US20100221009A1 - Phase Chip Frequency-Bins Optical Code Division Multiple Access - Google Patents

Phase Chip Frequency-Bins Optical Code Division Multiple Access Download PDF

Info

Publication number
US20100221009A1
US20100221009A1 US12/710,019 US71001910A US2010221009A1 US 20100221009 A1 US20100221009 A1 US 20100221009A1 US 71001910 A US71001910 A US 71001910A US 2010221009 A1 US2010221009 A1 US 2010221009A1
Authority
US
United States
Prior art keywords
optical
signal
phase
data
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/710,019
Inventor
Shahab Etemad
Paul Toliver
Janet Lehr Jackel
Ronald Charles Menendez
Stefano Galli
Thomas Clyde Banwell
Peter Delfyett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Central Florida Research Foundation Inc UCFRF
Iconectiv LLC
Original Assignee
Telcordia Technologies Inc
University of Central Florida Research Foundation Inc UCFRF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telcordia Technologies Inc, University of Central Florida Research Foundation Inc UCFRF filed Critical Telcordia Technologies Inc
Priority to US12/710,019 priority Critical patent/US20100221009A1/en
Assigned to TELCORDIA TECHNOLOGIES, INC. reassignment TELCORDIA TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GALLI, STEFANO, MENENDEZ, RONALD CHARLES, BANWELL, THOMAS CLYDE, ETEMAD, SHAHAB, JACKEL, JANET LEHR, TOLIVER, PAUL
Publication of US20100221009A1 publication Critical patent/US20100221009A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • H04J14/007Orthogonal Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation

Definitions

  • the present invention relates to optical communication and, more particularly, to optical code division multiple access (OCDMA) communication networks.
  • OCDMA optical code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • FDMA and TDMA are quite limited in the number of users and/or the data rates that can be supported for a given transmission band.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • CDMA is a form of spread spectrum communications that enables multiple data streams or channels to share a single transmission band at the same time.
  • the CDMA format is akin to a cocktail party in which multiple pairs of people are conversing with one another at the same time in the same room.
  • the dialogue from one conversation may bleed into other conversations of the same language, causing miscommunication.
  • CDMA multiplexing approach is well known and is explained in detail, e.g., in the text “CDMA: Principles of Spread Spectrum Communication,” by Andrew Viterbi, published in 1995 by Addison-Wesley.
  • the bandwidth of the data to be transmitted (user data) is much less than the bandwidth of the transmission band.
  • Unique “pseudonoise” keys are assigned to each channel in a CDMA transmission band.
  • the pseudonoise keys are selected to mimic Gaussian noise (e.g., “white noise”) and are also chosen to be maximal length sequences in order to reduce interference from other users/channels.
  • One pseudonoise key is used to modulate the user data for a given channel. This modulation is equivalent to assigning a different language to each pair of speakers at a party.
  • the user data is “spread” across the bandwidth of the CDMA band. That is, all of the channels are transmitted at the same time in the same frequency band. This is equivalent to all of the pairs of partygoers speaking at the same time.
  • the introduction of noise and interference from other users during transmission is inevitable (collectively referred to as “noise”). Due to the nature of the pseudonoise key, the noise is greatly reduced during demodulation relative to the user's signal because when a receiver demodulates a selected channel, the data in that channel is “despread” while the noise is not “despread.” Thus, the data is returned to approximately the size of its original bandwidth, while the noise remains spread over the much larger transmission band.
  • the power control for each user can also help to reduce noise from other users. Power control is equivalent to lowering the volume of a loud pair of partygoers.
  • CDMA has been used commercially in wireless telephone (“cellular”) and in other communications systems. Such cellular systems typically operate at between 800 MHz and 2 GHz, though the individual frequency bands may only be a few MHz wide.
  • An attractive feature of cellular CDMA is the absence of any hard limit to the number of users in a given bandwidth, unlike FDMA and TDMA. The increased number of users in the transmission band merely increases the noise to contend with.
  • optical CDMA optical CDMA
  • OCDMA optical CDMA
  • Such optical CDMA (OCDMA) networks generally employ the same general principles as cellular CDMA.
  • optical CDMA signals are delivered over an optical network.
  • a plurality of subscriber stations may be interconnected by a central hub with each subscriber station being connected to the hub by a respective bidirectional optical fiber link.
  • Each subscriber station has a transmitter capable of transmitting optical signals, and each station also has a receiver capable of receiving transmitted signals from all of the various transmitters in the network.
  • the optical hub receives optical signals over optical fiber links from each of the transmitters and transmits optical signals over optical fiber links to all of the receivers.
  • An optical pulse is transmitted to a selected one of a plurality of potential receiving stations by coding the pulse in a manner such that it is detectable by the selected receiving station but not by the other receiving stations.
  • Such coding may be accomplished by dividing each pulse into a plurality of intervals known as “chips”.
  • Each chip may have the logic value “1”, as indicated by relatively large radiation intensity, or may have the logic value “0”, as indicated by a relatively small radiation intensity.
  • the chips comprising each pulse are coded with a particular pattern of logic “1”'s and logic “O”'s that is characteristic to the receiving station or stations that are intended to detect the transmission.
  • Each receiving station is provided with optical receiving equipment capable of regenerating an optical pulse when it receives a pattern of chips coded in accordance with its own unique sequence but cannot regenerate the pulse if the pulse is coded with a different sequence or code.
  • the optical network utilizes CDMA that is based on optical frequency domain coding and decoding of ultra-short optical pulses.
  • Each of the transmitters includes an optical source for generating the ultra-short optical pulses.
  • the pulses comprise Fourier components whose phases are coherently related to one another.
  • a “signature” is impressed upon the optical pulses by independently phase shifting the individual Fourier components comprising a given pulse in accordance with a particular code whereby the Fourier components comprising the pulse are each phase shifted a different amount in accordance with the particular code.
  • the encoded pulse is then broadcast to all of or a plurality of the receiving systems in the network.
  • Each receiving system is identified by a unique signature template and detects only the pulses provided with a signature that matches the particular receiving system's template.
  • OCDMA Wavelength Division Multitplex
  • DWDM Dense WDM
  • An aspect of the present invention is an apparatus.
  • the apparatus preferably comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal and a time gate for temporally extracting a user signal from the decoded signal.
  • the apparatus may further desirably comprise a demodulator that is operable to extract user data from the user signal.
  • the spectral phase decoder comprises a phase filter that is operable to conjugate the phase of a phase filter used to encode the encoded optical signal.
  • the encoded optical signal comprises a signal encoded using a code chosen from among a set of binary and orthogonal codes.
  • the set of binary and orthogonal codes comprise a set of Hadamard codes.
  • the spectral phase decoder preferably comprises a ring resonator.
  • the ring resonator includes two ports, a polarization beam splitter and a polarization rotator arranged such that an optical signal that enters one of the two ports in a first polarization state exits the other port in a second polarization state.
  • the decoder may comprise a planar optical circuit constructed from multiple ring resonators and phase filters.
  • the spectral phase decoder may desirably comprise a transparent plate, a Fourier lens and a phase mask mirror that are arranged so that the transparent plate spectrally spreads the encoded optical signal to provide multipath optical signals to the Fourier lens which projects the multipath optical signals onto the phase mask mirror, the phase mask mirror being located at the focal plane of the Fourier lens.
  • the transparent plate comprises a first mirror having an inner surface and an outer surface and a second mirror having an inner surface and an outer surface, the first and second mirrors being arranged across an air gap such their inner surfaces face each other and wherein the inner surface of the first mirror is reflective and the inner surface of the second mirror is partially reflective.
  • the optical time gate is desirably operative to filter multi-user interference energy that falls outside a time interval in which the user signal is located.
  • the optical time gate is selected from the group consisting of a nonlinear optical loop mirror, a terahertz optical asymmetric time gate and a four-wave mixing time gate.
  • the demodulator comprises an ON/OFF keyed demodulator.
  • the present invention is an optical system for transporting data.
  • the system preferably' comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency; a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals; and an orthogonal encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
  • the system may also further desirably comprise a matching orthogonal decoder for spectrally decoding the encoded data signal to produce a decoded data signal.
  • the source preferably comprises a mode locked laser wherein each of the plurality of spectral lines are approximately equal in amplitude and are phase locked.
  • the encoder comprises an Hadamard encoder that applies a unique spectral phase component to each of the plurality of spectral lines.
  • the system may further comprise a plurality of additional modulators each respectively associated with additional subscribers and each respectively operable to modulate the sequence of pulses using data associated with the plurality of additional subscribers to produce a plurality of additional modulated data signals.
  • the system may further desirably comprise a plurality of additional Hadamard encoders each respectively associated with one of the additional modulators and operable to spectrally encode a respective one of the plurality of additional modulated data signals to produce a plurality of additional encoded data signals.
  • each of the additional Hadamard encoders associates a unique spectral phase code with each of the additional subscribers.
  • system further desirably includes a time gate coupled to the orthogonal decoder and operable to temporally extract a subscriber data signal from the decoded signal.
  • Another aspect of the present invention is a method comprising generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines; modulating the sequence of optical pulses using subscriber data to produce a modulated data signal; and spectrally phase encoding the modulated data signal using a set of orthogonal codes to produce an encoded data signal.
  • modulating preferably comprises confining the modulated data signal to a bandwidth associated with one of the plurality of spectral lines associated with one of the set of orthogonal codes.
  • modulating comprises
  • the method may further desirably comprise spectrally phase decoding the encoded data signal; and temporally extracting a subscriber data signal from the decoded signal using an optical time gate.
  • FIG. 1 illustratively depicts a system in accordance with an aspect of the present invention.
  • FIG. 2A illustratively depicts a source in accordance with an aspect of the present invention.
  • FIG. 2B is a spectral plot showing the modes or lines of a laser source in accordance with an aspect of the present invention.
  • FIG. 3 illustratively depicts an encoder decoder in accordance with an aspect of the present invention.
  • FIGS. 4A and 4B illustratively depict an encoder/decoder in accordance with an aspect of the present invention.
  • FIG. 5A illustratively depicts an optical time gate in accordance with an aspect of the present invention.
  • FIG. 5B illustratively depicts optical time gating for multi-user interference rejection in accordance with an aspect of the present invention.
  • FIG. 5C illustratively depicts a non-linear optical loop mirror time gate in accordance with an aspect of the present invention.
  • FIG. 5D illustratively depicts a terahertz optical asymmetric time gate in accordance with an aspect of the present invention.
  • FIG. 5E illustratively depicts an optical time gate using four-wave mixing in accordance with an aspect of the present invention.
  • FIG. 6 illustratively depicts a system in accordance with an aspect of the present invention.
  • FIG. 7 illustratively depicts the transfer functions of four Hadamard encoded signals in accordance with an aspect of the present invention.
  • FIG. 8 is a diagram illustratively depicting an overlay of an OCDMA system onto a WDM system in accordance with an aspect of the present invention.
  • FIG. 1 illustratively depicts a system 100 in accordance with an aspect of the present invention.
  • the system comprises a laser source 110 that generates a sequence of optical pulses 115 that are fed to a data modulator 120 .
  • the data modulator 122 also receives a data stream 122 that is used to modulate the sequence of optical pulses 115 .
  • the modulation data preferably comprises a digital data stream generated by a subscriber or user station 124 .
  • the data modulator 122 comprises an ON/OFF keyed data modulator wherein a “1” symbol or bit in the digital data stream corresponds to the presence of an optical pulse and a “0” symbol or bit corresponds to the absence of an optical pulse. In this way, each pulse represents a bit of information.
  • a modulated stream 125 is shown where the digital data stream comprises a “1010” data sequence.
  • each time slot with the bit “1” will result in the presence of an optical pulse ( 125 1 and 125 3 ), whereas each time slot with a “0” bit indicates the absence of an optical pulse ( 125 2 and 125 4 ), which are shown as dashed lines to indicate their absence.
  • the modulated data stream 125 is then fed to a spectral phase encoder 132 .
  • the spectral phase encoder 132 uses a phase mask to apply a phase code associated with a user to each optical pulse in the data stream to produce an encoded data stream 135 .
  • the phase code operates to provide a “lock” so that only a corresponding phase decoder with the appropriate “key” or phase conjugate of the phase code of the spectral phase encoder may unlock the encoded data stream.
  • a spectral phase encoder is associated with a particular user and therefore allows only another user with the appropriate key to decode or receive information from the particular user. The information appears as noise to users that do not have the appropriate key.
  • the encoded data stream 135 may then be transported over a network 140 , such as Wavelength Division Multiplex (WDM) network for example, to a spectral phase decoder 144 that, preferably, includes a phase mask that applies the phase conjugate of the phase code of the spectral phase encoder 132 , as discussed above.
  • the spectral phase decoder 144 provides a decoded data stream 149 to an optical time gate 150 .
  • the optical time gate 154 operates to reduce multiple access interference by temporally extracting only a desired user channel from among the decoded stream.
  • the optical time gate 154 produces a user data stream 159 , which is fed to a data demodulator 164 .
  • the data demodulator 164 comprises an amplitude detector that reproduces the digital data stream 124 .
  • the laser source 110 , data modulator 122 and spectral phase encoder 132 may comprise a transmitting station 170 associated with a user.
  • the spectral phase decoder 144 , optical time gate 154 and demodulator 164 may preferably comprise a receiving station 180 associated with a user.
  • FIG. 2A illustratively depicts a laser source 200 that may be used to generate the pulse stream 115 in accordance with an aspect of the present invention.
  • the laser source 200 preferably comprises a mode locked laser (MLL) having a spectral content comprising a stable comb of closely spaced phase-locked frequencies. The frequency or comb spacing is determined by the pulse repetition rate of the MLL.
  • the source 200 may comprise a ring laser that may be formed using a semiconductor optical amplifier (SOA) or erbium doped fiber amplifier (EDFA).
  • SOA semiconductor optical amplifier
  • EDFA erbium doped fiber amplifier
  • the ring laser illustrated in FIG. 2 includes a laser cavity 210 , a modulator 216 , a wavelength division multiplexer (WDM) 222 and a tap point 226 for providing an output signal, which comprises optical pulses 115 .
  • WDM wavelength division multiplexer
  • FIG. 2B illustratively depicts a frequency plot 250 of the output of a MLL in accordance with an aspect of the present invention.
  • the spacing of the longitudinal modes or lines is equal to the pulse repetition rate of 5 GHz.
  • the total spectral width of the source may be limited to, for example, 80 GHz by placing an optical band pass filter in the laser cavity.
  • the top portion 252 of FIG. 2B shows multiple windows that illustratively indicate the tunability of the source.
  • Each line or mode 256 of the laser comprises a frequency chip or bin.
  • FIG. 2B illustratively 16 frequency bins or chips in accordance with an aspect of the present invention.
  • the electric field m(t) output of the MLL is a set of N equi-amplitude phase-locked laser lines:
  • Signal m(t) is a periodic signal comprising a train of pulses spaced 1/ ⁇ f seconds apart and each pulse having a width equal to 1/(N ⁇ f) seconds.
  • N 16 and ⁇ f is equal to 5 GHz.
  • the encoder 300 includes a transparent plate 310 , a Fourier lens 314 and a phase mask mirror 318 .
  • the plate 310 comprises a first element 320 that includes an inner surface 322 and an outer surface 326 .
  • the first element 320 is spaced from a second element 330 that also has an inner surface 332 and an outer surface 336 .
  • the inner surface 322 of the first element provided with a coating that is substantially 100% reflective.
  • the inner surface 332 of the second element is provided a partially reflective coating.
  • the first and second elements 320 , 330 may be separated by a glass substrate 340 , as shown, or by an air gap.
  • the arrangement of the transparent plate and Fourier lens comprise an optical demultiplexer and may comprise structure or components as described in U.S. Pat. No. 6,608,721, the disclosure of which is incorporated herein by reference.
  • the first element 320 and glass substrate 340 are arranged such that an opening 342 is provided at one end of the plate 310 .
  • the opening 342 provides an entry point for a beam of light to enter the cavity so that a portion of the light beam is partially reflected by the surface 332 to surface 322 , thereby establishing a cavity where the input light beam is split into multiple beams that are each projected onto the Fourier lens 314 .
  • the Fourier lens 314 then projects each mode or line of each beam to a particular location in space based on the wavelength or frequency of each mode.
  • the phase mask mirror 318 is positioned at the focal plane of the Fourier lens 314 such that each mode or line is projected to a particular location on the phase mask mirror to cause a predetermined phase shift.
  • phase of each line or mode of the laser source (each such line or mode comprising a frequency bin or chip) is adjusted by a predetermined amount by the phase mask mirror.
  • the phase mask mirror 318 then reflects the phase adjusted signals back through the Fourier lens 314 to the plate 310 where the phase adjusted signals exit through opening 342 as a collimated phase adjusted beam of light.
  • each section of the phase mask 318 is recessed at 0 or ⁇ /4 with respect to the focal plane of the Fourier lens 314 thereby representing a 0 or ⁇ phase shift, respectively.
  • the phase mask of FIG. 3 includes five sections which comprise a “10110” phase mask, wherein a “1” represents a phase shift of ⁇ and a “0” represents a phase shift of 0.
  • each user is assigned a unique phase mask that includes a section for each frequency bin or chip in the system.
  • the unique phase mask corresponds to a unique code or lock that is associated with a particular user such that a receiving unit needs the appropriate code or key to decipher a message from the particular user.
  • the encoder 300 may also be used at the receive end as a decoder.
  • the encoder/decoder of FIG. 3 is typically large since it uses bulk optics. The size of such encoders/decoders typically make them susceptible to thermally induced drifts. Furthermore, the large size and complex alignment requirements may make it unlikely that the coder/decoder of FIG. 3 will be economically viable.
  • spectral phase encoding consists of demultiplexing the various spectral components of a signal, shifting the phase of a portion of the spectrum based on the code and recombining the shifted components to produce the coded signal. The recombined signal no longer comprises a short optical pulse, but instead, the energy in the pulse is spread across the bit period in a pattern determined by the code.
  • FIG. 4A illustratively depicts a functional diagram of such a coder 360 .
  • ⁇ 1 is coupled off the guide 362 and onto the connecting guide (vertical line 367 ).
  • ⁇ 1 is coupled onto the output guide 368 with another wavelength selective ring resonator.
  • Each of the frequency components is coupled in the same way at the appropriate point. If all the connecting guides have the same optical length, and if the input and output guide have the same propagation constant, then all frequency components will see the same optical path length when they reach the end of the output guide.
  • phase shift that defines a code
  • the electrical connections to the heaters are not shown to avoid unnecessarily complicating the diagram. If the connecting waveguides are far enough apart, then they are sufficiently thermally isolated that the phase shifts can be applied independently. With thermal monitoring and feedback, independent phase shifts can be applied to each frequency even when the guides have some affect on each other.
  • a decoder typically has the same structure as an encoder, except that it may need to be polarization insensitive, since the signals may have their polarization altered in transmission through the fiber.
  • the coder can have polarization dependence, since the initial mode-locked laser pulse is polarized.
  • An example of a polarization independent coder is shown in FIG. 4B .
  • each frequency passes through the same number of elements (two ring resonators for its frequency, and N ⁇ 1 ring resonators that it passes through without being dropped/added) and the same optical path length, except for the phase shift that is applied thermally.
  • the base path lengths are the same (except for some trimming to adjust for fabrication error) creating. the correct phase relationships will typically be straightforward.
  • polarization beamsplitter PBS
  • one polarization follows the upper path 387 while the orthogonal polarization follows the lower path 389 .
  • PBS polarization beamsplitter
  • a polarization rotator 391 converts the polarizations from one mode to another orthogonal mode, e.g., P 1 into P 2 (or vice versa).
  • the light in the upper path enters the coder structure 393 in polarization mode 1 at the point previously called the input 362 , and the light in the lower path enters the coder also in polarization mode 1 , but at the point previously called the output 368 , traveling in the opposite direction.
  • the light from the upper path exits the coder passes through the polarization rotator and is converted to polarization mode 2 , which then passes through the PBS 385 and is sent back to the circulator 383 from which it exits along the path shown as a vertical line 395 .
  • the light from the lower path, now in polarization mode 1 goes through the coder in the opposite direction, but experiences precisely the same phase shifts and optical path lengths as the light from the upper path.
  • this comprises a polarization independent component.
  • the structures that are shown in block 385 can either be realized in fiber or can be built onto an optical waveguide. Without this polarization independent construction, it would be necessary to have a polarization sensor and a dynamic polarization rotator before the decoder. Note that in this design, path lengths are the same and the path is the same for both polarizations. The difference is that the two polarizations traverse the path in opposite directions.
  • the encoded signal 135 is then transmitted over a network 140 to a decoder 144 .
  • the network 140 comprises a WDM network.
  • the OCDMA network comprises an overlay architecture that is compatible with existing WDM network technologies as is discussed in further detail below.
  • the encoded signal 135 is decoded by a spectral phase decoder 144 .
  • a spectral phase decoder 144 will typically comprise the arrangement shown in FIGS. 3 and 4 , except that, in general, the decoder will apply the phase conjugate of the phase mask applied by the encoder. Note, however, and as is discussed in further detail below, that where the phase mask uses a binary coding scheme, the code at the decoder is its own complement and consequently the coder and decoder are identical.
  • an optical time gate 400 in accordance with an aspect of the invention.
  • the decoded signal 149 has the sequence or train of optical pulses restored to their original position within the bit period and shape. However, the desired user signal needs to be separated or extracted from other user signals included in the decoded signal 149 .
  • an optical time gate such as optical time gate 400 , may be used to reduce multiple access interference (MAI).
  • the optical time gate 400 filters out MAI by temporally extracting only desired user signal or channel from among any other signals comprising the decoded signal 149 .
  • the optical time gate 400 includes an input port 406 and a switch 408 that is controlled by a control signal 410 .
  • the control signal 410 may be an electrical or optical signal.
  • FIG. 5B The concept behind the application of optical time gating to extract the decoded OCDMA signal is illustrated in FIG. 5B .
  • a system may be designed such that the multi-user interference energy falls outside a time interval where the properly decoded signal pulse resides. Therefore, by optically gating the composite signal in order to provide low loss within the desired time window while at the same time providing for high extinction outside that window, one can extract only the properly decoded signal bit stream.
  • Gate width (typically on the order of 10 ps or less)
  • Gate repetition rate (comparable to data rate, typically >1 GHz or higher)
  • an optical clock pulse in order to alter the effective phase shift through one arm of an interferometer, one can construct an all-optical gate.
  • the phase changed can be accomplished through a distributed medium, such as nonlinear propagation through a length of optical fiber, or it can be a concentrated nonlinearity, such as can be accomplished with a semiconductor optical amplifier (SOA).
  • SOA semiconductor optical amplifier
  • interferometers generally require stabilization for proper operation
  • SOA semiconductor optical amplifier
  • NOLM nonlinear optical loop mirror
  • the NOLM is built in a Sagnac interferometer configuration, which by its construction is self-stabilizing.
  • the operation of the NOLM can be described as follows, assuming for simplicity that the input signal is a single optical pulse.
  • the incoming signal, input at Port A is split into two counterpropagating pulse replicas at a 50:50 fiber coupler.
  • the clock pulse which can be injected at Port C
  • the low amplitude data pulses simply counterpropagate around the loop and recombine at the coupler.
  • the interference condition is such that signals interfere destructively at the output port B, but interfere constructively at the original input port A, thereby reflecting the data pulse.
  • the interference condition is altered such that the data pulse now exits at port B.
  • An optical bandpass filter at Port B suppresses the remaining clock signal, leaving only the desired gated data pulse.
  • the width of the time gating window for the NOLM is defined by the overlap between the clock and co-propagating data pulse.
  • the first NOLMs that were constructed required very long dispersion-shifted fibers (>1 km) to obtain the required nonlinear phase shift; however, recent developments in highly nonlinear fibers have allowed for a reduction in fiber length to approximately 100 meters or less.
  • the NOLM optical time gate has been successfully applied to an implementation of phase-coded OCDMA system.
  • the nonlinear phase change required in the NOLM can be accomplished by other means, such the use of as a semiconductor optical amplifier (SOA), allowing for the potential of device integration.
  • SOA semiconductor optical amplifier
  • An interferometric architecture similar to the NOLM can be used, as shown in FIG. 5D .
  • the SOA is offset from the center of loop by ⁇ x, the device is referred to as the terahertz optical asymmetric demultiplexer or TOAD.
  • incoming data pulses reflect from the TOAD.
  • a clock pulse which is typically chosen to be on the order of 10 dB larger in amplitude than the data pulse intensity, gating can occur.
  • the clock pulse saturates the SOA, thereby changing its effective index.
  • the clock pulse which travels only in the clockwise direction, is injected following the clockwise propagating data pulse to give the clockwise data pulse the opportunity to propagate through the SOA before the clock pulse saturates the SOA index. Since the SOA slowly recovers on the time scale of hundreds of picoseconds, counterpropagating data pulses that arrive immediately after the clock pulse event has occurred see the SOA in approximately the same relative state and do not experience a differential phase shift.
  • the temporal duration of the gating window is set by the offset of the SOA, ⁇ x, from the center of the loop. As the offset is reduced, the gating window width decreases until the actual length of the SOA needs to be taken into account.
  • the nominal gate width is related to the offset by
  • FWM four wave mixing
  • FIG. 5E Another approach to optical time gating is through the use of four wave mixing (FWM), e.g., see FIG. 5E .
  • FWM is a third-order nonlinearity, similar to intermodulation distortion in the electrical domain.
  • the nonlinear beating between the data signal and a control signal at a different wavelength generates new optical tones as sidebands.
  • FWM-based gating can be accomplished in optical fiber or in waveguide devices such as semiconductor optical amplifiers (SOAs).
  • SOAs semiconductor optical amplifiers
  • FWM occurs through carrier density modulation.
  • Two co-polarized optical signals are coupled into the SOA.
  • One is the control signal at frequency f c and typically has a much higher intensity than the other input signal (data) to be wavelength converted, which is at frequency f d .
  • the two co-propagating signals mix and, through carrier density modulation, form an index grating off which signals can be scattered.
  • the signal 159 from the optical time gate is then supplied to data detector and demodulator block 164 .
  • the data and demodulator block may comprise an amplitude demodulator that reproduces the subscriber data.
  • any known amplitude modulator may be employed to perform this task.
  • FIG. 6 there is shown an example of a multi-user OCDMA system 500 in accordance with an aspect of the present invention.
  • FIG. 6 also includes a diagram 516 that depicts signal flows through the system in the time and frequency domain.
  • the spectrum and temporal intensity of the optical source 520 is identified by arrow 516 1 ; after ON/OFF data modulation by arrow 516 2 ; after phase encoding by arrow 516 3 ; after mixing all users by arrow 516 4 ; after the decoder of the first user by arrow 516 5 ; and after time gating and optical-to-electrical (O/E) conversion by arrow 516 6 .
  • O/E optical-to-electrical
  • the optical source 520 comprises a phase-locked multi-wavelength laser with an output spectrum as shown in FIG. 2B .
  • sixteen lines in the output spectrum (see lines 256 1 through 256 16 in FIG. 2B ) comprising sixteen frequency bins or chips are used to communicate user data across the system 500 .
  • FIG. 6 shows via arrow 516 1 , a train or sequence of pulses 522 are generated by the source 520 .
  • the spectral content of each pulse is depicted in the frequency plots 524 .
  • the electric field m(t) for the output of the source may be expressed as shown above in equations (1) and (2). Therefore, in accordance with the sample network of FIG.
  • the total spectral width of the source's output is limited to a total spectral width of 80 GHz, which results in each pulse having a width of approximately 12.5 picoseconds (ps).
  • the output signal 522 is provided to each of the data modulators 530 1 through 530 N .
  • N 16.
  • the system preferably includes 16 users or subscribers that each provides data 532 1 through 532 N that is used to respectively modulate the pulse train or output signal 522 .
  • the data modulators 530 operate to provide ON/OFF keying resulting in time-domain signal 534 .
  • the pulses with a solid outline indicate a “1” symbol or bit and the pulses with dotted outline represent a “0” symbol or bit, as previously discussed.
  • the spectral content of such a signal is shown in frequency plot 536 .
  • Each of the modulated optical pulse signals are then fed to respective spectral phase encoders 540 1 through 540 N as shown.
  • Encoding consists of separating each of these frequency bins ( 256 1 , 256 2 , etc.), shifting its phase, in this case by 0 or ⁇ , as prescribed by the choice of code, and recombining the frequency bins to produce the coded signal.
  • the set of frequencies is unaltered, but their recombination results in a different temporal pattern, e.g., a pulse shifted to a different part of the bit period, multiple pulses within the bit period, or noise-like distribution of optical power.
  • Each OCDMA code is desirably defined by a unique choice of phase shifts.
  • a set of codes is chosen that makes efficient use of the spectrum within the window, and that can also be separated from each other with acceptable error rates, even when a maximum number of codes occupy the window.
  • Hadamard codes which are orthogonal and binary. This choice is desirable it that is can achieve relatively high spectral efficiency with minimal multi-user interference (MUI).
  • this coding schemes offers orthogonally in the sense that MUI is zero at the time that the decoded signal is maximum.
  • the number of orthogonal codes is equal to the number frequency bins; hence, relatively high spectral efficiency is possible.
  • Binary Hadamard codes are converted to phase codes by assigning to +1's and ⁇ 1's phase shifts of 0 and ⁇ , respectively.
  • Encoding data which contains a spread of frequencies, as opposed to the unmodulated pulse stream, which contains only the initial comb of frequencies produced by the MLL, it is preferable to define frequency bins around the center frequencies.
  • Encoding data then consists of applying the phase shift associated with a frequency to the entire bin.
  • the output of the phase encoder is then a signal obtained by summing the phase-shifted frequency components of the modulated signal, or equivalently, by convolving the modulated optical signal at the input of the phase encoder with the inverse Fourier transform of the phase code.
  • Phase coding of the individual spectral components requires a demultiplexer with sufficient resolution and path-length stability and a means of shifting phases independently for each frequency.
  • the coder/decoder of FIG. 3 was used to encode the signal using a set of Hadamard codes.
  • the coder/decoder of FIG. 3 is based on a modified reflective geometry optical demultiplexer and which is described in the ' 721 patent.
  • FIG. 6 shows the spectral response of the coder for codes 9, 12, 14, and 15, from the Hadamard-16 code set, as measured using a broadband source; the phase shifts are shown below the spectrum.
  • the encoder used has a free spectral range of 100 GHz and a resolution of ⁇ 1 GHz. As FIG.
  • phase mask 3 shows, all MLL lines are spectrally spread by the multipath glass substrate and imaged on the focal plane, from which they are reflected back to an output fiber.
  • a phase mask at the focal plane shifts each line by an amount determined by a particular OCDMA code.
  • the phase mask contains 16 sections representing the 16 frequency bins, each section recessed at 0 or ⁇ /4 with respect to the focal plane representing 0 or ⁇ phase shift, respectively. Because of the finite spot size of the image at the focal plane, the effective bandwidth of the frequency bin is less than the bin spacing.
  • the encoder for user i acts as a phase-mask filter with frequency response E (i) (f):
  • c j (i) are complex symbols indicating the j-th(1 ⁇ j ⁇ N) element of the i-th code c (i) (1 ⁇ i ⁇ M), and the function Rect w (f) denotes the rectangle function of unitary amplitude and width W defined as:
  • phase mask currently employed allows only for unitary amplitude and binary phase values:
  • c j (i) e j ⁇ j (i) , with ⁇ j (i) ⁇ 0, ⁇ c j (i) ⁇ 1,1 ⁇ (5)
  • the bin edges are shown as sharp boundaries in FIG. 7 .
  • the sharp dips in FIG. 7 corresponds to boundaries between two bins with different phase shifts where destructive interference occurs between the two oppositely phased halves of the light spot.
  • the resolution of the OSA (0.01 nm, or approximately 1.245 GHz) reduces the apparent depth of these dips. Where adjacent bins have the same phase, there is no dip in the spectrum.
  • This coder provides stable phase shifts; while thermal dimensional changes can shift optical paths, the relative path lengths for adjacent frequencies is unaltered.
  • This passive structure imposes no intrinsic power loss; although the current implementation has 5 dB loss, this can be reduced.
  • the filter bandwidth narrowing affects the ability of the coder to process data, as opposed to an unmodulated pulse stream.
  • the coded signal carries data the entire bandwidth of the modulated signal of a given MLL line must fit within the frequency bin as physically defined by the geometry of the phase encoder's focal plane.
  • Simple on-off keying at rates equal to the bin spacing (5 GHz) spreads the frequency into the unusable region between bins; thus we need a modulation scheme with adequate bandwidth compression to ensure proper transmission.
  • multi-pulse ON/OFF keyed modulation e.g., two or more optical pulses per data hit
  • multi-phase/multi-amplitude modulation e.g., DPSK, QPSK, QAM and higher-order amplitude/phase modulation
  • the OOK (ON/OFF Keying) modulation rate is preferably chosen so that the spectrum broadening of each of the N spectral lines is confined to ⁇ f/2 Hz.
  • OOK modulation at a rate of R b ⁇ f/2 bits/sec that uses multiple pulses from the MLL to represent a single bit satisfies this physical restriction.
  • FT ⁇ 1 is the Inverse Fourier Transform (IFT) operator
  • phase encoded OCDMA can be considered as the dual version of conventional direct sequence CDMA (DS-CDMA) based on frequency spreading.
  • the encoded N user signals are combined 550 prior to transmission over the fiber link and through network 556 .
  • the network 556 preferably comprises a Wavelength Division Multiplex (WDM) network that allows the signals of the system 500 to be transported transparently to the other signals that are normally carried by the WDM network.
  • WDM Wavelength Division Multiplex
  • the system 500 advantageously uses a relatively small and tunable window, which is compatible with WDM systems that are currently deployed.
  • FIG. 8 illustratively depicts how an OCDMA system in accordance with the various aspects of the present invention may be overlaid on such a network. Note, however, any other optical network may be used in accordance with this aspect of the present invention if a tunable source is used. As FIG. 8 shows, the OCDMA signals may be multiplexed into the WDM channel.
  • decoding may be accomplished by using a matched, complementary code; for the binary codes used here, the code is its own complement and consequently the coder and decoder are identical.
  • the decoded signal has the pulses restored to their original position within the bit period and restores the original pulse shape. Decoding using an incorrect decoder results in a temporal pattern that again has zero optical power at the center of the bit period and the majority of the energy for that pulse is pushed outside the time interval where the desired pulse lies.
  • discrimination of the i-th user is performed using a decoding filter d (i) (t) at the receiver matched to the encoder filter only (single user matched filtering).
  • this may be achieved by employing at the receiver side a decoder equal to the conjugate of the phase mask used at the transmitter side:
  • the ACs and CCs are a function of the IFT of the sequences used as phase masks. As opposed to the case of conventional CDMA based on DS spreading, correlations are between the IFT of codes, not between the codes themselves.
  • the effect of a matched phase decoder is to restore the original narrow pulses of width 1/(N ⁇ f) seconds that were originally spread in time by the phase encoder (see plot 576 ).
  • the effect of a mismatched phase decoder is to turn interfering signals into a noise-like signal.
  • orthogonal codes are employed, as opposed to conventional OCDMA, true orthogonality is achieved here and no Multiple Access Interference (MAI) is present at the ideal sampling time.
  • the signal from the phase decoder 570 is then be further processed by an optical time gate 580 and demodulator 590 to reproduce the user or subscriber data signal.
  • a synchronization block 494 is coupled to each of the optical time gates 580 .
  • the synchronization block 594 supplies a control or clock signal that closes the time gate at the proper time interval as is discussed above in relation to FIG. 5 .

Abstract

Apparatus and system for transmitting and receiving optical code division multiple access data over an optical network. The apparatus comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal, a time gate for temporally extracting a user signal from the decoded signal, and a demodulator that is operable to extract user data from the user signal. The system preferably comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency so as to define a frequency bin, a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals and a Hadamard encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of pending U.S. application Ser. No. 11/062,090, filed Feb. 18, 2005. This application is related to U.S. application Ser. No. 11/048,394, (Telcordia APP No. 1548/TELCOR 1.0-003), filed Jan. 31, 2005, now issued as U.S. Pat. No. 7,620,328 and titled “Multi-Wavelength Optical CDMA With Differential Encoding And Bipolar Differential Detection,” assigned to the assignee of the present application, the disclosure of which is incorporated herein by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
  • Funding for research was partially provided by the Defense Advanced Research Projects Agency under federal contract MDA972-03-C-0078. The federal government has certain rights in this invention.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to optical communication and, more particularly, to optical code division multiple access (OCDMA) communication networks.
  • Various communications schemes have been used to increase data throughput and to decrease data error rates as well as to generally improve the performance of communications channels. As an example, frequency division multiple access (“FDMA”) employs multiple data streams that are assigned to specific channels disposed at different frequencies of the transmission band. Alternatively, time division multiple access (“TDMA”) uses multiple data streams that are assigned to different timeslots in a single frequency of the transmission band. However, FDMA and TDMA are quite limited in the number of users and/or the data rates that can be supported for a given transmission band.
  • In many communication architectures, code division multiple access (CDMA) has supplanted FDMA and TDMA. CDMA is a form of spread spectrum communications that enables multiple data streams or channels to share a single transmission band at the same time. The CDMA format is akin to a cocktail party in which multiple pairs of people are conversing with one another at the same time in the same room. Ordinarily, it is very difficult for one party in a conversation to hear the other party if many conversations occur simultaneously. For example, if one pair of speakers is excessively loud, their conversation will drown out the other conversations. Moreover, when different pairs of people are speaking in the same language, the dialogue from one conversation may bleed into other conversations of the same language, causing miscommunication. In general, the cumulative background noise from all the other conversations makes it harder for one party to hear the other party speaking. It is therefore desirable to find a way for everyone to communicate at the same time so that the conversation between each pair, i.e., their “signal”, is clear while the “noise” from the conversations between the other pairs is minimized.
  • The CDMA multiplexing approach is well known and is explained in detail, e.g., in the text “CDMA: Principles of Spread Spectrum Communication,” by Andrew Viterbi, published in 1995 by Addison-Wesley. Basically, in CDMA, the bandwidth of the data to be transmitted (user data) is much less than the bandwidth of the transmission band. Unique “pseudonoise” keys are assigned to each channel in a CDMA transmission band. The pseudonoise keys are selected to mimic Gaussian noise (e.g., “white noise”) and are also chosen to be maximal length sequences in order to reduce interference from other users/channels. One pseudonoise key is used to modulate the user data for a given channel. This modulation is equivalent to assigning a different language to each pair of speakers at a party.
  • During modulation, the user data is “spread” across the bandwidth of the CDMA band. That is, all of the channels are transmitted at the same time in the same frequency band. This is equivalent to all of the pairs of partygoers speaking at the same time. The introduction of noise and interference from other users during transmission is inevitable (collectively referred to as “noise”). Due to the nature of the pseudonoise key, the noise is greatly reduced during demodulation relative to the user's signal because when a receiver demodulates a selected channel, the data in that channel is “despread” while the noise is not “despread.” Thus, the data is returned to approximately the size of its original bandwidth, while the noise remains spread over the much larger transmission band. The power control for each user can also help to reduce noise from other users. Power control is equivalent to lowering the volume of a loud pair of partygoers.
  • CDMA has been used commercially in wireless telephone (“cellular”) and in other communications systems. Such cellular systems typically operate at between 800 MHz and 2 GHz, though the individual frequency bands may only be a few MHz wide. An attractive feature of cellular CDMA is the absence of any hard limit to the number of users in a given bandwidth, unlike FDMA and TDMA. The increased number of users in the transmission band merely increases the noise to contend with. However, as a practical matter, there is some threshold at which the “signal-to-noise” ratio becomes unacceptable. This signal-to-noise threshold places real constraints in commercial systems on the number of paying customers and/or data rates that can be supported.
  • Recently, CDMA has been used in optical communications networks. Such optical CDMA (OCDMA) networks generally employ the same general principles as cellular CDMA. However, unlike cellular CDMA, optical CDMA signals are delivered over an optical network. As an example, a plurality of subscriber stations may be interconnected by a central hub with each subscriber station being connected to the hub by a respective bidirectional optical fiber link. Each subscriber station has a transmitter capable of transmitting optical signals, and each station also has a receiver capable of receiving transmitted signals from all of the various transmitters in the network. The optical hub receives optical signals over optical fiber links from each of the transmitters and transmits optical signals over optical fiber links to all of the receivers. An optical pulse is transmitted to a selected one of a plurality of potential receiving stations by coding the pulse in a manner such that it is detectable by the selected receiving station but not by the other receiving stations. Such coding may be accomplished by dividing each pulse into a plurality of intervals known as “chips”. Each chip may have the logic value “1”, as indicated by relatively large radiation intensity, or may have the logic value “0”, as indicated by a relatively small radiation intensity. The chips comprising each pulse are coded with a particular pattern of logic “1”'s and logic “O”'s that is characteristic to the receiving station or stations that are intended to detect the transmission. Each receiving station is provided with optical receiving equipment capable of regenerating an optical pulse when it receives a pattern of chips coded in accordance with its own unique sequence but cannot regenerate the pulse if the pulse is coded with a different sequence or code.
  • Alternatively, the optical network utilizes CDMA that is based on optical frequency domain coding and decoding of ultra-short optical pulses. Each of the transmitters includes an optical source for generating the ultra-short optical pulses. The pulses comprise Fourier components whose phases are coherently related to one another. A “signature” is impressed upon the optical pulses by independently phase shifting the individual Fourier components comprising a given pulse in accordance with a particular code whereby the Fourier components comprising the pulse are each phase shifted a different amount in accordance with the particular code. The encoded pulse is then broadcast to all of or a plurality of the receiving systems in the network. Each receiving system is identified by a unique signature template and detects only the pulses provided with a signature that matches the particular receiving system's template.
  • Improvements in the performance of OCDMA systems is nonetheless of utility. For example, OCDMA systems that are compatible with Wavelength Division Multitplex (WDM) or Dense WDM (DWDM) systems, more spectrally efficient and less costly are needed.
  • SUMMARY OF THE INVENTION
  • An aspect of the present invention is an apparatus. The apparatus preferably comprises a spectral phase decoder for decoding the encoded optical signal to produce a decoded signal and a time gate for temporally extracting a user signal from the decoded signal. The apparatus may further desirably comprise a demodulator that is operable to extract user data from the user signal.
  • In accordance with this aspect of the present invention, the spectral phase decoder comprises a phase filter that is operable to conjugate the phase of a phase filter used to encode the encoded optical signal.
  • In addition, the encoded optical signal comprises a signal encoded using a code chosen from among a set of binary and orthogonal codes. Most preferably, the set of binary and orthogonal codes comprise a set of Hadamard codes.
  • Further in accordance with this aspect of the present invention, the spectral phase decoder preferably comprises a ring resonator. Most preferably, the ring resonator includes two ports, a polarization beam splitter and a polarization rotator arranged such that an optical signal that enters one of the two ports in a first polarization state exits the other port in a second polarization state.
  • Further in accordance with this aspect of the present invention, the decoder may comprise a planar optical circuit constructed from multiple ring resonators and phase filters.
  • Further still, the spectral phase decoder may desirably comprise a transparent plate, a Fourier lens and a phase mask mirror that are arranged so that the transparent plate spectrally spreads the encoded optical signal to provide multipath optical signals to the Fourier lens which projects the multipath optical signals onto the phase mask mirror, the phase mask mirror being located at the focal plane of the Fourier lens. Most preferably, the transparent plate comprises a first mirror having an inner surface and an outer surface and a second mirror having an inner surface and an outer surface, the first and second mirrors being arranged across an air gap such their inner surfaces face each other and wherein the inner surface of the first mirror is reflective and the inner surface of the second mirror is partially reflective.
  • Further in accordance with this aspect of the present invention, the optical time gate is desirably operative to filter multi-user interference energy that falls outside a time interval in which the user signal is located. Most preferably, the optical time gate is selected from the group consisting of a nonlinear optical loop mirror, a terahertz optical asymmetric time gate and a four-wave mixing time gate.
  • Further in accordance with this aspect of the present invention, the demodulator comprises an ON/OFF keyed demodulator.
  • In another aspect, the present invention is an optical system for transporting data. The system preferably' comprises a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency; a data modulator associated with a subscriber and operable to modulate the sequence of pulses using subscriber data to produce a modulated data signals; and an orthogonal encoder associated with the data modulator and operable to spectrally encode the modulated data signal to produce an encoded data signal.
  • In accordance with this aspect of the present invention, the system may also further desirably comprise a matching orthogonal decoder for spectrally decoding the encoded data signal to produce a decoded data signal.
  • In accordance with this aspect of the present invention, the source preferably comprises a mode locked laser wherein each of the plurality of spectral lines are approximately equal in amplitude and are phase locked. Most preferably, the encoder comprises an Hadamard encoder that applies a unique spectral phase component to each of the plurality of spectral lines.
  • Further in accordance with this aspect of the present invention, the system may further comprise a plurality of additional modulators each respectively associated with additional subscribers and each respectively operable to modulate the sequence of pulses using data associated with the plurality of additional subscribers to produce a plurality of additional modulated data signals. Further still, the system may further desirably comprise a plurality of additional Hadamard encoders each respectively associated with one of the additional modulators and operable to spectrally encode a respective one of the plurality of additional modulated data signals to produce a plurality of additional encoded data signals. Most preferably, each of the additional Hadamard encoders associates a unique spectral phase code with each of the additional subscribers.
  • Further in accordance with this aspect of the present invention, the system further desirably includes a time gate coupled to the orthogonal decoder and operable to temporally extract a subscriber data signal from the decoded signal.
  • Another aspect of the present invention is a method comprising generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines; modulating the sequence of optical pulses using subscriber data to produce a modulated data signal; and spectrally phase encoding the modulated data signal using a set of orthogonal codes to produce an encoded data signal.
  • Further in accordance with the method, modulating preferably comprises confining the modulated data signal to a bandwidth associated with one of the plurality of spectral lines associated with one of the set of orthogonal codes. Most preferably, modulating comprises
  • In another aspect, the method may further desirably comprise spectrally phase decoding the encoded data signal; and temporally extracting a subscriber data signal from the decoded signal using an optical time gate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustratively depicts a system in accordance with an aspect of the present invention.
  • FIG. 2A illustratively depicts a source in accordance with an aspect of the present invention.
  • FIG. 2B is a spectral plot showing the modes or lines of a laser source in accordance with an aspect of the present invention.
  • FIG. 3 illustratively depicts an encoder decoder in accordance with an aspect of the present invention.
  • FIGS. 4A and 4B illustratively depict an encoder/decoder in accordance with an aspect of the present invention.
  • FIG. 5A illustratively depicts an optical time gate in accordance with an aspect of the present invention.
  • FIG. 5B illustratively depicts optical time gating for multi-user interference rejection in accordance with an aspect of the present invention.
  • FIG. 5C illustratively depicts a non-linear optical loop mirror time gate in accordance with an aspect of the present invention.
  • FIG. 5D illustratively depicts a terahertz optical asymmetric time gate in accordance with an aspect of the present invention.
  • FIG. 5E illustratively depicts an optical time gate using four-wave mixing in accordance with an aspect of the present invention.
  • FIG. 6 illustratively depicts a system in accordance with an aspect of the present invention.
  • FIG. 7 illustratively depicts the transfer functions of four Hadamard encoded signals in accordance with an aspect of the present invention.
  • FIG. 8 is a diagram illustratively depicting an overlay of an OCDMA system onto a WDM system in accordance with an aspect of the present invention.
  • DETAILED DESCRIPTION
  • This detailed description incorporates by reference herein the disclosures of commonly assigned U.S. application Ser. No. 11/048,394 (Telcordia APP No. 1548/TELCOR 1.0-003), filed Jan. 31, 2005, now issued as U.S. Pat. No. 7,620,328 and titled “Multi-Wavelength Optical CDMA With Differential Encoding And Bipolar Differential Detection.”
  • FIG. 1 illustratively depicts a system 100 in accordance with an aspect of the present invention. The system comprises a laser source 110 that generates a sequence of optical pulses 115 that are fed to a data modulator 120. The data modulator 122 also receives a data stream 122 that is used to modulate the sequence of optical pulses 115. The modulation data preferably comprises a digital data stream generated by a subscriber or user station 124. In a preferred embodiment, the data modulator 122 comprises an ON/OFF keyed data modulator wherein a “1” symbol or bit in the digital data stream corresponds to the presence of an optical pulse and a “0” symbol or bit corresponds to the absence of an optical pulse. In this way, each pulse represents a bit of information. For example, a modulated stream 125 is shown where the digital data stream comprises a “1010” data sequence. As shown, each time slot with the bit “1” will result in the presence of an optical pulse (125 1 and 125 3), whereas each time slot with a “0” bit indicates the absence of an optical pulse (125 2 and 125 4), which are shown as dashed lines to indicate their absence.
  • The modulated data stream 125 is then fed to a spectral phase encoder 132. As is discussed in further detail below, the spectral phase encoder 132 uses a phase mask to apply a phase code associated with a user to each optical pulse in the data stream to produce an encoded data stream 135. The phase code operates to provide a “lock” so that only a corresponding phase decoder with the appropriate “key” or phase conjugate of the phase code of the spectral phase encoder may unlock the encoded data stream. Typically, a spectral phase encoder is associated with a particular user and therefore allows only another user with the appropriate key to decode or receive information from the particular user. The information appears as noise to users that do not have the appropriate key.
  • The encoded data stream 135 may then be transported over a network 140, such as Wavelength Division Multiplex (WDM) network for example, to a spectral phase decoder 144 that, preferably, includes a phase mask that applies the phase conjugate of the phase code of the spectral phase encoder 132, as discussed above. The spectral phase decoder 144 provides a decoded data stream 149 to an optical time gate 150. As is discussed in detail below, the optical time gate 154 operates to reduce multiple access interference by temporally extracting only a desired user channel from among the decoded stream. The optical time gate 154 produces a user data stream 159, which is fed to a data demodulator 164. Where ON/OFF keying was employed at the transmitting end, the data demodulator 164 comprises an amplitude detector that reproduces the digital data stream 124.
  • In accordance with an aspect of the present invention, the laser source 110, data modulator 122 and spectral phase encoder 132 may comprise a transmitting station 170 associated with a user. The spectral phase decoder 144, optical time gate 154 and demodulator 164 may preferably comprise a receiving station 180 associated with a user.
  • FIG. 2A illustratively depicts a laser source 200 that may be used to generate the pulse stream 115 in accordance with an aspect of the present invention. The laser source 200 preferably comprises a mode locked laser (MLL) having a spectral content comprising a stable comb of closely spaced phase-locked frequencies. The frequency or comb spacing is determined by the pulse repetition rate of the MLL. As shown in FIG. 2A, the source 200 may comprise a ring laser that may be formed using a semiconductor optical amplifier (SOA) or erbium doped fiber amplifier (EDFA). The ring laser illustrated in FIG. 2 includes a laser cavity 210, a modulator 216, a wavelength division multiplexer (WDM) 222 and a tap point 226 for providing an output signal, which comprises optical pulses 115.
  • FIG. 2B illustratively depicts a frequency plot 250 of the output of a MLL in accordance with an aspect of the present invention. The spacing of the longitudinal modes or lines is equal to the pulse repetition rate of 5 GHz. As also seen in FIG. 2B, the total spectral width of the source may be limited to, for example, 80 GHz by placing an optical band pass filter in the laser cavity. The top portion 252 of FIG. 2B shows multiple windows that illustratively indicate the tunability of the source. Each line or mode 256 of the laser comprises a frequency chip or bin. FIG. 2B illustratively 16 frequency bins or chips in accordance with an aspect of the present invention.
  • In general, the electric field m(t) output of the MLL is a set of N equi-amplitude phase-locked laser lines:
  • m ( t ) = A i = 1 N j ( 2 π f i t + φ ) ( 1 )
  • where fi=˜193THz+(i−1)Δf are equally spaced frequencies. Signal m(t) is a periodic signal comprising a train of pulses spaced 1/Δf seconds apart and each pulse having a width equal to 1/(NΔf) seconds. We can also express (1) as:
  • m ( t ) = k p ( t - kT ) ( 2 )
  • where p(t) represents a pulse of duration T=1/Δf whose energy is mostly confined in the main lobe of width 1/(NΔf). With regard to FIG. 2A, N=16 and Δf is equal to 5 GHz.
  • Turning now to FIG. 3, there is depicted a spectral phase encoder 300 in accordance with an aspect of the present invention. The encoder 300 includes a transparent plate 310, a Fourier lens 314 and a phase mask mirror 318. The plate 310 comprises a first element 320 that includes an inner surface 322 and an outer surface 326. The first element 320 is spaced from a second element 330 that also has an inner surface 332 and an outer surface 336. The inner surface 322 of the first element provided with a coating that is substantially 100% reflective. The inner surface 332 of the second element is provided a partially reflective coating. The first and second elements 320, 330 may be separated by a glass substrate 340, as shown, or by an air gap. The arrangement of the transparent plate and Fourier lens comprise an optical demultiplexer and may comprise structure or components as described in U.S. Pat. No. 6,608,721, the disclosure of which is incorporated herein by reference.
  • As shown, the first element 320 and glass substrate 340 are arranged such that an opening 342 is provided at one end of the plate 310. The opening 342 provides an entry point for a beam of light to enter the cavity so that a portion of the light beam is partially reflected by the surface 332 to surface 322, thereby establishing a cavity where the input light beam is split into multiple beams that are each projected onto the Fourier lens 314. The Fourier lens 314 then projects each mode or line of each beam to a particular location in space based on the wavelength or frequency of each mode. In particular, the phase mask mirror 318 is positioned at the focal plane of the Fourier lens 314 such that each mode or line is projected to a particular location on the phase mask mirror to cause a predetermined phase shift. In this way, the phase of each line or mode of the laser source (each such line or mode comprising a frequency bin or chip) is adjusted by a predetermined amount by the phase mask mirror. The phase mask mirror 318 then reflects the phase adjusted signals back through the Fourier lens 314 to the plate 310 where the phase adjusted signals exit through opening 342 as a collimated phase adjusted beam of light.
  • As shown in FIG. 3, each section of the phase mask 318 is recessed at 0 or λ/4 with respect to the focal plane of the Fourier lens 314 thereby representing a 0 or π phase shift, respectively. The phase mask of FIG. 3 includes five sections which comprise a “10110” phase mask, wherein a “1” represents a phase shift of π and a “0” represents a phase shift of 0. As is discussed in further detail below, each user is assigned a unique phase mask that includes a section for each frequency bin or chip in the system. The unique phase mask corresponds to a unique code or lock that is associated with a particular user such that a receiving unit needs the appropriate code or key to decipher a message from the particular user. In addition, the encoder 300 may also be used at the receive end as a decoder.
  • The encoder/decoder of FIG. 3 is typically large since it uses bulk optics. The size of such encoders/decoders typically make them susceptible to thermally induced drifts. Furthermore, the large size and complex alignment requirements may make it unlikely that the coder/decoder of FIG. 3 will be economically viable. As discussed above, spectral phase encoding consists of demultiplexing the various spectral components of a signal, shifting the phase of a portion of the spectrum based on the code and recombining the shifted components to produce the coded signal. The recombined signal no longer comprises a short optical pulse, but instead, the energy in the pulse is spread across the bit period in a pattern determined by the code. In accordance with an aspect of the present invention, we use a coder/encoder in form of an integrated photonic circuit, which uses ring resonators as wavelength selective subcomponents. FIG. 4A illustratively depicts a functional diagram of such a coder 360.
  • As shown in FIG. 4A, light enters from the left on the input guide 362. At a first ring resonator structure 365, subwavelength λ1 is coupled off the guide 362 and onto the connecting guide (vertical line 367). At the bottom of vertical line 367, λ1 is coupled onto the output guide 368 with another wavelength selective ring resonator. Each of the frequency components is coupled in the same way at the appropriate point. If all the connecting guides have the same optical length, and if the input and output guide have the same propagation constant, then all frequency components will see the same optical path length when they reach the end of the output guide. In this case, all would recombine with the same phase that they had at entry (i.e., this is equivalent to a code with all 0's or all 1's). To create a phase shift that defines a code, we use heaters on the connecting waveguides, shown here as blocks 372. The electrical connections to the heaters are not shown to avoid unnecessarily complicating the diagram. If the connecting waveguides are far enough apart, then they are sufficiently thermally isolated that the phase shifts can be applied independently. With thermal monitoring and feedback, independent phase shifts can be applied to each frequency even when the guides have some affect on each other.
  • A decoder typically has the same structure as an encoder, except that it may need to be polarization insensitive, since the signals may have their polarization altered in transmission through the fiber. The coder can have polarization dependence, since the initial mode-locked laser pulse is polarized. An example of a polarization independent coder is shown in FIG. 4B.
  • Note that each frequency passes through the same number of elements (two ring resonators for its frequency, and N−1 ring resonators that it passes through without being dropped/added) and the same optical path length, except for the phase shift that is applied thermally. Thus, each should experience the same loss. Consequently, there is no skewing of the amplitudes and the decoded pulse shape will be the same as the input to the coder. In addition, because the base path lengths are the same (except for some trimming to adjust for fabrication error) creating. the correct phase relationships will typically be straightforward.
  • For polarization insensitivity we use the same structure at the core, but separate input polarizations, and have them pass through the coder/decoder 380 as shown in FIG. 4B.
  • As shown in FIG. 4B, light enters and passes through an optical circulator 383. The light is split into two polarizations using a polarization beamsplitter (PBS) 385 and one polarization follows the upper path 387 while the orthogonal polarization follows the lower path 389. On the lower path a polarization rotator 391 converts the polarizations from one mode to another orthogonal mode, e.g., P1 into P2 (or vice versa). The light in the upper path enters the coder structure 393 in polarization mode 1 at the point previously called the input 362, and the light in the lower path enters the coder also in polarization mode 1, but at the point previously called the output 368, traveling in the opposite direction. The light from the upper path exits the coder, passes through the polarization rotator and is converted to polarization mode 2, which then passes through the PBS 385 and is sent back to the circulator 383 from which it exits along the path shown as a vertical line 395. The light from the lower path, now in polarization mode 1, goes through the coder in the opposite direction, but experiences precisely the same phase shifts and optical path lengths as the light from the upper path. It exits the coder and is recombined in the PBS 385, and exits the circulator 383 in the same way as the light from the other path. Thus, this comprises a polarization independent component. The structures that are shown in block 385 can either be realized in fiber or can be built onto an optical waveguide. Without this polarization independent construction, it would be necessary to have a polarization sensor and a dynamic polarization rotator before the decoder. Note that in this design, path lengths are the same and the path is the same for both polarizations. The difference is that the two polarizations traverse the path in opposite directions.
  • Returning to FIG. 1, the encoded signal 135 is then transmitted over a network 140 to a decoder 144. In a preferred embodiment, the network 140 comprises a WDM network. In such an implementation, the OCDMA network comprises an overlay architecture that is compatible with existing WDM network technologies as is discussed in further detail below.
  • As discussed above, the encoded signal 135 is decoded by a spectral phase decoder 144. A spectral phase decoder 144 will typically comprise the arrangement shown in FIGS. 3 and 4, except that, in general, the decoder will apply the phase conjugate of the phase mask applied by the encoder. Note, however, and as is discussed in further detail below, that where the phase mask uses a binary coding scheme, the code at the decoder is its own complement and consequently the coder and decoder are identical.
  • Turning now to FIG. 5A, there is shown an optical time gate 400 in accordance with an aspect of the invention. The decoded signal 149 has the sequence or train of optical pulses restored to their original position within the bit period and shape. However, the desired user signal needs to be separated or extracted from other user signals included in the decoded signal 149. In accordance with an aspect of the present invention, an optical time gate, such as optical time gate 400, may be used to reduce multiple access interference (MAI). The optical time gate 400 filters out MAI by temporally extracting only desired user signal or channel from among any other signals comprising the decoded signal 149. As shown in FIG. 5A, the optical time gate 400 includes an input port 406 and a switch 408 that is controlled by a control signal 410. The control signal 410 may be an electrical or optical signal.
  • The concept behind the application of optical time gating to extract the decoded OCDMA signal is illustrated in FIG. 5B. Through the proper selection of an appropriate code set for a synchronous coherent OCDMA system, a system may be designed such that the multi-user interference energy falls outside a time interval where the properly decoded signal pulse resides. Therefore, by optically gating the composite signal in order to provide low loss within the desired time window while at the same time providing for high extinction outside that window, one can extract only the properly decoded signal bit stream.
  • For the purposes of application to a coherent optical CDMA system, some of the more important performance metrics for optical gating technologies include:
  • Gate width (typically on the order of 10 ps or less)
  • Gate repetition rate (comparable to data rate, typically >1 GHz or higher)
  • Gate extinction rate (depends upon number of users but typically 10-20 dB)
  • Data pulse energy levels and dynamic range
  • Gating control/clock pulse energy levels and dynamic range
  • As a result of these performance requirements, relatively high-speed optical processing techniques must typically be employed, such as those used for all-optical demultiplexing. Although there are a wide variety of options, some of the technologies that have been demonstrated specifically for coherent OCDMA systems include:
  • Nonlinear interferometers
  • Four-wave mixing (FWM) techniques
  • Both optical fiber-based and semiconductor optical amplifier (SOA)-based approaches to these techniques are possible.
  • Fiber-Based Nonlinear Interferometers for Optical Time Gating
  • By using an optical clock pulse in order to alter the effective phase shift through one arm of an interferometer, one can construct an all-optical gate. The phase changed can be accomplished through a distributed medium, such as nonlinear propagation through a length of optical fiber, or it can be a concentrated nonlinearity, such as can be accomplished with a semiconductor optical amplifier (SOA). Since interferometers generally require stabilization for proper operation, a common approach for fiber-based nonlinear interferometers, which generally require long lengths of fiber and therefore path lengths can drift with environmental conditions, is the nonlinear optical loop mirror (NOLM). With reference to FIG. 5C, the NOLM is built in a Sagnac interferometer configuration, which by its construction is self-stabilizing.
  • The operation of the NOLM can be described as follows, assuming for simplicity that the input signal is a single optical pulse. The incoming signal, input at Port A, is split into two counterpropagating pulse replicas at a 50:50 fiber coupler. When the clock pulse, which can be injected at Port C, is not present, the low amplitude data pulses simply counterpropagate around the loop and recombine at the coupler. The interference condition is such that signals interfere destructively at the output port B, but interfere constructively at the original input port A, thereby reflecting the data pulse. On the other hand, by injecting a large amplitude clock signal that is of a close but distinguishable wavelength relative to the data pulse wavelength, it is possible to overlap the clock pulse with the clockwise propagating data pulse and introduce a nonlinear phase shift of π. In this case, the interference condition is altered such that the data pulse now exits at port B. An optical bandpass filter at Port B suppresses the remaining clock signal, leaving only the desired gated data pulse. The width of the time gating window for the NOLM is defined by the overlap between the clock and co-propagating data pulse. The first NOLMs that were constructed required very long dispersion-shifted fibers (>1 km) to obtain the required nonlinear phase shift; however, recent developments in highly nonlinear fibers have allowed for a reduction in fiber length to approximately 100 meters or less. In conjunction with optical thresholding, the NOLM optical time gate has been successfully applied to an implementation of phase-coded OCDMA system.
  • SOA-Based Nonlinear Interferometers for Optical Time Gating
  • The nonlinear phase change required in the NOLM can be accomplished by other means, such the use of as a semiconductor optical amplifier (SOA), allowing for the potential of device integration. An interferometric architecture similar to the NOLM can be used, as shown in FIG. 5D. When the SOA is offset from the center of loop by Δx, the device is referred to as the terahertz optical asymmetric demultiplexer or TOAD.
  • Similar to the NOLM; when the clock pulse is not present, incoming data pulses reflect from the TOAD. By injecting a clock pulse, which is typically chosen to be on the order of 10 dB larger in amplitude than the data pulse intensity, gating can occur. The clock pulse saturates the SOA, thereby changing its effective index. The clock pulse, which travels only in the clockwise direction, is injected following the clockwise propagating data pulse to give the clockwise data pulse the opportunity to propagate through the SOA before the clock pulse saturates the SOA index. Since the SOA slowly recovers on the time scale of hundreds of picoseconds, counterpropagating data pulses that arrive immediately after the clock pulse event has occurred see the SOA in approximately the same relative state and do not experience a differential phase shift. The temporal duration of the gating window is set by the offset of the SOA, Δx, from the center of the loop. As the offset is reduced, the gating window width decreases until the actual length of the SOA needs to be taken into account. The nominal gate width is related to the offset by

  • Δt gate=2Δx/c fiber
  • where cfiber is the speed of light in fiber. Gating windows as short as 1.6 picoseconds have been demonstrated experimentally using a TOAD. The TOAD optical time gate has been successfully applied to an implementation of SPC-OCDMA.
  • Four Wave Mixing (FWM) Optical Time Gating
  • Another approach to optical time gating is through the use of four wave mixing (FWM), e.g., see FIG. 5E. FWM is a third-order nonlinearity, similar to intermodulation distortion in the electrical domain. In FWM, the nonlinear beating between the data signal and a control signal at a different wavelength generates new optical tones as sidebands. FWM-based gating can be accomplished in optical fiber or in waveguide devices such as semiconductor optical amplifiers (SOAs).
  • In SOAs, FWM occurs through carrier density modulation. Two co-polarized optical signals are coupled into the SOA. One is the control signal at frequency fc and typically has a much higher intensity than the other input signal (data) to be wavelength converted, which is at frequency fd. The two co-propagating signals mix and, through carrier density modulation, form an index grating off which signals can be scattered. The scattering of the control signal from this grating generates two waves, one at the data frequency and one at a new frequency, fconverted=2fc−fd. This is the useful wavelength-converted signal. In addition, data signal scattering also generates two much weaker waves, one at the control frequency and one at a new frequency, fsatellite=2fc−fd. This is called the satellite wave and is generally not used.
  • By injecting a short optical control pulse along with the incoming OCDMA signal into the SOA as shown in FIG. 5E, it is possible to create an optical time gate by filtering out the resulting wavelength converted signal. The clock pulse is temporally aligned to the correct position relative to the desired OCDMA pulse, and an optical bandpass filter is placed at the output of the SOA in order to extract the FWM signal only. The FWM optical time gate has been successfully applied to an implementation of TPC-OCDMA.
  • Returning to FIG. 1, the signal 159 from the optical time gate, such as time gate 400, is then supplied to data detector and demodulator block 164. Where the data modulation was done using ON/OFF keying the data and demodulator block may comprise an amplitude demodulator that reproduces the subscriber data. In this regard, any known amplitude modulator may be employed to perform this task.
  • Turning now to FIG. 6, there is shown an example of a multi-user OCDMA system 500 in accordance with an aspect of the present invention. In addition to illustrating an overall system architecture 510, FIG. 6 also includes a diagram 516 that depicts signal flows through the system in the time and frequency domain. In particular, the spectrum and temporal intensity of the optical source 520 is identified by arrow 516 1; after ON/OFF data modulation by arrow 516 2; after phase encoding by arrow 516 3; after mixing all users by arrow 516 4; after the decoder of the first user by arrow 516 5; and after time gating and optical-to-electrical (O/E) conversion by arrow 516 6.
  • The optical source 520 comprises a phase-locked multi-wavelength laser with an output spectrum as shown in FIG. 2B. In accordance with this aspect of the present invention, sixteen lines in the output spectrum (see lines 256 1 through 256 16 in FIG. 2B) comprising sixteen frequency bins or chips are used to communicate user data across the system 500. As FIG. 6 shows via arrow 516 1, a train or sequence of pulses 522 are generated by the source 520. The spectral content of each pulse is depicted in the frequency plots 524. The electric field m(t) for the output of the source may be expressed as shown above in equations (1) and (2). Therefore, in accordance with the sample network of FIG. 6, N=16 and Δf=16 GHz as those variables are used in equations (1) and (2). In the practical sense, the total spectral width of the source's output is limited to a total spectral width of 80 GHz, which results in each pulse having a width of approximately 12.5 picoseconds (ps).
  • The output signal 522 is provided to each of the data modulators 530 1 through 530 N. In keeping with the present example N=16. As such, the system preferably includes 16 users or subscribers that each provides data 532 1 through 532 N that is used to respectively modulate the pulse train or output signal 522. In the system of FIG. 6, the data modulators 530 operate to provide ON/OFF keying resulting in time-domain signal 534. In the time domain signal 534, the pulses with a solid outline indicate a “1” symbol or bit and the pulses with dotted outline represent a “0” symbol or bit, as previously discussed. The spectral content of such a signal is shown in frequency plot 536.
  • Each of the modulated optical pulse signals are then fed to respective spectral phase encoders 540 1 through 540 N as shown. Encoding consists of separating each of these frequency bins (256 1, 256 2, etc.), shifting its phase, in this case by 0 or π, as prescribed by the choice of code, and recombining the frequency bins to produce the coded signal. When the relative phases of the frequencies are shifted, the set of frequencies is unaltered, but their recombination results in a different temporal pattern, e.g., a pulse shifted to a different part of the bit period, multiple pulses within the bit period, or noise-like distribution of optical power. Each OCDMA code is desirably defined by a unique choice of phase shifts. Preferably, a set of codes is chosen that makes efficient use of the spectrum within the window, and that can also be separated from each other with acceptable error rates, even when a maximum number of codes occupy the window.
  • For the system 500 we chose the set of Hadamard codes, which are orthogonal and binary. This choice is desirable it that is can achieve relatively high spectral efficiency with minimal multi-user interference (MUI). In accordance with an aspect of the present invention, this coding schemes offers orthogonally in the sense that MUI is zero at the time that the decoded signal is maximum. The number of orthogonal codes is equal to the number frequency bins; hence, relatively high spectral efficiency is possible. Binary Hadamard codes are converted to phase codes by assigning to +1's and −1's phase shifts of 0 and π, respectively. To encode data, which contains a spread of frequencies, as opposed to the unmodulated pulse stream, which contains only the initial comb of frequencies produced by the MLL, it is preferable to define frequency bins around the center frequencies. Encoding data then consists of applying the phase shift associated with a frequency to the entire bin. The output of the phase encoder is then a signal obtained by summing the phase-shifted frequency components of the modulated signal, or equivalently, by convolving the modulated optical signal at the input of the phase encoder with the inverse Fourier transform of the phase code.
  • Applying any of these orthogonal codes (except for the case of Code 1, which leaves all phases unchanged) results in a temporal pattern which has zero optical power at the instant in time where the initial pulse would have had its maximum power. Although this choice of orthogonal codes implies synchronicity as a system requirement, since desynchronization will move unwanted optical power into the desired signal's time slot, careful code selection allows some relaxation of this requirement. For example, simulations indicate that for four simultaneous users transmitting at 2.5 Gb/s and using a suitably chosen set of four codes among the set 16 Hadamard codes of length 16, up to 15 ps of relative delay can be tolerated with a power penalty within 1 dB at a BER of 10−9. Better resiliency to asynchronism may be achieved by using multiphase codes.
  • Phase coding of the individual spectral components requires a demultiplexer with sufficient resolution and path-length stability and a means of shifting phases independently for each frequency. In accordance with an aspect of the present invention the coder/decoder of FIG. 3 was used to encode the signal using a set of Hadamard codes. As previously discussed, the coder/decoder of FIG. 3 is based on a modified reflective geometry optical demultiplexer and which is described in the '721 patent. FIG. 6 shows the spectral response of the coder for codes 9, 12, 14, and 15, from the Hadamard-16 code set, as measured using a broadband source; the phase shifts are shown below the spectrum. The encoder used has a free spectral range of 100 GHz and a resolution of ˜1 GHz. As FIG. 3 shows, all MLL lines are spectrally spread by the multipath glass substrate and imaged on the focal plane, from which they are reflected back to an output fiber. A phase mask at the focal plane shifts each line by an amount determined by a particular OCDMA code. The phase mask contains 16 sections representing the 16 frequency bins, each section recessed at 0 or λ/4 with respect to the focal plane representing 0 or π phase shift, respectively. Because of the finite spot size of the image at the focal plane, the effective bandwidth of the frequency bin is less than the bin spacing.
  • In its idealized form, the encoder for user i acts as a phase-mask filter with frequency response E(i)(f):
  • E ( i ) ( f ) = j = 1 N c j ( i ) Re ct Δ f ( f - f j ) ( 3 )
  • where cj (i) are complex symbols indicating the j-th(1≦j≦N) element of the i-th code c (i)(1≦i≦M), and the function Rectw(f) denotes the rectangle function of unitary amplitude and width W defined as:
  • Re ct W ( f ) = { 1 , f < W / 2 0 , otherwise ( 4 )
  • Although in principle the elements of code c (i) can take any complex value, the phase mask currently employed allows only for unitary amplitude and binary phase values:

  • c j (i) =e j (i) , with αj (i)ε{0,π}
    Figure US20100221009A1-20100902-P00001
    c j (i)ε{−1,1}  (5)
  • Ideally, all the spectral components of the unencoded signal would emerge from the encoder unchanged in amplitude but, in some cases, flipped in phase. Due to the finite diffraction-limited spot size of the imaging optics, a spectral component situated at a phase transition boundary (or bin edge) will overlap two values of cj (i) and effectively be cancelled.
  • The bin edges are shown as sharp boundaries in FIG. 7. The sharp dips in FIG. 7 corresponds to boundaries between two bins with different phase shifts where destructive interference occurs between the two oppositely phased halves of the light spot. The resolution of the OSA (0.01 nm, or approximately 1.245 GHz) reduces the apparent depth of these dips. Where adjacent bins have the same phase, there is no dip in the spectrum. This coder provides stable phase shifts; while thermal dimensional changes can shift optical paths, the relative path lengths for adjacent frequencies is unaltered.
  • This passive structure imposes no intrinsic power loss; although the current implementation has 5 dB loss, this can be reduced. As the number of bins increases there is no intrinsic increase in loss, and hence this approach to coding has better scalability than time domain approaches such as Fast Frequency Hopping. The filter bandwidth narrowing affects the ability of the coder to process data, as opposed to an unmodulated pulse stream. When the coded signal carries data the entire bandwidth of the modulated signal of a given MLL line must fit within the frequency bin as physically defined by the geometry of the phase encoder's focal plane. Simple on-off keying at rates equal to the bin spacing (5 GHz) spreads the frequency into the unusable region between bins; thus we need a modulation scheme with adequate bandwidth compression to ensure proper transmission. This is because the use of binary codes causes destructive interference at the [0,π] boundaries. On-off key modulation at 2.5 Gb/s, using two pulses per bit from a MLL running at a pulse-repetition rate of 5 GHz satisfies this physical restriction. Alternative approaches using duo-binary or single sideband modulation for bandwidth compression will also ensure that the spectral constituents of the data-modulated signal stay within their respective frequency bins even at a data rate of 5 Gb/s. In addition, other modulation formats such as multi-pulse ON/OFF keyed modulation (e.g., two or more optical pulses per data hit) and multi-phase/multi-amplitude modulation (e.g., DPSK, QPSK, QAM and higher-order amplitude/phase modulation) may be used. When multiphase codes that do not exhibit 0-π phase transitions are used, the amplitude dips at the bin edges are reduced.
  • Due to the bin edge effects in the phase mask, the OOK (ON/OFF Keying) modulation rate is preferably chosen so that the spectrum broadening of each of the N spectral lines is confined to Δf/2 Hz. OOK modulation at a rate of Rb=Δf/2 bits/sec that uses multiple pulses from the MLL to represent a single bit satisfies this physical restriction. As an alternative, using duobinary encoding and then modulating at the full rate Rb=Δf bits/sec ensures that the spectral constituents of the data-modulated signal stay within their respective Δf-wide frequency bins. In principle, if no amplitude bin-edge effect were present, full rate modulation would be possible even without line coding. Therefore, after modulation the temporal expression of the signal pertaining to the i-th user can be written as follows:
  • b ( i ) ( t ) = k a k ( i ) p ( t - kT ) ( 6 )
  • where ak (i)ε{0,1} is the sequence of information bits of user i. After phase encoding, we obtain:
  • s ( i ) ( t ) = b ( i ) ( t ) * ( ) ( t ) = k a k ( i ) q ( i ) ( t - kT ) ( 7 )
  • where e(i)(t)=FT−1{E(i)(f)} is the impulse response of the spectral phase encoder E(i)(f) as defined above; FT−1 is the Inverse Fourier Transform (IFT) operator; q(i)(t)=p(t)*e(i)(t) represents the pulse shape of user i after encoding. If we neglect the effects of the pulse output by the MLL, the shape of the pulse is governed by the phase mask.
  • As shown in FIG. 6, the effect of phase encoding is to spread in time, as shown by plot 545, the MLL narrow pulses of width 1/(NΔf) seconds across the whole pulse interval. Therefore, the proposed phase encoded OCDMA can be considered as the dual version of conventional direct sequence CDMA (DS-CDMA) based on frequency spreading.
  • The encoded N user signals are combined 550 prior to transmission over the fiber link and through network 556. The network 556 preferably comprises a Wavelength Division Multiplex (WDM) network that allows the signals of the system 500 to be transported transparently to the other signals that are normally carried by the WDM network. In that regard, the system 500 advantageously uses a relatively small and tunable window, which is compatible with WDM systems that are currently deployed. FIG. 8 illustratively depicts how an OCDMA system in accordance with the various aspects of the present invention may be overlaid on such a network. Note, however, any other optical network may be used in accordance with this aspect of the present invention if a tunable source is used. As FIG. 8 shows, the OCDMA signals may be multiplexed into the WDM channel.
  • Returning to FIG. 6, after the encoded signals traverse the network 556, they are split 570 and provided to a plurality of matching decoders 570. In particular, decoding may be accomplished by using a matched, complementary code; for the binary codes used here, the code is its own complement and consequently the coder and decoder are identical. The decoded signal has the pulses restored to their original position within the bit period and restores the original pulse shape. Decoding using an incorrect decoder results in a temporal pattern that again has zero optical power at the center of the bit period and the majority of the energy for that pulse is pushed outside the time interval where the desired pulse lies.
  • Assuming ideal fiber propagation, discrimination of the i-th user is performed using a decoding filter d(i)(t) at the receiver matched to the encoder filter only (single user matched filtering). In general, this may be achieved by employing at the receiver side a decoder equal to the conjugate of the phase mask used at the transmitter side:

  • y (i)(t)=x(t)*d (i)(t)  (9)
  • where d(i)(t) is the impulse response of the matched filter

  • d (i)(t)=e* (i)(−t)
    Figure US20100221009A1-20100902-P00002
    D (i)(f)=E* (i)(f)  (10)
  • The output of the filter matched to the desired user i can be expressed as follows (assuming τ(i)=0):
  • y ( i ) ( t ) = b ( i ) ( t ) * AC i ( t ) + j = 1 , j i M b ( j ) * CC j , i ( t - τ ( j ) ) ( 11 )
  • where we have defined as ACi(t)=e(i)(t)*e*(i)(−t) and as CCji(t)=e(j)(t)*e*(i)(−t) the autocorrelations (ACs) and the crosscorrelations (CCs) of the impulse responses of the phase masks, respectively. The ACs and CCs are a function of the IFT of the sequences used as phase masks. As opposed to the case of conventional CDMA based on DS spreading, correlations are between the IFT of codes, not between the codes themselves. The effect of a matched phase decoder is to restore the original narrow pulses of width 1/(NΔf) seconds that were originally spread in time by the phase encoder (see plot 576). The effect of a mismatched phase decoder is to turn interfering signals into a noise-like signal. When orthogonal codes are employed, as opposed to conventional OCDMA, true orthogonality is achieved here and no Multiple Access Interference (MAI) is present at the ideal sampling time.
  • As discussed above, the signal from the phase decoder 570 is then be further processed by an optical time gate 580 and demodulator 590 to reproduce the user or subscriber data signal. As also seen in FIG. 6, a synchronization block 494 is coupled to each of the optical time gates 580. The synchronization block 594 supplies a control or clock signal that closes the time gate at the proper time interval as is discussed above in relation to FIG. 5.
  • Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (44)

1. An apparatus for receiving a desired encoded optical signal comprising equally spaced coherent phase-locked spectral lines in the presence of other differently and orthogonally encoded synchronous, co-polarized optical signals which occupy the same wavelength channel and bit period, comprising:
a spectral phase decoder comprising a means for individually phase shifting each of the equally spaced, coherent phase-locked spectral lines of the encoded optical signal with respect to the other spectral lines in accordance with a predetermined code which code is one of a set of more than two mutually orthogonal codes, for decoding the encoded optical signal to produce a decoded signal in which the desired encoded optical signal is reconstituted and occupies a small part of the bit period, and the other differently encoded signals have minimal optical power in that part of the bit period;
a synchronous optical time gate for temporally extracting the desired coded signal from the decoded composite signal by synchronously selecting only the portion of the bit period in which the desired signal resides; and
a demodulator that is operable to extract user data from the user desired coded signal.
2. The apparatus of claim 1, wherein the spectral phase decoder comprises a set of spectrally selective phase shifters that are operable to conjugate the set of phase shifts used to encode the desired encoded optical signal.
3. The apparatus of claim 1, wherein the desired encoded optical signal comprises a signal encoded using a code chosen from among a set of more than two orthogonal codes.
4. The apparatus of claim 3, wherein the set of orthogonal codes comprises a set of Hadamard codes.
5. The apparatus of claim 1, wherein the spectral phase decoder comprises at least one ring resonator.
6. (canceled)
7. The apparatus of claim 1, wherein the synchronous optical time gate is operative to filter multi-user interference energy that falls outside a time interval in which the user desired coded signal is located.
8. An optical system for transporting data, comprising:
a plurality of transmitting systems each associated with a data stream for transmitting data and a plurality of receiving systems each adjustable to receive data from a preselected transmitting system;
a plurality of coherent sources each associated with a respective transmitting system for generating a sequence of optical pulses, each optical pulse comprising equally spaced, coherent phase-locked spectral lines confined within a predetermined WDM channel spectral bandwidth;
a plurality of data modulators each associated with a respective transmitting system and operable to modulate the sequence of pulses from a plurality of transmitting systems using the data to produce a plurality of modulated data signals;
a spectral phase encoder associated with the plurality of data modulators comprising means for individually phase shifting each equally spaced, coherent phase-locked spectral line with respect to the other spectral lines in accordance with a predetermined code which code is one of a set of two or more mutually orthogonal codes to produce an encoded data signal;
a multiplexer for combining the encoded data signals into a composite transport data signal wherein each transmitted data signal shares the same spectral bandwidth during transmission of the transport data signal to a decoder;
a spectral phase decoder for decoding one of the encoded data signals comprising means for individually phase shifting each equally spaced, coherent phase-locked spectral line with respect to the other components in accordance with a predetermined code which is the conjugate of the code used to encode said data signal to produce a decoded data signal; and
a time gate coupled to said spectral phase decoder to temporarily extract the decoded signal associated with a predetermined transmitting system from the multi-data stream interference energy that falls outside a time interval in which the desired user signal is located.
9. The system of claim 8, wherein the source comprises a mode locked laser wherein each of the plurality of equally spaced, coherent phase-locked spectral lines are approximately equal in amplitude and phase locked.
10. The system of claim 8, wherein the set of orthogonal codes comprises a set of Hadamard codes that applies a unique spectral phase component to each of the plurality of spectral lines.
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. A method for preparing data for transport over an optical network, comprising:
generating a sequence of optical pulses, each optical pulse comprising a plurality of equally spaced, coherent phase-locked spectral lines confined within a predetermined WDM channel spectral bandwidth;
modulating the sequence of optical pulses using a data stream to produce a modulated data signal; and
spectrally phase encoding the modulated data signal using one of a set of two or more orthogonal codes to produce an encoded data signal by individually phase shifting each spectral component of the modulated signal with respect to the other components in accordance with a predetermined code which code is one of a set of two or more mutually orthogonal codes.
17. (canceled)
18. The method of claim 16, wherein said modulating comprises confining the modulated data signal to a bandwidth no greater than the spectral spacing between two adjacent spectral lines comprising the optical pulse.
19. The method of claim 16, further comprising demodulating the data stream signal to reproduce the transmitted data.
20. The method of claim 16, wherein the set of mutually orthogonal codes is a set of Hadamard codes.
21. An apparatus for receiving a plurality of mutually orthogonal, spectrally phase encoded optical signals which simultaneously occupy the same optical frequency domain, in which each encoded optical signal comprises a plurality of uniformly spaced spectral lines, all of which are modulated with data associated with each user of a plurality of users, and the modulated signals are encoded by imposing predetermined relative phase shifts between spectral lines according to the code assigned to each user, comprising:
a spectral phase decoder for decoding a selected encoded optical signal to produce a decoded signal that occupies a finite sampling interval while at the same time nulling the optical power of the other encoded optical signals during the sampling time;
an optical time gate for temporally extracting the selected optical signal and rejecting other interfering optical signals, all of which occupy the same frequency domain; and
a demodulator and detector that is operable to extract user data from the selected optical signal.
22. The apparatus of claim 21, wherein the spectral phase decoder separates the individual spectral components of the signal, individually shifts the phase of each of the spectral components and coherently recombines the frequency components, so that the decoder is operable to conjugate the phase code used to encode the encoded optical signal.
23. The apparatus of claim 21, wherein the encoded optical signal comprises a signal encoded using a set of two or more orthogonal codes.
24. The apparatus of claim 23, wherein the set of orthogonal codes comprises a set of Hadamard codes.
25. The apparatus of claim 21, wherein the optical time gate is operative to filter multi-user interference energy that falls outside a time interval in which the user signal is located.
26. An optical system for transporting data, comprising:
a source for generating a sequence of optical pulses, each optical pulse comprising a plurality of spectral lines uniformly spaced in frequency with fixed absolute frequency and relative phase;
a set of data modulators each associated with a user and operable to modulate the sequence of pulses using user data to produce a modulated data signal;
a set of encoders imparting a plurality of orthogonal codes each associated with one of the data modulators and operable to spectrally encode the modulated data signal to produce an encoded data signal; and
a set of decoders each of which is a conjugate match to one of the encoders, for spectrally decoding a specified encoded data signal to produce a set of decoded data signals.
27. The system of claim 26, wherein the source comprises a mode locked laser wherein each of the plurality of spectral lines is approximately equal in amplitude and phase locked.
28. The system of claim 27, wherein the encoder comprises a spectral phase encoder that applies a phase shift defined by a code applied to each of the plurality of spectral lines.
29. The system of claim 28, wherein the code is chosen from a set of two or more mutually orthogonal codes.
30. The system of claim 29 wherein the set of two or more mutually orthogonal codes comprises a set of Hadamard codes.
31. The system of claim 26, further comprising a plurality of additional modulators each associated with respective additional users and each operable to modulate the sequence of pulses using data associated with one of the plurality of additional users to produce a plurality of additional modulated data signals.
32. The system of claim 31 further comprising a plurality of additional mutually orthogonal encoders each associated with a respective one of the additional modulators and operable to spectrally encode a respective one of the plurality of additional modulated data signals to produce a plurality of additional encoded data signals.
33. The system of claim 32, wherein each of the additional mutually orthogonal encoders associates a respective spectral phase code with each of the additional users.
34. The system of claim 33 wherein the respective spectral phase codes are Hadamard codes.
35. The system of claim 32, further comprising an optical combiner for bit-synchronously combining the encoded data signals into a composite transport data signal wherein each user shares the same spectral bandwidth during transmission.
36. The system of claim 35, wherein the same spectral bandwidth for a group of users is limited to a transparent window in a WDM network.
37. The system of claim 26 further comprising an optical time gate coupled to the output of the matching decoder and operable to temporally extract a user data signal from the decoded signals.
38. A method for preparing data for transport over an optical network, comprising:
generating a sequence of optical pulses, each optical pulse comprising a plurality of equally spaced, coherent phase-locked spectral lines confined within a predetermined WDM channel spectral bandwidth;
modulating the sequence of optical pulses using user data to produce a modulated data signal; and
spectrally phase encoding the modulated data signal using a set of two or more orthogonal codes to produce an encoded data signal.
39. The method of claim 38, further comprising applying a unique phase shift to each of the plurality of spectral lines as prescribed by a code from a set of two or more mutually orthogonal codes.
40. The method of claim 39 wherein the set of mutually orthogonal codes are Hadamard codes.
41. The method of claim 38, wherein modulation induced broadening of the spectral lines is substantially confined to a frequency bin, which is defined as a portion of optical bandwidth of width less than the separation between two adjacent lines in the plurality of spectral lines comprising the pulses.
42. The method of claim 41 wherein the entire spectral content of each modulation broadened spectral line is phase encoded by a single unique phase shift.
43. The method of claim 38 further comprising spectral phase encoding and decoding of a single user's modulated data signal comprises associating one of a set of two or more orthogonal codes with each of the plurality of spectral lines.
44. The method of claim 43 wherein the set of two or more orthogonal codes are Hadamard codes.
US12/710,019 2005-02-18 2010-02-22 Phase Chip Frequency-Bins Optical Code Division Multiple Access Abandoned US20100221009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/710,019 US20100221009A1 (en) 2005-02-18 2010-02-22 Phase Chip Frequency-Bins Optical Code Division Multiple Access

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/062,090 US7729616B2 (en) 2005-02-18 2005-02-18 Phase chip frequency-bins optical code division multiple access
US12/710,019 US20100221009A1 (en) 2005-02-18 2010-02-22 Phase Chip Frequency-Bins Optical Code Division Multiple Access

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/062,090 Continuation US7729616B2 (en) 2004-12-13 2005-02-18 Phase chip frequency-bins optical code division multiple access

Publications (1)

Publication Number Publication Date
US20100221009A1 true US20100221009A1 (en) 2010-09-02

Family

ID=37742652

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/062,090 Expired - Fee Related US7729616B2 (en) 2004-12-13 2005-02-18 Phase chip frequency-bins optical code division multiple access
US12/710,019 Abandoned US20100221009A1 (en) 2005-02-18 2010-02-22 Phase Chip Frequency-Bins Optical Code Division Multiple Access

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/062,090 Expired - Fee Related US7729616B2 (en) 2004-12-13 2005-02-18 Phase chip frequency-bins optical code division multiple access

Country Status (5)

Country Link
US (2) US7729616B2 (en)
EP (1) EP1854229B1 (en)
JP (1) JP4612058B2 (en)
CA (1) CA2597031C (en)
WO (1) WO2007053172A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329693A1 (en) * 2009-06-30 2010-12-30 Verizon Patent And Licensing Inc. Multi dimension high security communication over multi mode fiber waveguide
US20130075629A1 (en) * 2010-03-24 2013-03-28 Olympus Corporation Terahertz wave generator
US20130195447A1 (en) * 2012-01-27 2013-08-01 Futurewei Technologies, Co. Spectral Encoding of an Optical Label or Destination
CN104113307A (en) * 2014-07-07 2014-10-22 北京交通大学 All-optical clock frequency multiplication device and frequency multiplication method based on device

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330304B2 (en) * 2003-11-03 2008-02-12 Hrl Laboratories, Llc Method and apparatus for PPM demodulation using a semiconductor optical amplifier
DK1710769T3 (en) * 2005-04-06 2016-05-30 Saab Ab simulation arrangement
US7773882B2 (en) * 2005-05-26 2010-08-10 Telcordia Technologies, Inc. Optical code-routed networks
KR100723860B1 (en) * 2005-10-27 2007-05-31 한국전자통신연구원 Apparatus and method for reducing signal noise and OCDMA receiver and method
EP1949553B1 (en) * 2005-11-10 2013-05-01 Panasonic Corporation Method and apparatus for power line communication
US7903973B1 (en) 2005-12-23 2011-03-08 Lockheed Martin Corporation Dynamic temporal duration optical transmission privacy
US7792427B1 (en) * 2006-01-30 2010-09-07 Lockheed Martin Corporation Optical code division multiple access data storage and retrieval
US7991288B1 (en) 2006-02-07 2011-08-02 Lockheed Martin Corporation Optical code division multiple access data storage encryption and retrieval
US7756420B2 (en) * 2006-03-24 2010-07-13 Lightkey Optical Components, Llc System and method for shaping a waveform
US7809267B2 (en) * 2006-06-01 2010-10-05 Telcordia Technologies, Inc. Coherent gated receiver
US20090136238A1 (en) * 2007-09-26 2009-05-28 Gill Douglas M Security over an optical fiber link
WO2010039309A2 (en) * 2008-06-26 2010-04-08 Telcordia Technologies, Inc. Method and system for ocdm-based photonic layer security robustness to spoof data integrity
US20100074630A1 (en) * 2008-09-25 2010-03-25 Tim Olson System and method for shaping a waveform
US8244137B1 (en) * 2009-06-30 2012-08-14 Verizon Patent And Licensing Inc. Multichannel on a single wave laser over wave division multiplexing in free space optics using phase masks
US8218669B2 (en) * 2009-09-16 2012-07-10 Intel Corporation Spectrally flat delay diversity transmission
US8453929B2 (en) * 2009-12-19 2013-06-04 Trutag Technologies, Inc. Producing a microtag identifier
US8737618B2 (en) * 2010-02-17 2014-05-27 Telcordia Technologies, Inc. Secure key distribution for optical code division multiplexed based optical encryption
US8406423B2 (en) * 2010-03-16 2013-03-26 Telcordia Technologies, Inc. Multi-bit cryptographically secure encryptor for M-ary spectral phase encoder optical code division multiple access
US20110228939A1 (en) * 2010-03-16 2011-09-22 Telcordia Technologies, Inc. System and methods for ocdm-based optical encryption using subsets of phase-locked frequency lines
WO2014100702A2 (en) * 2012-12-19 2014-06-26 Georgia Tech Research Corporation Devices, systems and methods for ultrafast optical applications
US9658510B2 (en) * 2012-12-19 2017-05-23 Georgia Tech Research Corporation Devices, systems and methods for ultrafast optical applications
WO2015114800A1 (en) * 2014-01-31 2015-08-06 三菱電機株式会社 Light transfer apparatus and light transfer method
WO2016191679A1 (en) * 2015-05-28 2016-12-01 Massachusetts Institute Of Technology Apparatus and methods for quantum key distribution
CN107925486B (en) 2015-06-11 2021-06-04 诺基亚技术有限公司 Optical fiber communication based on coded frequency-shifted light
US20170255080A1 (en) * 2016-03-01 2017-09-07 Irfan Muhammad Fazal Multi-Bit Digital-Electrical to Analog-Optical Conversion Based on Non-Linear Optical Element
EP3451931A1 (en) 2016-05-27 2019-03-13 Schafer Aerospace, Inc. System and method for high speed satellite-based free-space laser communications using automatic gain control
CN109150522B (en) * 2018-10-29 2024-03-26 中国电子科技集团公司电子科学研究院 Quantum key distribution time bit-phase decoding method and device and corresponding system
TWI694685B (en) * 2018-11-27 2020-05-21 國立虎尾科技大學 Bipolar optical code division multiple access system in wireless optical communication
WO2022168186A1 (en) * 2021-02-03 2022-08-11 三菱電機株式会社 Frequency separator, optical quantization circuit, optical a/d conversion system, and optical signal processing system
CN113411136B (en) * 2021-06-16 2022-11-08 广东工业大学 Quadrature modulation secret optical communication device and method

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779266A (en) * 1986-03-10 1988-10-18 Bell Communications Research, Inc. Encoding and decoding for code division multiple access communication systems
US4866699A (en) * 1987-06-22 1989-09-12 Bell Communications Research, Inc. Optical telecommunications system using code division multiple access
US5410147A (en) * 1992-08-20 1995-04-25 General Electric Company Optical communication system using coplanar light modulators
US5760941A (en) * 1996-02-29 1998-06-02 Rice University System and method for performing optical code division multiple access communication using bipolar codes
US20010010739A1 (en) * 2000-01-06 2001-08-02 Koichi Takiguchi CDMA encoder-decoder, CDMA communication system, WDM-CDMA communication system
US20010033603A1 (en) * 2000-01-21 2001-10-25 Microgistics, Inc. Spread spectrum burst signal receiver and related methods
US6381053B1 (en) * 1998-10-08 2002-04-30 Universite Laval Fast frequency hopping spread spectrum for code division multiple access communication networks (FFH-CDMA)
US20020105705A1 (en) * 2001-01-22 2002-08-08 Turpin Terry M. Optical CDMA communications system using OTDC device
US20020186435A1 (en) * 2000-09-26 2002-12-12 Isaac Shpantzer System and method for orthogonal frequency division multiplexed optical communication
US20030035187A1 (en) * 2000-03-09 2003-02-20 Richardson David John Optical receiver, optical receiving method and optical transmission system
US20030090767A1 (en) * 2001-11-15 2003-05-15 Hrl Laboratories, Llc Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator
US6608721B1 (en) * 2000-06-02 2003-08-19 Essex Corporation Optical tapped delay line
US20030156847A1 (en) * 2002-02-15 2003-08-21 Akihiko Nishiki Optical encoding method and encoder for optical code division multiplexing
US20040037500A1 (en) * 2002-08-26 2004-02-26 Yoo Sung-Joo Ben Optical code divistion multiple access network utilizing reconfigurable spectral phase coding
US20040047543A1 (en) * 2001-01-13 2004-03-11 Olli-Pekka Hiironen Ocdma network architectures, optical coders and methods for optical coding
US20040081463A1 (en) * 2002-10-29 2004-04-29 Kim Bong Kyu Optical CDMA transmitting apparatus and method for transmitting bipolar data
US20040091262A1 (en) * 2001-01-13 2004-05-13 Olli-Pekka Pohjola Method and optical coder for coding a signal in an optical fibre network
US20040170439A1 (en) * 2001-06-29 2004-09-02 Olli-Pekka Hiironen Method and apparatus for an optical cdma system
US20040208604A1 (en) * 2000-06-13 2004-10-21 Madsen Christi Kay Polarization mode dispersion compensator for optical fiber communication systems
US20040213579A1 (en) * 2002-11-04 2004-10-28 The Boeing Company Optical communication system using correlation receiver
US20040253002A1 (en) * 2003-06-16 2004-12-16 Naoki Minato Optical receiver
US20040264695A1 (en) * 2002-11-19 2004-12-30 Essex Corp. Private and secure optical communication system using an optical tapped delay line
US20040264977A1 (en) * 2001-11-15 2004-12-30 Daniel Yap Method and apparatus for waveform generation
US20040264965A1 (en) * 2003-06-26 2004-12-30 Shuko Kobayashi Optical code division multiplex transmission method and optical code division multiplex transmission device
US6865344B1 (en) * 1999-11-12 2005-03-08 Intel Corporation Code-switched optical networks
US20050100338A1 (en) * 2003-11-11 2005-05-12 Younghee Yeon Two-dimensional wavelength/time optical CDMA system adopting balanced-modified pseudo random noise matrix codes
US20050226615A1 (en) * 2004-04-05 2005-10-13 The Boeing Company Phase-encoded optical code division multiple access
US20070110442A1 (en) * 2003-04-15 2007-05-17 Yeda Research And Development Company Ltd. Method and system for use in optical code division multiple access

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471202B2 (en) * 1997-10-03 2003-12-02 日本電信電話株式会社 Optical CDMA circuit
JP4525314B2 (en) * 2004-11-26 2010-08-18 沖電気工業株式会社 Optical code division multiplexing transmission / reception method and optical code division multiplexing transmission / reception apparatus

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779266A (en) * 1986-03-10 1988-10-18 Bell Communications Research, Inc. Encoding and decoding for code division multiple access communication systems
US4866699A (en) * 1987-06-22 1989-09-12 Bell Communications Research, Inc. Optical telecommunications system using code division multiple access
US5410147A (en) * 1992-08-20 1995-04-25 General Electric Company Optical communication system using coplanar light modulators
US5760941A (en) * 1996-02-29 1998-06-02 Rice University System and method for performing optical code division multiple access communication using bipolar codes
US6381053B1 (en) * 1998-10-08 2002-04-30 Universite Laval Fast frequency hopping spread spectrum for code division multiple access communication networks (FFH-CDMA)
US6865344B1 (en) * 1999-11-12 2005-03-08 Intel Corporation Code-switched optical networks
US20010010739A1 (en) * 2000-01-06 2001-08-02 Koichi Takiguchi CDMA encoder-decoder, CDMA communication system, WDM-CDMA communication system
US20010033603A1 (en) * 2000-01-21 2001-10-25 Microgistics, Inc. Spread spectrum burst signal receiver and related methods
US20030035187A1 (en) * 2000-03-09 2003-02-20 Richardson David John Optical receiver, optical receiving method and optical transmission system
US6608721B1 (en) * 2000-06-02 2003-08-19 Essex Corporation Optical tapped delay line
US20040208604A1 (en) * 2000-06-13 2004-10-21 Madsen Christi Kay Polarization mode dispersion compensator for optical fiber communication systems
US20020186435A1 (en) * 2000-09-26 2002-12-12 Isaac Shpantzer System and method for orthogonal frequency division multiplexed optical communication
US20040047543A1 (en) * 2001-01-13 2004-03-11 Olli-Pekka Hiironen Ocdma network architectures, optical coders and methods for optical coding
US20040091262A1 (en) * 2001-01-13 2004-05-13 Olli-Pekka Pohjola Method and optical coder for coding a signal in an optical fibre network
US20020105705A1 (en) * 2001-01-22 2002-08-08 Turpin Terry M. Optical CDMA communications system using OTDC device
US20040170439A1 (en) * 2001-06-29 2004-09-02 Olli-Pekka Hiironen Method and apparatus for an optical cdma system
US20040264977A1 (en) * 2001-11-15 2004-12-30 Daniel Yap Method and apparatus for waveform generation
US20030090767A1 (en) * 2001-11-15 2003-05-15 Hrl Laboratories, Llc Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator
US20030156847A1 (en) * 2002-02-15 2003-08-21 Akihiko Nishiki Optical encoding method and encoder for optical code division multiplexing
US20040037500A1 (en) * 2002-08-26 2004-02-26 Yoo Sung-Joo Ben Optical code divistion multiple access network utilizing reconfigurable spectral phase coding
US7068881B2 (en) * 2002-08-26 2006-06-27 The Regents Of The University Of California Optical code division multiple access network utilizing reconfigurable spectral phase coding
US20040081463A1 (en) * 2002-10-29 2004-04-29 Kim Bong Kyu Optical CDMA transmitting apparatus and method for transmitting bipolar data
US20040213579A1 (en) * 2002-11-04 2004-10-28 The Boeing Company Optical communication system using correlation receiver
US20040264695A1 (en) * 2002-11-19 2004-12-30 Essex Corp. Private and secure optical communication system using an optical tapped delay line
US20070110442A1 (en) * 2003-04-15 2007-05-17 Yeda Research And Development Company Ltd. Method and system for use in optical code division multiple access
US20040253002A1 (en) * 2003-06-16 2004-12-16 Naoki Minato Optical receiver
US20040264965A1 (en) * 2003-06-26 2004-12-30 Shuko Kobayashi Optical code division multiplex transmission method and optical code division multiplex transmission device
US20050100338A1 (en) * 2003-11-11 2005-05-12 Younghee Yeon Two-dimensional wavelength/time optical CDMA system adopting balanced-modified pseudo random noise matrix codes
US20050226615A1 (en) * 2004-04-05 2005-10-13 The Boeing Company Phase-encoded optical code division multiple access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Galli et al: "DWDM-Compatible Spectrally Phase Encoded Optical CDMA", GLOBECOM 2004, Vol. 3, 29 Nov.-3 Dec. 2004, pages 1888-1894 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329693A1 (en) * 2009-06-30 2010-12-30 Verizon Patent And Licensing Inc. Multi dimension high security communication over multi mode fiber waveguide
US8417069B2 (en) * 2009-06-30 2013-04-09 Verizon Patent And Licensing Inc. Multi dimension high security communication over multi mode fiber waveguide
US20130075629A1 (en) * 2010-03-24 2013-03-28 Olympus Corporation Terahertz wave generator
US20130195447A1 (en) * 2012-01-27 2013-08-01 Futurewei Technologies, Co. Spectral Encoding of an Optical Label or Destination
US9054827B2 (en) 2012-01-27 2015-06-09 Futurewei Technologies, Inc. Optical switching device using spectral trigger
US9136969B2 (en) * 2012-01-27 2015-09-15 Futurewei Technologies, Inc. Spectral encoding of an optical label or destination
US9178644B2 (en) 2012-01-27 2015-11-03 Futurewei Technologies, Inc. Spectral encoding of an optical label or destination
CN104113307A (en) * 2014-07-07 2014-10-22 北京交通大学 All-optical clock frequency multiplication device and frequency multiplication method based on device

Also Published As

Publication number Publication date
CA2597031C (en) 2012-10-23
JP2008530962A (en) 2008-08-07
WO2007053172A2 (en) 2007-05-10
JP4612058B2 (en) 2011-01-12
EP1854229A4 (en) 2011-04-20
US20070036553A1 (en) 2007-02-15
CA2597031A1 (en) 2007-05-10
US7729616B2 (en) 2010-06-01
EP1854229A2 (en) 2007-11-14
EP1854229B1 (en) 2014-07-23
WO2007053172A3 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US7729616B2 (en) Phase chip frequency-bins optical code division multiple access
US7574144B2 (en) Spectrally phase encoded optical code division multiple access system
Heritage et al. Advances in spectral optical code-division multiple-access communications
US7620328B2 (en) Multi-wavelength optical CDMA with differential encoding and bipolar differential detection
Etemad et al. Spectrally efficient optical CDMA using coherent phase-frequency coding
WO1996013104A9 (en) All-optical processing in communications systems
US20080107430A1 (en) Mixed phase and wavelength coded optical code division multiple access system
US8699883B2 (en) Variable spectral phase encoder/decoder based on decomposition of hadamard codes
Glesk et al. Incoherent ultrafast OCDMA receiver design with 2 ps all-optical time gate to suppress multiple-access interference
US7773882B2 (en) Optical code-routed networks
US20100086313A1 (en) Optical Signal Phase Regenerator for Formats of Differential Modulation with Phase Changes
Delfyett et al. Phase Chip Frequency-Bins Optical Code Division Multiple Access
Ellis et al. Coherent WDM: The achievement of high information spectral density through phase control within the transmitter
Teh Applications of superstructure fibre Bragg gratings for optical code division multiple access and packet switched networks
Toliver et al. Coherent Optical CDMA Systems
Kim et al. SOA-based transmission of 10 Gb/s WDM signals over 500 km of NZDSF using wavelength modulation technique
Toliver et al. 5 Coherent Optical CDMA
Abuhelala Investigation of the impact of fibre impairments and SOA-based devices on 2D-WH/TS OCDMA codes
Gao Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application
Dexter Noise suppression in OCDMA networks using nonlinear optical Devices
Yang Multiple access interference cancellation in optical code division multiple access
Idris The impact of WH/TS codes in implementing incoherent OCDMA system
Keating et al. All-optical selection of 160-Mb/s channels from a 51.2-Gb/s data-stream
Toliver et al. Optical code division multiplexing for confidentiality at the photonic layer in metro networks and beyond
Yoshino et al. Simultaneous OCDM signal transmission over multiple WDM channels using Mach-Zehnder interferometric selector

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELCORDIA TECHNOLOGIES, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ETEMAD, SHAHAB;TOLIVER, PAUL;JACKEL, JANET LEHR;AND OTHERS;SIGNING DATES FROM 20050317 TO 20050323;REEL/FRAME:024018/0814

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION