US20100324167A1 - One-pot synthesis of nanoparticles and liquid polymer for rubber applications - Google Patents

One-pot synthesis of nanoparticles and liquid polymer for rubber applications Download PDF

Info

Publication number
US20100324167A1
US20100324167A1 US12/666,146 US66614608A US2010324167A1 US 20100324167 A1 US20100324167 A1 US 20100324167A1 US 66614608 A US66614608 A US 66614608A US 2010324167 A1 US2010324167 A1 US 2010324167A1
Authority
US
United States
Prior art keywords
nanoparticles
monomer
liquid polymer
nanoparticle
blend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/666,146
Inventor
Sandra Warren
Xiaorong Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/666,146 priority Critical patent/US20100324167A1/en
Publication of US20100324167A1 publication Critical patent/US20100324167A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the technology discussed herein relates generally to rubber compositions.
  • it relates to methods for synthesizing nanoparticle and liquid polymer blends in a single polymerization reaction vessel.
  • the nanoparticles described herein are each made up of a group or a collection of several polymer chains that are organized around a center 1 .
  • the polymer chains are linked together at one end at a core formed from cross-linked monomer units on each polymer chain.
  • the polymer chains extend from the core 2 outwardly to form a shell 3 .
  • the shell 3 includes the monomer units and optionally co-monomer units of the polymers that are not in the core 2 . It should be understood that the shell 3 is not limited to a single monomer unit in each polymer chain, but may include several monomer units. Additionally, the shell 3 may be separated into sublayers, and the sublayers may include blocks of various homopolymer or copolymer.
  • a sublayer may include a block of randomized styrene-butadiene copolymer or a homopolymer such as butadiene.
  • the outermost layer portion of the shell 4 is comprised of the monomer units or functionally or non-functionally initiated polymer chain heads at the outer terminal ends of each polymer.
  • the shell 4 is the outermost portion of the nanoparticle.
  • the living polymer chains form micelles due to the aggregation of ionic chain ends and the chemical interactions of the polymer chains in hydrocarbon solvent. When the cross-linking agent is added, the polymer chains forming the micelle(s) become crosslinked and the stable nanoparticle(s) is formed.
  • Nanoparticles and liquid polymers for use in rubber compositions are described in commonly owned U.S. patent application Ser. No. 11/305,279, which is hereby incorporated by reference.
  • the combination of nanoparticle and liquid polymer improves important properties of rubber articles, such as vehicle tires, and in particular, the tread portion of vehicle tires. For example, wet/dry traction and rolling resistance of tire tread can be improved with the addition of nanoparticles and liquid polymers while maintaining good reinforcement for tread durability.
  • a reduction or elimination of the amount of processing oils used in a composition for vehicle tires is desirable, and this is made possible by use of combination of nanoparticles and liquid polymer in such compositions.
  • the technology disclosed herein provides for the synthesis of nanoparticles and liquid polymer in the same reaction vessel, without the removal of either the nanoparticles or liquid polymer (hereinafter “one-pot synthesis”).
  • the resulting blend is easier to process and dry than a separately synthesized liquid polymer.
  • the blend also facilitates dispersion of the nanoparticles in a rubber composition.
  • An additional benefit is a savings in inventory space for the nanoparticle/liquid polymer blend, as opposed to the individual components.
  • a method for performing a one-pot synthesis of a blend of nanoparticles and liquid polymer includes polymerizing a first monomer and optionally a second monomer in a hydrocarbon solvent to form the liquid polymer.
  • the polymerization is partially quenched or terminated with a quenching agent.
  • a quenching agent may also be referred to as a terminating agent, and the terms are used interchangeably herein.
  • a charge of polymerization initiator, cross-linking agent and mono-vinyl aromatic monomer are added. This initiates further polymerization whereby nanoparticles are formed in situ having a core including the multiple-vinyl aromatic monomer, and a shell including the first monomer or the first monomer and the second monomer.
  • a composition of matter consists essentially of a blend of core-shell type nanoparticles and a liquid polymer.
  • the nanoparticles are dispersed and blended within the liquid polymer.
  • the blends of nanoparticle and liquid polymer made by the methods disclosed herein may be added to a rubber composition to produce a nanoparticle/liquid polymer rubber composition.
  • a tire that incorporates the nanoparticle/liquid polymer rubber composition can be formed by a tire tread comprising the rubber composition, and constructing a tire using the tire tread.
  • FIG. 1 shows a diagram of an example nanoparticle.
  • FIG. 2 shows a rubber article with improved reinforcement and controllable hysteresis in an embodiment of the present invention.
  • a first illustrative method involves polymerization of the liquid polymer, wherein a first monomer and optionally a second monomer are polymerized in a hydrocarbon solvent in a reaction vessel. The polymerization is allowed to proceed, and is then partially quenched (terminated) with a quenching agent.
  • the amount of terminated polymer chains can vary according to the application. The amount of terminated polymer chains may be about 1-99 wt % of total polymer chains in the reaction vessel, alternatively about 15-85 wt %, or alternatively about 30-75 wt %.
  • an addition of polymerization initiator and a mixture of cross-linking agent and a mono-vinyl aromatic monomer are added to the reaction vessel containing the liquid polymer.
  • living polymer chains remaining from the liquid polymer synthesis step copolymerize with the mono-vinyl aromatic monomer.
  • the resulting copolymers assemble into micelle structures in the hydrocarbon solvent.
  • the cross-linking agent functions to cross-link the micelles resulting in nanoparticles.
  • a charge or addition of material, including monomer, into the reaction vessel may be simultaneous or stepwise. Stepwise means that either the addition of one ingredient is completed before the addition of another ingredient is begun, or the addition of one ingredient is begun (but not necessarily completed) before the addition of another ingredient.
  • a second illustrative method involves a liquid polymerization step as described above.
  • the nanoparticle synthesis process differs in that there is a step-wise addition of mono-vinyl aromatic monomer, followed by the addition of cross-linking agent and initiator to the pot.
  • the resulting copolymers self-assemble into core-shell type micelles in the hydrocarbon solvent, and the cross-linking agent functions to cross-link the micelles, resulting in the formation of nanoparticles.
  • the nanoparticles that result from the first method and the second method can have differing physical properties.
  • the first method results in polymer nanoparticles with a core relatively less densely crosslinked, but crosslinked throughout the entire core
  • the second method results in polymer nanoparticles with a core densely crosslinked at the center of the core.
  • the cross-linking density can be defined as the number of crosslinks per monomer (Xd).
  • Xd is determined by the ratio of moles of DVB to moles of DVB and styrene. This number may range from 0.01 to 1, for example 0.1 to 0.8, such as 0.2 to 0.4.
  • the cross-linking density may be 0.2-0.4, for example 0.3, and in the example second method described above the cross-linking density may be 0.8-1.0, for example 0.9.
  • the one-pot synthesis processes described herein yield a nanoparticle/liquid polymer blend that is easier to process and dry compared to the synthesis of those materials separately.
  • the resulting blends also save inventory space for manufacturers of products incorporating such blends.
  • the first step of the methods described above results in the polymerization of the liquid polymer.
  • a first monomer, and optionally a second monomer are added to a reaction vessel along with an anionic initiator to start the polymerization of the monomer(s), resulting in a liquid polymer.
  • the liquid polymer may comprise a homopolymer, such as polybutadiene, or a copolymer, such as styrene-butadiene.
  • the first monomer may be any monomer capable of being anionically polymerized.
  • the first monomer may be selected from one or more of conjugated diene monomers. In one embodiment, the first monomer is selected from C 4 -C 8 conjugated diene monomers.
  • conjugated diene monomers include, but are not limited to 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), cis- and trans-piperylene (1,3-pentadiene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, cis- and trans-1,3-hexadiene, cis- and trans-2-methyl-1,3-pentadiene, cis- and trans-3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, and the like, and the mixture thereof.
  • isoprene or 1,3-butadiene or mixtures thereof are used as the conjugated diene monomer(s).
  • the optional second monomer may be a vinyl aromatic monomer, and may be selected from the group consisting of styrene, ethylvinylbenzene, ⁇ -methyl-styrene, 1-vinyl naphthalene, 2-vinyl naphthalene, vinyl toluene, methoxystyrene, t-butoxystyrene, and the like; as well as alkyl, cycloalkyl, aryl, alkaryl, and aralkyl derivatives thereof, in which the total number of carbon atoms in the monomer is generally not greater than about 20; and mixtures thereof.
  • the conjugated diene monomer and vinyl aromatic monomer are normally used at the weight ratios of from about 99:1 to about 1:99, or from about 30:70 to about 90:10, or from about 85:15 to about 60:40.
  • the anionic initiator employed is a functional initiator that imparts a functional group at the head of the polymer chain (i.e., the location from which the polymer chain is started).
  • the functional group includes one or more heteroatoms (e.g., nitrogen, oxygen, boron, silicon, sulfur, tin, and phosphorus atoms) or heterocyclic groups.
  • Exemplary anionic initiators include organolithium compounds.
  • organolithium compounds may include heteroatoms.
  • organolithium compounds may include one or more heterocyclic groups.
  • organolithium compounds include alkyllithium, aryllithium compounds, and cycloalkyllithium compounds. Specific examples of organolithium compounds include ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, n-amyllithium, isoamyllithium, and phenyllithium. Other examples include alkylmagnesium halide compounds such as butylmagnesium bromide and phenylmagnesium bromide. Still other anionic initiators include organosodium compounds such as phenylsodium and 2,4,6-trimethylphenylsodium.
  • anionic initiators that give rise to di-living polymers, wherein both ends of a polymer chain is living.
  • examples of such initiators include dilithio initiators such as those prepared by reacting 1,3-diisopropenylbenzene with sec-butyllithium. These and related difunctional initiators are disclosed in U.S. Pat. No. 3,652,516, which is incorporated herein by reference. Radical anionic initiators may also be employed, including those described in U.S. Pat. No. 5,552,483, which is incorporated herein by reference.
  • the organolithium compounds include a cyclic amine-containing compound such as lithiohexamethyleneimine.
  • a cyclic amine-containing compound such as lithiohexamethyleneimine.
  • the organolithium compounds include alkylthioacetals such as 2-lithio-2-methyl-1,3-dithiane.
  • the organolithium compounds include alkoxysilyl-containing initiators, such as lithiated t-butyldimethylpropoxysilane. These and related useful initiators are disclosed in U.S. Publ. No. 2006/0241241, which is incorporated herein by reference.
  • the anionic initiator employed is trialkyltinlithium compound such as tri-n-butyltinlithium.
  • the liquid polymer synthesis step may be conducted in the presence of a modifier or a 1,2-microstructure controlling agent, so as to, for example, increase the reaction rate, equalize the reactivity ratio of monomers, and/or control the 1,2-microstructure in the conjugated diene monomers.
  • a modifier or a 1,2-microstructure controlling agent so as to, for example, increase the reaction rate, equalize the reactivity ratio of monomers, and/or control the 1,2-microstructure in the conjugated diene monomers.
  • Suitable modifiers include, but are not limited to, triethylamine, tri-n-butylamine, hexamethylphosphoric acid triamide, N,N,N′,N′-tetramethylethylene diamine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 1,4-diazabicyclo [2.2.2]octane, diethyl ether, tri-n-butylphosphine, p-dioxane, 1,2 dimethoxy ethane, dimethyl ether, methyl ethyl ether, ethyl propyl ether, di-n-propyl ether, di-n-octyl ether, anisole, dibenzyl ether, diphenyl ether, dimethylethylamine, bix-oxolanyl propane, tri-n-propy
  • modifiers or 1,2-microstructure controlling agents used in the present invention may be linear oxolanyl oligomers represented by the structural formula (IV) and cyclic oligomers represented by the structural formula (V), as shown below:
  • R 14 and R 15 are independently hydrogen or a C 1 -C 8 alkyl group
  • R 16 , R 17 , R 18 , and R 19 are independently hydrogen or a C 1 -C 6 alkyl group
  • y is an integer of 1 to 5 inclusive
  • z is an integer of 3 to 5 inclusive.
  • modifiers or 1,2-microstructure controlling agents include, but are not limited to, oligomeric oxolanyl propanes (OOPs); 2,2-bis-(4-methyl dioxane); bis(2-oxolanyl)methane; 1,1-bis(2-oxolanyl)ethane; bistetrahydrofuryl propane; 2,2-bis(2-oxolanyl) propane; 2,2-bis(5-methyl-2-oxolanyl) propane; 2,2-bis-(3,4,5-trimethyl-2-oxolanyl) propane; 2,5-bis(2-oxolanyl-2-propyl) oxolane; octamethyl perhydrocyclotetrafurfurylene (cyclic tetramer); 2,2-bis(2-oxolanyl) butane; and the like.
  • a mixture of two or more modifiers or 1,2-microstructure controlling agents also can be used.
  • a quenching agent is added in an amount that results in partial quenching (termination) of the living polymer.
  • partial termination living (un-terminated) polymers remain, and are subsequently copolymerized to form the shell of the nanoparticle in the subsequent nanoparticle synthesis step.
  • the liquid polymer synthesis step is relatively fast, and may for example, be completed in about 15 minutes.
  • partial termination means less than 100% of the living polymer chains are terminated.
  • Suitable quenching agents include, but are not limited to, alcohols such as methanol, ethanol, propanol, and isopropanol.
  • a quenching agent may be employed to provide terminal functionality.
  • Exemplary functionality-providing quenching agents include, but are not limited to, SnCl 4 , R 3 SnCl, R 2 SnCl 2 , RSnCl 3 , carbodiimides, N-methylpyrrolidine, cyclic amides, cyclic ureas, isocyanates, Schiff bases, 4,4′-bis(diethylamino) benzophenone, N,N′-dimethylethyleneurea, and mixtures thereof, wherein R is selected from the group consisting of alkyls having from about 1 to about 20 carbon atoms, cycloalkyls having from about 3 to about 20 carbon atoms, aryls having from about 6 to about 20 carbon atoms, aralkyls having from about 7 to about 20 carbon
  • the liquid polymer can be made by batch, semi-batch or continuous processes.
  • a hydrocarbon solvent is used, although it may be possible to use other solvents or combinations of solvents provided that the solvent/combination would not interfere in the formation of the micelles.
  • the hydrocarbon solvent may be selected from any suitable aliphatic hydrocarbons, alicyclic hydrocarbons, or mixture thereof, with a proviso that it exists in liquid state during the polymerizations.
  • Exemplary aliphatic hydrocarbons include, but are not limited to, pentane, isopentane, 2,2 dimethyl-butane, hexane, heptane, octane, nonane, decane, mixtures of such hydrocarbons and the like.
  • Exemplary alicyclic hydrocarbons include, but are not limited to, cyclopentane, methyl cyclopentane, cyclohexane, methyl cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and the like.
  • the liquid hydrocarbon medium comprises hexanes.
  • the pressure in the reaction vessel should be sufficient to maintain a substantially liquid phase under the conditions of the polymerization reaction.
  • the reaction medium may generally be maintained at a temperature that is within the range of about 20° C. to about 140° C. throughout the polymerization.
  • the liquid polymer may comprise polyisoprene, polybutadiene, styrene-butadiene copolymer, styrene-isoprene-butadiene copolymer, styrene-isoprene copolymer, butadiene-isoprene copolymer, liquid butyl rubber, liquid neoprene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, acrylonitrile-butadiene copolymer, liquid silicone, ethylene acrylic copolymer, ethylene vinyl acetate copolymer, liquid epichlorohydrin, liquid chlorinated polyethylene, liquid chlorosulfonated polyethylene rubbers, liquid hydrogenated nitrile rubber, liquid tetrafluoroethylene-propylene rubber, liquid hydrogenated polybutadiene and styrene-butadiene copolymer, and the like, and the mixture thereof.
  • the number average molecular weight (Mn) of the resulting liquid polymer is within the range of from about 10,000 to about 120,000, within the range of from about 20,000 to about 110,000, or within the range of from about 25,000 to about 75,000.
  • the weight average molecular weight of the liquid polymer can range from about 20,000 to 100,000, for example 70,000 to 90,000.
  • the glass transition temperature (Tg) of the liquid polymer is, for example, within the range of from about ⁇ 100° C. to about ⁇ 20° C., such as within the range of from about ⁇ 95° C. to about ⁇ 40° C., or from about ⁇ 90° C. to about ⁇ 50° C.
  • the liquid polymer may exhibit only one glass transition temperature.
  • the amount of quenching agent also determines the ratio of liquid polymer to nanoparticles in the nanoparticle/liquid polymer blend.
  • the formation of the liquid polymer is complete after the reaction is partially terminated with the quenching agent. In the illustrative methods described herein a charge is then added that begins the nanoparticle synthesis step.
  • an anionic initiator is first added to the reaction vessel (i.e. before adding the mono- and coupling agent).
  • the initiator can also be added at the same time as the mono-vinyl aromatic monomer and coupling agent.
  • Anionic initiators may be those described above.
  • the mono-vinyl aromatic monomer and cross-linking agent are added to the same reaction vessel that the liquid polymer was formed in.
  • the living polymer chains from the liquid polymer synthesis step copolymerize with the mono-vinyl aromatic monomer.
  • the copolymer chains then self-assemble in the hydrocarbon solvent into micelles.
  • the cross-linking agent serves to cross-link the micelles resulting in nanoparticles.
  • the nanoparticle synthesis step may be conducted in the presence of a modifier or a 1,2-microstructure controlling agent, such as those described above.
  • the copolymers are di-block copolymers comprising a polyconjugated diene block and a mono-vinyl aromatic block, such as poly(butadiene-b-styrene).
  • the mono-vinyl aromatic blocks are typically at least partially crosslinked by the cross-linking agent.
  • the polymer nanoparticles retain their discrete nature with little or no polymerization between each other.
  • the nanoparticles are substantially monomodal and uniform in shape, in others the nanoparticles have a polymodal size distribution.
  • the copolymerization of the nanoparticle chains may last as long as necessary until the desired monomer conversion, degree of polymerization (DP), and/or block polymer molecular weight are obtained.
  • the polymerization reaction of this step may last typically from about 0.5 hours to about 20 hours, from about 0.5 hours to about 10 hours, or from about 0.5 hours to about 5 hours.
  • the polymerization reaction of this step may be conducted at a temperature of from about 30° F. to about 300° F., from about 100° F. to about 250° F., or from about 150° F. to about 210° F.
  • the polymerization reaction used to prepare the polymer nanoparticles may be terminated with a quenching agent.
  • Suitable quenching agents include those described above
  • the nanoparticle reaction mixture was cooled and dropped in an isopropanol/acetone solution containing an antioxidant such as butylated hydroxytoluene (BHT).
  • BHT butylated hydroxytoluene
  • the isopropanol/acetone solution may be prepared, for example, by mixing 1 part by volume of isopropanol and 4 parts by volume of acetone.
  • the nanoparticle synthesis is conducted in the same solvent as was used for the liquid polymer synthesis.
  • the liquid polymer can also be considered a solvent.
  • the liquid polymer also intercalates itself between the living polymer chains when they are in the micelle formation. This may result in the isolatation of the inside of the micelle from the hydrocarbon solvent. Consequently, the resulting micelle will be more stable and the chances of two or more micelles meeting each other and potentially linking, resulting in the creation of much larger particles, is decreased.
  • the liquid polymer causes the resulting nanoparticle to swell, and the resulting mixture is softer and more easily mixed into rubber compositions.
  • the poly(conjugated diene) block is more soluble or miscible in a selected hydrocarbon solvent, than the mono-vinyl aromatic block. This facilitates the subsequent formation of micelles and ultimately nanoparticles, from the block copolymer chains.
  • a micelle-like structure may be formed by aggregating the block copolymer chains comprising the poly(conjugated diene) block and the aromatic block.
  • the mono-vinyl aromatic blocks are typically directed toward the center of the micelle and the poly(conjugated diene) containing blocks are typically extended away from the center.
  • the nanoparticles are formed from cross-linked micelle structures having a core made from the mono-vinyl aromatic blocks, and a shell made from the poly(conjugated diene) containing blocks. It is believed that the cross-linking agents crosslink the center core of the micelle to stabilize and hold together the nanoparticles.
  • the liquid polymer of the nanoparticle/liquid polymer blend is a styrene-butadiene copolymer.
  • the styrene-butadiene has an Mn of about 80,000 to 120,000 and is comprised of repeat units that are derived from about 5 weight percent to about 95 weight percent styrene and correspondingly from about 5 weight percent to about 95 weight percent 1,3-butadiene, wherein the repeat units derived from styrene and 1,3-butadiene are in essentially random order.
  • the first monomer is styrene and the second monomer is butadiene.
  • Vinyl percentages of 50-60% are preferred for some applications because this range results in a compatible liquid polymer/nanoparticle phases. However, lower vinyl levels are also possible.
  • the liquid polymer comprises a liquid isoprene-butadiene rubber (IBR) with Mn of about 35,000 to 70,000, which is comprised of repeat units that are derived from about 5 weight percent to about 95 weight percent isoprene and correspondingly from about 5 weight percent to about 95 weight percent 1,3-butadiene, wherein the repeat units derived from isoprene and 1,3-butadiene are in essentially random order.
  • IBR liquid isoprene-butadiene rubber
  • Mn isoprene-butadiene rubber
  • the polymer nanoparticles synthesized in the one-pot methods described herein may include a vulcanizable shell and a crosslinked core.
  • the monomers that comprise the shell may be curable by vulcanization by sulfur or peroxide.
  • suitable sulfur vulcanizing agents include “rubber maker's” soluble sulfur; elemental sulfur (free sulfur); sulfur donating vulcanizing agents such as organosilane polysulfides, amine disulfides, polymeric polysulfides or sulfur olefin adducts; and insoluble polymeric sulfur.
  • Related prior patents and publications U.S. Pat. No. 6,437,050 (Bridgestone Corp.) and Macromol. Symp. 118, 143-148 (1997) disclose some suitable sulfur vulcanizing agents.
  • the shell may be made up of any suitable conjugated diene or mixture thereof.
  • C 4 -C 8 1,3-conjugated diene monomers are the most preferred.
  • Specific examples of the shell monomers include, but are not limited to 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), cis- and trans-piperylene (1,3-pentadiene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, cis- and trans-1,3-hexadiene, cis- and trans-2-methyl-1,3-pentadiene, cis- and trans-3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, and the like, and the mixture thereof.
  • isoprene or 1,3-butadiene or mixture thereof is used as the shell monomer.
  • the crosslinked core of the nanoparticles is typically formed when mono-vinyl aromatic monomers are cross-linked with a cross-linking agent.
  • the weight ratio between the mono-vinyl aromatic monomers and cross-linking agent may broadly range from about 95:5 to about 0:100, from about 90:10 to about 25:75, or from about 85:15 to about 60:40.
  • Suitable mono-vinyl aromatic monomers include, but are not limited to those generally containing from 8 to 20, preferably from 8 to 12 carbon atoms, and may be selected, for example, from: styrene; 1-vinylnaphthalene; 2-vinylnaphthalene; various alkyl, cycloalkyl, aryl, alkylaryl or arylalkyl derivatives of styrene such as, for example, ⁇ .-methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4-p-tolylstyrene, 4-(4-phenylbutyl)styrene, or mixtures thereof.
  • the mono-vinyl aromatic monomer comprises styrene.
  • the micelles formed by the polymerization of mono-vinyl aromatic monomers and conjugated diene monomers are cross-linked to enhance the uniformity and permanence of shape and size of the resultant nanoparticle.
  • cross-linking agents comprise polyfunctional comonomers.
  • cross-linking agents which are at least bifunctional, wherein the two functional groups are capable of reacting with vinyl-substituted aromatic hydrocarbon monomers are acceptable.
  • Suitable polyfunctional comonomers are compounds having at least 2, preferably from 2 to 4 copolymerizable carbon-carbon double bonds, e.g.
  • acrylates and methacrylates of polyhydric preferably di- to tetrahydric C 2 -C 10 alcohols, e.g. ethylene glycol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerol, trimethylolpropane, pentaerythritol and sorbitol.
  • polyethylene glycol e.g. ethylene glycol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerol, trimethylolpropane, pentaerythritol and sorbitol.
  • acrylates and methacrylates of polyethylene glycol having from 2 to 20, preferably 2 to 8, oxyethylene units.
  • acrylate containing cross-linking agents examples include bisphenol A ethoxylate diacrylate, (diethylene glycol) diacrylate, glycerol propoxylate triacrylate, poly(ethylene glycol) diacrylate, and trimethylol propane ethoxylate triacrylate. It is also possible to use polyesters composed of aliphatic di- and/or polyols, or else maleic acid, fumaric acid and/or itaconic acid.
  • the polymer nanoparticle synthesized in the one-pot methods described herein may be substantially spherical.
  • the mean diameter of the spheres may be broadly within the range of from about 1 nm to about 200 nm, within the range of from about 5 nm to about 100 nm, within the range of from about 10 nm to about 80 nm, or within the range of from about 15 nm to about 70 nm.
  • the average molecular weight Mn of the poly(conjugated diene) block of the shell portion may be controlled within the range of from about 5,000 to about 500,000, or within the range of from about 5,000 to about 200,000, and most preferably within the range of from about 10,000 to about 100,000.
  • the average molecular weight Mn of the uncrosslinked aromatic block may be controlled within the range of from about 5,000 to about 500,000, within the range of from about 5,000 to about 200,000, or within the range of from about 10,000 to about 100,000.
  • the number average molecular weight (Mn) of the entire nanoparticle may be controlled within the range of from about 10,000 to about 200,000,000, within the range of from about 50,000 to about 1,000,000, or within the range of from about 100,000 to about 500,000.
  • the polydispersity (the ratio of the weight average molecular weight to the number average molecular weight) of the polymer nanoparticle may be controlled within the range of from about 1 to about 1.5, within the range of from about 1 to about 1.3, or within the range of from about 1 to about 1.2.
  • the Mn may be determined by using Gel Permeation Chromatography (GPC) calibrated with polystyrene standards and adjusted for the Mark-Houwink constants for the polymer in question.
  • GPC Gel Permeation Chromatography
  • the core of the synthesized nanoparticles is relatively hard. That is, the core has a Tg of about 60° C. or higher.
  • the nanoparticles have a core that is relatively harder than the shell, for example, at least about 60° C. higher than the Tg of the shell layer.
  • the shell layer is soft. That is, the shell layer has a Tg lower than about 0° C. In one embodiment, the Tg of the shell layer is between about 0° C. and about ⁇ 100° C. Nanoparticles with hard cores and soft shells are particularly useful for reinforcing rubber compounds used for tire treads.
  • the Tg of the polymers can be controlled by the selection of monomers and their molecular weight, styrene content, and vinyl content.
  • An illustrative composition comprising a liquid polymer/nanoparticle blend also includes (a) a rubber matrix, (b) an optional oil, and (c) one or more components selected from the group consisting of carbon black, silica, vulcanizing agent, vulcanization accelerator, tackifier resin, antioxidant, fatty acids, zinc oxide, wax, peptizer, vulcanization retarder, activator, processing additive, plasticizer, pigments, and antiozonant.
  • Various rubber products such as tires and power belts may be manufactured based on this composition.
  • the nanoparticle/liquid polymer blend may be compounded with rubber by methods generally known in the rubber compounding art, such as mixing the rubbery matrix polymer and the nanoparticle/liquid polymer blend with conventional amounts of various commonly used additive materials, using standard rubber mixing equipment and procedures.
  • a vulcanized rubber product may be produced from the composition of the present invention by thermomechanically mixing the nanoparticle/liquid polymer blend, a rubbery matrix polymer, and conventional amounts of various commonly used additive materials in a sequentially step-wise manner in a rubber mixer, followed by shaping and curing the composition.
  • Rubber articles such as tires may be manufactured from the composition made with the nanoparticle/liquid polymer blend described supra. Reference for this purpose may be made to, for example, U.S. Publication No. 2004/0143064 A1, which is hereby incorporated by reference.
  • Polymers that may comprise the rubber matrix include natural and synthetic elastomers.
  • the synthetic elastomers typically derive from the polymerization of conjugated diene monomers. These conjugated diene monomers may be copolymerized with other monomers such as vinyl aromatic monomers.
  • Other rubbery elastomers may derive from the polymerization of ethylene together with one or more .alpha.-olefins and optionally one or more diene monomers.
  • Useful elastomers include natural rubber, synthetic polyisoprene, polybutadiene, polyisobutylene-co-isoprene, neoprene, poly(ethylene-co-propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), and poly(styrene-co-isoprene-co-butadiene), poly(isoprene-co-butadiene), poly(ethylene-co-propylene-co-diene), polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, and mixtures thereof. These elastomers can have a myriad of macromolecular structures including linear, branched and star shaped.
  • Oil has been conventionally used as a compounding aid in rubber compositions.
  • oil include, but are not limited to, aromatic, naphthenic, and/or paraffinic processing oils.
  • PCA low-polycyclic-aromatic oils, particularly oils that have a PCA content of less than 3%.
  • the liquid polymer portion of the blend described above is used along with the oil, is used to replace a portion of the oil, or is used to replace the entirety of the oil in a rubber compound.
  • a typical amount of oil may broadly range from about 0 phr to about 100 phr, from about 0 phr to about 70 phr, or from about greater than 0 phr to about 50 phr, based on 100 phr rubbery matrix in the rubber composition.
  • reinforcement of a rubber product may be reflected by a low strain dynamic modulus G′, as can be measured according to ASTM-D 412 at 22° C.
  • reinforcement of rubber products such as tires made from the composition of the present invention may be achieved by (i) incorporation of the nanoparticle/liquid polymer blend; (ii) partially replacing the oil with the nanoparticle/liquid polymer blend; or (iii) entirely replacing the oil with the nanoparticle/liquid polymer blend.
  • the nanoparticle/liquid polymer blend provides various rubber products with improved reinforcement and controllable hysteresis.
  • controllable hysteresis it is meant that the hysteresis is increased or decreased, or remains roughly unchanged, comparing to the situation where oil is present in the composition, but no nanoparticle/liquid polymer blend is included in the composition.
  • G′(MPa) may be increased by at least about 0.3, alternatively at least about 1.5, or at least 3.0.
  • Hysteresis The energy loss of an elastomer is termed hysteresis, which refers to the difference between the energy applied to deform an article made from the elastomer and the energy released as the elastomer returns to its initial and undeformed state.
  • Hysteresis is characterized by a loss tangent, tangent delta (tan ⁇ ), which is a ratio of the loss modulus to the storage modulus (i.e., the viscous modulus to the elastic modulus) as measured under an imposed sinusoidal deformation.
  • the tan ⁇ value can be measured, for example, with a TA Instrument ARES Rheometer.
  • Rubber products with improved reinforcement and suitable hysteresis may comprise with the nanoparticle/liquid polymer blend, in which the phr ratio between the component (a) liquid polymer and component (b) polymer nanoparticles is within the range of from about 1:99 to about 99:1, in another embodiment within the range of from about 20:80 to about 80:20, and in another embodiment within the range of from about 25:75 to about 40:60.
  • the illustrative rubber compositions described herein can be used for various purposes. For example, they can be used for various rubber compounds, such as a tire treadstock, sidewall stock or other tire component stock compounds. Such tires can be built, shaped, molded and cured by various methods that are known and will be readily apparent to those having skill in the art. In an embodiment, a molded unvulcanized tire is charged into a vulcanizing mold and then vulcanized to produce a tire, based on the composition and the procedure as described above.
  • a two-gallon jacketed reactor was used as the reaction vessel.
  • the following ingredients were used: 19.3% butadiene in hexane, 33% styrene in hexane, hexane, n-butyl lithium (1.6 M), oligomeric oxalanyl propane (1.6 M) (OOPs), isopropanol, butylated hydroxytoluene (BHT), and 80% divinylbenzene (DVB) purchased from Aldrich.
  • the reactor was sequentially charged with 4.96 lbs of hexane, 0.59 lbs of 33% styrene, and 3.58 lbs of 19.3% butadiene. This reactor was heated to 120° F. over about 15 minutes. When the reactor reached 117° F., 2.3 mL of n-butyl lithium (1.6 M) and 0.76 mL of OOPs (1.6 M), diluted with about 20 mL of hexane were added. The polymerization exothermed at 126.7° F. after three minutes. After one hour, the jacket of the reactor was set to 100° F. and 0.14 mL of isopropanol was added.
  • n-butyl lithium (2.3 mL) was added to the reactor.
  • a mixture of 140.2 g styrene blend and 28.5 mL of DVB was prepared and added to the reactor.
  • the jacket temperature of the reactor was increased to 180° F. After three hours, the reactor temperature was brought down to 90° F. and the mixture was dropped in isopropanol containing BHT. The resulting solid was then filtered through cheesecloth and drum dried.
  • the liquid polymer portion was determined to have an Mn of 73,000 to 80,000.
  • the nanoparticle portion was determined to have a Mn of 83,700.
  • the synthesized blend contained 55 wt % liquid polymer and 45 wt % nanoparticles.
  • the nanoparticle/liquid polymer blend was much easier to isolate from solvent and dry than previously known methods of separately synthesizing the liquid polymer. However, with a sufficient amount of nanoparticles in the liquid polymer blend, a substantially solid blend results after coagulation, which can be drum-dried very easily.
  • the first example was a control that contained no nanoparticles or liquid polymer to serve as a comparison with the test compounds.
  • the second example was made using synthesized nanoparticles to replace 10 phr of styrene-butadiene rubber (SBR) in the compound formulation.
  • SBR styrene-butadiene rubber
  • the third example was made using nanoparticles and liquid polymer to replace 10 phr of SBR and about 15 phr of aromatic oil.
  • the synthesized MNP/LP blend contained 55 wt % of the liquid polymer and 45 wt % of the nanoparticles, 22.2 phr of the MNP/LP blend and 2.8 phr of additional LP were used in the formulation in order to correctly match the desired composition.
  • a fourth prophetic example is also presented.
  • 25 phr of 40:60 MNP/LP blend is used.
  • This prophetic example replaces the 10 phr of SBR with 10 phr of blended MNP and replaces the 15 phr of LP with 15 phr of blended LP without using additional LP by itself.
  • Comp. Example 1 contained 15 phr of aromatic oil, but did not contain any nanoparticles or liquid polymer.
  • Comp. Example 1 was used as a control (Control 2) and the results of the other comparative examples were normalized in relation to Comp. Example 1.
  • Comp. Example 2 differs from Comp. Example 1 in that it replaces 15 phr of the polybutadiene with 15 phr of nanoparticles.
  • Comp. Example 3 differs from Comp. Example 1 in that it replaces 15 phr of polybutadiene and 15 phr of aromatic oil with 15 phr of nanoparticles and 15 phr of butadiene liquid polymer.
  • Example 1 Composition of Example Master Batches (in phr) Comp.
  • Example 1 Prophetic Example 1 Comp. Comp. (Control 1)
  • Example 2 Example 3
  • Example 4 Example 2
  • Example 3 Polybutadiene 1 0 0 0 0 100 85 85 SBR 2 100 90 90 90 0 0 0
  • Carbon Black 50 50 50 50 50 50 50 50 (N343) Aromatic Oil 15 15 0 0 15 15 0 Zinc Oxide 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Hydrocarbon Resin 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 (tackifiers) Santoflex 13 0.95 0.95 0.95 0.95 0.95 0.95 (antioxidants)
  • Stearic Acid 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
  • Nanoparticles 0 10 0 0 0 15 15 (100 wt % MNP)
  • Liquid 0 0 22.2 0 0 0
  • 2007/0142550 A1 which is hereby incorporated by reference. 4 45% nanoparticles and 55% liquid polymer 5 40% nanoparticles and 60% liquid polymer 6 Polybutadiene with Mn of 80,000, prepared as described in U.S. 2007/0142550 A1
  • Example 1 Prophetic Example 1 Comp. Comp. (Control 1)
  • Example 2 Example 3
  • Example 4 Example 2
  • Example 3 Sulfur ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 ⁇ 1.3 Cyclohexyl- 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
  • Example 5 Comp. Comp. (control 1)
  • Example 2 Example 3 (control 2)
  • Example 6 Example 7 Ring Tensile Strength Tensile Break Stress 100 118 129 100 110 115 23° C. Tb (Normalized) Elongation at Break 100 105 94 100 100 90 23° C. (Eb %) (Normalized) 300% Modulus 100 113 145 100 112 134 23° C. (M300) (Normalized) 50% Modulus 100 114 144 100 115 139 23° C. (M50) (Normalized) Tg of Compound ⁇ 45° C. ⁇ 43° C. ⁇ 40° C. (extropolated from tan ⁇ ) Rolling Resistance tan ⁇ 50° C. 100 110 98 100 105 96 (Normalized) G′ 50° C. 100 135 156 100 122 129 (Normalized)
  • test specimen geometry was in the form of a ring of a width of 0.05 inches and of a thickness of 0.075 inches.
  • the specimen was tested at a specific gauge length of 1.0 inch. Hysteresis loss was measured with a Dynastat Viscoelastic Analyzer set at a frequency of 1 Hz and 1% strain.
  • the geometry of the specimen for this test was a cylinder of a length of 15 mm and a diameter of 10 mm.
  • test specimen geometry was taken in the form of a ring of a width of 0.05 inches and of a thickness of 0.075 inches. The specimen was tested at a specific gauge length of 1.0 inches. The hysteresis loss was measured with a TA Instrument ARES Rheometer. Test specimen geometry was taken in the form of a cylinder of a length of 15 mm and of a diameter of 9 mm. The following testing conditions were employed: frequency 5 Hz, 1% strain.

Abstract

A method for performing a one-pot synthesis of a blend of nanoparticles and liquid polymer includes polymerizing a first monomer and optionally a second monomer in a hydrocarbon solvent to form the liquid polymer. The polymerization is terminated before completion with a quenching agent. Then a charge of polymerization initiator, and a mixture of cross-linking agent and mono-vinyl aromatic monomer are added. This causes further polymerization whereby nanoparticles are formed having a core including the cross-linking agent, and a shell including the first monomer or the first monomer and the second monomer. Nanoparticle/liquid polymer blends resulting from the method and rubber compositions incorporating the blends are also disclosed.

Description

  • This application is the national stage of International Application No. PCT/U.S. 08/068,838, filed on Jun. 30, 2008, which claims the benefit of U.S. application Ser. No. 11/771,659, filed Jun. 29, 2007.
  • FIELD
  • The technology discussed herein relates generally to rubber compositions. In particular, it relates to methods for synthesizing nanoparticle and liquid polymer blends in a single polymerization reaction vessel.
  • BACKGROUND
  • As depicted in the example shown in FIG. 1, the nanoparticles described herein are each made up of a group or a collection of several polymer chains that are organized around a center 1. The polymer chains are linked together at one end at a core formed from cross-linked monomer units on each polymer chain. The polymer chains extend from the core 2 outwardly to form a shell 3. The shell 3 includes the monomer units and optionally co-monomer units of the polymers that are not in the core 2. It should be understood that the shell 3 is not limited to a single monomer unit in each polymer chain, but may include several monomer units. Additionally, the shell 3 may be separated into sublayers, and the sublayers may include blocks of various homopolymer or copolymer. For example, a sublayer may include a block of randomized styrene-butadiene copolymer or a homopolymer such as butadiene. The outermost layer portion of the shell 4, is comprised of the monomer units or functionally or non-functionally initiated polymer chain heads at the outer terminal ends of each polymer. The shell 4 is the outermost portion of the nanoparticle. The living polymer chains form micelles due to the aggregation of ionic chain ends and the chemical interactions of the polymer chains in hydrocarbon solvent. When the cross-linking agent is added, the polymer chains forming the micelle(s) become crosslinked and the stable nanoparticle(s) is formed.
  • Nanoparticles and liquid polymers for use in rubber compositions are described in commonly owned U.S. patent application Ser. No. 11/305,279, which is hereby incorporated by reference. The combination of nanoparticle and liquid polymer improves important properties of rubber articles, such as vehicle tires, and in particular, the tread portion of vehicle tires. For example, wet/dry traction and rolling resistance of tire tread can be improved with the addition of nanoparticles and liquid polymers while maintaining good reinforcement for tread durability. A reduction or elimination of the amount of processing oils used in a composition for vehicle tires is desirable, and this is made possible by use of combination of nanoparticles and liquid polymer in such compositions.
  • However, there are difficulties in synthesizing and processing the previously disclosed nanoparticles and liquid polymers. Previously known methods involve synthesizing nanoparticles and liquid polymer separately, drying them separately, and then separately adding each component into a rubber composition. Processing problems stem from the fact that the liquid polymer is a highly viscous substance that is very difficult to remove from solvent and dry. Additionally, the nanoparticles and liquid polymer are stored separately, thereby consuming valuable inventory space.
  • SUMMARY
  • The technology disclosed herein provides for the synthesis of nanoparticles and liquid polymer in the same reaction vessel, without the removal of either the nanoparticles or liquid polymer (hereinafter “one-pot synthesis”). The resulting blend is easier to process and dry than a separately synthesized liquid polymer. The blend also facilitates dispersion of the nanoparticles in a rubber composition. An additional benefit is a savings in inventory space for the nanoparticle/liquid polymer blend, as opposed to the individual components.
  • A method for performing a one-pot synthesis of a blend of nanoparticles and liquid polymer includes polymerizing a first monomer and optionally a second monomer in a hydrocarbon solvent to form the liquid polymer. The polymerization is partially quenched or terminated with a quenching agent. A quenching agent may also be referred to as a terminating agent, and the terms are used interchangeably herein. Then a charge of polymerization initiator, cross-linking agent and mono-vinyl aromatic monomer are added. This initiates further polymerization whereby nanoparticles are formed in situ having a core including the multiple-vinyl aromatic monomer, and a shell including the first monomer or the first monomer and the second monomer.
  • A composition of matter consists essentially of a blend of core-shell type nanoparticles and a liquid polymer. The nanoparticles are dispersed and blended within the liquid polymer.
  • The blends of nanoparticle and liquid polymer made by the methods disclosed herein may be added to a rubber composition to produce a nanoparticle/liquid polymer rubber composition. As an example, a tire that incorporates the nanoparticle/liquid polymer rubber composition can be formed by a tire tread comprising the rubber composition, and constructing a tire using the tire tread.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a diagram of an example nanoparticle.
  • FIG. 2 shows a rubber article with improved reinforcement and controllable hysteresis in an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Methods for performing a one-pot synthesis for making a blend of nanoparticles and liquid polymer are disclosed herein. A first illustrative method involves polymerization of the liquid polymer, wherein a first monomer and optionally a second monomer are polymerized in a hydrocarbon solvent in a reaction vessel. The polymerization is allowed to proceed, and is then partially quenched (terminated) with a quenching agent. The amount of terminated polymer chains can vary according to the application. The amount of terminated polymer chains may be about 1-99 wt % of total polymer chains in the reaction vessel, alternatively about 15-85 wt %, or alternatively about 30-75 wt %.
  • As part of this example method, in a second step an addition of polymerization initiator and a mixture of cross-linking agent and a mono-vinyl aromatic monomer are added to the reaction vessel containing the liquid polymer. In this step, living polymer chains remaining from the liquid polymer synthesis step copolymerize with the mono-vinyl aromatic monomer. The resulting copolymers assemble into micelle structures in the hydrocarbon solvent. The cross-linking agent functions to cross-link the micelles resulting in nanoparticles.
  • As used herein, unless otherwise stated, a charge or addition of material, including monomer, into the reaction vessel may be simultaneous or stepwise. Stepwise means that either the addition of one ingredient is completed before the addition of another ingredient is begun, or the addition of one ingredient is begun (but not necessarily completed) before the addition of another ingredient.
  • A second illustrative method involves a liquid polymerization step as described above. However, in this method the nanoparticle synthesis process differs in that there is a step-wise addition of mono-vinyl aromatic monomer, followed by the addition of cross-linking agent and initiator to the pot. The resulting copolymers self-assemble into core-shell type micelles in the hydrocarbon solvent, and the cross-linking agent functions to cross-link the micelles, resulting in the formation of nanoparticles.
  • The nanoparticles that result from the first method and the second method can have differing physical properties. Under similar conditions, the first method results in polymer nanoparticles with a core relatively less densely crosslinked, but crosslinked throughout the entire core, while the second method results in polymer nanoparticles with a core densely crosslinked at the center of the core.
  • The cross-linking density can be defined as the number of crosslinks per monomer (Xd). In an example where the nanoparticle comprises styrene and divinyl benzene (DVB), the Xd is determined by the ratio of moles of DVB to moles of DVB and styrene. This number may range from 0.01 to 1, for example 0.1 to 0.8, such as 0.2 to 0.4. In the example first method described above the cross-linking density may be 0.2-0.4, for example 0.3, and in the example second method described above the cross-linking density may be 0.8-1.0, for example 0.9.
  • The one-pot synthesis processes described herein yield a nanoparticle/liquid polymer blend that is easier to process and dry compared to the synthesis of those materials separately. The resulting blends also save inventory space for manufacturers of products incorporating such blends.
  • The first step of the methods described above results in the polymerization of the liquid polymer. A first monomer, and optionally a second monomer, are added to a reaction vessel along with an anionic initiator to start the polymerization of the monomer(s), resulting in a liquid polymer. The liquid polymer may comprise a homopolymer, such as polybutadiene, or a copolymer, such as styrene-butadiene.
  • The first monomer may be any monomer capable of being anionically polymerized. The first monomer may be selected from one or more of conjugated diene monomers. In one embodiment, the first monomer is selected from C4-C8 conjugated diene monomers. Specific examples of the conjugated diene monomers include, but are not limited to 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), cis- and trans-piperylene (1,3-pentadiene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, cis- and trans-1,3-hexadiene, cis- and trans-2-methyl-1,3-pentadiene, cis- and trans-3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, and the like, and the mixture thereof. In exemplary embodiments, isoprene or 1,3-butadiene or mixtures thereof are used as the conjugated diene monomer(s).
  • The optional second monomer may be a vinyl aromatic monomer, and may be selected from the group consisting of styrene, ethylvinylbenzene, α-methyl-styrene, 1-vinyl naphthalene, 2-vinyl naphthalene, vinyl toluene, methoxystyrene, t-butoxystyrene, and the like; as well as alkyl, cycloalkyl, aryl, alkaryl, and aralkyl derivatives thereof, in which the total number of carbon atoms in the monomer is generally not greater than about 20; and mixtures thereof. In exemplary embodiments, the conjugated diene monomer and vinyl aromatic monomer are normally used at the weight ratios of from about 99:1 to about 1:99, or from about 30:70 to about 90:10, or from about 85:15 to about 60:40.
  • In one or more embodiments, the anionic initiator employed is a functional initiator that imparts a functional group at the head of the polymer chain (i.e., the location from which the polymer chain is started). In certain embodiments, the functional group includes one or more heteroatoms (e.g., nitrogen, oxygen, boron, silicon, sulfur, tin, and phosphorus atoms) or heterocyclic groups.
  • Exemplary anionic initiators include organolithium compounds. In one or more embodiments, organolithium compounds may include heteroatoms. In these or other embodiments, organolithium compounds may include one or more heterocyclic groups.
  • Types of organolithium compounds include alkyllithium, aryllithium compounds, and cycloalkyllithium compounds. Specific examples of organolithium compounds include ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, t-butyllithium, n-amyllithium, isoamyllithium, and phenyllithium. Other examples include alkylmagnesium halide compounds such as butylmagnesium bromide and phenylmagnesium bromide. Still other anionic initiators include organosodium compounds such as phenylsodium and 2,4,6-trimethylphenylsodium. Also contemplated are those anionic initiators that give rise to di-living polymers, wherein both ends of a polymer chain is living. Examples of such initiators include dilithio initiators such as those prepared by reacting 1,3-diisopropenylbenzene with sec-butyllithium. These and related difunctional initiators are disclosed in U.S. Pat. No. 3,652,516, which is incorporated herein by reference. Radical anionic initiators may also be employed, including those described in U.S. Pat. No. 5,552,483, which is incorporated herein by reference.
  • In particular embodiments, the organolithium compounds include a cyclic amine-containing compound such as lithiohexamethyleneimine. These and related useful initiators are disclosed in the U.S. Pat. Nos. 5,332,810, 5,329,005, 5,578,542, 5,393,721, 5,698,646, 5,491,230, 5,521,309, 5,496,940, 5,574,109, and 5,786,441, which are incorporated herein by reference. In other embodiments, the organolithium compounds include alkylthioacetals such as 2-lithio-2-methyl-1,3-dithiane. These and related useful initiators are disclosed in U.S. Publ. Nos. 2006/0030657, 2006/0264590, and 2006/0264589, which are incorporated herein by reference. In still other embodiments, the organolithium compounds include alkoxysilyl-containing initiators, such as lithiated t-butyldimethylpropoxysilane. These and related useful initiators are disclosed in U.S. Publ. No. 2006/0241241, which is incorporated herein by reference.
  • In one or more embodiments, the anionic initiator employed is trialkyltinlithium compound such as tri-n-butyltinlithium. These and related useful initiators are disclosed in U.S. Pat. Nos. 3,426,006 and 5,268,439, which are incorporated herein by reference.
  • Optionally, the liquid polymer synthesis step may be conducted in the presence of a modifier or a 1,2-microstructure controlling agent, so as to, for example, increase the reaction rate, equalize the reactivity ratio of monomers, and/or control the 1,2-microstructure in the conjugated diene monomers. Suitable modifiers include, but are not limited to, triethylamine, tri-n-butylamine, hexamethylphosphoric acid triamide, N,N,N′,N′-tetramethylethylene diamine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, 1,4-diazabicyclo [2.2.2]octane, diethyl ether, tri-n-butylphosphine, p-dioxane, 1,2 dimethoxy ethane, dimethyl ether, methyl ethyl ether, ethyl propyl ether, di-n-propyl ether, di-n-octyl ether, anisole, dibenzyl ether, diphenyl ether, dimethylethylamine, bix-oxolanyl propane, tri-n-propyl amine, trimethyl amine, triethyl amine, N,N-dimethyl aniline, N-ethylpiperidine, N-methyl-N-ethyl aniline, N-methylmorpholine, tetramethylenediamine, oligomeric oxolanyl propanes (OOPs), 2,2-bis-(4-methyl dioxane), bistetrahydrofuryl propane, and the like.
  • Other modifiers or 1,2-microstructure controlling agents used in the present invention may be linear oxolanyl oligomers represented by the structural formula (IV) and cyclic oligomers represented by the structural formula (V), as shown below:
  • Figure US20100324167A1-20101223-C00001
  • wherein R14 and R15 are independently hydrogen or a C1-C8 alkyl group; R16, R17, R18, and R19 are independently hydrogen or a C1-C6 alkyl group; y is an integer of 1 to 5 inclusive, and z is an integer of 3 to 5 inclusive.
  • Specific examples of modifiers or 1,2-microstructure controlling agents include, but are not limited to, oligomeric oxolanyl propanes (OOPs); 2,2-bis-(4-methyl dioxane); bis(2-oxolanyl)methane; 1,1-bis(2-oxolanyl)ethane; bistetrahydrofuryl propane; 2,2-bis(2-oxolanyl) propane; 2,2-bis(5-methyl-2-oxolanyl) propane; 2,2-bis-(3,4,5-trimethyl-2-oxolanyl) propane; 2,5-bis(2-oxolanyl-2-propyl) oxolane; octamethyl perhydrocyclotetrafurfurylene (cyclic tetramer); 2,2-bis(2-oxolanyl) butane; and the like. A mixture of two or more modifiers or 1,2-microstructure controlling agents also can be used.
  • After the reaction has had time to proceed to form the liquid polymer, a quenching agent is added in an amount that results in partial quenching (termination) of the living polymer. By partial termination, living (un-terminated) polymers remain, and are subsequently copolymerized to form the shell of the nanoparticle in the subsequent nanoparticle synthesis step. The liquid polymer synthesis step is relatively fast, and may for example, be completed in about 15 minutes. As used herein, partial termination means less than 100% of the living polymer chains are terminated.
  • Suitable quenching agents include, but are not limited to, alcohols such as methanol, ethanol, propanol, and isopropanol. Optionally, a quenching agent may be employed to provide terminal functionality. Exemplary functionality-providing quenching agents include, but are not limited to, SnCl4, R3SnCl, R2SnCl2, RSnCl3, carbodiimides, N-methylpyrrolidine, cyclic amides, cyclic ureas, isocyanates, Schiff bases, 4,4′-bis(diethylamino) benzophenone, N,N′-dimethylethyleneurea, and mixtures thereof, wherein R is selected from the group consisting of alkyls having from about 1 to about 20 carbon atoms, cycloalkyls having from about 3 to about 20 carbon atoms, aryls having from about 6 to about 20 carbon atoms, aralkyls having from about 7 to about 20 carbon atoms, and mixtures thereof.
  • The liquid polymer can be made by batch, semi-batch or continuous processes. Typically, a hydrocarbon solvent is used, although it may be possible to use other solvents or combinations of solvents provided that the solvent/combination would not interfere in the formation of the micelles. The hydrocarbon solvent may be selected from any suitable aliphatic hydrocarbons, alicyclic hydrocarbons, or mixture thereof, with a proviso that it exists in liquid state during the polymerizations. Exemplary aliphatic hydrocarbons include, but are not limited to, pentane, isopentane, 2,2 dimethyl-butane, hexane, heptane, octane, nonane, decane, mixtures of such hydrocarbons and the like. Exemplary alicyclic hydrocarbons include, but are not limited to, cyclopentane, methyl cyclopentane, cyclohexane, methyl cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and the like. In one embodiment, the liquid hydrocarbon medium comprises hexanes.
  • According to the process disclosed herein there are some advantages to synthesizing the liquid polymer in a batch process. However, it is also possible to perform the method described herein by a continuous process in a single reaction vessel. In a continuous process the monomers and an initiator are continuously fed into the reaction vessel with solvent.
  • The pressure in the reaction vessel should be sufficient to maintain a substantially liquid phase under the conditions of the polymerization reaction. The reaction medium may generally be maintained at a temperature that is within the range of about 20° C. to about 140° C. throughout the polymerization.
  • The liquid polymer may comprise polyisoprene, polybutadiene, styrene-butadiene copolymer, styrene-isoprene-butadiene copolymer, styrene-isoprene copolymer, butadiene-isoprene copolymer, liquid butyl rubber, liquid neoprene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, acrylonitrile-butadiene copolymer, liquid silicone, ethylene acrylic copolymer, ethylene vinyl acetate copolymer, liquid epichlorohydrin, liquid chlorinated polyethylene, liquid chlorosulfonated polyethylene rubbers, liquid hydrogenated nitrile rubber, liquid tetrafluoroethylene-propylene rubber, liquid hydrogenated polybutadiene and styrene-butadiene copolymer, and the like, and the mixture thereof.
  • In one embodiment, the number average molecular weight (Mn) of the resulting liquid polymer is within the range of from about 10,000 to about 120,000, within the range of from about 20,000 to about 110,000, or within the range of from about 25,000 to about 75,000.
  • The weight average molecular weight of the liquid polymer can range from about 20,000 to 100,000, for example 70,000 to 90,000.
  • The glass transition temperature (Tg) of the liquid polymer is, for example, within the range of from about −100° C. to about −20° C., such as within the range of from about −95° C. to about −40° C., or from about −90° C. to about −50° C. The liquid polymer may exhibit only one glass transition temperature.
  • Since the remaining polymers with living ends are later used to form the shell layer of the nanoparticles, the amount of quenching agent also determines the ratio of liquid polymer to nanoparticles in the nanoparticle/liquid polymer blend.
  • The formation of the liquid polymer is complete after the reaction is partially terminated with the quenching agent. In the illustrative methods described herein a charge is then added that begins the nanoparticle synthesis step.
  • In one embodiment, for the nanoparticle synthesis step an anionic initiator is first added to the reaction vessel (i.e. before adding the mono- and coupling agent). In other embodiments, the initiator can also be added at the same time as the mono-vinyl aromatic monomer and coupling agent. Anionic initiators may be those described above.
  • After addition of the initiator or concurrently with the addition of the initiator the mono-vinyl aromatic monomer and cross-linking agent are added to the same reaction vessel that the liquid polymer was formed in. The living polymer chains from the liquid polymer synthesis step copolymerize with the mono-vinyl aromatic monomer. The copolymer chains then self-assemble in the hydrocarbon solvent into micelles. The cross-linking agent serves to cross-link the micelles resulting in nanoparticles.
  • Optionally, the nanoparticle synthesis step may be conducted in the presence of a modifier or a 1,2-microstructure controlling agent, such as those described above.
  • In one embodiment, the copolymers are di-block copolymers comprising a polyconjugated diene block and a mono-vinyl aromatic block, such as poly(butadiene-b-styrene). The mono-vinyl aromatic blocks are typically at least partially crosslinked by the cross-linking agent. In one embodiment, the polymer nanoparticles retain their discrete nature with little or no polymerization between each other. In some embodiments, the nanoparticles are substantially monomodal and uniform in shape, in others the nanoparticles have a polymodal size distribution.
  • The copolymerization of the nanoparticle chains may last as long as necessary until the desired monomer conversion, degree of polymerization (DP), and/or block polymer molecular weight are obtained. The polymerization reaction of this step may last typically from about 0.5 hours to about 20 hours, from about 0.5 hours to about 10 hours, or from about 0.5 hours to about 5 hours. The polymerization reaction of this step may be conducted at a temperature of from about 30° F. to about 300° F., from about 100° F. to about 250° F., or from about 150° F. to about 210° F.
  • The polymerization reaction used to prepare the polymer nanoparticles may be terminated with a quenching agent. Suitable quenching agents include those described above In exemplified embodiments, the nanoparticle reaction mixture was cooled and dropped in an isopropanol/acetone solution containing an antioxidant such as butylated hydroxytoluene (BHT). The isopropanol/acetone solution may be prepared, for example, by mixing 1 part by volume of isopropanol and 4 parts by volume of acetone.
  • In one embodiment, the nanoparticle synthesis is conducted in the same solvent as was used for the liquid polymer synthesis. During synthesis of the nanoparticles, the liquid polymer can also be considered a solvent. Without being bound to theory, it is believed that during the nanoparticle synthesis the liquid polymer also intercalates itself between the living polymer chains when they are in the micelle formation. This may result in the isolatation of the inside of the micelle from the hydrocarbon solvent. Consequently, the resulting micelle will be more stable and the chances of two or more micelles meeting each other and potentially linking, resulting in the creation of much larger particles, is decreased. The liquid polymer causes the resulting nanoparticle to swell, and the resulting mixture is softer and more easily mixed into rubber compositions.
  • Without being bound to theory, it is believed that during the nanoparticle synthesis the poly(conjugated diene) block is more soluble or miscible in a selected hydrocarbon solvent, than the mono-vinyl aromatic block. This facilitates the subsequent formation of micelles and ultimately nanoparticles, from the block copolymer chains.
  • Depending on their miscibility, polymer chains in a solution or suspension system can be self-assembled into domains of various structures. Without being bound to any theory, it is believed that a micelle-like structure may be formed by aggregating the block copolymer chains comprising the poly(conjugated diene) block and the aromatic block. The mono-vinyl aromatic blocks are typically directed toward the center of the micelle and the poly(conjugated diene) containing blocks are typically extended away from the center.
  • The nanoparticles are formed from cross-linked micelle structures having a core made from the mono-vinyl aromatic blocks, and a shell made from the poly(conjugated diene) containing blocks. It is believed that the cross-linking agents crosslink the center core of the micelle to stabilize and hold together the nanoparticles.
  • In one example the liquid polymer of the nanoparticle/liquid polymer blend is a styrene-butadiene copolymer. The styrene-butadiene has an Mn of about 80,000 to 120,000 and is comprised of repeat units that are derived from about 5 weight percent to about 95 weight percent styrene and correspondingly from about 5 weight percent to about 95 weight percent 1,3-butadiene, wherein the repeat units derived from styrene and 1,3-butadiene are in essentially random order. In this example, in the liquid polymerization process of the illustrative methods, the first monomer is styrene and the second monomer is butadiene. Vinyl percentages of 50-60% are preferred for some applications because this range results in a compatible liquid polymer/nanoparticle phases. However, lower vinyl levels are also possible.
  • In another example, the liquid polymer comprises a liquid isoprene-butadiene rubber (IBR) with Mn of about 35,000 to 70,000, which is comprised of repeat units that are derived from about 5 weight percent to about 95 weight percent isoprene and correspondingly from about 5 weight percent to about 95 weight percent 1,3-butadiene, wherein the repeat units derived from isoprene and 1,3-butadiene are in essentially random order. In this example, the first monomer is isoprene and the second monomer is butadiene according to the illustrative methods described above.
  • The polymer nanoparticles synthesized in the one-pot methods described herein may include a vulcanizable shell and a crosslinked core. The monomers that comprise the shell may be curable by vulcanization by sulfur or peroxide. Examples of suitable sulfur vulcanizing agents include “rubber maker's” soluble sulfur; elemental sulfur (free sulfur); sulfur donating vulcanizing agents such as organosilane polysulfides, amine disulfides, polymeric polysulfides or sulfur olefin adducts; and insoluble polymeric sulfur. Related prior patents and publications U.S. Pat. No. 6,437,050 (Bridgestone Corp.) and Macromol. Symp. 118, 143-148 (1997) disclose some suitable sulfur vulcanizing agents.
  • In a variety of exemplary embodiments, the shell may be made up of any suitable conjugated diene or mixture thereof. C4-C8 1,3-conjugated diene monomers are the most preferred. Specific examples of the shell monomers include, but are not limited to 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), cis- and trans-piperylene (1,3-pentadiene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, cis- and trans-1,3-hexadiene, cis- and trans-2-methyl-1,3-pentadiene, cis- and trans-3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, and the like, and the mixture thereof. In certain embodiments, isoprene or 1,3-butadiene or mixture thereof is used as the shell monomer.
  • The crosslinked core of the nanoparticles is typically formed when mono-vinyl aromatic monomers are cross-linked with a cross-linking agent. The weight ratio between the mono-vinyl aromatic monomers and cross-linking agent may broadly range from about 95:5 to about 0:100, from about 90:10 to about 25:75, or from about 85:15 to about 60:40.
  • Suitable mono-vinyl aromatic monomers include, but are not limited to those generally containing from 8 to 20, preferably from 8 to 12 carbon atoms, and may be selected, for example, from: styrene; 1-vinylnaphthalene; 2-vinylnaphthalene; various alkyl, cycloalkyl, aryl, alkylaryl or arylalkyl derivatives of styrene such as, for example, α.-methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4-p-tolylstyrene, 4-(4-phenylbutyl)styrene, or mixtures thereof. In certain embodiments, the mono-vinyl aromatic monomer comprises styrene.
  • In certain embodiments, the micelles formed by the polymerization of mono-vinyl aromatic monomers and conjugated diene monomers are cross-linked to enhance the uniformity and permanence of shape and size of the resultant nanoparticle. In such embodiments, cross-linking agents comprise polyfunctional comonomers. In certain embodiments, cross-linking agents which are at least bifunctional, wherein the two functional groups are capable of reacting with vinyl-substituted aromatic hydrocarbon monomers are acceptable. Suitable polyfunctional comonomers are compounds having at least 2, preferably from 2 to 4 copolymerizable carbon-carbon double bonds, e.g. diisopropenylbenzene, divinylbenzene, divinyl ether, divinyl sulphone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N,N′-m-phenylenedimaleimide, N,N′-(4-methyl-m-phenylene)dimaleimide and/or triallyl trimellitate.
  • Other compounds which can also be used are the acrylates and methacrylates of polyhydric, preferably di- to tetrahydric C2-C10 alcohols, e.g. ethylene glycol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerol, trimethylolpropane, pentaerythritol and sorbitol. It is also possible to use acrylates and methacrylates of polyethylene glycol having from 2 to 20, preferably 2 to 8, oxyethylene units. Examples of the acrylate containing cross-linking agents include bisphenol A ethoxylate diacrylate, (diethylene glycol) diacrylate, glycerol propoxylate triacrylate, poly(ethylene glycol) diacrylate, and trimethylol propane ethoxylate triacrylate. It is also possible to use polyesters composed of aliphatic di- and/or polyols, or else maleic acid, fumaric acid and/or itaconic acid.
  • The polymer nanoparticle synthesized in the one-pot methods described herein may be substantially spherical. The mean diameter of the spheres may be broadly within the range of from about 1 nm to about 200 nm, within the range of from about 5 nm to about 100 nm, within the range of from about 10 nm to about 80 nm, or within the range of from about 15 nm to about 70 nm.
  • The average molecular weight Mn of the poly(conjugated diene) block of the shell portion may be controlled within the range of from about 5,000 to about 500,000, or within the range of from about 5,000 to about 200,000, and most preferably within the range of from about 10,000 to about 100,000. The average molecular weight Mn of the uncrosslinked aromatic block may be controlled within the range of from about 5,000 to about 500,000, within the range of from about 5,000 to about 200,000, or within the range of from about 10,000 to about 100,000.
  • The number average molecular weight (Mn) of the entire nanoparticle may be controlled within the range of from about 10,000 to about 200,000,000, within the range of from about 50,000 to about 1,000,000, or within the range of from about 100,000 to about 500,000. The polydispersity (the ratio of the weight average molecular weight to the number average molecular weight) of the polymer nanoparticle may be controlled within the range of from about 1 to about 1.5, within the range of from about 1 to about 1.3, or within the range of from about 1 to about 1.2.
  • The Mn may be determined by using Gel Permeation Chromatography (GPC) calibrated with polystyrene standards and adjusted for the Mark-Houwink constants for the polymer in question. The Mn values used in the examples below were measured by GPC methods calibrated with linear polymers.
  • In one example, the core of the synthesized nanoparticles is relatively hard. That is, the core has a Tg of about 60° C. or higher. In another example, the nanoparticles have a core that is relatively harder than the shell, for example, at least about 60° C. higher than the Tg of the shell layer. In one example, the shell layer is soft. That is, the shell layer has a Tg lower than about 0° C. In one embodiment, the Tg of the shell layer is between about 0° C. and about −100° C. Nanoparticles with hard cores and soft shells are particularly useful for reinforcing rubber compounds used for tire treads.
  • As known by those of skill in the art, the Tg of the polymers can be controlled by the selection of monomers and their molecular weight, styrene content, and vinyl content.
  • An illustrative composition comprising a liquid polymer/nanoparticle blend also includes (a) a rubber matrix, (b) an optional oil, and (c) one or more components selected from the group consisting of carbon black, silica, vulcanizing agent, vulcanization accelerator, tackifier resin, antioxidant, fatty acids, zinc oxide, wax, peptizer, vulcanization retarder, activator, processing additive, plasticizer, pigments, and antiozonant. Various rubber products such as tires and power belts may be manufactured based on this composition.
  • The nanoparticle/liquid polymer blend may be compounded with rubber by methods generally known in the rubber compounding art, such as mixing the rubbery matrix polymer and the nanoparticle/liquid polymer blend with conventional amounts of various commonly used additive materials, using standard rubber mixing equipment and procedures.
  • A vulcanized rubber product may be produced from the composition of the present invention by thermomechanically mixing the nanoparticle/liquid polymer blend, a rubbery matrix polymer, and conventional amounts of various commonly used additive materials in a sequentially step-wise manner in a rubber mixer, followed by shaping and curing the composition. Rubber articles such as tires may be manufactured from the composition made with the nanoparticle/liquid polymer blend described supra. Reference for this purpose may be made to, for example, U.S. Publication No. 2004/0143064 A1, which is hereby incorporated by reference.
  • Polymers that may comprise the rubber matrix include natural and synthetic elastomers. The synthetic elastomers typically derive from the polymerization of conjugated diene monomers. These conjugated diene monomers may be copolymerized with other monomers such as vinyl aromatic monomers. Other rubbery elastomers may derive from the polymerization of ethylene together with one or more .alpha.-olefins and optionally one or more diene monomers.
  • Useful elastomers include natural rubber, synthetic polyisoprene, polybutadiene, polyisobutylene-co-isoprene, neoprene, poly(ethylene-co-propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), and poly(styrene-co-isoprene-co-butadiene), poly(isoprene-co-butadiene), poly(ethylene-co-propylene-co-diene), polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, and mixtures thereof. These elastomers can have a myriad of macromolecular structures including linear, branched and star shaped.
  • Oil has been conventionally used as a compounding aid in rubber compositions. Examples of oil include, but are not limited to, aromatic, naphthenic, and/or paraffinic processing oils. In some examples, it may be preferable to use low-polycyclic-aromatic (PCA) oils, particularly oils that have a PCA content of less than 3%. In certain embodiments, the liquid polymer portion of the blend described above is used along with the oil, is used to replace a portion of the oil, or is used to replace the entirety of the oil in a rubber compound. As such, a typical amount of oil may broadly range from about 0 phr to about 100 phr, from about 0 phr to about 70 phr, or from about greater than 0 phr to about 50 phr, based on 100 phr rubbery matrix in the rubber composition.
  • As a skilled artisan can appreciate, reinforcement of a rubber product may be reflected by a low strain dynamic modulus G′, as can be measured according to ASTM-D 412 at 22° C. In certain embodiments, reinforcement of rubber products such as tires made from the composition of the present invention may be achieved by (i) incorporation of the nanoparticle/liquid polymer blend; (ii) partially replacing the oil with the nanoparticle/liquid polymer blend; or (iii) entirely replacing the oil with the nanoparticle/liquid polymer blend.
  • The nanoparticle/liquid polymer blend provides various rubber products with improved reinforcement and controllable hysteresis. By controllable hysteresis, it is meant that the hysteresis is increased or decreased, or remains roughly unchanged, comparing to the situation where oil is present in the composition, but no nanoparticle/liquid polymer blend is included in the composition. For example, G′(MPa) may be increased by at least about 0.3, alternatively at least about 1.5, or at least 3.0.
  • The energy loss of an elastomer is termed hysteresis, which refers to the difference between the energy applied to deform an article made from the elastomer and the energy released as the elastomer returns to its initial and undeformed state. Hysteresis is characterized by a loss tangent, tangent delta (tan δ), which is a ratio of the loss modulus to the storage modulus (i.e., the viscous modulus to the elastic modulus) as measured under an imposed sinusoidal deformation. The tan δ value can be measured, for example, with a TA Instrument ARES Rheometer.
  • Rubber products with improved reinforcement and suitable hysteresis may comprise with the nanoparticle/liquid polymer blend, in which the phr ratio between the component (a) liquid polymer and component (b) polymer nanoparticles is within the range of from about 1:99 to about 99:1, in another embodiment within the range of from about 20:80 to about 80:20, and in another embodiment within the range of from about 25:75 to about 40:60.
  • The illustrative rubber compositions described herein can be used for various purposes. For example, they can be used for various rubber compounds, such as a tire treadstock, sidewall stock or other tire component stock compounds. Such tires can be built, shaped, molded and cured by various methods that are known and will be readily apparent to those having skill in the art. In an embodiment, a molded unvulcanized tire is charged into a vulcanizing mold and then vulcanized to produce a tire, based on the composition and the procedure as described above.
  • The following examples are included to provide additional guidance to those skilled in the art in practicing the claimed invention. The examples provided are merely representative of the work that contributes to the teaching of the present application. Accordingly, these examples are not intended to limit the invention, as defined in the appended claims, in any manner.
  • EXAMPLES Preparation of Nanoparticle/Liquid Polymer Blend
  • A two-gallon jacketed reactor was used as the reaction vessel. The following ingredients were used: 19.3% butadiene in hexane, 33% styrene in hexane, hexane, n-butyl lithium (1.6 M), oligomeric oxalanyl propane (1.6 M) (OOPs), isopropanol, butylated hydroxytoluene (BHT), and 80% divinylbenzene (DVB) purchased from Aldrich.
  • The reactor was sequentially charged with 4.96 lbs of hexane, 0.59 lbs of 33% styrene, and 3.58 lbs of 19.3% butadiene. This reactor was heated to 120° F. over about 15 minutes. When the reactor reached 117° F., 2.3 mL of n-butyl lithium (1.6 M) and 0.76 mL of OOPs (1.6 M), diluted with about 20 mL of hexane were added. The polymerization exothermed at 126.7° F. after three minutes. After one hour, the jacket of the reactor was set to 100° F. and 0.14 mL of isopropanol was added. After dropping a sample for analysis, additional n-butyl lithium (2.3 mL) was added to the reactor. A mixture of 140.2 g styrene blend and 28.5 mL of DVB was prepared and added to the reactor. The jacket temperature of the reactor was increased to 180° F. After three hours, the reactor temperature was brought down to 90° F. and the mixture was dropped in isopropanol containing BHT. The resulting solid was then filtered through cheesecloth and drum dried.
  • The liquid polymer portion was determined to have an Mn of 73,000 to 80,000. The nanoparticle portion was determined to have a Mn of 83,700. The synthesized blend contained 55 wt % liquid polymer and 45 wt % nanoparticles.
  • The nanoparticle/liquid polymer blend was much easier to isolate from solvent and dry than previously known methods of separately synthesizing the liquid polymer. However, with a sufficient amount of nanoparticles in the liquid polymer blend, a substantially solid blend results after coagulation, which can be drum-dried very easily.
  • Preparation and Analysis of Example Rubber Compounds
  • Six rubber compositions were prepared according to the formulation shown in Tables 1 and 2. The first example was a control that contained no nanoparticles or liquid polymer to serve as a comparison with the test compounds. The second example was made using synthesized nanoparticles to replace 10 phr of styrene-butadiene rubber (SBR) in the compound formulation. The third example was made using nanoparticles and liquid polymer to replace 10 phr of SBR and about 15 phr of aromatic oil. Because the synthesized MNP/LP blend contained 55 wt % of the liquid polymer and 45 wt % of the nanoparticles, 22.2 phr of the MNP/LP blend and 2.8 phr of additional LP were used in the formulation in order to correctly match the desired composition.
  • To illustrate that the additional amount of LP is not a necessary component of the examples described herein, a fourth prophetic example is also presented. In the prophetic example 4, 25 phr of 40:60 MNP/LP blend is used. This prophetic example replaces the 10 phr of SBR with 10 phr of blended MNP and replaces the 15 phr of LP with 15 phr of blended LP without using additional LP by itself.
  • Three comparative examples were also prepared. Each of these examples use polybutadiene as the matrix rubber and use nanoparticles that were synthesized in a separate pot from the liquid polymer. Comp. Example 1 contained 15 phr of aromatic oil, but did not contain any nanoparticles or liquid polymer. Comp. Example 1 was used as a control (Control 2) and the results of the other comparative examples were normalized in relation to Comp. Example 1. Comp. Example 2 differs from Comp. Example 1 in that it replaces 15 phr of the polybutadiene with 15 phr of nanoparticles. Comp. Example 3 differs from Comp. Example 1 in that it replaces 15 phr of polybutadiene and 15 phr of aromatic oil with 15 phr of nanoparticles and 15 phr of butadiene liquid polymer.
  • TABLE 1
    Composition of Example Master Batches (in phr)
    Comp.
    Example 1 Prophetic Example 1 Comp. Comp.
    (Control 1) Example 2 Example 3 Example 4 (Control 2) Example 2 Example 3
    Polybutadiene1 0 0 0 0 100 85 85
    SBR2 100 90 90 90 0 0 0
    Carbon Black 50 50 50 50 50 50 50
    (N343)
    Aromatic Oil 15 15 0 0 15 15 0
    Zinc Oxide 3.0 3.0 3.0 3.0 3.0 3.0 3.0
    Hydrocarbon Resin 2.0 2.0 2.0 2.0 2.0 2.0 2.0
    (tackifiers)
    Santoflex 13 0.95 0.95 0.95 0.95 0.95 0.95 0.95
    (antioxidants)
    Stearic Acid 2.0 2.0 2.0 2.0 2.0 2.0 2.0
    Wax 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    Nanoparticles 0 10 0 0 0 15 15
    (100 wt % MNP)3
    Liquid 0 0 22.2 0 0 0 0
    Polymer/Nanoparticle4
    Liquid 0 0 0 25 0 0 0
    Polymer/Nanoparticle5
    Liquid Polymer6 0 0 2.8 0 0 0 15
    1Trade Name HX301 from Firestone Polymers (Mw of 150,000, 12% vinyl, 40 Mooney viscosity)
    2Trade Name HX263 from Firestone Polymers (Mw of 261 kg/mol, Mw/Mn of 2.30, 23.8% styrene by weight, 35% cis 1,4, 52% trans 1,4, and 13% 1,2 vinyl)
    3Nanoparticles prepared as described in U.S. 2007/0142550 A1, which is hereby incorporated by reference.
    445% nanoparticles and 55% liquid polymer
    540% nanoparticles and 60% liquid polymer
    6Polybutadiene with Mn of 80,000, prepared as described in U.S. 2007/0142550 A1
  • TABLE 2
    Additional Additives to Final Batch Composition (in phr)
    Comp.
    Example 1 Prophetic Example 1 Comp. Comp.
    (Control 1) Example 2 Example 3 Example 4 (Control 2) Example 2 Example 3
    Sulfur ~1.3 ~1.3 ~1.3 ~1.3 ~1.3 ~1.3 ~1.3
    Cyclohexyl- 1.4 1.4 1.4 1.4 1.4 1.4 1.4
    benzothiazole
    sulfenamide
    (accelerator)
    Diphenylguanidine 0.20 0.20 0.20 0.20 0.20 0.20 0.20
    (accelerator)
  • In each example, a blend of the ingredients was kneaded by the method listed in Table 3. The final stock was sheeted and molded at 165° C. for 15 minutes.
  • TABLE 3
    Mixing Conditions
    Mixer: 300 g Brabender
    Agitation Speed: 60 rpm
    Master Batch Stage
    Initial 110° C.
    Temperature
      0 min charging polymers
     0.5 min charging oil and Carbon Black
     5.0 min drop sample for analysis
    Final Batch Stage
    Initial 75° C.
    Temperature
      0 min charging master stock
     0.5 min charging curing agent and accelerators
    1.25 min Drop sample for analysis
  • TABLE 4
    Analysis of Examples
    Comp.
    Example 1 Example 5 Comp. Comp.
    (control 1) Example 2 Example 3 (control 2) Example 6 Example 7
    Ring Tensile Strength
    Tensile Break Stress 100 118 129 100 110 115
    23° C. Tb
    (Normalized)
    Elongation at Break 100 105 94 100 100 90
    23° C. (Eb %)
    (Normalized)
    300% Modulus 100 113 145 100 112 134
    23° C. (M300)
    (Normalized)
    50% Modulus 100 114 144 100 115 139
    23° C. (M50)
    (Normalized)
    Tg of Compound −45° C. −43° C. −40° C.
    (extropolated from tan δ)
    Rolling Resistance
    tan δ 50° C. 100 110 98 100 105 96
    (Normalized)
    G′ 50° C. 100 135 156 100 122 129
    (Normalized)
  • Measurement of the tensile strength and hysteresis loss were taken of the example vulcanized rubber compositions. The results are shown in Table 4. Measurement of tensile strength was performed according ASTM-D 412.
  • For examples 1, 2, and 3, the test specimen geometry was in the form of a ring of a width of 0.05 inches and of a thickness of 0.075 inches. The specimen was tested at a specific gauge length of 1.0 inch. Hysteresis loss was measured with a Dynastat Viscoelastic Analyzer set at a frequency of 1 Hz and 1% strain. The geometry of the specimen for this test was a cylinder of a length of 15 mm and a diameter of 10 mm.
  • For examples 5, 6, and 7 the test specimen geometry was taken in the form of a ring of a width of 0.05 inches and of a thickness of 0.075 inches. The specimen was tested at a specific gauge length of 1.0 inches. The hysteresis loss was measured with a TA Instrument ARES Rheometer. Test specimen geometry was taken in the form of a cylinder of a length of 15 mm and of a diameter of 9 mm. The following testing conditions were employed: frequency 5 Hz, 1% strain.
  • While the invention has been illustrated and described in typical embodiments, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present invention. As such, further modifications and equivalents of the invention herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the invention as defined by the following claims.

Claims (27)

1. A method for preparing a one-pot synthesized blend of nanoparticles and liquid polymer in a solvent, the method comprising the steps of:
(a) in a reaction vessel, polymerizing either a first monomer to form a liquid polymer, or copolymerizing the first monomer and a second monomer to form the liquid polymer;
(b) partially terminating the polymerization with a quenching agent; and
(c) adding a polyfunctional comonomer, a mono-vinyl aromatic monomer, and an optional charge of polymerization initiator;
wherein said nanoparticles have a core including the mono-vinyl aromatic monomer and a shell comprising the first monomer or the first and the second monomer.
2. The method of claim 1, wherein the quenching agent partially terminates the polymerization such that 20 to 95% of the polymers chains are terminated.
3. The method of claim 1, further comprising the step of filtering and drum drying the one-pot synthesized blend of nanoparticles and liquid polymer.
4. The method of claim 1, wherein the second monomer is selected from the group consisting of styrene, α-methyl styrene, 1-vinyl naphthalene, 2-vinyl naphthalene, 1-α-methyl vinyl naphthalene, 2-α-methyl vinyl naphthalene, vinyl toluene, methoxystyrene, t-butoxystyrene, and alkyl, cycloalkyl, aryl, alkaryl, and aralkyl derivatives thereof in which the total number of carbon atoms in the derivative is not greater than 18, or any di- or tri-substituted aromatic hydrocarbons, and mixtures thereof.
5. The method of claim 1, wherein the first monomer is a conjugated diene.
6. The method of claim 5, wherein the first monomer is selected from the group consisting of C4-C8 conjugated dienes and mixtures thereof.
7. The method of claim 1, wherein the nanoparticles are crosslinked with the polyfunctional comonomer.
8. The method of claim 1, wherein the cross-linking agent is selected from the group consisting of diisopropenylbenzene, divinylbenzene, divinyl ether, divinyl sulphone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, N,N′-m-phenylenedimaleimide, N,N′-(4-methyl-m-phenylene)dimaleimide and/or triallyl trimellitate. acrylates and methacrylates of polyhydric, C2-C10 alcohols, acrylates and methacrylates of polyethylene glycol having from 2 to 20 oxyethylene units and polyesters composed of aliphatic di- and/or polyols, or maleic acid, fumaric acid and/or itaconic acid.
9. The method of claim 8, wherein the cross-linking agent is divinylbenzene.
10. The method of claim 1, wherein the first monomer is butadiene and the second monomer is styrene.
11. The method of claim 1, wherein the core of the nanoparticle has a Tg of about 60° C. or higher.
12. The method of claim 1, wherein the shell of the nanoparticle has a Tg lower than about 0° C.
13. The method of claim 1, wherein the shell of the nanoparticle has a Tg between about 0° C. and about −70° C.
14. The method of claim 1, wherein the core of the nanoparticle has a Tg of at least about 60° C. higher than the Tg of the shell.
15. The method of claim 1, wherein the liquid polymer has an Mw of about 10,000 to about 120,000.
16. The method of claim 1, wherein the nanoparticles are formed by micelle self-assembly.
17. The method of claim 15, wherein the nanoparticles have a core comprising styrene cross-linked with divinylbenzene and a shell comprising butadiene.
18. The method of claim 1, wherein the cross-linking agent is added before the polymerization initiator and mono-vinyl aromatic monomer.
19. The method of claim 1, wherein the quenching agent is selected from the group consisting of methanol, ethanol, propanol, and isopropanol.
20. The method of claim 1, wherein the quenching agent is a functionalizing agent.
21. The method of claim 20, wherein the functionalizing agent is tin tetrachloride.
22. The method of claim 1, wherein the polymerizing or copolymerizing of step (a) are initiated with an anionic initiator.
23. The method of claim 1, wherein the steps are performed in the same reaction vessel.
24. A method for making a rubber composition, the method comprising:
making a blend of nanoparticles and liquid polymer according of claim 1; and
adding the blend to a rubber composition.
25. A method for making a tire with nanoparticles and liquid polymer, the method comprising:
making a blend of nanoparticles and liquid polymer according to claim 1;
adding the blend to a rubber composition;
molding the rubber composition into a tire tread; and
constructing a tire using the tire tread.
26. A composition of matter consisting essentially of:
core-shell type, micellar nanoparticles; and
a liquid polymer having a Mw of about 10,000 to about 120,000;
wherein the nanoparticles are dispersed and blended within the liquid polymer.
27. The composition of matter of claim 26, wherein the nanoparticles and liquid polymer are present in a ratio of 25:75 to 40:60.
US12/666,146 2007-06-29 2008-06-30 One-pot synthesis of nanoparticles and liquid polymer for rubber applications Abandoned US20100324167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/666,146 US20100324167A1 (en) 2007-06-29 2008-06-30 One-pot synthesis of nanoparticles and liquid polymer for rubber applications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/771,659 US7829624B2 (en) 2007-06-29 2007-06-29 One-pot synthesis of nanoparticles and liquid polymer for rubber applications
PCT/US2008/068838 WO2009006434A1 (en) 2007-06-29 2008-06-30 One-pot synthesis of nanoparticles and liquid polymer for rubber applications
US12/666,146 US20100324167A1 (en) 2007-06-29 2008-06-30 One-pot synthesis of nanoparticles and liquid polymer for rubber applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/771,659 Continuation US7829624B2 (en) 2007-06-29 2007-06-29 One-pot synthesis of nanoparticles and liquid polymer for rubber applications

Publications (1)

Publication Number Publication Date
US20100324167A1 true US20100324167A1 (en) 2010-12-23

Family

ID=39650519

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/771,659 Expired - Fee Related US7829624B2 (en) 2007-06-29 2007-06-29 One-pot synthesis of nanoparticles and liquid polymer for rubber applications
US12/666,146 Abandoned US20100324167A1 (en) 2007-06-29 2008-06-30 One-pot synthesis of nanoparticles and liquid polymer for rubber applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/771,659 Expired - Fee Related US7829624B2 (en) 2007-06-29 2007-06-29 One-pot synthesis of nanoparticles and liquid polymer for rubber applications

Country Status (9)

Country Link
US (2) US7829624B2 (en)
EP (1) EP2167557B1 (en)
JP (1) JP5631207B2 (en)
KR (1) KR101586096B1 (en)
CN (1) CN101848949B (en)
BR (1) BRPI0813220B1 (en)
ES (1) ES2530191T3 (en)
RU (1) RU2501731C2 (en)
WO (1) WO2009006434A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057899B2 (en) 2001-10-04 2011-11-15 Bridgestone Corporation Nano-particle preparation and applications
US8288473B2 (en) 2005-12-19 2012-10-16 Bridgestone Corporation Disk-like nanoparticles
US8410225B2 (en) 2006-12-19 2013-04-02 Bridgestone Corporation Fluorescent nanoparticles
US8541503B2 (en) 2006-07-28 2013-09-24 Bridgestone Corporation Polymeric core-shell nanoparticles with interphase region
US8697775B2 (en) 2005-12-20 2014-04-15 Bridgestone Corporation Vulcanizable nanoparticles having a core with a high glass transition temperature
US8846819B2 (en) 2008-12-31 2014-09-30 Bridgestone Corporation Core-first nanoparticle formation process, nanoparticle, and composition
US8877250B2 (en) 2005-12-20 2014-11-04 Bridgestone Corporation Hollow nano-particles and method thereof
US9062144B2 (en) 2009-04-03 2015-06-23 Bridgestone Corporation Hairy polymeric nanoparticles with first and second shell block polymer arms
US9061900B2 (en) 2005-12-16 2015-06-23 Bridgestone Corporation Combined use of liquid polymer and polymeric nanoparticles for rubber applications
US9115222B2 (en) 2009-12-29 2015-08-25 Bridgestone Corporation Well defined, highly crosslinked nanoparticles and method for making same
US9428604B1 (en) 2011-12-30 2016-08-30 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205370B2 (en) * 2004-01-12 2007-04-17 Bridgestone Corporation Polymeric nano-particles of flower-like structure and applications
US7718737B2 (en) * 2004-03-02 2010-05-18 Bridgestone Corporation Rubber composition containing functionalized polymer nanoparticles
US8063142B2 (en) 2004-03-02 2011-11-22 Bridgestone Corporation Method of making nano-particles of selected size distribution
US20050228074A1 (en) * 2004-04-05 2005-10-13 Bridgestone Corporation Amphiphilic polymer micelles and use thereof
US20050282956A1 (en) * 2004-06-21 2005-12-22 Xiaorong Wang Reversible polymer/metal nano-composites and method for manufacturing same
US7998554B2 (en) * 2004-07-06 2011-08-16 Bridgestone Corporation Hydrophobic surfaces with nanoparticles
US7659342B2 (en) * 2005-02-03 2010-02-09 Bridgestone Corporation Polymer nano-particle with polar core and method for manufacturing same
US7884160B2 (en) * 2005-12-19 2011-02-08 Bridgestone Corporation Non-spherical nanoparticles made from living triblock polymer chains
US8191169B2 (en) * 2006-11-10 2012-06-05 Grune Guerry L Anti-microbial compounds used in garments for water based activities
US7649049B2 (en) * 2006-12-20 2010-01-19 Bridgestone Corporation Rubber composition containing a polymer nanoparticle
US7829624B2 (en) 2007-06-29 2010-11-09 Bridgestone Corporation One-pot synthesis of nanoparticles and liquid polymer for rubber applications
US20110172364A1 (en) * 2009-12-29 2011-07-14 Chen Yaohong Charged Nanoparticles And Method Of Controlling Charge
US8652386B2 (en) 2010-09-16 2014-02-18 Georgia Tech Research Corporation Alignment of carbon nanotubes comprising magnetically sensitive metal oxides in nanofluids
US9312046B2 (en) 2014-02-12 2016-04-12 South Dakota Board Of Regents Composite materials with magnetically aligned carbon nanoparticles having enhanced electrical properties and methods of preparation
WO2015147931A1 (en) 2014-02-12 2015-10-01 South Dakota Board Of Regents Composite materials with magnetically aligned carbon nanoparticles having enhanced electrical properties and methods of preparation
US10494491B2 (en) * 2015-01-16 2019-12-03 The Board Of Regents For Oklahoma State University Method for fabrication of high dispersion polymer nanocomposites
WO2017074423A1 (en) * 2015-10-30 2017-05-04 Compagnie Generale Des Etablissements Michelin Silica tread with peroxide curing
KR101998849B1 (en) * 2018-03-02 2019-07-11 금호석유화학 주식회사 Method for preparing high solids content polymer polyols having low viscosity

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793402A (en) * 1971-11-05 1974-02-19 F Owens Low haze impact resistant compositions containing a multi-stage,sequentially produced polymer
US4075186A (en) * 1974-10-29 1978-02-21 The Firestone Tire & Rubber Company Graft copolymers of polybutadiene and substituted polyacrylate
US4247434A (en) * 1978-12-29 1981-01-27 Lovelace Alan M Administrator Process for preparation of large-particle-size monodisperse
US4248986A (en) * 1979-08-27 1981-02-03 The Goodyear Tire & Rubber Company Selective cyclization of block copolymers
US4326008A (en) * 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US4386125A (en) * 1981-02-20 1983-05-31 Asahi Kasei Kogyo Kabushiki Kaisha Film, sheet or tube of a block copolymer or a composition containing the same
US4659790A (en) * 1984-06-05 1987-04-21 Japan Synthetic Rubber Co., Ltd. Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4717655A (en) * 1982-08-30 1988-01-05 Becton, Dickinson And Company Method and apparatus for distinguishing multiple subpopulations of cells
US4722770A (en) * 1985-07-25 1988-02-02 Universite Paul Sabatier Method for making continuous and closed hollow bodies, hollow bodies so obtained and apparatus for making the hollow spheres
US4725522A (en) * 1986-10-16 1988-02-16 Xerox Corporation Processes for cold pressure fixable encapsulated toner compositions
US4829130A (en) * 1986-07-23 1989-05-09 Enichem Sintesi S.P.A. Silylated derivatives of isobutene crosslinkable under ambient conditions, and process for preparing them
US4829135A (en) * 1987-12-29 1989-05-09 Mobil Oil Corporation Multi-stage anionic dispersion homopolymerization to form microparticles with narrow size distribution
US4831131A (en) * 1984-02-03 1989-05-16 The Upjohn Company 11β,17α-Dihydroxy-17β-cyano-androstanes
US4904732A (en) * 1986-06-25 1990-02-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable isobutylene polymer
US4904730A (en) * 1988-04-08 1990-02-27 The Dow Chemical Company Rubber-modified resin blends
US4906695A (en) * 1988-07-08 1990-03-06 Dow Corning Corporation Pressure-sensitive adhesives containing an alkoxy-functional silicon compound
US4920160A (en) * 1987-07-30 1990-04-24 Tioxide Group Plc Polymeric particles and their preparation
US4981202A (en) * 1988-03-17 1991-01-01 Automotive Products Plc Motor vehicle control system
US4987202A (en) * 1986-04-14 1991-01-22 Zeigler John M Methods for the synthesis of polysilanes
US5194300A (en) * 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
US5284915A (en) * 1988-12-23 1994-02-08 Enichem Elastomeri S.P.A. Styrene-isoprene block copolymers
US5290875A (en) * 1992-11-30 1994-03-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
US5290878A (en) * 1992-06-10 1994-03-01 Sumitomo Chemical Company, Limited Butadiene copolymer and process for preparing same
US5290873A (en) * 1990-04-16 1994-03-01 Kanegafuchi Chemical Industry Co., Ltd. Isobutylene polymer having unsaturated group and preparation thereof
US5296547A (en) * 1993-01-28 1994-03-22 Minnesota Mining And Manufacturing Company Block copolymer having mixed molecular weight endblocks
US5395891A (en) * 1992-06-24 1995-03-07 Bayer Aktiengesellschaft Rubber mixtures containing polybutadiene gel
US5395902A (en) * 1991-09-03 1995-03-07 Bridgestone Corporation Dispersion copolymerization in liquid aliphatic hydrocarbons
US5399629A (en) * 1990-01-16 1995-03-21 Mobil Oil Corporation Solid elastomeric block copolymers
US5399628A (en) * 1993-12-02 1995-03-21 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes containing two interior tapered blocks
US5405903A (en) * 1993-03-30 1995-04-11 Shell Oil Company Process for the preparation of a block copolymer blend
US5514753A (en) * 1993-06-30 1996-05-07 Bridgestone Corporation Process for preparing a block copolymer
US5514734A (en) * 1993-08-23 1996-05-07 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same
US5521309A (en) * 1994-12-23 1996-05-28 Bridgestone Corporation Tertiary-amino allyl-or xylyl-lithium initiators and method of preparing same
US5594072A (en) * 1993-06-30 1997-01-14 Shell Oil Company Liquid star polymers having terminal hydroxyl groups
US5614579A (en) * 1992-12-22 1997-03-25 Bridgestone Corporation Process for the preparation of tapered copolymers via in situ dispersion
US5627252A (en) * 1994-12-01 1997-05-06 Dow Corning S. A. Silyl group containing organic polymers
US5707439A (en) * 1995-04-03 1998-01-13 General Electric Company Layered minerals and compositions comprising the same
US5728791A (en) * 1990-11-30 1998-03-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyvinyl graft-polymers and manufacturing method thereof
US5733975A (en) * 1992-06-09 1998-03-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyolefin resin composition, process for the preparation thereof and molded article made thereof
US5739267A (en) * 1994-03-18 1998-04-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for isolation of isobutylene polymer
US5742118A (en) * 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
US5747152A (en) * 1993-12-02 1998-05-05 Dai Nippon Printing Co., Ltd. Transparent functional membrane containing functional ultrafine particles, transparent functional film, and process for producing the same
US5855972A (en) * 1993-11-12 1999-01-05 Kaeding; Konrad H Sealant strip useful in the fabrication of insulated glass and compositions and methods relating thereto
US5883173A (en) * 1995-06-23 1999-03-16 Exxon Research And Engineering Company Nanocomposite materials (LAW392)
US5891947A (en) * 1992-12-22 1999-04-06 Bridgestone Corporation In-situ anionic continuous dispersion polymerization process
US5897811A (en) * 1996-05-24 1999-04-27 Rohm And Haas Company Fluorescent polymers and coating compositions
US5905116A (en) * 1998-05-06 1999-05-18 Bridgestone Corporation Gels derived from extending grafted α-olefin-maleimide centipede polymers and polypropylene
US6011116A (en) * 1996-05-08 2000-01-04 Kaneka Corporation Thermoplastic resin composition
US6020446A (en) * 1996-02-21 2000-02-01 Kaneka Corporation Curable composition
US6025416A (en) * 1995-05-12 2000-02-15 Henkel Teroson Gmbh Two-component adhesive/sealing mass with high initial adhesiveness
US6025445A (en) * 1996-11-01 2000-02-15 Kaneka Corporation Curable compound
US6060549A (en) * 1997-05-20 2000-05-09 Exxon Chemical Patents, Inc. Rubber toughened thermoplastic resin nano composites
US6180693B1 (en) * 1995-11-29 2001-01-30 Vantico Inc. Core/shell particles, and curable epoxy resin composition comprising same
US6191217B1 (en) * 1998-11-17 2001-02-20 Bridgestone Corporation Gels derived from polypropylene grafted alkyl vinylether-maleimide copolymers
US6197849B1 (en) * 1998-02-20 2001-03-06 Vantico Inc. Organophilic phyllosilicates
US6204354B1 (en) * 1998-05-06 2001-03-20 Bridgestone Corporation Soft compounds derived from polypropylene grafted disubstituted ethylene- maleimide copolymers
US6207263B1 (en) * 1997-01-20 2001-03-27 Dai Nippon Printing Co., Ltd. Anti-reflection film and process for preparation thereof
US20020007011A1 (en) * 2000-04-27 2002-01-17 Jsr Corporation Crosslinked rubber particles and rubber compositions
US6348546B2 (en) * 1997-12-04 2002-02-19 Kaneka Corporation Alkenyl-containing isobutylene group block copolymer and process for producing it
US6359075B1 (en) * 2001-01-09 2002-03-19 Bridgestone/Firestone, Inc. Means of producing high diblock content thermoplastic elastomers via chain transfer
US20020045714A1 (en) * 1997-09-05 2002-04-18 Dow Chemical Nanocomposites of dendritic polymers
US6379791B1 (en) * 2000-02-08 2002-04-30 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US20030004250A1 (en) * 2000-11-17 2003-01-02 Manoj Ajbani Light weight rubber composition containing clay
US6506567B2 (en) * 2000-01-31 2003-01-14 Fuji Photo Film Co., Ltd. Water-soluble flourescent intercalator compound
US20030032710A1 (en) * 2001-07-02 2003-02-13 Larson Brent Kevin Elastomer composition which contains intercalated and exfoliated clay reinforcement formed in situ within the elastomer host and article, such as a tire, having at least one component thereof
US6524595B1 (en) * 2000-05-12 2003-02-25 Coletica Cyclodextrins preferentially substituted on their primary face by acid or amine functions
US6550508B1 (en) * 1998-11-27 2003-04-22 The Yokohama Rubber Co., Ltd. Rubber composition for tire tread having high performance on ice and pneumatic tire using the same
US6554595B2 (en) * 2000-11-06 2003-04-29 Hitachi, Ltd. Compressor with oil-mist separator
US6689469B2 (en) * 2001-12-31 2004-02-10 Bridgestone Corporation Crystalline polymer nano-particles
US6693746B1 (en) * 1999-09-29 2004-02-17 Fuji Photo Film Co., Ltd. Anti-glare and anti-reflection film, polarizing plate, and image display device
US20040033345A1 (en) * 2002-08-15 2004-02-19 Benoit Dubertret Water soluble metal and semiconductor nanoparticle complexes
US6706823B2 (en) * 2001-12-31 2004-03-16 Bridgestone Corporation Conductive gels
US6706813B2 (en) * 1999-06-04 2004-03-16 Kaneka Corporation Curable composition and method of use thereof
US20040059057A1 (en) * 1995-08-29 2004-03-25 Chevron Phillips Chemical Company Lp Conjugated diene/monovinylarene block copolymers blends
US6861462B2 (en) * 2001-12-21 2005-03-01 The Goodyear Tire & Rubber Company Nanocomposite formed in situ within an elastomer and article having component comprised thereof
US6872785B2 (en) * 2001-10-04 2005-03-29 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US6875818B2 (en) * 2003-01-16 2005-04-05 Bridgestone Corporation Polymer nano-strings
US7193004B2 (en) * 2003-06-30 2007-03-20 The Goodyear Tire & Rubber Company Pneumatic tire having a component containing low PCA oil
US20070081830A1 (en) * 2005-10-11 2007-04-12 Xerox Corporation Aromatic disiloxane compositions
US7205370B2 (en) * 2004-01-12 2007-04-17 Bridgestone Corporation Polymeric nano-particles of flower-like structure and applications
US7347237B2 (en) * 2004-04-13 2008-03-25 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanoparticle
US20090005491A1 (en) * 2007-06-29 2009-01-01 Sandra Warren One-Pot Synthesis Of Nanoparticles And Liquid Polymer For Rubber Applications
US20090054554A1 (en) * 2005-12-19 2009-02-26 Xiaorong Wang Disk-like Nanoparticles
US20100004398A1 (en) * 2006-07-28 2010-01-07 Xiaorong Wang Polymeric core-shell nanoparticles with interphase region
US7649049B2 (en) * 2006-12-20 2010-01-19 Bridgestone Corporation Rubber composition containing a polymer nanoparticle
US20100016472A1 (en) * 2004-03-02 2010-01-21 Xiaorong Wang Rubber Composition Containing Functionalized Polymer Nanoparticles
US20100016512A1 (en) * 2006-12-19 2010-01-21 Xiaorong Wang Fluorescent Nanoparticles
US7659342B2 (en) * 2005-02-03 2010-02-09 Bridgestone Corporation Polymer nano-particle with polar core and method for manufacturing same
US7695813B2 (en) * 2002-12-19 2010-04-13 Roehm Gmbh & Co. Kg Core and shell particle for modifying impact resistance of a mouldable poly (meth) acrylate material
US20110021702A1 (en) * 2006-07-06 2011-01-27 Michelin Recherche Et Technique S.A. Functionalized vinyl polymer nanoparticles
US20110024011A1 (en) * 2004-11-30 2011-02-03 The Goodyear Tire & Rubber Company Modified gel particles and rubber composition
US7884160B2 (en) * 2005-12-19 2011-02-08 Bridgestone Corporation Non-spherical nanoparticles made from living triblock polymer chains

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531396A (en) 1947-03-29 1950-11-28 Nat Lead Co Elastomer reinforced with a modified clay
DE1300240B (en) 1964-01-22 1969-07-31 Bayer Ag Process for the production of polymers of conjugated diolefins
US3598884A (en) 1967-08-04 1971-08-10 Polymer Corp Cross-linking of polymers
US3652516A (en) 1969-02-10 1972-03-28 Phillips Petroleum Co Polymerization of conjugated dienes or monovinyl aromatic monomers with multifunctional initiators from diisopropenylbenzene
US3840620A (en) 1970-04-15 1974-10-08 Stauffer Chemical Co Additives for the preparation of clear,impact resistant vinyl chloride polymer compositions
BE770501A (en) 1970-07-28 1972-01-26 Xerox Corp POLYMERS CONTAINING PYRENE, PREPARED BY ANIONIC POLYMERIZATION
US3972963A (en) 1973-06-20 1976-08-03 Mobil Oil Corporation Organic reinforcing fillers for rubber
US4233409A (en) 1979-07-05 1980-11-11 Monsanto Company Polymeric blend
GB2088387A (en) 1980-11-25 1982-06-09 Exxon Research Engineering Co Adhesive sealants for double glazing
CA1196139A (en) 1982-02-26 1985-10-29 Hiroshi Furukawa Elastomer composition
JPS59168014A (en) 1983-03-15 1984-09-21 Kanegafuchi Chem Ind Co Ltd Curable elastomer composition
US4598105A (en) 1983-09-21 1986-07-01 Amoco Corporation Rubber composition and method
US4602052A (en) 1983-09-21 1986-07-22 Amoco Corporation Rubber composition and method of incorporating carbon black and a quaternary ammonium coupling agent salt into natural rubber containing compositions
NL8304029A (en) 1983-11-23 1985-06-17 Dow Chemical Nederland RUBBER-REINFORCED POLYMERS OF MONOVINYLIDE AROMATIC COMPOUNDS HAVING A VERY GOOD RATIO BETWEEN GLOSS AND STRENGTH PROPERTIES AND A PROCESS FOR THEIR PREPARATION.
EP0169536B1 (en) 1984-07-26 1994-05-18 Kanegafuchi Chemical Industry Co., Ltd. Curable polymer composition
DE3434983C2 (en) 1984-09-24 1993-10-14 Hoechst Ag Gel-forming organophilic layered silicate, process for its production and use
JPS61141761A (en) * 1984-12-12 1986-06-28 Kanegafuchi Chem Ind Co Ltd Curable composition
US5073498A (en) 1984-12-24 1991-12-17 Caribbean Microparticles Corporation Fluorescent alignment microbeads with broad excitation and emission spectra and its use
US4774189A (en) 1984-12-24 1988-09-27 Flow Cytometry Standards Corp. Fluorescent calibration microbeads simulating stained cells
US4764572A (en) 1985-07-23 1988-08-16 Shell Oil Company Anionic polymerization process
US4871814A (en) 1986-08-28 1989-10-03 Mobil Oil Corporation High impact, highly transparent linear styrene-diene block copolymers with five or more blocks and their preparations by anionic dispersion polymerization
CA1281149C (en) * 1986-09-30 1991-03-05 Fumio Kawakubo Curable composition
GB8624953D0 (en) 1986-10-17 1986-11-19 Action Pumping Services Ltd Hydro-pneumatic pumpsets
MX168323B (en) 1986-10-21 1993-05-18 Rohm & Haas COVERED NUCLEUS IMPACT MODIFIERS FOR STYRENE RESINS
JPH0651752B2 (en) 1987-02-20 1994-07-06 鐘淵化学工業株式会社 Process for producing isobutylene-based polymer having functional end
FR2615279B1 (en) 1987-05-11 1990-11-02 Commissariat Energie Atomique DISPLACEMENT SENSOR WITH OFFSET FIBER OPTICS
US4773521A (en) 1987-07-23 1988-09-27 Chen Ming Chin Compact portable conveyor
CA1312409C (en) * 1987-10-16 1993-01-05 Masayoshi Imanaka Sealant for double-layered glass
GB8724437D0 (en) 1987-10-19 1987-11-25 Shell Int Research Elastomeric compositions
US4942209A (en) 1987-12-18 1990-07-17 Mobil Oil Corporation Anionic polymerization in high viscosity dispersing medium to form microparticles with narrow size distribution
IT1224419B (en) 1987-12-29 1990-10-04 Montedipe Spa PROCESS FOR IMIDIZING MALEIC ANHYDRIDE COPOLYMERS WITH AROMATIC VINYL MONOMERS
BE1001592A3 (en) * 1988-04-27 1989-12-12 Fina Research Method of preparation of block copolymers.
US5169914A (en) 1988-05-03 1992-12-08 Edison Polymer Innovation Corporation Uniform molecular weight polymers
US5164440A (en) 1988-07-20 1992-11-17 Ube Industries, Ltd. High rigidity and impact resistance resin composition
WO1990010037A1 (en) 1989-02-28 1990-09-07 Kanegafuchi Chemical Industry Co., Ltd. Organic polymer, preparation thereof, and curable composition comprising same
US5247021A (en) 1989-06-06 1993-09-21 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparation of a polymer having reactive terminal group
JPH0798890B2 (en) 1989-06-23 1995-10-25 日本ゼオン株式会社 Block copolymer composition for pressure-sensitive adhesive and pressure-sensitive adhesive composition
CA2028410C (en) 1990-01-02 1996-09-17 William J. Trepka Tapered block styrene/butadiene copolymers
US5066729A (en) 1990-04-09 1991-11-19 Bridgestone/Firestone, Inc. Diene polymers and copolymers terminated by reaction with n-alkyl and n-aryl imines
EP0472344A3 (en) 1990-08-14 1992-09-30 Ube Industries, Ltd. Reinforced elastomer composition and polypropylene composition containing same
US5227419A (en) 1990-12-20 1993-07-13 Phillips Petroleum Company Tapered block styrene/butadiene copolymers
US5268439A (en) 1991-01-02 1993-12-07 Bridgestone/Firestone, Inc. Tin containing elastomers and products having reduced hysteresis properties
US5256736A (en) 1991-05-08 1993-10-26 Phillips Petroleum Company Tapered block copolymers of conjugated dienes and monovinylarenes
US5260123A (en) 1991-06-28 1993-11-09 Bridgestone Corporation Block copolymers of polysiloxanes and copolymers of conjugated dienes and aromatic vinyl compounds, and multilayer structures containing same
US5241008A (en) 1991-09-03 1993-08-31 Bridgestone/Firestone, Inc. Process for producing continuously tapered polymers and copolymers and products produced thereby
JP3154529B2 (en) 1991-10-14 2001-04-09 鐘淵化学工業株式会社 Isobutylene polymer having functional group and method for producing the same
US5237015A (en) 1991-11-04 1993-08-17 Polysar Rubber Corporation Core-shell polymer for use in tire treads
US5219945A (en) * 1992-02-20 1993-06-15 E. I. Du Pont De Nemours And Company ABC triblock methacrylate polymers
US5336712A (en) 1992-05-08 1994-08-09 Shell Oil Company Process for making submicron stable latexes of block copolymers
JPH0693134A (en) 1992-07-31 1994-04-05 Sumitomo Chem Co Ltd Rubber composition excellent in grip and rolling resistance and its production
US5329005A (en) 1992-10-02 1994-07-12 Bridgestone Corporation Soluble anionic polymerization initiators and preparation thereof
US5332810A (en) 1992-10-02 1994-07-26 Bridgestone Corporation Solubilized anionic polymerization initiator and preparation thereof
DE4234601A1 (en) 1992-10-14 1994-04-21 Basf Ag Process for the preparation of block copolymers by ionic polymerization
US5393721A (en) 1992-10-16 1995-02-28 Bridgestone Corporation Anionic polymerization initiators and reduced hysteresis products therefom
ES2110557T3 (en) 1992-10-30 1998-02-16 Bridgestone Corp SOLUBLE ANIONIC POLYMERIZATION INITIATORS AND PRODUCTS OF THOSE.
DE4241538A1 (en) 1992-12-10 1994-06-16 Leuna Werke Ag Non-equimolar alpha-methylstyrene/maleic anhydride copolymer(s) prodn. - by radical-initiated soln. copolymerisation in presence of organo-bromine cpds., esp. tetra-bromo-methane, or excess alpha-methylstyrene
US5331035A (en) 1992-12-22 1994-07-19 Bridgestone Corporation Process for the preparation of in situ dispersion of copolymers
US5487054A (en) * 1993-01-05 1996-01-23 Apple Computer, Inc. Method and apparatus for setting a clock in a computer system
KR100236851B1 (en) * 1993-04-27 2000-01-15 야마모토 카즈모토 Expanded foamed bead of a rubber-modified styrene polymer
ES2119008T3 (en) 1993-04-30 1998-10-01 Bridgestone Corp INITIATORS OF ANIONIC POLYMERIZATION AND PRODUCTS OF REDUCED HYSTERESIS THEREOF.
CA2127919A1 (en) 1993-09-03 1995-03-04 Jessie Alvin Binkley Process for producing ultrafine sized latexes
US5436298A (en) 1993-09-30 1995-07-25 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes and preparation thereof
JP2865577B2 (en) 1993-11-26 1999-03-08 住友ゴム工業株式会社 Tread rubber composition
JP3393906B2 (en) 1993-12-14 2003-04-07 鐘淵化学工業株式会社 Method for producing polymer containing functional group
US5491230A (en) 1993-12-29 1996-02-13 Bridgestone Corporation Anionic polymerization initiators containing adducts of cyclic secondary amines and conjugated dienes, and products therefrom
US5527870A (en) * 1994-01-12 1996-06-18 Kanagafuchi Kagaku Kogyo Kabushiki Kaisha Process for the preparation of isobutylene polymer
US5462994A (en) 1994-01-27 1995-10-31 The Dow Chemical Company Preparation of conjugated diene-monoalkenyl arene block copolymers having a low polydispersity index
US5438103A (en) 1994-03-23 1995-08-01 Phillips Petroleum Company Block copolymers of monovinylaromatic and conjugated diene monomers
US5421866A (en) * 1994-05-16 1995-06-06 Dow Corning Corporation Water repellent compositions
US5688856A (en) 1994-10-27 1997-11-18 Shell Oil Company Process for making submicron stable latexes of hydrogenated block copolymers
JPH08253531A (en) 1995-01-17 1996-10-01 Kanegafuchi Chem Ind Co Ltd Production of isobutylene polymer, and isobutylene polymer
US5574109A (en) 1995-02-01 1996-11-12 Bridgestone Corporation Aminoalkyllithium compounds containing cyclic amines and polymers therefrom
US5496940A (en) 1995-02-01 1996-03-05 Bridgestone Corporation Alkyllithium compounds containing cyclic amines and their use in polymerization
DE19507777A1 (en) 1995-03-06 1996-09-12 Basf Ag Filterable polystyrene dispersions
US5868966A (en) 1995-03-30 1999-02-09 Drexel University Electroactive inorganic organic hybrid materials
US5674592A (en) 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
US5574105A (en) 1995-05-12 1996-11-12 Advanced Elastomer Systems, L.P. Thermoplastic elastomers having improved high temperature performance
US5811501A (en) 1995-06-29 1998-09-22 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for producing unsaturated group-terminated isobutylene polymer
DE19528717A1 (en) 1995-08-04 1997-02-06 Basf Ag Polymer particles and process for their manufacture
AU6643196A (en) 1995-08-04 1997-03-05 Fmc Corporation Telechelic polystyrene/polyethylene copolymers and processes for making same
US6096828A (en) 1995-08-29 2000-08-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers, methods for preparing same, and polymer blends
EP0864588B1 (en) 1995-11-27 2002-10-09 Kaneka Corporation Processes for producing polymers having functional groups
JP4072833B2 (en) 1995-11-30 2008-04-09 住友精化株式会社 Method for producing water absorbent resin and water absorbent resin
US5773521A (en) 1995-12-19 1998-06-30 Shell Oil Company Coupling to produce inside-out star polymers with expanded cores
JP3545532B2 (en) 1996-05-08 2004-07-21 鐘淵化学工業株式会社 Composite rubber particles and composite rubber-based graft copolymer particles
CA2258851A1 (en) * 1996-06-27 1997-12-31 G.D. Searle & Co. Particles comprising amphiphilic copolymers, having a cross-linked shell domain and an interior core domain, useful for pharmaceutical and other applications
CA2221974A1 (en) 1996-11-25 1998-05-25 Kaneka Corporation Curable composition
US5786441A (en) 1996-12-31 1998-07-28 Bridgestone Corporation Polymers, elastomeric compounds and products thereof, derived from novel amine compounds containing side-chain organolithium moieties
DE19701488A1 (en) 1997-01-17 1998-07-23 Bayer Ag Rubber mixtures containing SBR rubber gels
US6106953A (en) 1997-05-16 2000-08-22 Beiersdorf Ag Using a cleaning cloth impregnated with coupling agent for adhesive films
US5910530A (en) 1997-05-19 1999-06-08 Bridgestone Corporation High damping gel derived from extending grafted elastomers and polypropylene
US5837756A (en) 1997-05-28 1998-11-17 The Goodyear Tire & Rubber Company Polymer for asphalt cement modification
US6087016A (en) 1997-06-09 2000-07-11 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier
KR100579348B1 (en) 1997-08-13 2006-05-12 다우 글로벌 테크놀로지스 인크. High gloss high impact monovinylidene aromatic polymers
US6117932A (en) 1997-09-18 2000-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite
US5955537A (en) 1998-02-13 1999-09-21 The Goodyear Tire & Rubber Company Continuous polymerization process
US5994468A (en) 1998-05-06 1999-11-30 Bridgestone Corporation High damping gels derived from nylon grafted polymers
JP2000129133A (en) 1998-05-28 2000-05-09 Kanegafuchi Chem Ind Co Ltd Curable composition
US6166855A (en) 1998-06-05 2000-12-26 Fuji Photo Film Co., Ltd. Anti-reflection film and display device having the same
US6252014B1 (en) 1998-08-04 2001-06-26 Colorado School Of Mines Star polymers and polymeric particles in the nanometer-sized range by step growth reactions
US6060559A (en) * 1998-09-04 2000-05-09 Dow Corning Corporation Curable polyolefin compositions containing organosilicon compounds as adhesion additives
JP3978961B2 (en) 1998-12-25 2007-09-19 特種製紙株式会社 Fluorescent coloring particles used for anti-counterfeit paper, manufacturing method thereof, and anti-counterfeit paper using fluorescent coloring particles
US6255372B1 (en) 1999-01-08 2001-07-03 Bridgestone Corporation Tire components having improved tear strength
JP2000239476A (en) * 1999-02-22 2000-09-05 Kanegafuchi Chem Ind Co Ltd Amorphous polyolefinic resin composition
US6248807B1 (en) 1999-03-15 2001-06-19 Fina Technology, Inc. Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
WO2000069942A1 (en) 1999-05-19 2000-11-23 University Of Utah Research Foundation Stabilization and acoustic activation of polymeric micelles for drug delivery
US6225394B1 (en) * 1999-06-01 2001-05-01 Amcol International Corporation Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer ethylene vinyl alcohol (EVOH) intercalants and nanocomposites prepared with the intercalates
US6448353B1 (en) 2000-02-08 2002-09-10 3M Innovative Properties Company Continuous process for the production of controlled architecture materials
JP2001240637A (en) 2000-02-25 2001-09-04 Nippon Zeon Co Ltd Block copolymer rubber, resin modifier, resin composition and method for producing the same resin composition
JP4666737B2 (en) 2000-03-08 2011-04-06 株式会社カネカ Primer composition and adhesion method
US6653404B2 (en) 2000-05-01 2003-11-25 Jsr Corporation Rubber compositions
US6598645B1 (en) 2000-09-27 2003-07-29 The Goodyear Tire & Rubber Company Tire with at least one of rubber/cord laminate, sidewall insert and apex of a rubber composition which contains oriented intercalated and/or exfoliated clay reinforcement
US6268451B1 (en) 2000-10-03 2001-07-31 University Of Massachusetts Lowell Silyl-functional pseudo-telechelic polyisobutylene terpolymers
DE10059236B4 (en) 2000-11-29 2005-12-15 Continental Aktiengesellschaft Use of a rubber compound for tire treads
KR100405308B1 (en) 2000-12-18 2003-11-12 주식회사 엘지화학 Artificial pigment and method for preparing the same
US6573313B2 (en) 2001-01-16 2003-06-03 The Hong Kong Polytechnic University Amphiphilic core-shell latexes
ES2205961B2 (en) 2001-02-13 2005-03-01 Eads Construcciones Aeronauticas, S.A. PROCEDURE FOR THE MANUFACTURE OF COMPOSITE MATERIAL ELEMENTS THROUGH THE COENCOLATE TECHNOLOGY.
US8137699B2 (en) * 2002-03-29 2012-03-20 Trustees Of Princeton University Process and apparatuses for preparing nanoparticle compositions with amphiphilic copolymers and their use
US6774185B2 (en) 2001-04-04 2004-08-10 Bridgestone Corporation Metal hydroxide filled rubber compositions and tire components
JP2003095640A (en) 2001-09-21 2003-04-03 Teijin Ltd Clay organic composite
US6437050B1 (en) 2001-10-04 2002-08-20 Bridgestone Corporation Nano-particle preparation and applications
US6845797B2 (en) 2001-10-12 2005-01-25 Bridgestone Corporation Tire compositions comprising epoxidized natural rubber and a functionalized polyolefin
JP5160016B2 (en) * 2001-10-31 2013-03-13 コンパニー ゼネラール デ エタブリッスマン ミシュラン Method for producing block copolymer for tire tread compound and copolymer
US6759464B2 (en) 2001-12-21 2004-07-06 The Goodyear Tire & Rubber Company Process for preparing nanocomposite, composition and article thereof
JP4162519B2 (en) 2002-03-27 2008-10-08 横浜ゴム株式会社 Organized layered clay mineral, organic polymer composition containing the same and tire inner liner
US20030225190A1 (en) 2002-04-26 2003-12-04 Janos Borbely Polymeric product for film formation
DE10227071A1 (en) 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
US6737486B2 (en) * 2002-07-16 2004-05-18 Eastman Kodak Company Polymerization process
US6780937B2 (en) 2002-08-29 2004-08-24 The Goodyear Tire & Rubber Company Emulsion particles as reinforcing fillers
US7153919B2 (en) 2002-10-30 2006-12-26 Bridgestone Corporation Use of sulfur containing initiators for anionic polymerization of monomers
JP4683928B2 (en) 2002-12-18 2011-05-18 株式会社ブリヂストン Clay exfoliation method, composition obtained from the method, and modified rubber containing the composition
US6777500B2 (en) 2002-12-31 2004-08-17 The Goodyear Tire & Rubber Company Core-shell polymer particles
DE10344976A1 (en) 2003-09-27 2005-04-21 Rhein Chemie Rheinau Gmbh Microgels in cross-linkable, organic media
US7056840B2 (en) 2003-09-30 2006-06-06 International Business Machines Corp. Direct photo-patterning of nanoporous organosilicates, and method of use
US7037980B2 (en) * 2003-11-10 2006-05-02 Chevron Phillips Chemical Company, Lp Monovinylarene/conjugated diene copolymers having lower glass transition temperatures
US7112369B2 (en) 2004-03-02 2006-09-26 Bridgestone Corporation Nano-sized polymer-metal composites
US7408005B2 (en) 2004-03-12 2008-08-05 The Goodyear Tire & Rubber Company Hairy polymeric nanoparticles
US20050215693A1 (en) 2004-03-29 2005-09-29 Xiaorong Wang Clay modified rubber composition and a method for manufacturing same
US20050228074A1 (en) 2004-04-05 2005-10-13 Bridgestone Corporation Amphiphilic polymer micelles and use thereof
US7071246B2 (en) 2004-04-13 2006-07-04 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanopractice
US20050282956A1 (en) 2004-06-21 2005-12-22 Xiaorong Wang Reversible polymer/metal nano-composites and method for manufacturing same
US7244783B2 (en) 2004-06-24 2007-07-17 The Goodyear Tire & Rubber Company Thermoplastic elastomer composition
JP4846224B2 (en) 2004-08-02 2011-12-28 株式会社ブリヂストン Particles for display medium, information display panel using the same, and information display device
JP2006106596A (en) 2004-10-08 2006-04-20 Bridgestone Corp Particle for display medium used for panel for information display
FR2880354B1 (en) 2004-12-31 2007-03-02 Michelin Soc Tech ELASTOMERIC COMPOSITION REINFORCED WITH A FUNCTIONALIZED POLYVINYLAROMATIC LOAD
FR2880349B1 (en) 2004-12-31 2009-03-06 Michelin Soc Tech FUNCTIONALIZED POLYVINYLAROMATIC NANOPARTICLES
US7572855B2 (en) 2005-01-28 2009-08-11 Bridgestone Corporation Nano-composite and compositions manufactured thereof
US7335712B2 (en) 2005-04-21 2008-02-26 Bridgestone Corporation Process of producing a siloxy-functionalized polymer
US7868110B2 (en) 2005-05-20 2011-01-11 Bridgestone Corporation Anionic polymerization initiators and polymers therefrom
US20060264590A1 (en) 2005-05-20 2006-11-23 Bridgestone Corporation Anionic polymerization initiators and polymers therefrom
JP2007146149A (en) 2005-11-02 2007-06-14 Fujifilm Corp Fluorescent polymer fine particle, method for producing fluorescent polymer fine particle, fluorescence-detecting kit and method for detecting the fluorescence
DE102005059625A1 (en) 2005-12-14 2007-06-21 Lanxess Deutschland Gmbh Microgel-containing vulcanizable composition based on hydrogenated nitrile rubber
US7538159B2 (en) 2005-12-16 2009-05-26 Bridgestone Corporation Nanoparticles with controlled architecture and method thereof
US9061900B2 (en) 2005-12-16 2015-06-23 Bridgestone Corporation Combined use of liquid polymer and polymeric nanoparticles for rubber applications
US8877250B2 (en) 2005-12-20 2014-11-04 Bridgestone Corporation Hollow nano-particles and method thereof
US8697775B2 (en) 2005-12-20 2014-04-15 Bridgestone Corporation Vulcanizable nanoparticles having a core with a high glass transition temperature
US7560510B2 (en) 2005-12-20 2009-07-14 Bridgestone Corporation Nano-sized inorganic metal particles, preparation thereof, and application thereof in improving rubber properties
JP2007304409A (en) 2006-05-12 2007-11-22 Bridgestone Corp Particle for display medium, and panel for information display
US7923478B2 (en) 2006-12-28 2011-04-12 Bridgestone Corporation Nanoporous polymeric material and preparation method

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793402A (en) * 1971-11-05 1974-02-19 F Owens Low haze impact resistant compositions containing a multi-stage,sequentially produced polymer
US4075186A (en) * 1974-10-29 1978-02-21 The Firestone Tire & Rubber Company Graft copolymers of polybutadiene and substituted polyacrylate
US4326008A (en) * 1976-08-27 1982-04-20 California Institute Of Technology Protein specific fluorescent microspheres for labelling a protein
US4247434A (en) * 1978-12-29 1981-01-27 Lovelace Alan M Administrator Process for preparation of large-particle-size monodisperse
US4248986A (en) * 1979-08-27 1981-02-03 The Goodyear Tire & Rubber Company Selective cyclization of block copolymers
US4386125A (en) * 1981-02-20 1983-05-31 Asahi Kasei Kogyo Kabushiki Kaisha Film, sheet or tube of a block copolymer or a composition containing the same
US4717655A (en) * 1982-08-30 1988-01-05 Becton, Dickinson And Company Method and apparatus for distinguishing multiple subpopulations of cells
US4831131A (en) * 1984-02-03 1989-05-16 The Upjohn Company 11β,17α-Dihydroxy-17β-cyano-androstanes
US4659790A (en) * 1984-06-05 1987-04-21 Japan Synthetic Rubber Co., Ltd. Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4722770A (en) * 1985-07-25 1988-02-02 Universite Paul Sabatier Method for making continuous and closed hollow bodies, hollow bodies so obtained and apparatus for making the hollow spheres
US4987202A (en) * 1986-04-14 1991-01-22 Zeigler John M Methods for the synthesis of polysilanes
US4904732A (en) * 1986-06-25 1990-02-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Curable isobutylene polymer
US4829130A (en) * 1986-07-23 1989-05-09 Enichem Sintesi S.P.A. Silylated derivatives of isobutene crosslinkable under ambient conditions, and process for preparing them
US4725522A (en) * 1986-10-16 1988-02-16 Xerox Corporation Processes for cold pressure fixable encapsulated toner compositions
US5194300A (en) * 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
US4920160A (en) * 1987-07-30 1990-04-24 Tioxide Group Plc Polymeric particles and their preparation
US4829135A (en) * 1987-12-29 1989-05-09 Mobil Oil Corporation Multi-stage anionic dispersion homopolymerization to form microparticles with narrow size distribution
US4981202A (en) * 1988-03-17 1991-01-01 Automotive Products Plc Motor vehicle control system
US4904730A (en) * 1988-04-08 1990-02-27 The Dow Chemical Company Rubber-modified resin blends
US4906695A (en) * 1988-07-08 1990-03-06 Dow Corning Corporation Pressure-sensitive adhesives containing an alkoxy-functional silicon compound
US5742118A (en) * 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
US5284915A (en) * 1988-12-23 1994-02-08 Enichem Elastomeri S.P.A. Styrene-isoprene block copolymers
US5399629A (en) * 1990-01-16 1995-03-21 Mobil Oil Corporation Solid elastomeric block copolymers
US5290873A (en) * 1990-04-16 1994-03-01 Kanegafuchi Chemical Industry Co., Ltd. Isobutylene polymer having unsaturated group and preparation thereof
US5728791A (en) * 1990-11-30 1998-03-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyvinyl graft-polymers and manufacturing method thereof
US5395902A (en) * 1991-09-03 1995-03-07 Bridgestone Corporation Dispersion copolymerization in liquid aliphatic hydrocarbons
US5733975A (en) * 1992-06-09 1998-03-31 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyolefin resin composition, process for the preparation thereof and molded article made thereof
US5290878A (en) * 1992-06-10 1994-03-01 Sumitomo Chemical Company, Limited Butadiene copolymer and process for preparing same
US5395891A (en) * 1992-06-24 1995-03-07 Bayer Aktiengesellschaft Rubber mixtures containing polybutadiene gel
US5290875A (en) * 1992-11-30 1994-03-01 Phillips Petroleum Company Conjugated diene/monovinylarene block copolymers with multiple tapered blocks
US5614579A (en) * 1992-12-22 1997-03-25 Bridgestone Corporation Process for the preparation of tapered copolymers via in situ dispersion
US5891947A (en) * 1992-12-22 1999-04-06 Bridgestone Corporation In-situ anionic continuous dispersion polymerization process
US5296547A (en) * 1993-01-28 1994-03-22 Minnesota Mining And Manufacturing Company Block copolymer having mixed molecular weight endblocks
US5405903A (en) * 1993-03-30 1995-04-11 Shell Oil Company Process for the preparation of a block copolymer blend
US5514753A (en) * 1993-06-30 1996-05-07 Bridgestone Corporation Process for preparing a block copolymer
US5594072A (en) * 1993-06-30 1997-01-14 Shell Oil Company Liquid star polymers having terminal hydroxyl groups
US5514734A (en) * 1993-08-23 1996-05-07 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same
US5855972A (en) * 1993-11-12 1999-01-05 Kaeding; Konrad H Sealant strip useful in the fabrication of insulated glass and compositions and methods relating thereto
US5399628A (en) * 1993-12-02 1995-03-21 Phillips Petroleum Company Block copolymers of monovinylarenes and conjugated dienes containing two interior tapered blocks
US5747152A (en) * 1993-12-02 1998-05-05 Dai Nippon Printing Co., Ltd. Transparent functional membrane containing functional ultrafine particles, transparent functional film, and process for producing the same
US5739267A (en) * 1994-03-18 1998-04-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for isolation of isobutylene polymer
US5627252A (en) * 1994-12-01 1997-05-06 Dow Corning S. A. Silyl group containing organic polymers
US5521309A (en) * 1994-12-23 1996-05-28 Bridgestone Corporation Tertiary-amino allyl-or xylyl-lithium initiators and method of preparing same
US5707439A (en) * 1995-04-03 1998-01-13 General Electric Company Layered minerals and compositions comprising the same
US6025416A (en) * 1995-05-12 2000-02-15 Henkel Teroson Gmbh Two-component adhesive/sealing mass with high initial adhesiveness
US5883173A (en) * 1995-06-23 1999-03-16 Exxon Research And Engineering Company Nanocomposite materials (LAW392)
US20040059057A1 (en) * 1995-08-29 2004-03-25 Chevron Phillips Chemical Company Lp Conjugated diene/monovinylarene block copolymers blends
US6180693B1 (en) * 1995-11-29 2001-01-30 Vantico Inc. Core/shell particles, and curable epoxy resin composition comprising same
US6020446A (en) * 1996-02-21 2000-02-01 Kaneka Corporation Curable composition
US6011116A (en) * 1996-05-08 2000-01-04 Kaneka Corporation Thermoplastic resin composition
US5897811A (en) * 1996-05-24 1999-04-27 Rohm And Haas Company Fluorescent polymers and coating compositions
US6025445A (en) * 1996-11-01 2000-02-15 Kaneka Corporation Curable compound
US6207263B1 (en) * 1997-01-20 2001-03-27 Dai Nippon Printing Co., Ltd. Anti-reflection film and process for preparation thereof
US6060549A (en) * 1997-05-20 2000-05-09 Exxon Chemical Patents, Inc. Rubber toughened thermoplastic resin nano composites
US20020045714A1 (en) * 1997-09-05 2002-04-18 Dow Chemical Nanocomposites of dendritic polymers
US6348546B2 (en) * 1997-12-04 2002-02-19 Kaneka Corporation Alkenyl-containing isobutylene group block copolymer and process for producing it
US6197849B1 (en) * 1998-02-20 2001-03-06 Vantico Inc. Organophilic phyllosilicates
US5905116A (en) * 1998-05-06 1999-05-18 Bridgestone Corporation Gels derived from extending grafted α-olefin-maleimide centipede polymers and polypropylene
US6204354B1 (en) * 1998-05-06 2001-03-20 Bridgestone Corporation Soft compounds derived from polypropylene grafted disubstituted ethylene- maleimide copolymers
US6191217B1 (en) * 1998-11-17 2001-02-20 Bridgestone Corporation Gels derived from polypropylene grafted alkyl vinylether-maleimide copolymers
US6550508B1 (en) * 1998-11-27 2003-04-22 The Yokohama Rubber Co., Ltd. Rubber composition for tire tread having high performance on ice and pneumatic tire using the same
US6706813B2 (en) * 1999-06-04 2004-03-16 Kaneka Corporation Curable composition and method of use thereof
US6693746B1 (en) * 1999-09-29 2004-02-17 Fuji Photo Film Co., Ltd. Anti-glare and anti-reflection film, polarizing plate, and image display device
US6506567B2 (en) * 2000-01-31 2003-01-14 Fuji Photo Film Co., Ltd. Water-soluble flourescent intercalator compound
US6379791B1 (en) * 2000-02-08 2002-04-30 3M Innovative Properties Company Compatibilized pressure-sensitive adhesives
US20020007011A1 (en) * 2000-04-27 2002-01-17 Jsr Corporation Crosslinked rubber particles and rubber compositions
US6524595B1 (en) * 2000-05-12 2003-02-25 Coletica Cyclodextrins preferentially substituted on their primary face by acid or amine functions
US6554595B2 (en) * 2000-11-06 2003-04-29 Hitachi, Ltd. Compressor with oil-mist separator
US20030004250A1 (en) * 2000-11-17 2003-01-02 Manoj Ajbani Light weight rubber composition containing clay
US6727311B2 (en) * 2000-11-17 2004-04-27 The Goodyear Tire & Rubber Company Light weight rubber composition containing clay
US6359075B1 (en) * 2001-01-09 2002-03-19 Bridgestone/Firestone, Inc. Means of producing high diblock content thermoplastic elastomers via chain transfer
US6858665B2 (en) * 2001-07-02 2005-02-22 The Goodyear Tire & Rubber Company Preparation of elastomer with exfoliated clay and article with composition thereof
US20030032710A1 (en) * 2001-07-02 2003-02-13 Larson Brent Kevin Elastomer composition which contains intercalated and exfoliated clay reinforcement formed in situ within the elastomer host and article, such as a tire, having at least one component thereof
US20090048390A1 (en) * 2001-10-04 2009-02-19 Xiaorong Wang Nano-Particle Preparation And Applications
US6872785B2 (en) * 2001-10-04 2005-03-29 Bridgestone Corporation Multi-layer nano-particle preparation and applications
US20060084722A1 (en) * 2001-10-04 2006-04-20 Bohm Georg G A Self assembly of molecules to form nano-particles
US20070027264A1 (en) * 2001-10-04 2007-02-01 Bridgestone Corporation Multi-Layer Nano-Particle Preparation and Applications
US6861462B2 (en) * 2001-12-21 2005-03-01 The Goodyear Tire & Rubber Company Nanocomposite formed in situ within an elastomer and article having component comprised thereof
US6706823B2 (en) * 2001-12-31 2004-03-16 Bridgestone Corporation Conductive gels
US6689469B2 (en) * 2001-12-31 2004-02-10 Bridgestone Corporation Crystalline polymer nano-particles
US20040033345A1 (en) * 2002-08-15 2004-02-19 Benoit Dubertret Water soluble metal and semiconductor nanoparticle complexes
US7695813B2 (en) * 2002-12-19 2010-04-13 Roehm Gmbh & Co. Kg Core and shell particle for modifying impact resistance of a mouldable poly (meth) acrylate material
US7179864B2 (en) * 2003-01-16 2007-02-20 Bridgestone Corporation Polymer nano-strings
US6875818B2 (en) * 2003-01-16 2005-04-05 Bridgestone Corporation Polymer nano-strings
US7193004B2 (en) * 2003-06-30 2007-03-20 The Goodyear Tire & Rubber Company Pneumatic tire having a component containing low PCA oil
US7205370B2 (en) * 2004-01-12 2007-04-17 Bridgestone Corporation Polymeric nano-particles of flower-like structure and applications
US20100016472A1 (en) * 2004-03-02 2010-01-21 Xiaorong Wang Rubber Composition Containing Functionalized Polymer Nanoparticles
US7897690B2 (en) * 2004-03-02 2011-03-01 Bridgestone Corporation Rubber composition containing functionalized polymer nanoparticles
US7347237B2 (en) * 2004-04-13 2008-03-25 The Goodyear Tire & Rubber Company Rubber composition containing resinous nanoparticle
US20110024011A1 (en) * 2004-11-30 2011-02-03 The Goodyear Tire & Rubber Company Modified gel particles and rubber composition
US7659342B2 (en) * 2005-02-03 2010-02-09 Bridgestone Corporation Polymer nano-particle with polar core and method for manufacturing same
US20070081830A1 (en) * 2005-10-11 2007-04-12 Xerox Corporation Aromatic disiloxane compositions
US20090054554A1 (en) * 2005-12-19 2009-02-26 Xiaorong Wang Disk-like Nanoparticles
US7884160B2 (en) * 2005-12-19 2011-02-08 Bridgestone Corporation Non-spherical nanoparticles made from living triblock polymer chains
US20110021702A1 (en) * 2006-07-06 2011-01-27 Michelin Recherche Et Technique S.A. Functionalized vinyl polymer nanoparticles
US20100004398A1 (en) * 2006-07-28 2010-01-07 Xiaorong Wang Polymeric core-shell nanoparticles with interphase region
US20100016512A1 (en) * 2006-12-19 2010-01-21 Xiaorong Wang Fluorescent Nanoparticles
US7649049B2 (en) * 2006-12-20 2010-01-19 Bridgestone Corporation Rubber composition containing a polymer nanoparticle
US20090005491A1 (en) * 2007-06-29 2009-01-01 Sandra Warren One-Pot Synthesis Of Nanoparticles And Liquid Polymer For Rubber Applications

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057899B2 (en) 2001-10-04 2011-11-15 Bridgestone Corporation Nano-particle preparation and applications
US9061900B2 (en) 2005-12-16 2015-06-23 Bridgestone Corporation Combined use of liquid polymer and polymeric nanoparticles for rubber applications
US8288473B2 (en) 2005-12-19 2012-10-16 Bridgestone Corporation Disk-like nanoparticles
US8957154B2 (en) 2005-12-19 2015-02-17 Bridgestone Corporation Disk-like nanoparticles
US8697775B2 (en) 2005-12-20 2014-04-15 Bridgestone Corporation Vulcanizable nanoparticles having a core with a high glass transition temperature
US8877250B2 (en) 2005-12-20 2014-11-04 Bridgestone Corporation Hollow nano-particles and method thereof
US10023713B2 (en) 2005-12-20 2018-07-17 Bridgestone Corporation Hollow nano-particles and method thereof
US8541503B2 (en) 2006-07-28 2013-09-24 Bridgestone Corporation Polymeric core-shell nanoparticles with interphase region
US8410225B2 (en) 2006-12-19 2013-04-02 Bridgestone Corporation Fluorescent nanoparticles
US9631056B2 (en) 2008-12-31 2017-04-25 Bridgestone Corporation Core-first nanoparticle formation process, nanoparticle, and composition
US8846819B2 (en) 2008-12-31 2014-09-30 Bridgestone Corporation Core-first nanoparticle formation process, nanoparticle, and composition
US9062144B2 (en) 2009-04-03 2015-06-23 Bridgestone Corporation Hairy polymeric nanoparticles with first and second shell block polymer arms
US9493601B2 (en) 2009-04-03 2016-11-15 Bridgestone Corporation Hairy polymeric nanoparticles with first and second shell block polymer arms
US9115222B2 (en) 2009-12-29 2015-08-25 Bridgestone Corporation Well defined, highly crosslinked nanoparticles and method for making same
US9428604B1 (en) 2011-12-30 2016-08-30 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers
US10407522B1 (en) 2011-12-30 2019-09-10 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers
US11505635B2 (en) 2011-12-30 2022-11-22 Bridgestone Corporation Nanoparticle fillers and methods of mixing into elastomers

Also Published As

Publication number Publication date
KR20100053527A (en) 2010-05-20
US20090005491A1 (en) 2009-01-01
CN101848949A (en) 2010-09-29
KR101586096B1 (en) 2016-01-15
WO2009006434A1 (en) 2009-01-08
JP2010532422A (en) 2010-10-07
EP2167557B1 (en) 2015-01-07
JP5631207B2 (en) 2014-11-26
RU2501731C2 (en) 2013-12-20
CN101848949B (en) 2014-04-23
RU2010102943A (en) 2011-08-10
BRPI0813220A2 (en) 2014-12-23
US7829624B2 (en) 2010-11-09
EP2167557A1 (en) 2010-03-31
BRPI0813220B1 (en) 2019-07-02
ES2530191T3 (en) 2015-02-27

Similar Documents

Publication Publication Date Title
EP2167557B1 (en) One-pot synthesis of nanoparticles and liquid polymer for rubber applications
JP5006609B2 (en) Elastomers with reduced hysteresis using lithium aminomagnesate polymerization initiators
US6437050B1 (en) Nano-particle preparation and applications
RU2458084C2 (en) Polymer nanoparticles, having 'nucleus-shell' configuration and containing interphase region
US7718738B2 (en) Self assembly of molecules to form nano-particles
EP0942004A2 (en) Anionic polymerization initiators for preparing branched diene rubbers
CN1884328A (en) Method for preparing branched high vinyl polybutadiene rubber using molybdenum series catalysis
JPH08311135A (en) Low-hysteresis elastomer composition prepared by using amino-substituted aryl lithium as polymerization initiator
CN113563685A (en) Formula rubber material for all-steel load radial tire and preparation method thereof
JPH08311298A (en) Low-hysteresis elastomer composition made using amino-substituted aryllithium polymerization initiator
CN110256631A (en) Ternary atactic copolymer and its preparation method and application containing beta-myrcene
CN112210128B (en) Tire sidewall rubber material based on gradient block lithium BIR and preparation method thereof
CN112210040A (en) Wide-distribution polybutadiene-isoprene rubber and preparation method thereof
CN115087679A (en) Modified conjugated diene polymer and preparation method thereof
JPH0660274B2 (en) Diene rubber composition
JPS63182367A (en) Diene rubber composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION