RBC red blood cell
  • gamma radiation is used for inactivation of WBC, mainly the lymphocytes which are the main cause for graft versus host disease (GVHD), in fresh blood units.
  • gamma radiation can be damaging to radiation-sensitive products.
  • gamma radiation is injurious to red blood cells, platelets and granulocytes (US 2004/067157).
  • UV radiation on the other hand is considered less damaging than gamma radiation.
  • UV radiation is absorbed by water, it is practically ineffective for removal of contaminants that are in a water-containing sample (liquid or ice).
  • WO 2004/0091938 reduction of the residual solvent content of biological material would reduce the absorption of UV in the water and thus enable sterilization of a biological sample using UV.
  • sterilization of biological material in WO 2004/0091938 was restricted to wet biological material or to non-cellular portions of a blood preparation (i.e. not including RBC or platelets), apparently since “sensitive biologicals, such as blood, would lose viability and activity if subjected to freezing for irradiation purposes and then thawing prior to administration to a patient” (id.).
  • biological preparation denotes a preparation or sample (natural, processed or man made) comprising desired biological entities.
  • “Desired biological entities” are viable nucleus free biological entities, including eukaryotic nucleus free cells (e.g. RBC), parts of cells (e.g. platelets), or artificial or semi-artificial material such as liposomes.
  • RBC eukaryotic nucleus free cells
  • parts of cells e.g. platelets
  • artificial or semi-artificial material such as liposomes.
  • biological preparations include blood or fractions thereof that contain RBC or platelets, an RBC-enriched fraction of blood, packed RBC or platelet-enriched fraction of blood, samples of liposomes, etc.
  • a “Viable” biological preparation is such that at least a portion of the desired biological entities therein appear to be structurally intact, or preferably that they at least partially retain a desired biological activity or if in a dry state may resume that activity upon rehydration.
  • Preferably at least 10% of the desired biological entities are viable, desirably at least 30% or even at least 50%. In the case of RBC for example a preferred percentage of viable cells may in some cases be at least 75%.
  • liposomes mean hollow lipid vesicles. They may be used to entrap the substance to be delivered within the liposomes, or the drug molecule of interest can be incorporated into the lipid vesicle as an intrinsic membrane component, rather than entrapped into the hollow aqueous interior, or electrostatically attached to the aggregate surface.
  • living-matter contaminants is taken to mean biological entities that contain genetic material and are therefore radiation sensitive.
  • the living-matter contaminants may be present in a biological preparation, either at the time of harvesting or may contaminate the biological preparation at a later time (e.g. during its manipulation or storage), and may damage the biological preparation or a portion thereof, its recipient or otherwise interfere with the use of the biological preparation.
  • Such living-matter contaminants may be any type of biological entity including, nucleic acid sequences, prokaryotes including viruses, mycoplasma or bacteria and, fungi, yeasts, molds, single cell or larger parasitic microorganisms, or other undesired cellular entities, such as WBC, etc.
  • the “Activity” of contaminants means any activity that may damage the biological preparation, its recipient or otherwise interfere with the use of the biological preparation (including due to legal constraints).
  • the contaminants are of such radiation sensitivity that upon irradiation they are reduced in number or activity, for example by becoming less likely to multiply (e.g. bacteria, WBC, yeast) or less likely to infect target cells (e.g. viruses) or transfect cells (nucleic acid sequences) or less likely to display a significant immune effect (e.g. WBC).
  • the amount or activity of the contaminants may be assayed, directly or indirectly, using any method of the art.
  • UV radiation means radiation having a wavelength between 100-400 nm. It includes three ranges: UV-A (315-400 nm), UVB (280-315 nm) and UV-C (100-280 nm).
  • drying means having (or causing to have) a reduced water content as compared to the water content before drying.
  • a dried preparation may have 10% less water than the original preparation from which it was derived, preferably less than 60% or even 75%, and desirably 90% less water than the original preparation. Drying may be done using any method known in the art, including air drying, heat drying, freeze drying, spray drying or nebulizing, as long as the biological preparation maintains viability of the desired biological entities. Examples of methods include air drying of liposomes (Hincha et al. 2003; Biochemica et Biophysica ACTA.
  • freeze-drying denote a process wherein material is frozen and dried.
  • a biological preparation is said to be freeze dried or lyophilized, this may mean that at least two steps were executed, one of which for freezing the sample and the other for drying. Each of these steps may be done using any known method, and preferably such known methods that cause minimal damage to the desired biological entities.
  • Preferred methods of freeze-drying are disclosed in PCT IL2005/000125, the content of which is incorporated herein in full by way of reference.
  • the present invention is based on the inventors' surprising finding that biological preparations comprising desired nucleus free biological entities, such as RBC or platelets, may be irradiated using ionizing or UV radiation, when in a dried (e.g., freeze-dried) state such that undesired living-matter contaminants will be destroyed with relatively little damage to said biological entities.
  • “Little damage” should be taken to mean that at least 10% of the desired biological entities are viable, desirably at least 30% or even at least 50% of said biological entities is viable after irradiation.
  • the invention is particularly suitable for biological preparations that are freeze dried and rehydrated as described in PCT application PCT Il2005/000125, the contents of which is incorporated herewith by reference in full, albeit not limited thereto.
  • the invention permits, according to an embodiment thereof, the irradiation and sterilization of biological preparations comprising desired nucleus free biological entities using ionizing or UV irradiation.
  • the present invention provides according to one aspect a method for the sterilization of a biological preparation comprising desired viable biological entities, the method comprising irradiating a dried biological preparation with ionizing or UV radiation at an intensity and for a duration sufficient to reduce the amount or activity of living-matter contaminants in the biological preparation, the intensity and duration selected such that at least part of the desired biological entities in the sample remains viable.
  • the present invention is particularly suitable for biological preparations comprising desired biological entities derived from blood, including RBC and platelets.
  • the present invention provides a method for the sterilization of biological preparations comprising desired viable biological entities, allowing reduction of the amount or activity of living-matter contaminants in the biological preparation. Potentially, the amount of active contaminants in the biological preparation is reduced to none.
  • the method of the present invention would allow the reduction of the amount or activity of at least one of said contaminants.
  • the biological preparation might be free of active contaminants, in which case the present invention would ensure the lack of contaminants and thus diminish, or even negate, the need to check for active contaminants.
  • the method also includes a step of drying a biological preparation comprising desired viable biological entities. It is hence noted that the step of irradiating the biological preparation may be performed at any time after the biological preparation will become dry or partially dried. In fact, the irradiating may be done simultaneously (or partially simultaneously) with or even in between two steps of drying the biological preparation.
  • any type of ionizing or UV radiation may be suitable for the present invention, however a person skilled in the art would appreciate that the type, intensity and duration of irradiation would best be chosen so as to retain as much as possible the viability of the biological preparation while reducing as much as possible the amount or activity of contaminants.
  • red blood cells The effects of irradiation and freeze drying on red blood cells (RBC) were evaluated in this experiment.
  • the freezing solution used was composed of 30% (w/v) dextran in PBS (Ca 2+ and Mg 2+ free).
  • Packed RBC obtained from the Israeli Blood Services were mixed at a ratio of 1:1 (v/v) with the freezing solution.
  • the samples were also rotated at 56 RPM (rounds per minute).
  • samples were put in a lyophilizer (Labconco, USA) for 3 days (condenser ⁇ 80° C.). After 3 days of lyophilization, when the samples contained 10% or less of their original water content, one sample was placed in a Petri dish and exposed to UV radiation for 1 hour and the other was protected from light using aluminum foil. After 1 hour irradiation the samples were rehydrated with ultra pure water at 37° C. to their original volume. RBC were counted and hematocrit assayed using the Pentra 60 (ABX, France).
  • polyphenols denotes one or more natural and/or synthetic polyphenols that may be naturally found in green tea, including epigallocatechin gallate (EGCG), epicatechin gallate (ECG) epigallocatechin (EGC) epicatechin (EC).
  • packed RBC were frozen with a freezing solution containing: 30% (w/v) dextran 40,000 Dalton and 0.47 mg/ml EGCG (Cayman Chemical, USA).
  • the freezing solution and the packed RBC were mixed in a ratio of 1:1 (v/v).
  • 2.5 ml of the cell suspension were put in 16 mm diameter glass test tubes (Manara, Israel).
  • a total of 4 test tubes were frozen.
  • the samples were also rotated at 56 RPM.
  • samples were placed in liquid nitrogen. After the passage of varying time periods (between 1 ⁇ 2 hour to a few weeks) samples were placed in a lyophilizer (Labconco, USA) with a condenser temp of ⁇ 80° C.) for 72 hours, and the samples were dried such that they had the appearance of a powder and had less than 10% of their original water content. Then samples were transferred to a 60 mm Petri dish, 2 samples were exposed to UV for 1 hour and during that 1 hour the other 2 samples were covered with aluminum foil to prevent exposure to light. All samples were then rehydrated with ultra pure water at 37° C. to their original volume and compared using the PENTRA 60 counter (ABX, France). Results are presented as compared to the parameters of fresh RBC in a freezing solution including EGCG.
  • Fresh whole rat's blood (extracted from Sprague-Dawley rats) was washed once. Plasma was removed and the packed RBCs were suspended in a 1:3 ratio (v/v) with a freezing solution composed of 0.945 mg/ml EGCG and 20% (w/v) Dextran 40 kD in 0.9% (w/v) NaCl solution, and the final hematocrit was 25%.
  • Lyophilization for 48 hours resulted in about 60% of water loss.
  • This water loss was evaluated by the amount of PBS that was needed to be added to the solution in order to regain the original sample's volume.
  • the freeze dried sample there was some cell damage as seen in the free hemoglobin percentage (22.26% Free Hb).
  • microscopic observations revealed more than 50% of the cells with normal morphology.
  • this free hemoglobin rate might be a result of the thawing process, since upon thawing and before addition of PBS the thawed cells were exposed to a very hypertonic environment, which remained hypertonic but to a lesser extent after PBS was added.
  • E. coli were placed in LB medium: 10 gr Bacto-tryptone (Difco, USA), 5 gr yeast extract (Difco, USA), 10 gr NaCl, in 1 liter distilled water. The total volume of 10 ml was divided to two batches of 5 ml each. To the first batch of E. coli in LB medium we added 5 ml of freezing solution composed of 30% (w/v) dextran and 0.47 mg/ml EGCG (Cayman Chemical, USA) in PBS (Ca +2 and Mg +2 free). The other batch was left un-touched.
  • test tubes were put in 16 mm diameter glass test tubes (Manara, Israel), such that a total of 4 test tubes were prepared.
  • the test tubes were frozen using the MTG Device (IMT, Israel) at 1000° C./min (from 5 to ⁇ 50° C. at a velocity of 3 mm/sec and with 56 RPM. After freezing was completed the test tubes were placed in liquid nitrogen. Afterwards, the 4 test tubes were placed in a lyophilizer (Labcono, USA) for 72 hours. After lyophilization was completed the “powdered” cells from each test tube were scraped into a Petri dish.
  • test tubes were prepared, each containing 2.5 ml.
  • the test tubes were frozen using the MTG device (IMT, Israel) at 1000° C./min (from 5 to ⁇ 50° C. at a velocity of 3 mm/sec and with 56 RPM and then placed in a lyophilizer for 72 h. After lyophilization one test tube from each group was exposed to UV radiation for 1 hour. After 1 hour 2 ml of ddH 2 O was added and from each group 3 agar plates were seeded and placed for 24 hour in 37° C. oven for 24 hours. The results are depicted in Table IV.
  • E. coli pellet E. coli in LB medium that was centrifuged for 10 minutes at 2000 g.
  • the platelets & E. coli solution was mixed at a ratio of 1:1 (v/v) with a freezing solution composed of 30% (w/v) Dextran (40,000 Dalton; Amersham Biosciences, USA) and 1.87 mg/ml EGCG (Cayman, USA) in PBS (calcium and magnesium free).
  • Two samples, 2.5 ml each, of platelet suspension were put in a 60 mm Petri dish. One dish was exposed to UV radiation for 1 hour, and the other was left untouched, covered in aluminum foil. After one hour, samples from each Petri dish were seeded in agarose and put in an incubator at 37° C. for 24 hours. After 24 hours colonies were counted.
  • Platelets- E. coli solutions were prepared as described in Example 6. The platelets- E. coli solution was divided to two batches, and each batch was mixed at a ratio of 1:1 (v/v) with one of the following freezing solutions: (1) 30% (w/v) Dextran (40 KDa) and 1.87 mg/ml EGCG in PBS (calcium and magnesium free); or (2) 30% (w/v) Dextran (40 KDa) in PBS (calcium and magnesium free). 2.5 ml aliquots of platelet suspension were put in 16 mm diameter glass test tubes (Manara, Israel). A total of 4 test tubes were prepared, 2 tubes from each batch. The tubes were frozen in the MTG device at a thermal gradient of 5.5° C./mm and at a cooling rate of 1000° C./min (final temperature was ⁇ 50° C., velocity was 3 mm/sec).
  • UV radiation reduced the number of colonies by more than tenfold.
  • the 2.5 ml samples were frozen using the MTG freezing device (IMT Israel), in the same conditions as described above. After freezing was completed samples were stored in liquid nitrogen until put in a lyophilizer (condenser temperature ⁇ 80° C.) (Labconco, USA) for 72 hours.
  • the freeze-dried blood was exposed to gamma radiation of one of three intensities (1, 2.5 and 5 mega Rad), whilst a control for the irradiation was kept without irradiation. After the irradiation all samples were rehydrated with double distilled water at 37° C. to the samples' original volume.

Abstract

Provided is a method for the sterilization of a biological preparation including desired viable biological entities. The method includes irradiating a dried (e.g. freeze-dried) biological preparation with UV radiation at an intensity and for a duration sufficient to reduce the amount or activity of living-matter contaminants in the biological preparation, the intensity and duration selected such that at least part of the desired biological entities in the sample remains viable. The described method is particularly suitable for the reduction of the amount or activity of contaminants such as bacteria or viruses from biological preparations including red blood cells or platelets.

Description

    FIELD OF THE INVENTION
  • The invention relates to the sterilization of biological preparations. More specifically the present invention relates to a method for the sterilization of biological preparations and to sterilized biological preparations.
  • LIST OF REFERENCES
  • The following references are considered to be pertinent for the purpose of understanding the background of the present invention:
      • 1. US 2004/067157 Methods for Sterilizing Biological Materials;
      • 2. WO 2004/009138 Methods for Sterilizing Milk;
      • 3. PCT IL2005/000125 Biological Material and Methods and Solutions for Preservation Thereof;
      • 4. U.S. Pat. No. 5,709,992 Method for disinfecting red blood cells;
      • 5. U.S. Pat. No. 6,482,585 Storage and maintenance of blood products including red blood cells and platelets;
      • 6. Hustom, et al. Lack of efficacy for conventional gamma irradiation of platelet concentrates to abrogate bacterial growth. Am J Clin Pathol. 1998; 109(6):743-7
      • 7. Smith, et al. Gamma irradiation of HIV-1. J orthop Res. 2001; 19(5): 815-9.
    BACKGROUND OF THE INVENTION
  • When storing cells, tissue or other biological material, there is always the danger of contamination from bacteria, viruses, yeasts, molds, fungi etc., and sometimes the contaminants are present in the biological material when it is first collected. Contaminants are such agents that may damage the biological material during preservation and/or harm the recipient when the product is used (e.g. transfused, injected or eaten). Among known contaminants are white blood cells (WBC) that are normally present in red blood cell (RBC) samples. The presence of WBC in a transfusion liquid is a problem due to graft vs. host disease, in which the transfused WBC (mainly the lymphocytes) attack the recipient's body.
  • Many methods for sterilization are known in the art including heating and filtration. However, these processes may damage biological material (e.g. when it is sensitive to heat) or prove to be inefficient (e.g. when the biological material is filtered with some contaminants). Other ways for sterilization involve ionizing radiation, mainly gamma rays. For example, gamma radiation is used for inactivation of WBC, mainly the lymphocytes which are the main cause for graft versus host disease (GVHD), in fresh blood units. This is normally done by irradiating a liquid sample of blood or blood components including RBC, platelets, granulocyte components and non frozen plasma in a plastic bag with 2.5 mega Rad of gamma radiation to the central portion of the bag, resulting with no less than 1.5 mega Rad which are delivered to every part of the blood bag (AABB Technical Manual, 14th edition). Attempts were made to reduce the bacteria content in platelet concentrates (Hustom et al. 1998) but it was concluded that exposure to gamma radiation at levels up to 7.5 mega Rad was ineffective at sterilizing the sample. Likewise it was found that gamma radiation (1.5-2.5 mega Rad) does not constitute a virucidal dose for HIV type 1 in frozen bone and tendon allografts (Smith et al. 2001).
  • Furthermore, gamma radiation can be damaging to radiation-sensitive products. In particular it has been shown that gamma radiation is injurious to red blood cells, platelets and granulocytes (US 2004/067157).
  • Ultraviolet (UV) radiation on the other hand is considered less damaging than gamma radiation. However, as UV radiation is absorbed by water, it is practically ineffective for removal of contaminants that are in a water-containing sample (liquid or ice). Accordingly it was suggested in WO 2004/0091938 that reduction of the residual solvent content of biological material would reduce the absorption of UV in the water and thus enable sterilization of a biological sample using UV. However, sterilization of biological material in WO 2004/0091938 was restricted to wet biological material or to non-cellular portions of a blood preparation (i.e. not including RBC or platelets), apparently since “sensitive biologicals, such as blood, would lose viability and activity if subjected to freezing for irradiation purposes and then thawing prior to administration to a patient” (id.).
  • GLOSSARY
  • The term “biological preparation” denotes a preparation or sample (natural, processed or man made) comprising desired biological entities. “Desired biological entities” are viable nucleus free biological entities, including eukaryotic nucleus free cells (e.g. RBC), parts of cells (e.g. platelets), or artificial or semi-artificial material such as liposomes. Examples of such biological preparations include blood or fractions thereof that contain RBC or platelets, an RBC-enriched fraction of blood, packed RBC or platelet-enriched fraction of blood, samples of liposomes, etc.
  • A “Viable” biological preparation is such that at least a portion of the desired biological entities therein appear to be structurally intact, or preferably that they at least partially retain a desired biological activity or if in a dry state may resume that activity upon rehydration. Preferably at least 10% of the desired biological entities are viable, desirably at least 30% or even at least 50%. In the case of RBC for example a preferred percentage of viable cells may in some cases be at least 75%.
  • In this invention, “liposomes” mean hollow lipid vesicles. They may be used to entrap the substance to be delivered within the liposomes, or the drug molecule of interest can be incorporated into the lipid vesicle as an intrinsic membrane component, rather than entrapped into the hollow aqueous interior, or electrostatically attached to the aggregate surface.
  • The term “living-matter contaminants” is taken to mean biological entities that contain genetic material and are therefore radiation sensitive. The living-matter contaminants may be present in a biological preparation, either at the time of harvesting or may contaminate the biological preparation at a later time (e.g. during its manipulation or storage), and may damage the biological preparation or a portion thereof, its recipient or otherwise interfere with the use of the biological preparation. Such living-matter contaminants may be any type of biological entity including, nucleic acid sequences, prokaryotes including viruses, mycoplasma or bacteria and, fungi, yeasts, molds, single cell or larger parasitic microorganisms, or other undesired cellular entities, such as WBC, etc.
  • The “Activity” of contaminants means any activity that may damage the biological preparation, its recipient or otherwise interfere with the use of the biological preparation (including due to legal constraints). The contaminants are of such radiation sensitivity that upon irradiation they are reduced in number or activity, for example by becoming less likely to multiply (e.g. bacteria, WBC, yeast) or less likely to infect target cells (e.g. viruses) or transfect cells (nucleic acid sequences) or less likely to display a significant immune effect (e.g. WBC). The amount or activity of the contaminants may be assayed, directly or indirectly, using any method of the art.
  • The term “ionizing radiation” means any form of radiation that has enough energy to remove electrons from substances it passes through, forming ions. This includes alpha and beta particles, gamma radiation and x-rays. The term “UV radiation” means radiation having a wavelength between 100-400 nm. It includes three ranges: UV-A (315-400 nm), UVB (280-315 nm) and UV-C (100-280 nm).
  • The terms “drying” “dried” or “dry” mean having (or causing to have) a reduced water content as compared to the water content before drying. A dried preparation may have 10% less water than the original preparation from which it was derived, preferably less than 60% or even 75%, and desirably 90% less water than the original preparation. Drying may be done using any method known in the art, including air drying, heat drying, freeze drying, spray drying or nebulizing, as long as the biological preparation maintains viability of the desired biological entities. Examples of methods include air drying of liposomes (Hincha et al. 2003; Biochemica et Biophysica ACTA. 1612(2): 172-177), embryonic kidney cell line and human foreskin fibroblasts cells (Gau et al. 2000; Nature Biotechnology. 18:168-171) etc. It is noted that bacteria may survive the air-drying process (Desmond et al. J. Appl Microbiol. 2002;93(6):1003-11) and so can other contaminants.
  • The terms “lyophilization” or “freeze-drying” denote a process wherein material is frozen and dried. Thus, in the present invention wherever a biological preparation is said to be freeze dried or lyophilized, this may mean that at least two steps were executed, one of which for freezing the sample and the other for drying. Each of these steps may be done using any known method, and preferably such known methods that cause minimal damage to the desired biological entities. Preferred methods of freeze-drying are disclosed in PCT IL2005/000125, the content of which is incorporated herein in full by way of reference.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the inventors' surprising finding that biological preparations comprising desired nucleus free biological entities, such as RBC or platelets, may be irradiated using ionizing or UV radiation, when in a dried (e.g., freeze-dried) state such that undesired living-matter contaminants will be destroyed with relatively little damage to said biological entities. “Little damage” should be taken to mean that at least 10% of the desired biological entities are viable, desirably at least 30% or even at least 50% of said biological entities is viable after irradiation. The invention is particularly suitable for biological preparations that are freeze dried and rehydrated as described in PCT application PCT Il2005/000125, the contents of which is incorporated herewith by reference in full, albeit not limited thereto. The invention permits, according to an embodiment thereof, the irradiation and sterilization of biological preparations comprising desired nucleus free biological entities using ionizing or UV irradiation.
  • Thus, the present invention provides according to one aspect a method for the sterilization of a biological preparation comprising desired viable biological entities, the method comprising irradiating a dried biological preparation with ionizing or UV radiation at an intensity and for a duration sufficient to reduce the amount or activity of living-matter contaminants in the biological preparation, the intensity and duration selected such that at least part of the desired biological entities in the sample remains viable.
  • The present invention is particularly suitable for biological preparations comprising desired biological entities derived from blood, including RBC and platelets.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As detailed above, the present invention provides a method for the sterilization of biological preparations comprising desired viable biological entities, allowing reduction of the amount or activity of living-matter contaminants in the biological preparation. Potentially, the amount of active contaminants in the biological preparation is reduced to none. In cases when a single biological preparation comprises one or more contaminants before irradiation, it is intended that the method of the present invention would allow the reduction of the amount or activity of at least one of said contaminants. Furthermore, in some cases, before irradiation the biological preparation might be free of active contaminants, in which case the present invention would ensure the lack of contaminants and thus diminish, or even negate, the need to check for active contaminants.
  • According to some embodiments, the method also includes a step of drying a biological preparation comprising desired viable biological entities. It is hence noted that the step of irradiating the biological preparation may be performed at any time after the biological preparation will become dry or partially dried. In fact, the irradiating may be done simultaneously (or partially simultaneously) with or even in between two steps of drying the biological preparation.
  • Any type of ionizing or UV radiation may be suitable for the present invention, however a person skilled in the art would appreciate that the type, intensity and duration of irradiation would best be chosen so as to retain as much as possible the viability of the biological preparation while reducing as much as possible the amount or activity of contaminants.
  • In order to understand the invention and to see how it may be carried out in practice, preferred embodiments will now be described, by way of non-limiting example only.
  • Experiments Materials and Methods
  • Unless otherwise noted, all materials were purchased from Sigma Inc. (St. Louis. Mo., USA).
  • Example 1 The Effect of UV Exposure on the Survival of Lyophilized RBC
  • The effects of irradiation and freeze drying on red blood cells (RBC) were evaluated in this experiment. The freezing solution used was composed of 30% (w/v) dextran in PBS (Ca2+ and Mg2+ free). Packed RBC obtained from the Israeli Blood Services were mixed at a ratio of 1:1 (v/v) with the freezing solution. 2.5 ml of RBC solution was put in a 16 mm diameter of glass test tubes (Manara, Israel) which were then frozen. Freezing was done using the MTG freezing device (IMT, Israel) at a cooling rate of 1000° C./min; (thermal gradient) G=5.5° C./mm, V=3 mm/sec. The samples were also rotated at 56 RPM (rounds per minute).
  • After freezing, samples were put in a lyophilizer (Labconco, USA) for 3 days (condenser −80° C.). After 3 days of lyophilization, when the samples contained 10% or less of their original water content, one sample was placed in a Petri dish and exposed to UV radiation for 1 hour and the other was protected from light using aluminum foil. After 1 hour irradiation the samples were rehydrated with ultra pure water at 37° C. to their original volume. RBC were counted and hematocrit assayed using the Pentra 60 (ABX, France).
  • TABLE I
    Effect of UV exposure on lyophilized RBC
    Lyophilized RBC
    exposed to UV not exposed to UV
    Amount of cells 52.04% 57.6%
    hematocrit  29.2% 35.5%
    The results are shown as a percentage of the fresh sample, before freezing.
  • As seen in Table I the sample that was exposed to UV exhibited a slightly lower survival rate than that of the sample that was not exposed to radiation. Since the inventors discovered that addition of polyphenols to the freezing solution improves the cells' survival in freeze-drying—thawing treatments, in the following experiments one such polyphenol was added to the biological samples. The term “polyphenols” denotes one or more natural and/or synthetic polyphenols that may be naturally found in green tea, including epigallocatechin gallate (EGCG), epicatechin gallate (ECG) epigallocatechin (EGC) epicatechin (EC).
  • Example 2 The Effect of UV Radiation on Lyophilized RBC Survival
  • In this experiment packed RBC were frozen with a freezing solution containing: 30% (w/v) dextran 40,000 Dalton and 0.47 mg/ml EGCG (Cayman Chemical, USA). The freezing solution and the packed RBC were mixed in a ratio of 1:1 (v/v). 2.5 ml of the cell suspension were put in 16 mm diameter glass test tubes (Manara, Israel). A total of 4 test tubes were frozen. The samples were frozen at a cooling rate of 1000° C./min; (thermal gradient) G=5.5° C./mm, V=3 mm/sec using the MTG Device (IMT, Israel). The samples were also rotated at 56 RPM.
  • After freezing, samples were placed in liquid nitrogen. After the passage of varying time periods (between ½ hour to a few weeks) samples were placed in a lyophilizer (Labconco, USA) with a condenser temp of −80° C.) for 72 hours, and the samples were dried such that they had the appearance of a powder and had less than 10% of their original water content. Then samples were transferred to a 60 mm Petri dish, 2 samples were exposed to UV for 1 hour and during that 1 hour the other 2 samples were covered with aluminum foil to prevent exposure to light. All samples were then rehydrated with ultra pure water at 37° C. to their original volume and compared using the PENTRA 60 counter (ABX, France). Results are presented as compared to the parameters of fresh RBC in a freezing solution including EGCG.
  • TABLE II
    Effect of UV radiation on lyophilized RBC survival
    Lyophilized RBC
    no UV treatment UV treatment
    Cells number 58.11% 54.05%
    Hematocrit 43.02% 45.95%
    Results are shown as percentage of the fresh values of the same samples
  • As can be seen from Table II, although more than 50% of the RBC appeared viable, freeze-dried cells were less viable and had a lower hematocrit than fresh cells. Nevertheless, these parameters were only slightly affected by UV radiation.
  • Example 3 The Effect of Partial Drying on RBC Survival
  • Fresh whole rat's blood (extracted from Sprague-Dawley rats) was washed once. Plasma was removed and the packed RBCs were suspended in a 1:3 ratio (v/v) with a freezing solution composed of 0.945 mg/ml EGCG and 20% (w/v) Dextran 40 kD in 0.9% (w/v) NaCl solution, and the final hematocrit was 25%. Three samples (2.5 ml each) were frozen each in a 16 mm diameter glass test tube (Manara, Israel) using the MTG device (IMT, Israel), with the following parameters: velocity=3 mm/sec; temperature gradient was 5.5° C./mm, the test tubes were rotated at 60 rpm. After freezing, samples were stored in LN until lyophilization. Lyophilization was done in a special lyophilization device (IMT, Israel) subject of co-pending PCT application No. IL2005/000124, which has a condenser temperature of −190° C. and samples were kept at a temperature of −20° C. Samples remained in the device for 48 hours. After 48 hours samples were taken out and thawed in a 37° C. water bath. Since, the samples were partly dried 1.5 ml 37° C. PBS (Ca2+ and Mg2+ Free) was added to rehydrate the cells. PBS was added in stead of water since adding water is expected to cause more damage to the cells than excess PBS.
  • The samples were then evaluated using the Pentra 60 cell counter (ABX, France) for a complete blood count evaluation, and supernatant free hemoglobin levels were measured using the cyanmethemoglobin method using Drabkin's reagent. The absorbance was read at a wavelength of 540 nm using a luminometer (Turner Biosystems, USA). The percentage of the supernatant free hemoglobin (Hb) was calculated using the following Formula I:
  • % Free hemoglobin = 100 × ( Absorbance of the supernatant ) ( Absorbance of supernatant + Absorbance of the pellet ) Formula I
  • TABLE III
    Partially dried RBC samples
    MCV Cell number
    Rat RBCs % Water loss Free Hb (%) (%)* (%)*
    Fresh (3:1 ratio) 5.89
    Lyophilized 60% 22.26 ± 0.16 76.60 78.63
    *Results given as percentages of thawed values as compared to fresh values.
  • Lyophilization for 48 hours resulted in about 60% of water loss. This water loss was evaluated by the amount of PBS that was needed to be added to the solution in order to regain the original sample's volume. In the freeze dried sample there was some cell damage as seen in the free hemoglobin percentage (22.26% Free Hb). However, microscopic observations revealed more than 50% of the cells with normal morphology. In addition, this free hemoglobin rate might be a result of the thawing process, since upon thawing and before addition of PBS the thawed cells were exposed to a very hypertonic environment, which remained hypertonic but to a lesser extent after PBS was added.
  • Example 4 The Effect of Freezing and Freeze-Drying on E. coli
  • E. coli were placed in LB medium: 10 gr Bacto-tryptone (Difco, USA), 5 gr yeast extract (Difco, USA), 10 gr NaCl, in 1 liter distilled water. The total volume of 10 ml was divided to two batches of 5 ml each. To the first batch of E. coli in LB medium we added 5 ml of freezing solution composed of 30% (w/v) dextran and 0.47 mg/ml EGCG (Cayman Chemical, USA) in PBS (Ca+2 and Mg+2 free). The other batch was left un-touched. Cell-suspension samples of 2.5 ml each (two from each batch) were put in 16 mm diameter glass test tubes (Manara, Israel), such that a total of 4 test tubes were prepared. The test tubes were frozen using the MTG Device (IMT, Israel) at 1000° C./min (from 5 to −50° C. at a velocity of 3 mm/sec and with 56 RPM. After freezing was completed the test tubes were placed in liquid nitrogen. Afterwards, the 4 test tubes were placed in a lyophilizer (Labcono, USA) for 72 hours. After lyophilization was completed the “powdered” cells from each test tube were scraped into a Petri dish. Two Petri dishes (one representing each batch) were exposed to UV radiation for 1 hour (the Petri dishes were placed opened under a UV lamp) and the other two Petri dishes were left unexposed to radiation (covered with aluminum foil for protection from light). After 1 hour 2 ml of double distilled water at 37° C. were added to each dish. From each dish 3 Petri dishes with agar were plated. The following Agar plates protocol was used: 10 gr Bacto-tryptone, 5 gr yeast extract, 10 gr Na+ Cl, 10 gr agar (BD, USA). Water was added to a volume of 1 liter, autoclaved, cooled to 65° C. and poured into Petri dishes. A total of 12 Petri dishes were incubated at 37° C. for 24 hours. The next day colonies were counted. Table IV depicts the number of colonies grown on the agar Petri dishes.
  • TABLE IV
    Number of E. coli colonies after being frozen with
    different freezing solutions and lyophilized
    E. coli
    E. coli frozen
    frozen with dextran
    in LB and EGCG
    UV UV
    36 0 152 0
    24 0 220 0
    16 0 >200 0
  • As seen in Table IV, E coli colonies were observed only in the plates of the un-irradiated bacteria. No colonies were observed in the agar plated with lyophilized cells that were irradiated. In addition, the addition of Dextran and EGCG results in higher survival rates of the bacteria after lyophilization.
  • Example 5 The Effect of Freezing and Freeze-Drying on E. coli in an RBC Preparation
  • 10 ml of E. coli in LB medium was centrifuged at 800 g for 10 minutes. To the resultant pellet 10 ml of freezing solution composed of 30% (w/v) dextran 40,000 Dalton and 0.47 mg/ml EGCG (Cayman Chemical, USA) in PBS (Ca+2 and Mg+2 free) were added. This solution was then mixed in a volumetric ratio of 1:1 with packed RBC. 2 ml of RBC & E. coli were put in a Petri dish; a total of 4 like dishes were prepared. 2 Petri dishes were exposed to UV for 1 hour and the other 2 were not. After 1 hour cells from each group were plated on three agar plates that were placed in a 37° C. oven for 24 hours.
  • From the remaining RBC-coli mixture four test tubes were prepared, each containing 2.5 ml. The test tubes were frozen using the MTG device (IMT, Israel) at 1000° C./min (from 5 to −50° C. at a velocity of 3 mm/sec and with 56 RPM and then placed in a lyophilizer for 72 h. After lyophilization one test tube from each group was exposed to UV radiation for 1 hour. After 1 hour 2 ml of ddH2O was added and from each group 3 agar plates were seeded and placed for 24 hour in 37° C. oven for 24 hours. The results are depicted in Table IV.
  • TABLE V
    The effect of UV radiation on the survival of E coli
    in lyophilized or fresh samples comprising RBC
    Fresh RBC Lyophilized
    and RBC and
    E. coli E. coli
    UV UV
    >200 >200 >200 0
    >200 >200 >200 0
    >200 >200 >200 0
  • As seen in Table V irradiation in the liquid state had no measured effect on E. coli, as in all plates more then 200 colonies were observed. However, when irradiated in a dry (lyophilized) state no colonies were observed after 24 hours in incubation.
  • Example 6 The Effect of UV Radiation on the Survival of E. coli in Fresh Platelets Concentrates
  • A unit of fresh platelets was received from the Israeli blood bank. Platelets were added to an E. coli pellet (E. coli in LB medium that was centrifuged for 10 minutes at 2000 g). The platelets & E. coli solution was mixed at a ratio of 1:1 (v/v) with a freezing solution composed of 30% (w/v) Dextran (40,000 Dalton; Amersham Biosciences, USA) and 1.87 mg/ml EGCG (Cayman, USA) in PBS (calcium and magnesium free). Two samples, 2.5 ml each, of platelet suspension were put in a 60 mm Petri dish. One dish was exposed to UV radiation for 1 hour, and the other was left untouched, covered in aluminum foil. After one hour, samples from each Petri dish were seeded in agarose and put in an incubator at 37° C. for 24 hours. After 24 hours colonies were counted.
  • TABLE VI
    The effect of UV radiation on the number of E. coli
    colonies
    Exposed to UV Not exposed to radiation
    269 201
  • We can see that UV irradiation of E. coli in a fresh platelet concentrate did not have an effect on the E. coli survival, resulting in 269 colonies in the sample that was exposed to radiation and in 201 in the sample that were not exposed to UV radiation.
  • Example 7 The Effect of UV Radiation on the Number of E. coli Colonies Grown after being Lyophilized
  • Platelets-E. coli solutions were prepared as described in Example 6. The platelets-E. coli solution was divided to two batches, and each batch was mixed at a ratio of 1:1 (v/v) with one of the following freezing solutions: (1) 30% (w/v) Dextran (40 KDa) and 1.87 mg/ml EGCG in PBS (calcium and magnesium free); or (2) 30% (w/v) Dextran (40 KDa) in PBS (calcium and magnesium free). 2.5 ml aliquots of platelet suspension were put in 16 mm diameter glass test tubes (Manara, Israel). A total of 4 test tubes were prepared, 2 tubes from each batch. The tubes were frozen in the MTG device at a thermal gradient of 5.5° C./mm and at a cooling rate of 1000° C./min (final temperature was −50° C., velocity was 3 mm/sec).
  • After freezing, all tubes were maintained in liquid nitrogen and later lyophilized for 3 days, such that the preparation appeared as a powder containing less than 10% of its original water content. The resultant dry powder was scraped into a 60 mm Petri dish, such that two dishes were prepared from each of the above batches. One dish from each batch was exposed to UV radiation for 1 hour. The other 2 dishes (one from each batch) were untouched, covered in aluminum foil. The contents of each Petri dish were rehydrated with 2 ml of ultra pure water at 37° C. and a sample from each dish was seeded in agarose and incubated at 37° C. for 24 hours. After 24 hours colonies were counted.
  • TABLE VII
    The effect of UV radiation on the number of E. coli
    colonies grown after being lyophilized
    batch
    UV No UV
    Platelets - E. coli & Dextran 30% 1 17
    Platelets - E. coli & Dextran + EGCG 1 11
  • As seen in Table VII, UV radiation reduced the number of colonies by more than tenfold.
  • In order to assess the platelets' survival of the UV irradiation in a dry state, samples of platelets (prepared with EGCG and Dextran as described above) taken after lyophilization and rehydration were compared with those taken after UV irradiation. The platelets were counted using the Pentra 60 (ABX, France) cell counter, and it was observed that 80.38% of the platelets that survived lyophilization also survived UV treatment.
  • Example 8 Sterilization by Gamma Radiation of Lyophilized RBC Samples Contaminated with West Nile Virus (WNV) Example 8A Sterilization of RBC using Gamma Radiation
  • Packed RBC that were received from the Israeli Blood Services were mixed in a volumetric ratio of 1:1 with a freezing solution composed of 20% (w/v) Dextran 40 kD and 0.945 mg/ml EGCG and 0.9% (w/v) NaCl in double distilled water. 2.5 ml samples were contaminated with WNV (received from the Israeli Veterinary Institute) to the following virus concentrations: 106.8 WNV/ml blood (referred to Max), 105.8 WNV/ml blood (referred to as −1) and 104.8 WNV/ml blood (referred to as −2). Uncontaminated blood was used as a control for the infection.
  • The 2.5 ml samples were frozen using the MTG freezing device (IMT Israel), in the same conditions as described above. After freezing was completed samples were stored in liquid nitrogen until put in a lyophilizer (condenser temperature −80° C.) (Labconco, USA) for 72 hours.
  • The freeze-dried blood was exposed to gamma radiation of one of three intensities (1, 2.5 and 5 mega Rad), whilst a control for the irradiation was kept without irradiation. After the irradiation all samples were rehydrated with double distilled water at 37° C. to the samples' original volume.
  • Survival of the viruses was assayed by injection of 0.03 ml blood samples to the brain of newborn mice. The mice were monitored for up to 14 days after infection, during which the number of mice that died after displaying WNV symptoms was recorded. The results are summarized in Table VIII
  • TABLE VIII
    Mice mortality due to injection of Lyophilized
    RBCs which were contaminated with WNV
    Gamma
    radiation
    Virus amount number
    conc. (Mega Rad) of mice mortality
    max 0 11 11
    −1 0 11 11
    −2 0 11 11
    none 0 11 0
    max 1 10 10
    −1 1 10 0
    −2 1 10 0
    none 1 10 0
    max 2.5 11 0
    −1 2.5 11 0
    −2 2.5 11 0
    none 2.5 11 0
    max 5 11 0
    −1 5 11 0
    −2 5 11 0
    none 5 11 0
  • As can be seen in Table VIII above, irradiation of freeze dried RBC by gamma radiation has significantly reduced the activity of WNV in all the experimented levels of radiation. Even at the intensity of 1 mega Rad the radiation has reduced the WNV activity in the lower concentrations of −1 and −2 below a detectable level. This level of radiation (1 mega Rad) is well bellow what is commonly used for WBC inactivation of blood samples.
  • Those skilled in the art will readily appreciate that various modifications and changes can be applied to the embodiments of the invention as hereinbefore described without departing from its scope defined in and by the appended claims and their equivalents. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.

Claims (8)

1.-6. (canceled)
7. A method for sterilizing a biological preparation comprising a viable eukaryotic nucleus free cell, the method comprising:
irradiating a freeze-dried biological preparation comprising a viable eukaryotic nucleus free cell with UV radiation at an intensity and for a duration sufficient to reduce the amount or activity of living-matter contaminants in the freeze-dried biological preparation, the intensity and duration selected such that at least part of the viable biological entity in the freeze-dried biological preparation remains viable,
wherein the freeze-dried biological preparation does not comprise a sensitizing agent and the method does not comprise adding a sensitizing agent.
8. The method of claim 7, wherein the UV radiation is irradiated for a period of 1 hour or less.
9-11. (canceled)
12. The method of claim 7, wherein the freeze-dried biological preparation has less than 60% less water than the original preparation.
13. The method of claim 12, wherein the freeze-dried biological preparation has less than 90% less water than the original preparation.
14. A viable biological preparation obtainable by the method of claim 7.
15-16. (canceled)
US12/757,079 2004-06-07 2010-04-09 Method for sterilization of biological preparations Abandoned US20100197017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/757,079 US20100197017A1 (en) 2004-06-07 2010-04-09 Method for sterilization of biological preparations

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US57721004P 2004-06-07 2004-06-07
PCT/IL2005/000600 WO2005120591A1 (en) 2004-06-07 2005-06-07 Method for sterilization of biological preparations
US62864807A 2007-02-07 2007-02-07
US12/757,079 US20100197017A1 (en) 2004-06-07 2010-04-09 Method for sterilization of biological preparations

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IL2005/000600 Division WO2005120591A1 (en) 2004-06-07 2005-06-07 Method for sterilization of biological preparations
US62864807A Division 2004-06-07 2007-02-07

Publications (1)

Publication Number Publication Date
US20100197017A1 true US20100197017A1 (en) 2010-08-05

Family

ID=34970973

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/628,648 Expired - Fee Related US7892726B2 (en) 2004-06-07 2005-06-07 Method for sterilizing lyophilized eukaryotic anuclear cells with gamma irradiation
US12/757,079 Abandoned US20100197017A1 (en) 2004-06-07 2010-04-09 Method for sterilization of biological preparations

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/628,648 Expired - Fee Related US7892726B2 (en) 2004-06-07 2005-06-07 Method for sterilizing lyophilized eukaryotic anuclear cells with gamma irradiation

Country Status (6)

Country Link
US (2) US7892726B2 (en)
EP (1) EP1753472B1 (en)
JP (1) JP5096148B2 (en)
AT (1) ATE460947T1 (en)
DE (1) DE602005019998D1 (en)
WO (1) WO2005120591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246309B2 (en) 2015-08-31 2022-02-15 Ishihara Sangyo Kaisha, Ltd. Preserving agent for organs or tissue and preservation method for organs or tissue

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488281B1 (en) 2001-09-15 2005-05-10 아람 바이오시스템 주식회사 Method and apparatus for amplification of nucleic acid sequences by using thermal convection
EP2008669A1 (en) * 2007-06-22 2008-12-31 Maco Pharma S.A. Irradiation apparatus for inactivating pathogens and/or leukocytes in a biological fluid and process
KR101931235B1 (en) 2010-01-12 2018-12-21 아람 바이오시스템 주식회사 Two-Stage Thermal Convection Apparatus And Uses Thereof
KR102032522B1 (en) 2010-01-12 2019-11-08 아람 바이오시스템 주식회사 Three-stage thermal convection apparatus and uses thereof
CA3078625C (en) 2017-10-09 2023-01-17 Terumo Bct Biotechnologies, Llc Lyophilization container and method of using same
EP3937878A2 (en) 2019-03-14 2022-01-19 Terumo BCT Biotechnologies, LLC Lyophilization loading tray assembly and system

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074247A (en) * 1960-04-25 1963-01-22 Texstar Corp Methods and apparatus for use in freezing packaged products
US3347745A (en) * 1963-12-06 1967-10-17 Union Carbide Corp Process for freezing erythrocytes
US4018911A (en) * 1975-11-10 1977-04-19 The United States Of America As Represented By The Secretary Of The Navy Method for large volume freezing and thawing of packed erythrocytes
US4117881A (en) * 1977-06-14 1978-10-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System for and method of freezing biological tissue
US4480682A (en) * 1983-01-14 1984-11-06 Hoxan Corporation Apparatus for freezing fertilized ova, spermatozoa or the like
US4620908A (en) * 1983-10-03 1986-11-04 Biocell Laboratories, Inc. Method for destroying microbial contamination in protein materials
US4857319A (en) * 1985-01-11 1989-08-15 The Regents Of The University Of California Method for preserving liposomes
US4874690A (en) * 1988-08-26 1989-10-17 Cryopharm Corporation Lyophilization of red blood cells
US4880512A (en) * 1984-02-16 1989-11-14 Kollmorgen Corporation Pulsed light selective photolysis process for treatment of biological media and products made thereby
US5059518A (en) * 1988-10-20 1991-10-22 Coulter Corporation Stabilized lyophilized mammalian cells and method of making same
US5071598A (en) * 1987-12-03 1991-12-10 California Institute Of Technology Cryoprotective reagent
US5131850A (en) * 1989-11-03 1992-07-21 Cryolife, Inc. Method for cryopreserving musculoskeletal tissues
US5364756A (en) * 1990-09-12 1994-11-15 Lifecell Method of cryopreserving a suspension of biological material
US5418130A (en) * 1990-04-16 1995-05-23 Cryopharm Corporation Method of inactivation of viral and bacterial blood contaminants
US5587490A (en) * 1990-04-16 1996-12-24 Credit Managers Association Of California Method of inactivation of viral and bacterial blood contaminants
US5629145A (en) * 1995-03-24 1997-05-13 Organ, Inc. Cryopreservation of cell suspensions
US5709992A (en) * 1994-08-17 1998-01-20 Rubinstein; Alan I. Method for disinfecting red blood cells
US5827741A (en) * 1996-11-19 1998-10-27 The Regents Of The University Of California Cryopreservation of human adult and fetal pancreatic cells and human platelets
US5843780A (en) * 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5863715A (en) * 1995-01-12 1999-01-26 The Governors Of The University Of Alberta Methods for bulk cryopreservation encapsulated islets
US5869092A (en) * 1995-01-05 1999-02-09 The Regents Of The University Of California Prevention of leakage and phase separation during thermotropic phase transition in liposomes and biological cells
US5873254A (en) * 1996-09-06 1999-02-23 Interface Multigrad Technology Device and methods for multigradient directional cooling and warming of biological samples
US5897987A (en) * 1996-03-25 1999-04-27 Advanced Reproduction Technologies, Inc. Use of arabinogalactan in cell cryopreservation media
US5955257A (en) * 1997-10-21 1999-09-21 Regents Of The University Of Minnesota Infusible grade short-term cell storage medium for mononuclear cells
US6007978A (en) * 1988-05-18 1999-12-28 Cobe Laboratories, Inc. Method of freezing cells and cell-like materials
US6073540A (en) * 1998-11-10 2000-06-13 Fmc Corporation Apparatus for heating or cooling product containers
US6146890A (en) * 1994-07-03 2000-11-14 Danon; David Method and system for cultivating macrophages
US6228995B1 (en) * 1996-04-09 2001-05-08 Therakos, Inc. Method for removal of psoralens from biological fluids
US6319914B1 (en) * 1993-11-05 2001-11-20 Apollo Biopharmaceuticals, Inc. Cytoprotective effect of polycyclic phenolic compounds
US6337205B1 (en) * 1998-01-06 2002-01-08 Integrated Biosystems, Inc Cryopreservation vial apparatus and methods
US20020119946A1 (en) * 2001-02-28 2002-08-29 Mg Pharmacy Ltd. Formative agent of protein complex
US6453683B1 (en) * 2001-05-22 2002-09-24 Integrated Biosystems, Inc. Tapered slot cryopreservation system with controlled dendritic freezing front velocity
US6482585B2 (en) * 1997-04-16 2002-11-19 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
US20020177116A1 (en) * 1996-06-14 2002-11-28 Biostore New Zealand Ltd. Compositions and methods for the preservation of living tissues
US6488033B1 (en) * 2000-05-15 2002-12-03 Cryolife, Inc. Osteochondral transplant techniques
US20030059338A1 (en) * 2001-09-24 2003-03-27 Mann David M. Methods for sterilizing biological materials using flavonoid/flavonol stabilizers
US20030068416A1 (en) * 2001-09-24 2003-04-10 Wilson Burgess Method of lyophylization to reduce solvent content and enhance product recovery
US20040006999A1 (en) * 2001-11-01 2004-01-15 Integrated Biosystems, Inc. Systems and methods for freezing, mixing and thawing biopharmacuetical material
US20040067157A1 (en) * 1993-07-22 2004-04-08 Clearant, Inc. Methods for sterilizing biological materials
US6723497B2 (en) * 2000-02-10 2004-04-20 The Regents Of The University Of California Therapeutic platelets and methods
US6740484B1 (en) * 1999-04-13 2004-05-25 Organ Recovery Systems, Inc. Method of cryopreservation of tissues by vitrification
US20040126880A1 (en) * 2002-06-07 2004-07-01 Manders Ernest K. Sterilization, stabilization and preservation of functional biologics
US20040129003A1 (en) * 2001-05-22 2004-07-08 Integrated Biosystems, Inc. Systems and methods for freezing and storing biopharmaceutical material
US20040191754A1 (en) * 2002-06-27 2004-09-30 Uri Meir Method for freezing viable cells
US20040197310A1 (en) * 2003-02-12 2004-10-07 Sanberg Paul R. Compositions and methods for using umbilical cord progenitor cells in the treatment of myocardial infarction
US20050008623A1 (en) * 2001-12-10 2005-01-13 Nicolas Bechetoille In vitro production of dendritic cells from CD14+ monocytes
US20050020524A1 (en) * 1999-04-15 2005-01-27 Monash University Hematopoietic stem cell gene therapy
US20050042754A1 (en) * 2001-12-28 2005-02-24 Miyazaki Jun-Ichi Induction of the formation of insulin-producing cells via gene transfer of pancreatic beta-cell-associated transcriptional factor
US20050059152A1 (en) * 2003-05-26 2005-03-17 Reliance Life Sciences Pvt. Ltd. In vitro culture of mesenchymal stem cells (MSC) and a process for the preparation thereof for therapeutic use
US6887704B2 (en) * 1999-02-08 2005-05-03 Gamida Cell Ltd. Methods of controlling proliferation and differentiation of stem and progenitor cells
US20050095228A1 (en) * 2001-12-07 2005-05-05 Fraser John K. Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders
US20050118712A1 (en) * 2003-12-02 2005-06-02 Ming-Song Tsai Two-stage culture protocol for isolating mesenchymal stem cells from amniotic fluid
US20050142118A1 (en) * 2000-11-03 2005-06-30 Peter Wernet Human cord blood derived unrestricted somatic stem cells (USSC)
US20060035383A1 (en) * 2004-08-12 2006-02-16 David Ho Dry platelet preparations for use in diagnostics
US20060057555A1 (en) * 2002-06-27 2006-03-16 Udi Damari Method and system for controlling the development of biological entities
US20070077535A1 (en) * 2003-09-16 2007-04-05 Manfred Wichmann Method for the production of a set of dentures for an untoothed or partially toothed jaw
US20070077237A1 (en) * 2003-10-09 2007-04-05 Udi Damari Method for freezing, thawing and transplantation of viable cartilage
US20080120984A1 (en) * 2004-08-12 2008-05-29 Ginadi Shaham Method And Apparatus For Freezing Or Thawing Of A Biological Material

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA928215A (en) 1969-08-08 1973-06-12 M. Brake Jon Process for the cryogenic preservation of blood and erythrocytes and products produced thereby
ATE232737T1 (en) * 1990-04-16 2003-03-15 Baxter Int METHOD FOR REMOVAL OF VIRAL AND BACTERIAL BLOOD CONTAMINATIONS
GB9114202D0 (en) 1991-07-01 1991-08-21 Quadrant Holdings Cambridge Blood products
KR950030791A (en) 1994-01-25 1995-12-18 아키요 시게마주 Biological tissue preservation method and perfusate therefor
DE69534151T2 (en) 1994-02-22 2006-01-12 Nippon Telegraph And Telephone Corp. Freeze-dried blood cells, stem cells and platelets and process for their preparation
AU2730497A (en) 1996-04-17 1997-11-07 Case Western Reserve University Cryopreservation and extensive subculturing of human mesenchymal stem cells
US5962213A (en) 1996-06-14 1999-10-05 Biostore New Zealand Limited Compositions and methods for the preservation of living tissues
ES2257050T3 (en) 1998-05-26 2006-07-16 Lifecell Corporation CONSERVATION BY THE COLD OF HUMAN HEMATIES.
GB2343679A (en) 1998-11-16 2000-05-17 Alison Miriam Davies Autologous transplantation and method for making cells dormant
JP2000189155A (en) 1998-12-25 2000-07-11 Livestock Improvement Association Of Japan Inc Preservation of mammalian embryo or ovum and thawing dilution of frozen mammalian embryo or ovum
JP5230042B2 (en) 1999-06-02 2013-07-10 株式会社ビーエムジー Preservatives for animal cells or organs and methods for their preservation.
GR1004204B (en) 1999-09-29 2003-09-05 Cryopreserved amniotic human cells for future therapeutic, diagnostic, genetic and other uses
US7112576B1 (en) 1999-12-10 2006-09-26 Regents Of The University Of Minnesota Compositions and methods for cryopreservation of peripheral blood lymphocytes
EP1131998A1 (en) 2000-03-08 2001-09-12 Director-General Of National Institute Of Animal Industry, Ministry Of Agriculture, Forestry And Fisheries Cell-cryopreservation method
US20020045156A1 (en) 2000-05-16 2002-04-18 Mehmet Toner Microinjection of cryoprotectants for preservation of cells
WO2002001952A1 (en) 2000-07-05 2002-01-10 Hiromi Wada Preservation fluid for cells and tissues
DE60103297T2 (en) 2000-10-19 2005-06-02 Organ Recovery Systems, Inc., Des Plaines PROCEDURE FOR CRYOKON SURVIVAL OF TISSUE OR ORGANS DIFFERENT FROM BLOOD VESSELS BY VITRIFICATION
DE10056181C1 (en) 2000-11-13 2002-03-07 Hiberna Ag Blood bag cassette for cryostorage of blood samples has reception space for blood bag defined between 2 cooperating cassette plates
EP1370134B1 (en) 2001-03-23 2016-03-23 University Of Ottawa Methods and compositions for cryopreservation of dissociated primary animal cells
AU2002337480A1 (en) 2001-09-06 2003-03-18 I.M.T Interface Multigrad Technology Ltd. Improved method for freezing viable cells
US20030095890A1 (en) * 2001-09-24 2003-05-22 Shirley Miekka Methods for sterilizing biological materials containing non-aqueous solvents
WO2003056919A2 (en) 2002-01-08 2003-07-17 I.M.T. Interface Multigrad Technology Ltd Methods and device for freezing and thawing biological samples
WO2003064634A1 (en) 2002-01-31 2003-08-07 Asahi Techno Glass Corporation Liquid for frozen storage of primate embryo stem cells and frozen storage method
AU2002314112A1 (en) 2002-05-27 2003-12-12 Istituto Biochimico Pavese Pharma S.P.A Dietary supplements from wine vinasses and relevant production process
US20040013562A1 (en) 2002-07-18 2004-01-22 Wilson Burgess Methods for sterilizing milk.
AU2003261860A1 (en) 2002-08-30 2004-03-19 Masashi Komeda Composition for protecting organ, tissue or cell and utilization thereof
EP1570217A1 (en) 2002-12-13 2005-09-07 Integrated Biosystems Inc. Scaled down freezing and thawing system for bioparmaceuticals and biologics
WO2004098285A2 (en) 2003-05-08 2004-11-18 Cellartis Ab Cryopreservation of human blastocyst-derived stem cells by use of a closed straw vitrification method
JP4676442B2 (en) 2003-12-02 2011-04-27 セラヴィー バイオサイエンシズ エルエルシー Compositions and methods for growing neural progenitor cells
WO2005073652A2 (en) 2004-02-02 2005-08-11 I.M.T. Interface Multigrad Technology Ltd. Apparatus, system and method for lyophilization
WO2005072523A2 (en) 2004-02-02 2005-08-11 I.M.T. Interface Multigrad Technology Ltd. Biological material and methods and solutions for preservation thereof
EP1627565A1 (en) 2004-08-10 2006-02-22 Consejo Superior de Investigaciones Cientificas (CSIC) Use of flavanol derivatives for the cryopreservation of living cells
WO2008032314A2 (en) 2006-09-11 2008-03-20 I.M.T. Interface Multigrad Technology Ltd. Systems, devices and methods for freezing and thawing biological materials

Patent Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074247A (en) * 1960-04-25 1963-01-22 Texstar Corp Methods and apparatus for use in freezing packaged products
US3347745A (en) * 1963-12-06 1967-10-17 Union Carbide Corp Process for freezing erythrocytes
US4018911A (en) * 1975-11-10 1977-04-19 The United States Of America As Represented By The Secretary Of The Navy Method for large volume freezing and thawing of packed erythrocytes
US4117881A (en) * 1977-06-14 1978-10-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System for and method of freezing biological tissue
US4480682A (en) * 1983-01-14 1984-11-06 Hoxan Corporation Apparatus for freezing fertilized ova, spermatozoa or the like
US4620908A (en) * 1983-10-03 1986-11-04 Biocell Laboratories, Inc. Method for destroying microbial contamination in protein materials
US4880512A (en) * 1984-02-16 1989-11-14 Kollmorgen Corporation Pulsed light selective photolysis process for treatment of biological media and products made thereby
US4857319A (en) * 1985-01-11 1989-08-15 The Regents Of The University Of California Method for preserving liposomes
US5071598A (en) * 1987-12-03 1991-12-10 California Institute Of Technology Cryoprotective reagent
US6007978A (en) * 1988-05-18 1999-12-28 Cobe Laboratories, Inc. Method of freezing cells and cell-like materials
US4874690A (en) * 1988-08-26 1989-10-17 Cryopharm Corporation Lyophilization of red blood cells
US5059518A (en) * 1988-10-20 1991-10-22 Coulter Corporation Stabilized lyophilized mammalian cells and method of making same
US5131850A (en) * 1989-11-03 1992-07-21 Cryolife, Inc. Method for cryopreserving musculoskeletal tissues
US5418130A (en) * 1990-04-16 1995-05-23 Cryopharm Corporation Method of inactivation of viral and bacterial blood contaminants
US5587490A (en) * 1990-04-16 1996-12-24 Credit Managers Association Of California Method of inactivation of viral and bacterial blood contaminants
US5364756A (en) * 1990-09-12 1994-11-15 Lifecell Method of cryopreserving a suspension of biological material
US20040067157A1 (en) * 1993-07-22 2004-04-08 Clearant, Inc. Methods for sterilizing biological materials
US6319914B1 (en) * 1993-11-05 2001-11-20 Apollo Biopharmaceuticals, Inc. Cytoprotective effect of polycyclic phenolic compounds
US6146890A (en) * 1994-07-03 2000-11-14 Danon; David Method and system for cultivating macrophages
US5709992A (en) * 1994-08-17 1998-01-20 Rubinstein; Alan I. Method for disinfecting red blood cells
US5869092A (en) * 1995-01-05 1999-02-09 The Regents Of The University Of California Prevention of leakage and phase separation during thermotropic phase transition in liposomes and biological cells
US5863715A (en) * 1995-01-12 1999-01-26 The Governors Of The University Of Alberta Methods for bulk cryopreservation encapsulated islets
US5843780A (en) * 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5629145A (en) * 1995-03-24 1997-05-13 Organ, Inc. Cryopreservation of cell suspensions
US5897987A (en) * 1996-03-25 1999-04-27 Advanced Reproduction Technologies, Inc. Use of arabinogalactan in cell cryopreservation media
US6228995B1 (en) * 1996-04-09 2001-05-08 Therakos, Inc. Method for removal of psoralens from biological fluids
US20020177116A1 (en) * 1996-06-14 2002-11-28 Biostore New Zealand Ltd. Compositions and methods for the preservation of living tissues
US5873254A (en) * 1996-09-06 1999-02-23 Interface Multigrad Technology Device and methods for multigradient directional cooling and warming of biological samples
US5827741A (en) * 1996-11-19 1998-10-27 The Regents Of The University Of California Cryopreservation of human adult and fetal pancreatic cells and human platelets
US6482585B2 (en) * 1997-04-16 2002-11-19 Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. Storage and maintenance of blood products including red blood cells and platelets
US5955257A (en) * 1997-10-21 1999-09-21 Regents Of The University Of Minnesota Infusible grade short-term cell storage medium for mononuclear cells
US6337205B1 (en) * 1998-01-06 2002-01-08 Integrated Biosystems, Inc Cryopreservation vial apparatus and methods
US6073540A (en) * 1998-11-10 2000-06-13 Fmc Corporation Apparatus for heating or cooling product containers
US6887704B2 (en) * 1999-02-08 2005-05-03 Gamida Cell Ltd. Methods of controlling proliferation and differentiation of stem and progenitor cells
US6740484B1 (en) * 1999-04-13 2004-05-25 Organ Recovery Systems, Inc. Method of cryopreservation of tissues by vitrification
US20050020524A1 (en) * 1999-04-15 2005-01-27 Monash University Hematopoietic stem cell gene therapy
US6723497B2 (en) * 2000-02-10 2004-04-20 The Regents Of The University Of California Therapeutic platelets and methods
US6488033B1 (en) * 2000-05-15 2002-12-03 Cryolife, Inc. Osteochondral transplant techniques
US20050142118A1 (en) * 2000-11-03 2005-06-30 Peter Wernet Human cord blood derived unrestricted somatic stem cells (USSC)
US20020119946A1 (en) * 2001-02-28 2002-08-29 Mg Pharmacy Ltd. Formative agent of protein complex
US20040129003A1 (en) * 2001-05-22 2004-07-08 Integrated Biosystems, Inc. Systems and methods for freezing and storing biopharmaceutical material
US6453683B1 (en) * 2001-05-22 2002-09-24 Integrated Biosystems, Inc. Tapered slot cryopreservation system with controlled dendritic freezing front velocity
US20030068416A1 (en) * 2001-09-24 2003-04-10 Wilson Burgess Method of lyophylization to reduce solvent content and enhance product recovery
US20030059338A1 (en) * 2001-09-24 2003-03-27 Mann David M. Methods for sterilizing biological materials using flavonoid/flavonol stabilizers
US20040006999A1 (en) * 2001-11-01 2004-01-15 Integrated Biosystems, Inc. Systems and methods for freezing, mixing and thawing biopharmacuetical material
US20050095228A1 (en) * 2001-12-07 2005-05-05 Fraser John K. Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders
US20050008623A1 (en) * 2001-12-10 2005-01-13 Nicolas Bechetoille In vitro production of dendritic cells from CD14+ monocytes
US20050042754A1 (en) * 2001-12-28 2005-02-24 Miyazaki Jun-Ichi Induction of the formation of insulin-producing cells via gene transfer of pancreatic beta-cell-associated transcriptional factor
US20040126880A1 (en) * 2002-06-07 2004-07-01 Manders Ernest K. Sterilization, stabilization and preservation of functional biologics
US20040191754A1 (en) * 2002-06-27 2004-09-30 Uri Meir Method for freezing viable cells
US20060057555A1 (en) * 2002-06-27 2006-03-16 Udi Damari Method and system for controlling the development of biological entities
US20040197310A1 (en) * 2003-02-12 2004-10-07 Sanberg Paul R. Compositions and methods for using umbilical cord progenitor cells in the treatment of myocardial infarction
US20050059152A1 (en) * 2003-05-26 2005-03-17 Reliance Life Sciences Pvt. Ltd. In vitro culture of mesenchymal stem cells (MSC) and a process for the preparation thereof for therapeutic use
US20070077535A1 (en) * 2003-09-16 2007-04-05 Manfred Wichmann Method for the production of a set of dentures for an untoothed or partially toothed jaw
US20070077237A1 (en) * 2003-10-09 2007-04-05 Udi Damari Method for freezing, thawing and transplantation of viable cartilage
US20050118712A1 (en) * 2003-12-02 2005-06-02 Ming-Song Tsai Two-stage culture protocol for isolating mesenchymal stem cells from amniotic fluid
US20060035383A1 (en) * 2004-08-12 2006-02-16 David Ho Dry platelet preparations for use in diagnostics
US20080120984A1 (en) * 2004-08-12 2008-05-29 Ginadi Shaham Method And Apparatus For Freezing Or Thawing Of A Biological Material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246309B2 (en) 2015-08-31 2022-02-15 Ishihara Sangyo Kaisha, Ltd. Preserving agent for organs or tissue and preservation method for organs or tissue

Also Published As

Publication number Publication date
DE602005019998D1 (en) 2010-04-29
JP5096148B2 (en) 2012-12-12
JP2008501359A (en) 2008-01-24
ATE460947T1 (en) 2010-04-15
US7892726B2 (en) 2011-02-22
US20080038818A1 (en) 2008-02-14
EP1753472A1 (en) 2007-02-21
WO2005120591A1 (en) 2005-12-22
EP1753472B1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US20100197017A1 (en) Method for sterilization of biological preparations
EP0710124B1 (en) Method for sterilizing products
KR100909068B1 (en) Methods for Sterilizing Biological Materials Containing Water-Insoluble Solvents
ES2212288T3 (en) STORAGE AND IMPROVED MAINTENANCE OF HEMODERIVATES.
RU2466742C2 (en) Method for pathogen inactivation in donor blood, blood plasma or concentrated erythorocytes in flexible containers by agitation
CN102802694B (en) A novel method for microbial depletion in human blood and blood products using antimicrobial photodynamic therapy
EP0633786B1 (en) Method of inactivation of viral, parasitic and bacterial blood contaminants
MXPA03003557A (en) Enhancers for microbiological disinfection and targeted apoptosis.
CA2844115A1 (en) Methods of sterilizing fetal support tissues
EP1448052B1 (en) Anti-pathogenic composition useful in blood preservation
Kearney Guidelines on processing and clinical use of skin allografts
CN1665388A (en) Sterilization, stabilization and preservation of functional biologics
CN110732014B (en) Traditional Chinese medicine composition for removing mites as well as preparation method and application thereof
KR20200088801A (en) Composition and method for pathogen inactivation of platelets
Gugerell et al. Viral safety of APOSECTM: a novel peripheral blood mononuclear cell derived-biological for regenerative medicine
IL179922A (en) Method for sterilization of biological preparations
CN112602931A (en) Application of seedling extract
EA044317B1 (en) KITS AND METHODS FOR OBTAINING PATHOGEN-INACTIVATED PLATELET COMPOSITION

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION