US20100280560A1 - Reducing Instrument for Spinal Surgery - Google Patents

Reducing Instrument for Spinal Surgery Download PDF

Info

Publication number
US20100280560A1
US20100280560A1 US12/825,064 US82506410A US2010280560A1 US 20100280560 A1 US20100280560 A1 US 20100280560A1 US 82506410 A US82506410 A US 82506410A US 2010280560 A1 US2010280560 A1 US 2010280560A1
Authority
US
United States
Prior art keywords
portions
instrument
implant
arm
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/825,064
Other versions
US20110245884A9 (en
US8105329B2 (en
Inventor
David L. Brumfield
Keith E. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
Warsaw Orthopedic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Warsaw Orthopedic Inc filed Critical Warsaw Orthopedic Inc
Priority to US12/825,064 priority Critical patent/US8105329B2/en
Publication of US20100280560A1 publication Critical patent/US20100280560A1/en
Publication of US20110245884A9 publication Critical patent/US20110245884A9/en
Application granted granted Critical
Publication of US8105329B2 publication Critical patent/US8105329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B7/00Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
    • B25B7/18Adjusting means for the operating arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7083Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
    • A61B17/7086Rod reducers, i.e. devices providing a mechanical advantage to allow a user to force a rod into or onto an anchor head other than by means of a rod-to-bone anchor locking element; rod removers
    • A61B17/7088Rod reducers, i.e. devices providing a mechanical advantage to allow a user to force a rod into or onto an anchor head other than by means of a rod-to-bone anchor locking element; rod removers wherein the rod is moved transverse to the axis of the bone anchor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B7/00Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
    • B25B7/02Jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B7/00Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
    • B25B7/14Locking means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2804Surgical forceps with two or more pivotal connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • A61B17/7034Screws or hooks with U-shaped head or back through which longitudinal rods pass characterised by a lateral opening

Definitions

  • a sturdy rod, plate, or other elongated connecting member can be placed along one or more vertebral segments to support or hold the segments in a corrected position.
  • Bone screws, bone hooks or other fixation implants are attached to vertebrae and connected to the connecting member to secure the connecting member along the spinal column.
  • fixation implants and the connecting member(s) are placed separately, that is, they are not connected together prior to implantation in the body.
  • bone screws may be implanted into vertebrae first, connectors may be placed on or around the screws (if necessary), and then the connecting member may be placed into the body.
  • the connecting member may be contoured prior to insertion to approximate the curvature desired, or it may be contoured after placement adjacent the spine.
  • the connecting member and screws may be required to be forced toward each other for connection.
  • the process of moving the connecting member and fixation elements toward each other for connection is generally termed “reduction.”
  • FIG. 1 is a perspective view of an embodiment of an instrument according to the present invention.
  • FIG. 2 is an exploded perspective view of the embodiment shown in FIG. 1 .
  • FIG. 3 is another view of the embodiment shown in FIG. 1 in substantially a reverse perspective from that shown in FIG. 1 , with certain parts shown in exploded fashion.
  • FIG. 4 is a top plan view of an embodiment of an arm portion of the embodiment shown in FIG. 1 .
  • FIG. 5 is a side plan view of the embodiment shown in FIG. 4 .
  • FIG. 6 is a partial cross-sectional view of the embodiment shown in FIG. 4 , taken along the line 6 - 6 in FIG. 5 and viewed in the direction of the arrows.
  • FIG. 7 is a top plan view of an embodiment of an arm portion of the embodiment shown in FIG. 1 .
  • FIG. 8 is a cross-section view of the embodiment shown in FIG. 7 , taken along the line 8 - 8 in FIG. 7 and viewed in the direction of the arrows.
  • FIG. 9 is a side plan view of the embodiment shown in FIG. 7 .
  • FIG. 10 is a bottom plan view of the embodiment shown in FIG. 7 .
  • FIG. 11 is a side view of an embodiment of an instrument in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 12 is a side view of the embodiment shown in FIG. 11 in relation to a reduced orthopedic rod.
  • FIG. 13A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 13B is a side view of the embodiment shown in FIG. 13A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 14A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 14B is a side view of the embodiment shown in FIG. 14A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 15A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 15B is a side view of the embodiment shown in FIG. 15A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 16A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 16B is a side view of the embodiment shown in FIG. 16A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 17 is a side view of another embodiment of an instrument according to the present invention.
  • FIG. 18 is a perspective view of an arm portion of another embodiment of an instrument according to the present invention.
  • FIG. 19 is side view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 20 is side view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • a reducing instrument 20 that is removably engageable to an implant (e.g. a bone screw or other anchor) and operable to move a rod or other elongated connecting member and the implant toward each other.
  • Reducing instrument 20 includes handle portions 22 and 24 , springs 26 and 28 , and arm portions 30 and 32 .
  • Use of instrument 20 allows good visibility of the implant and remote or sideward positioning of the reducing instrument in alignment with the implant.
  • Handle portion 22 is generally elongated, having a generally proximal end 40 and a generally distal end 42 .
  • Proximal end 40 may be pivotally connected to a toothed bar 44 .
  • Toothed bar 44 may be pivotally connected at 46 to a ratchet post 48 , having a slot 49 , which is pivotally connected to proximal end 40 of handle portion 22 .
  • Handle portion 22 may also have a thickened portion 50 to provide a guide for the surgeon's hand, to provide a more stable or secure connection to bar 44 and/or ratchet post 48 if they are present, or for other purposes.
  • Handle portion 22 also includes hole 52 through which handle portion 22 can be connected to handle portion 24 .
  • Hole 52 is formed through a part-circular portion 53 that extends from an inside surface of handle portion 22 . Portion 53 is thinner than handle portion 22 and is substantially centered on handle portion 22 . Hole 52 is generally between proximal end 40 and distal end 42 ; in the illustrated embodiment hole 52 is relatively close to or adjacent distal end 42 .
  • a forked portion 54 is provided at distal end 42 , for connecting to an arm portion, as further described below.
  • Forked portion 54 includes holes 55 a and 55 b , one of which (e.g. 55 a ) may be threaded.
  • Handle portion 24 is generally elongated, having a generally proximal end 60 and a generally distal end 62 .
  • Proximal end 60 may include a pawl 64 for engaging toothed bar 44 .
  • a release lever 66 having a handle 68 and a contact surface 70 may be pivotally connected to proximal end 60 . Pressing on handle 68 causes lever 66 to pivot so that contact surface 70 pushes against bar 44 to disengage bar 44 from pawl 64 , allowing handle portions 22 and 24 to be spaced apart.
  • Handle portion 24 also includes a groove 72 that makes distal end 62 generally divided or forked.
  • Holes 74 a and 74 b through which handle portion 24 can be connected to handle portion 22 are provided generally between proximal end 60 and distal end 62 , and in the illustrated embodiment adjacent distal end 62 .
  • Holes 74 a and 74 b are formed through part-circular portions 76 a and 76 b that extend from an inside surface of handle portion 24 .
  • Forked distal end 62 also includes holes 78 a and 78 b for connecting to an arm portion, as further described below.
  • One or both of holes 78 a and 78 b may be threaded.
  • spring 26 and 28 are provided to bias handle portions 22 and 24 apart.
  • Spring 26 is attached at or adjacent to an end 90 to handle portion 22 relatively close to proximal end 40 , as by a set screw 91 or other connector.
  • Spring 28 is attached at or adjacent to an end 92 to handle portion 24 relatively close to proximal end 60 , as by a set screw 91 or other connector.
  • Springs 26 and 28 may interengage, for example via a tongue-and-groove type of engagement. In that configuration, spring 26 may have a tongue portion 94 at the end opposite end 90 , and spring 28 may have a groove 96 at the end opposite end 92 .
  • spring 26 When springs 26 and 28 are attached to handle portions 22 and 24 , tongue 94 extends into and/or through groove 96 .
  • spring 26 may have a tab 98 at or adjacent to end 90 that can be inserted in slot 49 of ratchet post 46 .
  • Tab 98 acts as a spring to apply a force on bar 44 to maintain bar 44 in contact with pawl 64 . It will be seen that only one leaf spring, such as spring 26 (with or without tongue 94 or tab 98 ) may be provided for biasing handle portions 22 and 24 apart, or one or more coil or other springs may be provided, or other appropriate structure for biasing handle portions 22 and 24 apart.
  • Arm portion 30 is an elongated piece having a proximal end 110 and a distal end 112 .
  • a relatively thin part-circular portion 114 is provided at or adjacent proximal end 110 with a hole 116 for connecting to hole 54 of handle portion 22 .
  • Arm portion 30 also includes a grooved or forked portion 118 generally between proximal end 110 and distal end 112 and in the illustrated embodiment adjacent proximal end 112 .
  • Holes 120 a and 120 b through which arm portion 30 can be connected to arm portion 32 are provided in forked portion 118 .
  • Holes 120 a and 120 b are formed through part-circular portions 121 a and 121 b that extend from an inside surface of arm portion 30 .
  • One or both of holes 120 a and 120 b may be threaded.
  • Distal end 112 has a substantially U-shaped portion 122 having extension portions 124 and 126 and cross-pieces 128 and 130 .
  • extension portions 124 and 126 are substantially parallel to each other, and are substantially perpendicular to cross-pieces 128 and 130 .
  • Cross piece 128 in one embodiment, is essentially a lateral extension of the main part of arm portion 30 , and may have an indentation 129 through which a screwdriver or other tool can be extended to reach an implant, as for example to apply a locking member such as a set screw to the implant.
  • Cross-piece 130 may include a tab 132 generally extending toward cross-piece 128 , which may be at least partially curved, e.g.
  • Cross-piece 130 may also include an indentation 131 similar to indentation 129 and for a similar purpose.
  • Extension portions 124 and 126 include substantially part-cylindrical hollows 134 and 136 , respectively. Hollows 134 and 136 are linear, i.e. the axes of the cylinders of which hollows 134 and 136 are a part are collinear, and hollows 134 and 136 may be of a size and curvature to accommodate an orthopedic rod, e.g. forming a substantially semi-circular (180-degree) section.
  • arm portion 30 has a longitudinal axis L.
  • U-shaped portion 122 is laterally offset from axis L, and may be offset in a direction substantially perpendicular to axis L. U-shaped portion 122 may also be angled with respect to axis L, in a particular embodiment so that U-shaped portion 122 bends toward arm portion 32 . Such an angle ⁇ may be about 160 degrees in one embodiment.
  • Arm portion 32 is an elongated piece having a proximal end 140 and a distal end 142 .
  • a relatively thin part-circular portion 144 is provided at or adjacent proximal end 140 with a hole 145 for connecting to holes 78 a and 78 b of handle portion 24 .
  • Arm portion 30 also includes another relatively thin part-circular portion 146 with a hole 148 generally between proximal end 140 and distal end 142 and extending from an inside surface of arm portion 32 , and in the illustrated embodiment adjacent proximal end 142 .
  • Portion 146 fits within forked portion 118 of arm portion 30 so that hole 148 communicates with holes 120 a and 120 b.
  • Distal end 142 has a substantially U-shaped portion 152 having extension portions 154 and 156 and cross-piece 158 .
  • extension portions 154 and 156 are substantially parallel to each other, and are substantially perpendicular to cross-piece 158 .
  • Cross piece 158 in one embodiment, is essentially a lateral extension of the main part of arm portion 32 .
  • Extension portions 154 and 156 include protrusions 160 and 162 that may be substantially cylindrical.
  • Protrusions 160 and 162 may be substantially linear, i.e. the axes of protrusions 160 and 162 are collinear, and may be relatively thin or short.
  • Protrusions 160 and 162 are for connecting to indentations or hollows in an implant, and therefore they may be configured to accommodate the shape, depth and/or other features of such indentations or hollows.
  • arm portion 32 has a longitudinal axis M.
  • U-shaped portion 152 can be laterally offset from axis M, and may be offset in a direction substantially perpendicular to axis M. As with portion 122 of arm 30 , U-shaped portion 152 could also be angled with respect to axis M in another plane.
  • instrument 20 is assembled generally as follows. Handle portions 22 and 24 are connected by inserting thin portion 53 of handle portion 22 into grooved portion 72 of handle portion 24 so that hole 52 of handle portion 22 communicates with holes 74 a and 74 b of handle portion 24 .
  • An axle for example a rivet, pin or set screw (e.g. set screws 170 in FIG. 3 ), can be inserted through holes 52 , 74 a and 74 b and secured so that handle portions 22 and 24 can pivot with respect to each other around such an axle.
  • a set screw may be used as the axle, with the relative advantage that the interacting threads tend to retain the set screw within the holes.
  • a separate retaining piece such as a ring to fit into a groove of an axle, or an additional step to retain the axle within the holes, such as swaging or peening part of the axle, can be included.
  • connection of handle portions 22 and 24 should account for connections of associated parts that may be present.
  • handle portion 22 includes toothed bar 44 and handle portion 24 includes pawl 64
  • connection of handle portions 22 and 24 should ensure that bar 44 and pawl 64 connect.
  • lever 66 should be proximate to or abut bar 44 .
  • connection of handle portions 22 and 24 should ensure that the one or more springs are proximate to or abut each other or the opposing handle portion so that biasing apart of the handle portions 22 and 24 occurs.
  • leaf springs 26 and 28 should be arranged so that tongue 94 of spring 26 is at least partially within groove 96 of spring 28 .
  • Arm portions 30 and 32 are connected to each other, and each is connected to one of the handle portions 22 and 24 , substantially as described above.
  • Thin portion 146 of arm portion 32 is inserted into grooved portion 118 of arm portion 30 so that hole 148 of arm portion 32 communicates with holes 120 a and 120 b of arm portion 30 .
  • An axle as described above can be inserted through holes 148 , 120 a and 120 b and secured so that arm portions 22 and 24 can pivot with respect to each other around such an axle.
  • a set screw (e.g. set screws 170 in FIG. 3 ) may be used as such an axle, particularly in embodiments in which at least one of holes 148 , 120 a and 120 b are at least partially threaded.
  • Arm portion 30 is connected to handle portion 22 by inserting thin portion 114 of arm portion 30 into the forked end 54 of handle portion 22 , so that hole 116 of arm portion 30 communicates with holes 55 a and 55 b of handle portion 22 .
  • An axle as described above can be inserted through holes 116 , 55 a and 55 b and secured so that arm portion 30 and handle portion 22 can pivot with respect to each other around such an axle.
  • a set screw e.g. set screws 170 in FIG. 3
  • Arm portion 32 is connected to handle portion 24 by inserting thin portion 144 of arm portion 32 into the forked end of handle portion 24 , so that hole 145 of arm portion 32 communicates with holes 78 a and 78 b of handle portion 24 .
  • An axle as described above can be inserted through holes 145 , 78 a and 78 b and secured so that arm portion 32 and handle portion 24 can pivot with respect to each other around such an axle.
  • a set screw (e.g. set screws 170 in FIG. 3 ) may be used as such an axle, particularly in embodiments in which at least one of holes 145 , 78 a and 78 b are at least partially threaded.
  • arm portions 30 and 32 can be connected to each other, then to individual handle portions 22 and 24 , with the final connection being that between handle portions 22 and 24 .
  • handle portions 22 and 24 can be connected together first, then to arm portions 30 and 32 , with arm portions 30 and 32 being either separate or already connected.
  • the instrument 20 can be assembled as indicated above and in FIGS. 1-3 , with distal portions 112 and 142 of arms 30 and 32 offset to the left when handle portion 22 is substantially atop handle portion 24 . That positioning occurs when handle portion 22 is directly connected to arm 30 and handle portion 24 is directly connected to arm 32 .
  • Instrument 20 can also be assembled so that arm 30 is directly connected to handle portion 24 , and arm 32 is directly connected to handle portion 22 .
  • distal portions 112 and 142 of arms 30 and 32 are offset to the left when handle portion 24 is substantially atop handle portion 22 , as in FIGS. 11-12 .
  • squeezing handle portions 22 and 24 together causes rotation of handle portions 22 and 24 with respect to each other, so that their respective distal ends 42 and 62 move apart. As distal ends 42 and 62 move apart, the proximal parts of arm portions 30 and 32 also move apart. By virtue of the pivoting connection of arm portions 30 and 32 , when the proximal parts of arm portions 30 and 32 move apart, their respective distal portions 112 and 142 move together. Thus, by squeezing handle portions 22 and 24 together, the distal portions 112 and 142 are forced together.
  • instrument 20 to engage an implant and rod or other connecting member and seat the connecting member in the implant anchor will now be described with respect to operation on a spinal column.
  • Alternative uses with respect to other bony structures or other tissues can be made.
  • an incision is made and access is gained to the surgical site.
  • the approach to the surgical site can be an open approach, i.e. a relatively long incision with retraction of underlying tissue.
  • the instrument disclosed herein can be used in such an approach, or with other surgical techniques.
  • anchors such as those including a receiver member 180 are inserted into bone tissue.
  • Such anchors may be pre-fitted with receiver member 180 or other receiver member embodiment, and such anchors typically include a bone engaging portion 182 and a channel 183 for accommodating part of rod R.
  • a channel 183 may point substantially to the side as shown in the figures, or may open to the back of the anchor, or be otherwise oriented.
  • Such receiver members may also be placed on or over engaging portions after engagement of the engaging portions into bone, and may be multi-axial, pivotable or otherwise adjustable with respect to such engaging portions.
  • a connecting member, such as rod R is inserted into the surgical site, and placed adjacent one or more of the anchors.
  • receiver members 180 may be loosely placed on the connecting member prior to insertion of the connecting member to the surgical site.
  • the anchors and connecting member are manipulated so that a part of the connecting member is in or near the each of the anchors.
  • Receiver member 180 can include a pair of branches 184 which generally form channel 183 therebetween.
  • Instrument 20 may be used with a variety of anchors or implants, including those known previously in the art and those disclosed in U.S. patent application Ser. Nos. 11/000,585 filed on Nov. 30, 2004 and 11/000,846 filed Dec. 1, 2004 and, respectively entitled SIDE-LOADING ADJUSTABLE BONE ANCHOR and SIDE-LOADING BONE ANCHOR, which are incorporated herein by reference in their entireties.
  • rod R After engagement of the implant to a vertebra, rod R is positioned adjacent the implant. It is contemplated that a number of implants can be positioned and engaged along the spinal column, and the rod engaged in a channel or other area of one of the implants. Due to misalignment of vertebrae, misalignment of the implants, or other conditions, the rod may not be easily or readily positioned in one or more implants.
  • instrument 20 may be introduced to reduce or force the rod into the implant.
  • handle portions 22 and 24 in an unstressed state, i.e. biased away from each other or otherwise spread apart, distal ends 112 and 142 of arm portions 30 and 32 are also spread apart.
  • Distal ends 112 and 142 are placed around the combination of rod R and receiver member 180 , so that distal end 112 is adjacent to or abutting a surface of rod R relatively distant from receiver member 180 , and distal end 142 is adjacent to or abutting a surface of receiver member 180 relatively distant from rod R.
  • distal end 142 includes protrusion(s) 162
  • such protrusion(s) 162 are inserted or maneuvered into hollow(s) or aperture(s) in receiver member 180 .
  • distal end 142 may be provided with one or more hollows 162 ′, e.g. in extensions 154 and/or 156 , to accommodate such protrusions.
  • instrument 20 can pivot or rotate with respect to receiver member 180 , as seen in one example in FIGS. 11-12 .
  • a distal portion of arm 32 changes angle with respect to the anchor or implant, as in FIG. 11 that portion of arm 32 is at an oblique angle with respect to engaging portion 182 , and in FIG. 12 that portion of arm 32 is substantially parallel to engaging portion 182 .
  • Such pivoting or rotation around protrusion(s) 162 or hollow(s) 162 ′ may force rod R generally toward the bone or substantially perpendicular to a bone surface (downward as seen in FIG. 11 ) and/or generally toward receiver member 180 .
  • such pivoting may force rod R generally obliquely with respect to a longitudinal axis of implant 180 , or in a direction that has at least a component parallel to a longitudinal axis of implant 180 .
  • Such pivoting or rotation can occur in this embodiment as may be necessary for rod reduction.
  • Handle portions 22 and 24 are then squeezed together, which as discussed above forces distal ends 112 and 142 of arm portions 30 and 32 toward each other. Forcing together distal ends 112 and 142 causes rod R and receiver member 180 to move relative to each other so that they become nearer to each other. In many cases, the rod will undergo all or substantially all of such relative movement, and the implant (which is anchored to a bone) will remain relatively stationary. However, it will be appreciated that in some uses the surgeon would prefer the bone and implant to undergo movement toward the rod, for example in some cases of significant vertebral misalignment, and thus instrument 20 can cause such movement of the implant, perhaps with direct manipulation of the bone by the surgeon.
  • Distal end 112 of arm portion 30 is configured to be able to force rod R into receiver member 180 to the greatest degree desired, because cross pieces 128 and 130 are spaced apart so as to interfere minimally or not at all with branches 184 of receiver member 180 .
  • branches 184 enter the gaps between cross pieces 128 and 130 , allowing distal end 112 to press the rod toward or to the back of the implant, if that is desired.
  • rod R is reduced into channel 183 of receiver member 180 .
  • the rod is locked into the implant using structure (e.g. set screw, cap, clamp) provided with the implant, as for example by inserting the structure and an appropriate tool through indentations 129 and 131 to the implant.
  • Instrument 20 may be removed from contact with the rod and the implant after such locking, or before if the rod will remain at least approximately in the position desired by the surgeon.
  • the surgeon may press lever 68 , which pivots to push toothed bar 44 away from pawl 64 .
  • Springs 26 and 28 then act to push handle portions 22 and 24 apart, per their normal bias, and distal portions 112 and 142 of arm portions 30 and 32 come away from the rod and the implant. The surgeon may then move to reduction of the rod into another implant, or may remove instrument 20 from the surgical site to perform other tasks or conclude the surgical procedure.
  • FIGS. 13A-13B illustrate a portion of a reducing instrument 220 according to another embodiment.
  • instrument 220 includes arm portions 30 and 232 .
  • Instrument 220 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28 , and connected as described in with respect to previous embodiments, as are other embodiments described below.
  • instrument 220 may include a toothed bar and pawl assembly, as previously described.
  • Arm portion 232 is an elongated piece having a proximal end 240 and a distal end 242 . It should be appreciated that arm portion 232 connects with a corresponding handle portion in a substantially similar manner as arm portion 32 connects with handle portion 24 .
  • Distal end 242 has an extension portion 254 .
  • Extension portion 254 may generally increase in width from a proximal point 254 a to a distal point 254 b .
  • extension portion 254 includes one section of increasing width; however, it should be appreciated that extension portion 254 can be configured differently.
  • Extension portion 254 includes an approximately 90 degree bend in the illustrated embodiment at bend point 260 between a proximal portion 262 and a distal portion 264 .
  • the extension portion 254 may bend in a direction toward an anchor, with distal portion 264 being substantially perpendicular to proximal portion 262 .
  • Distal portion 264 includes a section 266 , which is generally cylindrical in one particular embodiment, at distal point 254 b .
  • Section 266 can be configured to contact an anchor, such as anchor 270 . It should be appreciated that instrument 220 may be used with a variety of anchors or implants. Additionally, section 266 can be larger or smaller to fittingly contact various sized channels in various anchors or implants.
  • anchor 270 includes a receiver portion 280 and an engaging portion 282 .
  • receiver portion 280 includes a first channel 283 and a second channel 284 .
  • Part of a rod R can be accommodated in one of channels 283 or 284 , depending on which channel is closer to or more exposed to rod R.
  • rod R is to be loaded into channel 283 , and therefore section 266 of instrument 220 can be inserted into channel 284 in order to reduce or force rod R toward or into channel 283 .
  • Receiver portion 280 in the illustrated embodiment is integral with respect to engaging portion 282 .
  • a threaded cap (not shown) can thread onto receiver portion 280 to hold rod(s) or other elongated members with respect to receiver member 280 .
  • FIGS. 14A-14B illustrate a portion of instrument 220 used in conjunction with an anchor 370 including a receiver member 380 and an engaging portion 382 .
  • Anchor 370 is substantially similar in structure and function to the anchors previously described herein (e.g. those shown in FIGS. 11-12 ).
  • Receiver member 380 includes a first channel 383 for accommodating part of rod R. Such a channel 383 may point substantially to the side as shown in the figures, or may open to the back of a similar anchor, or be otherwise oriented.
  • receiver member 380 also includes a second channel 384 for accommodating part of segment 266 .
  • FIG. 15A-15B illustrate a portion of another embodiment of a reducing instrument 420 .
  • Instrument 420 includes arm portions 30 and 432 .
  • Instrument 420 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28 .
  • instrument 420 may include a toothed bar and pawl assembly, as previously described.
  • Arm portion 432 is an elongated piece having a proximal portion 440 and a distal end 442 in the illustrated embodiment. It should be appreciated that arm portion 432 connects with a corresponding handle portion in a substantially similar manner as arm portion 32 connects with handle portion 24 .
  • Distal end 442 includes an extension portion 454 .
  • Extension portion 454 may generally increase in width from a proximal point 454 a to a distal point 454 b .
  • extension portion 454 includes one section of increasing width; however, it should be appreciated that extension portion 454 can be configured differently.
  • Extension portion 454 includes extension pieces 455 and 456 , and a cross piece 458 .
  • extension pieces 455 and 456 are substantially parallel to each other and to the body of arm 432 , and are substantially perpendicular to cross-piece 458 .
  • the extension pieces are connected at distal point 454 b with a section 466 that is substantially cylindrical in the illustrated embodiment.
  • Section 466 is configured to contact an anchor, such as anchor 270 .
  • Section 466 can be larger or smaller to fittingly contact various sized channels in various anchors or implants.
  • instrument 420 is used in conjunction with an anchor 270 including receiver member 280 and engaging portion 282 .
  • Extension pieces 455 . 456 , cross-piece 458 , and section 466 all generally define a gap 468 .
  • Gap 468 is sufficiently sized and configured to admit one of the anchor branches defining second channel 284 of anchor 270 .
  • FIGS. 16A-16B illustrate a portion of instrument 420 used in conjunction with an anchor 370 including receiver member 380 and engaging portion 382 .
  • Receiver member 380 also includes second channel 384 for accommodating part of cylindrical segment 466 .
  • FIG. 17 illustrates another embodiment of a reducing instrument 520 .
  • Instrument 520 includes handle portions 22 and 24 , springs 26 and 28 , and arm portions 530 and 532 . Additionally, instrument 520 may include a toothed bar 44 and a pawl 64 , as previously described.
  • arm portions 530 and 532 connect with handle portions 22 and 24 , respectively, in a substantially similar manner as arm portions 30 and 32 connect with the handle portions.
  • Arm portions 530 and 532 have proximal ends 530 a and 532 a , and distal ends 530 b and 532 b , respectively.
  • arm portions 530 and 532 each include sections of curvature 540 and 542 , respectively, positioned between the proximal and distal ends.
  • the sections of curvature prevent interference with various tissues and/or other structures or materials within or adjacent to the patient or the surgical site.
  • Distal ends 530 b and 532 b can be sized and configured in a manner as previously described to contact and engage an anchor and rod or other connecting member and seat the connecting member in the anchor.
  • sections 540 , 542 are generally positioned in the same plane as the handle portions and arm portions.
  • sections of curvature 540 , 542 generally open in a direction from one arm portion to the other arm portion.
  • section 540 opens towards section 542
  • concave portions of sections 540 and 542 face in generally the same direction (e.g. the left as shown in FIG. 17 ).
  • sections 540 , 542 can be arranged, oriented or configured differently.
  • FIG. 18 illustrates a portion of an arm 630 of a reducing instrument in another embodiment.
  • Arm 630 includes a proximal end (not shown) that may be similar or identical to ends of arms described above, and a distal end 612 .
  • Distal end 612 includes extension portions 624 and 626 (similar to extensions 134 and 136 and those shown in FIGS. 13A , 14 A, 15 A and 16 A), which may include part-cylindrical hollows 634 and 636 , respectively.
  • Hollows 634 and 636 are linear, e.g.
  • hollows 634 , 636 may be of a size and curvature to accommodate an orthopedic rod R.
  • hollows 634 , 636 each form a substantially quarter-circular (90-degree) section 640 , with an adjacent straight segment 642 .
  • the absence of a lower lip on one or both hollows 634 , 636 can encourage accommodation of an angled rod, e.g. one not perpendicular to extension portions 624 and 626 when their instrument is inserted to the surgical site, or other elongated members of various configurations.
  • FIG. 19 illustrates a portion of a reducing instrument 720 in another embodiment.
  • Instrument 720 includes arm portions 30 and 732 .
  • Instrument 720 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28 .
  • instrument 720 may include a toothed bar and pawl assembly, as previously described.
  • Arm portion 732 is an elongated piece having a proximal end 740 and a distal end 742 . It should be appreciated that arm portion 732 connects with a corresponding handle portion in a substantially similar mariner as arm portion 32 connects with handle portion 24 .
  • a protrusion 766 is disposed on arm portion 732 at distal end 742 .
  • protrusion 766 is spherical; however, it should be appreciated that protrusion 766 can be configured differently.
  • Protrusion 766 is configured to contact an anchor 770 , similar in configuration to anchor 370 .
  • anchor 770 can include a recess configured to receive a portion of protrusion 766 .
  • protrusion 766 extends the width of arm portion 732 .
  • arm portion 732 may include two extension portions, and a protrusion such as protrusion 766 , disposed on each distal end of the extension portions.
  • FIG. 20 illustrates a portion of a reducing instrument 820 according to another embodiment.
  • Instrument 820 includes arm portions 30 and 832 .
  • Instrument 820 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28 .
  • instrument 820 may include a toothed bar and pawl assembly, as previously described.
  • Arm portion 832 is an elongated piece having a proximal end 840 and a distal end 842 . It should be appreciated that arm portion 832 connects with a corresponding handle portion in a substantially similar manner as arm portion 32 connects with handle portion 24 .
  • a protrusion 866 is disposed on an anchor 870 , similar in configuration to anchor 370 .
  • Protrusion 866 is shown to be spherical in one embodiment; however, it should be appreciated that protrusion 866 can be configured differently. Protrusion 866 is positioned on the receiver portion of anchor 870 , opposite a channel for receiving a portion of an orthopedic rod R or other elongated member. In certain embodiments, the arm portion includes a recess 890 at distal end 842 configured to receive a portion of protrusion 866 .
  • arm portion 832 of reducing instrument 820 could include a recess configured to receive a portion of a receiver member of an anchor (e.g. anchor 370 ).
  • the recess in the arm portion would fittingly contact a portion of a receiver member of an anchor, the portion being opposite a channel configured to receive an orthopedic rod.
  • protrusion 866 may be absent and the recess in the arm portion partially surrounds the receiver member of the anchor.
  • the recess may include a generally spherical configuration or another such appropriate configuration.
  • the recess in the arm portion, and the portion of the receiver member contacting the recess in the arm portion would generally include similar degrees of curvature so that the arm portion would fittingly contact the anchor.
  • the assembly and operation of reducing instruments 220 , 420 , 520 , 720 , and 820 is substantially similar to the assembly and operation of reducing instrument 120 described above.
  • the arm portions of the reducing instruments 220 , 420 , 520 , 720 , and 820 connect to each other in a substantially similar manner as arm portions 30 and 32 connect together.
  • anchors such as those including receiver members 280 or 380 are inserted into bone tissue.
  • receiver members may also be placed on or over engaging portions after engagement of the engaging portions into bone, and may be multi-axial, pivotable or otherwise adjustable with respect to such engaging portions.
  • a connecting member such as rod R, is inserted into the surgical site, and placed adjacent one or more of the anchors.
  • the anchors and connecting member are manipulated so that a part of the connecting member is in or near the each of the anchors, and such manipulation can be accomplished using embodiments of reducing instruments such as those described above.
  • the instruments may be used with a variety of anchors or implants, including those known previously in the art and those described above.
  • Instrument 220 engages an implant and rod or other connecting member to insert or seat the connecting member in the implant.
  • Such operation can include reducing or forcing the rod into the implant once the rod is positioned adjacent the implant into which the rod is to be placed or seated.
  • the distal ends of the arm portions are placed around the rod and the receiver member of the anchor.
  • the handle portions are squeezed together, forcing the distal ends of the arm portions towards each other, and causing the rod and the receiver member to become nearer to each other and eventually for the rod to be inserted into the receiver member.
  • the toothed bar and pawl assemblies interact to maintain the handle portions squeezed together. Once the rod is positioned, the rod can be locked into the implant anchor. A lever, if provided, can be pressed to disengage the toothed bar from the pawl, and the handle portions can be moved apart (e.g. by springs, if present) to enable removal of instrument 220 from the surgical site.
  • a rod may be reduced into a channel of the anchor or its receiver member.
  • the anchors and connecting member may be positioned in or along one or more parts of the spine, including the cervical, thoracic, lumbar and/or sacral portions.
  • the use of embodiments of instruments is described in the above context, such embodiments and others could be used with a variety of screws, hooks or other fixation implants, or in connection with orthopedic implants in parts of the body other than the spine.
  • inventions and others may be made of stainless steel, certain hard plastics, or other materials that are compatible with surgical procedures and the implants and rods with which they are used.
  • Features particularly described above in connection with one embodiment may be used or incorporated into other embodiments.
  • arm configurations or distal end configurations shown in one figure could be used in connection with apparatus shown in other figures.

Abstract

An instrument is provided for use in orthopedic surgery for reduction of a connecting member such as a spinal rod toward an implant such as a bone screw. An embodiment of the instrument includes handle portions that are pivotable relative to each other and biased apart, and arm portions pivotable relative to each other and to the handle portions. Distal portions of the arm portions, which may be offset from the arm portions, provide structure for engaging a connecting member and an implant. Squeezing the handle portions force the distal portions of the arm portions together, forcing together the connecting member and the implant. A toothed bar and pawl may be provided to retain the instrument in a squeezed state.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation in part of and claims priority to U.S. patent application Ser. No. 11/043,318, filed Jan. 26, 2005.
  • BACKGROUND
  • In orthopedic surgical procedures, it is known to implant devices to support bones or other tissue, to correct deformities, to hold tissues in position for healing after injuries or other surgery, and for other purposes relating to orthopedic health. For example, where correction of a scoliotic or other abnormal curvature or misalignment of the spine is desired, a sturdy rod, plate, or other elongated connecting member can be placed along one or more vertebral segments to support or hold the segments in a corrected position. Bone screws, bone hooks or other fixation implants are attached to vertebrae and connected to the connecting member to secure the connecting member along the spinal column.
  • Commonly, the fixation implants and the connecting member(s) are placed separately, that is, they are not connected together prior to implantation in the body. For example, bone screws may be implanted into vertebrae first, connectors may be placed on or around the screws (if necessary), and then the connecting member may be placed into the body. The connecting member may be contoured prior to insertion to approximate the curvature desired, or it may be contoured after placement adjacent the spine. In cases where a connecting member and bone screws or other fixation elements are separately placed, the connecting member and screws may be required to be forced toward each other for connection. The process of moving the connecting member and fixation elements toward each other for connection is generally termed “reduction.”
  • Reduction can be accomplished by hand, although the environment and close quarters of a surgical site can make reduction by hand quite difficult. While instruments have been developed to provide a mechanical advantage in reducing or positioning the connecting member relative to an anchor, there remains a need for reducing instruments which are maneuverable relative to the anchor and connecting member to facilitate insertion and manipulation of the connecting member and anchor through the incision or portal in which the reducing instrument is positioned.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an embodiment of an instrument according to the present invention.
  • FIG. 2 is an exploded perspective view of the embodiment shown in FIG. 1.
  • FIG. 3 is another view of the embodiment shown in FIG. 1 in substantially a reverse perspective from that shown in FIG. 1, with certain parts shown in exploded fashion.
  • FIG. 4 is a top plan view of an embodiment of an arm portion of the embodiment shown in FIG. 1.
  • FIG. 5 is a side plan view of the embodiment shown in FIG. 4.
  • FIG. 6 is a partial cross-sectional view of the embodiment shown in FIG. 4, taken along the line 6-6 in FIG. 5 and viewed in the direction of the arrows.
  • FIG. 7 is a top plan view of an embodiment of an arm portion of the embodiment shown in FIG. 1.
  • FIG. 8 is a cross-section view of the embodiment shown in FIG. 7, taken along the line 8-8 in FIG. 7 and viewed in the direction of the arrows.
  • FIG. 9 is a side plan view of the embodiment shown in FIG. 7.
  • FIG. 10 is a bottom plan view of the embodiment shown in FIG. 7.
  • FIG. 11 is a side view of an embodiment of an instrument in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 12 is a side view of the embodiment shown in FIG. 11 in relation to a reduced orthopedic rod.
  • FIG. 13A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 13B is a side view of the embodiment shown in FIG. 13A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 14A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 14B is a side view of the embodiment shown in FIG. 14A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 15A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 15B is a side view of the embodiment shown in FIG. 15A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 16A is a perspective view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 16B is a side view of the embodiment shown in FIG. 16A in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 17 is a side view of another embodiment of an instrument according to the present invention.
  • FIG. 18 is a perspective view of an arm portion of another embodiment of an instrument according to the present invention.
  • FIG. 19 is side view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • FIG. 20 is side view of arm portions of another embodiment of an instrument according to the present invention in relation to an orthopedic rod and an orthopedic implant.
  • DESCRIPTION OF THE ILLUSTRATED EMBODIMENT
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any such alterations and further modifications in the illustrated device, and any such further applications of the principles of the invention as illustrated herein, are contemplated as would normally occur to one skilled in the art to which the invention relates.
  • Referring generally to the figures, there is shown a reducing instrument 20 that is removably engageable to an implant (e.g. a bone screw or other anchor) and operable to move a rod or other elongated connecting member and the implant toward each other. Reducing instrument 20 includes handle portions 22 and 24, springs 26 and 28, and arm portions 30 and 32. Use of instrument 20 allows good visibility of the implant and remote or sideward positioning of the reducing instrument in alignment with the implant.
  • Handle portion 22 is generally elongated, having a generally proximal end 40 and a generally distal end 42. Proximal end 40 may be pivotally connected to a toothed bar 44. Toothed bar 44 may be pivotally connected at 46 to a ratchet post 48, having a slot 49, which is pivotally connected to proximal end 40 of handle portion 22. Handle portion 22 may also have a thickened portion 50 to provide a guide for the surgeon's hand, to provide a more stable or secure connection to bar 44 and/or ratchet post 48 if they are present, or for other purposes. Handle portion 22 also includes hole 52 through which handle portion 22 can be connected to handle portion 24. Hole 52 is formed through a part-circular portion 53 that extends from an inside surface of handle portion 22. Portion 53 is thinner than handle portion 22 and is substantially centered on handle portion 22. Hole 52 is generally between proximal end 40 and distal end 42; in the illustrated embodiment hole 52 is relatively close to or adjacent distal end 42. A forked portion 54 is provided at distal end 42, for connecting to an arm portion, as further described below. Forked portion 54 includes holes 55 a and 55 b, one of which (e.g. 55 a) may be threaded.
  • Handle portion 24 is generally elongated, having a generally proximal end 60 and a generally distal end 62. Proximal end 60 may include a pawl 64 for engaging toothed bar 44. Further, a release lever 66 having a handle 68 and a contact surface 70 may be pivotally connected to proximal end 60. Pressing on handle 68 causes lever 66 to pivot so that contact surface 70 pushes against bar 44 to disengage bar 44 from pawl 64, allowing handle portions 22 and 24 to be spaced apart. Handle portion 24 also includes a groove 72 that makes distal end 62 generally divided or forked. Holes 74 a and 74 b through which handle portion 24 can be connected to handle portion 22 are provided generally between proximal end 60 and distal end 62, and in the illustrated embodiment adjacent distal end 62. Holes 74 a and 74 b are formed through part-circular portions 76 a and 76 b that extend from an inside surface of handle portion 24. Forked distal end 62 also includes holes 78 a and 78 b for connecting to an arm portion, as further described below. One or both of holes 78 a and 78 b (e.g. 78 a) may be threaded.
  • In the illustrated embodiment, two leaf springs 26 and 28 are provided to bias handle portions 22 and 24 apart. Spring 26 is attached at or adjacent to an end 90 to handle portion 22 relatively close to proximal end 40, as by a set screw 91 or other connector. Spring 28 is attached at or adjacent to an end 92 to handle portion 24 relatively close to proximal end 60, as by a set screw 91 or other connector. Springs 26 and 28 may interengage, for example via a tongue-and-groove type of engagement. In that configuration, spring 26 may have a tongue portion 94 at the end opposite end 90, and spring 28 may have a groove 96 at the end opposite end 92. When springs 26 and 28 are attached to handle portions 22 and 24, tongue 94 extends into and/or through groove 96. In one particular embodiment, spring 26 may have a tab 98 at or adjacent to end 90 that can be inserted in slot 49 of ratchet post 46. Tab 98 acts as a spring to apply a force on bar 44 to maintain bar 44 in contact with pawl 64. It will be seen that only one leaf spring, such as spring 26 (with or without tongue 94 or tab 98) may be provided for biasing handle portions 22 and 24 apart, or one or more coil or other springs may be provided, or other appropriate structure for biasing handle portions 22 and 24 apart.
  • Arm portion 30 is an elongated piece having a proximal end 110 and a distal end 112. A relatively thin part-circular portion 114 is provided at or adjacent proximal end 110 with a hole 116 for connecting to hole 54 of handle portion 22. Arm portion 30 also includes a grooved or forked portion 118 generally between proximal end 110 and distal end 112 and in the illustrated embodiment adjacent proximal end 112. Holes 120 a and 120 b through which arm portion 30 can be connected to arm portion 32 are provided in forked portion 118. Holes 120 a and 120 b are formed through part- circular portions 121 a and 121 b that extend from an inside surface of arm portion 30. One or both of holes 120 a and 120 b (e.g. 120 a) may be threaded.
  • Distal end 112 has a substantially U-shaped portion 122 having extension portions 124 and 126 and cross-pieces 128 and 130. In the illustrated embodiment, extension portions 124 and 126 are substantially parallel to each other, and are substantially perpendicular to cross-pieces 128 and 130. Cross piece 128, in one embodiment, is essentially a lateral extension of the main part of arm portion 30, and may have an indentation 129 through which a screwdriver or other tool can be extended to reach an implant, as for example to apply a locking member such as a set screw to the implant. Cross-piece 130 may include a tab 132 generally extending toward cross-piece 128, which may be at least partially curved, e.g. to provide a surface with a curvature approximating that of an orthopedic rod. Cross-piece 130 may also include an indentation 131 similar to indentation 129 and for a similar purpose. Extension portions 124 and 126 include substantially part- cylindrical hollows 134 and 136, respectively. Hollows 134 and 136 are linear, i.e. the axes of the cylinders of which hollows 134 and 136 are a part are collinear, and hollows 134 and 136 may be of a size and curvature to accommodate an orthopedic rod, e.g. forming a substantially semi-circular (180-degree) section. In a particular embodiment, arm portion 30 has a longitudinal axis L. U-shaped portion 122 is laterally offset from axis L, and may be offset in a direction substantially perpendicular to axis L. U-shaped portion 122 may also be angled with respect to axis L, in a particular embodiment so that U-shaped portion 122 bends toward arm portion 32. Such an angle α may be about 160 degrees in one embodiment.
  • Arm portion 32 is an elongated piece having a proximal end 140 and a distal end 142. A relatively thin part-circular portion 144 is provided at or adjacent proximal end 140 with a hole 145 for connecting to holes 78 a and 78 b of handle portion 24. Arm portion 30 also includes another relatively thin part-circular portion 146 with a hole 148 generally between proximal end 140 and distal end 142 and extending from an inside surface of arm portion 32, and in the illustrated embodiment adjacent proximal end 142. Portion 146 fits within forked portion 118 of arm portion 30 so that hole 148 communicates with holes 120 a and 120 b.
  • Distal end 142 has a substantially U-shaped portion 152 having extension portions 154 and 156 and cross-piece 158. In the illustrated embodiment, extension portions 154 and 156 are substantially parallel to each other, and are substantially perpendicular to cross-piece 158. Cross piece 158, in one embodiment, is essentially a lateral extension of the main part of arm portion 32. Extension portions 154 and 156 include protrusions 160 and 162 that may be substantially cylindrical. Protrusions 160 and 162 may be substantially linear, i.e. the axes of protrusions 160 and 162 are collinear, and may be relatively thin or short. Protrusions 160 and 162 are for connecting to indentations or hollows in an implant, and therefore they may be configured to accommodate the shape, depth and/or other features of such indentations or hollows.
  • In a particular embodiment, arm portion 32 has a longitudinal axis M. U-shaped portion 152 can be laterally offset from axis M, and may be offset in a direction substantially perpendicular to axis M. As with portion 122 of arm 30, U-shaped portion 152 could also be angled with respect to axis M in another plane.
  • As has been suggested above, instrument 20 is assembled generally as follows. Handle portions 22 and 24 are connected by inserting thin portion 53 of handle portion 22 into grooved portion 72 of handle portion 24 so that hole 52 of handle portion 22 communicates with holes 74 a and 74 b of handle portion 24. An axle, for example a rivet, pin or set screw (e.g. set screws 170 in FIG. 3), can be inserted through holes 52, 74 a and 74 b and secured so that handle portions 22 and 24 can pivot with respect to each other around such an axle. In an embodiment in which at least one of holes 52, 74 a and 74 b are at least partially threaded, a set screw may be used as the axle, with the relative advantage that the interacting threads tend to retain the set screw within the holes. In other embodiments, a separate retaining piece, such as a ring to fit into a groove of an axle, or an additional step to retain the axle within the holes, such as swaging or peening part of the axle, can be included.
  • It will be seen that connection of handle portions 22 and 24 should account for connections of associated parts that may be present. For example, in embodiments in which handle portion 22 includes toothed bar 44 and handle portion 24 includes pawl 64, connection of handle portions 22 and 24 should ensure that bar 44 and pawl 64 connect. In embodiments including lever 66, lever 66 should be proximate to or abut bar 44. As another example, in embodiments in which handle portions 22 and/or 24 include springs, connection of handle portions 22 and 24 should ensure that the one or more springs are proximate to or abut each other or the opposing handle portion so that biasing apart of the handle portions 22 and 24 occurs. In one particular embodiment, as noted above leaf springs 26 and 28 should be arranged so that tongue 94 of spring 26 is at least partially within groove 96 of spring 28.
  • Arm portions 30 and 32 are connected to each other, and each is connected to one of the handle portions 22 and 24, substantially as described above. Thin portion 146 of arm portion 32 is inserted into grooved portion 118 of arm portion 30 so that hole 148 of arm portion 32 communicates with holes 120 a and 120 b of arm portion 30. An axle as described above can be inserted through holes 148, 120 a and 120 b and secured so that arm portions 22 and 24 can pivot with respect to each other around such an axle. A set screw (e.g. set screws 170 in FIG. 3) may be used as such an axle, particularly in embodiments in which at least one of holes 148, 120 a and 120 b are at least partially threaded. Arm portion 30 is connected to handle portion 22 by inserting thin portion 114 of arm portion 30 into the forked end 54 of handle portion 22, so that hole 116 of arm portion 30 communicates with holes 55 a and 55 b of handle portion 22. An axle as described above can be inserted through holes 116, 55 a and 55 b and secured so that arm portion 30 and handle portion 22 can pivot with respect to each other around such an axle. A set screw (e.g. set screws 170 in FIG. 3) may be used as such an axle, particularly in embodiments in which at least one of holes 116, 55 a and 55 b are at least partially threaded. Arm portion 32 is connected to handle portion 24 by inserting thin portion 144 of arm portion 32 into the forked end of handle portion 24, so that hole 145 of arm portion 32 communicates with holes 78 a and 78 b of handle portion 24. An axle as described above can be inserted through holes 145, 78 a and 78 b and secured so that arm portion 32 and handle portion 24 can pivot with respect to each other around such an axle. A set screw (e.g. set screws 170 in FIG. 3) may be used as such an axle, particularly in embodiments in which at least one of holes 145, 78 a and 78 b are at least partially threaded.
  • It will be seen that the several portions of embodiments of instrument 20 can be connected in a variety of orders. For example, arm portions 30 and 32 can be connected to each other, then to individual handle portions 22 and 24, with the final connection being that between handle portions 22 and 24. As another example, handle portions 22 and 24 can be connected together first, then to arm portions 30 and 32, with arm portions 30 and 32 being either separate or already connected. The instrument 20 can be assembled as indicated above and in FIGS. 1-3, with distal portions 112 and 142 of arms 30 and 32 offset to the left when handle portion 22 is substantially atop handle portion 24. That positioning occurs when handle portion 22 is directly connected to arm 30 and handle portion 24 is directly connected to arm 32. Instrument 20 can also be assembled so that arm 30 is directly connected to handle portion 24, and arm 32 is directly connected to handle portion 22. In that case, distal portions 112 and 142 of arms 30 and 32 are offset to the left when handle portion 24 is substantially atop handle portion 22, as in FIGS. 11-12.
  • In using the illustrated embodiment of instrument 20, it will be seen that squeezing handle portions 22 and 24 together causes rotation of handle portions 22 and 24 with respect to each other, so that their respective distal ends 42 and 62 move apart. As distal ends 42 and 62 move apart, the proximal parts of arm portions 30 and 32 also move apart. By virtue of the pivoting connection of arm portions 30 and 32, when the proximal parts of arm portions 30 and 32 move apart, their respective distal portions 112 and 142 move together. Thus, by squeezing handle portions 22 and 24 together, the distal portions 112 and 142 are forced together.
  • The operation of instrument 20 to engage an implant and rod or other connecting member and seat the connecting member in the implant anchor will now be described with respect to operation on a spinal column. Alternative uses with respect to other bony structures or other tissues can be made. As with other types of orthopedic surgery, an incision is made and access is gained to the surgical site. The approach to the surgical site can be an open approach, i.e. a relatively long incision with retraction of underlying tissue. The instrument disclosed herein can be used in such an approach, or with other surgical techniques.
  • After access to the surgical site has been obtained, anchors such as those including a receiver member 180 are inserted into bone tissue. Such anchors may be pre-fitted with receiver member 180 or other receiver member embodiment, and such anchors typically include a bone engaging portion 182 and a channel 183 for accommodating part of rod R. Such a channel 183 may point substantially to the side as shown in the figures, or may open to the back of the anchor, or be otherwise oriented. Such receiver members may also be placed on or over engaging portions after engagement of the engaging portions into bone, and may be multi-axial, pivotable or otherwise adjustable with respect to such engaging portions. A connecting member, such as rod R, is inserted into the surgical site, and placed adjacent one or more of the anchors. If not already present, receiver members 180 may be loosely placed on the connecting member prior to insertion of the connecting member to the surgical site. The anchors and connecting member are manipulated so that a part of the connecting member is in or near the each of the anchors. Receiver member 180 can include a pair of branches 184 which generally form channel 183 therebetween. Instrument 20 may be used with a variety of anchors or implants, including those known previously in the art and those disclosed in U.S. patent application Ser. Nos. 11/000,585 filed on Nov. 30, 2004 and 11/000,846 filed Dec. 1, 2004 and, respectively entitled SIDE-LOADING ADJUSTABLE BONE ANCHOR and SIDE-LOADING BONE ANCHOR, which are incorporated herein by reference in their entireties.
  • After engagement of the implant to a vertebra, rod R is positioned adjacent the implant. It is contemplated that a number of implants can be positioned and engaged along the spinal column, and the rod engaged in a channel or other area of one of the implants. Due to misalignment of vertebrae, misalignment of the implants, or other conditions, the rod may not be easily or readily positioned in one or more implants.
  • Once the rod is adjacent an implant into which the rod is to be placed or seated, instrument 20 may be introduced to reduce or force the rod into the implant. With handle portions 22 and 24 in an unstressed state, i.e. biased away from each other or otherwise spread apart, distal ends 112 and 142 of arm portions 30 and 32 are also spread apart. Distal ends 112 and 142 are placed around the combination of rod R and receiver member 180, so that distal end 112 is adjacent to or abutting a surface of rod R relatively distant from receiver member 180, and distal end 142 is adjacent to or abutting a surface of receiver member 180 relatively distant from rod R. In the embodiment in which distal end 142 includes protrusion(s) 162, such protrusion(s) 162 are inserted or maneuvered into hollow(s) or aperture(s) in receiver member 180. In an alternative embodiment in which receiver member 180 includes one or more side protrusions rather than hollow(s), distal end 142 may be provided with one or more hollows 162′, e.g. in extensions 154 and/or 156, to accommodate such protrusions.
  • Where protrusion(s) 162 or hollow(s) 162′ are provided and are substantially rounded or cylindrical and fit with corresponding parts of receiver member 180, as previously described, instrument 20 can pivot or rotate with respect to receiver member 180, as seen in one example in FIGS. 11-12. In that example, a distal portion of arm 32 changes angle with respect to the anchor or implant, as in FIG. 11 that portion of arm 32 is at an oblique angle with respect to engaging portion 182, and in FIG. 12 that portion of arm 32 is substantially parallel to engaging portion 182. The axis of rotation in that example substantially corresponds with protrusion(s) 162 or hollow(s) 162′, is different from the axes around which arms 22, 24, 30 and 32 pivot, and is substantially parallel to the axis of channel 183 of receiver member 180. Such pivoting or rotation around protrusion(s) 162 or hollow(s) 162′ may force rod R generally toward the bone or substantially perpendicular to a bone surface (downward as seen in FIG. 11) and/or generally toward receiver member 180. In other words, such pivoting may force rod R generally obliquely with respect to a longitudinal axis of implant 180, or in a direction that has at least a component parallel to a longitudinal axis of implant 180. Such pivoting or rotation can occur in this embodiment as may be necessary for rod reduction.
  • Handle portions 22 and 24 are then squeezed together, which as discussed above forces distal ends 112 and 142 of arm portions 30 and 32 toward each other. Forcing together distal ends 112 and 142 causes rod R and receiver member 180 to move relative to each other so that they become nearer to each other. In many cases, the rod will undergo all or substantially all of such relative movement, and the implant (which is anchored to a bone) will remain relatively stationary. However, it will be appreciated that in some uses the surgeon would prefer the bone and implant to undergo movement toward the rod, for example in some cases of significant vertebral misalignment, and thus instrument 20 can cause such movement of the implant, perhaps with direct manipulation of the bone by the surgeon.
  • Squeezing of handle portions 22 and 24 is continued until distal ends 112 and 142 of arm portions 30 and 32 force rod R and receiver member 180 together to the extent desired by the surgeon. Toothed bar 44 and pawl 64 interact to maintain handle portions 22 and 24 (and thus arm portions 30 and 32) in a squeezed state, and keeping them from being biased apart if the surgeon's grip should loosen. In this way, instrument 20 can maintain pressure on a rod and implant while the surgeon rests his or her hand or performs another task. As rod R enters receiver member 180, distal end 112 of arm portion 30 approaches the implant (e.g. generally parallel to a bone or bone surface to which the implant is connected), and specifically branches 184 on either side of channel 183 or other area that accommodates the rod. Distal end 112 of arm portion 30 is configured to be able to force rod R into receiver member 180 to the greatest degree desired, because cross pieces 128 and 130 are spaced apart so as to interfere minimally or not at all with branches 184 of receiver member 180. Thus, as distal end 112 approaches branches 184 of receiver member 180, branches 184 enter the gaps between cross pieces 128 and 130, allowing distal end 112 to press the rod toward or to the back of the implant, if that is desired. Through such squeezing of instrument 20 or pivoting of instrument 20 with respect to receiver member 180, or a combination of the two motions, rod R is reduced into channel 183 of receiver member 180.
  • Once the rod is positioned as the surgeon desires in the implant, the rod is locked into the implant using structure (e.g. set screw, cap, clamp) provided with the implant, as for example by inserting the structure and an appropriate tool through indentations 129 and 131 to the implant. Instrument 20 may be removed from contact with the rod and the implant after such locking, or before if the rod will remain at least approximately in the position desired by the surgeon. When it is desired to remove or loosen the contact of instrument 20 with the rod and/or the implant, the surgeon may press lever 68, which pivots to push toothed bar 44 away from pawl 64. Springs 26 and 28 then act to push handle portions 22 and 24 apart, per their normal bias, and distal portions 112 and 142 of arm portions 30 and 32 come away from the rod and the implant. The surgeon may then move to reduction of the rod into another implant, or may remove instrument 20 from the surgical site to perform other tasks or conclude the surgical procedure.
  • FIGS. 13A-13B illustrate a portion of a reducing instrument 220 according to another embodiment. In that embodiment, instrument 220 includes arm portions 30 and 232. Instrument 220 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28, and connected as described in with respect to previous embodiments, as are other embodiments described below. Additionally, instrument 220 may include a toothed bar and pawl assembly, as previously described. Arm portion 232 is an elongated piece having a proximal end 240 and a distal end 242. It should be appreciated that arm portion 232 connects with a corresponding handle portion in a substantially similar manner as arm portion 32 connects with handle portion 24.
  • Distal end 242 has an extension portion 254. Extension portion 254 may generally increase in width from a proximal point 254 a to a distal point 254 b. In the illustrated embodiment, extension portion 254 includes one section of increasing width; however, it should be appreciated that extension portion 254 can be configured differently. Extension portion 254 includes an approximately 90 degree bend in the illustrated embodiment at bend point 260 between a proximal portion 262 and a distal portion 264. The extension portion 254 may bend in a direction toward an anchor, with distal portion 264 being substantially perpendicular to proximal portion 262. Distal portion 264 includes a section 266, which is generally cylindrical in one particular embodiment, at distal point 254 b. Section 266 can be configured to contact an anchor, such as anchor 270. It should be appreciated that instrument 220 may be used with a variety of anchors or implants. Additionally, section 266 can be larger or smaller to fittingly contact various sized channels in various anchors or implants.
  • In the illustrated embodiment, anchor 270 includes a receiver portion 280 and an engaging portion 282. In certain embodiments, receiver portion 280 includes a first channel 283 and a second channel 284. Part of a rod R can be accommodated in one of channels 283 or 284, depending on which channel is closer to or more exposed to rod R. In the illustrated embodiment, rod R is to be loaded into channel 283, and therefore section 266 of instrument 220 can be inserted into channel 284 in order to reduce or force rod R toward or into channel 283. Receiver portion 280 in the illustrated embodiment is integral with respect to engaging portion 282. A threaded cap (not shown) can thread onto receiver portion 280 to hold rod(s) or other elongated members with respect to receiver member 280.
  • FIGS. 14A-14B illustrate a portion of instrument 220 used in conjunction with an anchor 370 including a receiver member 380 and an engaging portion 382. Anchor 370 is substantially similar in structure and function to the anchors previously described herein (e.g. those shown in FIGS. 11-12). Receiver member 380 includes a first channel 383 for accommodating part of rod R. Such a channel 383 may point substantially to the side as shown in the figures, or may open to the back of a similar anchor, or be otherwise oriented. In certain embodiments, receiver member 380 also includes a second channel 384 for accommodating part of segment 266.
  • FIG. 15A-15B illustrate a portion of another embodiment of a reducing instrument 420. Instrument 420 includes arm portions 30 and 432. Instrument 420 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28. Additionally, instrument 420 may include a toothed bar and pawl assembly, as previously described. Arm portion 432 is an elongated piece having a proximal portion 440 and a distal end 442 in the illustrated embodiment. It should be appreciated that arm portion 432 connects with a corresponding handle portion in a substantially similar manner as arm portion 32 connects with handle portion 24.
  • Distal end 442 includes an extension portion 454. Extension portion 454 may generally increase in width from a proximal point 454 a to a distal point 454 b. In the illustrated embodiment, extension portion 454 includes one section of increasing width; however, it should be appreciated that extension portion 454 can be configured differently. Extension portion 454 includes extension pieces 455 and 456, and a cross piece 458. In the illustrated embodiment, extension pieces 455 and 456 are substantially parallel to each other and to the body of arm 432, and are substantially perpendicular to cross-piece 458. The extension pieces are connected at distal point 454 b with a section 466 that is substantially cylindrical in the illustrated embodiment. Section 466 is configured to contact an anchor, such as anchor 270. Section 466 can be larger or smaller to fittingly contact various sized channels in various anchors or implants.
  • In the embodiment illustrated in FIGS. 15A and 15B, instrument 420 is used in conjunction with an anchor 270 including receiver member 280 and engaging portion 282. Extension pieces 455. 456, cross-piece 458, and section 466 all generally define a gap 468. Gap 468 is sufficiently sized and configured to admit one of the anchor branches defining second channel 284 of anchor 270.
  • FIGS. 16A-16B illustrate a portion of instrument 420 used in conjunction with an anchor 370 including receiver member 380 and engaging portion 382. Receiver member 380 also includes second channel 384 for accommodating part of cylindrical segment 466.
  • FIG. 17 illustrates another embodiment of a reducing instrument 520. Instrument 520 includes handle portions 22 and 24, springs 26 and 28, and arm portions 530 and 532. Additionally, instrument 520 may include a toothed bar 44 and a pawl 64, as previously described. It should be appreciated that arm portions 530 and 532 connect with handle portions 22 and 24, respectively, in a substantially similar manner as arm portions 30 and 32 connect with the handle portions. Arm portions 530 and 532 have proximal ends 530 a and 532 a, and distal ends 530 b and 532 b, respectively. Additionally, arm portions 530 and 532 each include sections of curvature 540 and 542, respectively, positioned between the proximal and distal ends. In certain embodiments, the sections of curvature prevent interference with various tissues and/or other structures or materials within or adjacent to the patient or the surgical site. Distal ends 530 b and 532 b can be sized and configured in a manner as previously described to contact and engage an anchor and rod or other connecting member and seat the connecting member in the anchor.
  • In some embodiments, sections 540, 542 are generally positioned in the same plane as the handle portions and arm portions. In other words, sections of curvature 540, 542 generally open in a direction from one arm portion to the other arm portion. In the illustrated embodiment, section 540 opens towards section 542, and concave portions of sections 540 and 542 face in generally the same direction (e.g. the left as shown in FIG. 17). However, it should be appreciated that sections 540, 542 can be arranged, oriented or configured differently.
  • FIG. 18 illustrates a portion of an arm 630 of a reducing instrument in another embodiment. Arm 630 includes a proximal end (not shown) that may be similar or identical to ends of arms described above, and a distal end 612. Distal end 612 includes extension portions 624 and 626 (similar to extensions 134 and 136 and those shown in FIGS. 13A, 14A, 15A and 16A), which may include part- cylindrical hollows 634 and 636, respectively. Hollows 634 and 636 are linear, e.g. the axes of the cylinders of which hollows 634, 636 are a part are collinear, and hollows 634, 636 may be of a size and curvature to accommodate an orthopedic rod R. In the illustrated embodiment, hollows 634, 636 each form a substantially quarter-circular (90-degree) section 640, with an adjacent straight segment 642. The absence of a lower lip on one or both hollows 634, 636, as in the illustrated embodiment, can encourage accommodation of an angled rod, e.g. one not perpendicular to extension portions 624 and 626 when their instrument is inserted to the surgical site, or other elongated members of various configurations.
  • FIG. 19 illustrates a portion of a reducing instrument 720 in another embodiment. Instrument 720 includes arm portions 30 and 732. Instrument 720 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28. Additionally, instrument 720 may include a toothed bar and pawl assembly, as previously described. Arm portion 732 is an elongated piece having a proximal end 740 and a distal end 742. It should be appreciated that arm portion 732 connects with a corresponding handle portion in a substantially similar mariner as arm portion 32 connects with handle portion 24. A protrusion 766 is disposed on arm portion 732 at distal end 742. In the illustrated embodiment, protrusion 766 is spherical; however, it should be appreciated that protrusion 766 can be configured differently. Protrusion 766 is configured to contact an anchor 770, similar in configuration to anchor 370. In certain embodiments, anchor 770 can include a recess configured to receive a portion of protrusion 766. In one embodiment, protrusion 766 extends the width of arm portion 732. In another embodiment, arm portion 732 may include two extension portions, and a protrusion such as protrusion 766, disposed on each distal end of the extension portions.
  • FIG. 20 illustrates a portion of a reducing instrument 820 according to another embodiment. Instrument 820 includes arm portions 30 and 832. Instrument 820 may further include handle portions and springs (not shown for clarity), similar in structure and function to handle portions 22 and 24 and springs 26 and 28. Additionally, instrument 820 may include a toothed bar and pawl assembly, as previously described. Arm portion 832 is an elongated piece having a proximal end 840 and a distal end 842. It should be appreciated that arm portion 832 connects with a corresponding handle portion in a substantially similar manner as arm portion 32 connects with handle portion 24. In the illustrated embodiment, a protrusion 866 is disposed on an anchor 870, similar in configuration to anchor 370. Protrusion 866 is shown to be spherical in one embodiment; however, it should be appreciated that protrusion 866 can be configured differently. Protrusion 866 is positioned on the receiver portion of anchor 870, opposite a channel for receiving a portion of an orthopedic rod R or other elongated member. In certain embodiments, the arm portion includes a recess 890 at distal end 842 configured to receive a portion of protrusion 866.
  • In an alternative embodiment, arm portion 832 of reducing instrument 820 could include a recess configured to receive a portion of a receiver member of an anchor (e.g. anchor 370). In such an embodiment, the recess in the arm portion would fittingly contact a portion of a receiver member of an anchor, the portion being opposite a channel configured to receive an orthopedic rod. In such an embodiment, protrusion 866 may be absent and the recess in the arm portion partially surrounds the receiver member of the anchor. The recess may include a generally spherical configuration or another such appropriate configuration. In such an embodiment, the recess in the arm portion, and the portion of the receiver member contacting the recess in the arm portion, would generally include similar degrees of curvature so that the arm portion would fittingly contact the anchor.
  • The assembly and operation of reducing instruments 220, 420, 520, 720, and 820 is substantially similar to the assembly and operation of reducing instrument 120 described above. As an example, the arm portions of the reducing instruments 220, 420, 520, 720, and 820 connect to each other in a substantially similar manner as arm portions 30 and 32 connect together.
  • Regarding the operation of embodiments of reducing instruments 220, 420, 520, 720, and 820, after access to the surgical site has been obtained, anchors such as those including receiver members 280 or 380 are inserted into bone tissue. Such receiver members may also be placed on or over engaging portions after engagement of the engaging portions into bone, and may be multi-axial, pivotable or otherwise adjustable with respect to such engaging portions. A connecting member, such as rod R, is inserted into the surgical site, and placed adjacent one or more of the anchors. The anchors and connecting member are manipulated so that a part of the connecting member is in or near the each of the anchors, and such manipulation can be accomplished using embodiments of reducing instruments such as those described above. The instruments may be used with a variety of anchors or implants, including those known previously in the art and those described above.
  • During operation, the embodiments of reducing instruments described above operate generally similarly to each other, and therefore for simplicity operation of the embodiment of instrument 220 will be described. These descriptions of operation and those given above apply to other embodiments as well. Instrument 220 engages an implant and rod or other connecting member to insert or seat the connecting member in the implant. Such operation can include reducing or forcing the rod into the implant once the rod is positioned adjacent the implant into which the rod is to be placed or seated. The distal ends of the arm portions are placed around the rod and the receiver member of the anchor. The handle portions are squeezed together, forcing the distal ends of the arm portions towards each other, and causing the rod and the receiver member to become nearer to each other and eventually for the rod to be inserted into the receiver member. The toothed bar and pawl assemblies, if present, interact to maintain the handle portions squeezed together. Once the rod is positioned, the rod can be locked into the implant anchor. A lever, if provided, can be pressed to disengage the toothed bar from the pawl, and the handle portions can be moved apart (e.g. by springs, if present) to enable removal of instrument 220 from the surgical site. Thus, through squeezing of an embodiment of the instrument or pivoting of an embodiment of the instrument with respect to an anchor or a receiver member or portion of an anchor, or a combination of the two motions, a rod may be reduced into a channel of the anchor or its receiver member.
  • As described above, the anchors and connecting member may be positioned in or along one or more parts of the spine, including the cervical, thoracic, lumbar and/or sacral portions. Although the use of embodiments of instruments is described in the above context, such embodiments and others could be used with a variety of screws, hooks or other fixation implants, or in connection with orthopedic implants in parts of the body other than the spine.
  • The above embodiments and others may be made of stainless steel, certain hard plastics, or other materials that are compatible with surgical procedures and the implants and rods with which they are used. Features particularly described above in connection with one embodiment may be used or incorporated into other embodiments. For example, arm configurations or distal end configurations shown in one figure could be used in connection with apparatus shown in other figures.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (5)

1-47. (canceled)
48. A method, comprising:
providing an instrument for reducing an elongated member to a channel in an orthopedic implant;
connecting an orthopedic implant having a channel for receiving an elongated member to a bone;
placing an elongated member proximate to said implant;
connecting a first portion of said instrument to said elongated member and a second portion of said instrument to said implant;
pivoting said second portion of said instrument so that said first portion urges said elongated member toward an alignment with said channel of said implant.
49. The method of claim 48, further comprising:
causing said first portion and said second portion to move generally toward each other so that said elongated member is forced toward said channel of said implant.
50. The method of claim 49, further comprising: forcing said elongated member into said channel; and locking said elongated member with respect to said implant.
51. The method of claim 50, further comprising:
disconnecting said instrument from said implant and said elongated member after performing said locking.
US12/825,064 2005-01-26 2010-06-28 Reducing instrument for spinal surgery Active US8105329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/825,064 US8105329B2 (en) 2005-01-26 2010-06-28 Reducing instrument for spinal surgery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/043,318 US7625376B2 (en) 2005-01-26 2005-01-26 Reducing instrument for spinal surgery
US11/236,339 US7744598B2 (en) 2005-01-26 2005-09-27 Reducing instrument for spinal surgery
US12/825,064 US8105329B2 (en) 2005-01-26 2010-06-28 Reducing instrument for spinal surgery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/236,339 Division US7744598B2 (en) 2005-01-26 2005-09-27 Reducing instrument for spinal surgery

Publications (3)

Publication Number Publication Date
US20100280560A1 true US20100280560A1 (en) 2010-11-04
US20110245884A9 US20110245884A9 (en) 2011-10-06
US8105329B2 US8105329B2 (en) 2012-01-31

Family

ID=36609000

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/043,318 Active 2027-08-13 US7625376B2 (en) 2005-01-26 2005-01-26 Reducing instrument for spinal surgery
US11/236,339 Active 2028-03-28 US7744598B2 (en) 2005-01-26 2005-09-27 Reducing instrument for spinal surgery
US12/825,064 Active US8105329B2 (en) 2005-01-26 2010-06-28 Reducing instrument for spinal surgery

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/043,318 Active 2027-08-13 US7625376B2 (en) 2005-01-26 2005-01-26 Reducing instrument for spinal surgery
US11/236,339 Active 2028-03-28 US7744598B2 (en) 2005-01-26 2005-09-27 Reducing instrument for spinal surgery

Country Status (4)

Country Link
US (3) US7625376B2 (en)
AU (1) AU2006208030A1 (en)
CA (1) CA2593809A1 (en)
WO (1) WO2006081375A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267957B1 (en) * 2007-12-14 2012-09-18 Holmed Corporation Compressor with extended ratchet bar feature
US8740915B2 (en) 2010-04-27 2014-06-03 DePuy Synthes Products, LLC Bone fixation systems and methods of use
US8936615B2 (en) 2010-04-27 2015-01-20 DePuy Synthes Products, LLC Bone fixation system including K-wire compression
US9480505B2 (en) 2012-08-23 2016-11-01 DePuy Synthes Products, Inc. Bi-planar persuader
US9700357B2 (en) 2003-09-24 2017-07-11 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US9763702B2 (en) 2012-11-16 2017-09-19 DePuy Synthes Products, Inc. Bone fixation assembly
DE102021113518A1 (en) 2021-05-26 2022-12-01 Aesculap Ag Medical instrument with cleaning-optimized spring unit

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910141A (en) 1997-02-12 1999-06-08 Sdgi Holdings, Inc. Rod introduction apparatus
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US6440133B1 (en) 2001-07-03 2002-08-27 Sdgi Holdings, Inc. Rod reducer instruments and methods
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US7887539B2 (en) * 2003-01-24 2011-02-15 Depuy Spine, Inc. Spinal rod approximators
US7988698B2 (en) 2003-01-28 2011-08-02 Depuy Spine, Inc. Spinal rod approximator
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US7967850B2 (en) 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8398682B2 (en) 2003-06-18 2013-03-19 Roger P. Jackson Polyaxial bone screw assembly
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8377102B2 (en) * 2003-06-18 2013-02-19 Roger P. Jackson Polyaxial bone anchor with spline capture connection and lower pressure insert
US8137386B2 (en) 2003-08-28 2012-03-20 Jackson Roger P Polyaxial bone screw apparatus
US8002798B2 (en) 2003-09-24 2011-08-23 Stryker Spine System and method for spinal implant placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7842044B2 (en) 2003-12-17 2010-11-30 Depuy Spine, Inc. Instruments and methods for bone anchor engagement and spinal rod reduction
US7824411B2 (en) 2003-12-17 2010-11-02 Depuy Spine, Inc. Instruments and methods for bone anchor engagement and spinal rod reduction
AU2004317551B2 (en) 2004-02-27 2008-12-04 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
JP2008519656A (en) 2004-11-10 2008-06-12 ロジャー・ピー・ジャクソン Helical guide and forward flange with break extension
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US8308782B2 (en) 2004-11-23 2012-11-13 Jackson Roger P Bone anchors with longitudinal connecting member engaging inserts and closures for fixation and optional angulation
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
WO2006057837A1 (en) 2004-11-23 2006-06-01 Jackson Roger P Spinal fixation tool attachment structure
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
US7625376B2 (en) * 2005-01-26 2009-12-01 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US7951175B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US8177817B2 (en) 2005-05-18 2012-05-15 Stryker Spine System and method for orthopedic implant configuration
US20060293692A1 (en) 2005-06-02 2006-12-28 Whipple Dale E Instruments and methods for manipulating a spinal fixation element
JP5215872B2 (en) * 2006-02-06 2013-06-19 ストライカー・スピン Apparatus and method for shaping a rod in a percutaneous pedicle screw extension
US20080045950A1 (en) * 2006-08-17 2008-02-21 Warsaw Orthopedic, Inc. Reducing device
CA2670988C (en) 2006-12-08 2014-03-25 Roger P. Jackson Tool system for dynamic spinal implants
AU2007333240A1 (en) * 2006-12-12 2008-06-19 Synthes Gmbh Crimp pliers
US10792074B2 (en) 2007-01-22 2020-10-06 Roger P. Jackson Pivotal bone anchor assemly with twist-in-place friction fit insert
US8465546B2 (en) * 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8172847B2 (en) 2007-03-29 2012-05-08 Depuy Spine, Inc. In-line rod reduction device and methods
US8979904B2 (en) 2007-05-01 2015-03-17 Roger P Jackson Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
US7887541B2 (en) * 2007-07-26 2011-02-15 Depuy Spine, Inc. Spinal rod reduction instruments and methods for use
US8025682B2 (en) 2007-08-31 2011-09-27 Depuy Spine, Inc. Method and system for securing a rod to a bone anchor with a connector
US8894690B2 (en) 2007-08-31 2014-11-25 DePuy Synthes Products, LLC Offset connection bone anchor assembly
US8900237B2 (en) 2007-08-31 2014-12-02 DePuy Synthes Products, LLC Minimally invasive guide system
US8057518B2 (en) 2007-08-31 2011-11-15 Depuy Spine, Inc. Spanning connector for connecting a spinal fixation element and an offset bone anchor
US8512343B2 (en) 2007-08-31 2013-08-20 DePuy Synthes Products, LLC Methods and instruments for approximating misaligned vertebra
US8790348B2 (en) 2007-09-28 2014-07-29 Depuy Spine, Inc. Dual pivot instrument for reduction of a fixation element and method of use
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
US8608746B2 (en) 2008-03-10 2013-12-17 DePuy Synthes Products, LLC Derotation instrument with reduction functionality
US20090281582A1 (en) * 2008-05-08 2009-11-12 Raul Villa Instrument for the reduction of a rod into position in a pedicle screw
US10973556B2 (en) 2008-06-17 2021-04-13 DePuy Synthes Products, Inc. Adjustable implant assembly
US8444649B2 (en) * 2008-07-07 2013-05-21 Depuy Spine, Inc. System and method for manipulating a spinal construct
JP2012529969A (en) 2008-08-01 2012-11-29 ロジャー・ピー・ジャクソン Longitudinal connecting member with tensioning cord with sleeve
US8128629B2 (en) * 2009-01-22 2012-03-06 Ebi, Llc Rod coercer
US8137357B2 (en) * 2009-01-22 2012-03-20 Ebi, Llc Rod coercer
US9089373B2 (en) * 2009-03-23 2015-07-28 Medical Design Instruments, Llc Spinous process retractor
US8900238B2 (en) * 2009-03-27 2014-12-02 Globus Medical, Inc. Devices and methods for inserting a vertebral fixation member
US8206394B2 (en) 2009-05-13 2012-06-26 Depuy Spine, Inc. Torque limited instrument for manipulating a spinal rod relative to a bone anchor
CN103826560A (en) 2009-06-15 2014-05-28 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US8425520B2 (en) 2009-10-30 2013-04-23 Depuy Spine, Inc. Bone plate holder
US8470003B2 (en) 2009-10-30 2013-06-25 DePuy Synthes Products, LLC Laminoplasty plates and methods of expanding the spinal canal
US8425515B2 (en) 2009-10-30 2013-04-23 Depuy Spine, Inc. Bone graft loading instruments and methods of connecting a bone graft to a bone plate
US20110106087A1 (en) * 2009-10-30 2011-05-05 Gamache Thomas J Bone Plate Holder
CN102340109A (en) * 2010-07-23 2012-02-01 上海市电力公司 Fuse carrying pliers
DE102010060101A1 (en) * 2010-09-20 2012-03-22 Aesculap Ag Spinal stabilization system and surgical device for temporarily stiffening a flexible intermediate portion of a spinal stabilization system connector
US8685029B2 (en) 2010-09-27 2014-04-01 DePuy Synthes Products, LLC Rod reduction instrument and methods of rod reduction
US8777953B1 (en) * 2010-10-06 2014-07-15 Greatbatch Ltd. Rocker mechanism
GB2507620A (en) 2010-11-02 2014-05-07 Roger P Jackson Polyaxial bone anchor with pop-on shank and pivotable retainer
WO2012128825A1 (en) 2011-03-24 2012-09-27 Jackson Roger P Polyaxial bone anchor with compound articulation and pop-on shank
US20130053834A1 (en) * 2011-08-30 2013-02-28 Alphatec Spine, Inc. Instrument for manipulating surgical implants
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US9034009B2 (en) 2012-05-01 2015-05-19 Covidien Lp Surgical forceps
EP2846718B1 (en) 2012-05-11 2019-11-20 OrthoPediatrics Corp. Surgical connectors and instrumentation
US9173695B2 (en) * 2012-07-24 2015-11-03 Paradigm Spine, Llc Bone fastener assembly instrument
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9510875B2 (en) 2013-03-14 2016-12-06 Stryker European Holdings I, Llc Systems and methods for percutaneous spinal fusion
US9827020B2 (en) 2013-03-14 2017-11-28 Stryker European Holdings I, Llc Percutaneous spinal cross link system and method
US9486256B1 (en) 2013-03-15 2016-11-08 Nuvasive, Inc. Rod reduction assemblies and related methods
US10136927B1 (en) 2013-03-15 2018-11-27 Nuvasive, Inc. Rod reduction assemblies and related methods
US9265533B2 (en) 2013-09-04 2016-02-23 Aesculap Implant Systems, Llc Rod persuader, system and method
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9744050B1 (en) 2013-12-06 2017-08-29 Stryker European Holdings I, Llc Compression and distraction system for percutaneous posterior spinal fusion
US9408716B1 (en) 2013-12-06 2016-08-09 Stryker European Holdings I, Llc Percutaneous posterior spinal fusion implant construction and method
US10159579B1 (en) 2013-12-06 2018-12-25 Stryker European Holdings I, Llc Tubular instruments for percutaneous posterior spinal fusion systems and methods
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9603719B2 (en) * 2014-03-03 2017-03-28 Scott Andrews Surgical extraction device
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
DE102014117176A1 (en) * 2014-11-24 2016-05-25 Aesculap Ag Pedicle screw system and spine stabilization system
WO2016094588A2 (en) 2014-12-09 2016-06-16 Heflin John A Spine alignment system
US10646213B2 (en) 2016-12-19 2020-05-12 Warsaw Orthopedic, Inc. Remote spinal manipulating assembly and method for remote spinal manipulation
US10779866B2 (en) 2016-12-29 2020-09-22 K2M, Inc. Rod reducer assembly
WO2018237276A1 (en) 2017-06-23 2018-12-27 Orthopediatrics Corp. Insertion apparatus for an intramedullary nail
USD894385S1 (en) 2017-10-27 2020-08-25 Orthopediatrics Corp. Orthopedic tool
US10966762B2 (en) 2017-12-15 2021-04-06 Medos International Sarl Unilateral implant holders and related methods
US11051861B2 (en) 2018-06-13 2021-07-06 Nuvasive, Inc. Rod reduction assemblies and related methods
US10285742B1 (en) 2018-06-22 2019-05-14 Avanti Orthopaedics Llc Bone manipulator system and method
US11291482B2 (en) 2019-03-21 2022-04-05 Medos International Sarl Rod reducers and related methods
USD1004774S1 (en) 2019-03-21 2023-11-14 Medos International Sarl Kerrison rod reducer
US11291481B2 (en) 2019-03-21 2022-04-05 Medos International Sarl Rod reducers and related methods
US11382671B2 (en) * 2019-06-25 2022-07-12 Warsaw Orthopedic, Inc. Surgical instrument and method
KR20210001822U (en) * 2020-02-03 2021-08-11 (주)이쿨 Supporing pin and locking tool for pipe connector
WO2023081425A1 (en) * 2021-11-05 2023-05-11 Astura Medical Inc. Lateral rod reducer

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604487A (en) * 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US3844291A (en) * 1973-04-26 1974-10-29 G Moen Grip device
US4411259A (en) * 1980-02-04 1983-10-25 Drummond Denis S Apparatus for engaging a hook assembly to a spinal column
US5020519A (en) * 1990-12-07 1991-06-04 Zimmer, Inc. Sagittal approximator
US5113685A (en) * 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
US5217497A (en) * 1990-07-04 1993-06-08 Mehdian Seyed M H Apparatus for use in the treatment of spinal disorders
US5314431A (en) * 1992-06-19 1994-05-24 Graziano Thomas A Surgical instrument used in conjunction with fixation of fractures or surgical osteotomies
US5330472A (en) * 1990-06-13 1994-07-19 Howmedica Gmbh Device for applying a tensional force between vertebrae of the human vertebral column
US5364397A (en) * 1993-06-01 1994-11-15 Zimmer, Inc. Spinal coupler seater with dual jaws and an independent plunger
US5389099A (en) * 1993-07-28 1995-02-14 Hartmeister; Ruben Keyhole rod bender
US5449361A (en) * 1993-04-21 1995-09-12 Amei Technologies Inc. Orthopedic cable tensioner
US5457057A (en) * 1994-06-28 1995-10-10 United Solar Systems Corporation Photovoltaic module fabrication process
US5458608A (en) * 1993-06-03 1995-10-17 Surgin Surgical Instrumentation Inc. Laparoscopic instruments and methods
US5466243A (en) * 1994-02-17 1995-11-14 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
US5474555A (en) * 1990-04-26 1995-12-12 Cross Medical Products Spinal implant system
US5554157A (en) * 1995-07-13 1996-09-10 Fastenetix, L.L.C. Rod securing polyaxial locking screw and coupling element assembly
US5616143A (en) * 1995-02-06 1997-04-01 Schlapfer; Johannes F. Surgical forceps
US5647873A (en) * 1995-04-13 1997-07-15 Fastenetix, L.L.C. Bicentric polyaxial locking screw and coupling element
US5690630A (en) * 1995-04-13 1997-11-25 Fastenetix, Llc Polyaxial pedicle screw
US5720751A (en) * 1996-11-27 1998-02-24 Jackson; Roger P. Tools for use in seating spinal rods in open ended implants
US5782830A (en) * 1995-10-16 1998-07-21 Sdgi Holdings, Inc. Implant insertion device
US5810878A (en) * 1997-02-12 1998-09-22 Sdgi Holdings, Inc. Rod introducer forceps
US5863293A (en) * 1996-10-18 1999-01-26 Spinal Innovations Spinal implant fixation assembly
US5899901A (en) * 1991-05-18 1999-05-04 Middleton; Jeffrey Keith Spinal fixation system
US5910141A (en) * 1997-02-12 1999-06-08 Sdgi Holdings, Inc. Rod introduction apparatus
US5944720A (en) * 1998-03-25 1999-08-31 Lipton; Glenn E Posterior spinal fixation system
US5964760A (en) * 1996-10-18 1999-10-12 Spinal Innovations Spinal implant fixation assembly
US6010503A (en) * 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
US6042582A (en) * 1997-05-20 2000-03-28 Ray; Charles D. Instrumentation and method for facilitating insertion of spinal implant
US6063088A (en) * 1997-03-24 2000-05-16 United States Surgical Corporation Method and instrumentation for implant insertion
US20020072752A1 (en) * 1998-10-20 2002-06-13 Zucherman James F. Interspinous process implant sizer and distractor with a split head and size indicator and method
US20020095153A1 (en) * 2001-09-12 2002-07-18 Jones Robert J. Spinal rod translation instrument
US6440137B1 (en) * 2000-04-18 2002-08-27 Andres A. Horvath Medical fastener cap system
US6440133B1 (en) * 2001-07-03 2002-08-27 Sdgi Holdings, Inc. Rod reducer instruments and methods
US6443953B1 (en) * 2000-02-08 2002-09-03 Cross Medical Products, Inc. Self-aligning cap nut for use with a spinal rod anchor
US6471705B1 (en) * 1999-08-02 2002-10-29 Lutz Biedermann Bone screw
US6520963B1 (en) * 2001-08-13 2003-02-18 Mckinley Lawrence M. Vertebral alignment and fixation assembly
US6551316B1 (en) * 2001-03-02 2003-04-22 Beere Precision Medical Instruments, Inc. Selective compression and distraction instrument
US6565565B1 (en) * 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US6648888B1 (en) * 2002-09-06 2003-11-18 Endius Incorporated Surgical instrument for moving a vertebra
US20030225408A1 (en) * 2002-06-04 2003-12-04 Howmedica Osteonics Corp. Apparatus for securing a spinal rod system
US6660006B2 (en) * 2002-04-17 2003-12-09 Stryker Spine Rod persuader
US6695843B2 (en) * 2000-12-22 2004-02-24 Biedermann Motech Gmbh Fixing element
US6726692B2 (en) * 2001-07-25 2004-04-27 Spinevision Ancillary for spinal osteosynthesis system and process for implanting a spinal osteosynthesis system using the said ancillary
US6755929B2 (en) * 2001-09-13 2004-06-29 Huei-Hsin Sun Method for adhering a titanium layer on material
US20040138662A1 (en) * 2002-10-30 2004-07-15 Landry Michael E. Spinal stabilization systems and methods
US20040147936A1 (en) * 2003-01-28 2004-07-29 Rosenberg William S. Spinal rod approximator
US20040193160A1 (en) * 2002-04-18 2004-09-30 Marc Richelsoph Screw and rod fixation asembly and device
US20040249378A1 (en) * 2001-10-04 2004-12-09 Saint Martin Pierre Henri Spinal osteosynthesis assembly comprising the head of an anchoring member and a tool for fixing said head
US6843791B2 (en) * 2003-01-10 2005-01-18 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
US20050154389A1 (en) * 2003-12-16 2005-07-14 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US20050192587A1 (en) * 2004-02-27 2005-09-01 Lim Roy K. Rod reducer
US20060009775A1 (en) * 2004-07-06 2006-01-12 Brian Dec Spinal rod insertion instrument
US20060025768A1 (en) * 2003-07-03 2006-02-02 Andy Iott Top loading spinal fixation device and instruments for loading and handling the same
US20060166535A1 (en) * 2005-01-26 2006-07-27 Brumfield David L Reducing instrument for spinal surgery
US20100043862A1 (en) * 2008-05-15 2010-02-25 Steven Thomas Croft Solar Panel Interconnection System
US7799031B2 (en) * 2005-02-09 2010-09-21 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684866B1 (en) 1991-12-12 1994-05-13 Jbs IMPROVEMENTS IN METHODS AND DEVICES FOR STRAIGHTENING, FIXING, COMPRESSION, ELONGATION OF THE RACHIS.
US5281223A (en) * 1992-09-21 1994-01-25 Ray R Charles Tool and method for derotating scoliotic spine
DE4238339C2 (en) 1992-11-13 1994-10-06 Peter Brehm Pedicle screw and holding hook for fixing a stiffening rod and instruments for adjusting and attaching the stiffening rod to the pedicle screw or holding hook
DE19903762C1 (en) * 1999-01-30 2000-11-16 Aesculap Ag & Co Kg Surgical instrument for inserting intervertebral implants
US6530929B1 (en) * 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
US6755829B1 (en) 2000-09-22 2004-06-29 Depuy Acromed, Inc. Lock cap anchor assembly for orthopaedic fixation
US7320689B2 (en) * 2003-07-15 2008-01-22 Cervitech, Inc. Multi-part cervical endoprosthesis with insertion instrument
US7597694B2 (en) * 2004-01-30 2009-10-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604487A (en) * 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US3844291A (en) * 1973-04-26 1974-10-29 G Moen Grip device
US4411259A (en) * 1980-02-04 1983-10-25 Drummond Denis S Apparatus for engaging a hook assembly to a spinal column
US5474555A (en) * 1990-04-26 1995-12-12 Cross Medical Products Spinal implant system
US5330472A (en) * 1990-06-13 1994-07-19 Howmedica Gmbh Device for applying a tensional force between vertebrae of the human vertebral column
US5217497A (en) * 1990-07-04 1993-06-08 Mehdian Seyed M H Apparatus for use in the treatment of spinal disorders
US5020519A (en) * 1990-12-07 1991-06-04 Zimmer, Inc. Sagittal approximator
US5113685A (en) * 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
US5899901A (en) * 1991-05-18 1999-05-04 Middleton; Jeffrey Keith Spinal fixation system
US5314431A (en) * 1992-06-19 1994-05-24 Graziano Thomas A Surgical instrument used in conjunction with fixation of fractures or surgical osteotomies
US5449361A (en) * 1993-04-21 1995-09-12 Amei Technologies Inc. Orthopedic cable tensioner
US5364397A (en) * 1993-06-01 1994-11-15 Zimmer, Inc. Spinal coupler seater with dual jaws and an independent plunger
US5458608A (en) * 1993-06-03 1995-10-17 Surgin Surgical Instrumentation Inc. Laparoscopic instruments and methods
US5389099A (en) * 1993-07-28 1995-02-14 Hartmeister; Ruben Keyhole rod bender
US5466243A (en) * 1994-02-17 1995-11-14 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
US5457057A (en) * 1994-06-28 1995-10-10 United Solar Systems Corporation Photovoltaic module fabrication process
US5616143A (en) * 1995-02-06 1997-04-01 Schlapfer; Johannes F. Surgical forceps
US5647873A (en) * 1995-04-13 1997-07-15 Fastenetix, L.L.C. Bicentric polyaxial locking screw and coupling element
US5817094A (en) * 1995-04-13 1998-10-06 Fastenetix, Llc Polyaxial locking screw and coupling element
US5690630A (en) * 1995-04-13 1997-11-25 Fastenetix, Llc Polyaxial pedicle screw
US5554157A (en) * 1995-07-13 1996-09-10 Fastenetix, L.L.C. Rod securing polyaxial locking screw and coupling element assembly
US5782830A (en) * 1995-10-16 1998-07-21 Sdgi Holdings, Inc. Implant insertion device
US5964760A (en) * 1996-10-18 1999-10-12 Spinal Innovations Spinal implant fixation assembly
US5863293A (en) * 1996-10-18 1999-01-26 Spinal Innovations Spinal implant fixation assembly
US5720751A (en) * 1996-11-27 1998-02-24 Jackson; Roger P. Tools for use in seating spinal rods in open ended implants
US5810878A (en) * 1997-02-12 1998-09-22 Sdgi Holdings, Inc. Rod introducer forceps
US5910141A (en) * 1997-02-12 1999-06-08 Sdgi Holdings, Inc. Rod introduction apparatus
US6036692A (en) * 1997-02-12 2000-03-14 Sdgi Holdings, Inc. Rod introducer forceps
US6063088A (en) * 1997-03-24 2000-05-16 United States Surgical Corporation Method and instrumentation for implant insertion
US6042582A (en) * 1997-05-20 2000-03-28 Ray; Charles D. Instrumentation and method for facilitating insertion of spinal implant
US5944720A (en) * 1998-03-25 1999-08-31 Lipton; Glenn E Posterior spinal fixation system
US6355040B1 (en) * 1998-04-03 2002-03-12 Spinal Innovations, L.L.C. Locking mechanism
US6010503A (en) * 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
US6565565B1 (en) * 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US20020072752A1 (en) * 1998-10-20 2002-06-13 Zucherman James F. Interspinous process implant sizer and distractor with a split head and size indicator and method
US6471705B1 (en) * 1999-08-02 2002-10-29 Lutz Biedermann Bone screw
US6443953B1 (en) * 2000-02-08 2002-09-03 Cross Medical Products, Inc. Self-aligning cap nut for use with a spinal rod anchor
US6440137B1 (en) * 2000-04-18 2002-08-27 Andres A. Horvath Medical fastener cap system
US6695843B2 (en) * 2000-12-22 2004-02-24 Biedermann Motech Gmbh Fixing element
US6551316B1 (en) * 2001-03-02 2003-04-22 Beere Precision Medical Instruments, Inc. Selective compression and distraction instrument
US6440133B1 (en) * 2001-07-03 2002-08-27 Sdgi Holdings, Inc. Rod reducer instruments and methods
US6726692B2 (en) * 2001-07-25 2004-04-27 Spinevision Ancillary for spinal osteosynthesis system and process for implanting a spinal osteosynthesis system using the said ancillary
US6520963B1 (en) * 2001-08-13 2003-02-18 Mckinley Lawrence M. Vertebral alignment and fixation assembly
US6746449B2 (en) * 2001-09-12 2004-06-08 Spinal Concepts, Inc. Spinal rod translation instrument
US20020095153A1 (en) * 2001-09-12 2002-07-18 Jones Robert J. Spinal rod translation instrument
US6755929B2 (en) * 2001-09-13 2004-06-29 Huei-Hsin Sun Method for adhering a titanium layer on material
US20040249378A1 (en) * 2001-10-04 2004-12-09 Saint Martin Pierre Henri Spinal osteosynthesis assembly comprising the head of an anchoring member and a tool for fixing said head
US20040049191A1 (en) * 2002-04-17 2004-03-11 Stryker Spine System for use in spinal stabilization
US6660006B2 (en) * 2002-04-17 2003-12-09 Stryker Spine Rod persuader
US20040193160A1 (en) * 2002-04-18 2004-09-30 Marc Richelsoph Screw and rod fixation asembly and device
US20030225408A1 (en) * 2002-06-04 2003-12-04 Howmedica Osteonics Corp. Apparatus for securing a spinal rod system
US6648888B1 (en) * 2002-09-06 2003-11-18 Endius Incorporated Surgical instrument for moving a vertebra
US20040138662A1 (en) * 2002-10-30 2004-07-15 Landry Michael E. Spinal stabilization systems and methods
US20040172022A1 (en) * 2002-10-30 2004-09-02 Landry Michael E. Bone fastener assembly for a spinal stabilization system
US6843791B2 (en) * 2003-01-10 2005-01-18 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
US20040147936A1 (en) * 2003-01-28 2004-07-29 Rosenberg William S. Spinal rod approximator
US20060025768A1 (en) * 2003-07-03 2006-02-02 Andy Iott Top loading spinal fixation device and instruments for loading and handling the same
US20050154389A1 (en) * 2003-12-16 2005-07-14 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US20050192587A1 (en) * 2004-02-27 2005-09-01 Lim Roy K. Rod reducer
US20060009775A1 (en) * 2004-07-06 2006-01-12 Brian Dec Spinal rod insertion instrument
US7371239B2 (en) * 2004-07-06 2008-05-13 Synthes (U.S.A.) Spinal rod insertion instrument
US20060166535A1 (en) * 2005-01-26 2006-07-27 Brumfield David L Reducing instrument for spinal surgery
US7799031B2 (en) * 2005-02-09 2010-09-21 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US20100043862A1 (en) * 2008-05-15 2010-02-25 Steven Thomas Croft Solar Panel Interconnection System

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700357B2 (en) 2003-09-24 2017-07-11 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US8267957B1 (en) * 2007-12-14 2012-09-18 Holmed Corporation Compressor with extended ratchet bar feature
US8740915B2 (en) 2010-04-27 2014-06-03 DePuy Synthes Products, LLC Bone fixation systems and methods of use
US8936615B2 (en) 2010-04-27 2015-01-20 DePuy Synthes Products, LLC Bone fixation system including K-wire compression
US9113969B2 (en) 2010-04-27 2015-08-25 DePuy Synthes Products, Inc. Bone fixation systems and methods of use
US9597130B2 (en) 2010-04-27 2017-03-21 DePuy Synthes Products, Inc. Bone fixation system including K-wire compression
US9480505B2 (en) 2012-08-23 2016-11-01 DePuy Synthes Products, Inc. Bi-planar persuader
US10376294B2 (en) 2012-08-23 2019-08-13 DePuy Synthes Products, LLC Bi-planar persuader
US11344340B2 (en) 2012-08-23 2022-05-31 DePuy Synthes Products, Inc. Bi-planar persuader
US9763702B2 (en) 2012-11-16 2017-09-19 DePuy Synthes Products, Inc. Bone fixation assembly
US10758277B2 (en) 2012-11-16 2020-09-01 DePuy Synthes Products, Inc. Bone fixation assembly
DE102021113518A1 (en) 2021-05-26 2022-12-01 Aesculap Ag Medical instrument with cleaning-optimized spring unit

Also Published As

Publication number Publication date
CA2593809A1 (en) 2006-08-03
US7744598B2 (en) 2010-06-29
WO2006081375A3 (en) 2007-04-19
US20060166535A1 (en) 2006-07-27
US20110245884A9 (en) 2011-10-06
US7625376B2 (en) 2009-12-01
AU2006208030A1 (en) 2006-08-03
WO2006081375A2 (en) 2006-08-03
US8105329B2 (en) 2012-01-31
US20060166534A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US8105329B2 (en) Reducing instrument for spinal surgery
US11490931B2 (en) Systems and methods for correcting spinal deformities
USRE44296E1 (en) Rod reducer instruments and methods
US7462182B2 (en) Reducing instrument for spinal surgery
US7988698B2 (en) Spinal rod approximator
EP2460483B1 (en) Surgical instrument
US8075565B2 (en) Surgical instruments for delivering forces to bony structures
US9408716B1 (en) Percutaneous posterior spinal fusion implant construction and method
US20050085813A1 (en) System and method for stabilizing of internal structures
US9173687B2 (en) Fulcrum cap for spinal constructs
US20210059722A1 (en) Orthopedic tethered implants and system
US9168073B2 (en) Spinous process fixator
US10159579B1 (en) Tubular instruments for percutaneous posterior spinal fusion systems and methods
US9744050B1 (en) Compression and distraction system for percutaneous posterior spinal fusion
EP3733100A1 (en) Spinal fixation system
KR100507615B1 (en) Pedicle screw and pedicle screw assembly having the same

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12