US20110004358A1 - Systems and methods for electric vehicle power flow management - Google Patents

Systems and methods for electric vehicle power flow management Download PDF

Info

Publication number
US20110004358A1
US20110004358A1 US12/751,821 US75182110A US2011004358A1 US 20110004358 A1 US20110004358 A1 US 20110004358A1 US 75182110 A US75182110 A US 75182110A US 2011004358 A1 US2011004358 A1 US 2011004358A1
Authority
US
United States
Prior art keywords
power flow
power
electrical devices
flow manager
manager
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/751,821
Inventor
Seth B. Pollack
Seth W. Bridges
Joby Lafky
Zachary Axelrod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gridpoint Inc
Original Assignee
Gridpoint Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gridpoint Inc filed Critical Gridpoint Inc
Priority to US12/751,821 priority Critical patent/US20110004358A1/en
Publication of US20110004358A1 publication Critical patent/US20110004358A1/en
Priority to US13/671,717 priority patent/US8796881B2/en
Priority to US14/338,427 priority patent/US9283862B2/en
Priority to US15/926,386 priority patent/US20190061535A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D29/00Simultaneous control of electric and non-electric variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates in general to the field of electric vehicles, and in particular to novel systems and methods for power flow management for electric vehicles.
  • the electric power grid has become increasingly unreliable and antiquated, as evidenced by frequent large-scale power outages.
  • Grid instability wastes energy, both directly and indirectly, e.g. by encouraging power consumers to install inefficient forms of backup generation.
  • clean forms of energy generation such as wind and solar, can help to address the above problems, they suffer from intermittency.
  • grid operators are reluctant to rely heavily on these sources, making it difficult to move away from carbon-intensive forms of electricity.
  • electric power delivered during periods of peak demand costs substantially more than off-peak power.
  • the electric power grid contains limited inherent facility for storing electrical energy. Electricity must be generated constantly to meet uncertain demand, which often results in over-generation (and hence wasted energy) and sometimes results in under-generation (and hence power failures).
  • Distributed electric resources, en masse can, in principle, provide a significant resource for addressing the above problems.
  • current power services infrastructure lacks provisioning and flexibility that are required for aggregating a large number of small-scale resources, such as electric vehicle batteries, to meet large-scale needs of power services.
  • Modern Electric vehicles could benefit in a variety of ways from a centrally controlled smart charging program, wherein a central server coordinates the charging activities of a number of vehicles.
  • Significant opportunities for improvement exist in managing power flow at local level. More economical, reliable electrical power needs to be provided at times of peak demand.
  • Power services such as regulation and spinning reserves, can be provided to electricity markets to provide a significant economic opportunity.
  • Technologies can be enabled to provide broader use of intermittent power sources, such as wind and solar. What is needed are power flow management systems and methods that manage power flow at the site-level, that implement various power flow strategies for the optimizing how to dispatch the resources under management, that avoid power spikes, and that minimize the total daily cost of providing energy generation.
  • a method for managing power flow at a local site includes site-level charging of electrical devices by a power flow manager.
  • the power flow manager runs a smart charging program, and coordinates charging activities of the electrical devices.
  • the electrical devices may be located at the local site.
  • the method includes receiving site-level information, which is received by the power flow manager.
  • power flow decisions are made, by the power flow manager, based on the site-level information.
  • power flow to the electrical devices is managed by the power flow manager, wherein the power flow manager responds to requests.
  • a method for managing power flow by optimizing multiple power flow management strategies includes coordinating charging activities of electrical devices.
  • the charge activities are coordinated by a power flow manager.
  • Power flow services are also controlled by the power flow manager.
  • a power flow management strategy is chosen by a meta-optimizer, which also chooses the electrical devices to utilize for implementing the power flow management strategy.
  • the power flow management strategies are implemented by the power flow manager.
  • a method for managing power flow using safe failure modes includes coordinating charging activities of electrical devices by a power flow manager.
  • the method includes detecting a system failure event by a power flow manager, and implementing a safe failure mode.
  • the safe failure mode implemented by the power flow manager provides that the charging activities be coordinated in a predictable and non-disruptive manner.
  • a method for managing power flow uses generation stacks of power production to reduce cost of providing power to electrical devices. This method also includes coordinating charging activities of electrical devices by a power flow manager. In addition, the power flow manager controls a power production stack, which orders available power. A dispatchable load is listed in the power production stack. The dispatchable load is removed based on a cost reduction strategy.
  • FIG. 1 is a diagram of an example of a power aggregation system.
  • FIGS. 2A-2B are diagrams of an example of connections between an electric vehicle, the power grid, and the Internet.
  • FIG. 3 is a block diagram of an example of connections between an electric resource and a flow control server of the power aggregation system.
  • FIG. 4 is a diagram of an example of a layout of the power aggregation system.
  • FIG. 5 is a diagram of an example of control areas in the power aggregation system.
  • FIG. 6 is a diagram of multiple flow control centers in the power aggregation system and a directory server for determining a flow control center.
  • FIG. 7 is a block diagram of an example of flow control server.
  • FIG. 8A is a block diagram of an example of remote intelligent power flow module.
  • FIG. 8B is a block diagram of an example of transceiver and charging component combination.
  • FIG. 8C is an illustration of an example of simple user interface for facilitating user controlled charging.
  • FIG. 9 is a diagram of an example of resource communication protocol.
  • FIG. 10 is a diagram of an example of a site power flow manager.
  • FIG. 11 is a flow chart of an example of a site power flow manager.
  • FIG. 12 is a flow chart of an example of optimization across multiple power flow management strategies.
  • FIG. 13 is a flow chart of an example of avoiding power spikes during energy management failures using safe failure modes.
  • FIG. 14 is a flow chart of an example of generation-stack-aware dispatch of resources.
  • a system communicates over the Internet and/or some other public or private networks with numerous individual electric resources connected to a power grid (hereinafter, “grid”). By communicating, the system can dynamically aggregate these electric resources to provide power services to grid operators (e.g. utilities, Independent System Operators (ISO), etc).
  • grid operators e.g. utilities, Independent System Operators (ISO), etc.
  • Power services refers to energy delivery as well as other ancillary services including demand response, regulation, spinning reserves, non-spinning reserves, energy imbalance, reactive power, and similar products.
  • Aggregation refers to the ability to control power flows into and out of a set of spatially distributed electric resources with the purpose of providing a power service of larger magnitude.
  • Charge Control Management refers to enabling or performing the starting, stopping, or level-setting of a flow of power between a power grid and an electric resource.
  • Power grid operator refers to the entity that is responsible for maintaining the operation and stability of the power grid within or across an electric control area.
  • the power grid operator may constitute some combination of manual/human action/intervention and automated processes controlling generation signals in response to system sensors.
  • a “control area operator” is one example of a power grid operator.
  • Control area refers to a contained portion of the electrical grid with defined input and output ports. The net flow of power into this area must equal (within some error tolerance) the sum of the power consumption within the area and power outflow from the area.
  • Power grid as used herein means a power distribution system/network that connects producers of power with consumers of power.
  • the network may include generators, transformers, interconnects, switching stations, and safety equipment as part of either/both the transmission system (i.e., bulk power) or the distribution system (i.e. retail power).
  • the power aggregation system is vertically scalable for use within a neighborhood, a city, a sector, a control area, or (for example) one of the eight large-scale Interconnects in the North American Electric Reliability Council (NERC).
  • the system is horizontally scalable for use in providing power services to multiple grid areas simultaneously.
  • Grid conditions refers to the need for more or less power flowing in or out of a section of the electric power grid, in response to one of a number of conditions, for example supply changes, demand changes, contingencies and failures, ramping events, etc. These grid conditions typically manifest themselves as power quality events such as under- or over-voltage events or under- or over-frequency events.
  • Power quality events typically refers to manifestations of power grid instability including voltage deviations and frequency deviations; additionally, power quality events as used herein also includes other disturbances in the quality of the power delivered by the power grid such as sub-cycle voltage spikes and harmonics.
  • Electric resource typically refers to electrical entities that can be commanded to do some or all of these three things: take power (act as load), provide power (act as power generation or source), and store energy. Examples may include battery/charger/inverter systems for electric or hybrid-electric vehicles, repositories of used-but-serviceable electric vehicle batteries, fixed energy storage, fuel cell generators, emergency generators, controllable loads, etc.
  • Electric vehicle is used broadly herein to refer to pure electric and hybrid electric vehicles, such as plug-in hybrid electric vehicles (PHEVs), especially vehicles that have significant storage battery capacity and that connect to the power grid for recharging the battery. More specifically, electric vehicle means a vehicle that gets some or all of its energy for motion and other purposes from the power grid. Moreover, an electric vehicle has an energy storage system, which may consist of batteries, capacitors, etc., or some combination thereof. An electric vehicle may or may not have the capability to provide power back to the electric grid.
  • PHEVs plug-in hybrid electric vehicles
  • Electric vehicle “energy storage systems” (batteries, super capacitors, and/or other energy storage devices) are used herein as a representative example of electric resources intermittently or permanently connected to the grid that can have dynamic input and output of power. Such batteries can function as a power source or a power load.
  • a collection of aggregated electric vehicle batteries can become a statistically stable resource across numerous batteries, despite recognizable tidal connection trends (e.g., an increase in the total number of vehicles connected to the grid at night; a downswing in the collective number of connected batteries as the morning commute begins, etc.)
  • connection trends are predictable and such batteries become a stable and reliable resource to call upon, should the grid or a part of the grid (such as a person's home in a blackout) experience a need for increased or decreased power.
  • Data collection and storage also enable the power aggregation system to predict connection behavior on a per-user basis.
  • FIG. 1 shows a power aggregation system 100 .
  • a flow control center 102 is communicatively coupled with a network, such as a public/private mix that includes the Internet 104 , and includes one or more servers 106 providing a centralized power aggregation service.
  • Internet 104 will be used herein as representative of many different types of communicative networks and network mixtures (e.g., one or more wide area networks—public or private—and/or one or more local area networks).
  • the flow control center 102 maintains communication 108 with operators of power grid(s), and communication 110 with remote resources, i.e., communication with peripheral electric resources 112 (“end” or “terminal” nodes/devices of a power network) that are connected to the power grid 114 .
  • power line communicators such as those that include or consist of Ethernet-over-power line bridges 120 are implemented at connection locations so that the “last mile” (in this case, last feet—e.g., in a residence 124 ) of Internet communication with remote resources is implemented over the same wire that connects each electric resource 112 to the power grid 114 .
  • each physical location of each electric resource 112 may be associated with a corresponding Ethernet-over-power line bridge 120 (hereinafter, “bridge”) at or near the same location as the electric resource 112 .
  • Each bridge 120 is typically connected to an Internet access point of a location owner, as will be described in greater detail below.
  • the communication medium from flow control center 102 to the connection location, such as residence 124 can take many forms, such as cable modem, DSL, satellite, fiber, WiMax, etc.
  • electric resources 112 may connect with the Internet by a different medium than the same power wire that connects them to the power grid 114 .
  • a given electric resource 112 may have its own wireless capability to connect directly with the Internet 104 or an Internet access point and thereby with the flow control center 102 .
  • Electric resources 112 of the power aggregation system 100 may include the batteries of electric vehicles connected to the power grid 114 at residences 124 , parking lots 126 etc.; batteries in a repository 128 , fuel cell generators, private dams, conventional power plants, and other resources that produce electricity and/or store electricity physically or electrically.
  • each participating electric resource 112 or group of local resources has a corresponding remote intelligent power flow (IPF) module 134 (hereinafter, “remote IPF module” 134 ).
  • the centralized flow control center 102 administers the power aggregation system 100 by communicating with the remote IPF modules 134 distributed peripherally among the electric resources 112 .
  • the remote IPF modules 134 perform several different functions, including, but not limited to, providing the flow control center 102 with the statuses of remote resources; controlling the amount, direction, and timing of power being transferred into or out of a remote electric resource 112 ; providing metering of power being transferred into or out of a remote electric resource 112 ; providing safety measures during power transfer and changes of conditions in the power grid 114 ; logging activities; and providing self-contained control of power transfer and safety measures when communication with the flow control center 102 is interrupted.
  • the remote IPF modules 134 will be described in greater detail below.
  • each electric resource 112 may have a corresponding transceiver (not shown) to communicate with a local charging component (not shown).
  • the transceiver and charging component in combination, may communicate with flow control center 102 to perform some or all of the above mentioned functions of IPF module 134 .
  • a transceiver and charging component are shown in FIG. 2B and are described in greater detail herein.
  • FIG. 2A shows another view of electrical and communicative connections to an electric resource 112 .
  • an electric vehicle 200 includes a battery bank 202 and a remote IPF module 134 .
  • the electric vehicle 200 may connect to a conventional wall receptacle (wall outlet) 204 of a residence 124 , the wall receptacle 204 representing the peripheral edge of the power grid 114 connected via a residential powerline 206 .
  • the power cord 208 between the electric vehicle 200 and the wall outlet 204 can be composed of only conventional wire and insulation for conducting alternating current (AC) power to and from the electric vehicle 200 .
  • a location-specific connection locality module 210 performs the function of network access point—in this case, the Internet access point.
  • a bridge 120 intervenes between the receptacle 204 and the network access point so that the power cord 208 can also carry network communications between the electric vehicle 200 and the receptacle 204 .
  • connection locality module 210 With such a bridge 120 and connection locality module 210 in place in a connection location, no other special wiring or physical medium is needed to communicate with the remote IPF module 134 of the electric vehicle 200 other than a conventional power cord 208 for providing residential line current at any conventional voltage. Upstream of the connection locality module 210 , power and communication with the electric vehicle 200 are resolved into the powerline 206 and an Internet cable 104 .
  • the power cord 208 may include safety features not found in conventional power and extension cords.
  • an electrical plug 212 of the power cord 208 may include electrical and/or mechanical safeguard components to prevent the remote IPF module 134 from electrifying or exposing the male conductors of the power cord 208 when the conductors are exposed to a human user.
  • a radio frequency (RF) bridge may assist the remote IPF module 134 in communicating with a foreign system, such as a utility smart meter (not shown) and/or a connection locality module 210 .
  • the remote IPF module 134 may be equipped to communicate over power cord 208 or to engage in some form of RF communication, such as Zigbee or BluetoothTM, and the foreign system may be able to engage in a different form of RF communication.
  • the RF bridge may be equipped to communicate with both the foreign system and remote IPF module 134 and to translate communications from one to a form the other may understand, and to relay those messages.
  • the RF bridge may be integrated into the remote IPF module 134 or foreign system, or may be external to both.
  • the communicative associations between the RF bridge and remote IPF module 134 and between the RF bridge and foreign system may be via wired or wireless communication.
  • FIG. 2B shows a further view of electrical and communicative connections to an electric resource 112 .
  • the electric vehicle 200 may include a transceiver 212 rather than a remote IPF module 134 .
  • the transceiver 212 may be communicatively coupled to a charging component 214 through a connection 216 , and the charging component itself may be coupled to a conventional wall receptacle (wall outlet) 204 of a residence 124 and to electric vehicle 200 through a power cord 208 .
  • the other components shown in FIG. 2B may have the couplings and functions discussed with regard to FIG. 2A .
  • transceiver 212 and charging component 214 may, in combination, perform the same functions as the remote IPF module 134 .
  • Transceiver 212 may interface with computer systems of electric vehicle 200 and communicate with charging component 214 , providing charging component 214 with information about electric vehicle 200 , such as its vehicle identifier, a location identifier, and a state of charge.
  • transceiver 212 may receive requests and commands which transceiver 212 may relay to vehicle 200 's computer systems.
  • Charging component 214 may effectuate charge control of the electric vehicle 200 . If the electric vehicle 200 is not capable of charge control management, charging component 214 may directly manage the charging of electric vehicle 200 by stopping and starting a flow of power between the electric vehicle 200 and a power grid 114 in response to commands received from a flow control server 106 . If, on the other hand, the electric vehicle 200 is capable of charge control management, charging component 214 may effectuate charge control by sending commands to the electric vehicle 200 through the transceiver 212 .
  • the transceiver 212 may be physically coupled to the electric vehicle 200 through a data port, such as an OBD-II connector. In other embodiments, other couplings may be used.
  • the connection 216 between transceiver 212 and charging component 214 may be a wireless signal, such as a radio frequency (RF), such as a Zigbee, or BluetoothTM signal.
  • charging component 214 may include a receiver socket to couple with power cord 208 and a plug to couple with wall outlet 204 .
  • charging component 214 may be coupled to connection locality module 210 in either a wired or wireless fashion.
  • charging component 214 might have a data interface for communicating wirelessly with both the transceiver 212 and locality module 210 . In such an embodiment, the bridge 120 may not be required.
  • transceiver 212 and charging component 214 Further details about the transceiver 212 and charging component 214 are illustrated by FIG. 8B and described in greater detail herein.
  • FIG. 3 shows another implementation of the connection locality module 210 of FIG. 2 , in greater detail.
  • an electric resource 112 has an associated remote IPF module 134 , including a bridge 120 .
  • the power cord 208 connects the electric resource 112 to the power grid 114 and also to the connection locality module 210 in order to communicate with the flow control server 106 .
  • the connection locality module 210 includes another instance of a bridge 120 , connected to a network access point 302 , which may include such components as a router, switch, and/or modem, to establish a hardwired or wireless connection with, in this case, the Internet 104 .
  • the power cord 208 between the two bridges 120 and 120 ′ is replaced by a wireless Internet link, such as a wireless transceiver in the remote IPF module 134 and a wireless router in the connection locality module 210 .
  • a transceiver 212 and charging component 214 may be used instead of a remote IPF module 134 .
  • the charging component 214 may include or be coupled to a bridge 120
  • the connection locality module 210 may also include a bridge 120 ′, as shown.
  • charging component 214 and connection locality module 210 may communicate in a wired or wireless fashion, as mentioned previously, without bridges 120 and 120 ′.
  • the wired or wireless communication may utilize any sort of connection technology known in the art, such as Ethernet or RF communication, such as Zigbee, or Bluetooth.
  • FIG. 4 shows a layout 400 of the power aggregation system 100 .
  • the flow control center 102 can be connected to many different entities, e.g., via the Internet 104 , for communicating and receiving information.
  • the layout 400 includes electric resources 112 , such as plug-in electric vehicles 200 , physically connected to the grid within a single control area 402 .
  • the electric resources 112 become an energy resource for grid operators 404 to utilize.
  • the layout 400 also includes end users 406 classified into electric resource owners 408 and electrical connection location owners 410 , who may or may not be one and the same.
  • the stakeholders in a power aggregation system 100 include the system operator at the flow control center 102 , the grid operator 404 , the resource owner 408 , and the owner of the location 410 at which the electric resource 112 is connected to the power grid 114 .
  • Electrical connection location owners 410 can include:
  • Rental car lots —rental car companies often have a large portion of their fleet parked in the lot. They can purchase fleets of electric vehicles 200 and, participating in a power aggregation system 100 , generate revenue from idle fleet vehicles.
  • Residences a home garage can merely be equipped with a connection locality module 210 to enable the homeowner to participate in the power aggregation system 100 and generate revenue from a parked car. Also, the vehicle battery 202 and associated power electronics within the vehicle can provide local power backup power during times of peak load or power outages.
  • the grid operations 116 of FIG. 4 collectively include interactions with energy markets 412 , the interactions of grid operators 404 , and the interactions of automated grid controllers 118 that perform automatic physical control of the power grid 114 .
  • the flow control center 102 may also be coupled with information sources 414 for input of weather reports, events, price feeds, etc.
  • Other data sources 414 include the system stakeholders, public databases, and historical system data, which may be used to optimize system performance and to satisfy constraints on the power aggregation system 100 .
  • a power aggregation system 100 may consist of components that:
  • These components can be running on a single computing resource (computer, etc.), or on a distributed set of resources (either physically co-located or not).
  • Power aggregation systems 100 in such a layout 400 can provide many benefits: for example, lower-cost ancillary services (i.e., power services), fine-grained (both temporal and spatial) control over resource scheduling, guaranteed reliability and service levels, increased service levels via intelligent resource scheduling, and/or firming of intermittent generation sources such as wind and solar power generation.
  • the power aggregation system 100 enables a grid operator 404 to control the aggregated electric resources 112 connected to the power grid 114 .
  • An electric resource 112 can act as a power source, load, or storage, and the resource 112 may exhibit combinations of these properties.
  • Control of a set of electric resources 112 is the ability to actuate power consumption, generation, or energy storage from an aggregate of these electric resources 112 .
  • FIG. 5 shows the role of multiple control areas 402 in the power aggregation system 100 .
  • Each electric resource 112 can be connected to the power aggregation system 100 within a specific electrical control area.
  • a single instance of the flow control center 102 can administer electric resources 112 from multiple distinct control areas 501 (e.g., control areas 502 , 504 , and 506 ).
  • this functionality is achieved by logically partitioning resources within the power aggregation system 100 . For example, when the control areas 402 include an arbitrary number of control areas, control area “A” 502 , control area “B” 504 , . . .
  • grid operations 116 can include corresponding control area operators 508 , 510 , . . . , and 512 .
  • Further division into a control hierarchy that includes control division groupings above and below the illustrated control areas 402 allows the power aggregation system 100 to scale to power grids 114 of different magnitudes and/or to varying numbers of electric resources 112 connected with a power grid 114 .
  • FIG. 6 shows a layout 600 of a power aggregation system 100 that uses multiple centralized flow control centers 102 and 102 ′ and a directory server 602 for determining a flow control center.
  • Each flow control center 102 and 102 ′ has its own respective end users 406 and 406 ′.
  • Control areas 402 to be administered by each specific instance of a flow control center 102 can be assigned dynamically.
  • a first flow control center 102 may administer control area A 502 and control area B 504
  • a second flow control center 102 ′ administers control area n 506 .
  • corresponding control area operators 508 , 510 , and 512
  • an electric resource may determine which flow control center 102 / 102 ′ administers its control area 502 / 504 / 506 by communicating with a directory server 602 .
  • the address of the directory server 602 may be known to electric resource 112 or its associated IPF module 134 or charging component 214 .
  • the electric resource 112 may communicate with the directory server 602 , providing the directory server 112 with a resource identifier and/or a location identifier. Based on this information, the directory server 602 may respond, identifying which flow control center 102 / 102 ′ to use.
  • directory server 602 may be integrated with a flow control server 106 of a flow control center 102 / 102 ′.
  • the electric resource 112 may contact the server 106 .
  • the server 106 may either interact with the electric resource 112 itself or forward the connection to another flow control center 102 / 102 ′ responsible for the location identifier provided by the electric resource 112 .
  • directory server 602 may include a publicly accessible database for mapping locations to flow control centers 102 / 102 ′.
  • FIG. 7 shows a server 106 of the flow control center 102 .
  • the illustrated implementation in FIG. 7 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting a server 106 of the flow control center 102 are possible within the scope of the subject matter.
  • Such a server 106 and flow control center 102 can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • the flow control server 106 includes a connection manager 702 to communicate with electric resources 112 , a prediction engine 704 that may include a learning engine 706 and a statistics engine 708 , a constraint optimizer 710 , and a grid interaction manager 712 to receive grid control signals 714 .
  • Grid control signals 714 are sometimes referred to as generation control signals, such as automated generation control (AGC) signals.
  • AGC automated generation control
  • the flow control server 106 may further include a database/information warehouse 716 , a web server 718 to present a user interface to electric resource owners 408 , grid operators 404 , and electrical connection location owners 410 ; a contract manager 720 to negotiate contract terms with energy markets 412 , and an information acquisition engine 414 to track weather, relevant news events, etc., and download information from public and private databases 722 for predicting behavior of large groups of the electric resources 112 , monitoring energy prices, negotiating contracts, etc.
  • a database/information warehouse 716 to present a user interface to electric resource owners 408 , grid operators 404 , and electrical connection location owners 410 ;
  • a contract manager 720 to negotiate contract terms with energy markets 412 , and an information acquisition engine 414 to track weather, relevant news events, etc., and download information from public and private databases 722 for predicting behavior of large groups of the electric resources 112 , monitoring energy prices, negotiating contracts, etc.
  • FIG. 8A shows the remote IPF module 134 of FIGS. 1 and 2 in greater detail.
  • the illustrated remote IPF module 134 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting a remote IPF module 134 are possible within the scope of the subject matter.
  • Such a remote IPF module 134 has some hardware components and some components that can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • executable instructions configured to perform some or all of the operations of remote IPF module 134 may be added to hardware of an electric resource 112 such as an electric vehicle that, when combined with the executable instructions, provides equivalent functionality to remote IPF module 134 . References to remote IPF module 134 as used herein include such executable instructions.
  • the illustrated example of a remote IPF module 134 is represented by an implementation suited for an electric vehicle 200 .
  • some vehicle systems 800 are included as part of the remote IPF module 134 for the sake of description.
  • the remote IPF module 134 may exclude some or all of the vehicles systems 800 from being counted as components of the remote IPF module 134 .
  • the depicted vehicle systems 800 include a vehicle computer and data interface 802 , an energy storage system, such as a battery bank 202 , and an inverter/charger 804 .
  • the remote IPF module 134 also includes a communicative power flow controller 806 .
  • the communicative power flow controller 806 in turn includes some components that interface with AC power from the grid 114 , such as a powerline communicator, for example an Ethernet-over-powerline bridge 120 , and a current or current/voltage (power) sensor 808 , such as a current sensing transformer.
  • the communicative power flow controller 806 also includes Ethernet and information processing components, such as a processor 810 or microcontroller and an associated Ethernet media access control (MAC) address 812 ; volatile random access memory 814 , nonvolatile memory 816 or data storage, an interface such as an RS-232 interface 818 or a CANbus interface 820 ; an Ethernet physical layer interface 822 , which enables wiring and signaling according to Ethernet standards for the physical layer through means of network access at the MAC/Data Link Layer and a common addressing format.
  • the Ethernet physical layer interface 822 provides electrical, mechanical, and procedural interface to the transmission medium—i.e., in one implementation, using the Ethernet-over-powerline bridge 120 .
  • wireless or other communication channels with the Internet 104 are used in place of the Ethernet-over-powerline bridge 120 .
  • the communicative power flow controller 806 also includes a bidirectional power flow meter 824 that tracks power transfer to and from each electric resource 112 , in this case the battery bank 202 of an electric vehicle 200 .
  • the communicative power flow controller 806 operates either within, or connected to an electric vehicle 200 or other electric resource 112 to enable the aggregation of electric resources 112 introduced above (e.g., via a wired or wireless communication interface).
  • These above-listed components may vary among different implementations of the communicative power flow controller 806 , but implementations typically include:
  • Implementations of the communicative power flow controller 806 can enable functionality including:
  • the communicative power flow controller 806 includes a central processor 810 , interfaces 818 and 820 for communication within the electric vehicle 200 , a powerline communicator, such as an Ethernet-over-powerline bridge 120 for communication external to the electric vehicle 200 , and a power flow meter 824 for measuring energy flow to and from the electric vehicle 200 via a connected AC powerline 208 .
  • a powerline communicator such as an Ethernet-over-powerline bridge 120 for communication external to the electric vehicle 200
  • a power flow meter 824 for measuring energy flow to and from the electric vehicle 200 via a connected AC powerline 208 .
  • Power is the rate of energy consumption per interval of time. Power indicates the quantity of energy transferred during a certain period of time, thus the units of power are quantities of energy per unit of time.
  • the power flow meter 824 measures power for a given electric resource 112 across a bidirectional flow—e.g., power from grid 114 to electric vehicle 200 or from electric vehicle 200 to the grid 114 .
  • the remote IPF module 134 can locally cache readings from the power flow meter 824 to ensure accurate transactions with the central flow control server 106 , even if the connection to the server is down temporarily, or if the server itself is unavailable.
  • FIG. 8B shows the transceiver 212 and charging component 214 of FIG. 2B in greater detail.
  • the illustrated transceiver 212 and charging component 214 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting the transceiver 212 and charging component 214 are possible within the scope of the subject matter.
  • Such a transceiver 212 and charging component 214 have some hardware components and some components that can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • transceiver 212 and charging component 214 is represented by an implementation suited for an electric vehicle 200 .
  • vehicle systems 800 are illustrated to provide context to the transceiver 212 and charging component 214 components.
  • vehicle systems 800 include a vehicle computer and data interface 802 , an energy storage system, such as a battery bank 202 , and an inverter/charger 804 .
  • vehicle systems 800 may include a data port, such as an OBD-II port, that is capable of physically coupling with the transceiver 212 .
  • the transceiver 212 may then communicate with the vehicle computer and data interface 802 through the data port, receiving information from electric resource 112 comprised by vehicle systems 800 and, in some embodiments, providing commands to the vehicle computer and data interface 802 .
  • the vehicle computer and data interface 802 may be capable of charge control management.
  • the vehicle computer and data interface 802 may perform some or all of the charging component 214 operations discussed below.
  • executable instructions configured to perform some or all of the operations of the vehicle computer and data interface 802 may be added to hardware of an electric resource 112 such as an electric vehicle that, when combined with the executable instructions, provides equivalent functionality to the vehicle computer and data interface 802 .
  • References to the vehicle computer and data interface 802 as used herein include such executable instructions.
  • the transceiver 212 may have a physical form that is capable of coupling to a data port of vehicle systems 800 .
  • a transceiver 212 may also include a plurality of interfaces, such as an RS-232 interface 818 and/or a CANBus interface 820 .
  • the RS-232 interface 818 or CANBus interface 820 may enable the transceiver 212 to communicate with the vehicle computer and data interface 802 through the data port.
  • the transceiver may be or comprise an additional interface (not shown) capable of engaging in wireless communication with a data interface 820 of the charging component 214 .
  • the wireless communication may be of any form known in the art, such as radio frequency (RF) communication (e.g., Zigbee, and/or BluetoothTM communication).
  • RF radio frequency
  • the transceiver may comprise a separate conductor or may be configured to utilize a powerline 208 to communicate with charging component 214 .
  • transceiver 212 may simply be a radio frequency identification (RFID) tag capable of storing minimal information about the electric resource 112 , such as a resource identifier, and of being read by a corresponding RFID reader of charging component 214 .
  • RFID tag might not couple with a data port or communicate with the vehicle computer and data interface 802 .
  • the charging component 214 may be an intelligent plug device that is physically connected to a charging medium, such as a powerline 208 (the charging medium coupling the charging component 214 to the electric resource 112 ) and an outlet of a power grid (such as the wall outlet 204 shown in FIG. 2B ).
  • a charging medium such as a powerline 208 (the charging medium coupling the charging component 214 to the electric resource 112 ) and an outlet of a power grid (such as the wall outlet 204 shown in FIG. 2B ).
  • charging component 214 may be a charging station or some other external control.
  • the charging component 214 may be portable.
  • the charging component 214 may include components that interface with AC power from the grid 114 , such as a powerline communicator, for example an Ethernet-over-powerline bridge 120 , and a current or current/voltage (power) sensor 808 , such as a current sensing transformer.
  • a powerline communicator for example an Ethernet-over-powerline bridge 120
  • a current or current/voltage (power) sensor 808 such as a current sensing transformer.
  • the charging component 214 may include a further Ethernet plug or wireless interface in place of bridge 120 .
  • data-over-powerline communication is not necessary, eliminating the need for a bridge 120 .
  • the Ethernet plug or wireless interface may communicate with a local access point, and through that access point to flow control server 106 .
  • the charging component 214 may also include Ethernet and information processing components, such as a processor 810 or microcontroller and an associated Ethernet media access control (MAC) address 812 ; volatile random access memory 814 , nonvolatile memory 816 or data storage, a data interface 826 for communicating with the transceiver 212 , and an Ethernet physical layer interface 822 , which enables wiring and signaling according to Ethernet standards for the physical layer through means of network access at the MAC/Data Link Layer and a common addressing format.
  • the Ethernet physical layer interface 822 provides electrical, mechanical, and procedural interface to the transmission medium—i.e., in one implementation, using the Ethernet-over-powerline bridge 120 .
  • wireless or other communication channels with the Internet 104 are used in place of the Ethernet-over-powerline bridge 120 .
  • the charging component 214 may also include a bidirectional power flow meter 824 that tracks power transfer to and from each electric resource 112 , in this case the battery bank 202 of an electric vehicle 200 .
  • the charging component 214 may comprise an RFID reader to read the electric resource information from transceiver 212 when transceiver 212 is an RFID tag.
  • the charging component 214 may include a credit card reader to enable a user to identify the electric resource 112 by providing credit card information.
  • a transceiver 212 may not be necessary.
  • the charging component 214 may include a user interface, such as one of the user interfaces described in greater detail below.
  • Implementations of the charging component 214 can enable functionality including:
  • An electrical charging station whether free or for pay, can be installed with a user interface that presents useful information to the user. Specifically, by collecting information about the grid 114 , the electric resource state, and the preferences of the user, the station can present information such as the current electricity price, the estimated recharge cost, the estimated time until recharge, the estimated payment for uploading power to the grid 114 (either total or per hour), etc.
  • the information acquisition engine 414 communicates with the electric resource 112 and with public and/or private data networks 722 to acquire the data used in calculating this information.
  • the types of information gathered from the electric resource 112 could include an electric resource identifier (resource ID) and state information like the state of charge of the electric resource 112 .
  • the resource ID could be used to obtain knowledge of the electric resource type and capabilities, preferences, etc. through lookup with the flow control server 106 .
  • the charging station system including the UI might also gather grid-based information, such as current and future energy costs at the charging station.
  • electric resources 112 may receive charge control management via power aggregation system 100 .
  • an override control may be provided to override charge control management and charge as soon as possible.
  • the override control may be provided, in various embodiments, as a user interface mechanism of the remote IPF module 134 , the charging component 214 , of the electric resource (for example, if electric resource is a vehicle 200 , the user interface control may be integrated with dash controls of the vehicle 200 ) or even via a web page offered by flow control server 106 .
  • the control could be presented, for example, as a button, a touch screen option, a web page, or some other UI mechanism.
  • the UI may be the UI illustrated by FIG. 8C and discussed in greater detail below.
  • the override would be a one-time override, only applying to a single plug-in session. Upon disconnecting and reconnecting, the user may again need to interact with the UI mechanism to override the charge control management.
  • the user may pay more to charge with the override on than under charge control management, thus providing an incentive for the user to accept charge control management.
  • a cost differential may be displayed or rendered to the user in conjunction with or on the UI mechanism. This differential could take into account time-varying pricing, such as Time of Use (TOU), Critical Peak Pricing (CPP), and Real-Time Pricing (RTP) schemes, as discussed above, as well as any other incentives, discounts, or payments that might be forgone by not accepting charge control management.
  • TOU Time of Use
  • CPP Critical Peak Pricing
  • RTP Real-Time Pricing
  • a user interface mechanism of the remote IPF module 134 , the charging component 214 , of the electric resource may enable a user to enter and/or edit management preferences to affect charge control management of the user's electric resource 112 .
  • the UI mechanism may allow the user to enter/edit general preferences, such as whether charge control management is enabled, whether vehicle-to-grid power flow is enabled or whether the electric resource 112 should only be charged with clean/green power.
  • the UI mechanism may enable a user to prioritize relative desires for minimizing costs, maximizing payments (i.e., fewer charge periods for higher amounts), achieving a full state-of-charge for the electric resource 112 , charging as rapidly as possible, and/or charging in as environmentally-friendly a way as possible. Additionally, the UI mechanism may enable a user to provide a default schedule for when the electric resource will be used (for example, if resource 112 is a vehicle 200 , the schedule would be for when the vehicle 200 should be ready to drive).
  • the UI mechanism may enable the user to add or select special rules, such as a rule not to charge if a price threshold is exceeded or a rule to only use charge control management if it will earn the user at least a specified threshold of output. Charge control management may then be effectuated based on any part or all of these user entered preferences.
  • FIG. 8C illustrates a simple user interface (UI) which enables a user to control charging based on selecting among a limited number of high level preferences.
  • UI 2300 includes the categories “green”, “fast”, and “cheap” (with what is considered “green”, “fast”, and “cheap” varying from embodiment to embodiment).
  • the categories shown in UI 2300 are selected only for the sake of illustration and may instead includes these and/or any other categories applicable to electric resource 112 charging known in the art.
  • the UI 2300 may be very basic, using well known form controls such as radio buttons. In other embodiments, other graphic controls known in the art may be used.
  • the general categories may be mapped to specific charging behaviors, such as those discussed above, by a flow control server 106 .
  • FIG. 9 illustrates a resource communication protocol.
  • a remote IPF module 134 or charging component 214 may be in communication with a flow control server 106 over the Internet 104 or another networking fabric or combination of networking fabrics.
  • a protocol specifying an order of messages and/or a format for messages may be used to govern the communications between the remote IPF module 134 or charging component 214 and flow control server 106 .
  • the protocol may include two channels, one for messages initiated by the remote IPF module 134 or charging component 214 and for replies to those messages from the flow control server 106 , and another channel for messages initiated by the flow control server 106 and for replies to those messages from the remote IPF module 134 or charging component 214 .
  • the channels may be asynchronous with respect to each other (that is, initiation of messages on one channel may be entirely independent of initiation of messages on the other channel). However, each channel may itself be synchronous (that is, once a message is sent on a channel, another message may not be sent until a reply to the first message is received).
  • the remote IPF module 134 or charging component 214 may initiate communication 902 with the flow control server 106 .
  • communication 902 may be initiated when, for example, an electric resource 112 first plugs in/connects to the power grid 114 .
  • communication 902 may be initiated at another time or times.
  • the initial message 902 governed by the protocol may require, for example, one or more of an electric resource identifier, such as a MAC address, a protocol version used, and/or a resource identifier type.
  • a connection may be established between the remote IPF module 134 or charging component 214 and flow control server 106 .
  • the remote IPF module 134 or charging component 214 may register with flow control server 106 through a subsequent communication 903 .
  • Communication 903 may include a location identifier scheme, a latitude, a longitude, a max power value that the remote IPF module 134 or charging component 214 can draw, a max power value that the remote IPF module 134 or charging component 214 can provide, a current power value, and/or a current state of charge.
  • the protocol may require or allow messages 904 from the flow control server 106 to the remote IPF module 134 or charging component 214 or messages 906 from remote IPF module 134 or charging component 214 to the flow control server 106 .
  • the messages 904 may include, for example, one or more of commands, messages, and/or updates. Such messages 904 may be provided at any time after the initial message 902 .
  • messages 904 may include a command setting, a power level and/or a ping to determine whether the remote IPF module 134 or charging component 214 is still connected.
  • the messages 906 may include, for example, status updates to the information provided in the registration message 903 . Such messages 906 may be provided at any time after the initial message 902 . In one embodiment, the messages 906 may be provided on a pre-determined time interval basis. In various embodiments, messages 906 may even be sent when the remote IPF module 134 or charging component 214 is connected, but not registered. Such messages 906 may include data that is stored by flow control server 106 for later processing. Also, in some embodiments, messages 904 may be provided in response to a message 902 or 906 .
  • Modern electric vehicles benefit in a variety of ways from a centrally controlled smart charging program where a central server coordinates the charging activities of a number of vehicles. While many such smart charging programs may be operated by electric utilities to control electric vehicles over a wide area, many of the benefits of a smart charging program can be realized at a local level by the operator of a facility operating in isolation from the any other entity. In a place where multiple plug-in vehicles may park and connect to the grid, it is valuable to have site-level charging management.
  • the charging process of electric vehicles 1000 is managed by a site power flow manager 1010 at the site-level 1020 .
  • Site-level charging management is an important feature at charging locations where multiple plug-in electric vehicles 1000 may park and connect to the grid 1030 .
  • Such locations/sites 1020 may include public or private parking lots, or the base of operations for a fleet.
  • a site power flow manager 1010 could address these issues, inter alia.
  • Providing a power flow management system at the site-level allows important information to be taken as input, including but not limited to: electrical meter data for the site 1020 as a whole, and/or electrical meter data for specific charge points 1040 or banks of charge points.
  • the system can consider information from devices, such as plug-in vehicles 1000 , at the site that are connected to the electric grid 1030 . Such information might be transmitted in a variety of ways, including by a power-line carrier or a wireless means. This information may include a unique identifier, resource type, current state of charge, and max power in/out levels.
  • the system can receive information about the electric rate structure of the site, and information about the electrical topology and power limitations of various circuits within the site.
  • a connection to a power flow manager 1010 operates at a higher level of the grid topology, i.e. at the substation level or the control area level, so that the site power flow manager 1010 can receive information and also respond to requests, such as a demand response event, a reserves call, renewable resource following, or system regulation.
  • the site power flow manager 1010 and the higher level site controller can have priority rules, e.g. not overloading local circuits takes priority over remote requests.
  • a site power flow manager 1010 can analyze the current, and the predicted future, state of the world. In doing so, the site power flow manager 1010 can make various determinations, including whether or not to allow certain devices/vehicles 1000 to draw power. In addition, site power flow manager 1010 can request that the devices/vehicles 1000 provide power, and further control the power levels of the devices/vehicles 1000 . These decisions could be made within constraints, such as not overloading a circuit or going over a certain total power draw. Such constraints may be performed, as in one embodiment, with prioritization, such as optimizing to get power to certain devices versus others. For example, the site power flow manager 1010 may charge vehicles 1000 that are at the lowest state of charge, that have been plugged in the longest, or that have priority for recharge. In an embodiment, the site power flow manager 1010 may allow for optimizing with regard to the overall site electric cost minimization or total cost minimization, or to recharge in the greenest, most efficient meaner.
  • the site power flow manager 1010 can be carried out in several ways, including controlling relays to open or close certain circuits.
  • the site power flow manager 1010 can communicate with smart charging points 1040 or smart banks of charging points 1040 to control certain circuits or devices 1000 on those circuits.
  • the site power flow manager 1010 may also communicate with the devices 1000 to give them a request or command for their power flow behavior, such as telling a vehicle 1000 to charge at half power or to recharge in an efficient manner. Such communications may traverse via a smart charging point 1040 or bank thereof.
  • the site power flow manager 1010 may be located at the site 1020 being managed, but can also located remote to the site 1020 .
  • FIG. 11 illustrates the site-level charging of electrical devices by a power flow manager 1110 .
  • the power flow manager receives site-level information 1120 , and makes power flow decisions based on the site-level information 1130 .
  • power flow to the electrical devices is managed by the power flow manager 1140 , such that the power flow manager responds to requests including demand response event, reserves call, renewable resource following, or system regulation.
  • power flow manager can use the combined capabilities of the assets under its control to implement a variety of beneficial services.
  • These services may include regulation, spinning reserve, and/or peak avoidance.
  • Regulation involves increasing or decreasing the load present on the grid in real time in order to maintain balance between power production and power consumption in the entire grid.
  • Spinning reserve provides the ability to quickly make up a large amount of missing power after the failure of a generation or transmission asset within the grid. Peak avoidance results in reducing peak power consumption for the day, which is typically the most expensive power for the utility to provide.
  • the power flow manager may use any number of different strategies to decide how to dispatch the resources under management, it will be understood by those skilled in the art that other strategies, and combinations thereof, may be implemented in various embodiments.
  • the power flow manager may be a site power flow manager 1010 , as shown in FIG. 10 .
  • Such services provide a substantial cost savings to an electric utility.
  • a meta-optimizer decides which strategy to use at appropriate times.
  • the meta-optimizer may be located within the power flow manager.
  • the meta-optimizer determines which resources are to be used in implementing a strategy. The determination may be based on a variety of factors, such as maximizing value generated and/or minimizing environmental impact.
  • the meta-optimizer chooses the strategy that is likely to generate the most value for a given time period, e.g. the next hour.
  • the implementation may have a value function associated with each strategy, and then take the maximum value across all strategies.
  • the decision may vary by grid topological location. For example, if a given feeder is overloaded, the best decision for resources on that feeder may be to reduce the load, even if elsewhere on the grid a different strategy or action may be best.
  • the decision may also take into account multiple component requirements. For example, in managing plug-in vehicle recharging, it may be desirable to get vehicles recharged in a timely fashion, while also maximizing value created through other services provided.
  • the decision may be based on predictions about the future. For example, it may be worth a certain amount at hour N to take some action, such as charging plug-in vehicles to provide down regulation. However, if that means the resources might be unavailable at hour N+1, when the resource may be worth more than at hour N, then the meta-optimizer might delay the action so that the resource is available to provide more value.
  • FIG. 12 shows an embodiment of a method for managing power flow by optimizing multiple power flow management strategies including coordinating charging activities 1210 and controlling power flow service 1220 .
  • a meta-optimizer can choose a power flow management strategy and an electrical device 1230 such that the power flow manager may implement the power flow management strategies 1240 .
  • An example of a failure mode includes failed communications between individual resources and the master controller or controllers. Communications can also fail between a controller and some or all of the resources. In addition, a controller or a set of controllers can fail in a non-network related way that renders such controllers incapable of communicating with the resources. A failure mode may also be a design defect shared by a large population of resources causing the population to simultaneously lose communications capabilities when an unexpected event occurred.
  • a system for maintaining predictable behavior may include a distributed resource with various capabilities, including the ability to receive/enact a sequence of commands to be executed at one or various points in time.
  • An example of a safe failure mode includes maintaining stable (non-changing) behavior for a defined period of time around a failure event. For example, after communications is lost, an isolated EVSE can continue charging at the rate last specified by the charge management controller. After some period of time, the EVSE may slowly transition to a different autonomous strategy.
  • Another safe failure mode includes executing a pre-arranged behavior in the event of a failure condition. As an example, if a group of EVSE's was connected to a electrical circuit that was only capable of providing 70% of the combined maximum power draw of the group, each EVSE could be pre-programmed to operate at 70% of capacity in the event of communications failure.
  • Yet another safe failure mode includes executing state transitions in pre-arranged behaviors at the determined time offset by a random interval of time.
  • EVSE's that are off when communications fail could wait a random amount of time between 0 and 30 minutes before powering on. This random startup causes the increase in power consumption to be spread over time, allowing the utility the opportunity to respond.
  • a safe failure mode may also include using predictions about resource behaviors, such as the comings and goings from the system, to further enhance the estimate of the state of the world.
  • resource behaviors such as the comings and goings from the system.
  • the EVSE could be programmed to follow type-based typical curve in the absence of communications. Since the central smart charging system would know the curve the detached EVSE was following, its behavior could still be input in to the charge management algorithms.
  • FIG. 13 illustrates an embodiment for managing power flow using safe failure modes including coordinating charging activities of electrical devices 1310 and detecting a system failure event 1320 .
  • the power flow manager implements a safe failure mode 1330 that provides predictable and non-disruptive system behavior.
  • a basic cost reduction strategy is to reduce electricity consumption when electricity prices are high. This basic strategy reduces the cost of electricity consumed by the endpoints under active management.
  • a more advanced strategy could manipulate the electricity consumed by controlled endpoints in a way that impacts the market price of power.
  • Such a system can reduce the cost of providing power to all devices within a utility's service area, not just those under active management.
  • each power producer states the price at which they are willing to provide power, and power production is allocated to the cheapest producers first, moving up the stack to more expensive produces until sufficient power has been obtained.
  • the last (highest) price selected set the price that all power producers are paid.
  • Each type of generation asset in an energy generation system such as the electrical grid, has a marginal cost.
  • Generation assets are dispatched in the order of increasing marginal cost.
  • the most expensive generator dispatched at any time sets the cost basis for energy generation.
  • a distributed energy manager can remove enough load from the system to eliminate the need for higher cost generation, thereby decreasing the total cost to provide service.
  • the distributed energy manager can minimize the total daily cost to provide energy generation by forecasting total system and dispatchable load.
  • the distributed energy manager schedules dispatchable load to draw power from the grid at times that will minimize cost based on the available generation stack. Altering the total price of power paid has a larger financial impact than the amount paid specifically for automotive power. Also, moving the market may be easier at one time of day than another. As a result, dispatchable load will not always be scheduled to the lowest-cost time of day, but rather when it will have the most beneficial overall effect to the utility.
  • the generation stack can change from region to region, and load profiles and consumption can change daily. Therefore, the present method will produce different dispatch patterns in different regions.
  • FIG. 14 shows an embodiment of managing power flow using generation stacks of power production to reduce cost of providing power to electrical devices.
  • Charge activities are coordinated by a power flow manager 1410 .
  • a power production stack is controlled the power flow manager 1420 such that the power production stack orders available power.
  • a dispatchable load is removed 1430 .
  • the dispatchable load is listed in the power production stack.
  • Power resource management services include aggregating the following: plug-in vehicles, thermostats, residential or commercial/industrial load, or fixed energy storage. Such services provide regulation, reserves, load shifting, renewable resource following, or peak avoidance.
  • a power flow manager is able to provide a variety of services that can improve the stability of the electric grid. For example, electricity consumption of distributed resources can be increased and decreased as necessary to absorb the differences between electricity production and consumption on the grid.
  • aggregated power resource management services include electric utilities, ISOs, and TSOs. Such entities are primarily responsible for the stability of the grid. But aggregated power resource management services may be sold to various types of power generators.
  • Some classes of electricity generation suffer from a high degree of intermittency, meaning that their power production is irregular.
  • By bundling this irregular power production with the smoothing/stabilizing abilities of aggregated power resource management assets it is possible to produce a higher grade of wholesale power, which may be more easily sold in energy markets.
  • a wind farm is the buyer of aggregated power resource management services.
  • Wind farms are susceptible to fluctuations in the supply and demand of energy. For example, prices for energy may drop drastically when the amount of wind is great, or unexpectedly high.
  • wind farms may be temporarily disconnected from a grid when there is not enough transmission or other capacity to absorb the power.
  • Power generators may increase their net load from the aggregated power resources when there is a large and/or unexpectedly high amount of wind, and decrease net load with there is a small and/or unexpectedly low amount of wind.
  • power generators can use aggregated power resource management to smooth sudden ramping events in power output, or to firm the power output to a desired level.
  • the sum of power generation plus net load from the aggregated power resources can be made constant, or less susceptible to changes in the supply or demand of energy.
  • power generators such as power plants may retain the value of the energy they create.
  • Such an integration allow the operator of the generation asset to take direct action to address the intermittency issues associated with their type of generation. In some markets, this may be far more desirable than waiting for other parties to provide such services through the marketplace.

Abstract

A system and methods that enables power flow management at the local level. A power flow manager can coordinate the charging activities of electrical devices, such as electric vehicles. Power flow decisions may based on the site-level information. In addition, power flow management strategies may be optimized. An optimizer can choose a power flow management strategy and electrical devices for implementing a strategy. In the event of a system failure, power spikes may be avoided by using safe failure modes to provide that the charging activities be coordinated in a predictable and non-disruptive manner. The cost of providing power may be reduced using generation stacks of power production. As such, the total daily cost of providing energy generation may be minimized.

Description

  • This non-provisional patent application claims priority to, and incorporates herein by reference, U.S. Provisional Patent Application No. 61/165,344 filed on Mar. 31, 2009. This application also incorporates herein by reference the following: U.S. patent application Ser. No. 12/252,657 filed Oct. 16, 2008; U.S. patent application Ser. No. 12/252,209 filed Oct. 15, 2008; U.S. patent application Ser. No. 12/252,803 filed Oct. 16, 2008; and U.S. patent application Ser. No. 12/252,950 filed Oct. 16, 2008.
  • This application includes material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright rights whatsoever.
  • FIELD OF THE INVENTION
  • The present invention relates in general to the field of electric vehicles, and in particular to novel systems and methods for power flow management for electric vehicles.
  • BACKGROUND OF THE INVENTION
  • The electric power grid has become increasingly unreliable and antiquated, as evidenced by frequent large-scale power outages. Grid instability wastes energy, both directly and indirectly, e.g. by encouraging power consumers to install inefficient forms of backup generation. While clean forms of energy generation, such as wind and solar, can help to address the above problems, they suffer from intermittency. Hence, grid operators are reluctant to rely heavily on these sources, making it difficult to move away from carbon-intensive forms of electricity.
  • With respect to the electric power grid, electric power delivered during periods of peak demand costs substantially more than off-peak power. The electric power grid contains limited inherent facility for storing electrical energy. Electricity must be generated constantly to meet uncertain demand, which often results in over-generation (and hence wasted energy) and sometimes results in under-generation (and hence power failures). Distributed electric resources, en masse can, in principle, provide a significant resource for addressing the above problems. However, current power services infrastructure lacks provisioning and flexibility that are required for aggregating a large number of small-scale resources, such as electric vehicle batteries, to meet large-scale needs of power services.
  • Modern Electric vehicles could benefit in a variety of ways from a centrally controlled smart charging program, wherein a central server coordinates the charging activities of a number of vehicles. Significant opportunities for improvement exist in managing power flow at local level. More economical, reliable electrical power needs to be provided at times of peak demand. Power services, such as regulation and spinning reserves, can be provided to electricity markets to provide a significant economic opportunity. Technologies can be enabled to provide broader use of intermittent power sources, such as wind and solar. What is needed are power flow management systems and methods that manage power flow at the site-level, that implement various power flow strategies for the optimizing how to dispatch the resources under management, that avoid power spikes, and that minimize the total daily cost of providing energy generation.
  • SUMMARY OF THE INVENTION
  • In an embodiment, a method for managing power flow at a local site includes site-level charging of electrical devices by a power flow manager. The power flow manager runs a smart charging program, and coordinates charging activities of the electrical devices. The electrical devices may be located at the local site. The method includes receiving site-level information, which is received by the power flow manager. In addition, power flow decisions are made, by the power flow manager, based on the site-level information. Further, power flow to the electrical devices is managed by the power flow manager, wherein the power flow manager responds to requests.
  • In another embodiment, a method for managing power flow by optimizing multiple power flow management strategies includes coordinating charging activities of electrical devices. The charge activities are coordinated by a power flow manager. Power flow services are also controlled by the power flow manager. A power flow management strategy is chosen by a meta-optimizer, which also chooses the electrical devices to utilize for implementing the power flow management strategy. The power flow management strategies are implemented by the power flow manager.
  • In one embodiment, a method for managing power flow using safe failure modes includes coordinating charging activities of electrical devices by a power flow manager. The method includes detecting a system failure event by a power flow manager, and implementing a safe failure mode. The safe failure mode implemented by the power flow manager provides that the charging activities be coordinated in a predictable and non-disruptive manner.
  • In another embodiment, a method for managing power flow uses generation stacks of power production to reduce cost of providing power to electrical devices. This method also includes coordinating charging activities of electrical devices by a power flow manager. In addition, the power flow manager controls a power production stack, which orders available power. A dispatchable load is listed in the power production stack. The dispatchable load is removed based on a cost reduction strategy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of embodiments as illustrated in the accompanying drawings, in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention.
  • FIG. 1 is a diagram of an example of a power aggregation system.
  • FIGS. 2A-2B are diagrams of an example of connections between an electric vehicle, the power grid, and the Internet.
  • FIG. 3 is a block diagram of an example of connections between an electric resource and a flow control server of the power aggregation system.
  • FIG. 4 is a diagram of an example of a layout of the power aggregation system.
  • FIG. 5 is a diagram of an example of control areas in the power aggregation system.
  • FIG. 6 is a diagram of multiple flow control centers in the power aggregation system and a directory server for determining a flow control center.
  • FIG. 7 is a block diagram of an example of flow control server.
  • FIG. 8A is a block diagram of an example of remote intelligent power flow module.
  • FIG. 8B is a block diagram of an example of transceiver and charging component combination.
  • FIG. 8C is an illustration of an example of simple user interface for facilitating user controlled charging.
  • FIG. 9 is a diagram of an example of resource communication protocol.
  • FIG. 10 is a diagram of an example of a site power flow manager.
  • FIG. 11 is a flow chart of an example of a site power flow manager.
  • FIG. 12 is a flow chart of an example of optimization across multiple power flow management strategies.
  • FIG. 13 is a flow chart of an example of avoiding power spikes during energy management failures using safe failure modes.
  • FIG. 14 is a flow chart of an example of generation-stack-aware dispatch of resources.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
  • Overview
  • Described herein is a power aggregation system for distributed electric resources, and associated methods. In one implementation, a system communicates over the Internet and/or some other public or private networks with numerous individual electric resources connected to a power grid (hereinafter, “grid”). By communicating, the system can dynamically aggregate these electric resources to provide power services to grid operators (e.g. utilities, Independent System Operators (ISO), etc).
  • “Power services” as used herein, refers to energy delivery as well as other ancillary services including demand response, regulation, spinning reserves, non-spinning reserves, energy imbalance, reactive power, and similar products.
  • “Aggregation” as used herein refers to the ability to control power flows into and out of a set of spatially distributed electric resources with the purpose of providing a power service of larger magnitude.
  • “Charge Control Management” as used herein refers to enabling or performing the starting, stopping, or level-setting of a flow of power between a power grid and an electric resource.
  • “Power grid operator” as used herein, refers to the entity that is responsible for maintaining the operation and stability of the power grid within or across an electric control area. The power grid operator may constitute some combination of manual/human action/intervention and automated processes controlling generation signals in response to system sensors. A “control area operator” is one example of a power grid operator.
  • “Control area” as used herein, refers to a contained portion of the electrical grid with defined input and output ports. The net flow of power into this area must equal (within some error tolerance) the sum of the power consumption within the area and power outflow from the area.
  • “Power grid” as used herein means a power distribution system/network that connects producers of power with consumers of power. The network may include generators, transformers, interconnects, switching stations, and safety equipment as part of either/both the transmission system (i.e., bulk power) or the distribution system (i.e. retail power). The power aggregation system is vertically scalable for use within a neighborhood, a city, a sector, a control area, or (for example) one of the eight large-scale Interconnects in the North American Electric Reliability Council (NERC). Moreover, the system is horizontally scalable for use in providing power services to multiple grid areas simultaneously.
  • “Grid conditions” as used herein, refers to the need for more or less power flowing in or out of a section of the electric power grid, in response to one of a number of conditions, for example supply changes, demand changes, contingencies and failures, ramping events, etc. These grid conditions typically manifest themselves as power quality events such as under- or over-voltage events or under- or over-frequency events.
  • “Power quality events” as used herein typically refers to manifestations of power grid instability including voltage deviations and frequency deviations; additionally, power quality events as used herein also includes other disturbances in the quality of the power delivered by the power grid such as sub-cycle voltage spikes and harmonics.
  • “Electric resource” as used herein typically refers to electrical entities that can be commanded to do some or all of these three things: take power (act as load), provide power (act as power generation or source), and store energy. Examples may include battery/charger/inverter systems for electric or hybrid-electric vehicles, repositories of used-but-serviceable electric vehicle batteries, fixed energy storage, fuel cell generators, emergency generators, controllable loads, etc.
  • “Electric vehicle” is used broadly herein to refer to pure electric and hybrid electric vehicles, such as plug-in hybrid electric vehicles (PHEVs), especially vehicles that have significant storage battery capacity and that connect to the power grid for recharging the battery. More specifically, electric vehicle means a vehicle that gets some or all of its energy for motion and other purposes from the power grid. Moreover, an electric vehicle has an energy storage system, which may consist of batteries, capacitors, etc., or some combination thereof. An electric vehicle may or may not have the capability to provide power back to the electric grid.
  • Electric vehicle “energy storage systems” (batteries, super capacitors, and/or other energy storage devices) are used herein as a representative example of electric resources intermittently or permanently connected to the grid that can have dynamic input and output of power. Such batteries can function as a power source or a power load. A collection of aggregated electric vehicle batteries can become a statistically stable resource across numerous batteries, despite recognizable tidal connection trends (e.g., an increase in the total number of vehicles connected to the grid at night; a downswing in the collective number of connected batteries as the morning commute begins, etc.) Across vast numbers of electric vehicle batteries, connection trends are predictable and such batteries become a stable and reliable resource to call upon, should the grid or a part of the grid (such as a person's home in a blackout) experience a need for increased or decreased power. Data collection and storage also enable the power aggregation system to predict connection behavior on a per-user basis.
  • An Example of the Presently Disclosed System
  • FIG. 1 shows a power aggregation system 100. A flow control center 102 is communicatively coupled with a network, such as a public/private mix that includes the Internet 104, and includes one or more servers 106 providing a centralized power aggregation service. “Internet” 104 will be used herein as representative of many different types of communicative networks and network mixtures (e.g., one or more wide area networks—public or private—and/or one or more local area networks). Via a network, such as the Internet 104, the flow control center 102 maintains communication 108 with operators of power grid(s), and communication 110 with remote resources, i.e., communication with peripheral electric resources 112 (“end” or “terminal” nodes/devices of a power network) that are connected to the power grid 114. In one implementation, power line communicators (PLCs), such as those that include or consist of Ethernet-over-power line bridges 120 are implemented at connection locations so that the “last mile” (in this case, last feet—e.g., in a residence 124) of Internet communication with remote resources is implemented over the same wire that connects each electric resource 112 to the power grid 114. Thus, each physical location of each electric resource 112 may be associated with a corresponding Ethernet-over-power line bridge 120 (hereinafter, “bridge”) at or near the same location as the electric resource 112. Each bridge 120 is typically connected to an Internet access point of a location owner, as will be described in greater detail below. The communication medium from flow control center 102 to the connection location, such as residence 124, can take many forms, such as cable modem, DSL, satellite, fiber, WiMax, etc. In a variation, electric resources 112 may connect with the Internet by a different medium than the same power wire that connects them to the power grid 114. For example, a given electric resource 112 may have its own wireless capability to connect directly with the Internet 104 or an Internet access point and thereby with the flow control center 102.
  • Electric resources 112 of the power aggregation system 100 may include the batteries of electric vehicles connected to the power grid 114 at residences 124, parking lots 126 etc.; batteries in a repository 128, fuel cell generators, private dams, conventional power plants, and other resources that produce electricity and/or store electricity physically or electrically.
  • In one implementation, each participating electric resource 112 or group of local resources has a corresponding remote intelligent power flow (IPF) module 134 (hereinafter, “remote IPF module” 134). The centralized flow control center 102 administers the power aggregation system 100 by communicating with the remote IPF modules 134 distributed peripherally among the electric resources 112. The remote IPF modules 134 perform several different functions, including, but not limited to, providing the flow control center 102 with the statuses of remote resources; controlling the amount, direction, and timing of power being transferred into or out of a remote electric resource 112; providing metering of power being transferred into or out of a remote electric resource 112; providing safety measures during power transfer and changes of conditions in the power grid 114; logging activities; and providing self-contained control of power transfer and safety measures when communication with the flow control center 102 is interrupted. The remote IPF modules 134 will be described in greater detail below.
  • In another implementation, instead of having an IPF module 134, each electric resource 112 may have a corresponding transceiver (not shown) to communicate with a local charging component (not shown). The transceiver and charging component, in combination, may communicate with flow control center 102 to perform some or all of the above mentioned functions of IPF module 134. A transceiver and charging component are shown in FIG. 2B and are described in greater detail herein.
  • FIG. 2A shows another view of electrical and communicative connections to an electric resource 112. In this example, an electric vehicle 200 includes a battery bank 202 and a remote IPF module 134. The electric vehicle 200 may connect to a conventional wall receptacle (wall outlet) 204 of a residence 124, the wall receptacle 204 representing the peripheral edge of the power grid 114 connected via a residential powerline 206.
  • In one implementation, the power cord 208 between the electric vehicle 200 and the wall outlet 204 can be composed of only conventional wire and insulation for conducting alternating current (AC) power to and from the electric vehicle 200. In FIG. 2A, a location-specific connection locality module 210 performs the function of network access point—in this case, the Internet access point. A bridge 120 intervenes between the receptacle 204 and the network access point so that the power cord 208 can also carry network communications between the electric vehicle 200 and the receptacle 204. With such a bridge 120 and connection locality module 210 in place in a connection location, no other special wiring or physical medium is needed to communicate with the remote IPF module 134 of the electric vehicle 200 other than a conventional power cord 208 for providing residential line current at any conventional voltage. Upstream of the connection locality module 210, power and communication with the electric vehicle 200 are resolved into the powerline 206 and an Internet cable 104.
  • Alternatively, the power cord 208 may include safety features not found in conventional power and extension cords. For example, an electrical plug 212 of the power cord 208 may include electrical and/or mechanical safeguard components to prevent the remote IPF module 134 from electrifying or exposing the male conductors of the power cord 208 when the conductors are exposed to a human user.
  • In some embodiments, a radio frequency (RF) bridge (not shown) may assist the remote IPF module 134 in communicating with a foreign system, such as a utility smart meter (not shown) and/or a connection locality module 210. For example, the remote IPF module 134 may be equipped to communicate over power cord 208 or to engage in some form of RF communication, such as Zigbee or Bluetooth™, and the foreign system may be able to engage in a different form of RF communication. In such an implementation, the RF bridge may be equipped to communicate with both the foreign system and remote IPF module 134 and to translate communications from one to a form the other may understand, and to relay those messages. In various embodiments, the RF bridge may be integrated into the remote IPF module 134 or foreign system, or may be external to both. The communicative associations between the RF bridge and remote IPF module 134 and between the RF bridge and foreign system may be via wired or wireless communication.
  • FIG. 2B shows a further view of electrical and communicative connections to an electric resource 112. In this example, the electric vehicle 200 may include a transceiver 212 rather than a remote IPF module 134. The transceiver 212 may be communicatively coupled to a charging component 214 through a connection 216, and the charging component itself may be coupled to a conventional wall receptacle (wall outlet) 204 of a residence 124 and to electric vehicle 200 through a power cord 208. The other components shown in FIG. 2B may have the couplings and functions discussed with regard to FIG. 2A.
  • In various embodiments, transceiver 212 and charging component 214 may, in combination, perform the same functions as the remote IPF module 134. Transceiver 212 may interface with computer systems of electric vehicle 200 and communicate with charging component 214, providing charging component 214 with information about electric vehicle 200, such as its vehicle identifier, a location identifier, and a state of charge. In response, transceiver 212 may receive requests and commands which transceiver 212 may relay to vehicle 200's computer systems.
  • Charging component 214, being coupled to both electric vehicle 200 and wall outlet 204, may effectuate charge control of the electric vehicle 200. If the electric vehicle 200 is not capable of charge control management, charging component 214 may directly manage the charging of electric vehicle 200 by stopping and starting a flow of power between the electric vehicle 200 and a power grid 114 in response to commands received from a flow control server 106. If, on the other hand, the electric vehicle 200 is capable of charge control management, charging component 214 may effectuate charge control by sending commands to the electric vehicle 200 through the transceiver 212.
  • In some embodiments, the transceiver 212 may be physically coupled to the electric vehicle 200 through a data port, such as an OBD-II connector. In other embodiments, other couplings may be used. The connection 216 between transceiver 212 and charging component 214 may be a wireless signal, such as a radio frequency (RF), such as a Zigbee, or Bluetooth™ signal. And charging component 214 may include a receiver socket to couple with power cord 208 and a plug to couple with wall outlet 204. In one embodiment, charging component 214 may be coupled to connection locality module 210 in either a wired or wireless fashion. For example, charging component 214 might have a data interface for communicating wirelessly with both the transceiver 212 and locality module 210. In such an embodiment, the bridge 120 may not be required.
  • Further details about the transceiver 212 and charging component 214 are illustrated by FIG. 8B and described in greater detail herein.
  • FIG. 3 shows another implementation of the connection locality module 210 of FIG. 2, in greater detail. In FIG. 3, an electric resource 112 has an associated remote IPF module 134, including a bridge 120. The power cord 208 connects the electric resource 112 to the power grid 114 and also to the connection locality module 210 in order to communicate with the flow control server 106.
  • The connection locality module 210 includes another instance of a bridge 120, connected to a network access point 302, which may include such components as a router, switch, and/or modem, to establish a hardwired or wireless connection with, in this case, the Internet 104. In one implementation, the power cord 208 between the two bridges 120 and 120′ is replaced by a wireless Internet link, such as a wireless transceiver in the remote IPF module 134 and a wireless router in the connection locality module 210.
  • In other embodiments, a transceiver 212 and charging component 214 may be used instead of a remote IPF module 134. In such an embodiment, the charging component 214 may include or be coupled to a bridge 120, and the connection locality module 210 may also include a bridge 120′, as shown. In yet other embodiments, not shown, charging component 214 and connection locality module 210 may communicate in a wired or wireless fashion, as mentioned previously, without bridges 120 and 120′. The wired or wireless communication may utilize any sort of connection technology known in the art, such as Ethernet or RF communication, such as Zigbee, or Bluetooth.
  • System Layouts
  • FIG. 4 shows a layout 400 of the power aggregation system 100. The flow control center 102 can be connected to many different entities, e.g., via the Internet 104, for communicating and receiving information. The layout 400 includes electric resources 112, such as plug-in electric vehicles 200, physically connected to the grid within a single control area 402. The electric resources 112 become an energy resource for grid operators 404 to utilize.
  • The layout 400 also includes end users 406 classified into electric resource owners 408 and electrical connection location owners 410, who may or may not be one and the same. In fact, the stakeholders in a power aggregation system 100 include the system operator at the flow control center 102, the grid operator 404, the resource owner 408, and the owner of the location 410 at which the electric resource 112 is connected to the power grid 114.
  • Electrical connection location owners 410 can include:
  • Rental car lots—rental car companies often have a large portion of their fleet parked in the lot. They can purchase fleets of electric vehicles 200 and, participating in a power aggregation system 100, generate revenue from idle fleet vehicles.
  • Public parking lots—parking lot owners can participate in the power aggregation system 100 to generate revenue from parked electric vehicles 200. Vehicle owners can be offered free parking, or additional incentives, in exchange for providing power services.
  • Workplace parking—employers can participate in a power aggregation system 100 to generate revenue from parked employee electric vehicles 200. Employees can be offered incentives in exchange for providing power services.
  • Residences—a home garage can merely be equipped with a connection locality module 210 to enable the homeowner to participate in the power aggregation system 100 and generate revenue from a parked car. Also, the vehicle battery 202 and associated power electronics within the vehicle can provide local power backup power during times of peak load or power outages.
  • Residential neighborhoods—neighborhoods can participate in a power aggregation system 100 and be equipped with power-delivery devices (deployed, for example, by homeowner cooperative groups) that generate revenue from parked electric vehicles 200.
  • The grid operations 116 of FIG. 4 collectively include interactions with energy markets 412, the interactions of grid operators 404, and the interactions of automated grid controllers 118 that perform automatic physical control of the power grid 114.
  • The flow control center 102 may also be coupled with information sources 414 for input of weather reports, events, price feeds, etc. Other data sources 414 include the system stakeholders, public databases, and historical system data, which may be used to optimize system performance and to satisfy constraints on the power aggregation system 100.
  • Thus, a power aggregation system 100 may consist of components that:
  • communicate with the electric resources 112 to gather data and actuate charging/discharging of the electric resources 112;
  • gather real-time energy prices;
  • gather real-time resource statistics;
  • predict behavior of electric resources 112 (connectedness, location, state (such as battery State-Of-Charge) at a given time of interest, such as a time of connect/disconnect);
  • predict behavior of the power grid 114/load;
  • encrypt communications for privacy and data security;
  • actuate charging of electric vehicles 200 to optimize some figure(s) of merit;
  • offer guidelines or guarantees about load availability for various points in the future, etc.
  • These components can be running on a single computing resource (computer, etc.), or on a distributed set of resources (either physically co-located or not).
  • Power aggregation systems 100 in such a layout 400 can provide many benefits: for example, lower-cost ancillary services (i.e., power services), fine-grained (both temporal and spatial) control over resource scheduling, guaranteed reliability and service levels, increased service levels via intelligent resource scheduling, and/or firming of intermittent generation sources such as wind and solar power generation.
  • The power aggregation system 100 enables a grid operator 404 to control the aggregated electric resources 112 connected to the power grid 114. An electric resource 112 can act as a power source, load, or storage, and the resource 112 may exhibit combinations of these properties. Control of a set of electric resources 112 is the ability to actuate power consumption, generation, or energy storage from an aggregate of these electric resources 112.
  • FIG. 5 shows the role of multiple control areas 402 in the power aggregation system 100. Each electric resource 112 can be connected to the power aggregation system 100 within a specific electrical control area. A single instance of the flow control center 102 can administer electric resources 112 from multiple distinct control areas 501 (e.g., control areas 502, 504, and 506). In one implementation, this functionality is achieved by logically partitioning resources within the power aggregation system 100. For example, when the control areas 402 include an arbitrary number of control areas, control area “A” 502, control area “B” 504, . . . , control area “n” 506, then grid operations 116 can include corresponding control area operators 508, 510, . . . , and 512. Further division into a control hierarchy that includes control division groupings above and below the illustrated control areas 402 allows the power aggregation system 100 to scale to power grids 114 of different magnitudes and/or to varying numbers of electric resources 112 connected with a power grid 114.
  • FIG. 6 shows a layout 600 of a power aggregation system 100 that uses multiple centralized flow control centers 102 and 102′ and a directory server 602 for determining a flow control center. Each flow control center 102 and 102′ has its own respective end users 406 and 406′. Control areas 402 to be administered by each specific instance of a flow control center 102 can be assigned dynamically. For example, a first flow control center 102 may administer control area A 502 and control area B 504, while a second flow control center 102′ administers control area n 506. Likewise, corresponding control area operators (508, 510, and 512) are served by the same flow control center 102 that serves their respective different control areas.
  • In various embodiments, an electric resource may determine which flow control center 102/102′ administers its control area 502/504/506 by communicating with a directory server 602. The address of the directory server 602 may be known to electric resource 112 or its associated IPF module 134 or charging component 214. Upon plugging in, the electric resource 112 may communicate with the directory server 602, providing the directory server 112 with a resource identifier and/or a location identifier. Based on this information, the directory server 602 may respond, identifying which flow control center 102/102′ to use.
  • In another embodiment, directory server 602 may be integrated with a flow control server 106 of a flow control center 102/102′. In such an embodiment, the electric resource 112 may contact the server 106. In response, the server 106 may either interact with the electric resource 112 itself or forward the connection to another flow control center 102/102′ responsible for the location identifier provided by the electric resource 112.
  • In some embodiments, whether integrated with a flow control server 106 or not, directory server 602 may include a publicly accessible database for mapping locations to flow control centers 102/102′.
  • Flow Control Server
  • FIG. 7 shows a server 106 of the flow control center 102. The illustrated implementation in FIG. 7 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting a server 106 of the flow control center 102 are possible within the scope of the subject matter. Such a server 106 and flow control center 102 can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • The flow control server 106 includes a connection manager 702 to communicate with electric resources 112, a prediction engine 704 that may include a learning engine 706 and a statistics engine 708, a constraint optimizer 710, and a grid interaction manager 712 to receive grid control signals 714. Grid control signals 714 are sometimes referred to as generation control signals, such as automated generation control (AGC) signals. The flow control server 106 may further include a database/information warehouse 716, a web server 718 to present a user interface to electric resource owners 408, grid operators 404, and electrical connection location owners 410; a contract manager 720 to negotiate contract terms with energy markets 412, and an information acquisition engine 414 to track weather, relevant news events, etc., and download information from public and private databases 722 for predicting behavior of large groups of the electric resources 112, monitoring energy prices, negotiating contracts, etc.
  • Remote IPF Module
  • FIG. 8A shows the remote IPF module 134 of FIGS. 1 and 2 in greater detail. The illustrated remote IPF module 134 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting a remote IPF module 134 are possible within the scope of the subject matter. Such a remote IPF module 134 has some hardware components and some components that can be executed in hardware, software, or combinations of hardware, software, firmware, etc. In other embodiments, executable instructions configured to perform some or all of the operations of remote IPF module 134 may be added to hardware of an electric resource 112 such as an electric vehicle that, when combined with the executable instructions, provides equivalent functionality to remote IPF module 134. References to remote IPF module 134 as used herein include such executable instructions.
  • The illustrated example of a remote IPF module 134 is represented by an implementation suited for an electric vehicle 200. Thus, some vehicle systems 800 are included as part of the remote IPF module 134 for the sake of description. However, in other implementations, the remote IPF module 134 may exclude some or all of the vehicles systems 800 from being counted as components of the remote IPF module 134.
  • The depicted vehicle systems 800 include a vehicle computer and data interface 802, an energy storage system, such as a battery bank 202, and an inverter/charger 804. Besides vehicle systems 800, the remote IPF module 134 also includes a communicative power flow controller 806. The communicative power flow controller 806 in turn includes some components that interface with AC power from the grid 114, such as a powerline communicator, for example an Ethernet-over-powerline bridge 120, and a current or current/voltage (power) sensor 808, such as a current sensing transformer.
  • The communicative power flow controller 806 also includes Ethernet and information processing components, such as a processor 810 or microcontroller and an associated Ethernet media access control (MAC) address 812; volatile random access memory 814, nonvolatile memory 816 or data storage, an interface such as an RS-232 interface 818 or a CANbus interface 820; an Ethernet physical layer interface 822, which enables wiring and signaling according to Ethernet standards for the physical layer through means of network access at the MAC/Data Link Layer and a common addressing format. The Ethernet physical layer interface 822 provides electrical, mechanical, and procedural interface to the transmission medium—i.e., in one implementation, using the Ethernet-over-powerline bridge 120. In a variation, wireless or other communication channels with the Internet 104 are used in place of the Ethernet-over-powerline bridge 120.
  • The communicative power flow controller 806 also includes a bidirectional power flow meter 824 that tracks power transfer to and from each electric resource 112, in this case the battery bank 202 of an electric vehicle 200.
  • The communicative power flow controller 806 operates either within, or connected to an electric vehicle 200 or other electric resource 112 to enable the aggregation of electric resources 112 introduced above (e.g., via a wired or wireless communication interface). These above-listed components may vary among different implementations of the communicative power flow controller 806, but implementations typically include:
      • an intra-vehicle communications mechanism that enables communication with other vehicle components;
      • a mechanism to communicate with the flow control center 102;
      • a processing element;
      • a data storage element;
      • a power meter; and
      • optionally, a user interface.
  • Implementations of the communicative power flow controller 806 can enable functionality including:
      • executing pre-programmed or learned behaviors when the electric resource 112 is offline (not connected to Internet 104, or service is unavailable);
      • storing locally-cached behavior profiles for “roaming” connectivity (what to do when charging on a foreign system, i.e., when charging in the same utility territory on a foreign meter or in a separate utility territory, or in disconnected operation, i.e., when there is no network connectivity);
      • allowing the user to override current system behavior; and
      • metering power-flow information and caching meter data during offline operation for later transaction.
  • Thus, the communicative power flow controller 806 includes a central processor 810, interfaces 818 and 820 for communication within the electric vehicle 200, a powerline communicator, such as an Ethernet-over-powerline bridge 120 for communication external to the electric vehicle 200, and a power flow meter 824 for measuring energy flow to and from the electric vehicle 200 via a connected AC powerline 208.
  • Power Flow Meter
  • Power is the rate of energy consumption per interval of time. Power indicates the quantity of energy transferred during a certain period of time, thus the units of power are quantities of energy per unit of time. The power flow meter 824 measures power for a given electric resource 112 across a bidirectional flow—e.g., power from grid 114 to electric vehicle 200 or from electric vehicle 200 to the grid 114. In one implementation, the remote IPF module 134 can locally cache readings from the power flow meter 824 to ensure accurate transactions with the central flow control server 106, even if the connection to the server is down temporarily, or if the server itself is unavailable.
  • Transceiver and Charging Component
  • FIG. 8B shows the transceiver 212 and charging component 214 of FIG. 2B in greater detail. The illustrated transceiver 212 and charging component 214 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting the transceiver 212 and charging component 214 are possible within the scope of the subject matter. Such a transceiver 212 and charging component 214 have some hardware components and some components that can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • The illustrated example of the transceiver 212 and charging component 214 is represented by an implementation suited for an electric vehicle 200. Thus, some vehicle systems 800 are illustrated to provide context to the transceiver 212 and charging component 214 components.
  • The depicted vehicle systems 800 include a vehicle computer and data interface 802, an energy storage system, such as a battery bank 202, and an inverter/charger 804. In some embodiments, vehicle systems 800 may include a data port, such as an OBD-II port, that is capable of physically coupling with the transceiver 212. The transceiver 212 may then communicate with the vehicle computer and data interface 802 through the data port, receiving information from electric resource 112 comprised by vehicle systems 800 and, in some embodiments, providing commands to the vehicle computer and data interface 802. In one implementation, the vehicle computer and data interface 802 may be capable of charge control management. In such an embodiment, the vehicle computer and data interface 802 may perform some or all of the charging component 214 operations discussed below. In other embodiments, executable instructions configured to perform some or all of the operations of the vehicle computer and data interface 802 may be added to hardware of an electric resource 112 such as an electric vehicle that, when combined with the executable instructions, provides equivalent functionality to the vehicle computer and data interface 802. References to the vehicle computer and data interface 802 as used herein include such executable instructions.
  • In various embodiments, the transceiver 212 may have a physical form that is capable of coupling to a data port of vehicle systems 800. Such a transceiver 212 may also include a plurality of interfaces, such as an RS-232 interface 818 and/or a CANBus interface 820. In various embodiments, the RS-232 interface 818 or CANBus interface 820 may enable the transceiver 212 to communicate with the vehicle computer and data interface 802 through the data port. Also, the transceiver may be or comprise an additional interface (not shown) capable of engaging in wireless communication with a data interface 820 of the charging component 214. The wireless communication may be of any form known in the art, such as radio frequency (RF) communication (e.g., Zigbee, and/or Bluetooth™ communication). In other embodiments, the transceiver may comprise a separate conductor or may be configured to utilize a powerline 208 to communicate with charging component 214. In yet other embodiments, not shown, transceiver 212 may simply be a radio frequency identification (RFID) tag capable of storing minimal information about the electric resource 112, such as a resource identifier, and of being read by a corresponding RFID reader of charging component 214. In such other embodiments, the RFID tag might not couple with a data port or communicate with the vehicle computer and data interface 802.
  • As shown, the charging component 214 may be an intelligent plug device that is physically connected to a charging medium, such as a powerline 208 (the charging medium coupling the charging component 214 to the electric resource 112) and an outlet of a power grid (such as the wall outlet 204 shown in FIG. 2B). In other embodiments charging component 214 may be a charging station or some other external control. In some embodiments, the charging component 214 may be portable.
  • In various embodiments, the charging component 214 may include components that interface with AC power from the grid 114, such as a powerline communicator, for example an Ethernet-over-powerline bridge 120, and a current or current/voltage (power) sensor 808, such as a current sensing transformer.
  • In other embodiments, the charging component 214 may include a further Ethernet plug or wireless interface in place of bridge 120. In such an embodiment, data-over-powerline communication is not necessary, eliminating the need for a bridge 120. The Ethernet plug or wireless interface may communicate with a local access point, and through that access point to flow control server 106.
  • The charging component 214 may also include Ethernet and information processing components, such as a processor 810 or microcontroller and an associated Ethernet media access control (MAC) address 812; volatile random access memory 814, nonvolatile memory 816 or data storage, a data interface 826 for communicating with the transceiver 212, and an Ethernet physical layer interface 822, which enables wiring and signaling according to Ethernet standards for the physical layer through means of network access at the MAC/Data Link Layer and a common addressing format. The Ethernet physical layer interface 822 provides electrical, mechanical, and procedural interface to the transmission medium—i.e., in one implementation, using the Ethernet-over-powerline bridge 120. In a variation, wireless or other communication channels with the Internet 104 are used in place of the Ethernet-over-powerline bridge 120.
  • The charging component 214 may also include a bidirectional power flow meter 824 that tracks power transfer to and from each electric resource 112, in this case the battery bank 202 of an electric vehicle 200.
  • Further, in some embodiments, the charging component 214 may comprise an RFID reader to read the electric resource information from transceiver 212 when transceiver 212 is an RFID tag.
  • Also, in various embodiments, the charging component 214 may include a credit card reader to enable a user to identify the electric resource 112 by providing credit card information. In such an embodiment, a transceiver 212 may not be necessary.
  • Additionally, in one embodiment, the charging component 214 may include a user interface, such as one of the user interfaces described in greater detail below.
  • Implementations of the charging component 214 can enable functionality including:
      • executing pre-programmed or learned behaviors when the electric resource 112 is offline (not connected to Internet 104, or service is unavailable);
      • storing locally-cached behavior profiles for “roaming” connectivity (what to do when charging on a foreign system or in disconnected operation, i.e., when there is no network connectivity);
      • allowing the user to override current system behavior; and
      • metering power-flow information and caching meter data during offline operation for later transaction.
  • User Interfaces (UI)
  • Charging Station UI. An electrical charging station, whether free or for pay, can be installed with a user interface that presents useful information to the user. Specifically, by collecting information about the grid 114, the electric resource state, and the preferences of the user, the station can present information such as the current electricity price, the estimated recharge cost, the estimated time until recharge, the estimated payment for uploading power to the grid 114 (either total or per hour), etc. The information acquisition engine 414 communicates with the electric resource 112 and with public and/or private data networks 722 to acquire the data used in calculating this information.
  • The types of information gathered from the electric resource 112 could include an electric resource identifier (resource ID) and state information like the state of charge of the electric resource 112. The resource ID could be used to obtain knowledge of the electric resource type and capabilities, preferences, etc. through lookup with the flow control server 106.
  • In various embodiments, the charging station system including the UI might also gather grid-based information, such as current and future energy costs at the charging station.
  • User Charge Control UI Mechanisms. In various embodiments, by default, electric resources 112 may receive charge control management via power aggregation system 100. In some embodiments, an override control may be provided to override charge control management and charge as soon as possible. The override control may be provided, in various embodiments, as a user interface mechanism of the remote IPF module 134, the charging component 214, of the electric resource (for example, if electric resource is a vehicle 200, the user interface control may be integrated with dash controls of the vehicle 200) or even via a web page offered by flow control server 106. The control could be presented, for example, as a button, a touch screen option, a web page, or some other UI mechanism. In one embodiment, the UI may be the UI illustrated by FIG. 8C and discussed in greater detail below. In some embodiments, the override would be a one-time override, only applying to a single plug-in session. Upon disconnecting and reconnecting, the user may again need to interact with the UI mechanism to override the charge control management.
  • In some embodiments, the user may pay more to charge with the override on than under charge control management, thus providing an incentive for the user to accept charge control management. Such a cost differential may be displayed or rendered to the user in conjunction with or on the UI mechanism. This differential could take into account time-varying pricing, such as Time of Use (TOU), Critical Peak Pricing (CPP), and Real-Time Pricing (RTP) schemes, as discussed above, as well as any other incentives, discounts, or payments that might be forgone by not accepting charge control management.
  • UI Mechanism for Management Preferences. In various embodiments, a user interface mechanism of the remote IPF module 134, the charging component 214, of the electric resource (for example, if electric resource is a vehicle 200, the user interface control may be integrated with dash controls of the vehicle 200) or even via a web page offered by flow control server 106 may enable a user to enter and/or edit management preferences to affect charge control management of the user's electric resource 112. In some embodiments, the UI mechanism may allow the user to enter/edit general preferences, such as whether charge control management is enabled, whether vehicle-to-grid power flow is enabled or whether the electric resource 112 should only be charged with clean/green power. Also, in various embodiments, the UI mechanism may enable a user to prioritize relative desires for minimizing costs, maximizing payments (i.e., fewer charge periods for higher amounts), achieving a full state-of-charge for the electric resource 112, charging as rapidly as possible, and/or charging in as environmentally-friendly a way as possible. Additionally, the UI mechanism may enable a user to provide a default schedule for when the electric resource will be used (for example, if resource 112 is a vehicle 200, the schedule would be for when the vehicle 200 should be ready to drive). Further, the UI mechanism may enable the user to add or select special rules, such as a rule not to charge if a price threshold is exceeded or a rule to only use charge control management if it will earn the user at least a specified threshold of output. Charge control management may then be effectuated based on any part or all of these user entered preferences.
  • Simple User Interface. FIG. 8C illustrates a simple user interface (UI) which enables a user to control charging based on selecting among a limited number of high level preferences. For example, UI 2300 includes the categories “green”, “fast”, and “cheap” (with what is considered “green”, “fast”, and “cheap” varying from embodiment to embodiment). The categories shown in UI 2300 are selected only for the sake of illustration and may instead includes these and/or any other categories applicable to electric resource 112 charging known in the art. As shown, the UI 2300 may be very basic, using well known form controls such as radio buttons. In other embodiments, other graphic controls known in the art may be used. The general categories may be mapped to specific charging behaviors, such as those discussed above, by a flow control server 106.
  • Electric Resource Communication Protocol
  • FIG. 9 illustrates a resource communication protocol. As shown, a remote IPF module 134 or charging component 214 may be in communication with a flow control server 106 over the Internet 104 or another networking fabric or combination of networking fabrics. In various embodiments, a protocol specifying an order of messages and/or a format for messages may be used to govern the communications between the remote IPF module 134 or charging component 214 and flow control server 106.
  • In some embodiments, the protocol may include two channels, one for messages initiated by the remote IPF module 134 or charging component 214 and for replies to those messages from the flow control server 106, and another channel for messages initiated by the flow control server 106 and for replies to those messages from the remote IPF module 134 or charging component 214. The channels may be asynchronous with respect to each other (that is, initiation of messages on one channel may be entirely independent of initiation of messages on the other channel). However, each channel may itself be synchronous (that is, once a message is sent on a channel, another message may not be sent until a reply to the first message is received).
  • As shown, the remote IPF module 134 or charging component 214 may initiate communication 902 with the flow control server 106. In some embodiments, communication 902 may be initiated when, for example, an electric resource 112 first plugs in/connects to the power grid 114. In other embodiments, communication 902 may be initiated at another time or times. The initial message 902 governed by the protocol may require, for example, one or more of an electric resource identifier, such as a MAC address, a protocol version used, and/or a resource identifier type.
  • Upon receipt of the initial message by the flow control server 106, a connection may be established between the remote IPF module 134 or charging component 214 and flow control server 106. Upon establishing a connection, the remote IPF module 134 or charging component 214 may register with flow control server 106 through a subsequent communication 903. Communication 903 may include a location identifier scheme, a latitude, a longitude, a max power value that the remote IPF module 134 or charging component 214 can draw, a max power value that the remote IPF module 134 or charging component 214 can provide, a current power value, and/or a current state of charge.
  • After the initial message 902, the protocol may require or allow messages 904 from the flow control server 106 to the remote IPF module 134 or charging component 214 or messages 906 from remote IPF module 134 or charging component 214 to the flow control server 106. The messages 904 may include, for example, one or more of commands, messages, and/or updates. Such messages 904 may be provided at any time after the initial message 902. In one embodiment, messages 904 may include a command setting, a power level and/or a ping to determine whether the remote IPF module 134 or charging component 214 is still connected.
  • The messages 906 may include, for example, status updates to the information provided in the registration message 903. Such messages 906 may be provided at any time after the initial message 902. In one embodiment, the messages 906 may be provided on a pre-determined time interval basis. In various embodiments, messages 906 may even be sent when the remote IPF module 134 or charging component 214 is connected, but not registered. Such messages 906 may include data that is stored by flow control server 106 for later processing. Also, in some embodiments, messages 904 may be provided in response to a message 902 or 906.
  • Site Power Flow Manager
  • Modern electric vehicles benefit in a variety of ways from a centrally controlled smart charging program where a central server coordinates the charging activities of a number of vehicles. While many such smart charging programs may be operated by electric utilities to control electric vehicles over a wide area, many of the benefits of a smart charging program can be realized at a local level by the operator of a facility operating in isolation from the any other entity. In a place where multiple plug-in vehicles may park and connect to the grid, it is valuable to have site-level charging management.
  • As shown in FIG. 10, the charging process of electric vehicles 1000 is managed by a site power flow manager 1010 at the site-level 1020. Site-level charging management is an important feature at charging locations where multiple plug-in electric vehicles 1000 may park and connect to the grid 1030. Such locations/sites 1020 may include public or private parking lots, or the base of operations for a fleet.
  • There are a number of benefits for managing the power flow at the site-level. Having control over the flow of power is useful when, for example, the grid connection 1030 at the site 1020 is not capable of supporting every electric vehicle 1000, and/or other devices on site, that is simultaneously drawing power. In some instances, the wiring to specific charge points 1040 at the site, or to banks of charge points at the site 1020, may not be capable of supporting every vehicle 1000 drawing power at the same time. Many sites are subject to demand charges based on peak power draw during a time period (e.g. month), so avoiding power spikes can also save money. Furthermore, power usage can be tuned to the specific electric rate structure of the site.
  • A site power flow manager 1010 could address these issues, inter alia. Providing a power flow management system at the site-level allows important information to be taken as input, including but not limited to: electrical meter data for the site 1020 as a whole, and/or electrical meter data for specific charge points 1040 or banks of charge points. In addition, the system can consider information from devices, such as plug-in vehicles 1000, at the site that are connected to the electric grid 1030. Such information might be transmitted in a variety of ways, including by a power-line carrier or a wireless means. This information may include a unique identifier, resource type, current state of charge, and max power in/out levels. Further, the system can receive information about the electric rate structure of the site, and information about the electrical topology and power limitations of various circuits within the site. A connection to a power flow manager 1010 operates at a higher level of the grid topology, i.e. at the substation level or the control area level, so that the site power flow manager 1010 can receive information and also respond to requests, such as a demand response event, a reserves call, renewable resource following, or system regulation. In one embodiment, the site power flow manager 1010 and the higher level site controller can have priority rules, e.g. not overloading local circuits takes priority over remote requests.
  • A site power flow manager 1010 can analyze the current, and the predicted future, state of the world. In doing so, the site power flow manager 1010 can make various determinations, including whether or not to allow certain devices/vehicles 1000 to draw power. In addition, site power flow manager 1010 can request that the devices/vehicles 1000 provide power, and further control the power levels of the devices/vehicles 1000. These decisions could be made within constraints, such as not overloading a circuit or going over a certain total power draw. Such constraints may be performed, as in one embodiment, with prioritization, such as optimizing to get power to certain devices versus others. For example, the site power flow manager 1010 may charge vehicles 1000 that are at the lowest state of charge, that have been plugged in the longest, or that have priority for recharge. In an embodiment, the site power flow manager 1010 may allow for optimizing with regard to the overall site electric cost minimization or total cost minimization, or to recharge in the greenest, most efficient meaner.
  • Decisions made by the site power flow manager 1010 can be carried out in several ways, including controlling relays to open or close certain circuits. In addition, the site power flow manager 1010 can communicate with smart charging points 1040 or smart banks of charging points 1040 to control certain circuits or devices 1000 on those circuits. The site power flow manager 1010 may also communicate with the devices 1000 to give them a request or command for their power flow behavior, such as telling a vehicle 1000 to charge at half power or to recharge in an efficient manner. Such communications may traverse via a smart charging point 1040 or bank thereof. The site power flow manager 1010 may be located at the site 1020 being managed, but can also located remote to the site 1020.
  • FIG. 11 illustrates the site-level charging of electrical devices by a power flow manager 1110. The power flow manager receives site-level information 1120, and makes power flow decisions based on the site-level information 1130. In addition, power flow to the electrical devices is managed by the power flow manager 1140, such that the power flow manager responds to requests including demand response event, reserves call, renewable resource following, or system regulation.
  • Meta-Optimization Across Multiple Power Flow Management Strategies
  • Managing one or an aggregation of power resources (such as load, generation, storage, plug-in vehicles), power flow manager can use the combined capabilities of the assets under its control to implement a variety of beneficial services. These services may include regulation, spinning reserve, and/or peak avoidance. Regulation involves increasing or decreasing the load present on the grid in real time in order to maintain balance between power production and power consumption in the entire grid. Spinning reserve provides the ability to quickly make up a large amount of missing power after the failure of a generation or transmission asset within the grid. Peak avoidance results in reducing peak power consumption for the day, which is typically the most expensive power for the utility to provide.
  • There are many other similar services, such as to provide capacity or to provide renewable generation following. As the power flow manager may use any number of different strategies to decide how to dispatch the resources under management, it will be understood by those skilled in the art that other strategies, and combinations thereof, may be implemented in various embodiments. In one embodiment, the power flow manager may be a site power flow manager 1010, as shown in FIG. 10.
  • Such services provide a substantial cost savings to an electric utility. In many circumstances, it is also possible for a utility or other operator to sell these services through an energy market. While each of these services have very distinct characteristics from the perspective of the electric utility, the services are each implemented in fundamentally the same way on the power resource endpoint. That is, by selectively flowing power in to or out of the power resource in response to commands from the central power flow manager.
  • Because the same pool of resources can be used to implement each of the possible services, a conflict arises. As an example, If an entire population of electric vehicles is committed entirely to regulation services, that population not be able to fully participate in a peak avoidance program. Because the relative costs and benefits of the various services change over time, it is undesirable to simply pick the most valuable service and commit all the assets to it all of the time.
  • Given a set of such strategies, a meta-optimizer decides which strategy to use at appropriate times. The meta-optimizer may be located within the power flow manager. The meta-optimizer determines which resources are to be used in implementing a strategy. The determination may be based on a variety of factors, such as maximizing value generated and/or minimizing environmental impact. In an embodiment, the meta-optimizer chooses the strategy that is likely to generate the most value for a given time period, e.g. the next hour. The implementation may have a value function associated with each strategy, and then take the maximum value across all strategies.
  • The decision may vary by grid topological location. For example, if a given feeder is overloaded, the best decision for resources on that feeder may be to reduce the load, even if elsewhere on the grid a different strategy or action may be best.
  • The decision may also take into account multiple component requirements. For example, in managing plug-in vehicle recharging, it may be desirable to get vehicles recharged in a timely fashion, while also maximizing value created through other services provided.
  • In one embodiment, the decision may be based on predictions about the future. For example, it may be worth a certain amount at hour N to take some action, such as charging plug-in vehicles to provide down regulation. However, if that means the resources might be unavailable at hour N+1, when the resource may be worth more than at hour N, then the meta-optimizer might delay the action so that the resource is available to provide more value.
  • FIG. 12 shows an embodiment of a method for managing power flow by optimizing multiple power flow management strategies including coordinating charging activities 1210 and controlling power flow service 1220. A meta-optimizer can choose a power flow management strategy and an electrical device 1230 such that the power flow manager may implement the power flow management strategies 1240.
  • Avoiding Power Spikes During Energy Management Failures
  • Historically, utilities had to depend on the independent and random nature of electrical loads on the grid. While an individual electrical load is unpredictable and can be switched on or off at any time, each load is only a small part of total power consumption. The large number of individual loads on the electrical system provides a form of smoothing. Electrical consumption increases and decreases over time, but the overall change fluctuates along a somewhat predictable curve and power companies are able to adjust power production to match consumption.
  • In distributed energy management systems where communications are not 100% reliable, it is important that no loss of communications between the elements of the system or unexpected system controller failure cause unexpected system behavior. One particular behavior to be avoided is an unexpected, coordinated action across distributed resources that results from a failure mode. For example, when a controller suffers a failure, it could be detrimental to the electrical grid if all distributed resources started drawing power from the grid simultaneously.
  • The introduction of a smart charging or energy management system causes otherwise isolated loads to potentially operate in concert. This creates the possibility of adverse coordinated action in the event of system failure. In particular, if each electrical load is designed to revert to a maximum energy consumption level in the case of communications loss, then a failure of the management system may result in an instantaneous and coordinated spike in electricity demand. When the population of controlled devices is sufficiently large, the spike in demand can exceed the utility's capacity for rapid adjustment and result in a blackout.
  • An example of a failure mode includes failed communications between individual resources and the master controller or controllers. Communications can also fail between a controller and some or all of the resources. In addition, a controller or a set of controllers can fail in a non-network related way that renders such controllers incapable of communicating with the resources. A failure mode may also be a design defect shared by a large population of resources causing the population to simultaneously lose communications capabilities when an unexpected event occurred.
  • In the case of any failure mode, the system behavior should be predictable and non-disruptive. To prevent disruptive impacts on the grid as a whole, endpoints normally controlled by a central energy management server may employ a variety of safe failure modes. A system for maintaining predictable behavior may include a distributed resource with various capabilities, including the ability to receive/enact a sequence of commands to be executed at one or various points in time.
  • An example of a safe failure mode includes maintaining stable (non-changing) behavior for a defined period of time around a failure event. For example, after communications is lost, an isolated EVSE can continue charging at the rate last specified by the charge management controller. After some period of time, the EVSE may slowly transition to a different autonomous strategy.
  • Another safe failure mode includes executing a pre-arranged behavior in the event of a failure condition. As an example, if a group of EVSE's was connected to a electrical circuit that was only capable of providing 70% of the combined maximum power draw of the group, each EVSE could be pre-programmed to operate at 70% of capacity in the event of communications failure.
  • Yet another safe failure mode includes executing state transitions in pre-arranged behaviors at the determined time offset by a random interval of time. As an example, EVSE's that are off when communications fail could wait a random amount of time between 0 and 30 minutes before powering on. This random startup causes the increase in power consumption to be spread over time, allowing the utility the opportunity to respond.
  • A safe failure mode may also include using predictions about resource behaviors, such as the comings and goings from the system, to further enhance the estimate of the state of the world. As an example, if an EVSE is normally commanded to consume power along a curve (to harmonize with grid conditions), the EVSE could be programmed to follow type-based typical curve in the absence of communications. Since the central smart charging system would know the curve the detached EVSE was following, its behavior could still be input in to the charge management algorithms.
  • FIG. 13 illustrates an embodiment for managing power flow using safe failure modes including coordinating charging activities of electrical devices 1310 and detecting a system failure event 1320. The power flow manager implements a safe failure mode 1330 that provides predictable and non-disruptive system behavior.
  • Generation-Stack-Aware Dispatch of Resources
  • One potential goal of a distributed energy management system is to dispatch resources to minimize cost. A basic cost reduction strategy is to reduce electricity consumption when electricity prices are high. This basic strategy reduces the cost of electricity consumed by the endpoints under active management.
  • A more advanced strategy could manipulate the electricity consumed by controlled endpoints in a way that impacts the market price of power. Such a system can reduce the cost of providing power to all devices within a utility's service area, not just those under active management.
  • In many regions, power production is managed by separate entities from the utilities responsible for distribution. Utilities purchase electricity from Power producers, and re-sell it to their customers.
  • Often, the transactions between power producers and distribution utilities take place in formalized market. Such a market typically operates as a single price auction. In such a market, each power producer states the price at which they are willing to provide power, and power production is allocated to the cheapest producers first, moving up the stack to more expensive produces until sufficient power has been obtained. The last (highest) price selected set the price that all power producers are paid.
  • Each type of generation asset in an energy generation system, such as the electrical grid, has a marginal cost. Generation assets are dispatched in the order of increasing marginal cost. The most expensive generator dispatched at any time sets the cost basis for energy generation.
  • Different types of power plants have sharply different marginal costs of operation. For example, Hydroelectric is often much cheaper than gas turbines. As a result, there may be a sharp increase in the cost of electricity as available hydro is exhausted, and the gas turbines begin coming online.
  • At times, a distributed energy manager can remove enough load from the system to eliminate the need for higher cost generation, thereby decreasing the total cost to provide service.
  • The distributed energy manager can minimize the total daily cost to provide energy generation by forecasting total system and dispatchable load. The distributed energy manager schedules dispatchable load to draw power from the grid at times that will minimize cost based on the available generation stack. Altering the total price of power paid has a larger financial impact than the amount paid specifically for automotive power. Also, moving the market may be easier at one time of day than another. As a result, dispatchable load will not always be scheduled to the lowest-cost time of day, but rather when it will have the most beneficial overall effect to the utility.
  • Further, the generation stack can change from region to region, and load profiles and consumption can change daily. Therefore, the present method will produce different dispatch patterns in different regions.
  • FIG. 14 shows an embodiment of managing power flow using generation stacks of power production to reduce cost of providing power to electrical devices. Charge activities are coordinated by a power flow manager 1410. A power production stack is controlled the power flow manager 1420 such that the power production stack orders available power. Based on a cost reduction strategy, a dispatchable load is removed 1430. The dispatchable load is listed in the power production stack.
  • Business Model of Selling Aggregated Power Resource Management Services to Power Generators or Others
  • Power resource management services include aggregating the following: plug-in vehicles, thermostats, residential or commercial/industrial load, or fixed energy storage. Such services provide regulation, reserves, load shifting, renewable resource following, or peak avoidance. A power flow manager is able to provide a variety of services that can improve the stability of the electric grid. For example, electricity consumption of distributed resources can be increased and decreased as necessary to absorb the differences between electricity production and consumption on the grid.
  • Customers for aggregated power resource management services include electric utilities, ISOs, and TSOs. Such entities are primarily responsible for the stability of the grid. But aggregated power resource management services may be sold to various types of power generators.
  • Some classes of electricity generation suffer from a high degree of intermittency, meaning that their power production is irregular. By bundling this irregular power production with the smoothing/stabilizing abilities of aggregated power resource management assets, it is possible to produce a higher grade of wholesale power, which may be more easily sold in energy markets.
  • In one example, a wind farm is the buyer of aggregated power resource management services. Wind farms are susceptible to fluctuations in the supply and demand of energy. For example, prices for energy may drop drastically when the amount of wind is great, or unexpectedly high. In addition, wind farms may be temporarily disconnected from a grid when there is not enough transmission or other capacity to absorb the power.
  • Economical issues resulting from such instability in the supply or demand of energy can be effectively addressed by providing owners of intermittent renewable generation with aggregated power resource management services. Power generators may increase their net load from the aggregated power resources when there is a large and/or unexpectedly high amount of wind, and decrease net load with there is a small and/or unexpectedly low amount of wind.
  • In an embodiment, power generators can use aggregated power resource management to smooth sudden ramping events in power output, or to firm the power output to a desired level. The sum of power generation plus net load from the aggregated power resources can be made constant, or less susceptible to changes in the supply or demand of energy.
  • As a result, power generators such as power plants may retain the value of the energy they create. Such an integration allow the operator of the generation asset to take direct action to address the intermittency issues associated with their type of generation. In some markets, this may be far more desirable than waiting for other parties to provide such services through the marketplace.
  • CONCLUSION
  • Although systems and methods have been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as examples of implementations of the claimed methods, devices, systems, etc. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (82)

1. A method for managing power flow at a local site, comprising the steps:
site-level charging of a plurality of electrical devices by a power flow manager, wherein the power flow manager runs a smart charging program, wherein the power flow manager coordinates charging activities of the plurality of electrical devices, wherein the plurality of electrical devices are located at the local site;
receiving site-level information, wherein the site-level information is received by the power flow manager;
making power flow decisions based on the site-level information, wherein the power flow decisions are made by the power flow manager; and,
managing power flow to the plurality of electrical devices by the power flow manager, wherein the power flow manager responds to requests.
2. The method of claim 1, wherein the power flow manager is a central server.
3. The method of claim 1, wherein the power flow manager is located at the local site.
4. The method of claim 1, wherein the power flow manager is located remotely from the local site.
5. The method of claim 1, wherein the electrical devices are electric vehicles.
6. The method of claim 1, wherein the site-level information is selected from a group consisting of the following: electrical meter data for the local site, electrical meter data for at least one charge point; information from at least one of the plurality of electrical devices; electric rate information for the local site; electrical topology information; power limitation information; or priority rules.
7. The method of claim 1, wherein the requests are selected from the group consisting of the following: demand response event, reserves call, renewable resource following, or system regulation.
8. The method of claim 1, wherein the power flow manager communicates with at least one of the plurality of electrical.
9. The method of claim 1, wherein the power flow manager communicates with at least one charge point.
10. The method of claim 1, wherein the power flow decisions are selected from the group consisting of the following: to provide power, to draw power, to control power levels.
11. The method of claim 1, wherein the power flow decisions are made based on constraints, priorities, optimizations, or efficiencies.
12. The method of claim 1, wherein the power flow decisions are implemented by an action selected from the group consisting of the following: controlling relays to open close circuits; communicating to charging points to control circuits or devices on the circuits; communicating to at least one of the plurality of devices to provide a command for power flow behavior.
13. A system for managing power flow at a local site, comprising:
a power flow manager, wherein the power flow manager coordinates charging activities of a plurality of electrical devices, wherein the plurality of electrical devices are located at the local site;
a plurality of charge points connected to the power flow manger, wherein the plurality of charge points are operable to connect to the plurality of electrical devices, wherein the plurality of charge points are located at the local site;
site-level information, wherein the site-level information is received by the power flow manager; and,
power flow decisions based on the site-level information, wherein the power flow decisions are made by the power flow manager.
14. The system of claim 13, wherein the power flow manager is a central server.
15. The system of claim 13, wherein the power flow manager is located at the local site.
16. The system of claim 13, wherein the power flow manager is located remotely from the local site.
17. The system of claim 13, wherein the electrical devices are electric vehicles.
18. The system of claim 13, wherein the site-level information is selected from a group consisting of the following: electrical meter data for the local site, electrical meter data for at least one charge point; information from at least one of the plurality of electrical devices; electric rate information for the local site; electrical topology information; power limitation information; or priority rules.
19. The system of claim 13, wherein the power flow manager communicates with at least one charge point.
20. The system of claim 13, wherein the power flow manager communicates with at least one of the plurality of electrical.
21. The system of claim 20, wherein the power flow manager communicates with at least one of the plurality of electrical via at least one charge point.
22. The system of claim 20, wherein the power flow manager communicates with at least one of the plurality of electrical via a wireless connection.
23. A system for managing power flow for optimization of multiple power flow management strategies, comprising:
a power flow manager, wherein the power flow manager coordinates charging activities of a plurality of electrical devices;
power flow services, wherein the power flow services are controlled by the power flow manager;
power flow management strategies, wherein the power flow management strategies are implemented by the power flow manager; and,
a meta-optimizer, wherein the meta-optimizer chooses at least one of the power flow management strategies, wherein the meta-optimizer chooses at least one of the electrical devices to utilize for implementing the at least one of the power flow management strategies.
24. The system of claim of 23, wherein the power flow services are selected from a group consisting of the following: regulation, spinning reserve, peak avoidance, or renewable generation following.
25. The system of claim of 23, wherein the meta-optimizer choices are based on maximizing value generated.
26. The system of claim of 23, wherein the meta-optimizer choices are based on minimizing environmental impact.
27. The system of claim of 23, wherein the meta-optimizer choices are based on a value function associated with the at least one of the power flow management strategies.
28. The system of claim of 23, wherein the meta-optimizer choices are based on a grid topological location.
29. The system of claim of 23, wherein the meta-optimizer choices are based on multiple component requirements.
30. The system of claim of 23, wherein the meta-optimizer choices are based on predictions.
31. The system of claim of 23, wherein the electrical devices are electric vehicles.
32. A method for managing power flow by optimizing multiple power flow management strategies, comprising:
coordinating charging activities of a plurality of electrical devices, wherein the charge activities are coordinated by a power flow manager;
controlling power flow services, wherein the power flow services are controlled by the power flow manager;
choosing at least one of the power flow management strategies, wherein the at least one of the power flow management strategies is chosen by a meta-optimizer;
choosing at least one of the electrical devices to utilize for implementing the at least one of the power flow management strategies, wherein the at least one of the electrical devices is chosen by the meta-optimizer; and,
implementing power flow management strategies, wherein the power flow management strategies are implemented by the power flow manager.
33. The method of claim of 32, wherein the power flow services are selected from a group consisting of the following: regulation, spinning reserve, peak avoidance, or renewable generation following.
34. The method of claim of 32, wherein the meta-optimizer choices are based on factors selected from a group consisting of the following: maximizing value generated; minimizing environmental impact; a value function associated with the at least one of the power flow management strategies; a grid topological location; multiple component requirements; or predictions.
35. The method of claim of 32, wherein the meta-optimizer is the power flow manager.
36. The method of claim of 32, wherein the power flow manager is a site power flow manager that managing power flow at a local site.
37. The method of claim of 32, wherein the electrical devices are electric vehicles.
38. A system for managing power flow using safe failure modes, comprising:
a power flow manager, wherein the power flow manager coordinates charging activities of a plurality of electrical devices;
a system failure event; and,
a safe failure mode, wherein the safe failure mode is implemented by the power flow manager, wherein the safe failure mode provides that the charging activities be coordinated in a predictable and non-disruptive manner.
39. The system of claim of 38, wherein the system failure event is generated as a result of an introduction of a smart charging or energy management system.
40. The system of claim of 38, wherein the system failure event results in a spike in electricity demand.
41. The system of claim of 38, wherein the system failure event occurs as a result of a failure in communications between the plurality of electrical devices and a master controller.
42. The system of claim of 38, wherein the system failure event occurs as a result of a failure in a controller, wherein the controller is incapable of communicating with the plurality of electrical devices.
43. The system of claim of 38, wherein the system failure event occurs as a result of a design defect shared by the plurality of electrical devices causing the plurality of electrical devices to simultaneously lose communications capabilities.
44. The system of claim of 38, wherein the safe failure mode comprises maintaining a stable non-changing behavior for a defined period of time around a failure event.
45. The system of claim of 38, wherein the safe failure mode comprises executing a prearranged behavior in the event of a failure condition.
46. The system of claim of 38, wherein the safe failure mode comprises executing state transitions in prearranged behaviors at a determined time offset by a random interval of time.
47. The system of claim of 38, wherein the safe failure mode comprises using predictions about resource behaviors.
48. The system of claim of 38, wherein the electrical devices are electric vehicles.
49. A method for managing power flow using safe failure modes, comprising:
coordinating charging activities of a plurality of electrical devices, wherein the charge activities are coordinated by a power flow manager;
detecting a system failure event, wherein the system failure event is detected by a power flow manager; and,
implementing a safe failure mode, wherein the safe failure mode is implemented by the power flow manager, wherein the safe failure mode provides that the charging activities be coordinated in a predictable and non-disruptive manner.
50. The method of claim of 49, wherein the system failure event is generated as a result of an introduction of a smart charging or energy management system.
51. The method of claim of 49, wherein the system failure event results in a spike in electricity demand.
52. The method of claim of 49, wherein the system failure event occurs as a result of a failure in communications between the plurality of electrical devices and a master controller.
53. The method of claim of 49, wherein the system failure event occurs as a result of a failure in a controller, wherein the controller is incapable of communicating with the plurality of electrical devices.
54. The method of claim of 49, wherein the system failure event occurs as a result of a design defect shared by the plurality of electrical devices causing the plurality of electrical devices to simultaneously lose communications capabilities.
55. The method of claim of 49, wherein the safe failure mode comprises maintaining a stable non-changing behavior for a defined period of time around a failure event.
56. The method of claim of 49, wherein the safe failure mode comprises executing a prearranged behavior in the event of a failure condition.
57. The method of claim of 49, wherein the safe failure mode comprises executing state transitions in prearranged behaviors at a determined time offset by a random interval of time.
58. The method of claim of 49, wherein the safe failure mode comprises using predictions about resource behaviors.
59. The method of claim 49, wherein the electrical devices are electric vehicles.
60. A system for managing power flow using generation stacks of power production to reduce cost of providing power to electrical devices, comprising:
a power flow manager, wherein the power flow manager coordinates charging activities of a plurality of electrical devices;
a power production stack, wherein the power flow manager controls the power production stack, wherein the power production stack orders available power; and,
a dispatchable load, wherein the dispatchable load is listed in the power production stack, wherein the dispatchable load is removed based on a cost reduction strategy.
61. The system of claim 60, wherein the available power is ordered based on power prices ordered from cheapest to most expensive.
62. The system of claim 60, wherein the dispatchable load is the most expensive load listed in the power production stack.
63. The system of claim 60, wherein the available power is provided by a plurality of power producers.
64. The system of claim 60, wherein the cost reduction strategy is to decrease a cost of providing power services to the plurality of electrical devices.
65. The system of claim 60, wherein the cost reduction strategy is to decrease a cost of providing power services to the plurality of electrical devices, wherein the cost is a daily cost.
66. The system of claim 60, wherein the cost reduction strategy is to minimize a cost based on the power production stack.
67. The system of claim 60, wherein the cost reduction strategy is to dispatch the most expensive load.
68. The system of claim 60, wherein the cost reduction strategy is based on a region.
69. The system of claim 60, wherein the cost reduction strategy comprises forecasting the dispatchable load.
70. The system of claim 60, wherein the electrical devices are electric vehicles.
71. A method for managing power flow using generation stacks of power production to reduce cost of providing power to electrical devices, comprising:
coordinating charging activities of a plurality of electrical devices, wherein the charge activities are coordinated by a power flow manager;
controlling a power production stack, wherein the power flow manager controls the power production stack, wherein the power production stack orders available power;
removing a dispatchable load, wherein the dispatchable load is listed in the power production stack, wherein the dispatchable load is removed based on a cost reduction strategy.
72. The system of claim 71, wherein the available power is ordered based on power prices ordered from cheapest to most expensive.
73. The system of claim 71, wherein the dispatchable load is the most expensive load listed in the power production stack.
74. The system of claim 71, wherein the available power is provided by a plurality of power producers.
75. The system of claim 71, wherein the cost reduction strategy is to decrease a cost of providing power services to the plurality of electrical devices.
76. The system of claim 71, wherein the cost reduction strategy is to decrease a cost of providing power services to the plurality of electrical devices, wherein the cost is a daily cost.
77. The system of claim 71, wherein the cost reduction strategy is to minimize a cost based on the power production stack.
78. The system of claim 71, wherein the cost reduction strategy is to dispatch the most expensive load.
79. The system of claim 71, wherein the cost reduction strategy is based on a region.
80. The system of claim 71, wherein the cost reduction strategy comprises forecasting the dispatchable load.
81. The system of claim 71, wherein the electrical devices are electric vehicles.
82. The method of claim 71, wherein the electrical devices are electric vehicles.
US12/751,821 2009-03-31 2010-03-31 Systems and methods for electric vehicle power flow management Abandoned US20110004358A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/751,821 US20110004358A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle power flow management
US13/671,717 US8796881B2 (en) 2009-03-31 2012-11-08 Electric vehicle power management systems
US14/338,427 US9283862B2 (en) 2009-03-31 2014-07-23 Electric vehicle power management systems
US15/926,386 US20190061535A1 (en) 2009-03-31 2018-03-20 Electric vehicle power management systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16534409P 2009-03-31 2009-03-31
US12/751,821 US20110004358A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle power flow management

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/751,845 Continuation US20110001356A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle grid stabilization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/751,837 Continuation US20110004406A1 (en) 2009-03-31 2010-03-31 Systems and methods for location determination of devices using network fingerprints for power management

Publications (1)

Publication Number Publication Date
US20110004358A1 true US20110004358A1 (en) 2011-01-06

Family

ID=42982790

Family Applications (10)

Application Number Title Priority Date Filing Date
US12/751,852 Active 2033-02-08 US8781809B2 (en) 2009-03-31 2010-03-31 Software modeling systems for metering and translating measurements
US12/751,845 Abandoned US20110001356A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle grid stabilization
US12/751,821 Abandoned US20110004358A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle power flow management
US12/751,862 Abandoned US20110010043A1 (en) 2009-03-31 2010-03-31 Vehicle communication systems and methods for electric vehicle power management
US12/751,853 Abandoned US20110007824A1 (en) 2009-03-31 2010-03-31 System communication systems and methods for electric vehicle power management
US12/751,837 Abandoned US20110004406A1 (en) 2009-03-31 2010-03-31 Systems and methods for location determination of devices using network fingerprints for power management
US13/671,717 Active US8796881B2 (en) 2009-03-31 2012-11-08 Electric vehicle power management systems
US14/338,427 Active US9283862B2 (en) 2009-03-31 2014-07-23 Electric vehicle power management systems
US14/986,083 Abandoned US20160221453A1 (en) 2009-03-31 2015-12-31 Electric vehicle power management systems
US15/926,386 Abandoned US20190061535A1 (en) 2009-03-31 2018-03-20 Electric vehicle power management systems

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/751,852 Active 2033-02-08 US8781809B2 (en) 2009-03-31 2010-03-31 Software modeling systems for metering and translating measurements
US12/751,845 Abandoned US20110001356A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle grid stabilization

Family Applications After (7)

Application Number Title Priority Date Filing Date
US12/751,862 Abandoned US20110010043A1 (en) 2009-03-31 2010-03-31 Vehicle communication systems and methods for electric vehicle power management
US12/751,853 Abandoned US20110007824A1 (en) 2009-03-31 2010-03-31 System communication systems and methods for electric vehicle power management
US12/751,837 Abandoned US20110004406A1 (en) 2009-03-31 2010-03-31 Systems and methods for location determination of devices using network fingerprints for power management
US13/671,717 Active US8796881B2 (en) 2009-03-31 2012-11-08 Electric vehicle power management systems
US14/338,427 Active US9283862B2 (en) 2009-03-31 2014-07-23 Electric vehicle power management systems
US14/986,083 Abandoned US20160221453A1 (en) 2009-03-31 2015-12-31 Electric vehicle power management systems
US15/926,386 Abandoned US20190061535A1 (en) 2009-03-31 2018-03-20 Electric vehicle power management systems

Country Status (4)

Country Link
US (10) US8781809B2 (en)
CN (1) CN102449572A (en)
GB (1) GB2481946A (en)
WO (1) WO2010120551A1 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100292855A1 (en) * 2009-05-14 2010-11-18 Michael Kintner-Meyer Battery Charging Control Methods, Electrical Vehicle Charging Methods, Battery Charging Control Apparatus, and Electrical Vehicles
US20110218693A1 (en) * 2010-03-03 2011-09-08 Fujitsu Limited Electric power leveling controller
US20110266871A1 (en) * 2010-05-03 2011-11-03 Jan Thisted Power Interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
US20120083932A1 (en) * 2010-09-30 2012-04-05 Hitachi, Ltd System for managing electrical power distrubution between infrastructure and electric vehicles
US20120103395A1 (en) * 2010-10-28 2012-05-03 Randall William Prengler System and method for managing distributed renewable energy systems
US20120109403A1 (en) * 2010-10-27 2012-05-03 Aes Corporation Methods and apparatus for managing energy services from a plurality of devices
US20120123604A1 (en) * 2010-11-12 2012-05-17 Nathan Bowman Littrell Systems, methods, and apparatus for demand response of battery-powered devices
US20120161692A1 (en) * 2010-12-24 2012-06-28 Hitachi Automotive Systems, Ltd. Charging control system
US20120185105A1 (en) * 2011-01-18 2012-07-19 General Electric Company Dynamic load profiling
US20120181982A1 (en) * 2011-01-19 2012-07-19 General Motors Llc Localized Charging of Electric Vehicles
WO2012122310A1 (en) * 2011-03-08 2012-09-13 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
US20120265362A1 (en) * 2011-04-14 2012-10-18 Christopher Charles Yasko Charging device for use with electric vehicles and methods of assembling same
US20120316695A1 (en) * 2011-06-07 2012-12-13 Fujitsu Limited System and Method for Managing Power Consumption
US20120323393A1 (en) * 2011-06-17 2012-12-20 Raphael Imhof Automated demand response system
US20130038122A1 (en) * 2011-08-08 2013-02-14 Jay Andrew Broniak Managing excess renewable energy
US20130046411A1 (en) * 2011-08-15 2013-02-21 Siemens Corporation Electric Vehicle Load Management
US8384347B2 (en) 2011-08-08 2013-02-26 General Electric Company Methods and systems for charging an energy storage device
US20130297089A1 (en) * 2011-09-12 2013-11-07 Sheau-Wei J. Fu Power management control system
US8595122B2 (en) 2010-07-23 2013-11-26 Electric Transportation Engineering Corporation System for measuring electricity and method of providing and using the same
US20140049213A1 (en) * 2012-02-08 2014-02-20 James S. Bianco EVSE Controller System
US8710372B2 (en) 2010-07-23 2014-04-29 Blink Acquisition, LLC Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US8832428B2 (en) 2010-11-15 2014-09-09 Trilliant Holdings Inc. System and method for securely communicating across multiple networks using a single radio
US20140266039A1 (en) * 2013-03-14 2014-09-18 General Electric Company Systems and Methods for Controlling a Charging Device
US20140288717A1 (en) * 2010-10-28 2014-09-25 Solar Chief, Llc System and method for managing distributed renewable energy systems
US8856323B2 (en) 2011-02-10 2014-10-07 Trilliant Holdings, Inc. Device and method for facilitating secure communications over a cellular network
US20150008888A1 (en) * 2013-07-03 2015-01-08 Schneider Electric Industries Sas Electric charging system of a plurality of electric vehicles and method for distributing the electric power delivered by an electric power supply of such a system
US8970394B2 (en) 2011-01-25 2015-03-03 Trilliant Holdings Inc. Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network
US9001787B1 (en) 2011-09-20 2015-04-07 Trilliant Networks Inc. System and method for implementing handover of a hybrid communications module
US9007027B2 (en) 2012-01-31 2015-04-14 Green Charge Networks Llc Charge management for energy storage temperature control
US20150165918A1 (en) * 2012-07-04 2015-06-18 Nec Corporation Charging system control apparatus, program, and control method
US9084120B2 (en) 2010-08-27 2015-07-14 Trilliant Networks Inc. System and method for interference free operation of co-located transceivers
US9209623B1 (en) 2010-08-04 2015-12-08 University Of Washington Through Its Center For Commercialization Methods and systems for charging electrical devices via an electrical system
US9235825B2 (en) 2012-03-05 2016-01-12 Green Charge Neworks LLC Processing load profiles for consumption management systems
US9282383B2 (en) 2011-01-14 2016-03-08 Trilliant Incorporated Process, device and system for volt/VAR optimization
WO2016040944A1 (en) * 2014-09-12 2016-03-17 Pruf Energy Solutions, Llc Systems and methods for managing power grid demand
US20160129793A1 (en) * 2014-11-11 2016-05-12 Empire Technology Development Llc Wireless vehicle energy sharing
US9348381B2 (en) 2011-10-19 2016-05-24 Zeco Systems Pte Ltd Methods and apparatuses for charging of electric vehicles
US20160159220A1 (en) * 2014-12-03 2016-06-09 Honda Motor Co., Ltd. Priority based power management system and method for an electric vehicle
WO2017008055A1 (en) * 2015-07-09 2017-01-12 Powertree Services, Inc. Grid integration with photovoltaic generation and electric vehicle charging
US9614373B2 (en) 2011-03-25 2017-04-04 Green Charge Networks Llc Modular implementation of correlative consumption management systems
US20170169525A1 (en) * 2015-12-10 2017-06-15 Open Access Technology International, Inc. Systems to electronically catalog and generate documentation for retail-level power
US9705335B2 (en) 2012-09-28 2017-07-11 International Business Machines Corporation Method and system for allocating energy
US9731615B2 (en) 2015-03-24 2017-08-15 Honda Motor Co., Ltd. Grid overlay for a zip coded map system and method therefor
US9870593B2 (en) 2011-12-05 2018-01-16 Hatch Ltd. System, method and controller for managing and controlling a micro-grid
US9893526B2 (en) 2011-03-25 2018-02-13 Green Charge Networks Llc Networked power management and demand response
US9946285B2 (en) 2011-12-23 2018-04-17 International Business Machines Corporation Energy allocation system for balancing energy consumption
US10168682B1 (en) 2015-11-20 2019-01-01 Wellhead Power Solutions, Llc System and method for managing load-modifying demand response of energy consumption
KR20200021182A (en) * 2018-08-20 2020-02-28 현대자동차주식회사 System and Method for reservation charge of electric vehicle
US10658841B2 (en) 2017-07-14 2020-05-19 Engie Storage Services Na Llc Clustered power generator architecture
US10999652B2 (en) 2017-05-24 2021-05-04 Engie Storage Services Na Llc Energy-based curtailment systems and methods
US20210252993A1 (en) * 2020-02-14 2021-08-19 Toyota Jidosha Kabushiki Kaisha Power management system, power management method, and power management apparatus
US11135936B2 (en) 2019-03-06 2021-10-05 Fermata, LLC Methods for using temperature data to protect electric vehicle battery health during use of bidirectional charger
US11196294B2 (en) * 2016-11-28 2021-12-07 Kyocera Corporation Power management method, power management server, local control apparatus, and power management system
US20220001765A1 (en) * 2019-01-10 2022-01-06 Fronius International Gmbh Method and device for charging an electric vehicle
US20220194255A1 (en) * 2020-12-22 2022-06-23 Ford Global Technologies, Llc System for selecting electric vehicle charging power
US11958372B2 (en) 2019-11-26 2024-04-16 Fermata Energy Llc Device for bi-directional power conversion and charging for use with electric vehicles

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130402B2 (en) 2007-08-28 2015-09-08 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US8806239B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US9177323B2 (en) 2007-08-28 2015-11-03 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US8805552B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US8781809B2 (en) * 2009-03-31 2014-07-15 Gridpoint, Inc. Software modeling systems for metering and translating measurements
DE102010002093B4 (en) * 2009-06-03 2024-03-14 Continental Automotive Technologies GmbH C2X communication with reduced data volume
WO2011014773A2 (en) * 2009-07-31 2011-02-03 Deka Products Limited Partnership Systems, methods and apparatus for vehicle battery charging
US20110109165A1 (en) * 2009-11-11 2011-05-12 International Business Machines Corporation Apparatus and method for managing a power source
US20120270535A1 (en) * 2009-12-17 2012-10-25 Texas Instruments Incorporated Implicit CSI Feedback for DL Multiuser MIMO Transmission
WO2011079235A1 (en) * 2009-12-22 2011-06-30 Interactive Grid Solutions, Llc Distributed energy source system
CN102770304B (en) * 2010-02-22 2015-12-09 丰田自动车株式会社 Electric power apparatus for controlling of supply and information provider unit
US20120319650A1 (en) * 2010-03-29 2012-12-20 Toshiya Iwasaki Recharging system
JP5607427B2 (en) * 2010-05-31 2014-10-15 株式会社モーション Charging vehicle allocation management server and charging vehicle allocation management system
WO2011130483A2 (en) * 2010-04-14 2011-10-20 Raytheon Company Administration of power environments
DE102010021070A1 (en) * 2010-05-19 2011-11-24 Siemens Aktiengesellschaft Method for regulating the stability of an electrical supply network
EP2579417B1 (en) * 2010-05-25 2021-04-28 Mitsubishi Electric Corporation Electric power information management system, and electric power information management method
WO2012017936A1 (en) * 2010-08-05 2012-02-09 三菱自動車工業株式会社 Battery information output device for power supply/demand leveling system
US8981716B2 (en) * 2010-08-09 2015-03-17 Control Module, Inc. Power share system for electric vehicle service equipment
US20120054125A1 (en) * 2010-09-01 2012-03-01 Eric Douglass Clifton Resource management and control system
US7986126B1 (en) 2010-10-01 2011-07-26 Toyota Motor Sales, U.S.A., Inc. Automated system for determining whether vehicle charge station is publicly accessible
US8594859B2 (en) 2010-10-18 2013-11-26 Qualcomm Incorporated Method and system for real-time aggregation of electric vehicle information for real-time auctioning of ancillary services, and real-time lowest cost matching electric vehicle energy demand to charging services
DE102010043001A1 (en) * 2010-10-27 2012-05-03 Siemens Aktiengesellschaft Charging system and method for charging vehicle batteries
US9026813B2 (en) 2010-11-22 2015-05-05 Qualcomm Incorporated Establishing a power charging association on a powerline network
GB2486016A (en) * 2010-12-02 2012-06-06 Sony Corp Control of storage devices in an electric power network
US20140002233A1 (en) * 2011-03-11 2014-01-02 Interactive Control Solutions, Llc Wireless control module and docking apparatus
EP2700061A4 (en) 2011-04-22 2014-11-19 Expanergy Llc Systems and methods for analyzing energy usage
GB2494368B (en) * 2011-04-27 2014-04-02 Ea Tech Ltd Electric power demand management
WO2012149965A1 (en) * 2011-05-04 2012-11-08 Siemens Aktiengesellschaft Method and apparatus for providing electrical energy
CN102323800A (en) * 2011-05-31 2012-01-18 北京许继电气有限公司 Panoramic electricity consumption information intelligent home system based on internet of things
US8854000B2 (en) * 2011-06-01 2014-10-07 GM Global Technology Operations LLC Rapid energy recharge system for a battery electric vehicle
US9003492B2 (en) 2011-06-21 2015-04-07 Qualcomm Incorporated Secure client authentication and service authorization in a shared communication network
JP5516525B2 (en) 2011-07-20 2014-06-11 トヨタ自動車株式会社 Driving assistance device
US20130026986A1 (en) * 2011-07-26 2013-01-31 Honeywell International Inc. Transformer-level management of power consumption by one or more consumers
JP2014529118A (en) 2011-07-26 2014-10-30 ゴゴロ インク Apparatus, method and article for providing information relating to the availability of a power storage device in a power storage device collection, charging and distribution machine
EP2737598A4 (en) 2011-07-26 2015-09-02 Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
JP5793245B2 (en) 2011-07-26 2015-10-14 ゴゴロ インク Apparatus, method and article for providing vehicle diagnostic data
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
JP6422119B2 (en) 2011-07-26 2018-11-14 ゴゴロ インク Apparatus, method and article for redistributing a power storage device such as a battery between collection charge distribution devices
US8854013B2 (en) 2011-07-27 2014-10-07 The Boeing Company System for monitoring a battery charger
US9021278B2 (en) 2011-08-10 2015-04-28 Qualcomm Incorporated Network association of communication devices based on attenuation information
WO2013039753A1 (en) * 2011-09-16 2013-03-21 Aerovironment, Inc. Methods for operating a multi-use energy management and conversion system for electric vehicle charging
US8358102B2 (en) 2011-10-21 2013-01-22 General Electric Company System, charging device, and method of charging a power storage device
US8332078B2 (en) 2011-10-21 2012-12-11 General Electric Company System, charging device, and method of supplying current to a power storage device
US8384359B2 (en) 2011-10-21 2013-02-26 General Electric Company System, charging device, and method of charging a power storage device
US9698616B2 (en) * 2011-10-31 2017-07-04 Abb Research Ltd. Systems and methods for restoring service within electrical power systems
CN102419839B (en) * 2011-11-15 2014-10-08 国家电网公司 Tracking system and method for battery box of electric automobile
JP6258861B2 (en) 2011-11-28 2018-01-10 エクスパナージー,エルエルシー Energy search engine method and system
DE102011120249A1 (en) * 2011-12-05 2013-06-06 Volkswagen Aktiengesellschaft Method for operating an Internet Protocol-based functional system and associated Internet Protocol-based functional ...
WO2013086411A1 (en) * 2011-12-09 2013-06-13 The Aes Corporation Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid
JP2013169869A (en) * 2012-02-20 2013-09-02 Sumitomo Electric Networks Inc Communication system, communication method, relay device, and relay program
US20130226484A1 (en) * 2012-02-27 2013-08-29 Nokia Corporation Method and apparatus for generating power flow signatures
US9045042B2 (en) 2012-04-13 2015-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for a one-time departure schedule setup for charging battery-electric vehicles
US10372962B2 (en) 2012-06-29 2019-08-06 Apple Inc. Zero fingerprint enrollment system for an electronic device
US8913801B2 (en) 2012-06-29 2014-12-16 Apple Inc. Enrollment using synthetic fingerprint image and fingerprint sensing systems
US9078099B2 (en) 2012-07-16 2015-07-07 Qualcomm Incorporated Localization method employing radio signal strength measurements of electric and gas meters
US8996191B2 (en) 2012-07-19 2015-03-31 Solarcity Corporation Techniques for provisioning energy generation and storage systems
US9831677B2 (en) * 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
US8849715B2 (en) 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10475138B2 (en) 2015-09-23 2019-11-12 Causam Energy, Inc. Systems and methods for advanced energy network
US10861112B2 (en) 2012-07-31 2020-12-08 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US9513648B2 (en) 2012-07-31 2016-12-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US8983669B2 (en) 2012-07-31 2015-03-17 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
CN102831719B (en) * 2012-08-06 2014-09-24 成志东 Orderly alternate electric vehicle charging control system capable of preventing overload of power grid
JP5968719B2 (en) * 2012-08-06 2016-08-10 京セラ株式会社 Management system, management method, control device, and storage battery device
WO2014024227A1 (en) * 2012-08-10 2014-02-13 パナソニック株式会社 Electric vehicle
CN102832663B (en) * 2012-08-15 2015-11-11 中国电力科学研究院 Based on SDP and V2GTP-EXI electric automobile self adaptation charge control system and control method thereof
JP5931644B2 (en) * 2012-08-17 2016-06-08 株式会社東芝 Charge management system
US8981709B1 (en) * 2012-08-22 2015-03-17 Edee, LLC Supplemental electrical generation apparatus and method
US9434271B2 (en) * 2012-09-04 2016-09-06 Recargo, Inc. Conditioning an electric grid using electric vehicles
GB2506185A (en) * 2012-09-25 2014-03-26 Nissan Motor Mfg Uk Ltd Fault detection system for electric vehicle charging
US9348384B2 (en) 2012-11-12 2016-05-24 Kevin J. Williams Distributed energy source system
CN105122584A (en) * 2013-02-13 2015-12-02 碳轨私人有限公司 System and method for monitoring and control of appliances
US9517701B2 (en) * 2013-03-04 2016-12-13 Talino Ev Management Systems Inc. Distributed battery management system for remote repletion of electric vehicles
JP6462655B2 (en) * 2013-03-15 2019-01-30 ゴゴロ インク Modular system for collection and distribution of electricity storage devices
CN103138350B (en) * 2013-03-20 2015-11-25 张家港市华为电子有限公司 A kind of single phase industrial frequency transformer type charging device
CA2909028A1 (en) * 2013-04-08 2014-10-16 Geo-Line Co., Ltd. Location-based electric power mediation module, electric vehicle, mediation server, and user certification socket or connector
DE102013006254A1 (en) * 2013-04-11 2014-10-16 Audi Ag Voltage release of a high voltage vehicle
US9873345B2 (en) 2013-04-18 2018-01-23 Talino Ev Management Systems, Inc. Distributed charge management system for electric vehicles
DE102013212221A1 (en) * 2013-06-26 2014-12-31 Bayerische Motorenwerke Aktiengesellschaft Charging port detection
JP5735050B2 (en) * 2013-06-28 2015-06-17 トヨタ自動車株式会社 Vehicle and power receiving device
CN104301339A (en) * 2013-07-16 2015-01-21 北京基业达电气有限公司 Electric vehicle charging station metropolitan area network Internet of Vehicles management system
US9937811B2 (en) 2013-07-19 2018-04-10 Ford Global Technologies, Llc Vehicle authentication for a BEV charger
JP6142729B2 (en) * 2013-08-19 2017-06-07 トヨタ自動車株式会社 Charging system, vehicle and charging equipment
US10089641B2 (en) 2013-08-28 2018-10-02 San Diego Gas & Electric Company Interconnect socket adapter for adapting one or more power sources and power sinks
US10132838B2 (en) 2013-08-28 2018-11-20 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink
US9772347B2 (en) 2013-08-28 2017-09-26 San Diego Gas & Electric Company Interconnection meter socket adapters
US9995768B2 (en) * 2013-08-28 2018-06-12 San Diego Gas & Electric Interconnection meter socket adapters
US9904308B2 (en) * 2013-08-28 2018-02-27 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink
DE102013217259A1 (en) * 2013-08-29 2015-03-05 Bayerische Motoren Werke Aktiengesellschaft Mode switching of a controller between diagnostic bus and external Ethernet connection
US10766370B2 (en) * 2013-09-04 2020-09-08 Recargo, Inc. Managing electric vehicle loads on an electric grid
DE102013217740A1 (en) * 2013-09-05 2015-03-05 Robert Bosch Gmbh SYSTEM FOR LOADING AN ELECTRIC VEHICLE, ELECTRIC VEHICLE AND METHOD
JP6129701B2 (en) * 2013-09-20 2017-05-17 株式会社東芝 CHARGE MANAGEMENT DEVICE, CHARGE MANAGEMENT SYSTEM, AND CHARGE MANAGEMENT METHOD
US9599976B2 (en) * 2013-09-23 2017-03-21 Infosys Limited Systems and methods for effective selection of disparate distributed power sources for smart grid
US20150097531A1 (en) * 2013-10-03 2015-04-09 The Trustees Of Princeton University System and method for controlling networked, grid-level energy storage devices
CN103618380B (en) * 2013-11-07 2017-02-01 南车株洲电力机车研究所有限公司 Intelligent monitoring system based on photovoltaic micro-grid
IN2013CH06082A (en) 2013-12-26 2015-07-03 Gen Electric
KR101528079B1 (en) * 2013-12-27 2015-06-10 두산중공업 주식회사 Battery exchange station and operating method for battery exchange station
DE102014201954A1 (en) * 2014-02-04 2015-08-06 Volkswagen Aktiengesellschaft Method for data transmission, communication network and vehicle
US9514351B2 (en) 2014-02-12 2016-12-06 Apple Inc. Processing a fingerprint for fingerprint matching
US9576126B2 (en) * 2014-02-13 2017-02-21 Apple Inc. Updating a template for a biometric recognition device
US9409492B2 (en) 2014-04-21 2016-08-09 Honda Motor Co., Ltd. Method for precise demand response and control, and a system thereof
US9219499B2 (en) 2014-05-16 2015-12-22 Robert Bosch Gmbh Run time compression method for a vehicle communication bus
US9315108B2 (en) * 2014-07-08 2016-04-19 Toyota Jidosha Kabushiki Kaisha Vehicle function determination
WO2016006150A1 (en) * 2014-07-10 2016-01-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Vehicle-mounted network system, electronic control unit, reception method, and transmission method
CN104134372A (en) * 2014-08-04 2014-11-05 上海扬梓投资管理有限公司 Vehicle safety information communication terminal and method
ES2942882T3 (en) 2014-09-04 2023-06-07 Gogoro Inc Apparatus, system and method of sale, charging and bidirectional distribution of electrical energy storage devices
US10870358B2 (en) * 2014-09-14 2020-12-22 Enel X North America, Inc. Systems and methods for enabling automatic management of power loads and power generation based on user-specified set of rules
WO2016054637A1 (en) * 2014-10-03 2016-04-07 Active Power, Inc. Uninterrupted power supply systems and method for the operation thereof
EP3018786B2 (en) 2014-11-07 2023-11-22 General Electric Technology GmbH Current flow control assembly
US9573478B2 (en) 2014-11-14 2017-02-21 Schneider Electric USA, Inc. EVSE doubler add-on unit
US9804034B2 (en) 2014-11-14 2017-10-31 Schneider Electric USA, Inc. EVSE with cordset handle temperature measurement
US10220719B2 (en) 2014-11-17 2019-03-05 Siemens Industry, Inc. EVSE-based energy automation, management, and protection systems and methods
US9707850B2 (en) 2014-11-18 2017-07-18 Schneider Electric USA, Inc. EVSE handle with automatic thermal shut down by NTC to ground
US9785126B2 (en) * 2014-11-25 2017-10-10 Rockwell Automation Technologies, Inc. Inferred energy usage and multiple levels of energy usage
US10490999B2 (en) 2014-12-22 2019-11-26 Battelle Memorial Institute Hierarchical operational control of aggregated load management resources
US20170331570A1 (en) * 2014-12-25 2017-11-16 Kyocera Corporation Power management system, relay apparatus, and power management method
CN107112792B (en) * 2014-12-29 2021-01-19 玛瑞勒·达马拉·菲利特 Solar home system for all home services
US10703211B2 (en) 2015-03-16 2020-07-07 Thunder Power New Energy Vehicle Development Company Limited Battery pack, battery charging station, and charging method
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US9550406B2 (en) 2015-03-16 2017-01-24 Thunder Power Hong Kong Ltd. Thermal dissipation system of an electric vehicle
US10173687B2 (en) 2015-03-16 2019-01-08 Wellen Sham Method for recognizing vehicle driver and determining whether driver can start vehicle
US9499067B2 (en) 2015-03-16 2016-11-22 Thunder Power Hong Kong Ltd. Power management in electric vehicles
US9469350B2 (en) 2015-03-16 2016-10-18 Thunder Power Hong Kong Ltd. Underbody manufacturing method and vehicle underbody
US20160280091A1 (en) * 2015-03-27 2016-09-29 Nissan North America, Inc. Managing the exchange of electrical power with rechargeable vehicle batteries in v2x systems
SE540410C2 (en) 2015-04-01 2018-09-11 Cacharge Ab System and Method for Providing Electric Energy
WO2016195636A1 (en) * 2015-05-29 2016-12-08 Hewlett-Packard Development Company, L.P. Wireless charging at a lower class type
US9630518B2 (en) * 2015-06-09 2017-04-25 Ford Global Technologies, Llc Dynamic grid loading using plug-in electrified vehicles
US20160365729A1 (en) * 2015-06-10 2016-12-15 Tanachat Pochana Intelligent control system for power generation equipment
CN104881822A (en) * 2015-06-29 2015-09-02 国家电网公司 Evaluation method, device and system
WO2017015353A1 (en) * 2015-07-20 2017-01-26 Rutgers, The State University Of New Jersey Methods and systems of optimizing energy capture for electric or hybrid vehicle solar panels
EP3944557A1 (en) 2015-08-17 2022-01-26 Nokia Technologies Oy Device and method for wireless communication
US11091054B1 (en) * 2018-03-14 2021-08-17 Evercharge, Inc. Smart load management apparatus and system for electric vehicle charging
US10183586B1 (en) 2015-09-25 2019-01-22 Evercharge, Inc. Mixed-level electric vehicle supply equipment (EVSE) and associated charging methods for multi-type electric vehicles and non-electric vehicle devices
US10737577B2 (en) 2015-11-04 2020-08-11 Ford Global Technologies, Llc Control strategy for charging electrified vehicle over multiple locations of a drive route
JP2017093223A (en) * 2015-11-13 2017-05-25 株式会社東芝 Power reception device, power transmission device, and wireless electric power transmission system
US10439401B2 (en) * 2015-11-23 2019-10-08 Doosan Gridtech, Inc. Managing the outflow of a solar inverter
FR3045900B1 (en) * 2015-12-21 2018-11-16 Electricite De France SYSTEM AND METHOD FOR CONTROLLING AN ENERGY STORAGE DEVICE
WO2017108044A1 (en) * 2015-12-23 2017-06-29 Vestas Wind Systems A/S Controlling wind turbines according to reliability estimates
US10202043B2 (en) * 2016-04-18 2019-02-12 Ford Global Technologies, Llc Structure to optimize electricity generation in a vehicle
WO2017189882A1 (en) * 2016-04-27 2017-11-02 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink
CN105844432A (en) * 2016-05-01 2016-08-10 上海大学 VANET based electric automobile charge scheduling system and method
US20180141450A1 (en) * 2016-06-29 2018-05-24 Faraday&Future Inc. Vehicle based charging station robot arm control
JP6623971B2 (en) * 2016-08-05 2019-12-25 株式会社デンソー Transmission circuit
CN113263945B (en) * 2016-08-23 2023-08-18 柏思科技有限公司 Method and system for supplying power to a plurality of loads having current measurements
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
WO2018050222A1 (en) * 2016-09-14 2018-03-22 Innogy Se System comprising an electrical producer arrangement
WO2018052415A1 (en) * 2016-09-14 2018-03-22 Ford Motor Company Autonomous vehicle fueling with centralized scheduling
US10216190B2 (en) 2016-09-20 2019-02-26 International Business Machines Corporation Managing autonomous vehicles needing energy replenishment
CN106300675B (en) * 2016-09-20 2019-04-23 浙江工业大学 A kind of microgrid experiment porch and its control system
JP2018049316A (en) * 2016-09-20 2018-03-29 株式会社東芝 Sensor diagnostic device, sensor diagnostic method and program
US10230198B2 (en) 2016-09-29 2019-03-12 Schneider Electric USA, Inc. EVSE energy management system retrofit coupling
DE102016219726A1 (en) * 2016-10-11 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Method for controlling the electrical charging of a group of vehicles
CN107972497A (en) * 2016-10-21 2018-05-01 法乐第(北京)网络科技有限公司 A kind of power battery management method
DE102016221690A1 (en) * 2016-11-04 2018-05-09 Audi Ag Method for transmitting data packets between an Ethernet and a bus system in a motor vehicle, and gateway device and motor vehicle
WO2018098400A1 (en) * 2016-11-26 2018-05-31 The Regents Of The University Of California Multi-layer electric vehicle energy management system with customized data models
FR3060887B1 (en) * 2016-12-19 2019-08-23 Electricite De France SYSTEM ADAPTED FOR RECHARGING ELECTRIC VEHICLES
FR3060888B1 (en) * 2016-12-19 2022-08-12 Electricite De France IMPROVED CHARGING DEVICE, PARTICULARLY FOR ELECTRIC VEHICLES
TWI614969B (en) * 2016-12-27 2018-02-11 財團法人工業技術研究院 Charge and discharge control method and lease service pricing system for grid-connected energy storing system
DE102017204727A1 (en) * 2017-03-21 2018-09-27 Robert Bosch Gmbh A method for establishing a communication link, vehicle communication device and charging station communication device
CN107016079B (en) * 2017-03-28 2020-09-01 青岛伟东云教育集团有限公司 Knowledge point display method and device
US10803535B2 (en) * 2017-04-20 2020-10-13 International Business Machines Corporation Facilitating power transactions
JP6640925B2 (en) * 2017-05-29 2020-02-05 京セラ株式会社 Management system, management method, control device, and storage battery device
US11138679B2 (en) * 2017-05-29 2021-10-05 Kyocera Corporation Management method and management apparatus
US10195956B2 (en) 2017-06-02 2019-02-05 United Arab Emirates University Secure charging method for electric vehicles
US10572542B1 (en) * 2017-06-27 2020-02-25 Lytx, Inc. Identifying a vehicle based on signals available on a bus
EP3659235B1 (en) * 2017-07-24 2023-12-27 EV8 Technologies limited Method for controlling an energy terminal, non-transitory machine-readable storage medium, and apparatus
GB2565307B (en) * 2017-08-08 2019-10-09 British Gas Trading Ltd System for dynamic demand balancing in energy networks
CN107733798A (en) * 2017-10-09 2018-02-23 珠海格力电器股份有限公司 Can source router and energy adjustment method
EP3493354A1 (en) * 2017-12-01 2019-06-05 Telefonica Innovacion Alpha S.L A method and a system for analyzing and providing performance and infrastructure improvements for a peer-to-peer distributed energy network
CN107776433A (en) * 2017-12-05 2018-03-09 暨南大学 A kind of discharge and recharge optimal control method of electric automobile group
AU2019222634A1 (en) 2018-02-19 2020-10-15 Power Hero Corp. A method and device for converting standalone EV charging stations into intelligent stations with remote communications connectivity and control
EP3565078A1 (en) * 2018-04-30 2019-11-06 E.ON Sverige AB Handling surplus and/or deficit of energy in local energy systems
US11010503B2 (en) * 2018-05-15 2021-05-18 Tata Consultancy Services Limited Method and system providing temporal-spatial prediction of load demand
US10843586B2 (en) * 2018-05-25 2020-11-24 King Fahd University Of Petroleum And Minerals Optimal dispatch of electric vehicles performing V2G regulation
GB2577853B (en) * 2018-06-22 2021-03-24 Moixa Energy Holdings Ltd Systems for machine learning, optimising and managing local multi-asset flexibility of distributed energy storage resources
CN109050284B (en) * 2018-07-09 2020-06-09 华中科技大学 Electric automobile charging and discharging electricity price optimization method considering V2G
DE102018211633A1 (en) * 2018-07-12 2020-01-16 Triathlon Holding GmbH Method and device for charging electrical energy storage devices
KR102626252B1 (en) * 2018-09-10 2024-01-17 현대자동차주식회사 Vehicle condition monitoring and diagnosis method and system using charger
FR3087055B1 (en) * 2018-10-04 2021-06-18 Voltalis ESTIMATE OF A PHYSICAL QUANTITY BY A DISTRIBUTED MEASUREMENT SYSTEM
DE102018125670A1 (en) * 2018-10-16 2020-04-16 Elektro-Bauelemente Gmbh Supply station for electrically operated vehicles and operating methods therefor
US10900687B2 (en) 2018-10-31 2021-01-26 Trane International Inc. Flexible scheduling HVAC graphical user interface and methods of use thereof
US11025089B2 (en) * 2018-11-13 2021-06-01 Siemens Aktiengesellschaft Distributed energy resource management system
US20220041069A1 (en) * 2018-11-29 2022-02-10 Electrans Technologies Ltd. Fuel efficiency optimization apparatus and method for hybrid tractor trailer vehicles
JP7003297B2 (en) * 2019-01-17 2022-01-20 本田技研工業株式会社 Power transmission / reception management device and program
JP6814233B2 (en) 2019-01-17 2021-01-13 本田技研工業株式会社 Cables, power transmission / reception management systems, management devices and programs
JP7065212B2 (en) * 2019-01-17 2022-05-11 本田技研工業株式会社 Power transmission / reception management device and program
CN109703389B (en) * 2019-01-17 2020-07-24 北京理工新源信息科技有限公司 Vehicle pile network integrated charging scheduling device and method based on new energy bus
WO2020154326A1 (en) * 2019-01-22 2020-07-30 Dmk Nano Llc Power distribution management based on distributed networking protocol analytics
US11641177B2 (en) * 2019-02-08 2023-05-02 8Me Nova, Llc Coordinated control of renewable electric generation resource and charge storage device
EP3721130B1 (en) * 2019-02-18 2023-11-08 Nikola Corporation Communication systems and methods for hydrogen fueling and electric charging
DE102019106341A1 (en) * 2019-03-13 2020-09-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for energy management for an electric vehicle charging system
WO2020198689A1 (en) * 2019-03-28 2020-10-01 Nuvve Corporation Multi-technology grid regulation service
JP6896793B2 (en) * 2019-05-27 2021-06-30 本田技研工業株式会社 Information processing device
JP7251437B2 (en) * 2019-10-15 2023-04-04 トヨタ自動車株式会社 power supply system
US11247571B2 (en) * 2019-11-18 2022-02-15 GM Global Technology Operations LLC Intelligent energy management system for a vehicle and corresponding method
DE102020106292A1 (en) 2020-03-09 2021-09-09 Bayerische Motoren Werke Aktiengesellschaft Method and device for providing charging information
US11571983B2 (en) 2020-03-17 2023-02-07 Toyota Motor North America, Inc. Distance-based energy transfer from a transport
US11890952B2 (en) 2020-03-17 2024-02-06 Toyot Motor North America, Inc. Mobile transport for extracting and depositing energy
US11685283B2 (en) 2020-03-17 2023-06-27 Toyota Motor North America, Inc. Transport-based energy allocation
US11552507B2 (en) 2020-03-17 2023-01-10 Toyota Motor North America, Inc. Wirelessly notifying a transport to provide a portion of energy
US11618329B2 (en) 2020-03-17 2023-04-04 Toyota Motor North America, Inc. Executing an energy transfer directive for an idle transport
JP7369655B2 (en) * 2020-03-27 2023-10-26 本田技研工業株式会社 power calculation device
US11571984B2 (en) 2020-04-21 2023-02-07 Toyota Motor North America, Inc. Load effects on transport energy
US11820249B2 (en) * 2020-04-30 2023-11-21 Bayerische Motoren Werke Aktiengesellschaft Managing the charging of a fleet of vehicles to align with a renewable energy supply curve for an electric grid
US11890951B2 (en) 2020-05-08 2024-02-06 Rivian Ip Holdings, Llc Electric vehicle charging system and method utilizing a dispenser chain
US11628739B2 (en) 2020-05-08 2023-04-18 Rivian Ip Holdings, Llc Electric vehicle fleet charging system and method
US11868927B2 (en) 2020-05-08 2024-01-09 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11453298B2 (en) 2020-05-08 2022-09-27 Rivian Ip Holdings, Llc Electric vehicle charging dispenser and method
US11565601B2 (en) * 2020-05-08 2023-01-31 Rivian Ip Holdings, Llc Electric vehicle charging system and method
US11661029B2 (en) * 2020-06-24 2023-05-30 TWS Technology(Guangzhou) Limited Authentication between battery management system (BMS) and battery host platform
US11642977B2 (en) * 2020-07-09 2023-05-09 Weave Grid, Inc. Optimized charging of electric vehicles over distribution grid
CN116195158A (en) * 2020-08-11 2023-05-30 安泊半导体公司 Intelligent energy monitoring and selecting control system
US11685281B2 (en) * 2020-11-10 2023-06-27 FlexCharging, Inc. Demand flexibility optimizing scheduler for EV charging and controlling appliances
WO2022145024A1 (en) * 2020-12-29 2022-07-07 三菱電機株式会社 Charging/discharging control device and charging/discharging control method
US11623540B2 (en) 2021-01-13 2023-04-11 Toyota Motor North America, Inc. Transport recharge level determination
NL2027353B1 (en) * 2021-01-20 2022-07-28 Greenflux Assets B V Methods and systems for allocating charging resources to electric vehicles
JP7447833B2 (en) * 2021-01-28 2024-03-12 トヨタ自動車株式会社 Power management device and power management method
US11554684B2 (en) * 2021-02-17 2023-01-17 AMPLY Power, Inc. Aggregating capacity for depot charging
US20220305942A1 (en) * 2021-03-23 2022-09-29 Honda Motor Co., Ltd. System and method for scheduling electric charging for vehicles
US11884173B2 (en) 2021-03-29 2024-01-30 Siemens Industry, Inc. Network-based energy management of electric vehicle (EV) charging network infrastructure
US11724613B2 (en) 2021-05-18 2023-08-15 Toyota Motor North America, Inc. Energy transfer based on intended use
US11705727B2 (en) * 2021-09-08 2023-07-18 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
US20230115083A1 (en) * 2021-10-13 2023-04-13 Fermata Energy Llc Methods of using bidirectional charging to supply back-up power and increase resiliency of powered networks
US11747781B1 (en) 2022-03-21 2023-09-05 Nuvve Corporation Intelligent local energy management system at local mixed power generating sites for providing grid services
DE102022117483A1 (en) * 2022-07-13 2024-01-18 Linde Material Handling Gmbh Charging device for charging a rechargeable battery
US11760224B1 (en) * 2022-08-03 2023-09-19 Electric Era Technologies, Inc. Vehicle charging system
CN115619202B (en) * 2022-12-19 2023-03-31 西南交通大学 Cross mixing method for seat distribution pool of high-speed railway train

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128559A (en) * 1998-09-30 2000-10-03 Honda Giken Kogyo Kabushiki Kaisha Automatic vehicle following control system
US20080039989A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080039980A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Scheduling and Control in a Power Aggregation System for Distributed Electric Resources
US20080039979A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Smart Islanding and Power Backup in a Power Aggregation System for Distributed Electric Resources
US20080040479A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Connection Locator in a Power Aggregation System for Distributed Electric Resources
US20080040296A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US20080040295A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20080040263A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20080040223A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Module in a Power Aggregation System for Distributed Electric Resources
US20080052145A1 (en) * 2006-08-10 2008-02-28 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20080067974A1 (en) * 2006-09-18 2008-03-20 Byd Company Limited Electric Car Charging Systems
US20080281663A1 (en) * 2007-05-09 2008-11-13 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
US20090043520A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20090040029A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US20090063680A1 (en) * 2006-08-10 2009-03-05 V2Green, Inc. Connection Locator in a Power Aggregation System for Distributed Electric Resources
US20090066287A1 (en) * 2006-08-10 2009-03-12 V2Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20100145885A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc System for on-board metering of recharging energy consumption in vehicles equipped with electrically powered propulsion systems
US20100145837A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc Network for authentication, authorization, and accounting of recharging processes for vehicles equipped with electrically powered propulsion systems
US20100141203A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc Self-identifying power source for use in recharging vehicles equipped with electrically powered propulsion systems
US7737829B2 (en) * 2005-04-01 2010-06-15 Panasonic Corporation Communications system, vehicle information communicating apparatus, and indoor information processing apparatus
US7750497B2 (en) * 2007-03-28 2010-07-06 Mitsubishi Electric Corporation Power feed control circuit for on-vehicle electronic control apparatuses
US8106627B1 (en) * 2008-12-15 2012-01-31 Comverge, Inc. Method and system for co-operative charging of electric vehicles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278898B1 (en) * 1999-04-07 2001-08-21 Voyan Technology Model error bounds for identification of stochastic models for control design
US9256905B2 (en) * 2000-08-25 2016-02-09 Paradigm Shifting Solutions Intelligent routing of electric power
US6882904B1 (en) * 2000-12-29 2005-04-19 Abb Technology Ag Communication and control network for distributed power resource units
EP1576528A4 (en) * 2002-10-09 2011-05-18 California Inst Of Techn Sensor web
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager
US20070282495A1 (en) * 2006-05-11 2007-12-06 University Of Delaware System and method for assessing vehicle to grid (v2g) integration
US7886166B2 (en) * 2007-09-13 2011-02-08 Gridpoint, Inc. User interface for demand side energy management
US8000913B2 (en) * 2008-01-21 2011-08-16 Current Communications Services, Llc System and method for providing power distribution system information
US20110063126A1 (en) * 2008-02-01 2011-03-17 Energyhub Communications hub for resource consumption management
US7937247B2 (en) * 2008-08-12 2011-05-03 Square D Company Virtual metering
US8781809B2 (en) * 2009-03-31 2014-07-15 Gridpoint, Inc. Software modeling systems for metering and translating measurements

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128559A (en) * 1998-09-30 2000-10-03 Honda Giken Kogyo Kabushiki Kaisha Automatic vehicle following control system
US7737829B2 (en) * 2005-04-01 2010-06-15 Panasonic Corporation Communications system, vehicle information communicating apparatus, and indoor information processing apparatus
US20090043520A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080040479A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Connection Locator in a Power Aggregation System for Distributed Electric Resources
US20090040029A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
US20080040296A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US20080040295A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20080040263A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20080040223A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Module in a Power Aggregation System for Distributed Electric Resources
US20080052145A1 (en) * 2006-08-10 2008-02-28 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US20080039980A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Scheduling and Control in a Power Aggregation System for Distributed Electric Resources
US20080039989A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080039979A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Smart Islanding and Power Backup in a Power Aggregation System for Distributed Electric Resources
US20090066287A1 (en) * 2006-08-10 2009-03-12 V2Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20090063680A1 (en) * 2006-08-10 2009-03-05 V2Green, Inc. Connection Locator in a Power Aggregation System for Distributed Electric Resources
US20080067974A1 (en) * 2006-09-18 2008-03-20 Byd Company Limited Electric Car Charging Systems
US7768229B2 (en) * 2006-09-18 2010-08-03 Byd Company Limited Electric car charging systems
US7750497B2 (en) * 2007-03-28 2010-07-06 Mitsubishi Electric Corporation Power feed control circuit for on-vehicle electronic control apparatuses
US20080281663A1 (en) * 2007-05-09 2008-11-13 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
US20100145885A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc System for on-board metering of recharging energy consumption in vehicles equipped with electrically powered propulsion systems
US20100145837A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc Network for authentication, authorization, and accounting of recharging processes for vehicles equipped with electrically powered propulsion systems
US20100141203A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc Self-identifying power source for use in recharging vehicles equipped with electrically powered propulsion systems
US8106627B1 (en) * 2008-12-15 2012-01-31 Comverge, Inc. Method and system for co-operative charging of electric vehicles

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442302B2 (en) 2009-05-14 2019-10-15 Battelle Memorial Institute Battery charging control methods, electrical vehicle charging methods, battery charging control apparatus, and electrical vehicles
US20100292855A1 (en) * 2009-05-14 2010-11-18 Michael Kintner-Meyer Battery Charging Control Methods, Electrical Vehicle Charging Methods, Battery Charging Control Apparatus, and Electrical Vehicles
US20110218693A1 (en) * 2010-03-03 2011-09-08 Fujitsu Limited Electric power leveling controller
US8433453B2 (en) * 2010-03-03 2013-04-30 Fujitsu Limited Electric power leveling controller
US20110266871A1 (en) * 2010-05-03 2011-11-03 Jan Thisted Power Interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
US8922056B2 (en) * 2010-05-03 2014-12-30 Siemens Aktiengesellschaft Power interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
US9393878B1 (en) 2010-06-02 2016-07-19 Bryan Marc Failing Energy transfer with vehicles
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US10124691B1 (en) 2010-06-02 2018-11-13 Bryan Marc Failing Energy transfer with vehicles
US9114719B1 (en) 2010-06-02 2015-08-25 Bryan Marc Failing Increasing vehicle security
US11186192B1 (en) 2010-06-02 2021-11-30 Bryan Marc Failing Improving energy transfer with vehicles
US8710372B2 (en) 2010-07-23 2014-04-29 Blink Acquisition, LLC Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same
US8595122B2 (en) 2010-07-23 2013-11-26 Electric Transportation Engineering Corporation System for measuring electricity and method of providing and using the same
US9209623B1 (en) 2010-08-04 2015-12-08 University Of Washington Through Its Center For Commercialization Methods and systems for charging electrical devices via an electrical system
US9084120B2 (en) 2010-08-27 2015-07-14 Trilliant Networks Inc. System and method for interference free operation of co-located transceivers
US20120083932A1 (en) * 2010-09-30 2012-04-05 Hitachi, Ltd System for managing electrical power distrubution between infrastructure and electric vehicles
US8639409B2 (en) * 2010-09-30 2014-01-28 Hitachi, Ltd System for managing electrical power distribution between infrastructure and electric vehicles
US10682922B2 (en) 2010-10-27 2020-06-16 The Aes Corporation Methods and apparatus for managing renewable energy services for fixed and mobile assets
US9283857B2 (en) 2010-10-27 2016-03-15 The Aes Corporation Methods and apparatus for identifying a grid connection point using a tag
US9452684B2 (en) * 2010-10-27 2016-09-27 The Aes Corporation Methods and apparatus for managing energy services from a plurality of devices
US9358894B2 (en) 2010-10-27 2016-06-07 The Aes Corporation Methods and apparatus for reconciliation of a charging event
US20120109403A1 (en) * 2010-10-27 2012-05-03 Aes Corporation Methods and apparatus for managing energy services from a plurality of devices
US10286792B2 (en) 2010-10-27 2019-05-14 The Aes Corporation Methods and apparatus for managing renewable energy services
US8401711B2 (en) * 2010-10-28 2013-03-19 Solar Chief, Llc System and method for managing distributed renewable energy systems
US20140288717A1 (en) * 2010-10-28 2014-09-25 Solar Chief, Llc System and method for managing distributed renewable energy systems
US20120103395A1 (en) * 2010-10-28 2012-05-03 Randall William Prengler System and method for managing distributed renewable energy systems
US10069454B2 (en) * 2010-10-28 2018-09-04 Solar Chief, Llc System and method for managing distributed renewable energy systems and service providers
US20120123604A1 (en) * 2010-11-12 2012-05-17 Nathan Bowman Littrell Systems, methods, and apparatus for demand response of battery-powered devices
US8832428B2 (en) 2010-11-15 2014-09-09 Trilliant Holdings Inc. System and method for securely communicating across multiple networks using a single radio
US20120161692A1 (en) * 2010-12-24 2012-06-28 Hitachi Automotive Systems, Ltd. Charging control system
US9282383B2 (en) 2011-01-14 2016-03-08 Trilliant Incorporated Process, device and system for volt/VAR optimization
US20120185105A1 (en) * 2011-01-18 2012-07-19 General Electric Company Dynamic load profiling
US8712595B2 (en) * 2011-01-18 2014-04-29 General Electric Company Dynamic load profiling in a power network
US8502498B2 (en) * 2011-01-19 2013-08-06 General Motors Llc Localized charging of electric vehicles
US20120181982A1 (en) * 2011-01-19 2012-07-19 General Motors Llc Localized Charging of Electric Vehicles
US8970394B2 (en) 2011-01-25 2015-03-03 Trilliant Holdings Inc. Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network
US8856323B2 (en) 2011-02-10 2014-10-07 Trilliant Holdings, Inc. Device and method for facilitating secure communications over a cellular network
US9041349B2 (en) * 2011-03-08 2015-05-26 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
WO2012122310A1 (en) * 2011-03-08 2012-09-13 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
US20120229089A1 (en) * 2011-03-08 2012-09-13 Trilliant Networks, Inc. System and Method For Managing Load Distribution Across a Power Grid
US9614373B2 (en) 2011-03-25 2017-04-04 Green Charge Networks Llc Modular implementation of correlative consumption management systems
US9893526B2 (en) 2011-03-25 2018-02-13 Green Charge Networks Llc Networked power management and demand response
US20120265362A1 (en) * 2011-04-14 2012-10-18 Christopher Charles Yasko Charging device for use with electric vehicles and methods of assembling same
US9300138B2 (en) * 2011-06-07 2016-03-29 Fujitsu Limited System and method for managing power consumption
US20120316695A1 (en) * 2011-06-07 2012-12-13 Fujitsu Limited System and Method for Managing Power Consumption
US10110002B2 (en) 2011-06-17 2018-10-23 Siemens Industry, Inc. Automated demand response system
US9310786B2 (en) * 2011-06-17 2016-04-12 Siemens Industry, Inc. Automated demand response scheduling to reduce electrical loads
US20120323393A1 (en) * 2011-06-17 2012-12-20 Raphael Imhof Automated demand response system
US8384347B2 (en) 2011-08-08 2013-02-26 General Electric Company Methods and systems for charging an energy storage device
US9124098B2 (en) * 2011-08-08 2015-09-01 General Electric Company Managing excess renewable energy
US9054535B2 (en) 2011-08-08 2015-06-09 General Electric Company Methods and systems for charging an energy storage device
US20130038122A1 (en) * 2011-08-08 2013-02-14 Jay Andrew Broniak Managing excess renewable energy
US20130046411A1 (en) * 2011-08-15 2013-02-21 Siemens Corporation Electric Vehicle Load Management
US20130297089A1 (en) * 2011-09-12 2013-11-07 Sheau-Wei J. Fu Power management control system
US9811130B2 (en) * 2011-09-12 2017-11-07 The Boeing Company Power management control system
US9001787B1 (en) 2011-09-20 2015-04-07 Trilliant Networks Inc. System and method for implementing handover of a hybrid communications module
US10839433B2 (en) 2011-10-19 2020-11-17 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US10192245B2 (en) 2011-10-19 2019-01-29 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US10586258B2 (en) 2011-10-19 2020-03-10 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US11756086B2 (en) 2011-10-19 2023-09-12 Zeco Systems Pte Ltd. Methods and systems for charging of electric vehicles
US11756087B2 (en) 2011-10-19 2023-09-12 Zeco Systems Pte Ltd. Systems and methods for charging of electric vehicles with charge balancing between multiple electric vehicle charging stations
US11748788B2 (en) 2011-10-19 2023-09-05 Zeco Systems Pte Ltd. Methods and systems for determining the availability of an electric vehicle charging station
US10846763B2 (en) 2011-10-19 2020-11-24 Zeco Systems Ptd Ltd. Methods and apparatuses for charging of electric vehicles
US10210552B2 (en) 2011-10-19 2019-02-19 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US11715136B2 (en) 2011-10-19 2023-08-01 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US11715138B2 (en) 2011-10-19 2023-08-01 Zeco Systems Pte Ltd. Methods and systems for charging of electric vehicles
US9348381B2 (en) 2011-10-19 2016-05-24 Zeco Systems Pte Ltd Methods and apparatuses for charging of electric vehicles
US10185977B2 (en) 2011-10-19 2019-01-22 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US10185978B2 (en) 2011-10-19 2019-01-22 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US10861066B2 (en) 2011-10-19 2020-12-08 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US10872361B2 (en) 2011-10-19 2020-12-22 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US10169783B2 (en) 2011-10-19 2019-01-01 Zeco Systems Pte Ltd. Methods and apparatuses for charging of electric vehicles
US9870593B2 (en) 2011-12-05 2018-01-16 Hatch Ltd. System, method and controller for managing and controlling a micro-grid
US9946285B2 (en) 2011-12-23 2018-04-17 International Business Machines Corporation Energy allocation system for balancing energy consumption
US9007027B2 (en) 2012-01-31 2015-04-14 Green Charge Networks Llc Charge management for energy storage temperature control
US9290103B2 (en) * 2012-02-08 2016-03-22 Control Module, Inc. EVSE controller system
US20140049213A1 (en) * 2012-02-08 2014-02-20 James S. Bianco EVSE Controller System
US9235825B2 (en) 2012-03-05 2016-01-12 Green Charge Neworks LLC Processing load profiles for consumption management systems
US20150165918A1 (en) * 2012-07-04 2015-06-18 Nec Corporation Charging system control apparatus, program, and control method
US9728976B2 (en) 2012-09-28 2017-08-08 International Business Machines Corporation Method and system for allocating energy
US9705335B2 (en) 2012-09-28 2017-07-11 International Business Machines Corporation Method and system for allocating energy
US20140266039A1 (en) * 2013-03-14 2014-09-18 General Electric Company Systems and Methods for Controlling a Charging Device
US20150008888A1 (en) * 2013-07-03 2015-01-08 Schneider Electric Industries Sas Electric charging system of a plurality of electric vehicles and method for distributing the electric power delivered by an electric power supply of such a system
US9586492B2 (en) * 2013-07-03 2017-03-07 Schneider Electric Industries Sas Electric charging system of a plurality of electric vehicles and method for distributing the electric power delivered by an electric power supply of such a system
WO2016040944A1 (en) * 2014-09-12 2016-03-17 Pruf Energy Solutions, Llc Systems and methods for managing power grid demand
US20160129793A1 (en) * 2014-11-11 2016-05-12 Empire Technology Development Llc Wireless vehicle energy sharing
US9744870B2 (en) * 2014-11-11 2017-08-29 Empire Technology Development Llc Wirelessly charging vehicles moving in vehicle convoy
US20160159220A1 (en) * 2014-12-03 2016-06-09 Honda Motor Co., Ltd. Priority based power management system and method for an electric vehicle
US9694684B2 (en) * 2014-12-03 2017-07-04 Honda Motor Co., Ltd. Priority based power management system and method for an electric vehicle
US9731615B2 (en) 2015-03-24 2017-08-15 Honda Motor Co., Ltd. Grid overlay for a zip coded map system and method therefor
WO2017008055A1 (en) * 2015-07-09 2017-01-12 Powertree Services, Inc. Grid integration with photovoltaic generation and electric vehicle charging
US10005371B2 (en) 2015-07-09 2018-06-26 Powertree Services, Inc. Grid integration with photovoltaic generation and electric vehicle charging
US10168682B1 (en) 2015-11-20 2019-01-01 Wellhead Power Solutions, Llc System and method for managing load-modifying demand response of energy consumption
US20170169525A1 (en) * 2015-12-10 2017-06-15 Open Access Technology International, Inc. Systems to electronically catalog and generate documentation for retail-level power
US11196294B2 (en) * 2016-11-28 2021-12-07 Kyocera Corporation Power management method, power management server, local control apparatus, and power management system
US10999652B2 (en) 2017-05-24 2021-05-04 Engie Storage Services Na Llc Energy-based curtailment systems and methods
US10658841B2 (en) 2017-07-14 2020-05-19 Engie Storage Services Na Llc Clustered power generator architecture
CN110843559A (en) * 2018-08-20 2020-02-28 现代自动车株式会社 Electric vehicle reservation charging system and method
US10994629B2 (en) * 2018-08-20 2021-05-04 Hyundai Motor Company Electric vehicle reservation charging system and method
KR20200021182A (en) * 2018-08-20 2020-02-28 현대자동차주식회사 System and Method for reservation charge of electric vehicle
KR102621905B1 (en) 2018-08-20 2024-01-05 현대자동차주식회사 System and Method for reservation charge of electric vehicle
US20220001765A1 (en) * 2019-01-10 2022-01-06 Fronius International Gmbh Method and device for charging an electric vehicle
US11135936B2 (en) 2019-03-06 2021-10-05 Fermata, LLC Methods for using temperature data to protect electric vehicle battery health during use of bidirectional charger
US11958376B2 (en) 2019-03-06 2024-04-16 Fermata Energy Llc Methods for using cycle life data to protect electric vehicle battery health during use of bidirectional charger
US11958372B2 (en) 2019-11-26 2024-04-16 Fermata Energy Llc Device for bi-directional power conversion and charging for use with electric vehicles
US11571986B2 (en) * 2020-02-14 2023-02-07 Toyota Jidosha Kabushiki Kaisha Managing the exchange between a power grid and charging/discharging stations
US20210252993A1 (en) * 2020-02-14 2021-08-19 Toyota Jidosha Kabushiki Kaisha Power management system, power management method, and power management apparatus
US20220194255A1 (en) * 2020-12-22 2022-06-23 Ford Global Technologies, Llc System for selecting electric vehicle charging power

Also Published As

Publication number Publication date
WO2010120551A1 (en) 2010-10-21
GB201118767D0 (en) 2011-12-14
CN102449572A (en) 2012-05-09
US20160221453A1 (en) 2016-08-04
US20110010158A1 (en) 2011-01-13
GB2481946A (en) 2012-01-11
US8796881B2 (en) 2014-08-05
US20150202976A1 (en) 2015-07-23
US20110004406A1 (en) 2011-01-06
US9283862B2 (en) 2016-03-15
US20130217409A1 (en) 2013-08-22
US20110001356A1 (en) 2011-01-06
US8781809B2 (en) 2014-07-15
US20190061535A1 (en) 2019-02-28
US20110010043A1 (en) 2011-01-13
US20110007824A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US20110004358A1 (en) Systems and methods for electric vehicle power flow management
US10906423B2 (en) Power aggregation system for distributed electric resources
US10892639B2 (en) Connection locator in a power aggregation system for distributed electric resources
US8346401B2 (en) Smart charging value and guarantee application
US10843580B2 (en) Systems and methods for smart charging techniques, value and guarantee
US7949435B2 (en) User interface and user control in a power aggregation system for distributed electric resources
US7747739B2 (en) Connection locator in a power aggregation system for distributed electric resources
US20080040223A1 (en) Electric Resource Module in a Power Aggregation System for Distributed Electric Resources
US20090043520A1 (en) User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080052145A1 (en) Power Aggregation System for Distributed Electric Resources
US20080039980A1 (en) Scheduling and Control in a Power Aggregation System for Distributed Electric Resources
US20080040295A1 (en) Power Aggregation System for Distributed Electric Resources
US20080040263A1 (en) Business Methods in a Power Aggregation System for Distributed Electric Resources
CA2672454A1 (en) Power aggregation system for distributed electric resources

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION