US20100199841A1 - Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide - Google Patents

Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide Download PDF

Info

Publication number
US20100199841A1
US20100199841A1 US12/765,394 US76539410A US2010199841A1 US 20100199841 A1 US20100199841 A1 US 20100199841A1 US 76539410 A US76539410 A US 76539410A US 2010199841 A1 US2010199841 A1 US 2010199841A1
Authority
US
United States
Prior art keywords
metal
coating
substrate
inorganic
inorganic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/765,394
Inventor
Kishor Purushottam Gadkaree
Anbo Liu
Joseph Frank Mach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/765,394 priority Critical patent/US20100199841A1/en
Publication of US20100199841A1 publication Critical patent/US20100199841A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0285Sulfides of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/324Inorganic material layers containing free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • Y10T428/12667Oxide of transition metal or Al

Definitions

  • This disclosure relates to composites comprising an inorganic substrate with a coating comprising activated carbon and a metal sulfide.
  • the composites may be used, for example, for the removal of a contaminant, such as mercury, from a fluid stream.
  • Hazardous contaminant emissions have become environmental issues of increasing concern because of the dangers posed to human health. For instance, coal-fired power plants and medical waste incineration are major sources of human activity related mercury emission into the atmosphere.
  • a technology currently in use for controlling elemental mercury as well as oxidized mercury is activated carbon injection (ACI).
  • ACI process involves injecting activated carbon powder into a flue gas stream and using a fabric filter or electrostatic precipitator to collect the activated carbon powder that has sorbed mercury.
  • ACI technologies generally require a high C:Hg ratio to achieve the desired mercury removal level (>90%), which results in a high portion cost for sorbent material.
  • the high C:Hg ratio indicates that ACI does not utilize the mercury sorption capacity of carbon powder efficiently.
  • An activated carbon packed bed can reach high mercury removal levels with more effective utilization of sorbent material.
  • a typical powder or pellet packed bed has a very high pressure drop, which significantly reduces energy efficiency.
  • these fixed beds are generally an interruptive technology because they require frequent replacement of the sorbent material depending on the sorption capacity.
  • Exemplary inorganic substrates include glass, glass-ceramic, ceramic, and metal substrates.
  • Some example materials include cordierite, mullite, clay, magnesia, metal oxides, talc, zircon, zirconia, zirconates, zirconia-spinel, magnesium alumino-silicates, spinel, alumina, silica, silicates, borides, alumino-silicates, e.g., porcelains, lithium aluminosilicates, alumina silica, feldspar, titania, fused silica, nitrides, borides, carbides, e.g., silicon carbide, silicon nitride or combinations of these.
  • the substrates may comprise one or more coatings of inorganic material, which may also be porous. Coatings of inorganic material may be provided as washcoats of inorganic material.
  • Exemplary inorganic coating materials include cordierite, alumina (such as alpha-alumina and gamma-alumina), mullite, aluminum titinate, titania, zirconia, and ceria particles and combinations thereof.
  • the inorganic substrate is coated with a coating that comprises activated carbon and metal sulfide.
  • the coating may coat all or a portion of the surface of the inorganic substrate, and may impregnate the substrate to some extent if the surface of the substrate is porous. For instance, the coating may coat the inner channel surfaces of an inorganic honeycomb substrate and any outer surfaces of the honeycomb.
  • the activated carbon is in the form of an uninterrupted and continuous coating over all or a portion of the surface of the inorganic substrate, such as a honeycomb substrate.
  • the coating on the inorganic substrate comprises a metal sulfide.
  • metal sulfides include sulfides of manganese, copper, palladium, molybdenum, or tungsten.
  • the metal element in the metal sulfide is not limited to those examples.
  • the metal element in the metal sulfides may be selected from alkali metals, alkaline earth metals, transition metals, rare earth metals (including lanthanoids), and other metals such as aluminum, gallium, indium, tin, lead, thallium and bismuth.
  • the coating may further comprise any other suitable materials in addition to the activated carbon and metal sulfide.
  • the coating composition may comprise sulfur in addition to that present in the metal sulfide.
  • the additional sulfur may include sulfur at any oxidation state, including elemental sulfur (0), sulfate (+6), and sulfite (+4), and including sulfur bound to the activated carbon.
  • sulfur thus includes elemental sulfur or sulfur present in a chemical compound or moiety.
  • Chemical compounds may include sulfur containing compounds such as organosilanes, such as mercaptoalkylsilanes.
  • the composites may be made by any suitable technique.
  • the composites may made by a method that comprises:
  • the substrate can be coated with the coating composition by any suitable technique, such as by dipping the substrate in the coating composition or spraying the coating composition on the substrate.
  • the coating composition comprises an organic resin as a carbon precursor.
  • organic resins include thermosetting resins and thermoplastic resins (e.g., polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, and the like).
  • Synthetic polymeric material may be used, such as phenolic resins or a furfural alcohol based resin such as furan resins.
  • phenolic resins are resole resins such as plyophen resins.
  • An exemplary suitable furan liquid resin is Furcab-LP from QO Chemicals Inc., IN, U.S.A.
  • An exemplary solid resin is solid phenolic resin or novolak.
  • the metal sulfide may be any metal sulfide discussed above. In embodiments where a metal salt or metal oxide is provided in the mixture with an additional sulfur source, the two may react to form a metal sulfide during the forming of the composite. Exemplary metals in the metal salts or oxides include any metals mentioned above that may form the metal sulfides.
  • the metal sulfide, metal salt or metal oxide may be provided in the coating composition in any appropriate form. For instance, the metal sulfide or metal oxide may be present as insoluble particles or powder in the carbon precursor, and the metal salt may be soluble within the carbon precursor, such as within an organic resin.
  • the coating composition may also include metal sulfides together with metal oxides or metal salts.
  • the additional sulfur source may be any source of sulfur in elemental or oxidized state. This includes sulfur powder, sulfur-containing powdered resin, sulfides, sulfates, and other sulfur-containing compounds, and mixtures or combination of any two or more of these.
  • Exemplary sulfur-containing compounds include hydrogen sulfide and/or its salts, carbon disulfide, sulfur dioxide, thiophene, sulfur anhydride, sulfur halides, sulfuric ester, sulfurous acid, sulfacid, sulfatol, sulfamic acid, sulfan, sulfanes, sulfuric acid and its salts, sulfite, sulfoacid, sulfobenzide, sulfur containing organosilanes and mixtures thereof.
  • the coating compositions may optionally also include inorganic and/or (carbonizable or non-carbonizable) organic fillers and/or binders.
  • Inorganic fillers can include oxide glass; oxide ceramics; or other refractory materials.
  • Exemplary inorganic fillers that can be used include oxygen-containing minerals or salts thereof, such as clays, zeolites, talc, etc., carbonates, such as calcium carbonate, alumninosilicates such as kaolin (an aluminosilicate clay), flyash (an aluminosilicate ash obtained after coal firing in power plants), silicates, e.g., wollastonite (calcium metasilicate), titanates, zirconates, zirconia, zirconia spinel, magnesium aluminum silicates, mullite, alumina, alumina trihydrate, boehmite, spinel, feldspar, attapulgites, and aluminosilicate fibers, cordierite powder, mul
  • Exemplary organic binders include cellulose compounds.
  • Cellulose compounds include cellulose ethers, such as methylcellulose, ethylhydroxy ethylcellulose, hydroxybutylcellulose, hydroxybutyl methylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
  • An example methylcellulose binder is METHOCEL A, sold by the Dow Chemical Company.
  • Example hydroxypropyl methylcellulose binders include METHOCEL E, F, J, K, also sold by the Dow Chemical Company.
  • METHOCEL A4M is an example binder for use with a RAM extruder.
  • METHOCEL F240C is an example binder for use with a twin screw extruder.
  • oils can include synthetic oils based on poly (alpha olefins), esters, polyalkylene glycols, polybutenes, silicones, polyphenyl ether, CTFE oils, and other commercially available oils.
  • Vegetable oils such as sunflower oil, sesame oil, peanut oil, soyabean oil etc. are also useful.
  • the coating composition such as one comprising a curable organic resin, may optionally be cured under any appropriate conditions. Curing can be performed, for example, in air at atmospheric pressures and typically by heating the coating at a temperature of from 70° C. to 200° C. for about 0.5 to about 5.0 hours. In certain embodiments, the coating is heated from a low temperature to a higher temperature in stages, for example, from 70° C., to 90° C., to 125° C., to 150° C., each temperature being held for a period of time. Additionally, curing can also be accomplished by adding a curing additive such as an acid additive at room temperature.
  • a curing additive such as an acid additive at room temperature.
  • the coating composition can then be subjected to a carbonization step.
  • the coating composition may be carbonized by subjecting it to an elevated carbonizing temperature in an O 2 -depleted atmosphere.
  • the carbonization temperature can range from 600 to 1200° C., in certain embodiments from 700 to 1000° C.
  • the carbonizing atmosphere can be inert, comprising mainly a non reactive gas, such as N 2 , Ne, Ar, mixtures thereof, and the like.
  • a non reactive gas such as N 2 , Ne, Ar, mixtures thereof, and the like.
  • the carbonized coating composition may then be activated.
  • the carbonized batch mixture body may be activated, for example, in a gaseous atmosphere selected from CO 2 , H 2 O, a mixture of CO 2 and H 2 O, a mixture of CO 2 and nitrogen, a mixture of H 2 O and nitrogen, and a mixture of CO 2 and another inert gas, for example, at an elevated activating temperature in a CO 2 and/or H 2 O-containing atmosphere.
  • the atmosphere may be essentially pure CO 2 or H 2 O (steam), a mixture of CO 2 and H 2 O, or a combination of CO 2 and/or H 2 O with an inert gas such as nitrogen and/or argon. Utilizing a combination of nitrogen and CO 2 , for example, may result in cost savings.
  • a CO 2 and nitrogen mixture may be used, for example, with CO 2 content as low as 2% or more. Typically a mixture of CO 2 and nitrogen with a CO 2 content of 5-50% may be used to reduce process costs.
  • the activating temperature can range from 600° C. to 1000° C., in certain embodiments from 600° C. to 900° C. During this step, part of the carbonaceous structure of the carbonized batch mixture body is mildly oxidized:
  • the activating conditions time, temperature and atmosphere
  • the activating conditions can be adjusted to produce the final product with the desired specific area.
  • an activated carbon coating may be formed on the inorganic substrate, then impregnated with a metal sulfide.
  • the inorganic substrate coated with activated carbon may be contacted and impregnated with a solution comprising a metal sulfide, such as by dipping the inorganic substrate in the solution or spraying it with the solution.
  • the composites of the invention may be used, for example, for the sorption of any contaminant from a fluid through contact with the fluid.
  • a fluid stream may be passed through a flow-through composite such as a honeycomb shaped composite described above.
  • the fluid stream may be in the form of a gas or a liquid.
  • the gas or liquid may also contain another phase, such as a solid particulate in either a gas or liquid stream, or droplets of liquid in a gas stream.
  • Example gas streams include coal combustion flue gases (such as from bituminous and sub-bituminous coal types or lignite coal) and syngas streams produced in a coal gasification process.
  • sorb refers to the adsorption, absorption, or other entrapment of the contaminant on the sorbent, either physically, chemically, or both physically and chemically.
  • Contaminants to be sorbed include, for instance, contaminants at 3 wt % or less within the fluid stream, for example at 2 wt % or less, or 1 wt % or less. Contaminants may also include, for instance, contaminants at 10,000 ⁇ g/m 3 or less within the fluid stream.
  • Example contaminants include metals, including toxic metals.
  • the term “metal” and any reference to a particular metal or other contaminant by name herein includes the elemental forms as well as oxidation states of the metal or other contaminant. Sorption of a metal or other named contaminant thus includes sorption of the elemental form of the metal or other contaminant as well as sorption of any organic or inorganic compound or composition comprising the metal or other contaminant.
  • Example metals that can be sorbed include cadmium, mercury, chromium, lead, barium, beryllium, and chemical compounds or compositions comprising those elements.
  • the metal is mercury in an elemental)(Hg° or oxidized state (Hg + or Hg 2+ ).
  • Example forms of oxidized mercury include HgO and halogenated mercury, for example Hg 2 Cl 2 and HgCl 2 .
  • Other exemplary metallic contaminants include nickel, cobalt, vanadium, zinc, copper, manganese, antimony, silver, and thallium, as well as organic or inorganic compounds or compositions comprising them. Additional contaminants include arsenic and selenium as elements and in any oxidation states, including organic or inorganic compounds or compositions comprising arsenic or selenium.
  • the contaminant may be in any phase that can be sorbed on the composite.
  • the contaminant may be present, for example, as a liquid in a gas fluid steam, or as a liquid in a liquid fluid stream.
  • the contaminant could alternatively be present as a gas phase contaminant in a gas or liquid fluid stream.
  • the contaminant is mercury vapor in a coal combustion flue gas or syngas stream.

Abstract

A composite comprising an inorganic substrate with a coating comprising activated carbon and a metal sulfide. The composite may be used, for example, for the removal of a contaminant, such as mercury, from a fluid stream.

Description

    FIELD OF THE DISCLOSURE
  • This disclosure relates to composites comprising an inorganic substrate with a coating comprising activated carbon and a metal sulfide. The composites may be used, for example, for the removal of a contaminant, such as mercury, from a fluid stream.
  • BACKGROUND
  • Hazardous contaminant emissions have become environmental issues of increasing concern because of the dangers posed to human health. For instance, coal-fired power plants and medical waste incineration are major sources of human activity related mercury emission into the atmosphere.
  • It is estimated that there are 48 tons of mercury emitted from coal-fired power plants in the United States annually. One DOE-Energy Information Administration annual energy outlook projected that coal consumption for electricity generation will increase from 976 million tons in 2002 to 1,477 million tons in 2025 as the utilization of coal-fired generation capacity increases. However, mercury emission control regulations have not been rigorously enforced for coal-fired power plants. A major reason is a lack of effective control technologies available at a reasonable cost, especially for elemental mercury control.
  • A technology currently in use for controlling elemental mercury as well as oxidized mercury is activated carbon injection (ACI). The ACI process involves injecting activated carbon powder into a flue gas stream and using a fabric filter or electrostatic precipitator to collect the activated carbon powder that has sorbed mercury. ACI technologies generally require a high C:Hg ratio to achieve the desired mercury removal level (>90%), which results in a high portion cost for sorbent material. The high C:Hg ratio indicates that ACI does not utilize the mercury sorption capacity of carbon powder efficiently.
  • An activated carbon packed bed can reach high mercury removal levels with more effective utilization of sorbent material. However, a typical powder or pellet packed bed has a very high pressure drop, which significantly reduces energy efficiency. Further, these fixed beds are generally an interruptive technology because they require frequent replacement of the sorbent material depending on the sorption capacity.
  • Activated carbon honeycombs disclosed in US 2007/0261557 may be utilized to achieve high removal levels of contaminants such as toxic metals. The inventors have now discovered new materials for the removal of contaminants from fluids, which are described herein.
  • DESCRIPTION OF EMBODIMENTS
  • One embodiment of the invention is a composite comprising:
      • an inorganic substrate; and
      • a coating on the inorganic substrate, wherein the coating comprises activated carbon and a metal sulfide.
  • Exemplary inorganic substrates include glass, glass-ceramic, ceramic, and metal substrates. Some example materials include cordierite, mullite, clay, magnesia, metal oxides, talc, zircon, zirconia, zirconates, zirconia-spinel, magnesium alumino-silicates, spinel, alumina, silica, silicates, borides, alumino-silicates, e.g., porcelains, lithium aluminosilicates, alumina silica, feldspar, titania, fused silica, nitrides, borides, carbides, e.g., silicon carbide, silicon nitride or combinations of these.
  • The substrates, which may be porous, may comprise one or more coatings of inorganic material, which may also be porous. Coatings of inorganic material may be provided as washcoats of inorganic material. Exemplary inorganic coating materials include cordierite, alumina (such as alpha-alumina and gamma-alumina), mullite, aluminum titinate, titania, zirconia, and ceria particles and combinations thereof.
  • The inorganic substrate may, for example, be in the form of a flow-through monolith, which may comprise one or more coatings of inorganic material as mentioned above. Exemplary flow-through monoliths include, for example, any monolithic structure comprising channels, porous networks, or any other passages that would permit the flow of a fluid stream through the monolith. For instance, the flow-through monolith may be a honeycomb monolith comprising an inlet end, an outlet end, and a multiplicity of cells extending from the inlet end to the outlet end, the cells being defined by intersecting porous cell walls. The honeycomb could optionally comprise one or more selectively plugged honeycomb cell ends to provide a wall flow-through structure that allows for more intimate contact between the fluid stream and cell walls. The composites of the invention may also have a flow-through structure that is described above.
  • The inorganic substrate and/or composite may alternatively be in the form of, for example, granules, pellets, or planar or tubular structures.
  • The inorganic substrate is coated with a coating that comprises activated carbon and metal sulfide. The coating may coat all or a portion of the surface of the inorganic substrate, and may impregnate the substrate to some extent if the surface of the substrate is porous. For instance, the coating may coat the inner channel surfaces of an inorganic honeycomb substrate and any outer surfaces of the honeycomb. In some embodiments, the activated carbon is in the form of an uninterrupted and continuous coating over all or a portion of the surface of the inorganic substrate, such as a honeycomb substrate.
  • The coating on the inorganic substrate comprises a metal sulfide. Exemplary metal sulfides include sulfides of manganese, copper, palladium, molybdenum, or tungsten. The metal element in the metal sulfide, however, is not limited to those examples. For instance, the metal element in the metal sulfides may be selected from alkali metals, alkaline earth metals, transition metals, rare earth metals (including lanthanoids), and other metals such as aluminum, gallium, indium, tin, lead, thallium and bismuth.
  • The coating may further comprise any other suitable materials in addition to the activated carbon and metal sulfide. For instance, the coating composition may comprise sulfur in addition to that present in the metal sulfide. The additional sulfur may include sulfur at any oxidation state, including elemental sulfur (0), sulfate (+6), and sulfite (+4), and including sulfur bound to the activated carbon. The term sulfur thus includes elemental sulfur or sulfur present in a chemical compound or moiety. Chemical compounds may include sulfur containing compounds such as organosilanes, such as mercaptoalkylsilanes.
  • The composites may be made by any suitable technique. In one embodiment, the composites may made by a method that comprises:
      • providing an inorganic substrate;
      • coating the substrate with a composition comprising:
      • a carbon precursor, and
      • a metal sulfide, or a combination of 1a) a metal oxide or salt or 1b) metal sulfide with 2) an additional sulfur source;
      • optionally curing the coating composition;
      • carbonizing the coating composition; and
      • activating the carbonized composition.
  • The substrate can be coated with the coating composition by any suitable technique, such as by dipping the substrate in the coating composition or spraying the coating composition on the substrate.
  • Carbon precursors include synthetic carbon-containing polymeric material, organic resins, charcoal powder, coal tar pitch, petroleum pitch, wood flour, cellulose and derivatives thereof, natural organic materials such as wheat flour, wood flour, corn flour, nut-shell flour, starch, coke, coal, or mixtures or combinations of any two or more of these.
  • In one embodiment, the coating composition comprises an organic resin as a carbon precursor. Exemplary organic resins include thermosetting resins and thermoplastic resins (e.g., polyvinylidene chloride, polyvinyl chloride, polyvinyl alcohol, and the like). Synthetic polymeric material may be used, such as phenolic resins or a furfural alcohol based resin such as furan resins. Exemplary suitable phenolic resins are resole resins such as plyophen resins. An exemplary suitable furan liquid resin is Furcab-LP from QO Chemicals Inc., IN, U.S.A. An exemplary solid resin is solid phenolic resin or novolak.
  • The metal sulfide may be any metal sulfide discussed above. In embodiments where a metal salt or metal oxide is provided in the mixture with an additional sulfur source, the two may react to form a metal sulfide during the forming of the composite. Exemplary metals in the metal salts or oxides include any metals mentioned above that may form the metal sulfides. The metal sulfide, metal salt or metal oxide may be provided in the coating composition in any appropriate form. For instance, the metal sulfide or metal oxide may be present as insoluble particles or powder in the carbon precursor, and the metal salt may be soluble within the carbon precursor, such as within an organic resin. The coating composition may also include metal sulfides together with metal oxides or metal salts.
  • The additional sulfur source may be any source of sulfur in elemental or oxidized state. This includes sulfur powder, sulfur-containing powdered resin, sulfides, sulfates, and other sulfur-containing compounds, and mixtures or combination of any two or more of these. Exemplary sulfur-containing compounds include hydrogen sulfide and/or its salts, carbon disulfide, sulfur dioxide, thiophene, sulfur anhydride, sulfur halides, sulfuric ester, sulfurous acid, sulfacid, sulfatol, sulfamic acid, sulfan, sulfanes, sulfuric acid and its salts, sulfite, sulfoacid, sulfobenzide, sulfur containing organosilanes and mixtures thereof.
  • The coating compositions may optionally also include inorganic and/or (carbonizable or non-carbonizable) organic fillers and/or binders. Inorganic fillers can include oxide glass; oxide ceramics; or other refractory materials. Exemplary inorganic fillers that can be used include oxygen-containing minerals or salts thereof, such as clays, zeolites, talc, etc., carbonates, such as calcium carbonate, alumninosilicates such as kaolin (an aluminosilicate clay), flyash (an aluminosilicate ash obtained after coal firing in power plants), silicates, e.g., wollastonite (calcium metasilicate), titanates, zirconates, zirconia, zirconia spinel, magnesium aluminum silicates, mullite, alumina, alumina trihydrate, boehmite, spinel, feldspar, attapulgites, and aluminosilicate fibers, cordierite powder, mullite, cordierite, silica, alumina, other oxide glass, other oxide ceramics, or other refractory material.
  • Exemplary organic binders include cellulose compounds. Cellulose compounds include cellulose ethers, such as methylcellulose, ethylhydroxy ethylcellulose, hydroxybutylcellulose, hydroxybutyl methylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, sodium carboxy methylcellulose, and mixtures thereof. An example methylcellulose binder is METHOCEL A, sold by the Dow Chemical Company. Example hydroxypropyl methylcellulose binders include METHOCEL E, F, J, K, also sold by the Dow Chemical Company. Binders in the METHCEL 310 Series, also sold by the Dow Chemical Company, can also be used in the context of the invention. METHOCEL A4M is an example binder for use with a RAM extruder. METHOCEL F240C is an example binder for use with a twin screw extruder.
  • The coating composition may also optionally comprise forming aids. Exemplary forming aids include soaps, fatty acids, such as oleic, linoleic acid, sodium stearate, etc., polyoxyethylene stearate, etc. and combinations thereof. Other additives that can be useful for improving the extrusion and curing characteristics of the batch are phosphoric acid and oil. Exemplary oils include petroleum oils with molecular weights from about 250 to 1000, containing paraffinic and/or aromatic and/or alicyclic compounds. Some useful oils are 3 in 1 oil from 3M Co., or 3 in 1 household oil from Reckitt and Coleman Inc., Wayne, N.J. Other useful oils can include synthetic oils based on poly (alpha olefins), esters, polyalkylene glycols, polybutenes, silicones, polyphenyl ether, CTFE oils, and other commercially available oils. Vegetable oils such as sunflower oil, sesame oil, peanut oil, soyabean oil etc. are also useful.
  • The coating composition, such as one comprising a curable organic resin, may optionally be cured under any appropriate conditions. Curing can be performed, for example, in air at atmospheric pressures and typically by heating the coating at a temperature of from 70° C. to 200° C. for about 0.5 to about 5.0 hours. In certain embodiments, the coating is heated from a low temperature to a higher temperature in stages, for example, from 70° C., to 90° C., to 125° C., to 150° C., each temperature being held for a period of time. Additionally, curing can also be accomplished by adding a curing additive such as an acid additive at room temperature.
  • The coating composition can then be subjected to a carbonization step. For instance, the coating composition may be carbonized by subjecting it to an elevated carbonizing temperature in an O2-depleted atmosphere. The carbonization temperature can range from 600 to 1200° C., in certain embodiments from 700 to 1000° C. The carbonizing atmosphere can be inert, comprising mainly a non reactive gas, such as N2, Ne, Ar, mixtures thereof, and the like. At the carbonizing temperature in an O2-depleted atmosphere, the organic substances contained in the batch mixture body decompose to leave a carbonaceous residue.
  • The carbonized coating composition may then be activated. The carbonized batch mixture body may be activated, for example, in a gaseous atmosphere selected from CO2, H2O, a mixture of CO2 and H2O, a mixture of CO2 and nitrogen, a mixture of H2O and nitrogen, and a mixture of CO2 and another inert gas, for example, at an elevated activating temperature in a CO2 and/or H2O-containing atmosphere. The atmosphere may be essentially pure CO2 or H2O (steam), a mixture of CO2 and H2O, or a combination of CO2 and/or H2O with an inert gas such as nitrogen and/or argon. Utilizing a combination of nitrogen and CO2, for example, may result in cost savings. A CO2 and nitrogen mixture may be used, for example, with CO2 content as low as 2% or more. Typically a mixture of CO2 and nitrogen with a CO2 content of 5-50% may be used to reduce process costs. The activating temperature can range from 600° C. to 1000° C., in certain embodiments from 600° C. to 900° C. During this step, part of the carbonaceous structure of the carbonized batch mixture body is mildly oxidized:

  • CO2(g)+C(s)→2CO(g),

  • H2O(g)+C(s)→H2(g)+CO(g),
  • resulting in the etching of the structure of the carbonaceous body and formation of an activated carbon matrix that can define a plurality of pores on a nanoscale and microscale. The activating conditions (time, temperature and atmosphere) can be adjusted to produce the final product with the desired specific area.
  • As an alternative to the method discussed above, an activated carbon coating may be formed on the inorganic substrate, then impregnated with a metal sulfide. For example, the inorganic substrate coated with activated carbon may be contacted and impregnated with a solution comprising a metal sulfide, such as by dipping the inorganic substrate in the solution or spraying it with the solution.
  • The composites of the invention may be used, for example, for the sorption of any contaminant from a fluid through contact with the fluid. For example, a fluid stream may be passed through a flow-through composite such as a honeycomb shaped composite described above. The fluid stream may be in the form of a gas or a liquid. The gas or liquid may also contain another phase, such as a solid particulate in either a gas or liquid stream, or droplets of liquid in a gas stream. Example gas streams include coal combustion flue gases (such as from bituminous and sub-bituminous coal types or lignite coal) and syngas streams produced in a coal gasification process.
  • The terms “sorb,” “sorption,” and “sorbed,” refer to the adsorption, absorption, or other entrapment of the contaminant on the sorbent, either physically, chemically, or both physically and chemically.
  • Contaminants to be sorbed include, for instance, contaminants at 3 wt % or less within the fluid stream, for example at 2 wt % or less, or 1 wt % or less. Contaminants may also include, for instance, contaminants at 10,000 μg/m3 or less within the fluid stream. Example contaminants include metals, including toxic metals. The term “metal” and any reference to a particular metal or other contaminant by name herein includes the elemental forms as well as oxidation states of the metal or other contaminant. Sorption of a metal or other named contaminant thus includes sorption of the elemental form of the metal or other contaminant as well as sorption of any organic or inorganic compound or composition comprising the metal or other contaminant.
  • Example metals that can be sorbed include cadmium, mercury, chromium, lead, barium, beryllium, and chemical compounds or compositions comprising those elements. In one embodiment, the metal is mercury in an elemental)(Hg° or oxidized state (Hg+ or Hg2+). Example forms of oxidized mercury include HgO and halogenated mercury, for example Hg2Cl2 and HgCl2. Other exemplary metallic contaminants include nickel, cobalt, vanadium, zinc, copper, manganese, antimony, silver, and thallium, as well as organic or inorganic compounds or compositions comprising them. Additional contaminants include arsenic and selenium as elements and in any oxidation states, including organic or inorganic compounds or compositions comprising arsenic or selenium.
  • The contaminant may be in any phase that can be sorbed on the composite. Thus, the contaminant may be present, for example, as a liquid in a gas fluid steam, or as a liquid in a liquid fluid stream. The contaminant could alternatively be present as a gas phase contaminant in a gas or liquid fluid stream. In one embodiment, the contaminant is mercury vapor in a coal combustion flue gas or syngas stream.
  • It should be understood that while the invention has been described in detail with respect to certain illustrative embodiments thereof, it should not be considered limited to such, as numerous modifications are possible without departing from the broad spirit and scope of the invention as defined in the appended claims.

Claims (16)

1-19. (canceled)
20. A method for the sorption of a contaminant from a fluid stream, which comprises contacting the fluid stream with a composite comprising:
an inorganic substrate; and
a coating on the inorganic substrate, wherein the coating comprises activated carbon and a metal sulfide.
21. A method according to claim 20, wherein the inorganic substrate is a glass, glass-ceramic, ceramic, or metal substrate.
22. A method according to claim 20, wherein the inorganic substrate is a substrate comprising one or more coatings of inorganic material.
23. A method according to claim 22, wherein the inorganic substrate is a substrate comprising a washcoat of inorganic material.
24. A method according to claim 20, wherein the composite is in the form of a flow-through structure.
25. A method according to claim 24, wherein the flow-through structure is a honeycomb structure.
26. A method according to claim 20, wherein the metal sulfide is a sulfide of manganese, copper, palladium, molybdenum, or tungsten.
27. A method according to claim 20, wherein the coating further comprises sulfur in addition to that present in the metal sulfide.
28. A method according to claim 27, wherein the coating comprises elemental sulfur.
29. A method according to claim 20, wherein the fluid stream is a gas stream.
30. A method according to claim 29, wherein the gas stream is a coal combustion flue gas or syngas stream.
31. A method according to claim 20, wherein the contaminant is a toxic metal.
32. A method according to claim 31, wherein the toxic metal is cadmium, mercury, chromium, lead, barium or beryllium.
33. A method according to claim 31, wherein the toxic metal is nickel, cobalt, vanadium, zinc, copper, manganese, antimony, silver, or thallium.
34. A method according to claim 20, wherein the contaminant is arsenic or selenium.
US12/765,394 2008-05-30 2010-04-22 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide Abandoned US20100199841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/765,394 US20100199841A1 (en) 2008-05-30 2010-04-22 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/129,907 US20090297885A1 (en) 2008-05-30 2008-05-30 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide
US12/765,394 US20100199841A1 (en) 2008-05-30 2010-04-22 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/129,907 Continuation US20090297885A1 (en) 2008-05-30 2008-05-30 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide

Publications (1)

Publication Number Publication Date
US20100199841A1 true US20100199841A1 (en) 2010-08-12

Family

ID=41110771

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/129,907 Abandoned US20090297885A1 (en) 2008-05-30 2008-05-30 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide
US12/765,394 Abandoned US20100199841A1 (en) 2008-05-30 2010-04-22 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/129,907 Abandoned US20090297885A1 (en) 2008-05-30 2008-05-30 Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And Metal Sulfide

Country Status (3)

Country Link
US (2) US20090297885A1 (en)
TW (1) TW201018584A (en)
WO (1) WO2009148501A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140308185A1 (en) * 2011-06-01 2014-10-16 Rheinbraun Brennstoff Gmbh Method for precipitating mercury from flue gases of high-temperature plants
US10106436B2 (en) 2013-03-16 2018-10-23 Chemica Technologies, Inc. Selective adsorbent fabric for water purification

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367629A2 (en) * 2008-12-19 2011-09-28 Corning Incorporated Coated flow-through substrates and methods for making and using them
WO2012019134A2 (en) * 2010-08-06 2012-02-09 Brown University Functionalized chromatographic materials and methods of making and using therefor
US8496739B2 (en) 2010-08-30 2013-07-30 Corning Incorporated Organic antioxidant based filtration apparatus and method
GB201322462D0 (en) 2013-12-18 2014-02-05 Johnson Matthey Plc Method for preparing a sorbent
GB201322464D0 (en) 2013-12-18 2014-02-05 Johnson Matthey Plc Method for preparing a sorbent
GB201509822D0 (en) * 2015-06-05 2015-07-22 Johnson Matthey Plc Method for preparing a sorbent
GB201509824D0 (en) 2015-06-05 2015-07-22 Johnson Matthey Plc Method for preparing a sorbent
GB201509823D0 (en) 2015-06-05 2015-07-22 Johnson Matthey Plc Method for preparing a sorbent
US11053138B2 (en) * 2017-07-11 2021-07-06 Qatar Foundation For Education, Science And Community Development Method of removing arsenic from a liquid
CN113198420A (en) * 2021-04-25 2021-08-03 鲁西催化剂有限公司 Modified activated carbon and preparation method and application thereof

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305827A (en) * 1979-05-30 1981-12-15 Unitika Ltd. Heavy metal adsorbents of high selectivity, process for production of same, and adsorption process
US4338288A (en) * 1978-09-14 1982-07-06 Mobil Oil Corporation Sorbent for removing metals from fluids
US4482641A (en) * 1983-02-28 1984-11-13 Standard Oil Company (Indiana) Metal-containing active carbon and method for making same
US4500327A (en) * 1982-07-08 1985-02-19 Takeda Chemical Industries, Ltd. Process for removal of mercury vapor and adsorbent therefor
US4656153A (en) * 1983-02-28 1987-04-07 Standard Oil Company (Indiana) Active carbon containing a dispersion of a metal component and method for making same
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4814152A (en) * 1987-10-13 1989-03-21 Mobil Oil Corporation Process for removing mercury vapor and chemisorbent composition therefor
US4831003A (en) * 1987-09-14 1989-05-16 Exxon Research And Engineering Company Catalyst composition and process of making
US4960506A (en) * 1985-04-22 1990-10-02 Exxon Research And Engineering Company Desulfurization of hydrocarbons using molybdenum or tungsten sulfide catalysts promoted with low valent group VIII metals
US4970189A (en) * 1988-06-24 1990-11-13 Somar Corporation Porous, metal-containing carbonaceous material
US5037791A (en) * 1988-07-28 1991-08-06 Hri, Inc. Porous metal oxide supported carbon-coated catalysts and method for producing same
US5080799A (en) * 1990-05-23 1992-01-14 Mobil Oil Corporation Hg removal from wastewater by regenerative adsorption
US5245106A (en) * 1990-10-30 1993-09-14 Institut Francais Du Petrole Method of eliminating mercury or arsenic from a fluid in the presence of a mercury and/or arsenic recovery mass
US5278123A (en) * 1990-02-19 1994-01-11 Rhone-Poulenc Chimie Monolithic catalysts for converting sulfur compounds into SO2
US5288306A (en) * 1991-07-22 1994-02-22 Takeda Chemical Industries, Ltd. Activated carbon honeycombs and applications thereof
US5350728A (en) * 1990-10-30 1994-09-27 Institut Francais Du Petrole And Europeene De Retraitment De Catalyseurs (Eurecat) Method of preparing a solid mass for mercury recovery
US5451444A (en) * 1993-01-29 1995-09-19 Deliso; Evelyn M. Carbon-coated inorganic substrates
US5488023A (en) * 1994-08-12 1996-01-30 Corning Incorporated Method of making activated carbon having dispersed catalyst
US5601701A (en) * 1993-02-08 1997-02-11 Institut Francais Du Petrole Process for the elimination of mercury from hydrocarbons by passage over a presulphurated catalyst
US5750026A (en) * 1995-06-02 1998-05-12 Corning Incorporated Device for removal of contaminants from fluid streams
US5914294A (en) * 1996-04-23 1999-06-22 Applied Ceramics, Inc. Adsorptive monolith including activated carbon and method for making said monlith
US5998328A (en) * 1997-10-08 1999-12-07 Corning Incorporated Method of making activated carbon-supported catalysts
US6103205A (en) * 1997-07-11 2000-08-15 Advanced Fuel Research, Inc. Simultaneous mercury, SO2, and NOx control by adsorption on activated carbon
US6136749A (en) * 1997-07-28 2000-10-24 Corning Incorporated Mercury removal catalyst and method of making and using same
US6187713B1 (en) * 1996-10-31 2001-02-13 Corning Incorporated Method of making activated carbon bodies having improved adsorption properties
US6372289B1 (en) * 1999-12-17 2002-04-16 Corning Incorporated Process for manufacturing activated carbon honeycomb structures
US6458453B1 (en) * 1999-04-30 2002-10-01 Toda Kogyo Corporation Magnetic recording medium
US6472343B1 (en) * 2001-04-11 2002-10-29 Westvaco Corporation Shaped activated carbon
US6487917B1 (en) * 2000-05-02 2002-12-03 Micro Motion, Inc. Low thermal stress balance bar for a coriolis flowmeter
US6573212B2 (en) * 2001-04-11 2003-06-03 Meadwestvaco Corporation Method of making shaped activated carbon
US20030209539A1 (en) * 1997-04-04 2003-11-13 Dalton Robert C. Field concentrators for artificial dielectric systems and devices
US6696384B2 (en) * 2001-04-11 2004-02-24 Meadwestvaco Corporation Method of making shaped activated carbon
US6716339B2 (en) * 2001-03-30 2004-04-06 Corning Incorporated Hydrotreating process with monolithic catalyst
US6936561B2 (en) * 2002-12-02 2005-08-30 Corning Incorporated Monolithic zeolite coated structures and a method of manufacture
US7129453B2 (en) * 1997-04-04 2006-10-31 Dalton Robert C Artificial dielectric systems and devices with sintered ceramic matrix material
US20070003477A1 (en) * 2003-06-11 2007-01-04 Natacha Haik-Beraud Purification of a mixture of h<sb>2</sb>/co by catalysis of the impurities
US7176427B2 (en) * 1997-04-04 2007-02-13 Dalton Robert C Electromagnetic susceptors for artificial dielectric systems and devices
US20070194016A1 (en) * 1997-04-04 2007-08-23 Robert Dalton Useful energy product
US20080184884A1 (en) * 2007-02-05 2008-08-07 Gas Technology Institute Regenerative process for removal of mercury and other heavy metals from gases containing H2 and/or CO
US20090111690A1 (en) * 2007-10-26 2009-04-30 Gadkaree Kishor Purushottam Sorbent comprising activated carbon, process for making same and use thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2150592C3 (en) * 1971-10-11 1980-05-22 Det Norske Zinkkompani A/S, Eitrheim, Odda (Norwegen) Process for cleaning gases from entrained mercury impurities
US5487917A (en) * 1995-03-16 1996-01-30 Corning Incorporated Carbon coated substrates
JP2002241767A (en) * 2001-02-15 2002-08-28 Idemitsu Petrochem Co Ltd Method for removing mercury from liquid hydrocarbon
US7288499B1 (en) * 2001-04-30 2007-10-30 Ada Technologies, Inc Regenerable high capacity sorbent for removal of mercury from flue gas
US6719828B1 (en) * 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas
GB0117212D0 (en) * 2001-07-16 2001-09-05 Mat & Separations Tech Int Ltd Filter element
US20050093189A1 (en) * 2001-08-27 2005-05-05 Vo Toan P. Adsorbents for removing heavy metals and methods for producing and using the same
US7429330B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Method for removing contaminants from fluid streams
US7429551B2 (en) * 2001-08-27 2008-09-30 Calgon Carbon Corporation Adsorbents for removing heavy metals
US20050247635A1 (en) * 2001-08-27 2005-11-10 Vo Toan P Adsorbents for removing heavy metal cations and methods for producing and using these adsorbents
US6914034B2 (en) * 2001-08-27 2005-07-05 Calgon Carbon Corporation Adsorbents for removing heavy metals and methods for producing and using the same
US20040074391A1 (en) * 2002-10-16 2004-04-22 Vincent Durante Filter system
US7435286B2 (en) * 2004-08-30 2008-10-14 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20060045829A1 (en) * 2004-08-26 2006-03-02 Dodwell Glenn W Process for the removal of heavy metals from gases, and compositions therefor and therewith
US20060051270A1 (en) * 2004-09-03 2006-03-09 Robert Brunette Removal of volatile metals from gas by solid sorbent capture
US20060205592A1 (en) * 2005-03-14 2006-09-14 Chien-Chung Chao Catalytic adsorbents for mercury removal from flue gas and methods of manufacture therefor
US20060229476A1 (en) * 2005-04-08 2006-10-12 Mitchell Robert L Sr Activated carbon monolith catalyst, methods for making same, and uses thereof
US20070092418A1 (en) * 2005-10-17 2007-04-26 Chemical Products Corporation Sorbents for Removal of Mercury from Flue Gas
US8034741B2 (en) * 2005-11-09 2011-10-11 Gore Enterprise Holdings, Inc. Capture of mercury from a gaseous mixture containing mercury
US20070160517A1 (en) * 2005-12-22 2007-07-12 Foster Wheeler Energy Corporation Catalyst, a method of using a catalyst, and an arrangement including a catalyst, for controlling NO and/or CO emissions from a combustion system without using external reagent
US20070179056A1 (en) * 2006-01-27 2007-08-02 Baek Jeom I Sorbent for removal of trace hazardous air pollutants from combustion flue gas and preparation method thereof
JP5192652B2 (en) * 2006-03-31 2013-05-08 日本インスツルメンツ株式会社 Mercury reduction catalyst, mercury conversion unit, and total mercury measurement device in exhaust gas using the same
US7572421B2 (en) * 2006-06-19 2009-08-11 Basf Catalysts Llc Mercury sorbents and methods of manufacture and use
WO2008085571A2 (en) * 2006-10-11 2008-07-17 Applied Technology Limited Partnership Carbon black monolith, carbon black monolith catalyst, methods for making same, and uses thereof
CN101687173B (en) * 2007-05-14 2013-11-13 康宁股份有限公司 Sorbent bodies comprising activated carbon, processes for making them, and use thereof

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338288A (en) * 1978-09-14 1982-07-06 Mobil Oil Corporation Sorbent for removing metals from fluids
US4305827A (en) * 1979-05-30 1981-12-15 Unitika Ltd. Heavy metal adsorbents of high selectivity, process for production of same, and adsorption process
US4500327A (en) * 1982-07-08 1985-02-19 Takeda Chemical Industries, Ltd. Process for removal of mercury vapor and adsorbent therefor
US4482641A (en) * 1983-02-28 1984-11-13 Standard Oil Company (Indiana) Metal-containing active carbon and method for making same
US4656153A (en) * 1983-02-28 1987-04-07 Standard Oil Company (Indiana) Active carbon containing a dispersion of a metal component and method for making same
US4708853A (en) * 1983-11-03 1987-11-24 Calgon Carbon Corporation Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4960506A (en) * 1985-04-22 1990-10-02 Exxon Research And Engineering Company Desulfurization of hydrocarbons using molybdenum or tungsten sulfide catalysts promoted with low valent group VIII metals
US4831003A (en) * 1987-09-14 1989-05-16 Exxon Research And Engineering Company Catalyst composition and process of making
US4814152A (en) * 1987-10-13 1989-03-21 Mobil Oil Corporation Process for removing mercury vapor and chemisorbent composition therefor
US4970189A (en) * 1988-06-24 1990-11-13 Somar Corporation Porous, metal-containing carbonaceous material
US5037791A (en) * 1988-07-28 1991-08-06 Hri, Inc. Porous metal oxide supported carbon-coated catalysts and method for producing same
US5278123A (en) * 1990-02-19 1994-01-11 Rhone-Poulenc Chimie Monolithic catalysts for converting sulfur compounds into SO2
US5080799A (en) * 1990-05-23 1992-01-14 Mobil Oil Corporation Hg removal from wastewater by regenerative adsorption
US5245106A (en) * 1990-10-30 1993-09-14 Institut Francais Du Petrole Method of eliminating mercury or arsenic from a fluid in the presence of a mercury and/or arsenic recovery mass
US5350728A (en) * 1990-10-30 1994-09-27 Institut Francais Du Petrole And Europeene De Retraitment De Catalyseurs (Eurecat) Method of preparing a solid mass for mercury recovery
US5288306A (en) * 1991-07-22 1994-02-22 Takeda Chemical Industries, Ltd. Activated carbon honeycombs and applications thereof
US5451444A (en) * 1993-01-29 1995-09-19 Deliso; Evelyn M. Carbon-coated inorganic substrates
US5597617A (en) * 1993-01-29 1997-01-28 Corning Incorporated Carbon-coated inorganic substrates
US5601701A (en) * 1993-02-08 1997-02-11 Institut Francais Du Petrole Process for the elimination of mercury from hydrocarbons by passage over a presulphurated catalyst
US5488023A (en) * 1994-08-12 1996-01-30 Corning Incorporated Method of making activated carbon having dispersed catalyst
US5750026A (en) * 1995-06-02 1998-05-12 Corning Incorporated Device for removal of contaminants from fluid streams
US5914294A (en) * 1996-04-23 1999-06-22 Applied Ceramics, Inc. Adsorptive monolith including activated carbon and method for making said monlith
US6187713B1 (en) * 1996-10-31 2001-02-13 Corning Incorporated Method of making activated carbon bodies having improved adsorption properties
US7176427B2 (en) * 1997-04-04 2007-02-13 Dalton Robert C Electromagnetic susceptors for artificial dielectric systems and devices
US7129453B2 (en) * 1997-04-04 2006-10-31 Dalton Robert C Artificial dielectric systems and devices with sintered ceramic matrix material
US20070194016A1 (en) * 1997-04-04 2007-08-23 Robert Dalton Useful energy product
US6888116B2 (en) * 1997-04-04 2005-05-03 Robert C. Dalton Field concentrators for artificial dielectric systems and devices
US20030209539A1 (en) * 1997-04-04 2003-11-13 Dalton Robert C. Field concentrators for artificial dielectric systems and devices
US6103205A (en) * 1997-07-11 2000-08-15 Advanced Fuel Research, Inc. Simultaneous mercury, SO2, and NOx control by adsorption on activated carbon
US6136749A (en) * 1997-07-28 2000-10-24 Corning Incorporated Mercury removal catalyst and method of making and using same
US6258334B1 (en) * 1997-07-28 2001-07-10 Corning Incorporated Mercury removal catalyst and method of making and using same
US5998328A (en) * 1997-10-08 1999-12-07 Corning Incorporated Method of making activated carbon-supported catalysts
US6458453B1 (en) * 1999-04-30 2002-10-01 Toda Kogyo Corporation Magnetic recording medium
US6372289B1 (en) * 1999-12-17 2002-04-16 Corning Incorporated Process for manufacturing activated carbon honeycomb structures
US6487917B1 (en) * 2000-05-02 2002-12-03 Micro Motion, Inc. Low thermal stress balance bar for a coriolis flowmeter
US6716339B2 (en) * 2001-03-30 2004-04-06 Corning Incorporated Hydrotreating process with monolithic catalyst
US6573212B2 (en) * 2001-04-11 2003-06-03 Meadwestvaco Corporation Method of making shaped activated carbon
US6696384B2 (en) * 2001-04-11 2004-02-24 Meadwestvaco Corporation Method of making shaped activated carbon
US6472343B1 (en) * 2001-04-11 2002-10-29 Westvaco Corporation Shaped activated carbon
US6936561B2 (en) * 2002-12-02 2005-08-30 Corning Incorporated Monolithic zeolite coated structures and a method of manufacture
US20070003477A1 (en) * 2003-06-11 2007-01-04 Natacha Haik-Beraud Purification of a mixture of h<sb>2</sb>/co by catalysis of the impurities
US20080184884A1 (en) * 2007-02-05 2008-08-07 Gas Technology Institute Regenerative process for removal of mercury and other heavy metals from gases containing H2 and/or CO
US20090111690A1 (en) * 2007-10-26 2009-04-30 Gadkaree Kishor Purushottam Sorbent comprising activated carbon, process for making same and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140308185A1 (en) * 2011-06-01 2014-10-16 Rheinbraun Brennstoff Gmbh Method for precipitating mercury from flue gases of high-temperature plants
US9044710B2 (en) * 2011-06-01 2015-06-02 Rheinbraun Brennstoff Gmbh Method for precipitating mercury from flue gases of high-temperature plants
US10106436B2 (en) 2013-03-16 2018-10-23 Chemica Technologies, Inc. Selective adsorbent fabric for water purification
US10683216B2 (en) 2013-03-16 2020-06-16 Chemica Technologies, Inc. Selective adsorbent fabric for water purification

Also Published As

Publication number Publication date
TW201018584A (en) 2010-05-16
US20090297885A1 (en) 2009-12-03
WO2009148501A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US20100199841A1 (en) Composite Comprising An Inorganic Substrate With A Coating Comprising Activated Carbon And A Metal Sulfide
US8691722B2 (en) Sorbent comprising activated carbon particles, sulfur and metal catalyst
US7998898B2 (en) Sorbent comprising activated carbon, process for making same and use thereof
US8124213B2 (en) Flow-through sorbent comprising a metal sulfide
US8741243B2 (en) Sorbent bodies comprising activated carbon, processes for making them, and their use
US8496739B2 (en) Organic antioxidant based filtration apparatus and method
US20090233789A1 (en) Activated Carbon Honeycomb Catalyst Beds and Methods For The Manufacture Of Same
US20100192769A1 (en) Activated carbon honeycomb catalyst beds and methods for the use thereof
US20080207443A1 (en) Sorbent comprising activated carbon, process for making same and use thereof
US20100239479A1 (en) Process For Removing Toxic Metals From A Fluid Stream
KR20100017793A (en) Sorbent bodies comprising activated carbon, processes for making them, and their use
US20120135214A1 (en) Sorbent For Removal Of A Contaminant From A Fluid
US20120115716A1 (en) Surface Modified Activated Carbon Sorbent
US20100050869A1 (en) Plate System For Contaminant Removal
US20120132073A1 (en) Method of Making an Activated Carbon Substrate Having Metal Sulfide
TW201114483A (en) Sorbent comprising activated carbon particles, sulfur and metal catalyst

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION