US20110009715A1 - Ingestible event marker data framework - Google Patents

Ingestible event marker data framework Download PDF

Info

Publication number
US20110009715A1
US20110009715A1 US12/522,249 US52224909A US2011009715A1 US 20110009715 A1 US20110009715 A1 US 20110009715A1 US 52224909 A US52224909 A US 52224909A US 2011009715 A1 US2011009715 A1 US 2011009715A1
Authority
US
United States
Prior art keywords
data
iem
event marker
ingestible event
marker data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/522,249
Inventor
David O' Reilly
Erika Karplus
Andrew Thompson
George Savage
Mark Zdeblick
Timothy Robertson
Lawrence Arne
Yashar Behzadi
Gregory Moon
Patrick Beaulieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proteus Digital Health Inc
Original Assignee
Proteus Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proteus Biomedical Inc filed Critical Proteus Biomedical Inc
Priority to US12/522,249 priority Critical patent/US20110009715A1/en
Assigned to PROTEUS BIOMEDICAL, INC. reassignment PROTEUS BIOMEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARNE, LAWRENCE, BEHZADI, YASHAR, KARPLUS, ERIKA, MOON, GREGORY, O'REILLY, DAVID, ZDEBLICK, MARK, BEAULIEU, PATRICK, ROBERTSON, TIMOTHY, SAVAGE, GEORGE, THOMPSON, ANDREW
Publication of US20110009715A1 publication Critical patent/US20110009715A1/en
Assigned to PROTEUS DIGITAL HEALTH, INC. reassignment PROTEUS DIGITAL HEALTH, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PROTEUS BIOMEDICAL, INC.
Priority to US13/844,386 priority patent/US9603550B2/en
Priority to US17/537,120 priority patent/US20220189606A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4833Assessment of subject's compliance to treatment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • G16H70/40ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H80/00ICT specially adapted for facilitating communication between medical practitioners or patients, e.g. for collaborative diagnosis, therapy or health monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/40Information sensed or collected by the things relating to personal data, e.g. biometric data, records or preferences
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring

Definitions

  • the present invention relates generally to the technical fields of ingestible devices and communications. More specifically, and in various example embodiments, the present invention relates to a method, article, and system of generating, collecting, managing, distributing, and otherwise utilizing information associated with ingestible events and responses to the ingestible events.
  • a personal event is an event that is specific to an individual. Examples of personal events include onset of a physiologic parameter of interest, ingestion of a therapeutic agent, etc.
  • onset of one or more physiologic parameters of interest including appearance of disease symptoms, administration of medication, ingestion of certain types of foods, commencement of an exercise regimen, ingestion of certain substance, etc.
  • the accuracy of such notations may be dependent on the accuracy of data input, the accuracy of proxies used as actual data substitutions, etc. As a result, inaccuracies may occur.
  • an individual may suffer from one or multiple health conditions that require therapy with multiple medications.
  • the multiple medications may be prescribed according to an intricate dosing schedule.
  • the complexities associated with multiple health conditions, multiple medication therapies, and intricate dosing schedules may confuse the patient, resulting in inaccurate data capture.
  • the individual may have physical or cognitive deficits which may result in difficulties inputting and capturing data.
  • the individual may forget to enter the data, or may enter the data incorrectly.
  • the individual may not wish to be inconvenienced and thus may intentionally refuse to enter the data. Conversely, the individual may unintentionally or intentionally enter/record data which is completely inaccurate.
  • the individual may receive periodic, prescheduled reminders to take some medication. The reminders are unable to take into account actual ingestion of the medication. If the individual has already taken the medication, the reminder is both moot and likely to inconvenience the individual. If the medication has not been taken, an inconvenient or unneeded reminder or alert may prompt the user to enter data or send a message advising that the medication has been taken just to quell the alarm while not actually taking the medication. The individual may intentionally leave out portions of the data.
  • proxies for data and information may also be inaccurate.
  • “intelligent” medication containers may contain microchips that sense opening of the medication container. From the sensed act of opening the container, an inference may be drawn that medication associated with the medication container has been ingested. The inference may be inaccurate, however, as medication is not necessarily ingested by virtue of opening a medication container.
  • the above-instances may ripen into further issues if particular parties besides the individual wish to use the individual's personal event data.
  • Examples of users and potential users (sometimes collectively referred to herein as “party” or “parties”) of personal event data include family and professional caregivers; communication companies; government agencies, e.g., agencies associated with government provided healthcare coverage; private insurance providers; Food and Drug Administration (FDA); Drug Enforcement Administration (DEA); US Bureau of Alcohol, Tobacco, and Firearms (ATF); care providers; medical device manufacturers; patients; clinicians; pharmaceutical manufacturers; pharmacies; web communities; software providers; marketing and financial analysts; and insurance companies.
  • FDA Food and Drug Administration
  • DEA Drug Enforcement Administration
  • ATF US Bureau of Alcohol, Tobacco, and Firearms
  • care providers medical device manufacturers; patients; clinicians; pharmaceutical manufacturers; pharmacies; web communities; software providers; marketing and financial analysts; and insurance companies.
  • Competing interests may exist between an individual's privacy interests in personal event data and the acquisition and appropriation of the personal event data by third parties.
  • a healthcare provider or family member may receive a message from a patient indicating that the patient has taken the medication when, in fact, the patient is merely providing the message without having actually ingested the medication. If the healthcare provider notices changes in the patient's symptoms in close temporal proximity to receipt of the flawed information suggesting medication ingestion, the healthcare provider may mistakenly conclude that the patient's symptoms are a result of the medication ingestion. Based on the mistaken conclusion, the healthcare provider may adjust the medication dosage in an attempt to alleviate the symptoms, perhaps to the patient's detriment.
  • recipients of the personal event data may wish to timely receive and utilize such information via a user-friendly, reliable and sophisticated means.
  • the recipients may wish to receive and/or utilize information in discrete areas, integrate the personal event information with other data, and use the personal event information for various purposes.
  • Examples of various purposes include refining and optimizing data such as patient population data; incentivizing individuals or groups based on personal event data, e.g., ingestible event marker data (“IEM data”); corroborating and advancing decisions; supporting stakeholders' decisions; using IEM data in personalized products and services, e.g., user applications on a mobile telephone; auto refilling prescription medications; managing pharmaceutical life cycle systems and controlled substances; compiling and delivering IP news and information feeds; accessing open sources of anonymized patient population data; determining eligibility and approval for refills, insurance coverage, etc.; using patient tools; participating in social network systems; analyzing aggregated data to derive and/or generate predictive information; supporting and enabling financial transactions; identifying direct and indirect causal failure points in treatment and predict corrective action; and providing dynamic, accurate calendaring/scheduling functions.
  • IEM data ingestible event marker data
  • corroborating and advancing decisions supporting stakeholders' decisions
  • using IEM data in personalized products and services e.g., user applications on a
  • parties may also wish to access personal event data in conjunction with existing systems, e.g., commercial systems such as automated pharmacy systems, banking and financial systems, etc.
  • the ingestible event marker data framework provides a uniform, comprehensive framework to enable various functions and utilities related to ingestible event marker data (IEM data).
  • the functions and utilities include data and/or information having an aspect of data derived from, collected by, aggregated by, or otherwise associated with, an ingestion event.
  • the IEM data are generated via an ingested device.
  • the term “ingested device” includes any device, mechanism, structure, combined structure, or object capable of ingestion by a human subject or a non-human subject.
  • the IEM data framework is highly scalable and integratable with various existing systems, e.g., systems having computer-related component(s).
  • existing systems e.g., systems having computer-related component(s).
  • Such systems include pharmacy systems, communication systems, financial and banking systems, school systems, medical systems, government agencies, web communities, and personal computer systems.
  • Such existing systems are herein collectively referred to as “commercial systems”.
  • the IEM data framework enables multiple and various types of implementations.
  • the implementations include various configurations of hardware, software, communication components, and/or data.
  • the IEM data framework is implemented with a basic complement of core components; namely, ingestible event marker data; a hub to receive the ingestible event marker data; and at least one ingestible event marker data system to receive, directly or indirectly, the ingestible event marker data from the hub.
  • FIG. 1 provides a diagrammatic representation of a communication environment including an IEM data framework, according to one embodiment.
  • FIG. 2 provides a diagrammatic representation of the IEM data framework of FIG. 1 , according to one embodiment.
  • FIG. 3 illustrates IEM data and an IEM data environment associated with the IEM data framework of FIG. 2 , according to one embodiment.
  • FIG. 4 illustrates a hub associated with the IEM data framework of FIG. 2 , according to one embodiment.
  • FIG. 5 illustrates exemplary IEM data systems associated with the IEM data framework of FIG. 2 , according to one embodiment.
  • FIG. 6 illustrates an exemplary IEM data framework having a feedback loop system, according to one embodiment.
  • FIG. 7 illustrates an exemplary IEM data framework having a decision support system, according to one embodiment.
  • FIG. 8 illustrates an exemplary IEM data framework having auto refill system, according to one embodiment.
  • FIG. 9 illustrates an exemplary IEM data framework having patient tools, according to one embodiment.
  • FIG. 10 illustrates an exemplary IEM data framework having a behavioral medicine system, according to one embodiment.
  • FIG. 11 illustrates an exemplary IEM data framework having an incentive system, according to one embodiment.
  • FIG. 12 illustrates an exemplary IEM data framework having a personalized commercial products/services system, according to one embodiment.
  • FIG. 13 illustrates an exemplary IEM data framework having an auto billing system, according to one embodiment.
  • FIG. 14 illustrates an exemplary IEM data framework having a tracking system, according to one embodiment.
  • FIG. 15 illustrates an exemplary IEM data framework having an interdiction system, according to one embodiment.
  • FIG. 16 illustrates an exemplary IEM data framework having a subscription system, according to one embodiment.
  • FIG. 17 illustrates an exemplary IEM data framework having an ingestible event marker data collection system, according to one embodiment.
  • FIG. 18 illustrates an exemplary IEM data framework having an approval system, according to one embodiment.
  • FIG. 19 illustrates an exemplary IEM data framework having a forecasting system, according to one embodiment.
  • FIG. 20 illustrates an exemplary IEM data framework having a financial system, according to one embodiment.
  • FIG. 21 illustrates an exemplary IEM data framework having an ingestible event marker data phone system, according to one embodiment.
  • FIG. 22 illustrates an exemplary IEM data framework having a social network system, according to one embodiment.
  • the ingestible event marker (IEM) data framework provides an integrated, seamless solution to enable the collection, management, distribution, and utilization of IEM data.
  • the versatile IEM data framework facilitates integration and implementation of the IEM data with existing data and utilization of the IEM data with existing systems, i.e., commercial systems.
  • the information and communication systems include discrete systems, cross-configured systems, and hybrid systems.
  • IEM data framework includes a basic complement of core components, e.g., IEM data; a hub; and at least one IEM data system. Any one or a combination of these core components is capable of interoperation, communication, and/or integration with various components of other information/communication systems.
  • core components e.g., IEM data; a hub; and at least one IEM data system. Any one or a combination of these core components is capable of interoperation, communication, and/or integration with various components of other information/communication systems.
  • data and “information” are used interchangeably herein.
  • the IEM data include information about an ingestion event, information about a response to the ingestion event, or both.
  • the information about an ingestion event may include, for example, information about the ingestion event of a medication or set of medications.
  • the information about a response to the ingestion event may include, for example, physiologic parameter(s) such as a physiologic status or physiologic change event based on the ingestion event.
  • a physiologic status may be, for example, a heart rate, blood pressure measure, etc., ascertained in close temporal proximity to the time of ingestion of medication (and, therefore, likely to be influenced by or a result of ingestion of the medication.)
  • IEM data examples include data ingestion time(s) of medication, identification of the type(s) of medication ingested at a particular time, the dosage amounts of medication ingested at a particular time, etc.
  • the IEM data may be generated and/or communicated via an ingestible device such as an ingestible event marker (IEM), which generates and communicates data associated the ingestion event.
  • IEM ingestible event marker
  • the IEM may be associated, for example, with a receiver, i.e., a device capable of receiving the IEM data on ingestion and further capable of measuring additional IEM data on response to the ingestion event(s).
  • the IEM and the receiver are discussed in detail hereinafter.
  • the ingestible event data may originate from multiple ingested event markers.
  • the IEM data may be communicated directly from the IEM to a device other than the receiver, e.g., an IEM business system adapted to receive the IEM data directly from the IEM via a communication channel.
  • the IEM data may be associated with other data, e.g., combined with data related to events other than an ingestion event or response(s) to an ingestion event.
  • Some examples of other data are data associated with various medical devices and data associated with consumer and personal devices such as intelligent devices/appliances. All are discussed in greater detail hereinafter.
  • the IEM data may be associated with an IEM data environment and/or commercial systems.
  • the IEM data may be associated with a unique identifier, e.g., sample data reflective of physiologic patterns associated with a particular individual such as heart rate variability, breathing rate, and/or heart rate (ECG) patterns. For example, a portion or all of the IEM data may be compared with a unique identifier generated by or stored on the receiver.
  • a unique identifier e.g., sample data reflective of physiologic patterns associated with a particular individual such as heart rate variability, breathing rate, and/or heart rate (ECG) patterns.
  • ECG heart rate
  • the hub includes any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate the IEM data. Communication of the IEM data includes receiving, storing, manipulating, displaying, processing, and/or transmitting the IEM data.
  • the hub also functions to communicate, e.g., receive and transmit, non-IEM data.
  • Non-IEM data includes non-IEM physiologic data.
  • cardiac data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub directly or indirectly, e.g., via the receiver.
  • hubs include, for example, base stations, personal communication devices, and mobile telephones.
  • the hub includes a software application associated with a mobile telephone of a patient.
  • the application and mobile telephone function to receive IEM data from a receiver, which, in turn, receives the IEM data from an ingestible device ingested by the patient.
  • the hub stores, manipulates, and/or forwards the IEM data, alone or in combination with other data, to an IEM data system.
  • the IEM data systems include any hardware device, software, and/or communications component, as well as systems and subsystems of the same, which generally function to provide a service or activity related to the IEM data.
  • the IEM data systems for example, collect, manipulate, calculate, transmit, receive, store, and/or communicate at least a portion of the IEM data.
  • Each IEM data system may be built around predefined function(s) or service(s) and may be enabled via the IEM data framework.
  • One or more IEM data systems may be integrated, interoperate, intercommunicate or otherwise share or further the collection, management, distribution/dissemination, billing or other activities related to IEM data.
  • IEM data system is a feedback loop system to refine and optimize IEM data and other data, e.g., medical database data.
  • IEM data framework provides on-demand, accurate and efficient services with respect to provision and utilization of IEM data, while reducing redundancies, errors, and inaccuracies associated with personal event data that are sometimes found in the prior art.
  • Various aspects of the IEM data framework further ensure generation and communication of accurate IEM data in a timely manner.
  • IEM data framework is applicable to any communication environment.
  • Communication environments include any environment having therein, or associated with, data or communication of data.
  • IEM data framework utilize the IEM data, the hub, and one or more IEM data systems to enable useful, secure, and efficient use of the IEM data among multi-profile parties in one or various communication environments.
  • FIG. 1 provides a diagrammatic representation of communication environment 100 including an IEM data framework 102 , according to one embodiment.
  • the communication environment 100 may further include, for example, an IEM data environment 104 and one or more commercial systems 106 .
  • Communication environment 100 includes any environment having therein, or associated with, data or communication of data.
  • Communication includes any method, act, or vehicle of communication, and/or combinations thereof.
  • communication methods include manual, wired, and wireless, etc.
  • Wireless technologies include radio signals, such as x-rays, ultraviolet light, the visible spectrum, infrared, microwaves, and radio waves, etc.
  • Wireless services include voice and messaging, handheld and other Internet-enabled devices, data networking, etc.
  • Vehicles of communication include the Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data.
  • the communication environments include in-body communications; various devices; various modes of communications such as wireless communications, wired communications, and combinations of the same, etc.
  • In-body communications include any communication of data or information via the body, i.e., communication via or associated with inter-body aspects, intra-body aspects, and a combination of the same.
  • inter-body aspects include communications associated with devices designed to attach to a body surface.
  • Intra-body aspects include communications associated with data generated from within the body, e.g., by the body itself or by a device implanted, ingested, or otherwise locatable in, or partially in, the body.
  • Communications include and/or may be associated with software, hardware, circuitry, various devices, and combinations thereof.
  • the devices include devices associated with IEM data generation, transmission, reception, communication, etc.
  • the devices further include various implantable, ingestible, insertable, and/or attachable devices associated with the human body or other living organisms.
  • the devices further include multimedia devices such as telephones, stereos, audio players, PDA's, handheld devices, and multimedia players.
  • Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices.
  • the points include, for example, wireless devices such as wireless headsets; audio and multimedia devices and equipment, such as audio players and multimedia players; telephones, including mobile telephones and cordless telephones; and computers and computer-related devices and components, such as printers.
  • Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices.
  • the points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players; telephones, including mobile telephones and cordless telephones; and computers and computer-related devices and components, such as printers.
  • the IEM data framework 102 enables exchange, transmission, receipt, manipulation, management, storage, and other activities and events related to IEM data. Such activities and events may be contained within the IEM data framework 102 , partially integrated with the IEM data framework 102 , or associated with externalities, e.g., activities, systems, components, and the like which are external to the IEM data framework 102 . Externalities include, for example, the IEM data environment 104 and commercial systems 106 , either or both of which may also be integral to, or partially integrated with, the IEM data framework 102 .
  • the IEM data environment 104 includes any source of information or data, including remote computer systems, local computer devices, etc.
  • the information or data may comprise IEM data in whole or in part.
  • the information or data may also be independent of the IEM data, e.g., may be capable of aggregation and/or integration with the IEM data.
  • the commercial systems 106 include various existing systems that utilize one or various types of data to accomplish a particular purpose.
  • One example of a commercial system is a computerized pharmacy system utilized in a pharmacy.
  • the computerized pharmacy system may function to automatically, e.g., electronically, receive prescriptions, verify patient and prescription information, verify insurance coverage, process the prescription order, and generate an invoice.
  • the IEM data framework 102 the IEM data environment 104 , and the commercial systems 106 are discussed in greater detail hereinafter.
  • FIG. 2 provides a diagrammatic representation of the IEM data framework 102 of FIG. 1 , according to one embodiment.
  • the IEM data framework 102 includes IEM data 200 , hub 202 , and one or more IEM data systems 204 .
  • the IEM data 200 include data associated with an ingestion event, i.e., an act of ingestion. Additionally, the IEM data 200 may include, be included in, or be combined with data from other systems or sources, e.g., medical devices, local or remote computer devices and systems, etc.
  • An example of the IEM data 200 is data having an identification of the type of an ingested medication and the time at which the medication was ingested.
  • the hub 202 includes any hardware, software, and/or communications component(s) in any combination/configuration, which generally function to communicate the IEM data 200 .
  • One example includes communicating the IEM data 200 to the IEM data systems 204 .
  • the hub 202 receives the IEM data 200 from an ingested device and forwards the IEM data 200 , alone or in combination with other data from other sources, to an IEM data system 204 .
  • the IEM data systems 204 provide discrete services and/or activities related to the IEM data 200 .
  • the discrete services and/or activities include, for example, propagation of information, data, etc., to a particular user, or group of users, via various system component configurations, etc.
  • an auto refill system receives IEM data 200 from the hub 202 .
  • the IEM data 200 include an indication that the last remaining pill of a prescription has been ingested.
  • the auto refill system uses this information to contact a local or remote data resource having refill information, verify the refill information, and automatically transmit a request to a pharmacy system (commercial system) for refill of the prescription.
  • the ingestible event marker (IEM) data 200 are associated with at least one of an ingestion event and a response to the ingestion event.
  • the ingestion event may be associated with, for example, data related to and/or gathered during transit through the alimentary system, e.g., oral cavity, pharynx, esophagus, stomach, small intestine, large intestine, anus, etc.
  • Examples of IEM data include an ingestion time, identification of ingested substance, expiration date of an associated medication, dosage of an ingested substance, etc.
  • the information about an ingestion event may include, for example, information about the ingestion event of a medication or set of medications.
  • the information about a response to the ingestion event may include, for example, physiologic parameter(s) such as a physiologic status or physiologic change event based on the ingestion event.
  • physiologic parameter(s) such as a physiologic status or physiologic change event based on the ingestion event.
  • a physiologic status may be, for example, a heart rate, blood pressure measure, etc., ascertained in close temporal proximity to the time of ingestion.
  • the IEM data 200 typically may be generated via one or more ingestible event markers (IEMs), discussed hereinafter in detail.
  • IEMs ingestible event markers
  • the generation of IEM data via multiple IEMs ensures comprehensive data reporting, e.g., data generated from multiple ingestion events of multiple IEMs over a time interval, data generated from multiple IEMs ingested at approximately the same time, etc. In this manner, comprehensive IEM data may be provided.
  • the IEM data may be communicated to, i.e., received by, a receiver.
  • the receiver may be embodied in various ways, including an implantable device, a semi-implantable device such as a subcutaneous device, and an externally-applied device such as a personal signal receiver.
  • a personal signal receiver is a “patch” receiver which may be removably affixed to the individual's person, apparel, etc.
  • the IEM data 200 can be associated with other data, e.g., a personal event not associated with an ingestion event or a response to an ingestion event.
  • a personal event includes any parameter or circumstance associated with a person, e.g., any event associated with ingestion, inhalation, injection, implantation, insertion, and/or imbibing of a device, substance, liquid, etc.
  • a personal event further includes any event associated with personal data, e.g., a physiologic parameter such weight.
  • the IEM data may be associated with a unique identifier, e.g., heart rate variability, breathing rate, and/or heart rate (ECG) patterns associated with a particular individual.
  • the unique identifier may be variously embodied.
  • One example is a personal identifier assigned to an individual, e.g., an alphanumeric code, etc.
  • Another example is a unique identifier reflective of an individual trait, such as a physiologic pattern.
  • a patient may ingest an IEM (discussed hereinafter) integrated with medication.
  • the IEM may communicate IEM data to a receiver such as a patch receiver (discussed hereinafter).
  • the data may include, for example, a unique identifier which may be compared to data associated with the receiver for validation purposes.
  • the IEMs associated with medication prescribed for a particular patient may each be encoded and deployed with corresponding unique identifiers.
  • the unique identifier may be, for example, a predetermined physiologic data sample associated the particular patient.
  • Various physiologic data samples include a data sample reflective of the particular patient's heart rate variability, a data sample reflective of the particular patient's breathing rate, a data sample reflective of the particular patients heart rate (ECG) patterns, etc.
  • programming logic associated with the receiver may receive actual data samples of the individual, e.g., from data sources such as heart devices, etc.
  • the receiver may communicate the actual data samples received from the data sources and the unique identifier(s) received from the IEM(s) to a computer-related device, e.g., a server, which may compare the actual data samples of the individual with the unique identifier to verify that the medication was actually ingested by the particular patient for whom it was prescribed.
  • predetermined actions based on the verification outcome may be taken, e.g., alerts may be sent to a device associated with the prescribing physician, etc.
  • IEM data 200 are generated, received, gathered, etc., from one or a variety of sources and comprise various structures, content, types, etc.
  • the IEM data environment includes at least one of an IEM data source device, products, events, patient specific parameters, IEM data algorithms, and storage repositories.
  • the sources include, for example, various devices, storage repositories, and systems capable of generating, identifying, gathering or otherwise producing data related to ingestion, the ingestion environment, e.g., the alimentary system of a human subject or non-human subject and/or other personal events.
  • the types include, for example, raw data, processed data, aggregated data, combined data, data from various sources, etc.
  • the processed data include, for example, data processed according to a variety of methods, e.g., algorithms such as IEM data algorithms discussed below.
  • FIG. 3 illustrates IEM data environment 104 associated with the IEM data framework 102 of FIG. 2 , according to one embodiment.
  • the IEM data environment 104 includes, for example, IEM data source devices 300 , products 302 , events 304 , patient specific parameters 306 , IEM data algorithms 308 , storage repositories 310 , and other sources 312 .
  • the ingestible event marker (IEM) data source devices 300 include, for example, devices capable of gathering, collecting, generating, receiving, storing and/or transmitting, etc., IEM data.
  • IEM data is a microchip capable of or otherwise enabling or facilitating the collection, generation, receipt, transmission, etc., of data.
  • a microchip may be integrated or associated with the IEM data source devices 300 .
  • the IEM data source devices 300 may be embodied, for example, as ingestible devices 300 a , receivers 300 b , and/or health devices 300 c.
  • IEM data may be related to various devices.
  • a device may be an ingestible device, an inhalable device, an injectable device, an implantable device, an insertable device, and an imbibable device.
  • the foregoing may be embodied, for example, as a microchip alone or in combination with other structural components, each capable of at least one of ingestion, inhalation, injection, implantation, insertion, and imbibement by a human body or a non-human body.
  • the ingestible device may comprise, for example, a microchip.
  • the microchip may be independently deployed.
  • the microchip may also be attached to, embedded in, or otherwise integrated with a medication, e.g., a pill (refer to IEM system, infra).
  • the inhalable device may comprise, for example, a microchip.
  • the microchip may be independently deployed.
  • the microchip may also be attached to, embedded in, or otherwise integrated with a device.
  • the inhalable device is capable of ascertaining parameter(s) associated with inhalation, e.g., measuring or tallying doses of an inhalant.
  • the inhalable device may also comprise, for example, an inhalable microchip used to ascertain parameter(s), e.g., inhalation time, identify an inhaled substance, etc.
  • the injectable device may comprise, for example, a microchip.
  • the microchip may be independently deployed.
  • the microchip may also be attached to, embedded in, or otherwise integrated with a device.
  • the injectable device is capable of ascertaining parameter(s) associated with injection, e.g., time of injection, identification of an injected substance, etc.
  • the injectable device is capable of injection into a human body or a non-human body, e.g., injection into the circulatory system of a human body.
  • the implantable device is embodied as an implantable receiver, supra, for receiving various data.
  • the implantable receiver may also process, store, transmit, etc. the data.
  • Various other implantable devices include, for example, heart monitors and the like having a microchip to ascertain parameter(s), e.g., heart rate, heart pressure, etc.
  • the insertable device may comprise, for example, a microchip.
  • the microchip may be independently deployed.
  • the microchip may also be attached to, embedded in, or otherwise integrated with a device.
  • the insertable device is capable of ascertaining parameter(s) associated with insertion, e.g., time of insertion, physiologic parameters such environmental content/fluid identification, etc.
  • the insertable device is embodied as a microchip mechanically associated with a suppository for rectal insertion, vaginal insertion, etc.
  • the imbibable device may comprise, for example, a microchip.
  • the microchip may be independently deployed.
  • the microchip may also be attached to, embedded in, or otherwise integrated with a substance, e.g., a potable solution or fluid such as a beverage, etc.
  • the imbibable device is capable of ascertaining parameter(s) associated with imbibing, e.g., time of drinking, physiologic parameters such as environmental content/fluid identification, etc.
  • the imbibable device is embodied as a microchip and imbibed together with a beverage.
  • the beverage may aid in swallowing, may be used as a medication, etc.
  • the IEM data may be associated with administration of a therapeutic agent, etc.
  • administration includes, but is not limited to, parenteral administration, i.e., administration in a manner other than through the alimentary system, such as by intravenous or intramuscular injection or inhalation.
  • the devices are capable of ingestion, i.e., entry into the alimentary system of a human body or a non-human; inhalation (either the device or a substance associated with the device, e.g., a nasal inhalant).
  • inhalation either the device or a substance associated with the device, e.g., a nasal inhalant.
  • the devices are capable of injection, insertion, implantation and/or imbibing, etc., into/by a human body or a non-human body.
  • the ingestible devices 300 a gather/collect/generate IEM data via various methods, e.g., ingestion timing, contact with alimentary system substances, sampling, etc. Further, various ingestible event marker data source devices 300 communicate the IEM data via various methods, e.g., wireless methods, conductive methods via body tissue, etc. The following are examples of the ingestible devices 300 a.
  • a pharma-informatics system described in PCT/US2006/016370, filed Apr. 28, 2006 includes compositions, systems and methods that allow for the detection of the actual physical delivery of a pharmaceutical agent to a body are provided.
  • Embodiments of the compositions include an identifier and an active agent.
  • the personal signal receiver is configured to be associated with a physiological location, e.g., inside of or on the body, and to receive a signal of the IEM. During use, the IEM broadcasts a signal which is received by the personal signal receiver.
  • the IEM data associated with the IEM system include personal data, e.g., physiologic data generated by the IEM.
  • Examples are derived metrics, e.g., processed physical data to derive various metrics such as time of ingestion data; combined metrics, e.g., derived metrics combined with other derived metric data such as time of ingestion data combined with data identifying the ingested substance; and IEM data, e.g., derived metrics and/or combined metrics aggregated with various physiologic data such as time of ingestion data combined with data identifying the ingested substance and physiologic data such as ECG data, temperature, etc.
  • derived metrics e.g., processed physical data to derive various metrics such as time of ingestion data
  • combined metrics e.g., derived metrics combined with other derived metric data such as time of ingestion data combined with data identifying the ingested substance
  • IEM data e.g., derived metrics and/or combined metrics aggregated with various physiologic data such as time
  • a controlled activation ingestible identifier described in PCT/US07/82563, filed Oct. 17, 2007, includes ingestible compositions such as pharma-informatics enabled compositions.
  • the controlled activation ingestible identifiers include a controlled activation element that provides for activation of the identifier in response to the presence of a predetermined stimulus at a target site of interest.
  • a life cycle pharma-informatics system described in U.S. Patent Application Ser. No. 61/034,085, filed Mar. 5, 2008 includes RFID and conductive communications technology combined with medication and/or medication packaging such that the medication can be tracked for the duration of its existence.
  • the system further allows in-body data transmissions while addressing the potential privacy and signal degradation concerns associated with RFID technology.
  • the IEM data receivers 300 b include devices capable of receipt of IEM data 200 . Receipt may be, for example, via wireless or wired channels, etc.
  • the IEM data receiver 300 b may also transmit or otherwise forward data.
  • the IEM data receiver 300 b may perform, facilitate, or enable various other functionalities related to the IEM data 200 and/or other data.
  • the IEM data receiver 300 b may be attachable, implantable, semi-implantable or otherwise associated with a human body or a non-human body.
  • the IEM data receiver 300 b include personal signal receivers such as patch receivers, e.g., removably attachable externally to a human body or a non-human body; subcutaneous devices; implantable devices; external devices, i.e., devices which are not designed for attachment or other permanent or semi-permanent contact with the body, e.g., a mobile telephone.
  • personal signal receivers such as patch receivers, e.g., removably attachable externally to a human body or a non-human body; subcutaneous devices; implantable devices; external devices, i.e., devices which are not designed for attachment or other permanent or semi-permanent contact with the body, e.g., a mobile telephone.
  • patch receivers e.g., removably attachable externally to a human body or a non-human body
  • subcutaneous devices e.g., removably attachable externally to a human body or a non-human body
  • implantable devices e.e
  • the IEM system PCT/US2008/52845, supra, includes an ingestible event marker (IEM) and/or a personal signal receiver.
  • IEM ingestible event marker
  • An active signal processing personal health signal receiver described in PCT/US07/24225, filed Nov. 19, 2007, includes a receiver associated with a body, e.g., located inside or within close proximity to a body, configured to receive and decode a signal from an in vivo transmitter which is located inside the body.
  • the health devices 300 c include multiple devices (and methods associated with the devices) associated with the IEM data 200 .
  • the health devices 300 c may gather, collect, aggregate, store, transmit, receive, or otherwise communicate data, including the IEM data 200 .
  • the health device 300 c may be attachable, implantable, semi-implantable or otherwise associated with a human body or a non-human body.
  • “intelligent” devices such as intelligent scales, intelligent blood pressure cuffs, intelligent refrigerators, etc., may be integrated in various configurations.
  • the term “intelligent devices” refers to one or more devices capable of generating and/or communicating data, e.g., wirelessly transmitted data, via a communication channel to a destination.
  • IEM data 200 also includes IEM data related to products 302 .
  • the products 302 include, for example, an ingestible device/pharmaceutical product 302 a .
  • One example of an ingestible device/pharmaceutical product 302 a is an IEM mechanically associated with medication.
  • the IEM may be mechanically associated with the medication in various ways, including externally affixed to the medication, partially integrated with the medication, and wholly integrated with the medication.
  • the IEM may be affixed via various means, e.g., with various adhesive or formulated substances.
  • the IEM may be associated with the medication at various phases, e.g., during a medication manufacturing process, at various points in time after a medication manufacturing process, etc.
  • IEM data 200 further includes data related to events 304 , e.g., personal events, event parameters, etc. Further examples include time of ingestion of a medication, dosage and identity of medication taken at time of ingestion, etc. Events may include physiologic events, e.g., respiration rate; environmental events, e.g., time of day; usage events, e.g., ingestion of a medication, use of a cardiac resuscitation device, etc.
  • events 304 e.g., personal events, event parameters, etc.
  • Further examples include time of ingestion of a medication, dosage and identity of medication taken at time of ingestion, etc.
  • Events may include physiologic events, e.g., respiration rate; environmental events, e.g., time of day; usage events, e.g., ingestion of a medication, use of a cardiac resuscitation device, etc.
  • IEM data 200 still further includes data related to patient specific parameters 306 , e.g., individualized patient data 306 a pertaining to an individual patient and multiple patient data 306 b pertaining to multiple patients.
  • patient specific parameters include physiologic data, etc.
  • Multiple patient data include aggregated patient data, patient population data, e.g., combined patient data which includes various predetermined aspects of data regarding at least one patient and excludes data tending to identify a particular patient or an aspect in which the patient has a privacy interest, e.g., name, age, diagnosis and/or other data which the patient wishes to retain as confidential and/or undisclosed to the public.
  • IEM data 200 also includes data related to IEM data algorithms 308 , e.g., raw data, processed data, or a combination of the same, which undergo processing.
  • the IEM data 200 have one or more algorithms applied thereto, with processed data as an output.
  • the data for example, includes individualized patient data 306 a and multiple patient data 306 b , e.g., patient population data.
  • the IEM data algorithms may be related to aspects such as data processing associated with the IEM data 200 generated by one or more ingestible devices, e.g., an IEM system.
  • aspects include, for example, transmission of the IEM data 200 , IEM data processing associated with a receiver, and IEM data post-processing aspects.
  • Transmission aspects of IEM data and algorithms may include, for example, modulation schemes, coding, and error code aspects.
  • the transmission aspects include, for example, analog, digital, spread spectrum, combinatorial, and contention avoidance.
  • the analog transmission aspects include, for example, amplitude modulation, single sideband modulation, frequency modulation, phase modulation, quadrature amplitude modulation, and space modulation methods, etc.
  • the digital transmission aspects include on/off keying, frequency-shift keying, amplitude-shift keying, phase-shift keying, e.g., binary phase-shift keying, quadrature phase-shift keying, higher order and differential encoded, quadrature amplitude modulation, minimum shift keying, continuous phase modulation, pulse-position modulation, trellis coded modulation, and orthogonal frequency-division multiplexing.
  • the spread spectrum transmission aspects include, for example, frequency hopping spread-spectrum and direct-sequence spread spectrum.
  • the combinatorial transmission aspects include, for example, binary phase shift-keying with carrier frequency modulation.
  • the contention avoidance transmission aspects include, for example, duty-cycle modulation and carrier frequency modulation.
  • the coding aspects include, for example, wake-up schemes, preamble schemes, data packet schemes, and error code schemes.
  • the wake-up schemes include, for example, multi-tone schemes and chirp schemes.
  • the preamble schemes include, for example, unique identifier for packet start schemes.
  • the data packet schemes include, for example, data related to pill type, pill expiration, manufacturer, lot number, amount, prescribing physician, pharmacy, etc.
  • the error code schemes include, for example, repetition schemes, parity schemes, checksums, cyclic redundancy checks, hamming distance schemes, and forward error correction schemes, e.g., Reed-Solomon codes, binary Golay codes, convolutional codes, turbo codes, etc.
  • IEM data processing and the receiver considerations may be given to, for example, position, energy conservation schemes, carrier identification, decoding and error correcting.
  • the position of the receiver includes, for example, the stomach, the side and the xiphoid.
  • the energy conservation schemes include schemes for a periodic wake-up, e.g., to sense IEM wake-up such that energy, e.g., battery resources, is conserved during non-awake periods.
  • the carrier identification aspects include, for example, Fourier transform analysis, e.g., fast Fourier transform and discrete Fourier transform, phase locked loop, filter bank, match filter, and combinatorial such as use of previous knowledge about frequency to tune-in.
  • Fourier transform analysis e.g., fast Fourier transform and discrete Fourier transform
  • phase locked loop e.g., filter bank, match filter
  • combinatorial e.g., use of previous knowledge about frequency to tune-in.
  • the decoding aspects and error correcting aspects include, for example, the above-iterated aspects.
  • aspects include, for example, pill detection, e.g., multiplicity of identification and count in time aspects, adherence metrics, etc.
  • aspects include, for example, electrocardiogram (EKG or ECG), impedance, acceleration, optical, pressure, temperature, sound, biochemical/biological, weight, position, derived electromyography (EMG), and electroencephalography (EEG).
  • EKG or ECG electrocardiogram
  • ECG electrocardiogram
  • EMG derived electromyography
  • EEG electroencephalography
  • IEM data processing related to EKGs includes, for example, compression data, e.g., wavelet and ICA/PCA, R-wave detection such as Hamilton-Tompkins, etc., heart-rate variability, e.g., SDNN, standard deviation in a 24 hour period, standard deviation of consecutive five minute periods, foot print heart rate versus standard heart rate, distribution-based histogram, etc., arrhythmia, and respiration, e.g., principal axis modulation.
  • compression data e.g., wavelet and ICA/PCA
  • R-wave detection such as Hamilton-Tompkins
  • heart-rate variability e.g., SDNN
  • standard deviation in a 24 hour period standard deviation of consecutive five minute periods
  • foot print heart rate versus standard heart rate e.g., distribution-based histogram, etc.
  • arrhythmia e.g., principal axis modulation.
  • IEM data processing related to impedance includes, for example, respiration, fluid status, Galvanic skin response, blood flow, etc.
  • IEM data processing related to acceleration includes, for example, direct acceleration, which includes total activity and derived acceleration, which further includes activity type.
  • IEM data processing related to optical includes, for example, hematocrit, O2 saturation, pulse oximetry, etc.
  • IEM data processing related to temperature includes, for example, body temperature, heat flux, etc.
  • IEM data processing related to sound includes, for example, heart sounds, valvular events, etc.
  • IEM data processing related to biochemical/biological includes, for example, lactose, glucose, antibody, biomarker, bacterial, osmolarity, etc.
  • IEM data processing related to derived data include, for example, sleep, total energy, etc.
  • Ingestible event marker data also includes data related to storage repositories 310 , i.e., databases and/or other storage implementations that temporarily and/or permanently retain, store, etc., data related to IEM data, including data to be combined or aggregated with ingestible event marker data.
  • storage repositories 310 i.e., databases and/or other storage implementations that temporarily and/or permanently retain, store, etc., data related to IEM data, including data to be combined or aggregated with ingestible event marker data.
  • Storage may be in any form or format, as is known or will be known in the future.
  • the storage repositories 310 may be independently embodied and/or may be partially or wholly integrated with computer-related system(s).
  • the storage repositories 310 may interoperate or otherwise be associated with various computer systems, software, hardware, communication components, etc.
  • the storage repositories 310 may be part of a medical office computer system and may contain IEM data 200 related to a particular's patient's medication regimen. At various times, e.g., scheduled or ad hoc, various IEM data 200 embodied as medical data may be communicated to/from the storage repositories 310 and/or from/to various points/components.
  • the dosage administration information from the patient may be stored, for example, on the database 306 .
  • the IEM data 200 containing information about the ingestion time of a particular medication can be combined with the dosage administration information to customize the therapeutic regimen.
  • IEM data sources 312 are/can be included. Further, it is noted that data and/or IEM data 200 from multiple sources can be aggregated, integrated, refined, etc. via a variety of methods. To illustrate, IEM data 200 such as ingestion data related to ingestion of a medication are generated from an IEM data source device 300 such as the IEM system. The ingestion data are wirelessly transmitted to an IEM receiver.
  • physiologic data such as cardiac parameters are generated by a health device 300 c such as the system for monitoring and treating hemodynamic parameters, supra, is generated and wirelessly transmitted to the IEM data receiver 300 b .
  • the IEM data 200 and the cardiac physiologic data are aggregated for onward communication to an IEM data system such as an auto refill system.
  • cardiac data is derived via various methods and systems.
  • continuous field tomography e.g., electrical tomography (ET).
  • ET electrical tomography
  • the cardiac data includes cardiac-related parameters, as well as clinical data for clinical applications.
  • various cardiac parameters are measured, such as stroke volume, ejection fraction, dP/dt (max), strain rate (max), peak systolic mitral annular velocity, end systolic volume, end diastolic volume, and QRS length, etc.
  • the cardiac measurements may be used to derive or infer various performance and wellness diagnostics/inferences.
  • an ejection fraction parameter may be used as a basis to predict ventricular synchrony performance.
  • the metrics generated from the continuous field tomography include, for example, velocity, acceleration, and displacement.
  • the clinical data derived from the metrics include, for example, left ventricle stiffness as well as ET proxies for other physiologic parameters such as ejection fraction (EF) and dP/dt.
  • EF ejection fraction
  • dP/dt dP/dt
  • the clinical data may be combined with the IEM data to provide additional information.
  • the information may be useful, for example, in various diagnostic and analytical pursuits.
  • Comprehensive patient-related data displays having clinical data and IEM data are described in the U.S. Patent Application Ser. No. 61/076,577, filed Jun. 27, 2008, wherein various ET physiologic parameters and derivations such as EF and ventricle stiffness are displayed together with IEM data such as medication ingestion time. From such a display, the efficacy of the medication therapy may be gauged.
  • the hub 202 includes any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate the IEM data 200 , including receiving, storing, manipulating, displaying, processing, and/or transmitting the IEM data 200 .
  • the hub 202 receives, generates, communicates, and/or transmits, the IEM data 200 , alone or in combination with other data, i.e., non-IEM data from various sources.
  • Non-IEM data includes non-IEM physiologic data. Examples of non-IEM data include heart rate, heart rate variability, respiration, physical activity level, wake patterns, temperature, etc.
  • Communication of the IEM data 200 to and from the hub 202 includes any transmission means or carriers, and combinations thereof, including wireless, wired, RF, conductive, etc. as is known in the art or as may become available in the future.
  • FIG. 4 illustrates the hub 202 associated with the IEM data framework 102 of FIG. 2 , according to one embodiment.
  • the hub 202 comprises various categories of devices, e.g., personal communication devices, base stations, and mobile telephones.
  • Personal communication devices include, for example, devices having communication and computer functionality and typically intended for individual use, e.g., mobile computers, sometimes referred to as “handheld devices”.
  • Base stations comprise any device or appliance capable of receiving data such as IEM data. Examples include computers, such as desktop computers and laptop computers, and intelligent devices/appliances.
  • Intelligent devices/appliances include consumer and home devices and appliances that are capable of receipt of data such as IEM data. Intelligent devices/appliances may also perform other data-related functions, e.g., transmit, display, store, and/or process data. Examples of intelligent devices/appliances include devices and appliances having refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales. Such devices and appliances may include additional functionality such as sensing or monitoring various physiologic parameters, e.g., weight, heart rate, etc.
  • Mobile telephones include telephonic communication devices associated with various mobile technologies, e.g., cellular networks.
  • the hub 202 includes an IEM data receiver embodied, for example, as a receiver such as a patch receiver 400 ; a personal communication devices such as a handheld device 402 ; a base station 404 ; and a mobile telephone 406 .
  • the patch receiver 400 includes, for example, devices capable of at least receiving data, signals, etc.
  • Patch receivers 400 may be attachable, e.g., permanently or removably attachable externally to a human body or a non-human body.
  • the patch receiver 400 may include a receiver and an adhesive layer to provide for attachment to and removal from a region of skin.
  • the patch receiver 400 may be implantable or semi-implantable, e.g., subcutaneous implantation.
  • One such removably attachable patch receiver 400 is the personal signal receiver of the IEM system described in PCT/US2008/52845, supra.
  • the handheld device 402 also referred to as a “mobile computer”, includes, for example, computing devices having computer-related functionality, e.g., typically having a display screen with touch input functionality, a miniature keyboard, etc.
  • Types of handheld devices include, for example, a personal digital assistant (PDA) having the input and output combined into a touch-screen interface; and enterprise digital assistants offering integrated data capture devices like bar code, radio frequency identification (RFID), and smart card readers, etc.
  • PDA personal digital assistant
  • RFID radio frequency identification
  • the handheld device 402 includes software, e.g., a software agent/application, associated with the IEM data 200 .
  • the software is preconfigured, i.e., configurable by the manufacturer/retailer; configurable by the consumer, i.e., downloadable from a website; or a combination of the same.
  • One example of software is an auto refill application related to or integrated with an auto refill system to facilitate automated prescription refill functions.
  • the base station 404 includes systems, subsystems, devices, and/or components that receive, transmit, and/or relay the IEM data 200 .
  • the base station communicably interoperates with a receiver such as the patch receiver 400 and a communications network such as the Internet.
  • Examples of base stations 404 are computers, e.g., servers, personal computers, desktop computers, laptop computers, intelligent devices/appliances, etc., as heretofore discussed.
  • the base station 404 may be embodied as an integrated unit or as distributed components, e.g., a desktop computer and a mobile telephone in communication with one another and in communication with a patch receiver and the Internet.
  • the base station 404 includes the functionality to wirelessly receive and/or wirelessly transmit data, e.g., IEM data 200 received from and transmitted to the patch receiver 400 and the Internet.
  • data e.g., IEM data 200 received from and transmitted to the patch receiver 400 and the Internet.
  • the base station 404 may incorporate and/or be associated with, e.g., communicate with, various devices. Such devices may generate, receive, and/or communicate data, e.g., IEM data 200 .
  • the devices include, for example, clock radios, intelligent pill dispensers, pill managers, e.g., devices capable of receiving various substances and producing a combined substance, dose(s) of substances, etc., pharmaceutical compounding devices, “intelligent” devices such as scales, blood pressure measurement devices, exercise equipment, e.g., tread mills.
  • Further examples include body weight sensors, motion sensors, position sensors, e.g., bed sensors, chair sensors, portals in doorways, refrigerator and food devices, bathroom facilities devices, etc.
  • the mobile telephone 406 includes, for example, devices such as a short-range, portable electronic device used for mobile voice or data communication over a network of specialized cell site base stations.
  • the mobile telephone 406 is sometimes known as or referred to as “mobile”, “wireless”, “cellular phone”, “cell phone”, or “hand phone (HP)”.
  • mobile telephones may support many additional services and accessories such as short message service (SMS) for text messaging, email, packet switching for access to the Internet, java gaming, Bluetooth (short range data/voice communications), infrared, camera with video recorder, and MMS for sending and receiving photos and video.
  • SMS short message service
  • Some embodiments of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones.
  • PSTN public switched telephone network
  • satellite communications in the case of satellite phones.
  • Various embodiments of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
  • the mobile telephone 406 includes software, e.g., a software agent/application, associated with the IEM data 200 .
  • software e.g., a software agent/application
  • One example is an auto refill application related to or integrated with an auto refill system to facilitate automated prescription refill functions.
  • the software is preconfigured, i.e., configurable by the manufacturer/retailer; configurable by the consumer, i.e., downloadable from a website; or a combination of the same.
  • various embodiments of the hub ensure privacy requirements via predetermined methods, e.g., an IEM data source device 300 ingested by an individual transmits sensitive IEM data 200 via body tissues to an IEM data receiver 302 embodied in a patch receiver 400 removably attached to the individual's body. Signals associated with the sensitive IEM data 200 remain undetectable beyond the individual's body.
  • various computing components of the patch receiver 400 cleanse and/or encrypt the IEM data 200 for onward secure transmission. In this manner, breaches of sensitive data transmissions and/or unauthorized access to the sensitive data are avoided.
  • the hub include combinations of devices.
  • One such combination is an IEM data receiver 300 b such as the patch receiver 400 in communication with the handheld device 402 or the mobile telephone 406 .
  • the patch receiver 400 wirelessly transmits IEM data 200 to the mobile telephone 406 having a receiver and a software agent available thereon.
  • the receiver of the mobile telephone 406 receives the IEM data 200 .
  • a software agent e.g., an application, processes the ingested reported data 200 and displays various information related to the IEM data 200 via, for example, a customized graphical user interface (GUI).
  • GUI graphical user interface
  • the software agent generates displays with a predetermined “look and feel”, i.e., recognizable to a user as belonging to a predetermined group of software programs, GUIs, source devices, communities, etc.
  • the IEM data 200 may include data about an ingested medication.
  • the software agent may compare the data about the medication to a predetermined medication regimen. Upon verification that the proper medication has been ingested at the proper time, the software disables an audible alarm scheduled to alert the individual to take the (already ingested) medication, thus averting an unnecessary reminder and removing the annoyance associated therewith.
  • the software agent via the GUI, displays a standard message to the individual notifying of the medication ingested and the time of the next dosage.
  • the software agent may include functionality to generate or facilitate a financial transaction.
  • a certain event such as verification that the proper medication has been ingested at the proper time
  • the software agent upon occurrence of a certain event, such as verification that the proper medication has been ingested at the proper time, the software agent generates a predetermined charge for the ingested medication, the verification service, or both.
  • the charge is transmitted to a financial system, e.g., the patient's cell phone transmits the charge via an IEM data system to a computer system associated with the patient's financial institution where the charge is automatically applied against a financial account of the patient.
  • the transaction model may be based on various parameters.
  • a transaction is associated with a time based model wherein use of a product or service is charged according to the length of time the product or service is used.
  • a transaction is associated with a measured value delivery, wherein the value of the product or service is metered, measured, or otherwise valued and charged according to the ascertained value at predetermined time intervals.
  • a transaction is associated with therapy delivery, i.e., delivery of a therapeutic substance, event, service, etc.
  • therapeutic substances include medication.
  • therapeutic events include cardiac defibrillation acts and cardiac resynchronization acts.
  • therapeutic services include administration of therapeutics, therapeutic consultations, etc.
  • the IEM data systems 204 include any hardware component, software component, and/or communications component, as well as networks, systems, and subsystems of the same, which generally function to provide a service, function, activity, etc. related to the IEM data 200 .
  • the IEM data systems for example, collect, manipulate, calculate, transmit, receive, store, and/or otherwise communicate at least a portion of the IEM data.
  • Each IEM data system is built around a predefined business function or service and is enabled via the IEM data framework.
  • One or more IEM data systems may be integrated, interoperate, intercommunicate or otherwise share or further the collection, management, distribution/dissemination, billing and/or other activities related to IEM data.
  • one or more IEM data systems may be associated with one or more commercial systems.
  • one or more IEM data systems may be integrated with, interoperate with, and/or intercommunicate with one or more commercial systems.
  • One or more IEM data systems may otherwise share or further the IEM data related activities with one or more commercial systems.
  • the IEM data systems 204 include at least one component, e.g., hardware device, software, and/or communications component, which generally function to provide a service or activity related to the IEM data 200 , e.g., a computer to receive IEM data 200 from the hub 202 and display the IEM data 200 in conjunction with other information.
  • a component e.g., hardware device, software, and/or communications component, which generally function to provide a service or activity related to the IEM data 200 , e.g., a computer to receive IEM data 200 from the hub 202 and display the IEM data 200 in conjunction with other information.
  • components include a computer, a receiver, a transmitter, an application, a software module, a data storage medium, a processor, a memory component, a personal communication device, software, a communication link, and a handheld device.
  • two or more IEM data systems 204 can cooperatively or independently use one or more of the same components.
  • an auto refill system and an approval system can each access a data storage medium having IEM data related to patients and prescriptions and can each utilize the IEM data for predetermined purpose(s).
  • FIG. 5 illustrates exemplary IEM data systems 204 associated with the IEM data framework of FIG. 2 , according to one embodiment.
  • the exemplary IEM data systems 204 include, for example, feedback loop systems 204 a , decision support systems 204 b , auto refill systems 204 c , patient tools 204 d , behavioral medicine systems 204 e , incentive systems 204 f , personalized commercial products/services 204 g , auto billing systems 204 h , tracking systems 204 i , interdiction systems 204 j , subscription systems 204 k , IEM data collections 204 l , approval systems 204 m , forecasting systems 204 n , financial systems 2040 , an IEM data phone system 204 p , and social networks 204 q.
  • Feedback loop systems aggregate various sources of data, e.g., IEM data, analyze the aggregated data, and/or provide feedback information to multiple profile recipients based on the aggregation/analysis.
  • FIG. 6 illustrates an exemplary IEM data framework 102 including a feedback loop system 204 a , according to one embodiment.
  • the feedback loop system 204 a includes, for example, server 500 having application 502 and database 504 .
  • the IEM data framework 102 further includes IEM data 200 and the hub, embodied here as the mobile telephone 406 .
  • the feedback loop system 204 a may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • a patient 506 ingests medication having an ingestible device integrated therein.
  • the ingestible device generates IEM data 200 in the form of medication identification and time of ingestion information.
  • the ingestible device transmits the information to a receiver.
  • the receiver communicates the information to the hub 202 embodied as a mobile telephone 406 associated with the patient 506 .
  • a software agent resident on the mobile telephone 406 aggregates the received medication identification and time of ingestion information with the blood pressure measurement information and forwards the aggregated data to the feedback loop system 204 a .
  • the feedback loop system 204 a having server 500 , software 502 , and database 504 , receives the aggregated data from the mobile telephone 406 and, via the software 502 , compares the aggregated data to patient information in the database 504 to determine if the patient 506 took the most recent dose of medication in a timely manner, if the patient 506 has consistently taken the medication in a timely manner, and if the blood pressure measurement coincides with an acceptable range of blood pressure measurements.
  • the feedback loop system 204 a Based on an analysis of the data, the feedback loop system 204 a generates additional IEM data 200 in the form of a decision on patient adherence and a decision on treatment efficacy.
  • the IEM data 200 decisions are stored in database 504 for future reference and forwarded to a commercial system such as a healthcare system 106 a associated with a medical center computer system and having patient data such as physician's medication instructions, etc.
  • the healthcare system 106 a facilitates automatic processing and feedback, enables accessibility to the IEM data 200 , e.g., by a healthcare provider, enables data input, e.g., healthcare instructions by the healthcare provider, etc.
  • the healthcare system 106 a compares the decision data received from the feedback loop system 106 a with stored healthcare providers instructions, e.g., medication regimen adherence is satisfactory and no action is needed at this time; medication regimen adherence is not satisfactory and action is needed at this time; medication regimen is satisfactory but action is needed at this time, e.g., titration is needed, etc., and generates the comparison result data for review by the healthcare provider.
  • stored healthcare providers instructions e.g., medication regimen adherence is satisfactory and no action is needed at this time; medication regimen adherence is not satisfactory and action is needed at this time; medication regimen is satisfactory but action is needed at this time, e.g., titration is needed, etc.
  • the healthcare provider utilizes the information to advantageously adjust patient treatment parameters, e.g., prescription and dosage requirements.
  • the healthcare provider inputs data based on the comparison results, e.g., the adjusted treatment parameters.
  • the input data are processed by the healthcare system 106 a and forwarded to the feedback loop system 204 a .
  • the feedback loop system 204 a receives the feedback loop data, reconciles the feedback loop data with the patient information resident in the database 504 , and forwards the notification to the mobile telephone 406 of the patient 506 .
  • the feedback loop system 204 a and/or the healthcare system 106 a interoperate, e.g., communicate with at least one other IEM data system 204 and/or commercial system 106 .
  • either the feedback loop system 204 a or the healthcare system 106 a forwards the adjusted medication regimen in the form of a prescription to a commercial system such as a pharmacy system 106 b for refill.
  • the pharmacy system 106 b fills the prescription and communicates a message to the feedback loop system 204 a notifying of the same.
  • the feedback loop system 204 a updates the patient's data in database 504 to reflect the new prescription and fulfillment of the prescription, and communicates the notification to the patient's mobile telephone 406 .
  • Decision support systems may generate, store, provide data, e.g., IEM data, which may be used to inform and support decisions, e.g., stakeholders' decisions.
  • data e.g., IEM data
  • multiple instances of individualized ingestible event marker data and physiologic data are gathered and combined into anonymized patient population data.
  • Pharmaceutical research and development groups, universities, etc. utilize the data for various purposes, e.g., information to formulate new product lines, adjust existing therapies, etc.
  • the data may be accessed, for example, by subscription to population data feeds, access to the database, etc.
  • FIG. 7 illustrates an exemplary IEM data framework 102 having a decision support system 204 b , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub 202 , shown here embodied as the mobile telephone 406 .
  • the feedback loop system 204 a may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • IEM data e.g., IEM data 200 a and IEM data 200 b , related to multiple individuals, e.g., patient 506 a and patient 506 b , respectively, are communicated via the hubs, e.g., mobile telephone 406 a and mobile telephone 406 b , respectively, to the decision support system 204 b comprising, for example, server 500 , software 502 , and database 504 .
  • the IEM data 200 a and 200 b may be encrypted.
  • the decision support system 204 b processes and stores the received data.
  • software 502 anonymizes the patient data, i.e., removes all aspects of the data tending to identify an individual and removes, according to a predetermined scheme, all aspects of the data designated as private, sensitive, confidential in nature, etc.
  • the software 502 may provide various other functions such as integrating the anonymized patient data with existing patient population data in the database 504 .
  • the integrated data in database 504 may be accessed by, delivered to, or otherwise utilized by multiple systems and parties.
  • Such systems include for example, commercial systems 104 such as pharmaceutic systems 106 c and university systems 106 d .
  • Parties associated with the pharmaceutic systems 106 c may utilize the patient population data, for example, for statistical analysis and projective capabilities such as determining the efficacy, cost efficiency, profit, etc. of a particular medication and projecting from the determination new product line concepts/therapies, etc.
  • Parties associated with universities may utilize the patient population data to research symptomatology, analyze medication risks, etc.
  • the decision support system 204 b interoperate, e.g., communicate, therebetween.
  • the decision support system 204 b communicates patient population data to the feedback loop system 204 a .
  • the feedback loop system 204 a communicates the patient population data to mobile telephone 406 a of patient 506 a.
  • the decision data derived from a patient population such as medication efficacy may be correlated with an individual's medication therapy, and communicated via marketing system specifically targeted for that individual.
  • Auto refill systems automatically fill or refill prescriptions.
  • IEM data identifying an ingested medication are gathered and reconciled with current prescription information to identify depleted prescription supplies. If the supply is depleted, a refill order is automatically triggered to the appropriate pharmacy. The pharmacy automatically refills the order, generates a bill, and charges the appropriate account, e.g., via a real time, online financial transaction.
  • FIG. 8 illustrates an exemplary IEM data framework 102 having an auto refill system 204 c , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub 202 , shown here embodied as the base station 404 .
  • the auto refill system 204 c may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • the patient 506 ingests prescription medication in conjunction with an ingestible device.
  • the ingestible device identifies the medication type and dosage, and transmits the IEM data 200 via, for example, conductive transmission to the patch receiver 400 , which may be removably attached to the patient 506 .
  • the patch receiver 400 transmits the IEM data 200 to base station 404 .
  • the base station 400 forwards the IEM data 200 to the auto refill system 204 c .
  • the software 502 of the auto refill system 204 c compares the medication type and dosage of the IEM data 200 against prescription information stored in the database 504 .
  • the prescription information may include the number of tablets in the prescription at time of fill, the dosage instructions, and a running total of the ingested tablets as per previously received information. If the comparison indicates depletion of the prescription medication, database 504 is checked for the number of remaining refills. If refills are remaining, any sensitive data of the IEM data 200 are cleansed, i.e., removed, and a prescription refill request with pertinent information is compiled and transmitted according to predetermined security protocol and via predetermined channel(s) to a commercial system 106 such as the pharmacy system 106 b . Upon receipt by the pharmacy system 106 b , the refill request is parsed and verified, and the prescription is refilled.
  • Payment for refill can be effected, for example, via a real-time, online transaction between the pharmacy system 106 b and an IEM data system 204 and/or commercial system, e.g., financial transaction system 106 e .
  • the financial transaction system 106 e may receive the financial transaction, e.g., prescription refill charge, via a predetermination communication channel.
  • the financial transaction system 106 e verifies the patient account information and completes the transaction, notifying the pharmacy system 106 b.
  • Notification of status of refill and payment for refill can be provided via predetermined communication channel(s) to the base station 300 , e.g., an email for display on the laptop computer, a text message to the patient's mobile telephone, etc.
  • Patient tools include any data, information, software, websites, etc. that provide information or assist a particular patient focus, e.g., tracking tools to assist a patient in cardiac health management, patient personalization of their own data, etc.
  • Various users may be associated with the patient tools. Examples include various users within a patient community, e.g., patients, family caregivers, and professional caregivers such as physicians.
  • FIG. 9 illustrates an exemplary IEM data framework 102 having a patient tools 204 d , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 a - c and the hubs, shown here embodied as the base station 404 , the mobile telephone 406 , and the handheld device 402 .
  • the patient tools 204 d may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • multiple parties such as patients 506 a - c access the patient tools 204 d , which may be embodied as the server 500 having the software 502 and the database 504 having IEM data 200 in the form of at least patient tools.
  • Patients 506 a - c may access the patient tools 204 d , for example, via the base station 404 , the mobile telephone 406 , and the handheld device 402 , respectively.
  • Patient 506 b may search the database 504 for patient tools related to mental illness management.
  • the patient tools may be provided in the form of downloadable data/applications to assist in tracking, monitoring, diagnosing, and notifying a patient of a relevant health issue, e.g., medication dosage schedule, etc.
  • Patient 506 b may download the application onto, for example, the mobile telephone 406 .
  • Patient 506 b may further communicate via, for example, the mobile telephone 406 with at least one commercial system such as the healthcare system 106 a , which may provide further medical data, instruction, etc., relevant to the patient 506 b ′s mental illness management pursuit.
  • the patient tools 204 d may be configured for and utilized by for various parties besides the patient, e.g., a patient community, family caregivers, and professional caregivers.
  • Behavioral medicine systems may collect, track, and analyze behavior-related data to identify causal failure points in treatment and to predict corrective action by prescribing specific behavior modifications.
  • the behavioral medicine systems may assist patients via questionnaires and patient profile assessment on symptomatologic or therapeutic subjects, e.g., in various decision processes by display a menu-guided series of questions and receiving answer(s) from the patient.
  • FIG. 10 illustrates an exemplary IEM data framework 102 having a behavioral medicine system 204 e , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as the base station 404 and the mobile telephone 406 .
  • the behavioral medicine system 204 e may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • the behavioral medicine system 204 e may be located in whole or in part on a patient-related device such as the mobile telephone 406 .
  • the software agent may assist the patient in various endeavors, e.g., diet choices, smoking cessation, etc.
  • the assistance may be provided, by example, by generating for display on the mobile telephone 406 question sets related to diet and smoking cessation.
  • the patient may answer the questions, e.g., select from various answer options.
  • the software agent may categorize the patient according to predetermined categories.
  • the software agent may provide language and menu choices based on the patient categorization.
  • patient behavior is tracked with respect to various IEM data, e.g., patient parameters, sometimes referred to herein as “sentinels for wellness”.
  • sentinels for wellness include medication therapy adherence, weight, blood pressure, etc.
  • the sentinels for wellness may be derived, for example, from various health devices 300 c such as intelligent scales, cardiac-related devices, etc.
  • patient 506 ingests medication according to physician instructions.
  • the IEM data 200 in the form of ingestion information identifying the ingested medication and the time of ingestion are captured via an ingestion device and communicated to the patient's mobile telephone 406 .
  • Also captured via health device(s) 300 c at the time of medication ingestion are the patient's blood pressure and weight.
  • the timing of the foregoing data captures may be synchronized via, for example, software utilizing a reminder system to alert the patient to take the medication at a particular time.
  • the software associated with the mobile telephone 406 Upon receiving the ingestion information, e.g., confirmation of ingestion, the software associated with the mobile telephone 406 communicably triggers health device(s) 300 c to determine blood pressure and weight, and forwards such data to the mobile telephone 406 for aggregation with the IEM data 200 in the form of the ingestion information.
  • the software associated with the mobile telephone 406 Upon receiving the ingestion information, e.g., confirmation of ingestion, the software associated with the mobile telephone 406 communicably triggers health device(s) 300 c to determine blood pressure and weight, and forwards such data to the mobile telephone 406 for aggregation with the IEM data 200 in the form of the ingestion information.
  • the aggregated data may be forwarded to behavioral medicine system 204 e , which may be configured, for example, as the mobile telephone and software 406 , the server 500 including the software 502 and the database 504 , and/or other configurations. Upon receipt of the aggregated data, various processing may take place.
  • processing is analysis of the IEM data 200 to determine degree of patient adherence to medication regimen, i.e., determine if the patient ingested the prescribed medication in the right dosage at the prescribed time interval(s).
  • Another example of processing is analysis of the IEM data 200 to determine if the blood pressure measurement is in line with physician expectations.
  • the notification of patient adherence to the medication regimen and the blood pressure measurement may be communicated to a physician system 106 f for review by the patient's physician.
  • the physician may update the IEM data 200 , e.g., determine an adjustment in the medication regimen is needed and communicate, via the behavioral medicine system, the updated medication regimen to the patient's mobile telephone 406 and to the pharmacy system 106 b for filling the updated prescription.
  • the physician may alert the patient, via the behavioral medicine system 204 e , to make an appointment for a physical review.
  • the behavioral medicine system 204 e may generate and/or forward a reminder to the hub, e.g., mobile telephone 406 of the patient 506 .
  • the reminder may include the dosing schedule, a reminder for the upcoming dose, instructions to follow in case of a missed dose, etc.
  • the behavioral medicine system 204 e may interoperate with an alert system, e.g., the IEM data phone system, infra, and compare current dosage information to predetermined thresholds to determine if a critical status dosing event exists, e.g., the patient is critically underdosed or critically overdosed. If such a determination is made, the appropriate system may generate an alert to appropriate parties, e.g., generate a 911 emergency call for medical assistance, generate an emergency alert to the physician system 106 f , and generate an alert to a family caregiver system 106 g , e.g., a family member's mobile telephone.
  • an alert system e.g., the IEM data phone system, infra
  • the appropriate system may generate an alert to appropriate parties, e.g., generate a 911 emergency call for medical assistance, generate an emergency alert to the physician system 106 f , and generate an alert to a family caregiver system 106 g , e.g., a family member's mobile telephone
  • analysis of the patient's communication patterns/habits is performed to determine patient parameters, indicated actions, etc.
  • an application such as software 502 resident on the mobile telephone 406 tracks the patient's phone usage to determine communication patterns.
  • the family caregivers, physician, etc. may selectively configure tracking parameters of the application to determine various patient communication thresholds, patterns, etc.
  • the software monitors communication from/to the selected device, e.g., the patient's mobile telephone 406 .
  • the application mines mobile telephone records of the associated carrier to determine calling and called parties, heavy volume call time, no call times, etc. and builds a profile against the same.
  • the application monitors use of the mobile telephone 406 and identifies significant, e.g., user selected, deviations from the profile. Upon identification of a deviation, the application initiates predetermined actions, e.g., communicates an alert to the physician and/or family caregiver via the healthcare system 106 a , the physician system 106 f , and/or the family caregiver system 106 g.
  • predetermined actions e.g., communicates an alert to the physician and/or family caregiver via the healthcare system 106 a , the physician system 106 f , and/or the family caregiver system 106 g.
  • the aggregated data may be collected from various sources, aggregated at various and/or multiple points, and/or communicated via various channels to/from various devices.
  • cardiac data is derived via electrical tomography, as heretofore discussed.
  • the cardiac data is communicated directly or indirectly, e.g., by the patch receiver 400 , to a software application on the hub, e.g., the mobile telephone 406 .
  • the software application on the mobile telephone 406 aggregates the cardiac data with the IEM data, e.g., pill ingestion-related data, and displays the various data via a graphical user interface (GUI).
  • GUI graphical user interface
  • the behavioral medicine system ascertains that the patient has neglected to take the medication at the appropriate times.
  • Reminder alerts for upcoming medication dosing time(s) are sent to the patient via the mobile telephone.
  • the patient timely ingests the medication, resulting in a change in the sentinels for wellness.
  • Incentive systems provide incentives and rebates through various programs.
  • the incentives and rebates are based on, or otherwise associated with, the IEM data.
  • the IEM data may be analyzed via, for example, an IEM data system 204 to determine if certain criteria/thresholds/goals are evident. Based on the determination, incentives tied to or associated with the criteria/threshold/goals may be generated.
  • FIG. 11 illustrates an exemplary IEM data framework 102 having an incentive system 204 f , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as the mobile telephone 406 .
  • the incentive system 204 f may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • patient adherence is tracked with respect to various patient parameters, e.g., medication therapy and adherence. Incentives may be awarded accordingly.
  • patient 506 ingests medication according to physician instructions.
  • the IEM data 200 in the form of ingestion information identifying the ingested medication and the time of ingestion are captured via an ingestion device and communicated to the patient's mobile telephone 406 , and to the behavioral medicine system 204 e .
  • the behavioral medicine system 204 e verifies patient 506 adherence to the prescribed medication regimen, and sends verification to the incentive system 204 f .
  • the incentive system 204 f via the software 502 and the database 504 , determines the price paid for the medication, and issues a rebate or credit against the cost.
  • the rebate may be issued and a financial transaction in the amount of the rebate posted to the patient's financial account via the financial transaction system 106 e.
  • the rebate may be communicated and applied to an account associated with the patient via the pharmacy system 106 b with, for example, a credit against the next refill for the patient's prescription medication.
  • the patient's blood pressure and weight may be captured via health device(s) 300 c at time of medication ingestion.
  • the timing of the foregoing data captures may be synchronized via software utilizing a reminder system to alert the patient to take the medication at a particular time.
  • the software associated with the mobile telephone 406 may communicably trigger health device(s) 300 c to determine blood pressure and weight, and forward such data to the mobile telephone 406 for aggregation with the IEM data 200 in the form of the ingestion information.
  • the aggregated data may be communicated to the incentive system 204 f where the software 502 and/or database 504 may be utilized to determine if the patient's weight and blood pressure meet acceptable predetermined thresholds. If, for example, the weight exceeds an acceptable threshold, the incentive system 204 f may generate an incentive in the form of a discount membership offering at a local health club, etc.
  • the offering may be constructed using various data parameters and demographics, e.g., geographical location of the patient, amount of weight to be lost, health assessment scoring based on individualized patient health parameters, lists of participating health clubs, etc.
  • the incentive may be communicated to the patient 506 via, for example, the patient's mobile telephone 506 .
  • Personalized commercial products/services provide individualized products and services predicated on or related to IEM data.
  • FIG. 12 illustrates an exemplary IEM data framework 102 having a personalized commercial products/services system 204 g , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub 202 .
  • the commercial products/services system 204 g may be embodied as, for example, an IEM data device, e.g., a patch receiver.
  • the commercial products/services system 204 g may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • commercial products/services system 204 g include consumer-friendly receivers, such as patch receivers.
  • the receivers comprise various accessories and incorporate various designs.
  • children's patch receivers may comprise cartoon character appliqués.
  • Teens' patch receivers may comprise tattoo-like design aspects.
  • Further examples include IEM data receivers embodied as/integrated into accessories, e.g., earrings, naval rings, and other means of adornment, etc.
  • Commercial products/services system 204 g further comprise branded or “community” associated products and services.
  • Auto billing systems receive, process, and/or facilitate payment via a financial account.
  • Auto billing applications associated with the auto billing system and/or with financial institution systems seamlessly interoperate to generate a bill, verify accountholder information, charge an account, etc. Statements are updated to reflect payment information. Similar applications may be applied for prescriptions, consumer products, information provision via personal devices, etc.
  • FIG. 13 illustrates an exemplary IEM data framework 102 having an auto billing system 204 h , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as the handheld device 402 .
  • the auto billing system 204 h may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • various parties such as patient 506 , physicians, pharmaceutical companies, etc., subscribe to information feeds/patient population data of IEM data 200 to further business goals, manage health care, etc.
  • the parties may receive the information feeds/access population data, etc. via a variety of devices.
  • patient 506 may receive an information feed via hub 202 embodied as the handheld device 402 , which, via a software agent, may generate a financial transaction in the form of an invoice for the information feed displayed for the patient 506 . Payment may be effected via automated methods.
  • the patient selects various payment options via the software agent resident on the handheld device 402 .
  • a payment transaction is generated and communicated to the financial transaction system 106 e .
  • the financial transaction system 106 e automatically charges an account associated with the patient 506 . Confirmation of the payment together with digital, e.g., electronic, copies of the invoice are provided to the software agent resident on the handheld device 402 for the patient 506 to view, etc.
  • a bill and/or financial transaction are automatically generated upon predetermined criteria.
  • the predetermined criteria include, for example, delivery of information associated with an information feed or other source, access to a data collection, e.g., patient population data stored in a database, etc.
  • the patient selects various payment options via the software agent resident on the handheld device 402 , and a payment transaction is generated and communicated to the financial transaction system 106 e .
  • the financial transaction system 106 e automatically charges an account associated with the patient 506 . Confirmation of the payment together with digital copies of the invoice are provided to the software agent resident on the handheld device 402 for the patient 506 to view, etc.
  • a healthcare provider may access patient population data stored in decision support system 204 b via the healthcare system 106 a .
  • Software of the decision support system 204 b may cooperate with the software 502 and the database 504 of the auto billing system 204 h to identify the party to be billed for the access.
  • the auto billing system 204 h may automatically generate a bill and/or financial transaction for the access via one or more of the aforedescribed channels.
  • Tracking systems track and integrate product movement data.
  • the life cycle of an ingestible device may be tracked from manufacture to shipment, pharmacy inventory, delivery to patient, ingestion and expulsion.
  • FIG. 14 illustrates an exemplary IEM data framework 102 having a tracking system 204 i , according to one embodiment.
  • the IEM data framework 102 further includes the IEM data 200 and the hub, shown here embodied as a scanner 1402 .
  • the tracking system 204 i may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • a pharmaceutical manufacturer produces an ingestible device 302 a such as a particular medication having an IEM system device therein.
  • the IEM system device contains various IEM data 200 such as medication identification, batch number, lot number, and manufacturer identification.
  • the scanner 1402 may be utilized at various times/locations to scan the ingestible device 302 a and capture the IEM data 200 associated therewith.
  • the IEM data 200 may then be stored, processed, etc., via, for example, the software 502 and the database 504 of the tracking system 204 i .
  • the IEM data 200 may be read by the scanner at a shipping point and when received by a pharmacy to ensure inventory control, distribution integrity, and chain of custody for restricted pharmaceuticals, etc.
  • the tracking information may be used, for example, by regulatory agencies systems 106 i to determine regulatory adherence, etc.
  • Interdiction systems track, reconcile, and support interdiction programs.
  • the interdiction programs include, for example, programs related to drug identification and use detection by sworn personnel, search and seizure activities, etc.
  • FIG. 15 illustrates an exemplary IEM data framework 102 having an interdiction system 204 j , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and hub, shown here embodied as a scanner 1402 .
  • the interdiction system 204 j may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • a pharmaceutical manufacturer produces an ingestible device 302 a such as a particular medication having an IEM system device therein.
  • the IEM system device contains various IEM data 200 such as medication identification, batch number, lot number, and manufacturer identification.
  • the scanner 1402 may be utilized at various times/locations to scan the ingestible device 302 a and capture the IEM data 200 associated therewith.
  • the IEM data 200 may then be communicated to, for example, the software 502 and the database 504 of the interdiction system 204 j , where the IEM data 200 may be accessed by and communicated to regulatory agency systems 106 i to facilitate various regulatory and enforcement functions, to locate missing controlled substances, to intercept contraband, to identify unknown substances, and to otherwise support agency and regulatory activities.
  • the IEM data 200 may be communicated to/from, for example the interdiction system 204 j from/to the tracking system 204 i , for processing, storage, etc.
  • the IEM data 200 may be read by the scanner at a shipping point and read by a pharmacy to ensure inventory control, distribution integrity, and chain of custody for restricted pharmaceuticals, etc.
  • the scanned (read) IEM data 200 may be reconciled between the interdiction system 204 j and the tracking system 204 i to ensure complete shipment, to track shipments through various jurisdictions, etc.
  • the IEM data 200 such as the identifier data, shipment data, patient information, recipient information, and commercial activities are tracked and reconciled to intercept contraband and otherwise support agency and regulatory activities.
  • Subscription systems enable subscription to various IR information feeds and data/knowledge collections, e.g., IEM data collection system.
  • IEM data information feeds and/or IEM data collections which aggregate various sources of data and fuse the data into integrated, individualized information based on the subscriber's requirements.
  • the information fusion may include, for example, personalized medication regimens and alert applications, individual social community information, music, etc.
  • the information may be automatically billed, for example, under a single point of charge model on a recurring basis.
  • the agent may be provided as part of an embedded device, e.g., standard application on a mobile telephone, etc.
  • FIG. 16 illustrates an exemplary IEM data framework 102 having a subscription system 204 k , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a mobile telephone 406 .
  • the subscription system 204 k may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • the patient 506 subscribes to various information feed(s) and/or IEM data collections, discussed hereinafter in detail.
  • the information feed(s) include, for example, structured and non-structured information on a variety of topics generated or delivered from various sources, e.g., websites, blogs, etc.
  • the IEM data collections include storage repositories having IEM data.
  • the storage repositories may be associated, e.g., integral to or remote from, the subscription system 204 k .
  • an IEM data collection may be resident in part or wholly in database 504 of the subscription system 204 k.
  • IEM data 200 are communicated from a subscription source to a subscriber, e.g., a subscriber's device.
  • the subscription source includes, for example, IEM data systems 204 , e.g., the database 504 of the subscription system 204 k , feedback loop system 204 a , patient tools 204 d , and decision support system 204 b ; commercial systems 106 b , e.g., online medical and business information/newsfeed sources, healthcare system 106 a ; and other sources, e.g., devices associated with the patient 506 , the hub, etc.
  • the subscriber includes, for example, a person, group, or resource, e.g., a database, a computer system, server, network, etc.
  • subscription services may be initiated via, for example, a software agent resident on the hub or communication with a local or remote system such as the healthcare system 106 a.
  • the subscriptions services may be billed and paid via, for example, the subscription system 204 k and the financial transaction system 106 e.
  • the subscription newsfeeds/data may be combined or integrated into a single or multiple newsfeeds, e.g., the software 502 and/or the database 504 of the subscription system 204 k may enable data aggregation, etc.
  • the patient 506 subscribes to a healthcare newsfeed and a pharmacy newsfeed, one or more having IEM data 200 , via the subscription system 204 k .
  • the patient subscribes by selecting an application, e.g., software agent resident on the hub, illustratively embodied here as the mobile telephone 406 .
  • the order is communicated to the subscription system 204 k , which, via the software 502 and the database 504 , confirms, processes, stores, and bills the order.
  • the subscriber's financial account may be automatically charged, for example, by communicating invoice information to a financial transaction system 106 e associated with the subscriber's account. Confirmation of the charge may be communicated from the financial transaction system 106 e to the subscriber via the subscription system 204 k and/or the mobile telephone 406 .
  • the subscription system 204 k receives the healthcare newsfeed information and the pharmacy newsfeed information.
  • the software 502 of the subscription system compares subscriber data of the patient 506 in the database 504 against subscriber data found in the pharmacy newsfeed, e.g., patients who are prescribed medications for cardiac therapy. Based on the comparison, software 502 separates the data of the pharmacy newsfeeds relevant to the subscriber, combines the relevant data with the healthcare newsfeed information and communicates the combined newsfeed information to the mobile telephone 406 for access and display.
  • the IEM data collection system provides/facilitates access to/storage of the IEM data.
  • Examples of the IEM data include patient population data and electronic medical records.
  • IEM data collections may include functionality related to the collection, management, manipulation, storage, dissemination, and billing of IEM data.
  • FIG. 17 illustrates an exemplary IEM data framework 102 having an IEM data collection system 204 l , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a handheld device 402 .
  • the IEM data collection system 204 l may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • patient population data e.g., anonymized, empirical patient data
  • the patient population data may be received from various sources, e.g., the IEM data 200 associated with one or more patient 506 , IEM data systems 204 such as behavioral medicine systems 204 e , subscription systems 204 k , patient tools 204 d , etc., and commercial systems such as healthcare systems 106 a , pharmaceutic systems 106 c , university systems 106 d , etc.
  • the IEM data collection system 204 l may be consolidated in a single physical and/or logical location, e.g., the database 504 of the server 500 of the IEM data collection system 204 l , or distributed across two or more systems or locations, e.g., remotely distributed on multiple IEM data systems 204 , associated with commercial systems 106 , and/or distributed between the IEM data collection system 204 l and other systems/locations.
  • Multiprofile users may access, utilize, and/or contribute to the IEM data collection system 204 l .
  • Multiprofile users include, for example, individuals or groups using various methods/devices for access, utilization, and/or contribution. Examples of multiprofile users include patient 506 , family members and family caregivers, professionals, academics, corporates, etc.
  • the methods/devices include the hub devices such as a mobile telephone, base station, handheld device, etc., as well as system components associated with IEM data systems and commercial systems, e.g., laptop computer associated with a university network, a desktop computer associated with the family caregiver system 106 g , etc.
  • a researcher using the university system 106 d , accesses the IEM data collection system 204 l via the Internet, etc. and submits queries against the patient population data, extracts various data, etc.
  • the IEM data collection system 204 l includes privacy assurance, authentication, and validation mechanisms with respect to financial, medical, and other privacy information.
  • the software 502 may authenticate users.
  • the software 502 may cleanse/verify data to ensure predetermined privacy thresholds are met.
  • FIG. 18 illustrates an exemplary IEM data framework 102 having an approval system 204 m , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 , the hub, shown here embodied as a handheld device 402 , and an associated intelligent pill dispenser 1802 .
  • the approval system 204 m may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • the patient 506 opens an intelligent pill dispenser 1802 , e.g., a pill dispenser having a microchip and communication abilities.
  • the patient 506 removes a pill having an IEM system from the intelligent pill dispenser 1802 .
  • the intelligent pill dispenser 1802 via its microchip, senses the removal of the pill, receives a signal from an IEM system that the patient 506 has ingested the pill, and determines the remaining quantity. If the remaining quantity is fewer than a predetermined threshold quantity, the intelligent pill dispenser 1802 communicates a refill request to the approval system 204 m .
  • the approval system 204 m via, for example, the software 502 and the database 504 , verify information associated with the patient 506 , e.g., patient name, prescription identification, medication ingestion verification, refill timing, etc.
  • the approval system 204 m may interoperate with, e.g., communicate with, various IEM data systems 204 and/or commercial systems 106 to obtain/validate information.
  • data provided to/resident in the approval system 204 m may be reconciled with medical records of healthcare system 106 , the refill request approved by approval system 204 m , and a refill communicated to the pharmacy system 106 b.
  • Forecasting systems aggregate data and/or facilitate analysis of the aggregated data/data collections to derive/generate predictive information.
  • FIG. 19 illustrates an exemplary IEM data framework 102 having a forecasting system 204 n , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a base station 404 .
  • the forecasting system 204 n may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • IEM data 200 are received by the base station 404 from ingestible devices associated with patients 506 a - c .
  • the base station 404 communicates the IEM data 200 to the IEM data collection system 204 l , which anonymizes the IEM data 200 and aggregates the anonymized IEM data 200 with patient population data.
  • the IEM data collection system 204 l communicates all or a portion of the patient population data to the forecasting system 204 n , where the software 502 , e.g., one or more applications, processes the patient population data to derive various statistics, conclusions, forecasts, etc., according to predetermined requirements, objectives, etc.
  • the software 502 processes the patient population data and correlates various data such as blood pressure readings over a predetermined period of time versus medication taken versus adherence to medication regimen to determine overall efficacy of medication regimen and to forecast titrated patient dosing based on the overall efficacy findings.
  • Multiple profile parties e.g., analysts using the pharamceutic systems 106 e , agents using the regulatory agency systems 106 i , and researchers using the university systems 106 d , access the forecasting system 204 n .
  • the multiple profile parties utilize various tools, e.g., the software 502 , to run analytical and forecasting applications again the patient population data and to access various forecasting data available in connection with the forecasting system 204 n.
  • the patient 506 places an order for a product/service, e.g., a newsfeed service from the subscription system 204 k .
  • the subscription system 204 k via its software, interoperates with the financial system 204 o .
  • the subscription system 204 k for example, securely communicates encrypted patient financial information such as account number and subscription information.
  • the financial system 204 o authenticates the patient information and securely interoperates with the patient's financial institution, e.g., via a commercial system 106 such as the financial transaction system 106 e to charge the patient's account and provide charge information/confirmation to the patient 506 via, for example, the mobile telephone 406 .
  • the IEM data phone enables IEM data related applications.
  • application(s) include pill regimen scheduling applications, alert reminder applications, auto refill for medication applications, patient tool applications, social networking applications, incentive tracker applications, auto billing applications, subscription applications, approval applications, and financial transaction applications.
  • the applications may be integrated with, associated with, or independent of one another.
  • the applications may further be manufacturer-installable on the IEM data phone, downloadable or otherwise installable by a wholesaler, retailer, user, etc. Installation may be independent or bundled with other software, products, etc.
  • the applications are user-configurable, downloadable, upgradeable, etc.
  • the IEM data phone and/or its applications may share common features, e.g., a common graphical user interface (GUI); branding, i.e., a collection of images and ideas representing an economic producer such as concrete symbols embodied as a name, logo, slogan, design scheme, etc.
  • GUI graphical user interface
  • the IEM data phone may also include various connectivity schemes, e.g., Internet and cellular; may provide multimedia capabilities; and may embody various hardware and software configurations.
  • the IEM data phone may be embodied in a variety of devices, e.g., the mobile telephone 406 , the handheld device 402 , etc.
  • FIG. 21 illustrates an exemplary IEM data framework 102 having an IEM data phone 204 p , according to one embodiment.
  • the IEM data phone 204 p may serve as the hub, for example.
  • IEM data framework 102 further includes IEM data 200 .
  • the IEM data phone 204 p may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • the IEM data phone 204 p includes the software 502 , e.g., a portfolio of branded applications such as pill regimen scheduling, alert reminders, auto refills, patient tools, social networking, incentive trackers, auto billing, subscriptions, approvals, and financial applications.
  • a portfolio of branded applications such as pill regimen scheduling, alert reminders, auto refills, patient tools, social networking, incentive trackers, auto billing, subscriptions, approvals, and financial applications.
  • the pill regimen scheduling application may accept, reconcile, calendar, and manage contraindications and interactions of medication regimen(s).
  • the patient 506 may input information related to one or more prescriptions, including the pharmaceutical name and dosage.
  • the pill regimen scheduling application may check the input information against existing information stored on the IEM data phone 204 p , e.g., in the database 504 , or elsewhere, e.g., the pharmacy 106 b .
  • the pill regimen scheduling application may provide information regarding contraindicated medications, side effects, precautionary instructions.
  • the pill regimen scheduling application may calendar the dosing information and generate alerts, e.g., reminders generated at appropriate times alerting the patient to ingest the medication.
  • the alerts may be audible, visual, email, text message, etc. and may be integrated with, or independent of, alert reminder application(s).
  • the alert reminder application may accept or access various data associated with scheduling, including IEM data 200 , and generate alerts at appropriate times.
  • the alerts may be audible, visual, email, text message, etc. and may be integrated with or independent of alert reminder application(s).
  • the alert application may be user-configurable, e.g., type of alert, repetition of alert, interval of repetition, receivers of alert.
  • the alerts may be associated with various devices of the patient, family caregivers, friends, etc.
  • the patient 506 may schedule reminders to be sent to the user's device, e.g., the IEM data phone 204 p , the handheld device 402 , the base station 404 , the mobile telephone 406 , etc.
  • the alert reminder application may be integrated with other applications/systems.
  • an IEM system associated with the patient 506 may, for example, detect medication ingestion event(s) and communicate the IEM data 200 associated with the medication ingestion event(s) to the alert reminder application via the IEM data phone 204 p .
  • the alert reminder application may interoperate with the pill regimen scheduling application and perform various checks, e.g., the ingested medication was actually prescribed for the person that ingested it; the ingested medication was ingested in the correct dosage; the ingested medication was ingested at the prescribed time interval; etc.
  • Predetermined criteria may be used to determine if/when the alert reminders application generates an alert, reminder, etc.
  • the alert reminder system upon a determination that the ingested medication was not prescribed for the person ingesting it or the wrong dosage was ingested, the alert reminder system generates alert(s) to a predetermined destination, e.g., alerts in the form of text messages to mobile telephones associated with the family caregiver system 106 g , alerts in the form of email/text messages to the healthcare system 106 a and the physician system 106 f .
  • the alert reminder application may generate a call from the IEM data phone 204 p to the emergency assistance system, e.g., place a 911 call.
  • the call (prerecorded audio, text message, etc.) may contain information such as the patient's name, the nature of the emergency, the ingestion details, physician and family caregiver information, and the physical location of the person ingesting the medication.
  • the auto refill application may facilitate automatic refill of a prescription medication via interoperation with, for example, the pharmacy system 106 b , etc.
  • the patient tool application may be provided on or accessible from the IEM data phone 204 p .
  • software tools for tracking dietary and physiologic symptoms may facilitate user entry of dietary intake and symptoms, collection of device-associated physiologic parameters such as blood pressure, heart rate, etc., correlation/analysis of the data, and feedback based on the correlation/analysis.
  • the patient tool application may provide data, e.g., the feedback, for display on the IEM data phone 204 p , the IEM data system(s) 204 , and/or the commercial system(s) 106 .
  • the social networking application may facilitate social networking functionality.
  • the social networking application may retain various links to selected profiles of various social networks, receive data related to the selected profiles, e.g., updates to the profiles, facilitate messaging and other communication, update the user's profile, etc., communicate with the IEM data systems(s) 204 , and/or the commercial system(s) 106 , such as the patient tools/social network 204 d and the web communities 106 h.
  • the incentive tracker application may collect, manage, track, update, etc. incentive information. For example, the incentive tracker application may reconcile data associated with IEM data collection systems 204 l and wholesaler/retailer systems 106 j to determine incentive eligibility, e.g., a patient rebate. The incentive tracker application may further tally points under various reward systems, notify the patient 506 of milestones, goals, award of incentive, etc.
  • the auto billing application may facilitate billing for various transactions.
  • the auto billing application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106 , such as the billing for an auto refill via the pharmacy system, etc.
  • the subscription application facilitates ordering, receipt, management, etc. of various subscriptions, e.g., newsfeeds, access to various data collections on a subscription basis, etc.
  • the subscriptions application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106 , such as the subscription system 204 k , the IEM data collection system 204 l , etc.
  • the approval application aggregates and/or analyzes various sources of data to enable an informed approval decision.
  • the approvals application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106 , such as the auto refill system 204 c , the subscription system 204 f , the financial systems 204 o , the pharmacy systems 106 b , the wholesaler/retailer systems 106 j , etc.
  • the financial application supports and enables financial transactions associated with IEM data 200 .
  • the financial application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106 , such as the auto refill system 204 c , the incentive system 204 f , the subscription system 204 k , the approval system 204 m , the financial systems 204 o , the pharmacy system 106 b , the wholesaler/retailer systems 106 j.
  • Social networks are a social structure made of one or more nodes, e.g., components such as websites, accessed by individuals or organizations.
  • the social network is typically tied by one or more specific types of interdependency, such as epidemiology, therapeutic regimen, healthcare management, etc., and thus may attract the interest of otherwise unrelated individuals and groups having in common an interest in the interdependencies.
  • Social networks may be built around various communities, e.g., family caregivers, patients, medical conditions, etc.
  • FIG. 22 illustrates an exemplary IEM data framework 102 having a social network system 204 q , according to one embodiment.
  • the IEM data framework 102 further includes IEM data 200 , and the hub, shown here embodied as the base station 404 .
  • the social network system 204 q may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106 .
  • patient 506 suffers from a cardiac condition.
  • the patient 506 accesses the social network system 204 q , which may be embodied as the server 500 having the software 502 and the database 504 having IEM data 200 .
  • Patient 506 may access the social network system 204 q , for example, via the base station 404 .
  • the patient 506 a searches the database 504 for patient profiles also having cardiac conditions similar to that of patient 506 .
  • the social network system 204 q provides multiple profiles of patients having similar conditions.
  • the profiles include various data pertinent to each patient such as medication therapies, personal behavior histories, etc.
  • the patient 506 requests a comparison of his medication therapy, medication therapy adherence, and behavior to that listed in the profiled.
  • the patient 506 may update the social network system 204 q with the adjustment data, which may be used in the future for tracking personal improvement as well as benchmarking purposes by other individuals.
  • the social network system 204 q may be communicably associated with other web communities 106 h , e.g., youth communities, business communities, etc.
  • One aspect comprises, for example, receiving, via a hub, ingestible event data that originates from multiple ingested event markers; and communicating, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
  • One aspect comprises, for example, a storage medium having instructions, that when executed by a computing platform, result in execution of a method of utilizing ingestible event marker data, comprising: receiving, via a hub, the ingestible event data that originates from multiple ingested event markers; and communicating, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
  • One aspect comprises, for example, a receive module to receive, via a hub, ingestible event data that originates from multiple ingested event markers; and a communicate module to communicate, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
  • a diagrammatic system comprises, for example, a processor, a main memory, a static memory, a bus, a video display, an alpha-numeric input device, a cursor control device, a drive unit, a signal generation device, a network interface device, a machine readable medium, instructions and a network, according to one embodiment.
  • the diagrammatic system may indicate a personal computer and/or a data processing system in which one or more operations disclosed herein may be performed.
  • the processor may be a microprocessor, a state machine, an application-specific integrated circuit, a field programmable gate array, etc.
  • the main memory may be a dynamic random access memory and/or a primary memory of a computer system.
  • the static memory may be a hard drive, a flash drive, and/or other memory information associated with the data processing system.
  • the bus may be an interconnection between various circuits and/or structures of the data processing system.
  • the video display may provide graphical representation of information on the data processing system.
  • the alpha-numeric input device may be a keypad, a keyboard and/or any other input device of text, e.g., a special device to aid the physically challenged.
  • the cursor control device may be a pointing device such as a mouse.
  • the drive unit may be a hard drive, a storage system, and/or other longer term storage subsystem.
  • the signal generation device may be a bios and/or a functional operating system of the data processing system.
  • the network interface device may be a device that may perform interface functions such as code conversion, protocol conversion and/or buffering required for communication to and from the network.
  • the machine readable medium may provide instructions on which any of the methods disclosed herein may be performed. The instructions may provide source code and/or data code to the processor to enable any one/or more operations disclosed herein.
  • the various electrical structure and methods may be embodied using transistors, logic gates, and electrical circuits, e.g., Application Specific Integrated circuitry (ASIC) and/or in Digital Signal Processor (DSP) circuitry.
  • ASIC Application Specific Integrated circuitry
  • DSP Digital Signal Processor
  • the receive module and the communicate module and other modules may be enabled using one or more of the technologies described herein.
  • IEM data any or all data associated with the aforementioned devices and methods, for example, may be used alone or in combination with other data to constitute IEM data, i.e., data having an IEM data aspect.
  • the system and/or method steps further includes/utilizes an element for storing data, i.e., a data storage element, where this element is present on an external device, such as a bedside monitor, PDA, smart phone, computer server, etc.
  • the data storage element is a computer readable medium.
  • the term “computer readable medium” as used herein refers to any storage or transmission medium that participates in providing instructions and/or data to a computer for execution and/or processing.
  • Examples of storage media include floppy disks, magnetic tape, CD-ROM, a hard disk drive, a ROM or integrated circuit, a magneto-optical disk, or a computer readable card such as a PCMCIA card and the like, whether or not such devices are internal or external to the computer.
  • a file containing information may be “stored” on a computer readable medium, where “storing” means recording information such that it is accessible and retrievable at a later data by a computer and/or computer-related component.
  • “permanent memory” refers to memory that is permanent. Permanent memory is not erased by termination of the electrical supply to a computer of processor.
  • RAM Random Access Memory
  • a file in permanent memory may be editable and re-writable.
  • Computer executable instructions i.e., programming
  • the computer executable instructions are present on a computer readable medium. Accordingly, various aspects provide a computer readable medium containing programming for use in providing ingestible event marker data.
  • the systems include one or more of: a data storage element, a data processing element, a data display element, a data transmission element, a notification mechanism, and a user interface. These elements may be present or otherwise associated with at least one of the ingestible event marker data, the hub, and the IEM data systems.
  • the systems are composed of two or more different modules that communicate with each other, e.g., using the hub functionalities as reviewed above, e.g., using the IEM data in the communication, e.g., using the IEM data systems' functionalities.

Abstract

The ingestible event marker data framework provides a uniform, comprehensive framework to enable various functions and utilities related to ingestible event marker data (IEM data). The functions and utilities include data and/or information having an aspect of data derived from, collected by, aggregated by, or otherwise associated with, an ingestion event.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Pursuant to 35 U.S.C. §119 (e), this application claims priority to the filing date of U.S. Provisional Patent Application Ser. No. 61/079,082 filed on Jul. 8, 2008; the disclosure of which application is herein incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to the technical fields of ingestible devices and communications. More specifically, and in various example embodiments, the present invention relates to a method, article, and system of generating, collecting, managing, distributing, and otherwise utilizing information associated with ingestible events and responses to the ingestible events.
  • BACKGROUND
  • Information related to personal events is widely needed in various pursuits. A personal event is an event that is specific to an individual. Examples of personal events include onset of a physiologic parameter of interest, ingestion of a therapeutic agent, etc.
  • There are many instances where one may want to note a personal event. Examples of such instances include onset of one or more physiologic parameters of interest including appearance of disease symptoms, administration of medication, ingestion of certain types of foods, commencement of an exercise regimen, ingestion of certain substance, etc.
  • A variety of different methods and technologies have been developed to note a personal event. For example, techniques have been developed in which individuals can manually record data in a log or physically enter data via a computer device.
  • The accuracy of such notations may be dependent on the accuracy of data input, the accuracy of proxies used as actual data substitutions, etc. As a result, inaccuracies may occur.
  • In one example, an individual may suffer from one or multiple health conditions that require therapy with multiple medications. The multiple medications may be prescribed according to an intricate dosing schedule. The complexities associated with multiple health conditions, multiple medication therapies, and intricate dosing schedules may confuse the patient, resulting in inaccurate data capture.
  • In one example, the individual may have physical or cognitive deficits which may result in difficulties inputting and capturing data. The individual may forget to enter the data, or may enter the data incorrectly.
  • In one example, the individual may not wish to be inconvenienced and thus may intentionally refuse to enter the data. Conversely, the individual may unintentionally or intentionally enter/record data which is completely inaccurate. For example, the individual may receive periodic, prescheduled reminders to take some medication. The reminders are unable to take into account actual ingestion of the medication. If the individual has already taken the medication, the reminder is both moot and likely to inconvenience the individual. If the medication has not been taken, an inconvenient or unneeded reminder or alert may prompt the user to enter data or send a message advising that the medication has been taken just to quell the alarm while not actually taking the medication. The individual may intentionally leave out portions of the data.
  • In one example, proxies for data and information may also be inaccurate. For example, “intelligent” medication containers may contain microchips that sense opening of the medication container. From the sensed act of opening the container, an inference may be drawn that medication associated with the medication container has been ingested. The inference may be inaccurate, however, as medication is not necessarily ingested by virtue of opening a medication container.
  • The above-instances may ripen into further issues if particular parties besides the individual wish to use the individual's personal event data. Examples of users and potential users (sometimes collectively referred to herein as “party” or “parties”) of personal event data include family and professional caregivers; communication companies; government agencies, e.g., agencies associated with government provided healthcare coverage; private insurance providers; Food and Drug Administration (FDA); Drug Enforcement Administration (DEA); US Bureau of Alcohol, Tobacco, and Firearms (ATF); care providers; medical device manufacturers; patients; clinicians; pharmaceutical manufacturers; pharmacies; web communities; software providers; marketing and financial analysts; and insurance companies.
  • Competing interests may exist between an individual's privacy interests in personal event data and the acquisition and appropriation of the personal event data by third parties.
  • Further, various parties may have a compelling interest in receipt of accurate and comprehensive data, e.g., useful data, either in isolated form (data germane to a particular individual) or empirical form (aggregated data from various sources, various individuals, various personal events of an individual, etc.)
  • In many circumstances, however, accurate personal event data are not available. The party may have access to faulty data or a crude approximation of the information sought, as discussed above. Thus, the party must rely on such crude proxies to formulate a conclusion. It follows, then, that such conclusions may themselves be skewed or inaccurate. Actions taken in reliance on such conclusions may prove misguided, error-prone, and/or harmful.
  • To illustrate, a healthcare provider or family member may receive a message from a patient indicating that the patient has taken the medication when, in fact, the patient is merely providing the message without having actually ingested the medication. If the healthcare provider notices changes in the patient's symptoms in close temporal proximity to receipt of the flawed information suggesting medication ingestion, the healthcare provider may mistakenly conclude that the patient's symptoms are a result of the medication ingestion. Based on the mistaken conclusion, the healthcare provider may adjust the medication dosage in an attempt to alleviate the symptoms, perhaps to the patient's detriment.
  • Of note, the more widely propagated and aggregated the inaccurate data, the more prolific the spread of and reliance on error-associated data and conclusions drawn therefrom.
  • In addition, recipients of the personal event data may wish to timely receive and utilize such information via a user-friendly, reliable and sophisticated means. The recipients may wish to receive and/or utilize information in discrete areas, integrate the personal event information with other data, and use the personal event information for various purposes.
  • Examples of various purposes include refining and optimizing data such as patient population data; incentivizing individuals or groups based on personal event data, e.g., ingestible event marker data (“IEM data”); corroborating and advancing decisions; supporting stakeholders' decisions; using IEM data in personalized products and services, e.g., user applications on a mobile telephone; auto refilling prescription medications; managing pharmaceutical life cycle systems and controlled substances; compiling and delivering IP news and information feeds; accessing open sources of anonymized patient population data; determining eligibility and approval for refills, insurance coverage, etc.; using patient tools; participating in social network systems; analyzing aggregated data to derive and/or generate predictive information; supporting and enabling financial transactions; identifying direct and indirect causal failure points in treatment and predict corrective action; and providing dynamic, accurate calendaring/scheduling functions.
  • Finally, parties may also wish to access personal event data in conjunction with existing systems, e.g., commercial systems such as automated pharmacy systems, banking and financial systems, etc.
  • As can be seen, methods and systems are needed to seamlessly collect, manage, and distribute personal event data to various parties and systems.
  • Therefore, there is a need for controlled collection, management, and delivery of accurate personal event data to multi-profile parties for various purposes.
  • BRIEF SUMMARY OF THE INVENTION
  • The ingestible event marker data framework provides a uniform, comprehensive framework to enable various functions and utilities related to ingestible event marker data (IEM data). The functions and utilities include data and/or information having an aspect of data derived from, collected by, aggregated by, or otherwise associated with, an ingestion event. In one example, the IEM data are generated via an ingested device. The term “ingested device” includes any device, mechanism, structure, combined structure, or object capable of ingestion by a human subject or a non-human subject.
  • The IEM data framework is highly scalable and integratable with various existing systems, e.g., systems having computer-related component(s). Specific examples of such systems include pharmacy systems, communication systems, financial and banking systems, school systems, medical systems, government agencies, web communities, and personal computer systems. Such existing systems are herein collectively referred to as “commercial systems”.
  • The IEM data framework enables multiple and various types of implementations. The implementations include various configurations of hardware, software, communication components, and/or data. For example, in one aspect, the IEM data framework is implemented with a basic complement of core components; namely, ingestible event marker data; a hub to receive the ingestible event marker data; and at least one ingestible event marker data system to receive, directly or indirectly, the ingestible event marker data from the hub.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 provides a diagrammatic representation of a communication environment including an IEM data framework, according to one embodiment.
  • FIG. 2 provides a diagrammatic representation of the IEM data framework of FIG. 1, according to one embodiment.
  • FIG. 3 illustrates IEM data and an IEM data environment associated with the IEM data framework of FIG. 2, according to one embodiment.
  • FIG. 4 illustrates a hub associated with the IEM data framework of FIG. 2, according to one embodiment.
  • FIG. 5 illustrates exemplary IEM data systems associated with the IEM data framework of FIG. 2, according to one embodiment.
  • FIG. 6 illustrates an exemplary IEM data framework having a feedback loop system, according to one embodiment.
  • FIG. 7 illustrates an exemplary IEM data framework having a decision support system, according to one embodiment.
  • FIG. 8 illustrates an exemplary IEM data framework having auto refill system, according to one embodiment.
  • FIG. 9 illustrates an exemplary IEM data framework having patient tools, according to one embodiment.
  • FIG. 10 illustrates an exemplary IEM data framework having a behavioral medicine system, according to one embodiment.
  • FIG. 11 illustrates an exemplary IEM data framework having an incentive system, according to one embodiment.
  • FIG. 12 illustrates an exemplary IEM data framework having a personalized commercial products/services system, according to one embodiment.
  • FIG. 13 illustrates an exemplary IEM data framework having an auto billing system, according to one embodiment.
  • FIG. 14 illustrates an exemplary IEM data framework having a tracking system, according to one embodiment.
  • FIG. 15 illustrates an exemplary IEM data framework having an interdiction system, according to one embodiment.
  • FIG. 16 illustrates an exemplary IEM data framework having a subscription system, according to one embodiment.
  • FIG. 17 illustrates an exemplary IEM data framework having an ingestible event marker data collection system, according to one embodiment.
  • FIG. 18 illustrates an exemplary IEM data framework having an approval system, according to one embodiment.
  • FIG. 19 illustrates an exemplary IEM data framework having a forecasting system, according to one embodiment.
  • FIG. 20 illustrates an exemplary IEM data framework having a financial system, according to one embodiment.
  • FIG. 21 illustrates an exemplary IEM data framework having an ingestible event marker data phone system, according to one embodiment.
  • FIG. 22 illustrates an exemplary IEM data framework having a social network system, according to one embodiment.
  • DETAILED DESCRIPTION 1.0 Overview 2.0 Ingestible Event Marker (IEM) Data Framework
  • 2.1 IEM Data
      • 2.1.1 IEM Data Environment
        • 2.1.1.1 IEM Data Source Devices
        • 2.1.1.2 Products
        • 2.1.1.3 Events
        • 2.1.1.4 Patient Specific Parameters
        • 2.1.1.5 IEM Data Algorithms
        • 2.1.1.6 Storage Repositories
        • 2.1.1.7 Other IEM Data Sources
  • 2.2 Hub
  • 2.3 IEM Data Systems
      • 2.3.1 Feedback Loops
      • 2.3.2 Decision Support Systems
      • 2.3.3 Auto Refill Systems
      • 2.3.4 Patient Tools
      • 2.3.5 Behavioral Medicine Systems
      • 2.3.6 Incentive Systems
      • 2.3.7 Personalized Commercial Products/Services
      • 2.3.8 Auto Billing Systems
      • 2.3.9 Tracking Systems
      • 2.3.10 Interdiction Systems
      • 2.3.11 Subscription Systems
      • 2.3.12 IEM Data Collection Systems
      • 2.3.13 Approval Systems
      • 2.3.14 Forecasting Systems
      • 2.3.15 Financial Systems
      • 2.3.16 IEM Data Phone
      • 2.3.17 Social Network System
    3.0 IEM Data Framework Method 4.0 IEM Data Framework Article 5.0 IEM Data Framework System 1.0 Overview
  • The ingestible event marker (IEM) data framework provides an integrated, seamless solution to enable the collection, management, distribution, and utilization of IEM data. The versatile IEM data framework facilitates integration and implementation of the IEM data with existing data and utilization of the IEM data with existing systems, i.e., commercial systems. The information and communication systems include discrete systems, cross-configured systems, and hybrid systems.
  • Broadly, various aspects of the IEM data framework include a basic complement of core components, e.g., IEM data; a hub; and at least one IEM data system. Any one or a combination of these core components is capable of interoperation, communication, and/or integration with various components of other information/communication systems. The terms “data” and “information” are used interchangeably herein.
  • The IEM data include information about an ingestion event, information about a response to the ingestion event, or both. The information about an ingestion event may include, for example, information about the ingestion event of a medication or set of medications. The information about a response to the ingestion event may include, for example, physiologic parameter(s) such as a physiologic status or physiologic change event based on the ingestion event. A physiologic status may be, for example, a heart rate, blood pressure measure, etc., ascertained in close temporal proximity to the time of ingestion of medication (and, therefore, likely to be influenced by or a result of ingestion of the medication.)
  • Examples of IEM data include data ingestion time(s) of medication, identification of the type(s) of medication ingested at a particular time, the dosage amounts of medication ingested at a particular time, etc.
  • Typically, the IEM data may be generated and/or communicated via an ingestible device such as an ingestible event marker (IEM), which generates and communicates data associated the ingestion event. The IEM may be associated, for example, with a receiver, i.e., a device capable of receiving the IEM data on ingestion and further capable of measuring additional IEM data on response to the ingestion event(s). The IEM and the receiver are discussed in detail hereinafter. In various aspects, the ingestible event data may originate from multiple ingested event markers. In various aspects, the IEM data may be communicated directly from the IEM to a device other than the receiver, e.g., an IEM business system adapted to receive the IEM data directly from the IEM via a communication channel.
  • In various aspects, the IEM data may be associated with other data, e.g., combined with data related to events other than an ingestion event or response(s) to an ingestion event. Some examples of other data are data associated with various medical devices and data associated with consumer and personal devices such as intelligent devices/appliances. All are discussed in greater detail hereinafter.
  • In various aspects, the IEM data may be associated with an IEM data environment and/or commercial systems.
  • In various aspects, the IEM data may be associated with a unique identifier, e.g., sample data reflective of physiologic patterns associated with a particular individual such as heart rate variability, breathing rate, and/or heart rate (ECG) patterns. For example, a portion or all of the IEM data may be compared with a unique identifier generated by or stored on the receiver.
  • The hub includes any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate the IEM data. Communication of the IEM data includes receiving, storing, manipulating, displaying, processing, and/or transmitting the IEM data.
  • In various aspects, the hub also functions to communicate, e.g., receive and transmit, non-IEM data. Non-IEM data includes non-IEM physiologic data. One example is cardiac data generated by a separate cardiac-related device such as an implanted pacemaker and communicated to the hub directly or indirectly, e.g., via the receiver.
  • Broad categories of hubs include, for example, base stations, personal communication devices, and mobile telephones.
  • For example, the hub includes a software application associated with a mobile telephone of a patient. The application and mobile telephone function to receive IEM data from a receiver, which, in turn, receives the IEM data from an ingestible device ingested by the patient. The hub stores, manipulates, and/or forwards the IEM data, alone or in combination with other data, to an IEM data system.
  • The IEM data systems include any hardware device, software, and/or communications component, as well as systems and subsystems of the same, which generally function to provide a service or activity related to the IEM data. The IEM data systems, for example, collect, manipulate, calculate, transmit, receive, store, and/or communicate at least a portion of the IEM data.
  • Each IEM data system may be built around predefined function(s) or service(s) and may be enabled via the IEM data framework.
  • One or more IEM data systems may be integrated, interoperate, intercommunicate or otherwise share or further the collection, management, distribution/dissemination, billing or other activities related to IEM data. One example of an IEM data system is a feedback loop system to refine and optimize IEM data and other data, e.g., medical database data.
  • Various aspects of the IEM data framework provide on-demand, accurate and efficient services with respect to provision and utilization of IEM data, while reducing redundancies, errors, and inaccuracies associated with personal event data that are sometimes found in the prior art. Various aspects of the IEM data framework further ensure generation and communication of accurate IEM data in a timely manner.
  • Further, the IEM data framework is applicable to any communication environment. Communication environments include any environment having therein, or associated with, data or communication of data.
  • Various aspects of the IEM data framework utilize the IEM data, the hub, and one or more IEM data systems to enable useful, secure, and efficient use of the IEM data among multi-profile parties in one or various communication environments.
  • FIG. 1 provides a diagrammatic representation of communication environment 100 including an IEM data framework 102, according to one embodiment. The communication environment 100 may further include, for example, an IEM data environment 104 and one or more commercial systems 106.
  • Communication environment 100 includes any environment having therein, or associated with, data or communication of data. Communication includes any method, act, or vehicle of communication, and/or combinations thereof. For example, communication methods include manual, wired, and wireless, etc. Wireless technologies include radio signals, such as x-rays, ultraviolet light, the visible spectrum, infrared, microwaves, and radio waves, etc. Wireless services include voice and messaging, handheld and other Internet-enabled devices, data networking, etc.
  • Vehicles of communication include the Internet, wired channels, wireless channels, communication devices including telephones, computers, wire, radio, optical or other electromagnetic channels, and combinations thereof, including other devices and/or components capable of/associated with communicating data. For example, the communication environments include in-body communications; various devices; various modes of communications such as wireless communications, wired communications, and combinations of the same, etc.
  • In-body communications include any communication of data or information via the body, i.e., communication via or associated with inter-body aspects, intra-body aspects, and a combination of the same. For example, inter-body aspects include communications associated with devices designed to attach to a body surface. Intra-body aspects include communications associated with data generated from within the body, e.g., by the body itself or by a device implanted, ingested, or otherwise locatable in, or partially in, the body.
  • Communications include and/or may be associated with software, hardware, circuitry, various devices, and combinations thereof.
  • The devices include devices associated with IEM data generation, transmission, reception, communication, etc. The devices further include various implantable, ingestible, insertable, and/or attachable devices associated with the human body or other living organisms. The devices further include multimedia devices such as telephones, stereos, audio players, PDA's, handheld devices, and multimedia players.
  • Wireless communication modes include any mode of communication between points that utilizes, at least in part, wireless technology including various protocols and combinations of protocols associated with wireless transmission, data, and devices. The points include, for example, wireless devices such as wireless headsets; audio and multimedia devices and equipment, such as audio players and multimedia players; telephones, including mobile telephones and cordless telephones; and computers and computer-related devices and components, such as printers.
  • Wired communication modes include any mode of communication between points that utilizes wired technology including various protocols and combinations of protocols associated with wired transmission, data, and devices. The points include, for example, devices such as audio and multimedia devices and equipment, such as audio players and multimedia players; telephones, including mobile telephones and cordless telephones; and computers and computer-related devices and components, such as printers.
  • The IEM data framework 102 enables exchange, transmission, receipt, manipulation, management, storage, and other activities and events related to IEM data. Such activities and events may be contained within the IEM data framework 102, partially integrated with the IEM data framework 102, or associated with externalities, e.g., activities, systems, components, and the like which are external to the IEM data framework 102. Externalities include, for example, the IEM data environment 104 and commercial systems 106, either or both of which may also be integral to, or partially integrated with, the IEM data framework 102.
  • The IEM data environment 104 includes any source of information or data, including remote computer systems, local computer devices, etc. The information or data may comprise IEM data in whole or in part. The information or data may also be independent of the IEM data, e.g., may be capable of aggregation and/or integration with the IEM data.
  • The commercial systems 106 include various existing systems that utilize one or various types of data to accomplish a particular purpose. One example of a commercial system is a computerized pharmacy system utilized in a pharmacy. The computerized pharmacy system may function to automatically, e.g., electronically, receive prescriptions, verify patient and prescription information, verify insurance coverage, process the prescription order, and generate an invoice.
  • The IEM data framework 102, the IEM data environment 104, and the commercial systems 106 are discussed in greater detail hereinafter.
  • 2.0 IEM Data Framework
  • FIG. 2 provides a diagrammatic representation of the IEM data framework 102 of FIG. 1, according to one embodiment. The IEM data framework 102 includes IEM data 200, hub 202, and one or more IEM data systems 204.
  • The IEM data 200 include data associated with an ingestion event, i.e., an act of ingestion. Additionally, the IEM data 200 may include, be included in, or be combined with data from other systems or sources, e.g., medical devices, local or remote computer devices and systems, etc. An example of the IEM data 200 is data having an identification of the type of an ingested medication and the time at which the medication was ingested.
  • The hub 202 includes any hardware, software, and/or communications component(s) in any combination/configuration, which generally function to communicate the IEM data 200. One example includes communicating the IEM data 200 to the IEM data systems 204. For example, the hub 202 receives the IEM data 200 from an ingested device and forwards the IEM data 200, alone or in combination with other data from other sources, to an IEM data system 204.
  • The IEM data systems 204 provide discrete services and/or activities related to the IEM data 200. The discrete services and/or activities include, for example, propagation of information, data, etc., to a particular user, or group of users, via various system component configurations, etc.
  • In one example, an auto refill system receives IEM data 200 from the hub 202. The IEM data 200 include an indication that the last remaining pill of a prescription has been ingested. The auto refill system uses this information to contact a local or remote data resource having refill information, verify the refill information, and automatically transmit a request to a pharmacy system (commercial system) for refill of the prescription.
  • 2.1 IEM Data
  • The ingestible event marker (IEM) data 200 are associated with at least one of an ingestion event and a response to the ingestion event. The ingestion event may be associated with, for example, data related to and/or gathered during transit through the alimentary system, e.g., oral cavity, pharynx, esophagus, stomach, small intestine, large intestine, anus, etc. Examples of IEM data include an ingestion time, identification of ingested substance, expiration date of an associated medication, dosage of an ingested substance, etc. The information about an ingestion event may include, for example, information about the ingestion event of a medication or set of medications. The information about a response to the ingestion event may include, for example, physiologic parameter(s) such as a physiologic status or physiologic change event based on the ingestion event. A physiologic status may be, for example, a heart rate, blood pressure measure, etc., ascertained in close temporal proximity to the time of ingestion.
  • In various aspects, the IEM data 200 typically may be generated via one or more ingestible event markers (IEMs), discussed hereinafter in detail. The generation of IEM data via multiple IEMs ensures comprehensive data reporting, e.g., data generated from multiple ingestion events of multiple IEMs over a time interval, data generated from multiple IEMs ingested at approximately the same time, etc. In this manner, comprehensive IEM data may be provided.
  • In various aspects, the IEM data may be communicated to, i.e., received by, a receiver. The receiver may be embodied in various ways, including an implantable device, a semi-implantable device such as a subcutaneous device, and an externally-applied device such as a personal signal receiver. One example of a personal signal receiver is a “patch” receiver which may be removably affixed to the individual's person, apparel, etc.
  • In various aspects, the IEM data 200 can be associated with other data, e.g., a personal event not associated with an ingestion event or a response to an ingestion event. A personal event includes any parameter or circumstance associated with a person, e.g., any event associated with ingestion, inhalation, injection, implantation, insertion, and/or imbibing of a device, substance, liquid, etc. A personal event further includes any event associated with personal data, e.g., a physiologic parameter such weight.
  • In various aspects, the IEM data may be associated with a unique identifier, e.g., heart rate variability, breathing rate, and/or heart rate (ECG) patterns associated with a particular individual. The unique identifier may be variously embodied. One example is a personal identifier assigned to an individual, e.g., an alphanumeric code, etc. Another example is a unique identifier reflective of an individual trait, such as a physiologic pattern.
  • To illustrate, a patient may ingest an IEM (discussed hereinafter) integrated with medication. The IEM may communicate IEM data to a receiver such as a patch receiver (discussed hereinafter). The data may include, for example, a unique identifier which may be compared to data associated with the receiver for validation purposes.
  • In one scenario, the IEMs associated with medication prescribed for a particular patient may each be encoded and deployed with corresponding unique identifiers. The unique identifier may be, for example, a predetermined physiologic data sample associated the particular patient. Various physiologic data samples include a data sample reflective of the particular patient's heart rate variability, a data sample reflective of the particular patient's breathing rate, a data sample reflective of the particular patients heart rate (ECG) patterns, etc.
  • When the receiver is affixed or otherwise associated with an individual, programming logic associated with the receiver may receive actual data samples of the individual, e.g., from data sources such as heart devices, etc. The receiver may communicate the actual data samples received from the data sources and the unique identifier(s) received from the IEM(s) to a computer-related device, e.g., a server, which may compare the actual data samples of the individual with the unique identifier to verify that the medication was actually ingested by the particular patient for whom it was prescribed. In various aspects, predetermined actions based on the verification outcome may be taken, e.g., alerts may be sent to a device associated with the prescribing physician, etc.
  • 2.1.1 IEM Data Environment
  • In various embodiments, IEM data 200 are generated, received, gathered, etc., from one or a variety of sources and comprise various structures, content, types, etc. The IEM data environment includes at least one of an IEM data source device, products, events, patient specific parameters, IEM data algorithms, and storage repositories. The sources include, for example, various devices, storage repositories, and systems capable of generating, identifying, gathering or otherwise producing data related to ingestion, the ingestion environment, e.g., the alimentary system of a human subject or non-human subject and/or other personal events. The types include, for example, raw data, processed data, aggregated data, combined data, data from various sources, etc. The processed data include, for example, data processed according to a variety of methods, e.g., algorithms such as IEM data algorithms discussed below.
  • FIG. 3 illustrates IEM data environment 104 associated with the IEM data framework 102 of FIG. 2, according to one embodiment. The IEM data environment 104 includes, for example, IEM data source devices 300, products 302, events 304, patient specific parameters 306, IEM data algorithms 308, storage repositories 310, and other sources 312.
  • 2.1.1.1 IEM Data Source Devices
  • The ingestible event marker (IEM) data source devices 300 include, for example, devices capable of gathering, collecting, generating, receiving, storing and/or transmitting, etc., IEM data. One example of such a device is a microchip capable of or otherwise enabling or facilitating the collection, generation, receipt, transmission, etc., of data. Such a microchip may be integrated or associated with the IEM data source devices 300. The IEM data source devices 300 may be embodied, for example, as ingestible devices 300 a, receivers 300 b, and/or health devices 300 c.
  • In various aspects, IEM data may be related to various devices. For example, a device may be an ingestible device, an inhalable device, an injectable device, an implantable device, an insertable device, and an imbibable device. The foregoing may be embodied, for example, as a microchip alone or in combination with other structural components, each capable of at least one of ingestion, inhalation, injection, implantation, insertion, and imbibement by a human body or a non-human body.
  • The ingestible device may comprise, for example, a microchip. The microchip may be independently deployed. The microchip may also be attached to, embedded in, or otherwise integrated with a medication, e.g., a pill (refer to IEM system, infra).
  • The inhalable device may comprise, for example, a microchip. The microchip may be independently deployed. The microchip may also be attached to, embedded in, or otherwise integrated with a device. The inhalable device is capable of ascertaining parameter(s) associated with inhalation, e.g., measuring or tallying doses of an inhalant. The inhalable device may also comprise, for example, an inhalable microchip used to ascertain parameter(s), e.g., inhalation time, identify an inhaled substance, etc.
  • The injectable device may comprise, for example, a microchip. The microchip may be independently deployed. The microchip may also be attached to, embedded in, or otherwise integrated with a device. The injectable device is capable of ascertaining parameter(s) associated with injection, e.g., time of injection, identification of an injected substance, etc. In various aspects, the injectable device is capable of injection into a human body or a non-human body, e.g., injection into the circulatory system of a human body.
  • The implantable device may comprise, for example, a microchip. The microchip may be independently deployed. The microchip may also be attached to, embedded in, or otherwise integrated with a device. The implantable device is capable of ascertaining parameter(s) associated with implantation, e.g., time of implantation, physiologic parameters such as heart rate, EKG data, activity management data, temperature, galvanic skin response data, respiratory data, fluid status data, heart rate variability, etc.
  • In one aspect, the implantable device is embodied as an implantable receiver, supra, for receiving various data. The implantable receiver may also process, store, transmit, etc. the data. Various other implantable devices include, for example, heart monitors and the like having a microchip to ascertain parameter(s), e.g., heart rate, heart pressure, etc.
  • The insertable device may comprise, for example, a microchip. The microchip may be independently deployed. The microchip may also be attached to, embedded in, or otherwise integrated with a device. The insertable device is capable of ascertaining parameter(s) associated with insertion, e.g., time of insertion, physiologic parameters such environmental content/fluid identification, etc. In one aspect, the insertable device is embodied as a microchip mechanically associated with a suppository for rectal insertion, vaginal insertion, etc.
  • The imbibable device may comprise, for example, a microchip. The microchip may be independently deployed. The microchip may also be attached to, embedded in, or otherwise integrated with a substance, e.g., a potable solution or fluid such as a beverage, etc. The imbibable device is capable of ascertaining parameter(s) associated with imbibing, e.g., time of drinking, physiologic parameters such as environmental content/fluid identification, etc. In one aspect, the imbibable device is embodied as a microchip and imbibed together with a beverage. The beverage may aid in swallowing, may be used as a medication, etc.
  • Further, the IEM data may be associated with administration of a therapeutic agent, etc. For example, administration includes, but is not limited to, parenteral administration, i.e., administration in a manner other than through the alimentary system, such as by intravenous or intramuscular injection or inhalation.
  • In some aspects, the devices are capable of ingestion, i.e., entry into the alimentary system of a human body or a non-human; inhalation (either the device or a substance associated with the device, e.g., a nasal inhalant). In various aspects the devices are capable of injection, insertion, implantation and/or imbibing, etc., into/by a human body or a non-human body.
  • The ingestible devices 300 a gather/collect/generate IEM data via various methods, e.g., ingestion timing, contact with alimentary system substances, sampling, etc. Further, various ingestible event marker data source devices 300 communicate the IEM data via various methods, e.g., wireless methods, conductive methods via body tissue, etc. The following are examples of the ingestible devices 300 a.
  • A pharma-informatics system described in PCT/US2006/016370, filed Apr. 28, 2006, includes compositions, systems and methods that allow for the detection of the actual physical delivery of a pharmaceutical agent to a body are provided. Embodiments of the compositions include an identifier and an active agent.
  • An IEM system described in PCT/US2008/52845, filed Feb. 1, 2008, includes an ingestible event marker (IEM) and a personal signal receiver. Aspects of the IEM include an identifier, which may or may not be present in a physiologically acceptable carrier. The identifier is characterized by being activated upon contact with a target internal physiological site of a body, such as digestive tract internal target site. The personal signal receiver is configured to be associated with a physiological location, e.g., inside of or on the body, and to receive a signal of the IEM. During use, the IEM broadcasts a signal which is received by the personal signal receiver.
  • The IEM data associated with the IEM system include personal data, e.g., physiologic data generated by the IEM. Examples are derived metrics, e.g., processed physical data to derive various metrics such as time of ingestion data; combined metrics, e.g., derived metrics combined with other derived metric data such as time of ingestion data combined with data identifying the ingested substance; and IEM data, e.g., derived metrics and/or combined metrics aggregated with various physiologic data such as time of ingestion data combined with data identifying the ingested substance and physiologic data such as ECG data, temperature, etc.
  • A controlled activation ingestible identifier described in PCT/US07/82563, filed Oct. 17, 2007, includes ingestible compositions such as pharma-informatics enabled compositions. The controlled activation ingestible identifiers include a controlled activation element that provides for activation of the identifier in response to the presence of a predetermined stimulus at a target site of interest.
  • A life cycle pharma-informatics system described in U.S. Patent Application Ser. No. 61/034,085, filed Mar. 5, 2008 includes RFID and conductive communications technology combined with medication and/or medication packaging such that the medication can be tracked for the duration of its existence. The system further allows in-body data transmissions while addressing the potential privacy and signal degradation concerns associated with RFID technology.
  • The IEM data receivers 300 b include devices capable of receipt of IEM data 200. Receipt may be, for example, via wireless or wired channels, etc. The IEM data receiver 300 b may also transmit or otherwise forward data. In various aspects, the IEM data receiver 300 b may perform, facilitate, or enable various other functionalities related to the IEM data 200 and/or other data. In various aspects, the IEM data receiver 300 b may be attachable, implantable, semi-implantable or otherwise associated with a human body or a non-human body.
  • The IEM data receiver 300 b include personal signal receivers such as patch receivers, e.g., removably attachable externally to a human body or a non-human body; subcutaneous devices; implantable devices; external devices, i.e., devices which are not designed for attachment or other permanent or semi-permanent contact with the body, e.g., a mobile telephone. The following are examples of the IEM data receiver 300 b.
  • The IEM system, PCT/US2008/52845, supra, includes an ingestible event marker (IEM) and/or a personal signal receiver.
  • An active signal processing personal health signal receiver described in PCT/US07/24225, filed Nov. 19, 2007, includes a receiver associated with a body, e.g., located inside or within close proximity to a body, configured to receive and decode a signal from an in vivo transmitter which is located inside the body.
  • The health devices 300 c include multiple devices (and methods associated with the devices) associated with the IEM data 200. The health devices 300 c, for example, may gather, collect, aggregate, store, transmit, receive, or otherwise communicate data, including the IEM data 200.
  • Communication may be, for example, via wireless or wired channels, etc. The IEM data receiver may also transmit or otherwise forward data. In various aspects, the IEM data receiver 300 b may perform, facilitate, or enable various other functions related to the IEM data and/or other data. Examples include functions to store data, process data, etc.
  • In various aspects, the health device 300 c may be attachable, implantable, semi-implantable or otherwise associated with a human body or a non-human body. For example, “intelligent” devices such as intelligent scales, intelligent blood pressure cuffs, intelligent refrigerators, etc., may be integrated in various configurations. As used herein, the term “intelligent devices” refers to one or more devices capable of generating and/or communicating data, e.g., wirelessly transmitted data, via a communication channel to a destination.
  • 2.1.1.2 Products
  • IEM data 200 also includes IEM data related to products 302. The products 302 include, for example, an ingestible device/pharmaceutical product 302 a. One example of an ingestible device/pharmaceutical product 302 a is an IEM mechanically associated with medication. The IEM may be mechanically associated with the medication in various ways, including externally affixed to the medication, partially integrated with the medication, and wholly integrated with the medication.
  • The IEM may be affixed via various means, e.g., with various adhesive or formulated substances. The IEM may be associated with the medication at various phases, e.g., during a medication manufacturing process, at various points in time after a medication manufacturing process, etc.
  • 2.1.1.3 Events
  • IEM data 200 further includes data related to events 304, e.g., personal events, event parameters, etc. Further examples include time of ingestion of a medication, dosage and identity of medication taken at time of ingestion, etc. Events may include physiologic events, e.g., respiration rate; environmental events, e.g., time of day; usage events, e.g., ingestion of a medication, use of a cardiac resuscitation device, etc.
  • 2.1.1.4 Patient Specific Parameters
  • IEM data 200 still further includes data related to patient specific parameters 306, e.g., individualized patient data 306 a pertaining to an individual patient and multiple patient data 306 b pertaining to multiple patients. Examples of patient specific parameters include physiologic data, etc. Multiple patient data include aggregated patient data, patient population data, e.g., combined patient data which includes various predetermined aspects of data regarding at least one patient and excludes data tending to identify a particular patient or an aspect in which the patient has a privacy interest, e.g., name, age, diagnosis and/or other data which the patient wishes to retain as confidential and/or undisclosed to the public.
  • 2.1.1.5 IEM Data Algorithms
  • IEM data 200 also includes data related to IEM data algorithms 308, e.g., raw data, processed data, or a combination of the same, which undergo processing. In one example, the IEM data 200 have one or more algorithms applied thereto, with processed data as an output. The data, for example, includes individualized patient data 306 a and multiple patient data 306 b, e.g., patient population data.
  • The IEM data algorithms may be related to aspects such as data processing associated with the IEM data 200 generated by one or more ingestible devices, e.g., an IEM system.
  • With respect to IEM data processing associated with an ingestible device, aspects include, for example, transmission of the IEM data 200, IEM data processing associated with a receiver, and IEM data post-processing aspects.
  • Transmission aspects of IEM data and algorithms may include, for example, modulation schemes, coding, and error code aspects.
  • The transmission aspects include, for example, analog, digital, spread spectrum, combinatorial, and contention avoidance.
  • The analog transmission aspects include, for example, amplitude modulation, single sideband modulation, frequency modulation, phase modulation, quadrature amplitude modulation, and space modulation methods, etc.
  • The digital transmission aspects include on/off keying, frequency-shift keying, amplitude-shift keying, phase-shift keying, e.g., binary phase-shift keying, quadrature phase-shift keying, higher order and differential encoded, quadrature amplitude modulation, minimum shift keying, continuous phase modulation, pulse-position modulation, trellis coded modulation, and orthogonal frequency-division multiplexing.
  • The spread spectrum transmission aspects include, for example, frequency hopping spread-spectrum and direct-sequence spread spectrum.
  • The combinatorial transmission aspects include, for example, binary phase shift-keying with carrier frequency modulation.
  • The contention avoidance transmission aspects include, for example, duty-cycle modulation and carrier frequency modulation.
  • The coding aspects include, for example, wake-up schemes, preamble schemes, data packet schemes, and error code schemes.
  • The wake-up schemes include, for example, multi-tone schemes and chirp schemes.
  • The preamble schemes include, for example, unique identifier for packet start schemes.
  • The data packet schemes include, for example, data related to pill type, pill expiration, manufacturer, lot number, amount, prescribing physician, pharmacy, etc.
  • The error code schemes include, for example, repetition schemes, parity schemes, checksums, cyclic redundancy checks, hamming distance schemes, and forward error correction schemes, e.g., Reed-Solomon codes, binary Golay codes, convolutional codes, turbo codes, etc.
  • With respect to IEM data processing and the receiver, considerations may be given to, for example, position, energy conservation schemes, carrier identification, decoding and error correcting.
  • The position of the receiver includes, for example, the stomach, the side and the xiphoid.
  • The energy conservation schemes include schemes for a periodic wake-up, e.g., to sense IEM wake-up such that energy, e.g., battery resources, is conserved during non-awake periods.
  • The carrier identification aspects include, for example, Fourier transform analysis, e.g., fast Fourier transform and discrete Fourier transform, phase locked loop, filter bank, match filter, and combinatorial such as use of previous knowledge about frequency to tune-in.
  • The decoding aspects and error correcting aspects include, for example, the above-iterated aspects.
  • With respect to IEM data post-processing, aspects include, for example, pill detection, e.g., multiplicity of identification and count in time aspects, adherence metrics, etc.
  • With respect to IEM data processing associated with physiologic parameter metrics, aspects include, for example, electrocardiogram (EKG or ECG), impedance, acceleration, optical, pressure, temperature, sound, biochemical/biological, weight, position, derived electromyography (EMG), and electroencephalography (EEG).
  • IEM data processing related to EKGs includes, for example, compression data, e.g., wavelet and ICA/PCA, R-wave detection such as Hamilton-Tompkins, etc., heart-rate variability, e.g., SDNN, standard deviation in a 24 hour period, standard deviation of consecutive five minute periods, foot print heart rate versus standard heart rate, distribution-based histogram, etc., arrhythmia, and respiration, e.g., principal axis modulation.
  • IEM data processing related to impedance includes, for example, respiration, fluid status, Galvanic skin response, blood flow, etc.
  • IEM data processing related to acceleration, includes, for example, direct acceleration, which includes total activity and derived acceleration, which further includes activity type.
  • IEM data processing related to optical includes, for example, hematocrit, O2 saturation, pulse oximetry, etc.
  • IEM data processing related to temperature includes, for example, body temperature, heat flux, etc.
  • IEM data processing related to sound includes, for example, heart sounds, valvular events, etc.
  • IEM data processing related to biochemical/biological includes, for example, lactose, glucose, antibody, biomarker, bacterial, osmolarity, etc.
  • IEM data processing related to derived data include, for example, sleep, total energy, etc.
  • 2.1.1.6 Storage Repositories
  • Ingestible event marker data also includes data related to storage repositories 310, i.e., databases and/or other storage implementations that temporarily and/or permanently retain, store, etc., data related to IEM data, including data to be combined or aggregated with ingestible event marker data.
  • Storage may be in any form or format, as is known or will be known in the future. In various aspects, the storage repositories 310 may be independently embodied and/or may be partially or wholly integrated with computer-related system(s). The storage repositories 310, for example, may interoperate or otherwise be associated with various computer systems, software, hardware, communication components, etc. For example, the storage repositories 310, may be part of a medical office computer system and may contain IEM data 200 related to a particular's patient's medication regimen. At various times, e.g., scheduled or ad hoc, various IEM data 200 embodied as medical data may be communicated to/from the storage repositories 310 and/or from/to various points/components.
  • In another illustration, methods, systems and compositions that allow for treating a patient according to a patient customized therapeutic regimen are described in PCT/US2007/1068, filed May 2, 2007, which include obtaining dosage administration information from a patient and using the same to tailor a therapeutic regimen for the patient, as well as preparing and forwarding to the patient physical pharmaceutical dosages based on the customized therapeutic regimen. The dosage administration information from the patient may be stored, for example, on the database 306. The IEM data 200 containing information about the ingestion time of a particular medication can be combined with the dosage administration information to customize the therapeutic regimen.
  • 2.1.1.7 Other IEM Data Sources
  • In various aspects, various other IEM data sources 312 are/can be included. Further, it is noted that data and/or IEM data 200 from multiple sources can be aggregated, integrated, refined, etc. via a variety of methods. To illustrate, IEM data 200 such as ingestion data related to ingestion of a medication are generated from an IEM data source device 300 such as the IEM system. The ingestion data are wirelessly transmitted to an IEM receiver.
  • Concurrently or in an alternative time period, physiologic data such as cardiac parameters are generated by a health device 300 c such as the system for monitoring and treating hemodynamic parameters, supra, is generated and wirelessly transmitted to the IEM data receiver 300 b. The IEM data 200 and the cardiac physiologic data are aggregated for onward communication to an IEM data system such as an auto refill system.
  • To illustrate, cardiac data is derived via various methods and systems. One example is continuous field tomography, e.g., electrical tomography (ET). One continuous field tomography method is described in the U.S. Patent Application Ser. No. 60/797,403, filed May 2, 2006. The cardiac data includes cardiac-related parameters, as well as clinical data for clinical applications. Using ET, various cardiac parameters are measured, such as stroke volume, ejection fraction, dP/dt (max), strain rate (max), peak systolic mitral annular velocity, end systolic volume, end diastolic volume, and QRS length, etc. The cardiac measurements may be used to derive or infer various performance and wellness diagnostics/inferences. For example, an ejection fraction parameter may be used as a basis to predict ventricular synchrony performance.
  • The metrics generated from the continuous field tomography include, for example, velocity, acceleration, and displacement.
  • The clinical data derived from the metrics include, for example, left ventricle stiffness as well as ET proxies for other physiologic parameters such as ejection fraction (EF) and dP/dt.
  • In various aspects, the clinical data may be combined with the IEM data to provide additional information. The information may be useful, for example, in various diagnostic and analytical pursuits. Comprehensive patient-related data displays having clinical data and IEM data are described in the U.S. Patent Application Ser. No. 61/076,577, filed Jun. 27, 2008, wherein various ET physiologic parameters and derivations such as EF and ventricle stiffness are displayed together with IEM data such as medication ingestion time. From such a display, the efficacy of the medication therapy may be gauged.
  • 2.2 Hub
  • The hub 202 includes any hardware device, software, and/or communications component(s), as well as systems, subsystems, and combinations of the same which generally function to communicate the IEM data 200, including receiving, storing, manipulating, displaying, processing, and/or transmitting the IEM data 200.
  • In various aspects, the hub 202 receives, generates, communicates, and/or transmits, the IEM data 200, alone or in combination with other data, i.e., non-IEM data from various sources. Non-IEM data includes non-IEM physiologic data. Examples of non-IEM data include heart rate, heart rate variability, respiration, physical activity level, wake patterns, temperature, etc.
  • Communication of the IEM data 200 to and from the hub 202 includes any transmission means or carriers, and combinations thereof, including wireless, wired, RF, conductive, etc. as is known in the art or as may become available in the future.
  • FIG. 4 illustrates the hub 202 associated with the IEM data framework 102 of FIG. 2, according to one embodiment. The hub 202 comprises various categories of devices, e.g., personal communication devices, base stations, and mobile telephones.
  • Personal communication devices include, for example, devices having communication and computer functionality and typically intended for individual use, e.g., mobile computers, sometimes referred to as “handheld devices”.
  • Base stations comprise any device or appliance capable of receiving data such as IEM data. Examples include computers, such as desktop computers and laptop computers, and intelligent devices/appliances.
  • Intelligent devices/appliances include consumer and home devices and appliances that are capable of receipt of data such as IEM data. Intelligent devices/appliances may also perform other data-related functions, e.g., transmit, display, store, and/or process data. Examples of intelligent devices/appliances include devices and appliances having refrigerators, weight scales, toilets, televisions, door frame activity monitors, bedside monitors, bed scales. Such devices and appliances may include additional functionality such as sensing or monitoring various physiologic parameters, e.g., weight, heart rate, etc.
  • Mobile telephones include telephonic communication devices associated with various mobile technologies, e.g., cellular networks.
  • In one aspect, the hub 202 includes an IEM data receiver embodied, for example, as a receiver such as a patch receiver 400; a personal communication devices such as a handheld device 402; a base station 404; and a mobile telephone 406.
  • The patch receiver 400 includes, for example, devices capable of at least receiving data, signals, etc. Patch receivers 400 may be attachable, e.g., permanently or removably attachable externally to a human body or a non-human body. For example, the patch receiver 400 may include a receiver and an adhesive layer to provide for attachment to and removal from a region of skin. Alternatively, the patch receiver 400 may be implantable or semi-implantable, e.g., subcutaneous implantation. One such removably attachable patch receiver 400 is the personal signal receiver of the IEM system described in PCT/US2008/52845, supra.
  • The handheld device 402, also referred to as a “mobile computer”, includes, for example, computing devices having computer-related functionality, e.g., typically having a display screen with touch input functionality, a miniature keyboard, etc. Types of handheld devices include, for example, a personal digital assistant (PDA) having the input and output combined into a touch-screen interface; and enterprise digital assistants offering integrated data capture devices like bar code, radio frequency identification (RFID), and smart card readers, etc.
  • In various aspects, the handheld device 402 includes software, e.g., a software agent/application, associated with the IEM data 200. In various embodiments of the handheld device 402, the software is preconfigured, i.e., configurable by the manufacturer/retailer; configurable by the consumer, i.e., downloadable from a website; or a combination of the same.
  • One example of software is an auto refill application related to or integrated with an auto refill system to facilitate automated prescription refill functions.
  • The base station 404 includes systems, subsystems, devices, and/or components that receive, transmit, and/or relay the IEM data 200. In various aspects, the base station communicably interoperates with a receiver such as the patch receiver 400 and a communications network such as the Internet. Examples of base stations 404 are computers, e.g., servers, personal computers, desktop computers, laptop computers, intelligent devices/appliances, etc., as heretofore discussed.
  • In various aspects, the base station 404 may be embodied as an integrated unit or as distributed components, e.g., a desktop computer and a mobile telephone in communication with one another and in communication with a patch receiver and the Internet.
  • In some aspects, the base station 404 includes the functionality to wirelessly receive and/or wirelessly transmit data, e.g., IEM data 200 received from and transmitted to the patch receiver 400 and the Internet.
  • Further, in various aspects, the base station 404 may incorporate and/or be associated with, e.g., communicate with, various devices. Such devices may generate, receive, and/or communicate data, e.g., IEM data 200. The devices include, for example, clock radios, intelligent pill dispensers, pill managers, e.g., devices capable of receiving various substances and producing a combined substance, dose(s) of substances, etc., pharmaceutical compounding devices, “intelligent” devices such as scales, blood pressure measurement devices, exercise equipment, e.g., tread mills. Further examples include body weight sensors, motion sensors, position sensors, e.g., bed sensors, chair sensors, portals in doorways, refrigerator and food devices, bathroom facilities devices, etc.
  • The mobile telephone 406 includes, for example, devices such as a short-range, portable electronic device used for mobile voice or data communication over a network of specialized cell site base stations. The mobile telephone 406 is sometimes known as or referred to as “mobile”, “wireless”, “cellular phone”, “cell phone”, or “hand phone (HP)”.
  • In addition to the standard voice function of a telephone, various embodiments of mobile telephones may support many additional services and accessories such as short message service (SMS) for text messaging, email, packet switching for access to the Internet, java gaming, Bluetooth (short range data/voice communications), infrared, camera with video recorder, and MMS for sending and receiving photos and video. Some embodiments of mobile telephones connect to a cellular network of base stations (cell sites), which is, in turn, interconnected to the public switched telephone network (PSTN) or satellite communications in the case of satellite phones. Various embodiments of mobile telephones can connect to the Internet, at least a portion of which can be navigated using the mobile telephones.
  • In various aspects, the mobile telephone 406 includes software, e.g., a software agent/application, associated with the IEM data 200. One example is an auto refill application related to or integrated with an auto refill system to facilitate automated prescription refill functions. In various embodiments of the mobile telephone 406, the software is preconfigured, i.e., configurable by the manufacturer/retailer; configurable by the consumer, i.e., downloadable from a website; or a combination of the same.
  • Further, various embodiments of the hub ensure privacy requirements via predetermined methods, e.g., an IEM data source device 300 ingested by an individual transmits sensitive IEM data 200 via body tissues to an IEM data receiver 302 embodied in a patch receiver 400 removably attached to the individual's body. Signals associated with the sensitive IEM data 200 remain undetectable beyond the individual's body. Once received by the patch receiver 400, various computing components of the patch receiver 400 cleanse and/or encrypt the IEM data 200 for onward secure transmission. In this manner, breaches of sensitive data transmissions and/or unauthorized access to the sensitive data are avoided.
  • Further, various aspects of the hub include combinations of devices. One such combination is an IEM data receiver 300 b such as the patch receiver 400 in communication with the handheld device 402 or the mobile telephone 406. Thus, for example, the patch receiver 400 wirelessly transmits IEM data 200 to the mobile telephone 406 having a receiver and a software agent available thereon. The receiver of the mobile telephone 406 receives the IEM data 200. A software agent, e.g., an application, processes the ingested reported data 200 and displays various information related to the IEM data 200 via, for example, a customized graphical user interface (GUI). In some aspects, the software agent generates displays with a predetermined “look and feel”, i.e., recognizable to a user as belonging to a predetermined group of software programs, GUIs, source devices, communities, etc.
  • To illustrate the foregoing, the IEM data 200 may include data about an ingested medication. Once received by the mobile telephone 406, the software agent may compare the data about the medication to a predetermined medication regimen. Upon verification that the proper medication has been ingested at the proper time, the software disables an audible alarm scheduled to alert the individual to take the (already ingested) medication, thus averting an unnecessary reminder and removing the annoyance associated therewith. The software agent, via the GUI, displays a standard message to the individual notifying of the medication ingested and the time of the next dosage.
  • Additionally, the software agent may include functionality to generate or facilitate a financial transaction. In one example, upon occurrence of a certain event, such as verification that the proper medication has been ingested at the proper time, the software agent generates a predetermined charge for the ingested medication, the verification service, or both. The charge is transmitted to a financial system, e.g., the patient's cell phone transmits the charge via an IEM data system to a computer system associated with the patient's financial institution where the charge is automatically applied against a financial account of the patient.
  • In various other aspects, the transaction model may be based on various parameters. In one example, a transaction is associated with a time based model wherein use of a product or service is charged according to the length of time the product or service is used. In another example, a transaction is associated with a measured value delivery, wherein the value of the product or service is metered, measured, or otherwise valued and charged according to the ascertained value at predetermined time intervals. In still another example, a transaction is associated with therapy delivery, i.e., delivery of a therapeutic substance, event, service, etc. Examples of therapeutic substances include medication. Examples of therapeutic events include cardiac defibrillation acts and cardiac resynchronization acts. Examples of therapeutic services include administration of therapeutics, therapeutic consultations, etc.
  • 2.3 IEM Data Systems
  • The IEM data systems 204 include any hardware component, software component, and/or communications component, as well as networks, systems, and subsystems of the same, which generally function to provide a service, function, activity, etc. related to the IEM data 200. The IEM data systems, for example, collect, manipulate, calculate, transmit, receive, store, and/or otherwise communicate at least a portion of the IEM data.
  • Each IEM data system is built around a predefined business function or service and is enabled via the IEM data framework. One or more IEM data systems may be integrated, interoperate, intercommunicate or otherwise share or further the collection, management, distribution/dissemination, billing and/or other activities related to IEM data.
  • Further, one or more IEM data systems may be associated with one or more commercial systems. For example, one or more IEM data systems may be integrated with, interoperate with, and/or intercommunicate with one or more commercial systems. One or more IEM data systems may otherwise share or further the IEM data related activities with one or more commercial systems.
  • The IEM data systems 204 include at least one component, e.g., hardware device, software, and/or communications component, which generally function to provide a service or activity related to the IEM data 200, e.g., a computer to receive IEM data 200 from the hub 202 and display the IEM data 200 in conjunction with other information.
  • Examples of components include a computer, a receiver, a transmitter, an application, a software module, a data storage medium, a processor, a memory component, a personal communication device, software, a communication link, and a handheld device. It is noted that two or more IEM data systems 204 can cooperatively or independently use one or more of the same components. For example, an auto refill system and an approval system can each access a data storage medium having IEM data related to patients and prescriptions and can each utilize the IEM data for predetermined purpose(s).
  • FIG. 5 illustrates exemplary IEM data systems 204 associated with the IEM data framework of FIG. 2, according to one embodiment. The exemplary IEM data systems 204 include, for example, feedback loop systems 204 a, decision support systems 204 b, auto refill systems 204 c, patient tools 204 d, behavioral medicine systems 204 e, incentive systems 204 f, personalized commercial products/services 204 g, auto billing systems 204 h, tracking systems 204 i, interdiction systems 204 j, subscription systems 204 k, IEM data collections 204 l, approval systems 204 m, forecasting systems 204 n, financial systems 2040, an IEM data phone system 204 p, and social networks 204 q.
  • 2.3.1 Feedback Loop Systems
  • Feedback loop systems aggregate various sources of data, e.g., IEM data, analyze the aggregated data, and/or provide feedback information to multiple profile recipients based on the aggregation/analysis.
  • FIG. 6 illustrates an exemplary IEM data framework 102 including a feedback loop system 204 a, according to one embodiment. The feedback loop system 204 a includes, for example, server 500 having application 502 and database 504. The IEM data framework 102 further includes IEM data 200 and the hub, embodied here as the mobile telephone 406. In various aspects, the feedback loop system 204 a may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, a patient 506 ingests medication having an ingestible device integrated therein. The ingestible device generates IEM data 200 in the form of medication identification and time of ingestion information. The ingestible device transmits the information to a receiver. The receiver, in turn, communicates the information to the hub 202 embodied as a mobile telephone 406 associated with the patient 506.
  • A software agent resident on the mobile telephone 406 aggregates the received medication identification and time of ingestion information with the blood pressure measurement information and forwards the aggregated data to the feedback loop system 204 a. The feedback loop system 204 a, having server 500, software 502, and database 504, receives the aggregated data from the mobile telephone 406 and, via the software 502, compares the aggregated data to patient information in the database 504 to determine if the patient 506 took the most recent dose of medication in a timely manner, if the patient 506 has consistently taken the medication in a timely manner, and if the blood pressure measurement coincides with an acceptable range of blood pressure measurements.
  • Based on an analysis of the data, the feedback loop system 204 a generates additional IEM data 200 in the form of a decision on patient adherence and a decision on treatment efficacy. The IEM data 200 decisions are stored in database 504 for future reference and forwarded to a commercial system such as a healthcare system 106 a associated with a medical center computer system and having patient data such as physician's medication instructions, etc.
  • The healthcare system 106 a facilitates automatic processing and feedback, enables accessibility to the IEM data 200, e.g., by a healthcare provider, enables data input, e.g., healthcare instructions by the healthcare provider, etc.
  • For example, the healthcare system 106 a compares the decision data received from the feedback loop system 106 a with stored healthcare providers instructions, e.g., medication regimen adherence is satisfactory and no action is needed at this time; medication regimen adherence is not satisfactory and action is needed at this time; medication regimen is satisfactory but action is needed at this time, e.g., titration is needed, etc., and generates the comparison result data for review by the healthcare provider.
  • The healthcare provider utilizes the information to advantageously adjust patient treatment parameters, e.g., prescription and dosage requirements. The healthcare provider inputs data based on the comparison results, e.g., the adjusted treatment parameters. The input data are processed by the healthcare system 106 a and forwarded to the feedback loop system 204 a. The feedback loop system 204 a receives the feedback loop data, reconciles the feedback loop data with the patient information resident in the database 504, and forwards the notification to the mobile telephone 406 of the patient 506.
  • In various aspects, the feedback loop system 204 a and/or the healthcare system 106 a interoperate, e.g., communicate with at least one other IEM data system 204 and/or commercial system 106.
  • To continue the foregoing illustration, in addition to forwarding the adjusted medication regimen instructions to the patient's mobile telephone 406, either the feedback loop system 204 a or the healthcare system 106 a forwards the adjusted medication regimen in the form of a prescription to a commercial system such as a pharmacy system 106 b for refill. The pharmacy system 106 b fills the prescription and communicates a message to the feedback loop system 204 a notifying of the same. The feedback loop system 204 a updates the patient's data in database 504 to reflect the new prescription and fulfillment of the prescription, and communicates the notification to the patient's mobile telephone 406.
  • 2.3.2 Decision Support Systems
  • Decision support systems, e.g., personal wellness systems, may generate, store, provide data, e.g., IEM data, which may be used to inform and support decisions, e.g., stakeholders' decisions. In one example, multiple instances of individualized ingestible event marker data and physiologic data are gathered and combined into anonymized patient population data. Pharmaceutical research and development groups, universities, etc., utilize the data for various purposes, e.g., information to formulate new product lines, adjust existing therapies, etc. The data may be accessed, for example, by subscription to population data feeds, access to the database, etc.
  • FIG. 7 illustrates an exemplary IEM data framework 102 having a decision support system 204 b, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub 202, shown here embodied as the mobile telephone 406. In various aspects, the feedback loop system 204 a may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, IEM data, e.g., IEM data 200 a and IEM data 200 b, related to multiple individuals, e.g., patient 506 a and patient 506 b, respectively, are communicated via the hubs, e.g., mobile telephone 406 a and mobile telephone 406 b, respectively, to the decision support system 204 b comprising, for example, server 500, software 502, and database 504. The IEM data 200 a and 200 b may be encrypted. The decision support system 204 b processes and stores the received data. For example, software 502 anonymizes the patient data, i.e., removes all aspects of the data tending to identify an individual and removes, according to a predetermined scheme, all aspects of the data designated as private, sensitive, confidential in nature, etc. The software 502 may provide various other functions such as integrating the anonymized patient data with existing patient population data in the database 504.
  • The integrated data in database 504 may be accessed by, delivered to, or otherwise utilized by multiple systems and parties. Such systems include for example, commercial systems 104 such as pharmaceutic systems 106 c and university systems 106 d. Parties associated with the pharmaceutic systems 106 c may utilize the patient population data, for example, for statistical analysis and projective capabilities such as determining the efficacy, cost efficiency, profit, etc. of a particular medication and projecting from the determination new product line concepts/therapies, etc. Parties associated with universities may utilize the patient population data to research symptomatology, analyze medication risks, etc.
  • In various aspects, the decision support system 204 b, IEM data system(s), and/or commercial system(s) interoperate, e.g., communicate, therebetween.
  • To continue the foregoing illustration, in addition to the provision of decision support data such as patient population data, the decision support system 204 b communicates patient population data to the feedback loop system 204 a. The feedback loop system 204 a communicates the patient population data to mobile telephone 406 a of patient 506 a.
  • In one scenario, the decision data derived from a patient population such as medication efficacy may be correlated with an individual's medication therapy, and communicated via marketing system specifically targeted for that individual.
  • 2.3.3 Auto Refill Systems
  • Auto refill systems automatically fill or refill prescriptions. In one example, IEM data identifying an ingested medication are gathered and reconciled with current prescription information to identify depleted prescription supplies. If the supply is depleted, a refill order is automatically triggered to the appropriate pharmacy. The pharmacy automatically refills the order, generates a bill, and charges the appropriate account, e.g., via a real time, online financial transaction.
  • FIG. 8 illustrates an exemplary IEM data framework 102 having an auto refill system 204 c, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub 202, shown here embodied as the base station 404. In various aspects, the auto refill system 204 c may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, the patient 506 ingests prescription medication in conjunction with an ingestible device. The ingestible device identifies the medication type and dosage, and transmits the IEM data 200 via, for example, conductive transmission to the patch receiver 400, which may be removably attached to the patient 506. The patch receiver 400 transmits the IEM data 200 to base station 404. The base station 400 forwards the IEM data 200 to the auto refill system 204 c. The software 502 of the auto refill system 204 c compares the medication type and dosage of the IEM data 200 against prescription information stored in the database 504. The prescription information, for example, may include the number of tablets in the prescription at time of fill, the dosage instructions, and a running total of the ingested tablets as per previously received information. If the comparison indicates depletion of the prescription medication, database 504 is checked for the number of remaining refills. If refills are remaining, any sensitive data of the IEM data 200 are cleansed, i.e., removed, and a prescription refill request with pertinent information is compiled and transmitted according to predetermined security protocol and via predetermined channel(s) to a commercial system 106 such as the pharmacy system 106 b. Upon receipt by the pharmacy system 106 b, the refill request is parsed and verified, and the prescription is refilled.
  • Payment for refill can be effected, for example, via a real-time, online transaction between the pharmacy system 106 b and an IEM data system 204 and/or commercial system, e.g., financial transaction system 106 e. The financial transaction system 106 e, for example, may receive the financial transaction, e.g., prescription refill charge, via a predetermination communication channel. The financial transaction system 106 e verifies the patient account information and completes the transaction, notifying the pharmacy system 106 b.
  • Notification of status of refill and payment for refill can be provided via predetermined communication channel(s) to the base station 300, e.g., an email for display on the laptop computer, a text message to the patient's mobile telephone, etc.
  • 2.3.4 Patient Tools
  • Patient tools include any data, information, software, websites, etc. that provide information or assist a particular patient focus, e.g., tracking tools to assist a patient in cardiac health management, patient personalization of their own data, etc. Various users may be associated with the patient tools. Examples include various users within a patient community, e.g., patients, family caregivers, and professional caregivers such as physicians.
  • FIG. 9 illustrates an exemplary IEM data framework 102 having a patient tools 204 d, according to one embodiment. The IEM data framework 102 further includes IEM data 200 a-c and the hubs, shown here embodied as the base station 404, the mobile telephone 406, and the handheld device 402. In various aspects, the patient tools 204 d may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, multiple parties such as patients 506 a-c access the patient tools 204 d, which may be embodied as the server 500 having the software 502 and the database 504 having IEM data 200 in the form of at least patient tools. Patients 506 a-c may access the patient tools 204 d, for example, via the base station 404, the mobile telephone 406, and the handheld device 402, respectively.
  • Patient 506 b may search the database 504 for patient tools related to mental illness management. The patient tools, for example, may be provided in the form of downloadable data/applications to assist in tracking, monitoring, diagnosing, and notifying a patient of a relevant health issue, e.g., medication dosage schedule, etc. Patient 506 b may download the application onto, for example, the mobile telephone 406. Patient 506 b may further communicate via, for example, the mobile telephone 406 with at least one commercial system such as the healthcare system 106 a, which may provide further medical data, instruction, etc., relevant to the patient 506 b′s mental illness management pursuit.
  • In various aspects the patient tools 204 d may be configured for and utilized by for various parties besides the patient, e.g., a patient community, family caregivers, and professional caregivers.
  • 2.3.5 Behavioral Medicine Systems
  • Behavioral medicine systems may collect, track, and analyze behavior-related data to identify causal failure points in treatment and to predict corrective action by prescribing specific behavior modifications. In various aspects, the behavioral medicine systems may assist patients via questionnaires and patient profile assessment on symptomatologic or therapeutic subjects, e.g., in various decision processes by display a menu-guided series of questions and receiving answer(s) from the patient.
  • FIG. 10 illustrates an exemplary IEM data framework 102 having a behavioral medicine system 204 e, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as the base station 404 and the mobile telephone 406. In various aspects, the behavioral medicine system 204 e may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, the behavioral medicine system 204 e, e.g., a software agent, may be located in whole or in part on a patient-related device such as the mobile telephone 406. The software agent may assist the patient in various endeavors, e.g., diet choices, smoking cessation, etc. The assistance may be provided, by example, by generating for display on the mobile telephone 406 question sets related to diet and smoking cessation. The patient may answer the questions, e.g., select from various answer options. Based on the patient's answers to the questions, the software agent may categorize the patient according to predetermined categories. The software agent may provide language and menu choices based on the patient categorization.
  • In another scenario, patient behavior is tracked with respect to various IEM data, e.g., patient parameters, sometimes referred to herein as “sentinels for wellness”. Examples of sentinels for wellness include medication therapy adherence, weight, blood pressure, etc. The sentinels for wellness may be derived, for example, from various health devices 300 c such as intelligent scales, cardiac-related devices, etc.
  • To illustrate, patient 506 ingests medication according to physician instructions. The IEM data 200 in the form of ingestion information identifying the ingested medication and the time of ingestion are captured via an ingestion device and communicated to the patient's mobile telephone 406. Also captured via health device(s) 300 c at the time of medication ingestion are the patient's blood pressure and weight. The timing of the foregoing data captures may be synchronized via, for example, software utilizing a reminder system to alert the patient to take the medication at a particular time. Upon receiving the ingestion information, e.g., confirmation of ingestion, the software associated with the mobile telephone 406 communicably triggers health device(s) 300 c to determine blood pressure and weight, and forwards such data to the mobile telephone 406 for aggregation with the IEM data 200 in the form of the ingestion information.
  • The aggregated data may be forwarded to behavioral medicine system 204 e, which may be configured, for example, as the mobile telephone and software 406, the server 500 including the software 502 and the database 504, and/or other configurations. Upon receipt of the aggregated data, various processing may take place.
  • One example of processing is analysis of the IEM data 200 to determine degree of patient adherence to medication regimen, i.e., determine if the patient ingested the prescribed medication in the right dosage at the prescribed time interval(s).
  • Another example of processing is analysis of the IEM data 200 to determine if the blood pressure measurement is in line with physician expectations. Thus, the notification of patient adherence to the medication regimen and the blood pressure measurement may be communicated to a physician system 106 f for review by the patient's physician. The physician, in turn, may update the IEM data 200, e.g., determine an adjustment in the medication regimen is needed and communicate, via the behavioral medicine system, the updated medication regimen to the patient's mobile telephone 406 and to the pharmacy system 106 b for filling the updated prescription.
  • In cases of a nonadherence determination, the physician may alert the patient, via the behavioral medicine system 204 e, to make an appointment for a physical review. In various aspects, the behavioral medicine system 204 e may generate and/or forward a reminder to the hub, e.g., mobile telephone 406 of the patient 506. The reminder, for example, may include the dosing schedule, a reminder for the upcoming dose, instructions to follow in case of a missed dose, etc.
  • In cases of underdosage/overdosage, the behavioral medicine system 204 e may interoperate with an alert system, e.g., the IEM data phone system, infra, and compare current dosage information to predetermined thresholds to determine if a critical status dosing event exists, e.g., the patient is critically underdosed or critically overdosed. If such a determination is made, the appropriate system may generate an alert to appropriate parties, e.g., generate a 911 emergency call for medical assistance, generate an emergency alert to the physician system 106 f, and generate an alert to a family caregiver system 106 g, e.g., a family member's mobile telephone.
  • In still another scenario, analysis of the patient's communication patterns/habits is performed to determine patient parameters, indicated actions, etc. To illustrate, an application such as software 502 resident on the mobile telephone 406 tracks the patient's phone usage to determine communication patterns. For example, the family caregivers, physician, etc., may selectively configure tracking parameters of the application to determine various patient communication thresholds, patterns, etc. The software monitors communication from/to the selected device, e.g., the patient's mobile telephone 406. In various aspects, the application mines mobile telephone records of the associated carrier to determine calling and called parties, heavy volume call time, no call times, etc. and builds a profile against the same. The application monitors use of the mobile telephone 406 and identifies significant, e.g., user selected, deviations from the profile. Upon identification of a deviation, the application initiates predetermined actions, e.g., communicates an alert to the physician and/or family caregiver via the healthcare system 106 a, the physician system 106 f, and/or the family caregiver system 106 g.
  • Another example of processing is analysis of the IEM data 200 together with data from another source, e.g., aggregated data. The aggregated data may be collected from various sources, aggregated at various and/or multiple points, and/or communicated via various channels to/from various devices.
  • To illustrate, cardiac data is derived via electrical tomography, as heretofore discussed. The cardiac data is communicated directly or indirectly, e.g., by the patch receiver 400, to a software application on the hub, e.g., the mobile telephone 406. The software application on the mobile telephone 406 aggregates the cardiac data with the IEM data, e.g., pill ingestion-related data, and displays the various data via a graphical user interface (GUI).
  • Subsequent to enrollment, the behavioral medicine system ascertains that the patient has neglected to take the medication at the appropriate times. Reminder alerts for upcoming medication dosing time(s) are sent to the patient via the mobile telephone. Upon receiving the alerts, the patient timely ingests the medication, resulting in a change in the sentinels for wellness.
  • 2.3.6 Incentive Systems
  • Incentive systems provide incentives and rebates through various programs. The incentives and rebates are based on, or otherwise associated with, the IEM data. The IEM data may be analyzed via, for example, an IEM data system 204 to determine if certain criteria/thresholds/goals are evident. Based on the determination, incentives tied to or associated with the criteria/threshold/goals may be generated.
  • FIG. 11 illustrates an exemplary IEM data framework 102 having an incentive system 204 f, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as the mobile telephone 406. In various aspects, the incentive system 204 f may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, patient adherence is tracked with respect to various patient parameters, e.g., medication therapy and adherence. Incentives may be awarded accordingly. For example, patient 506 ingests medication according to physician instructions. The IEM data 200 in the form of ingestion information identifying the ingested medication and the time of ingestion are captured via an ingestion device and communicated to the patient's mobile telephone 406, and to the behavioral medicine system 204 e. The behavioral medicine system 204 e verifies patient 506 adherence to the prescribed medication regimen, and sends verification to the incentive system 204 f. The incentive system 204 f, via the software 502 and the database 504, determines the price paid for the medication, and issues a rebate or credit against the cost. For example, the rebate may be issued and a financial transaction in the amount of the rebate posted to the patient's financial account via the financial transaction system 106 e.
  • In another example, the rebate may be communicated and applied to an account associated with the patient via the pharmacy system 106 b with, for example, a credit against the next refill for the patient's prescription medication.
  • In another example, the patient's blood pressure and weight may be captured via health device(s) 300 c at time of medication ingestion. The timing of the foregoing data captures may be synchronized via software utilizing a reminder system to alert the patient to take the medication at a particular time. Upon receiving the ingestion information, e.g., confirmation of ingestion, the software associated with the mobile telephone 406 may communicably trigger health device(s) 300 c to determine blood pressure and weight, and forward such data to the mobile telephone 406 for aggregation with the IEM data 200 in the form of the ingestion information. The aggregated data may be communicated to the incentive system 204 f where the software 502 and/or database 504 may be utilized to determine if the patient's weight and blood pressure meet acceptable predetermined thresholds. If, for example, the weight exceeds an acceptable threshold, the incentive system 204 f may generate an incentive in the form of a discount membership offering at a local health club, etc. The offering may be constructed using various data parameters and demographics, e.g., geographical location of the patient, amount of weight to be lost, health assessment scoring based on individualized patient health parameters, lists of participating health clubs, etc.
  • The incentive may be communicated to the patient 506 via, for example, the patient's mobile telephone 506.
  • 2.3.7 Personalized Commercial Products/Services
  • Personalized commercial products/services provide individualized products and services predicated on or related to IEM data.
  • FIG. 12 illustrates an exemplary IEM data framework 102 having a personalized commercial products/services system 204 g, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub 202. In various aspects, the commercial products/services system 204 g may be embodied as, for example, an IEM data device, e.g., a patch receiver. In various aspects, the commercial products/services system 204 g may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, commercial products/services system 204 g include consumer-friendly receivers, such as patch receivers. The receivers comprise various accessories and incorporate various designs. For example, children's patch receivers may comprise cartoon character appliqués. Youths' patch receivers may comprise tattoo-like design aspects. Further examples include IEM data receivers embodied as/integrated into accessories, e.g., earrings, naval rings, and other means of adornment, etc.
  • Commercial products/services system 204 g further comprise branded or “community” associated products and services.
  • 2.3.8 Auto Billing Systems
  • Auto billing systems receive, process, and/or facilitate payment via a financial account. Auto billing applications associated with the auto billing system and/or with financial institution systems seamlessly interoperate to generate a bill, verify accountholder information, charge an account, etc. Statements are updated to reflect payment information. Similar applications may be applied for prescriptions, consumer products, information provision via personal devices, etc.
  • FIG. 13 illustrates an exemplary IEM data framework 102 having an auto billing system 204 h, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as the handheld device 402. In various aspects, the auto billing system 204 h may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, various parties such as patient 506, physicians, pharmaceutical companies, etc., subscribe to information feeds/patient population data of IEM data 200 to further business goals, manage health care, etc. The parties may receive the information feeds/access population data, etc. via a variety of devices. For example, patient 506 may receive an information feed via hub 202 embodied as the handheld device 402, which, via a software agent, may generate a financial transaction in the form of an invoice for the information feed displayed for the patient 506. Payment may be effected via automated methods.
  • In a patient selection method, for example, the patient selects various payment options via the software agent resident on the handheld device 402. A payment transaction is generated and communicated to the financial transaction system 106 e. The financial transaction system 106 e automatically charges an account associated with the patient 506. Confirmation of the payment together with digital, e.g., electronic, copies of the invoice are provided to the software agent resident on the handheld device 402 for the patient 506 to view, etc.
  • In an automated method, for example, a bill and/or financial transaction are automatically generated upon predetermined criteria. The predetermined criteria include, for example, delivery of information associated with an information feed or other source, access to a data collection, e.g., patient population data stored in a database, etc. The patient selects various payment options via the software agent resident on the handheld device 402, and a payment transaction is generated and communicated to the financial transaction system 106 e. The financial transaction system 106 e automatically charges an account associated with the patient 506. Confirmation of the payment together with digital copies of the invoice are provided to the software agent resident on the handheld device 402 for the patient 506 to view, etc. For example, a healthcare provider may access patient population data stored in decision support system 204 b via the healthcare system 106 a. Software of the decision support system 204 b may cooperate with the software 502 and the database 504 of the auto billing system 204 h to identify the party to be billed for the access. Upon identification, the auto billing system 204 h may automatically generate a bill and/or financial transaction for the access via one or more of the aforedescribed channels.
  • 2.3.9 Tracking Systems
  • Tracking systems track and integrate product movement data. In one example, the life cycle of an ingestible device may be tracked from manufacture to shipment, pharmacy inventory, delivery to patient, ingestion and expulsion.
  • FIG. 14 illustrates an exemplary IEM data framework 102 having a tracking system 204 i, according to one embodiment. The IEM data framework 102 further includes the IEM data 200 and the hub, shown here embodied as a scanner 1402. In various aspects, the tracking system 204 i, may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, a pharmaceutical manufacturer produces an ingestible device 302 a such as a particular medication having an IEM system device therein. The IEM system device contains various IEM data 200 such as medication identification, batch number, lot number, and manufacturer identification. The scanner 1402 may be utilized at various times/locations to scan the ingestible device 302 a and capture the IEM data 200 associated therewith. The IEM data 200 may then be stored, processed, etc., via, for example, the software 502 and the database 504 of the tracking system 204 i. For example, the IEM data 200 may be read by the scanner at a shipping point and when received by a pharmacy to ensure inventory control, distribution integrity, and chain of custody for restricted pharmaceuticals, etc.
  • The tracking information may be used, for example, by regulatory agencies systems 106 i to determine regulatory adherence, etc.
  • 2.3.10 Interdiction Systems
  • Interdiction systems track, reconcile, and support interdiction programs. The interdiction programs include, for example, programs related to drug identification and use detection by sworn personnel, search and seizure activities, etc.
  • FIG. 15 illustrates an exemplary IEM data framework 102 having an interdiction system 204 j, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and hub, shown here embodied as a scanner 1402. In various aspects, the interdiction system 204 j may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, a pharmaceutical manufacturer produces an ingestible device 302 a such as a particular medication having an IEM system device therein. The IEM system device contains various IEM data 200 such as medication identification, batch number, lot number, and manufacturer identification. The scanner 1402 may be utilized at various times/locations to scan the ingestible device 302 a and capture the IEM data 200 associated therewith. The IEM data 200 may then be communicated to, for example, the software 502 and the database 504 of the interdiction system 204 j, where the IEM data 200 may be accessed by and communicated to regulatory agency systems 106 i to facilitate various regulatory and enforcement functions, to locate missing controlled substances, to intercept contraband, to identify unknown substances, and to otherwise support agency and regulatory activities.
  • In various aspects, the IEM data 200 may be communicated to/from, for example the interdiction system 204 j from/to the tracking system 204 i, for processing, storage, etc. For example, the IEM data 200 may be read by the scanner at a shipping point and read by a pharmacy to ensure inventory control, distribution integrity, and chain of custody for restricted pharmaceuticals, etc. The scanned (read) IEM data 200 may be reconciled between the interdiction system 204 j and the tracking system 204 i to ensure complete shipment, to track shipments through various jurisdictions, etc. In one example, the IEM data 200 such as the identifier data, shipment data, patient information, recipient information, and commercial activities are tracked and reconciled to intercept contraband and otherwise support agency and regulatory activities.
  • 2.3.11 Subscription Systems
  • Subscription systems enable subscription to various IR information feeds and data/knowledge collections, e.g., IEM data collection system. For example, patients subscribe to IEM data information feeds and/or IEM data collections, which aggregate various sources of data and fuse the data into integrated, individualized information based on the subscriber's requirements. The information fusion may include, for example, personalized medication regimens and alert applications, individual social community information, music, etc. The information may be automatically billed, for example, under a single point of charge model on a recurring basis. The agent may be provided as part of an embedded device, e.g., standard application on a mobile telephone, etc.
  • FIG. 16 illustrates an exemplary IEM data framework 102 having a subscription system 204 k, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a mobile telephone 406. In various aspects, the subscription system 204 k may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, the patient 506 subscribes to various information feed(s) and/or IEM data collections, discussed hereinafter in detail. The information feed(s) include, for example, structured and non-structured information on a variety of topics generated or delivered from various sources, e.g., websites, blogs, etc. The IEM data collections include storage repositories having IEM data. The storage repositories may be associated, e.g., integral to or remote from, the subscription system 204 k. For example, an IEM data collection may be resident in part or wholly in database 504 of the subscription system 204 k.
  • In one scenario, IEM data 200 are communicated from a subscription source to a subscriber, e.g., a subscriber's device. The subscription source includes, for example, IEM data systems 204, e.g., the database 504 of the subscription system 204 k, feedback loop system 204 a, patient tools 204 d, and decision support system 204 b; commercial systems 106 b, e.g., online medical and business information/newsfeed sources, healthcare system 106 a; and other sources, e.g., devices associated with the patient 506, the hub, etc. The subscriber includes, for example, a person, group, or resource, e.g., a database, a computer system, server, network, etc.
  • In various aspects, subscription services may be initiated via, for example, a software agent resident on the hub or communication with a local or remote system such as the healthcare system 106 a.
  • In various aspects, the subscriptions services may be billed and paid via, for example, the subscription system 204 k and the financial transaction system 106 e.
  • In various aspects, the subscription newsfeeds/data may be combined or integrated into a single or multiple newsfeeds, e.g., the software 502 and/or the database 504 of the subscription system 204 k may enable data aggregation, etc.
  • To illustrate, the patient 506 subscribes to a healthcare newsfeed and a pharmacy newsfeed, one or more having IEM data 200, via the subscription system 204 k. The patient subscribes by selecting an application, e.g., software agent resident on the hub, illustratively embodied here as the mobile telephone 406. Once the patient has selected the subscription options, the order is communicated to the subscription system 204 k, which, via the software 502 and the database 504, confirms, processes, stores, and bills the order. The subscriber's financial account may be automatically charged, for example, by communicating invoice information to a financial transaction system 106 e associated with the subscriber's account. Confirmation of the charge may be communicated from the financial transaction system 106 e to the subscriber via the subscription system 204 k and/or the mobile telephone 406.
  • Based on the subscription parameters, the subscription system 204 k receives the healthcare newsfeed information and the pharmacy newsfeed information. The software 502 of the subscription system compares subscriber data of the patient 506 in the database 504 against subscriber data found in the pharmacy newsfeed, e.g., patients who are prescribed medications for cardiac therapy. Based on the comparison, software 502 separates the data of the pharmacy newsfeeds relevant to the subscriber, combines the relevant data with the healthcare newsfeed information and communicates the combined newsfeed information to the mobile telephone 406 for access and display.
  • 2.3.12 IEM Data Collection System
  • The IEM data collection system provides/facilitates access to/storage of the IEM data. Examples of the IEM data include patient population data and electronic medical records. In various aspects, IEM data collections may include functionality related to the collection, management, manipulation, storage, dissemination, and billing of IEM data.
  • FIG. 17 illustrates an exemplary IEM data framework 102 having an IEM data collection system 204 l, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a handheld device 402. In various aspects, the IEM data collection system 204 l, may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, patient population data, e.g., anonymized, empirical patient data, is stored in one or more repositories, e.g., the database 504 of the IEM data collection system 204 l. The patient population data may be received from various sources, e.g., the IEM data 200 associated with one or more patient 506, IEM data systems 204 such as behavioral medicine systems 204 e, subscription systems 204 k, patient tools 204 d, etc., and commercial systems such as healthcare systems 106 a, pharmaceutic systems 106 c, university systems 106 d, etc.
  • In various aspects, the IEM data collection system 204 l may be consolidated in a single physical and/or logical location, e.g., the database 504 of the server 500 of the IEM data collection system 204 l, or distributed across two or more systems or locations, e.g., remotely distributed on multiple IEM data systems 204, associated with commercial systems 106, and/or distributed between the IEM data collection system 204 l and other systems/locations.
  • Multiprofile users may access, utilize, and/or contribute to the IEM data collection system 204 l. Multiprofile users include, for example, individuals or groups using various methods/devices for access, utilization, and/or contribution. Examples of multiprofile users include patient 506, family members and family caregivers, professionals, academics, corporates, etc. The methods/devices include the hub devices such as a mobile telephone, base station, handheld device, etc., as well as system components associated with IEM data systems and commercial systems, e.g., laptop computer associated with a university network, a desktop computer associated with the family caregiver system 106 g, etc.
  • To continue the foregoing illustration, a researcher, using the university system 106 d, accesses the IEM data collection system 204 l via the Internet, etc. and submits queries against the patient population data, extracts various data, etc.
  • In various aspects, the IEM data collection system 204 l includes privacy assurance, authentication, and validation mechanisms with respect to financial, medical, and other privacy information. For example, the software 502 may authenticate users. The software 502 may cleanse/verify data to ensure predetermined privacy thresholds are met.
  • 2.3.13 Approval Systems
  • Approval systems aggregate and/or analyze various data to enable an informed approval decision.
  • FIG. 18 illustrates an exemplary IEM data framework 102 having an approval system 204 m, according to one embodiment. The IEM data framework 102 further includes IEM data 200, the hub, shown here embodied as a handheld device 402, and an associated intelligent pill dispenser 1802. In various aspects, the approval system 204 m, may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, the patient 506 opens an intelligent pill dispenser 1802, e.g., a pill dispenser having a microchip and communication abilities. The patient 506 removes a pill having an IEM system from the intelligent pill dispenser 1802. The intelligent pill dispenser 1802, via its microchip, senses the removal of the pill, receives a signal from an IEM system that the patient 506 has ingested the pill, and determines the remaining quantity. If the remaining quantity is fewer than a predetermined threshold quantity, the intelligent pill dispenser 1802 communicates a refill request to the approval system 204 m. The approval system 204 m via, for example, the software 502 and the database 504, verify information associated with the patient 506, e.g., patient name, prescription identification, medication ingestion verification, refill timing, etc. The approval system 204 m may interoperate with, e.g., communicate with, various IEM data systems 204 and/or commercial systems 106 to obtain/validate information. For example, data provided to/resident in the approval system 204 m may be reconciled with medical records of healthcare system 106, the refill request approved by approval system 204 m, and a refill communicated to the pharmacy system 106 b.
  • 2.3.14 Forecasting Systems
  • Forecasting systems aggregate data and/or facilitate analysis of the aggregated data/data collections to derive/generate predictive information.
  • FIG. 19 illustrates an exemplary IEM data framework 102 having a forecasting system 204 n, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a base station 404. In various aspects, the forecasting system 204 n, may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, for example, IEM data 200 are received by the base station 404 from ingestible devices associated with patients 506 a-c. The base station 404 communicates the IEM data 200 to the IEM data collection system 204 l, which anonymizes the IEM data 200 and aggregates the anonymized IEM data 200 with patient population data.
  • The IEM data collection system 204 l communicates all or a portion of the patient population data to the forecasting system 204 n, where the software 502, e.g., one or more applications, processes the patient population data to derive various statistics, conclusions, forecasts, etc., according to predetermined requirements, objectives, etc. For example, the software 502 processes the patient population data and correlates various data such as blood pressure readings over a predetermined period of time versus medication taken versus adherence to medication regimen to determine overall efficacy of medication regimen and to forecast titrated patient dosing based on the overall efficacy findings.
  • Multiple profile parties, e.g., analysts using the pharamceutic systems 106 e, agents using the regulatory agency systems 106 i, and researchers using the university systems 106 d, access the forecasting system 204 n. The multiple profile parties utilize various tools, e.g., the software 502, to run analytical and forecasting applications again the patient population data and to access various forecasting data available in connection with the forecasting system 204 n.
  • 2.3.15 Financial Systems
  • Financial systems support and enable financial transactions associated with IEM data. In various aspects, the financial systems are communicably interoperable with existing automated banking systems and networks, etc.
  • FIG. 20 illustrates an exemplary IEM data framework 102 having a financial system 204 o, according to one embodiment. The IEM data framework 102 further includes IEM data 200 and the hub, shown here embodied as a mobile telephone 406. In various aspects, the financial system 204 o, may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, the patient 506, via the mobile telephone 406, places an order for a product/service, e.g., a newsfeed service from the subscription system 204 k. The subscription system 204 k, via its software, interoperates with the financial system 204 o. The subscription system 204 k, for example, securely communicates encrypted patient financial information such as account number and subscription information. The financial system 204 o authenticates the patient information and securely interoperates with the patient's financial institution, e.g., via a commercial system 106 such as the financial transaction system 106 e to charge the patient's account and provide charge information/confirmation to the patient 506 via, for example, the mobile telephone 406.
  • 2.3.16 IEM Data Phone
  • The IEM data phone enables IEM data related applications. For example, application(s) include pill regimen scheduling applications, alert reminder applications, auto refill for medication applications, patient tool applications, social networking applications, incentive tracker applications, auto billing applications, subscription applications, approval applications, and financial transaction applications. The applications may be integrated with, associated with, or independent of one another. The applications may further be manufacturer-installable on the IEM data phone, downloadable or otherwise installable by a wholesaler, retailer, user, etc. Installation may be independent or bundled with other software, products, etc. In various aspects, the applications are user-configurable, downloadable, upgradeable, etc.
  • In various aspects, the IEM data phone and/or its applications may share common features, e.g., a common graphical user interface (GUI); branding, i.e., a collection of images and ideas representing an economic producer such as concrete symbols embodied as a name, logo, slogan, design scheme, etc. The IEM data phone may also include various connectivity schemes, e.g., Internet and cellular; may provide multimedia capabilities; and may embody various hardware and software configurations. The IEM data phone may be embodied in a variety of devices, e.g., the mobile telephone 406, the handheld device 402, etc.
  • FIG. 21 illustrates an exemplary IEM data framework 102 having an IEM data phone 204 p, according to one embodiment. The IEM data phone 204 p may serve as the hub, for example. IEM data framework 102 further includes IEM data 200. In various aspects, the IEM data phone 204 p, may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, the IEM data phone 204 p includes the software 502, e.g., a portfolio of branded applications such as pill regimen scheduling, alert reminders, auto refills, patient tools, social networking, incentive trackers, auto billing, subscriptions, approvals, and financial applications.
  • The pill regimen scheduling application may accept, reconcile, calendar, and manage contraindications and interactions of medication regimen(s). For example, the patient 506 may input information related to one or more prescriptions, including the pharmaceutical name and dosage. The pill regimen scheduling application may check the input information against existing information stored on the IEM data phone 204 p, e.g., in the database 504, or elsewhere, e.g., the pharmacy 106 b. The pill regimen scheduling application may provide information regarding contraindicated medications, side effects, precautionary instructions. The pill regimen scheduling application may calendar the dosing information and generate alerts, e.g., reminders generated at appropriate times alerting the patient to ingest the medication. The alerts may be audible, visual, email, text message, etc. and may be integrated with, or independent of, alert reminder application(s).
  • The alert reminder application may accept or access various data associated with scheduling, including IEM data 200, and generate alerts at appropriate times. The alerts may be audible, visual, email, text message, etc. and may be integrated with or independent of alert reminder application(s). The alert application may be user-configurable, e.g., type of alert, repetition of alert, interval of repetition, receivers of alert. The alerts may be associated with various devices of the patient, family caregivers, friends, etc. In one example, the patient 506 may schedule reminders to be sent to the user's device, e.g., the IEM data phone 204 p, the handheld device 402, the base station 404, the mobile telephone 406, etc.
  • The alert reminder application may be integrated with other applications/systems. To illustrate an IEM system associated with the patient 506 that may, for example, detect medication ingestion event(s) and communicate the IEM data 200 associated with the medication ingestion event(s) to the alert reminder application via the IEM data phone 204 p. The alert reminder application may interoperate with the pill regimen scheduling application and perform various checks, e.g., the ingested medication was actually prescribed for the person that ingested it; the ingested medication was ingested in the correct dosage; the ingested medication was ingested at the prescribed time interval; etc.
  • Predetermined criteria may be used to determine if/when the alert reminders application generates an alert, reminder, etc. To continue with the foregoing illustration, upon a determination that the ingested medication was not prescribed for the person ingesting it or the wrong dosage was ingested, the alert reminder system generates alert(s) to a predetermined destination, e.g., alerts in the form of text messages to mobile telephones associated with the family caregiver system 106 g, alerts in the form of email/text messages to the healthcare system 106 a and the physician system 106 f. If the event is deemed critical, e.g., ingestion of non-prescribed medication, overdosage, etc., the alert reminder application may generate a call from the IEM data phone 204 p to the emergency assistance system, e.g., place a 911 call. The call (prerecorded audio, text message, etc.) may contain information such as the patient's name, the nature of the emergency, the ingestion details, physician and family caregiver information, and the physical location of the person ingesting the medication.
  • The auto refill application may facilitate automatic refill of a prescription medication via interoperation with, for example, the pharmacy system 106 b, etc.
  • The patient tool application may be provided on or accessible from the IEM data phone 204 p. For example, software tools for tracking dietary and physiologic symptoms may facilitate user entry of dietary intake and symptoms, collection of device-associated physiologic parameters such as blood pressure, heart rate, etc., correlation/analysis of the data, and feedback based on the correlation/analysis. The patient tool application may provide data, e.g., the feedback, for display on the IEM data phone 204 p, the IEM data system(s) 204, and/or the commercial system(s) 106.
  • The social networking application may facilitate social networking functionality. For example, the social networking application may retain various links to selected profiles of various social networks, receive data related to the selected profiles, e.g., updates to the profiles, facilitate messaging and other communication, update the user's profile, etc., communicate with the IEM data systems(s) 204, and/or the commercial system(s) 106, such as the patient tools/social network 204 d and the web communities 106 h.
  • The incentive tracker application may collect, manage, track, update, etc. incentive information. For example, the incentive tracker application may reconcile data associated with IEM data collection systems 204 l and wholesaler/retailer systems 106 j to determine incentive eligibility, e.g., a patient rebate. The incentive tracker application may further tally points under various reward systems, notify the patient 506 of milestones, goals, award of incentive, etc.
  • The auto billing application may facilitate billing for various transactions. The auto billing application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106, such as the billing for an auto refill via the pharmacy system, etc.
  • The subscription application facilitates ordering, receipt, management, etc. of various subscriptions, e.g., newsfeeds, access to various data collections on a subscription basis, etc. The subscriptions application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106, such as the subscription system 204 k, the IEM data collection system 204 l, etc.
  • The approval application aggregates and/or analyzes various sources of data to enable an informed approval decision. The approvals application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106, such as the auto refill system 204 c, the subscription system 204 f, the financial systems 204 o, the pharmacy systems 106 b, the wholesaler/retailer systems 106 j, etc.
  • The financial application supports and enables financial transactions associated with IEM data 200. The financial application may interoperate with various applications/systems, including the IEM data system(s) 204 and/or the commercial system(s) 106, such as the auto refill system 204 c, the incentive system 204 f, the subscription system 204 k, the approval system 204 m, the financial systems 204 o, the pharmacy system 106 b, the wholesaler/retailer systems 106 j.
  • 2.3.17 Social Network System
  • Social networks are a social structure made of one or more nodes, e.g., components such as websites, accessed by individuals or organizations. The social network is typically tied by one or more specific types of interdependency, such as epidemiology, therapeutic regimen, healthcare management, etc., and thus may attract the interest of otherwise unrelated individuals and groups having in common an interest in the interdependencies. Social networks may be built around various communities, e.g., family caregivers, patients, medical conditions, etc.
  • One example of a social network is a patient information community that provides information related to a particular medical condition, treatments, medications, regimens, and side effects based on both provider and anecdotal data. The availability of such data may provide benchmark-type services, e.g., facilitate self-assessment of personal progress and adjustment in therapies and behaviors by comparing and contrasting an individual's progress with the particulars of others having the same condition, similar therapies, etc.
  • FIG. 22 illustrates an exemplary IEM data framework 102 having a social network system 204 q, according to one embodiment. The IEM data framework 102 further includes IEM data 200, and the hub, shown here embodied as the base station 404. In various aspects, the social network system 204 q may interoperate, or be otherwise associated with, one or more IEM data systems 204 and/or one or more commercial systems 106.
  • In one scenario, patient 506 suffers from a cardiac condition. The patient 506 accesses the social network system 204 q, which may be embodied as the server 500 having the software 502 and the database 504 having IEM data 200. Patient 506 may access the social network system 204 q, for example, via the base station 404. The patient 506 a searches the database 504 for patient profiles also having cardiac conditions similar to that of patient 506. The social network system 204 q provides multiple profiles of patients having similar conditions. The profiles include various data pertinent to each patient such as medication therapies, personal behavior histories, etc. The patient 506 requests a comparison of his medication therapy, medication therapy adherence, and behavior to that listed in the profiled. The social network system 204 q provides the requested comparative data in the form of a graphical display. From the display, the patient 506 is able to determine the profiles having the most favorable treatment outcomes. From such profiles, the patient 506 and/or social network system 204 q analyze the differences between his medication, medication therapy adherence, behavior, etc. and the corresponding interdependencies of the profiles having the most favorable treatment outcomes. The analysis may contrast the differences found in various areas, as well as generate prescriptive advice, e.g., in which areas the patient 506 may want to adjust and specific adjustments based on the analysis. The patient 506 may adopt the prescriptive advice, i.e., adjust accordingly, to improve his own personal outcome. Further, the patient 506 may update the social network system 204 q with the adjustment data, which may be used in the future for tracking personal improvement as well as benchmarking purposes by other individuals. In various aspects, the social network system 204 q may be communicably associated with other web communities 106 h, e.g., youth communities, business communities, etc.
  • 3.0 IEM Data Framework Method
  • One aspect comprises, for example, receiving, via a hub, ingestible event data that originates from multiple ingested event markers; and communicating, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
  • 4.0 IEM Data Framework Article
  • One aspect comprises, for example, a storage medium having instructions, that when executed by a computing platform, result in execution of a method of utilizing ingestible event marker data, comprising: receiving, via a hub, the ingestible event data that originates from multiple ingested event markers; and communicating, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
  • 5.0 IEM Data Framework System
  • One aspect comprises, for example, a receive module to receive, via a hub, ingestible event data that originates from multiple ingested event markers; and a communicate module to communicate, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
  • Further, any of the embodiments disclosed herein may be performed in a data processing system. To illustrate, a diagrammatic system comprises, for example, a processor, a main memory, a static memory, a bus, a video display, an alpha-numeric input device, a cursor control device, a drive unit, a signal generation device, a network interface device, a machine readable medium, instructions and a network, according to one embodiment.
  • The diagrammatic system may indicate a personal computer and/or a data processing system in which one or more operations disclosed herein may be performed. The processor may be a microprocessor, a state machine, an application-specific integrated circuit, a field programmable gate array, etc. The main memory may be a dynamic random access memory and/or a primary memory of a computer system. The static memory may be a hard drive, a flash drive, and/or other memory information associated with the data processing system.
  • The bus may be an interconnection between various circuits and/or structures of the data processing system. The video display may provide graphical representation of information on the data processing system. The alpha-numeric input device may be a keypad, a keyboard and/or any other input device of text, e.g., a special device to aid the physically challenged. The cursor control device may be a pointing device such as a mouse. The drive unit may be a hard drive, a storage system, and/or other longer term storage subsystem. The signal generation device may be a bios and/or a functional operating system of the data processing system. The network interface device may be a device that may perform interface functions such as code conversion, protocol conversion and/or buffering required for communication to and from the network. The machine readable medium may provide instructions on which any of the methods disclosed herein may be performed. The instructions may provide source code and/or data code to the processor to enable any one/or more operations disclosed herein.
  • Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices, modules, etc. described herein may be enabled and operated using hardware circuitry, e.g., CMOS based logic circuitry, firmware, software and/or any combination of hardware, firmware, and/or software, e.g., embodied in a machine readable medium.
  • For example, the various electrical structure and methods may be embodied using transistors, logic gates, and electrical circuits, e.g., Application Specific Integrated circuitry (ASIC) and/or in Digital Signal Processor (DSP) circuitry. For example, the receive module and the communicate module and other modules may be enabled using one or more of the technologies described herein.
  • In addition, it will be appreciated that the various operations, processes, and methods disclosed herein may be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system, e.g., a computer system, and may be performed in any order. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
  • Any or all data associated with the aforementioned devices and methods, for example, may be used alone or in combination with other data to constitute IEM data, i.e., data having an IEM data aspect.
  • In certain embodiments, the system and/or method steps further includes/utilizes an element for storing data, i.e., a data storage element, where this element is present on an external device, such as a bedside monitor, PDA, smart phone, computer server, etc. Typically, the data storage element is a computer readable medium. The term “computer readable medium” as used herein refers to any storage or transmission medium that participates in providing instructions and/or data to a computer for execution and/or processing. Examples of storage media include floppy disks, magnetic tape, CD-ROM, a hard disk drive, a ROM or integrated circuit, a magneto-optical disk, or a computer readable card such as a PCMCIA card and the like, whether or not such devices are internal or external to the computer. A file containing information may be “stored” on a computer readable medium, where “storing” means recording information such that it is accessible and retrievable at a later data by a computer and/or computer-related component. With respect to computer readable media, “permanent memory” refers to memory that is permanent. Permanent memory is not erased by termination of the electrical supply to a computer of processor. Computer hard-drive ROM, i.e., not used as virtual memory, CD-ROM, floppy disk and DVD are all examples of permanent memory. Random Access Memory (RAM) is an example of non-permanent memory. A file in permanent memory may be editable and re-writable.
  • Also provided are computer executable instructions, i.e., programming, for performing the above methods, e.g., for programming the IEM, receiver, and other components of the system. The computer executable instructions are present on a computer readable medium. Accordingly, various aspects provide a computer readable medium containing programming for use in providing ingestible event marker data.
  • As such, in certain embodiments the systems include one or more of: a data storage element, a data processing element, a data display element, a data transmission element, a notification mechanism, and a user interface. These elements may be present or otherwise associated with at least one of the ingestible event marker data, the hub, and the IEM data systems.
  • One of the above-described systems is reviewed in terms of a receive module and a communicate module. The aspects, however, are not so limited. In a broader sense, the systems are composed of two or more different modules that communicate with each other, e.g., using the hub functionalities as reviewed above, e.g., using the IEM data in the communication, e.g., using the IEM data systems' functionalities.
  • It is to be understood that this invention is not limited to particular embodiments described, and as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
  • Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.
  • All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
  • It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
  • As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
  • Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
  • Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims (26)

1. A system comprising:
ingestible event marker data;
a hub to receive the ingestible event marker data; and
at least one ingestible event marker data system to receive, directly or indirectly, the ingestible event marker data from the hub.
2. The system of claim 1, wherein the ingestible event marker data comprises information about an ingestion event.
3. The system of claim 1, wherein the ingestible event marker data comprises information about a response to an ingestion event.
4. The system of claim 1, wherein the ingestible event marker data is generated by an ingestible event marker device.
5. The system of claim 1, wherein the ingestible event marker device comprises an ingestible event marker and a receiver.
6. The system of claim 1, wherein the receiver comprises a personal signal receiver.
7. The system of claim 1, wherein the ingestible event marker data is associated with a unique identifier of an individual.
8. The system of claim 1, wherein the hub comprises at least one element selected from a group consisting essentially of a base station, a personal communication device, and a mobile telephone.
9. The system of claim 8, wherein the base station comprises at least one element selected from a group consisting essentially of a desktop computer, a laptop computer, and an intelligent device/appliance.
10. The system of claim 8, wherein the personal communication device comprises a mobile computer.
11. The system of claim 1, wherein the at least one ingestible event marker data system comprises at least one element selected from a group consisting essentially of: a feedback loop system, a decision support system, an auto refill system, patient tools, a behavioral medicine system, an incentive system, personalized commercial products/services, an auto billing system, a tracking system, an interdiction system, a subscription system, an ingestible event marker data collection, an approval system, a forecasting system, a financial system, an ingestible event marker data phone system, and a social network system.
12. The system of claim 1, wherein the at least one ingestible event marker data system comprises at least one element selected from a group consisting essentially of a computer, a receiver, a transmitter, an application, a data storage medium, a processor, a memory component, a personal communication device, software, and a mobile telephone.
13. The system of claim 1, further comprising:
an ingestible event marker data source to at least one of generate at least a portion of the ingestible event marker data and transmit at least a portion of the ingestible event marker data.
14. The system of claim 13, wherein the ingestible event marker data source is selected from a group consisting essentially of an ingestible event marker data source device, a product, an event, a patient specific parameter, an ingestible event marker data algorithm, and a storage repository.
15. The system of claim 1, further comprising at least one commercial system associated with at least one of the ingestible event marker data, the hub, and at least one of the ingestible event marker data systems.
16. The system of claim 15, wherein the commercial system comprises at least one element selected from a group consisting essentially of a healthcare system, a pharmacy system, a pharmaceutic system, a university system, a financial transaction system, a physician system, a family caregiver system, a web community, a regulatory agency system, and a wholesaler/retailer system.
17. A method comprising:
receiving, via a hub, ingestible event marker data; and
communicating, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
18. The method of claim 17, wherein the ingestible event marker data comprises information about an ingestion event.
19. The method of claim 17, wherein the ingestible event marker data comprises information about a response to an ingestion event.
20. The method of claim 17 in a form of a machine-readable medium embodying a set of instructions that, when executed by a machine, causes the machine to perform the method of claim 17.
21. An article comprising:
a storage medium having instructions, that when executed by a computing platform, result in execution of a method communicating ingestible event marker data via an ingestible event marker framework, comprising:
receiving, via a hub, the ingestible event marker data; and
communicating, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
22. The article of claim 21, wherein the ingestible event marker data comprises information about an ingestion event.
23. The article of claim 21, wherein the ingestible event marker data comprises information about a response to an ingestion event.
24. A system comprising:
a receive module to receive, via a hub, ingestible event marker data; and
a communicate module to communicate, via the hub, at least a portion of the ingestible event marker data to at least one ingestible event marker data system.
25. The system of claim 24, wherein the ingestible event marker data comprises information about an ingestion event.
26. The system of claim 25, wherein the ingestible event marker data comprises information about a response to an ingestion event.
US12/522,249 2008-07-08 2009-07-02 Ingestible event marker data framework Abandoned US20110009715A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/522,249 US20110009715A1 (en) 2008-07-08 2009-07-02 Ingestible event marker data framework
US13/844,386 US9603550B2 (en) 2008-07-08 2013-03-15 State characterization based on multi-variate data fusion techniques
US17/537,120 US20220189606A1 (en) 2008-07-08 2021-11-29 Ingestible event marker data framework

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7908208P 2008-07-08 2008-07-08
PCT/US2009/049618 WO2010005877A2 (en) 2008-07-08 2009-07-02 Ingestible event marker data framework
US12/522,249 US20110009715A1 (en) 2008-07-08 2009-07-02 Ingestible event marker data framework

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/049618 A-371-Of-International WO2010005877A2 (en) 2008-07-08 2009-07-02 Ingestible event marker data framework

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/844,386 Continuation-In-Part US9603550B2 (en) 2008-07-08 2013-03-15 State characterization based on multi-variate data fusion techniques
US15/498,396 Continuation US11217342B2 (en) 2008-07-08 2017-04-26 Ingestible event marker data framework

Publications (1)

Publication Number Publication Date
US20110009715A1 true US20110009715A1 (en) 2011-01-13

Family

ID=41507680

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/522,249 Abandoned US20110009715A1 (en) 2008-07-08 2009-07-02 Ingestible event marker data framework
US13/844,386 Active 2033-11-12 US9603550B2 (en) 2008-07-08 2013-03-15 State characterization based on multi-variate data fusion techniques
US15/469,052 Active 2033-11-30 US10682071B2 (en) 2008-07-08 2017-03-24 State characterization based on multi-variate data fusion techniques
US15/498,396 Active US11217342B2 (en) 2008-07-08 2017-04-26 Ingestible event marker data framework
US16/868,267 Pending US20210158927A1 (en) 2008-07-08 2020-05-06 State characterization based on multi-variate data fusion techniques
US17/537,120 Abandoned US20220189606A1 (en) 2008-07-08 2021-11-29 Ingestible event marker data framework

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/844,386 Active 2033-11-12 US9603550B2 (en) 2008-07-08 2013-03-15 State characterization based on multi-variate data fusion techniques
US15/469,052 Active 2033-11-30 US10682071B2 (en) 2008-07-08 2017-03-24 State characterization based on multi-variate data fusion techniques
US15/498,396 Active US11217342B2 (en) 2008-07-08 2017-04-26 Ingestible event marker data framework
US16/868,267 Pending US20210158927A1 (en) 2008-07-08 2020-05-06 State characterization based on multi-variate data fusion techniques
US17/537,120 Abandoned US20220189606A1 (en) 2008-07-08 2021-11-29 Ingestible event marker data framework

Country Status (14)

Country Link
US (6) US20110009715A1 (en)
EP (2) EP3427660A1 (en)
JP (1) JP5654988B2 (en)
KR (1) KR101615128B1 (en)
CN (1) CN102159134B (en)
AU (1) AU2009268827B2 (en)
CA (2) CA3039236C (en)
DK (1) DK2313002T3 (en)
ES (1) ES2696984T3 (en)
HK (1) HK1160751A1 (en)
IL (1) IL210228A (en)
MY (2) MY154234A (en)
SG (2) SG10201702853UA (en)
WO (2) WO2010005877A2 (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100306232A1 (en) * 2009-05-28 2010-12-02 Harris Corporation Multimedia system providing database of shared text comment data indexed to video source data and related methods
US20110270052A1 (en) * 2009-01-06 2011-11-03 Marc Jensen Ingestion-Related Biofeedback and Personalized Medical Therapy Method and System
WO2013012869A1 (en) * 2011-07-21 2013-01-24 Proteus Digital Health, Inc. Mobile communication device, system, and method
US20130054013A1 (en) * 2011-08-26 2013-02-28 Elwha LLC, a limited liability company of the State of Delaware Refuse intelligence acquisition system and method for ingestible product preparation system and method
WO2013078416A2 (en) * 2011-11-23 2013-05-30 Proteus Digital Health, Inc. Apparatus, system, and method to promote behavior change based on mindfulness methodologies
US20130166420A1 (en) * 2011-12-23 2013-06-27 Fluor Technologies Corporation Enterprise inventory asset control with transaction stacker
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US8542123B2 (en) 2008-03-05 2013-09-24 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US8540633B2 (en) 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8545402B2 (en) 2009-04-28 2013-10-01 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
US8583227B2 (en) 2008-12-11 2013-11-12 Proteus Digital Health, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8597186B2 (en) 2009-01-06 2013-12-03 Proteus Digital Health, Inc. Pharmaceutical dosages delivery system
US8674825B2 (en) 2005-04-28 2014-03-18 Proteus Digital Health, Inc. Pharma-informatics system
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US8784308B2 (en) 2009-12-02 2014-07-22 Proteus Digital Health, Inc. Integrated ingestible event marker system with pharmaceutical product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
WO2014144727A1 (en) * 2008-07-08 2014-09-18 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US8858432B2 (en) 2007-02-01 2014-10-14 Proteus Digital Health, Inc. Ingestible event marker systems
US20140309505A1 (en) * 2005-07-20 2014-10-16 Etect, Inc Electronic medication compliance monitoring system and associated methods
US8868453B2 (en) 2009-11-04 2014-10-21 Proteus Digital Health, Inc. System for supply chain management
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
US8945005B2 (en) 2006-10-25 2015-02-03 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US8956288B2 (en) 2007-02-14 2015-02-17 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US8956287B2 (en) 2006-05-02 2015-02-17 Proteus Digital Health, Inc. Patient customized therapeutic regimens
US8961412B2 (en) 2007-09-25 2015-02-24 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US20150220839A1 (en) * 2012-09-07 2015-08-06 Hugh Macnaught Comparison of user experience with experience of larger group
US9107806B2 (en) 2010-11-22 2015-08-18 Proteus Digital Health, Inc. Ingestible device with pharmaceutical product
US20150278071A1 (en) * 2014-03-31 2015-10-01 Honeywell International Inc. Subscription methods and systems for component information of a system
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US20150343144A1 (en) * 2014-06-03 2015-12-03 Pop Test LLC Drug Device Configured for Wireless Communication
US20150382325A1 (en) * 2011-11-30 2015-12-31 Ecofit Networks Inc. Exercise usage monitoring system
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US9240028B2 (en) 2011-08-26 2016-01-19 Elwha Llc Reporting system and method for ingestible product preparation system and method
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
US9268909B2 (en) 2012-10-18 2016-02-23 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US9271897B2 (en) 2012-07-23 2016-03-01 Proteus Digital Health, Inc. Techniques for manufacturing ingestible event markers comprising an ingestible component
US20160063278A1 (en) * 2014-09-02 2016-03-03 Eckehard Kraska Privacy Compliance Event Analysis System
EP2884888A4 (en) * 2012-08-16 2016-04-20 Ginger Io Inc Method for modeling behavior and health changes
EP3065095A1 (en) 2011-01-10 2016-09-07 Proteus Digital Health, Inc. System, method, and article to prompt behavior change
US9597487B2 (en) 2010-04-07 2017-03-21 Proteus Digital Health, Inc. Miniature ingestible device
US9600850B2 (en) 2011-08-26 2017-03-21 Elwha Llc Controlled substance authorization system and method for ingestible product preparation system and method
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9785985B2 (en) 2011-08-26 2017-10-10 Elwha Llc Selection information system and method for ingestible product preparation system and method
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9922576B2 (en) 2011-08-26 2018-03-20 Elwha Llc Ingestion intelligence acquisition system and method for ingestible material preparation system and method
US9947167B2 (en) 2011-08-26 2018-04-17 Elwha Llc Treatment system and method for ingestible product dispensing system and method
US9997006B2 (en) 2011-08-26 2018-06-12 Elwha Llc Treatment system and method for ingestible product dispensing system and method
US20180182493A1 (en) * 2012-09-07 2018-06-28 Hugh Macnaught Comparison of user experience with experience of larger group
US10014077B2 (en) 2012-08-16 2018-07-03 Ginger.io, Inc. Method and system for improving care determination
US10068059B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method and system for providing automated conversations
US10068060B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method for modeling behavior and psychotic disorders
US10068670B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method for modeling behavior and depression state
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10102341B2 (en) 2012-08-16 2018-10-16 Ginger.io, Inc. Method for managing patient quality of life
US10104904B2 (en) 2012-06-12 2018-10-23 Elwha Llc Substrate structure parts assembly treatment system and method for ingestible product system and method
US10115093B2 (en) 2011-08-26 2018-10-30 Elwha Llc Food printing goal implementation substrate structure ingestible material preparation system and method
US10121218B2 (en) 2012-06-12 2018-11-06 Elwha Llc Substrate structure injection treatment system and method for ingestible product system and method
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
WO2019018762A1 (en) * 2017-07-20 2019-01-24 Proteus Digital Health, Inc. Ingestible electronic medical device
US10192037B2 (en) 2011-08-26 2019-01-29 Elwah LLC Reporting system and method for ingestible product preparation system and method
US10239256B2 (en) 2012-06-12 2019-03-26 Elwha Llc Food printing additive layering substrate structure ingestible material preparation system and method
US10242754B2 (en) 2012-08-16 2019-03-26 Ginger.io, Inc. Method for providing therapy to an individual
US10269448B2 (en) 2012-08-16 2019-04-23 Ginger.io, Inc. Method for providing patient indications to an entity
US10265028B2 (en) 2012-08-16 2019-04-23 Ginger.io, Inc. Method and system for modeling behavior and heart disease state
US10347373B2 (en) * 2014-09-14 2019-07-09 Voalte, Inc. Intelligent integration, analysis, and presentation of notifications in mobile health systems
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US20190385723A1 (en) * 2017-03-14 2019-12-19 Omron Corporation Medication support apparatus, method, and program
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US20200143926A1 (en) * 2013-12-17 2020-05-07 Etectrx, Inc. Electronic compliance system and associated methods
US10740438B2 (en) 2012-08-16 2020-08-11 Ginger.io, Inc. Method and system for characterizing and/or treating poor sleep behavior
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US11094407B2 (en) * 2019-06-13 2021-08-17 International Business Machines Corporation Electronics miniaturization platform for medication verification and tracking
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US11529071B2 (en) 2016-10-26 2022-12-20 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US11571165B1 (en) * 2017-09-11 2023-02-07 Massachusetts Mutual Life Insurance Company System and method for ingestible drug delivery
US11612352B1 (en) * 2013-02-22 2023-03-28 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
US11612321B2 (en) 2007-11-27 2023-03-28 Otsuka Pharmaceutical Co., Ltd. Transbody communication systems employing communication channels
US11710576B2 (en) 2021-05-24 2023-07-25 OrangeDot, Inc. Method and system for computer-aided escalation in a digital health platform
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11868384B2 (en) 2022-03-25 2024-01-09 OrangeDot, Inc. Method and system for automatically determining responses in a messaging platform
US11872053B1 (en) * 2013-02-22 2024-01-16 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130129869A1 (en) 2011-11-23 2013-05-23 Hooman Hafezi Compositions comprising a shelf-life stability component
US11694797B2 (en) 2012-10-30 2023-07-04 Neil S. Davey Virtual healthcare communication platform
US10463299B1 (en) * 2013-02-22 2019-11-05 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
EP2994876A4 (en) * 2013-05-09 2017-01-04 Otsuka America Pharmaceutical, Inc. Systems and methods for administering health care systems
US10545132B2 (en) * 2013-06-25 2020-01-28 Lifescan Ip Holdings, Llc Physiological monitoring system communicating with at least a social network
WO2015059306A1 (en) * 2013-10-25 2015-04-30 Ares Trading S.A. Patient care system reporting adherence to treatment regimen
US9847012B2 (en) * 2014-07-07 2017-12-19 Google Llc Meal-based medication reminder system
US20180227735A1 (en) * 2014-08-25 2018-08-09 Phyziio, Inc. Proximity-Based Attribution of Rewards
CN105469116B (en) * 2015-12-01 2019-01-04 深圳市图灵机器人有限公司 A kind of child's knowledge figure and data extending method based on human-computer interaction
JP2017148430A (en) * 2016-02-26 2017-08-31 勝也 布目 Dispensing pharmacy management system
JP6674834B2 (en) * 2016-04-22 2020-04-01 富士フイルム富山化学株式会社 Drug inspection device and method and program
US10169695B2 (en) * 2016-06-24 2019-01-01 Visa International Service Association Removable marking element with access credentials
CN106572094B (en) * 2016-10-31 2019-09-03 高峰 Intelligent identification system based on authority data chain format
WO2018152366A1 (en) * 2017-02-15 2018-08-23 Humetrix.Com, Inc. Patent-facing mobile technology to assist physician achieve quality measures for value-based payment
US11690550B2 (en) 2017-07-26 2023-07-04 The General Hospital Corporation System and method for an ingestible physiological monitor
JP6362242B1 (en) * 2017-09-19 2018-07-25 雅晴 古川 Information management device
WO2019140309A1 (en) 2018-01-11 2019-07-18 Ecosense Lighting Inc. Switchable systems for white light with high color rendering and biological effects
EP3737469A4 (en) 2018-01-11 2021-11-10 Ecosense Lighting Inc. Display lighting systems with circadian effects
JP6420513B1 (en) * 2018-03-19 2018-11-07 雅晴 古川 Information management device
WO2020097575A1 (en) * 2018-11-08 2020-05-14 Ecosense Lighting Inc. Multi-channel bioactive lighting
US11783748B2 (en) 2018-11-08 2023-10-10 Korrus, Inc. Display lighting systems with bioactive lighting
US11545245B1 (en) * 2019-04-08 2023-01-03 Abbvie Inc. Prescription drug fulfillment system and method
JP2023529698A (en) * 2020-06-10 2023-07-11 エスアルファセラピューティクス,インコーポレーテッド Method and apparatus for improving performance
US11294929B1 (en) 2021-06-09 2022-04-05 Aeec Smart water data analytics
EP4162976A1 (en) * 2021-10-06 2023-04-12 BIOTRONIK SE & Co. KG System comprising a plurality implantable medical devices and a remote computer facility
CN113992687B (en) * 2021-12-28 2022-04-08 浙江宇视科技有限公司 Intelligent service cluster scheduling method and device, electronic equipment and storage medium
WO2023212347A1 (en) * 2022-04-28 2023-11-02 Regents Of The University Of Michigan Closed-loop architecture for distributing and administering medicines to patients

Citations (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719183A (en) * 1970-03-05 1973-03-06 H Schwartz Method for detecting blockage or insufficiency of pancreatic exocrine function
US3799802A (en) * 1966-06-28 1974-03-26 F Schneble Plated through hole printed circuit boards
US4251795A (en) * 1977-11-29 1981-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Semiconductor magnetoresistive element having a differential effect
US4425117A (en) * 1979-07-14 1984-01-10 Battelle-Institut E.V. Device for the release of substances at defined locations in the alimentary tract
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4564363A (en) * 1983-07-13 1986-01-14 Smithkline Beckman Corporation Delayed action assembly
US4578061A (en) * 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4654165A (en) * 1985-04-16 1987-03-31 Micro Tracers, Inc. Microingredient containing tracer
US4725997A (en) * 1986-08-22 1988-02-16 Aprex Corporation Contingent dosing device
US4896261A (en) * 1986-11-24 1990-01-23 Motorola Inc. System for scheduling serial message transmission on a bus which is adoptable for rescheduling prioritized messages using a doubly-linked list
US4987897A (en) * 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US5079006A (en) * 1987-07-15 1992-01-07 Aprex Corporation Pharmaceutical compositions containing a magnetically detectable material
US5176626A (en) * 1992-01-15 1993-01-05 Wilson-Cook Medical, Inc. Indwelling stent
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5283136A (en) * 1992-06-03 1994-02-01 Ramot University Authority For Applied Research And Industrial Development Ltd. Rechargeable batteries
US5305745A (en) * 1988-06-13 1994-04-26 Fred Zacouto Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood
US5485841A (en) * 1995-02-14 1996-01-23 Univ Mcgill Ultrasonic lung tissue assessment
US5596302A (en) * 1996-01-17 1997-01-21 Lucent Technologies Inc. Ring oscillator using even numbers of differential stages with current mirrors
US5705189A (en) * 1994-08-31 1998-01-06 Roehm Gmbh Chemische Fabrik Thermoplastic material for drug coatings which dissolve in intestinal juices
US5738708A (en) * 1995-06-07 1998-04-14 The Regents Of The University Of California Office Of Technology Transfer Composite metal membrane
US5862808A (en) * 1997-08-26 1999-01-26 Cigar Savor Enterprises Llc Cigar punch
US6009350A (en) * 1998-02-06 1999-12-28 Medtronic, Inc. Implant device telemetry antenna
US6042710A (en) * 1997-12-17 2000-03-28 Caliper Technologies Corp. Methods and compositions for performing molecular separations
US6200625B1 (en) * 1997-07-24 2001-03-13 Nestec S.A. Preparation of chocolate products with limonene to reduce fat content
US6206702B1 (en) * 1999-08-24 2001-03-27 Deborah A. Hayden Methods and devices for treating unilateral neglect
US6217744B1 (en) * 1998-12-18 2001-04-17 Peter Crosby Devices for testing fluid
US6342774B1 (en) * 2001-03-27 2002-01-29 Motorola, Inc. Battery having user charge capacity control
US20020032385A1 (en) * 1995-02-24 2002-03-14 Raymond Stephen A. Health monitoring system
US6366206B1 (en) * 1999-06-02 2002-04-02 Ball Semiconductor, Inc. Method and apparatus for attaching tags to medical and non-medical devices
US20020040278A1 (en) * 2000-07-05 2002-04-04 Rolls-Royce Plc Health monitoring
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
US6371927B1 (en) * 1997-08-22 2002-04-16 Innotek Pet Products, Inc. Ingestible animal temperature sensor
US6374670B1 (en) * 1995-03-13 2002-04-23 University Of Washington Non-invasive gut motility monitor
US6380858B1 (en) * 1999-12-29 2002-04-30 Becton, Dickinson And Company Systems and methods for monitoring patient compliance with medication regimens
US6409674B1 (en) * 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US20030023150A1 (en) * 2001-07-30 2003-01-30 Olympus Optical Co., Ltd. Capsule-type medical device and medical system
US6531026B1 (en) * 1999-06-23 2003-03-11 Sony Chemicals Corp. Method for mounting electronic elements
US20030063522A1 (en) * 2001-09-28 2003-04-03 Koninklijke Philips Electronics N.V. Bottle -cap medication reminder and overdose safeguard
US20030076179A1 (en) * 2001-09-07 2003-04-24 Branch Charles M. Low Jitter ring oscillator architecture
US20030139661A1 (en) * 2001-01-22 2003-07-24 Yoav Kimchy Ingestible device
US6673474B2 (en) * 2000-08-09 2004-01-06 Fujitsu Limited Medium substrate, production method thereof and magnetic disk device
US20040005051A1 (en) * 2000-08-04 2004-01-08 Wheeler Lynn Henry Entity authentication in eletronic communications by providing verification status of device
US20040008123A1 (en) * 2002-07-15 2004-01-15 Battelle Memorial Institute System and method for tracking medical devices
US20040018476A1 (en) * 1998-01-27 2004-01-29 Symbix Corp. Active symbolic self design method and apparatus
US20040019172A1 (en) * 2002-07-26 2004-01-29 Tou-Hsiung Yang Biodegradable, water absorbable resin and its preparation method
US6689117B2 (en) * 2000-12-18 2004-02-10 Cardiac Pacemakers, Inc. Drug delivery system for implantable medical device
US6694161B2 (en) * 2001-04-20 2004-02-17 Monsanto Technology Llc Apparatus and method for monitoring rumen pH
US6704602B2 (en) * 1998-07-02 2004-03-09 Medtronic, Inc. Implanted medical device/external medical instrument communication utilizing surface electrodes
US20040054278A1 (en) * 2001-01-22 2004-03-18 Yoav Kimchy Ingestible pill
US20040073454A1 (en) * 2002-10-10 2004-04-15 John Urquhart System and method of portal-mediated, website-based analysis of medication dosing
US20040082982A1 (en) * 2002-10-24 2004-04-29 Gord John C. Multi-mode crystal oscillator system selectively configurable to minimize power consumption or noise generation
US6839659B2 (en) * 2000-06-16 2005-01-04 Isis Innovation Limited System and method for acquiring data
US6840904B2 (en) * 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20050021103A1 (en) * 1998-08-05 2005-01-27 Dilorenzo Daniel John Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US20050027205A1 (en) * 2001-12-14 2005-02-03 Lionel Tarassenko Combining measurements from breathing rate sensors
US20050038321A1 (en) * 2003-05-14 2005-02-17 Olympus Corporation Capsular medical apparatus
US20050043894A1 (en) * 2003-08-22 2005-02-24 Fernandez Dennis S. Integrated biosensor and simulation system for diagnosis and therapy
US20050043634A1 (en) * 2003-06-24 2005-02-24 Olympus Corporation Communication system for capsule type medical apparatus capsule type medical apparatus, and information receiver
US20050062644A1 (en) * 2003-09-08 2005-03-24 Leci Jonathan Ilan Capsule device to identify the location of an individual
US20050065407A1 (en) * 2003-09-18 2005-03-24 Olympus Corporation Energy supplying coil and capsule endoscope system
US20050154277A1 (en) * 2002-12-31 2005-07-14 Jing Tang Apparatus and methods of using built-in micro-spectroscopy micro-biosensors and specimen collection system for a wireless capsule in a biological body in vivo
US20050281439A1 (en) * 2002-07-29 2005-12-22 Lange Daniel H Method and apparatus for electro-biometric identity recognition
US20060001496A1 (en) * 2004-07-02 2006-01-05 Abrosimov Igor A Array oscillator and polyphase clock generator
US20060028727A1 (en) * 2002-08-20 2006-02-09 Moon John A Method and apparatus for drug product tracking using encoded optical identification elements
US20060036134A1 (en) * 2002-09-18 2006-02-16 E-San Limited Telemedicine system
US7002476B2 (en) * 2003-01-30 2006-02-21 Leap Of Faith Technologies, Inc. Medication compliance system
US20060058602A1 (en) * 2004-08-17 2006-03-16 Kwiatkowski Krzysztof C Interstitial fluid analyzer
US20060061472A1 (en) * 2004-08-17 2006-03-23 Tagent Corporation Trackable pills with electronic ID tags
US20060068006A1 (en) * 1999-08-05 2006-03-30 Dimensional Foods Corporation Edible holographic products, particularly pharmaceuticals and methods and apparatus for producing same
US20060065713A1 (en) * 2004-09-24 2006-03-30 John Russell Kingery System and method for monitored administration of medical products to patients
US20070002038A1 (en) * 2004-04-07 2007-01-04 Olympus Corporation Intra-subject position display system
US7161484B2 (en) * 2001-04-17 2007-01-09 Micrel Medical Devices S.A. System for monitoring medical parameters
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
US20070006636A1 (en) * 2003-04-11 2007-01-11 Oxford Biosignals Limited Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
US7171177B2 (en) * 2004-09-07 2007-01-30 Electronics And Telecommunications Research Institute Communication apparatus and method using human body as medium
US7176784B2 (en) * 2004-01-21 2007-02-13 Battelle Memorial Institute K1-53 Multi-mode radio frequency device
US20070049339A1 (en) * 2005-08-29 2007-03-01 Amit Barak Method and apparatus of multiple entity wireless communication adapter
US20070060800A1 (en) * 2001-06-29 2007-03-15 Darrel Drinan Gateway platform for biological monitoring and delivery of therapeutic compounds
US20070073353A1 (en) * 2005-06-09 2007-03-29 Medtronic, Inc. Implantable medical device with electrodes on multiple housing surfaces
US20070088194A1 (en) * 2005-05-19 2007-04-19 Eliav Tahar Bolus, method and system for monitoring health condition of ruminant animals
US7317378B2 (en) * 2004-08-17 2008-01-08 Tagent Corporation Product identification tag device and reader
US20080039700A1 (en) * 2001-06-29 2008-02-14 Darrel Drinan Hydration monitoring
US20080045843A1 (en) * 2004-08-12 2008-02-21 Tomoharu Tsuji Via-Human-Body Information Transmission System and Transmitter-Receiver
US20080051647A1 (en) * 2006-05-11 2008-02-28 Changwang Wu Non-invasive acquisition of large nerve action potentials (NAPs) with closely spaced surface electrodes and reduced stimulus artifacts
US20080249808A1 (en) * 2006-06-29 2008-10-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Generating output data based on patient monitoring
US20090030293A1 (en) * 2005-02-11 2009-01-29 The University Court Of The University Of Glasgow Sensing device, apparatus and system, and method for operating the same
US20090048498A1 (en) * 2007-08-17 2009-02-19 Frank Riskey System and method of monitoring an animal
US7505795B1 (en) * 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
US20090184842A1 (en) * 2004-09-30 2009-07-23 Koninklijke Philips Electronics N.V. System for automatic continuous and reliable patient identification for association of wireless medical devices to patients
US20100001841A1 (en) * 2008-07-07 2010-01-07 Cardullo Mario W Dynamically distributable nano rfid device and related method
US7647185B2 (en) * 2000-06-16 2010-01-12 Oxford Biosignals Limited Combining measurements from different sensors
US20100006585A1 (en) * 2008-07-09 2010-01-14 Flowers Mary E Dosage dispensing and tracking container
US20100022836A1 (en) * 2007-03-09 2010-01-28 Olivier Colliou In-body device having a multi-directional transmitter
US7668437B1 (en) * 1999-09-30 2010-02-23 Sony Corporation Recording apparatus, recording method, and record medium
US20100049069A1 (en) * 2006-12-01 2010-02-25 Oxford Biosignals Limited Biomedical signal morphology analysis method
US20100049004A1 (en) * 2008-04-21 2010-02-25 Philometron, Inc. Metabolic energy monitoring system
US7672703B2 (en) * 2005-06-07 2010-03-02 Samsung Electronics Co., Ltd. Electrode for measuring electrocardiogram and electrocardiogram device including the same
US20100056939A1 (en) * 2006-12-01 2010-03-04 Oxford Biosignals Limited Method of biomedical signal analysis including improved automatic segmentation
US7673679B2 (en) * 2005-09-19 2010-03-09 Schlumberger Technology Corporation Protective barriers for small devices
US20100062709A1 (en) * 2005-02-09 2010-03-11 Kaiser Technology, Inc. Communication System
US20100063841A1 (en) * 2008-09-05 2010-03-11 Vital Data Technology, Llc System and method of notifying designated entities of access to personal medical records
US7678043B2 (en) * 2005-12-29 2010-03-16 Given Imaging, Ltd. Device, system and method for in-vivo sensing of a body lumen
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20110065983A1 (en) * 2008-08-13 2011-03-17 Hooman Hafezi Ingestible Circuitry
US20110077660A1 (en) * 2008-03-06 2011-03-31 Janik John J Foldable, implantable electrode assembly and tool for implanting same
US20120062371A1 (en) * 2010-09-13 2012-03-15 Nokia Corporation Haptic communication

Family Cites Families (1030)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022390A (en) 1909-09-21 1912-04-02 Benjamin Siegel Internal-combustion engine.
US1018712A (en) 1911-04-03 1912-02-27 Louis F Koehler Dentist's anvil.
GB775071A (en) 1954-08-03 1957-05-22 The Chloride Electrical Storage Co. Ltd. Improvements in primary electric batteries
US3218638A (en) 1962-05-29 1965-11-16 William M Honig Wireless passive biological telemetry system
US3353539A (en) 1963-10-31 1967-11-21 United Aircraft Corp Electrical power generator employing a body fluid as electrolyte and method of operation
US3345989A (en) 1963-11-05 1967-10-10 Gen Electric Implantable power source employing a body fluid as an electrolyte
US3408508A (en) 1965-03-10 1968-10-29 Nat Rejectors Gmbh Scr counter featuring amplification stage to compensate for signal attenuation of preceding stages
GB1140684A (en) 1965-08-31 1969-01-22 Rotax Ltd Switching circuits
US3409721A (en) 1967-09-15 1968-11-05 Neomed Lab Inc Oral dosage system effective to control the reproduction cycle
US3607788A (en) 1967-11-20 1971-09-21 Robert J Adolph Liquid electrode material
US3589943A (en) 1968-08-29 1971-06-29 Gen Electric Electrochemical battery
US3642008A (en) 1968-09-25 1972-02-15 Medical Plastics Inc Ground electrode and test circuit
US3679480A (en) 1969-05-08 1972-07-25 Dow Chemical Co Electrical cell assembly
US3682160A (en) 1969-10-16 1972-08-08 Matsushita Electric Ind Co Ltd Physiological signal transmitter for use inside the body
US3628669A (en) 1969-12-22 1971-12-21 Owens Corning Fiberglass Corp Semipermeable membranes
US3727616A (en) 1971-06-15 1973-04-17 Gen Dynamics Corp Electronic system for the stimulation of biological systems
US3837339A (en) 1972-02-03 1974-09-24 Whittaker Corp Blood glucose level monitoring-alarm system and method therefor
US3825016A (en) 1972-02-28 1974-07-23 Devices Ltd Implantable cardiac pacemaker with battery voltage-responsive rate
US3828766A (en) 1972-08-14 1974-08-13 Jet Medical Prod Inc Disposable medical electrode
US3989050A (en) 1972-09-19 1976-11-02 Gilbert Buchalter Process for utilizing certain gel compositions for electrical stimulation
US3944064A (en) 1973-10-26 1976-03-16 Alza Corporation Self-monitored device for releasing agent at functional rate
US4106348A (en) 1974-02-20 1978-08-15 U.S. Philips Corporation Device for examination by means of ultrasonic vibrations
US3893111A (en) 1974-03-14 1975-07-01 Albert Albert F System and method for remote monitoring of animal temperature
US3967202A (en) 1974-07-25 1976-06-29 Northern Illinois Gas Company Data transmission system including an RF transponder for generating a broad spectrum of intelligence bearing sidebands
US4077397A (en) 1974-10-07 1978-03-07 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
ZA755785B (en) 1974-10-07 1976-08-25 Baxter Laboratories Inc Diagnostic electrode assembly
US4090752A (en) 1974-10-07 1978-05-23 Baxter Travenol Laboratories, Inc. Diagnostic electrode assembly
US4062750A (en) 1974-12-18 1977-12-13 James Francis Butler Thin film electrochemical electrode and cell
FR2330368A1 (en) 1975-11-04 1977-06-03 Anvar METHOD AND DEVICE FOR IN VIVO MEASUREMENT OF THE DEGREE OF BONE CONSOLIDATION
US4055178A (en) 1976-03-10 1977-10-25 Harrigan Roy Major Drug delivery device for preventing contact of undissolved drug with the stomach lining
US4017856A (en) 1976-03-10 1977-04-12 Westinghouse Electric Corporation Self-calibrating microwave transponder
US4075070A (en) 1976-06-09 1978-02-21 Ppg Industries, Inc. Electrode material
US4129125A (en) 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4105023A (en) 1977-01-19 1978-08-08 American Optical Corporation Pacemaker artifact suppression in coronary monitoring
GB1594214A (en) 1977-01-21 1981-07-30 Cardio Tech Body electrodes
US4082087A (en) 1977-02-07 1978-04-04 Isis Medical Instruments Body contact electrode structure for deriving electrical signals due to physiological activity
US4239046A (en) 1978-09-21 1980-12-16 Ong Lincoln T Medical electrode
US4345588A (en) 1979-04-23 1982-08-24 Northwestern University Method of delivering a therapeutic agent to a target capillary bed
US4281664A (en) 1979-05-14 1981-08-04 Medtronic, Inc. Implantable telemetry transmission system for analog and digital data
US4269189A (en) 1979-07-09 1981-05-26 Consolidated Medical Equipment Inc. Skin conducting electrode assembly
US4331654A (en) 1980-06-13 1982-05-25 Eli Lilly And Company Magnetically-localizable, biodegradable lipid microspheres
US4418697A (en) 1981-08-17 1983-12-06 Francine Tama Electrode attachment method
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
GB8315308D0 (en) 1983-06-03 1983-07-06 Jenkins W N Arc deposition of metal onto substrate
DE3335301C2 (en) 1983-06-25 1985-05-02 Udo 8500 Nürnberg Simon Drug container
GB8322007D0 (en) 1983-08-16 1983-09-21 Wellcome Found Pharmaceutical delivery system
US4749575A (en) 1983-10-03 1988-06-07 Bio-Dar Ltd. Microencapsulated medicament in sweet matrix
US4559950A (en) 1983-11-25 1985-12-24 Graphic Controls Corporation Disposable biomedical and diagnostic electrode
US5000957A (en) 1984-03-19 1991-03-19 Alza Corporation Dispenser comprising hydrophilic osmopolymer
JPS6117949A (en) 1984-07-05 1986-01-25 Katsuo Ebara Solid ph sensor
GB8422876D0 (en) 1984-09-11 1984-10-17 Secr Defence Silicon implant devices
FR2571603B1 (en) 1984-10-11 1989-01-06 Ascher Gilles PORTABLE ELECTROCARDIOGRAM RECORDER
US4618533A (en) 1984-11-30 1986-10-21 Millipore Corporation Porous membrane having hydrophilic surface and process
US4681111A (en) 1985-04-05 1987-07-21 Siemens-Pacesetter, Inc. Analog and digital telemetry system for an implantable device
US4767627A (en) 1985-05-29 1988-08-30 Merck & Co., Inc. Drug delivery device which can be retained in the stomach for a controlled period of time
US4763659A (en) 1985-08-21 1988-08-16 Spring Creek Institute, Inc. Dry electrode system for detection of biopotentials
US4669479A (en) 1985-08-21 1987-06-02 Spring Creek Institute, Inc. Dry electrode system for detection of biopotentials
US4635641A (en) 1985-10-16 1987-01-13 Murray Electronics Associates Limited Multi-element electrode
US4663250A (en) 1986-03-12 1987-05-05 Institute Of Gas Technology Reduction of electrode dissolution
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
DE3713251C2 (en) 1987-04-18 1996-04-11 Mannesmann Kienzle Gmbh Device for the transmission and storage of energy and information in a card-shaped, mobile data carrier
US4876093A (en) 1987-07-02 1989-10-24 Alza Corporation Dispenser with dispersing member for delivering beneficial agent
JPH01285247A (en) 1988-05-12 1989-11-16 Olympus Optical Co Ltd Medical capsule
US5002772A (en) 1988-05-31 1991-03-26 Pfizer Inc. Gastric retention system for controlled drug release
US4975230A (en) 1988-06-17 1990-12-04 Vapor Technologies Inc. Method of making an open pore structure
US5245332A (en) 1988-06-22 1993-09-14 Iedsco Oy Programmable memory for an encoding system
US4844076A (en) 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
US4871974A (en) 1988-12-23 1989-10-03 International Business Machines, Corp. Coherent phase shift keyed demodulator
DE58908945D1 (en) 1989-04-10 1995-03-09 Pacesetter Ab Implantable medical device with means for the telemetric transmission of data.
CA2016517C (en) 1989-05-11 1999-01-12 Dale R. Shackle Solid state electrochemical cell having microroughened current collector
US5281287A (en) 1989-07-21 1994-01-25 Iomed, Inc. Method of making a hydratable bioelectrode
JP2552927B2 (en) 1990-01-26 1996-11-13 三菱電機株式会社 Demodulator for π / 4 shift QPSK signal
US5468222A (en) 1990-05-03 1995-11-21 Mayo Foundation For Medical Education & Research Process for determining drug taper schedules
US6749122B1 (en) 1990-05-25 2004-06-15 Broadcom Corporation Multi-level hierarchial radio-frequency system communication system
US6359872B1 (en) 1997-10-28 2002-03-19 Intermec Ip Corp. Wireless personal local area network
US5167626A (en) 1990-10-02 1992-12-01 Glaxo Inc. Medical capsule device actuated by radio-frequency (RF) signal
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US6605046B1 (en) 1991-06-03 2003-08-12 Del Mar Medical Systems, Llc Ambulatory physio-kinetic monitor with envelope enclosure
EP0526166A2 (en) 1991-07-29 1993-02-03 Albert L. Dessertine Patient compliance monitoring method and system
DE69233096T2 (en) 1991-07-30 2003-12-11 Nec Corp Single word detector circuit for use in a coherent demodulator
GB9123638D0 (en) 1991-11-07 1992-01-02 Magill Alan R Apparel & fabric & devices suitable for health monitoring applications
JPH05228128A (en) 1992-02-25 1993-09-07 Olympus Optical Co Ltd Capsule for medical treatment
JPH05245215A (en) 1992-03-03 1993-09-24 Terumo Corp Heart pace maker
ATE197761T1 (en) 1992-04-03 2000-12-15 Micromedical Ind Ltd ARRANGEMENT FOR MONITORING PHYSIOLOGICAL PARAMETERS
US5263481A (en) 1992-05-21 1993-11-23 Jens Axelgaard Electrode system with disposable gel
US5318557A (en) 1992-07-13 1994-06-07 Elan Medical Technologies Limited Medication administering device
US5261402A (en) 1992-07-20 1993-11-16 Graphic Controls Corporation Snapless, tabless, disposable medical electrode with low profile
JP3454525B2 (en) 1992-07-23 2003-10-06 三洋電機株式会社 Micromachines and power systems in micromachines
US5428961A (en) 1992-07-21 1995-07-04 Sanyo Electric Co., Ltd. Micromachines
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
US7758503B2 (en) 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US5412372A (en) 1992-09-21 1995-05-02 Medical Microsystems, Inc. Article dispenser for monitoring dispensing times
US5288564A (en) 1992-09-30 1994-02-22 Magnavox Electronic Systems Company Compact, cylindrical, multi-cell seawater battery
JP3214159B2 (en) 1993-01-22 2001-10-02 三菱電機株式会社 Carrier detector
US5394879A (en) 1993-03-19 1995-03-07 Gorman; Peter G. Biomedical response monitor-exercise equipment and technique using error correction
US5757326A (en) 1993-03-29 1998-05-26 Seiko Epson Corporation Slot antenna device and wireless apparatus employing the antenna device
US5406945A (en) 1993-05-24 1995-04-18 Ndm Acquisition Corp. Biomedical electrode having a secured one-piece conductive terminal
US5394882A (en) 1993-07-21 1995-03-07 Respironics, Inc. Physiological monitoring system
US5458141A (en) 1993-08-04 1995-10-17 Quinton Instrument Company Abrasive skin electrode
US5443461A (en) 1993-08-31 1995-08-22 Alza Corporation Segmented device for simultaneous delivery of multiple beneficial agents
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
US5402793A (en) 1993-11-19 1995-04-04 Advanced Technology Laboratories, Inc. Ultrasonic transesophageal probe for the imaging and diagnosis of multiple scan planes
SE512207C2 (en) 1993-11-26 2000-02-14 Meditelligence Ab Drug storage device
US6390088B1 (en) 1993-12-13 2002-05-21 Boehringer Ingelheim Kg Aerosol inhaler
US5476488A (en) 1993-12-15 1995-12-19 Pacesetter, Inc. Telemetry system power control for implantable medical devices
US6206829B1 (en) 1996-07-12 2001-03-27 First Opinion Corporation Computerized medical diagnostic and treatment advice system including network access
US6231593B1 (en) 1994-03-21 2001-05-15 Dusa Pharmaceuticals, Inc. Patch, controller, and method for the photodynamic therapy of a dermal lesion
US5925066A (en) 1995-10-26 1999-07-20 Galvani, Ltd. Atrial arrythmia sensor with drug and electrical therapy control apparatus
US5600548A (en) 1994-08-11 1997-02-04 Sundstrand Corporation DC content control for an inverter
IE70735B1 (en) 1994-08-15 1996-12-11 Elan Med Tech Orally administrable delivery device
JP3376462B2 (en) 1994-09-19 2003-02-10 日本光電工業株式会社 Signal transmission device and biological signal measurement device
IL111396A (en) 1994-10-25 1997-07-13 Ness Neuromuscular Electrical Stimulation Systems Ltd Electrode system
US5551953A (en) 1994-10-31 1996-09-03 Alza Corporation Electrotransport system with remote telemetry link
US5845265A (en) 1995-04-26 1998-12-01 Mercexchange, L.L.C. Consignment nodes
BR9608465A (en) 1995-05-08 1998-12-29 Massachusetts Inst Technology Wireless communication system and computer system
US5645063A (en) 1995-06-05 1997-07-08 Quinton Instrument Company Skin electrode having multiple conductive center members
US6083248A (en) 1995-06-23 2000-07-04 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5720771A (en) 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
USD377983S (en) 1995-09-13 1997-02-11 Mohamed Sabri Cardiac monitor
US5802467A (en) 1995-09-28 1998-09-01 Innovative Intelcom Industries Wireless and wired communications, command, control and sensing system for sound and/or data transmission and reception
EP0855064A4 (en) 1995-10-11 2001-07-18 Motorola Inc Remotely powered electronic tag and associated exciter/reader and related method
US6076016A (en) 1995-10-19 2000-06-13 Feierbach; Gary F. Galvanic transdermal conduction communication system and method
GB9522872D0 (en) 1995-11-08 1996-01-10 Oxford Medical Ltd Improvements relating to physiological monitoring
US8092224B2 (en) 1995-11-22 2012-01-10 James A. Jorasch Systems and methods for improved health care compliance
SE9504258D0 (en) 1995-11-28 1995-11-28 Pacesetter Ab Device and method for generating a synthesized ECG
US6090489A (en) 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
US5868136A (en) 1996-02-20 1999-02-09 Axelgaard Manufacturing Co. Ltd. Medical electrode
US20010044588A1 (en) 1996-02-22 2001-11-22 Mault James R. Monitoring system
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US6453199B1 (en) 1996-04-01 2002-09-17 Valery Ivanovich Kobozev Electrical gastro-intestinal tract stimulator
US5965629A (en) 1996-04-19 1999-10-12 Korea Institute Of Science And Technology Process for modifying surfaces of materials, and materials having surfaces modified thereby
GB9608268D0 (en) 1996-04-22 1996-06-26 Robertson James L Blister pack
US5864578A (en) 1996-04-29 1999-01-26 Golden Bridge Technology, Inc. Matched filter-based handoff method and apparatus
JPH09330159A (en) 1996-06-11 1997-12-22 Omron Corp Data processor, game controller data processing method and game processing method
US5800421A (en) 1996-06-12 1998-09-01 Lemelson; Jerome H. Medical devices using electrosensitive gels
JP3636826B2 (en) 1996-07-01 2005-04-06 積水化学工業株式会社 Bioelectrical impedance measuring device
DE19780856D2 (en) 1996-08-16 1999-09-23 Roche Diagnostics Gmbh Control system for monitoring the regular intake of a drug
PL191546B1 (en) 1996-08-29 2006-06-30 Jagotec Ag Tablet featurated by controllable release of alphusozine hydrochloride contained therein
US5792048A (en) 1996-09-03 1998-08-11 Schaefer; Guenter Indentification pill with integrated microchip: smartpill, smartpill with integrated microchip and microprocessor for medical analyses and a smartpill, smartbox, smartplague, smartbadge or smartplate for luggage control on commercial airliners
US6394953B1 (en) 2000-02-25 2002-05-28 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
US5963132A (en) 1996-10-11 1999-10-05 Avid Indentification Systems, Inc. Encapsulated implantable transponder
US6364834B1 (en) 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US8734339B2 (en) 1996-12-16 2014-05-27 Ip Holdings, Inc. Electronic skin patch for real time monitoring of cardiac activity and personal health management
US5928142A (en) 1996-12-17 1999-07-27 Ndm, Inc. Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector
US5974124A (en) 1997-01-21 1999-10-26 Med Graph Method and system aiding medical diagnosis and treatment
US6122351A (en) 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
US5946550A (en) 1997-03-14 1999-08-31 University Of Connecticut Self-assembled semiconductor and method of making same
EP0969897B1 (en) 1997-03-17 2010-08-18 Adidas AG Physiologic signs feedback system
EP0973437A4 (en) 1997-03-31 2001-03-07 Telecom Medical Inc Patient monitoring apparatus
US5981166A (en) 1997-04-23 1999-11-09 Pharmaseq, Inc. Screening of soluble chemical compounds for their pharmacological properties utilizing transponders
DE19717023C2 (en) 1997-04-23 2003-02-06 Micronas Gmbh Device for treating malignant, tumorous tissue areas
US6288629B1 (en) 1997-05-23 2001-09-11 Intermec Ip Corp. Method of using write—ok flag for radio frequency (RF) transponders (RF Tags)
US5921925A (en) 1997-05-30 1999-07-13 Ndm, Inc. Biomedical electrode having a disposable electrode and a reusable leadwire adapter that interfaces with a standard leadwire connector
US5917346A (en) 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
CN1131425C (en) 1997-10-31 2003-12-17 技术化学品及产品股份有限公司 Reflextometer
JPH11195415A (en) 1997-11-05 1999-07-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and its manufacture
US6856832B1 (en) 1997-12-25 2005-02-15 Nihon Kohden Corporation Biological signal detection apparatus Holter electrocardiograph and communication system of biological signals
JP3697629B2 (en) 1999-09-13 2005-09-21 日本光電工業株式会社 Communication system for biological signals
GB9801363D0 (en) 1998-01-22 1998-03-18 Danbiosyst Uk Novel dosage form
US6038464A (en) 1998-02-09 2000-03-14 Axelgaard Manufacturing Co., Ltd. Medical electrode
US6275476B1 (en) 1998-02-19 2001-08-14 Micron Technology, Inc. Method of addressing messages and communications system
US7542878B2 (en) 1998-03-03 2009-06-02 Card Guard Scientific Survival Ltd. Personal health monitor and a method for health monitoring
US6141592A (en) 1998-03-06 2000-10-31 Intermedics Inc. Data transmission using a varying electric field
US6579231B1 (en) 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
US6091975A (en) 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
CA2332112C (en) 1998-05-13 2004-02-10 Cygnus, Inc. Monitoring of physiological analytes
AU4094599A (en) 1998-05-21 1999-12-06 Telecom Medical, Inc. Patient monitoring apparatus
TW406018B (en) 1998-05-21 2000-09-21 Elan Corp Plc Improved adhesive system for medical devices
US6477424B1 (en) 1998-06-19 2002-11-05 Medtronic, Inc. Medical management system integrated programming apparatus for communication with an implantable medical device
JP4401026B2 (en) 1998-07-20 2010-01-20 コギンズ,ジョージ Devices for monitoring physiological parameters and biofeedback
US7548787B2 (en) 2005-08-03 2009-06-16 Kamilo Feher Medical diagnostic and communication system
US6703047B2 (en) 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6333699B1 (en) 1998-08-28 2001-12-25 Marathon Oil Company Method and apparatus for determining position in a pipe
BR9913610A (en) 1998-09-04 2001-10-09 Wolfe Res Pty Ltd Medical implant system
WO2000016236A1 (en) 1998-09-11 2000-03-23 Motorola Inc. A contactless capacitive data transmission system and method
US6204764B1 (en) 1998-09-11 2001-03-20 Key-Trak, Inc. Object tracking system with non-contact object detection and identification
US6344824B1 (en) 1998-09-18 2002-02-05 Hitachi Maxell, Ltd. Noncontact communication semiconductor device
FI116957B (en) 1998-10-29 2006-04-13 Nokia Corp The method of communication between the wireless device and the electronic device and the communication device
US6708060B1 (en) 1998-11-09 2004-03-16 Transpharma Ltd. Handheld apparatus and method for transdermal drug delivery and analyte extraction
AU1832800A (en) 1998-11-25 2000-06-19 Ball Semiconductor Inc. Method of and system for identifying medical products
ATE244022T1 (en) 1998-12-21 2003-07-15 Sequella Inc METHODS OF USE AND COMPOSITIONS CONTAINING MONITORING SYSTEM
US6115636A (en) 1998-12-22 2000-09-05 Medtronic, Inc. Telemetry for implantable devices using the body as an antenna
EP1079497A4 (en) 1998-12-22 2004-03-17 Seiko Epson Corp Power supply system, power receiving system, power transmission system, method of power transmission, portable device and timer device
US6269058B1 (en) 1999-01-04 2001-07-31 Texas Instruments Incorporated Wide capture range circuitry
US6117077A (en) 1999-01-22 2000-09-12 Del Mar Medical Systems, Llc Long-term, ambulatory physiological recorder
US6358202B1 (en) 1999-01-25 2002-03-19 Sun Microsystems, Inc. Network for implanted computer devices
US8636648B2 (en) 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6755783B2 (en) 1999-04-16 2004-06-29 Cardiocom Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients
US6200265B1 (en) 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
AU4601500A (en) 1999-05-18 2000-12-05 Sonometrics Corporation System for incorporating sonomicrometer functions into medical instruments and implantable biomedical devices
DE69913743T2 (en) 1999-05-25 2004-10-07 Medicotest As Olstykke SKIN ELECTRODE
WO2000072463A2 (en) 1999-05-26 2000-11-30 Johnson Controls Interiors Technology Corp. Wireless communications system and method
EP1060704A3 (en) 1999-06-18 2002-09-18 Agilent Technologies, Inc. (a Delaware corporation) Multi-parameter capability transmitter for wireless telemetry systems
DE19929328A1 (en) 1999-06-26 2001-01-04 Daimlerchrysler Aerospace Ag Device for long-term medical monitoring of people
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US6804558B2 (en) 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6307468B1 (en) 1999-07-20 2001-10-23 Avid Identification Systems, Inc. Impedance matching network and multidimensional electromagnetic field coil for a transponder interrogator
US6428809B1 (en) 1999-08-18 2002-08-06 Microdose Technologies, Inc. Metering and packaging of controlled release medication
JP3876573B2 (en) 1999-09-20 2007-01-31 カシオ計算機株式会社 Net game apparatus and caricature image display control method
US6526034B1 (en) 1999-09-21 2003-02-25 Tantivy Communications, Inc. Dual mode subscriber unit for short range, high rate and long range, lower rate data communications
US6533733B1 (en) 1999-09-24 2003-03-18 Ut-Battelle, Llc Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
US6990082B1 (en) 1999-11-08 2006-01-24 Intel Corporation Wireless apparatus having a transceiver equipped to support multiple wireless communication protocols
CA2386673A1 (en) 1999-10-07 2001-04-12 Anthony R. Montgomery Physiological signal monitoring apparatus and method
US6852084B1 (en) 2000-04-28 2005-02-08 Peter V. Boesen Wireless physiological pressure sensor and transmitter with capability of short range radio frequency transmissions
US6882881B1 (en) 1999-10-19 2005-04-19 The Johns Hopkins University Techniques using heat flow management, stimulation, and signal analysis to treat medical disorders
US7076437B1 (en) 1999-10-29 2006-07-11 Victor Levy Process for consumer-directed diagnostic and health care information
US6426863B1 (en) 1999-11-25 2002-07-30 Lithium Power Technologies, Inc. Electrochemical capacitor
US6612984B1 (en) 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
WO2001045793A1 (en) 1999-12-21 2001-06-28 Medtronic, Inc. System for dynamic remote networking with implantable medical devices
GB9930000D0 (en) 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
JP3850611B2 (en) 1999-12-28 2006-11-29 三菱電機株式会社 Timing regenerator and demodulator using the same
US6471645B1 (en) 1999-12-30 2002-10-29 Medtronic, Inc. Communications system for an implantable device and a drug dispenser
DE60018978T2 (en) 1999-12-30 2006-05-04 Medtronic, Inc., Minneapolis USER AUTHENTICATION IN MEDICAL SYSTEMS
US8002700B2 (en) 1999-12-30 2011-08-23 Medtronic, Inc. Communications system for an implantable medical device and a delivery device
US8049597B1 (en) 2000-01-10 2011-11-01 Ensign Holdings, Llc Systems and methods for securely monitoring an individual
EP1119137B1 (en) 2000-01-20 2006-08-16 Lucent Technologies Inc. Interoperability for bluetooth/IEEE 802.11
AR026148A1 (en) 2000-01-21 2003-01-29 Osmotica Argentina S A OSMOTIC DEVICE WITH PREFORMED PASSAGE THAT INCREASES SIZE
JP3839212B2 (en) 2000-02-04 2006-11-01 三菱電機株式会社 Timing reproduction apparatus and demodulator
US7039453B2 (en) 2000-02-08 2006-05-02 Tarun Mullick Miniature ingestible capsule
KR20030025222A (en) 2000-03-08 2003-03-28 기븐 이미징 리미티드 A device and system for in vivo imaging
US7366675B1 (en) 2000-03-10 2008-04-29 Walker Digital, Llc Methods and apparatus for increasing, monitoring and/or rewarding a party's compliance with a schedule for taking medicines
US6526315B1 (en) 2000-03-17 2003-02-25 Tanita Corporation Portable bioelectrical impedance measuring instrument
DE10014588A1 (en) 2000-03-27 2001-10-04 Basf Ag Sustained-release oral dosage form that floats in gastric fluid includes a blend of polyvinyl acetate and polyvinylpyrrolidone
GB0007617D0 (en) 2000-03-29 2000-05-17 Psion Dacom Plc A short range radio transceiver device
US6622050B2 (en) 2000-03-31 2003-09-16 Medtronic, Inc. Variable encryption scheme for data transfer between medical devices and related data management systems
US6757523B2 (en) 2000-03-31 2004-06-29 Zeus Wireless, Inc. Configuration of transmit/receive switching in a transceiver
US6922592B2 (en) 2000-04-04 2005-07-26 Medtronic, Inc. Implantable medical device controlled by a non-invasive physiological data measurement device
US6654638B1 (en) 2000-04-06 2003-11-25 Cardiac Pacemakers, Inc. Ultrasonically activated electrodes
US6441747B1 (en) 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
US6496705B1 (en) 2000-04-18 2002-12-17 Motorola Inc. Programmable wireless electrode system for medical monitoring
US6561975B1 (en) 2000-04-19 2003-05-13 Medtronic, Inc. Method and apparatus for communicating with medical device systems
US6836862B1 (en) 2000-04-24 2004-12-28 3Com Corporation Method of indicating wireless connection integrity
US20010039503A1 (en) 2000-04-28 2001-11-08 Chan Bryan K. Method and system for managing chronic disease and wellness online
US7231451B2 (en) 2000-05-08 2007-06-12 Microtune (San Diego), Inc. Transmit-only and receive-only Bluetooth apparatus and method
US6432292B1 (en) 2000-05-16 2002-08-13 Metallic Power, Inc. Method of electrodepositing metal on electrically conducting particles
US6988989B2 (en) 2000-05-19 2006-01-24 Welch Allyn Protocol, Inc. Patient monitoring system
US6680923B1 (en) 2000-05-23 2004-01-20 Calypso Wireless, Inc. Communication system and method
EP1284644B1 (en) 2000-05-29 2004-10-20 Medicotest A/S An electrode for establishing electrical contact with the skin
US7485095B2 (en) 2000-05-30 2009-02-03 Vladimir Shusterman Measurement and analysis of trends in physiological and/or health data
IL163684A0 (en) 2000-05-31 2005-12-18 Given Imaging Ltd Measurement of electrical characteristics of tissue
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US7261690B2 (en) 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US6505077B1 (en) 2000-06-19 2003-01-07 Medtronic, Inc. Implantable medical device with external recharging coil electrical connection
US7009946B1 (en) 2000-06-22 2006-03-07 Intel Corporation Method and apparatus for multi-access wireless communication
US6961285B2 (en) 2000-07-07 2005-11-01 Ddms Holdings L.L.C. Drug delivery management system
US6411567B1 (en) 2000-07-07 2002-06-25 Mark A. Niemiec Drug delivery management system
DE60107685T2 (en) 2000-07-19 2005-10-06 Medicotest A/S SKIN ELECTRODE WITH A BYPASS ELEMENT
JP2004516863A (en) 2000-07-24 2004-06-10 モトローラ・インコーポレイテッド Ingestible electronic capsule
US6564079B1 (en) 2000-07-27 2003-05-13 Ckm Diagnostics, Inc. Electrode array and skin attachment system for noninvasive nerve location and imaging device
KR20020015907A (en) 2000-08-23 2002-03-02 정병렬 A method and system of a fitness using a game control for a beating of the heart
KR100811899B1 (en) 2000-08-24 2008-03-10 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Identification transponder
US20020026111A1 (en) 2000-08-28 2002-02-28 Neil Ackerman Methods of monitoring glucose levels in a subject and uses thereof
US7685005B2 (en) 2000-08-29 2010-03-23 Medtronic, Inc. Medical device systems implemented network scheme for remote patient management
DE60102331T2 (en) 2000-09-08 2005-03-17 Matsushita Electric Works, Ltd., Kadoma Data transmission system using a human body as a signal transmission path
US6720923B1 (en) 2000-09-14 2004-04-13 Stata Labs, Llc Antenna design utilizing a cavity architecture for global positioning system (GPS) applications
US6572636B1 (en) 2000-09-19 2003-06-03 Robert Sean Hagen Pulse sensing patch and associated methods
JP4489922B2 (en) 2000-09-22 2010-06-23 株式会社日立国際電気 Demodulation method
AU2001292946A1 (en) 2000-09-26 2002-04-08 Advantage 3D Llc Method and system for generation, storage and distribution of omni-directional object views
WO2002030401A2 (en) 2000-10-11 2002-04-18 Microchips, Inc. Microchip reservoir devices and facilitated corrosion of electrodes
US7024248B2 (en) 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
JP4154559B2 (en) 2000-10-19 2008-09-24 ニプロ株式会社 Medical diagnostic system and diagnostic processing method thereof
US7857626B2 (en) 2000-10-23 2010-12-28 Toly Christopher C Medical physiological simulator including a conductive elastomer layer
US6738671B2 (en) 2000-10-26 2004-05-18 Medtronic, Inc. Externally worn transceiver for use with an implantable medical device
AUPR113900A0 (en) 2000-10-31 2000-11-23 Commonwealth Scientific And Industrial Research Organisation A monitoring system
US6632175B1 (en) 2000-11-08 2003-10-14 Hewlett-Packard Development Company, L.P. Swallowable data recorder capsule medical device
US6929636B1 (en) 2000-11-08 2005-08-16 Hewlett-Packard Development Company, L.P. Internal drug dispenser capsule medical device
ES2177434B1 (en) 2000-12-05 2004-10-16 Gesimpex Comercial, S.L. PROCEDURE AND CAPSULE FOR REMOTE IDENTIFICATION AND MONITORING OF BIRDS.
US20020128934A1 (en) 2000-12-11 2002-09-12 Ari Shaer Interactive event planning and payment method and system
US6638231B2 (en) 2000-12-18 2003-10-28 Biosense, Inc. Implantable telemetric medical sensor and method
US6879810B2 (en) 2000-12-20 2005-04-12 Nokia Corporation Control of short range RF communication
US6560471B1 (en) * 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
KR100526699B1 (en) 2001-01-17 2005-11-08 이종식 Method and System for Network Games
TW567695B (en) 2001-01-17 2003-12-21 Ibm Digital baseband system
US6771174B2 (en) 2001-01-24 2004-08-03 Intel Corporation Digital pillbox
JP2002224053A (en) * 2001-02-05 2002-08-13 Next:Kk Remote medical control system
JP4124653B2 (en) 2001-02-06 2008-07-23 ドレーゲル メディカル システムズ,インコーポレイテッド Infant incubator with non-contact detection and monitoring
JP3927495B2 (en) 2001-02-08 2007-06-06 ミニ−ミッター カンパニー,インコーポレイテッド Skin patch with built-in temperature sensor
US7050419B2 (en) 2001-02-23 2006-05-23 Terayon Communicaion Systems, Inc. Head end receiver for digital data delivery systems using mixed mode SCDMA and TDMA multiplexing
JP2002263185A (en) 2001-03-12 2002-09-17 Sanyo Electric Co Ltd Medicine administration system and method and medicine administration device
JP2002282219A (en) 2001-03-22 2002-10-02 Toshio Chiba Intracorporeal capsule
JP2002290212A (en) 2001-03-27 2002-10-04 Nec Corp Voltage controlled oscillator
EP1383575A4 (en) 2001-03-28 2010-01-20 Televital Inc System and method for real-time monitoring, assessment, analysis, retrieval, and storage of physiological data over a wide area network
JP2002282218A (en) 2001-03-28 2002-10-02 Matsushita Electric Ind Co Ltd Portable examination terminal, examination system, communication terminal and method of examination
JP2002291684A (en) 2001-03-29 2002-10-08 Olympus Optical Co Ltd Endoscope for surgical operation, and outer tube
US6595929B2 (en) 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
JP2004527296A (en) 2001-04-02 2004-09-09 エヌ アイ メディカル リミテッド Hemodynamic measurement device
WO2002080762A1 (en) 2001-04-06 2002-10-17 Medic4All Inc. A physiological monitoring system for a computational device of a human subject
US6801137B2 (en) 2001-04-23 2004-10-05 Cardionet, Inc. Bidirectional communication between a sensor unit and a monitor unit in patient monitoring
US6782290B2 (en) 2001-04-27 2004-08-24 Medtronic, Inc. Implantable medical device with rechargeable thin-film microbattery power source
WO2002087696A1 (en) 2001-04-30 2002-11-07 Medtronic,Inc. Transcutaneous monitor and method of use, using therapeutic output from an implanted medical device
MXPA03010059A (en) 2001-05-03 2004-12-06 Telzuit Technologies Llc Wireless medical monitoring apparatus and system.
US7039033B2 (en) 2001-05-07 2006-05-02 Ixi Mobile (Israel) Ltd. System, device and computer readable medium for providing a managed wireless network using short-range radio signals
EP1397660B1 (en) 2001-05-20 2013-05-15 Given Imaging Ltd. A floatable in vivo sensing device
US20020184415A1 (en) 2001-05-29 2002-12-05 Board Of Regents, The University Of Texas System Health hub system and method of use
GB0113212D0 (en) 2001-05-31 2001-07-25 Oxford Biosignals Ltd Patient condition display
US20020192159A1 (en) 2001-06-01 2002-12-19 Reitberg Donald P. Single-patient drug trials used with accumulated database: flowchart
EP1418833B1 (en) 2001-06-18 2008-08-13 Given Imaging Ltd. Swallowable in vivo sensing capsule with a circuit board having rigid sections and flexible sections
BR0210508A (en) 2001-06-19 2006-04-04 Digital Sports Media physiological monitoring and system
US6939292B2 (en) 2001-06-20 2005-09-06 Olympus Corporation Capsule type endoscope
US7062308B1 (en) 2001-07-05 2006-06-13 Jackson William J Remote physiological monitoring with the reticulum of livestock
ES2329452T3 (en) 2001-07-11 2009-11-26 Cns Response, Inc. PROCEDURE TO PREACH THE RESULT OF TREATMENTS.
AU2002317466B2 (en) 2001-07-12 2008-02-28 Given Imaging Ltd Device and method for examining a body lumen
US20030017826A1 (en) 2001-07-17 2003-01-23 Dan Fishman Short-range wireless architecture
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
US7257438B2 (en) 2002-07-23 2007-08-14 Datascope Investment Corp. Patient-worn medical monitoring device
FR2827919B1 (en) 2001-07-26 2004-03-05 Thermodyn SEALING FOR COMPRESSOR AND CENTRIFUGAL COMPRESSOR PROVIDED WITH SUCH A SEAL
US6747556B2 (en) 2001-07-31 2004-06-08 Medtronic Physio-Control Corp. Method and system for locating a portable medical device
US20030037063A1 (en) 2001-08-10 2003-02-20 Qlinx Method and system for dynamic risk assessment, risk monitoring, and caseload management
US20030065536A1 (en) 2001-08-13 2003-04-03 Hansen Henrik Egesborg Portable device and method of communicating medical data information
WO2003015890A1 (en) 2001-08-20 2003-02-27 President And Fellows Of Harvard College Fluidic arrays and method of using
WO2003019455A2 (en) 2001-08-22 2003-03-06 Keystone Therapeutics, Inc. System, method and computer program for monitoring and managing medications
JP3962250B2 (en) * 2001-08-29 2007-08-22 株式会社レアメタル In vivo information detection system and tag device and relay device used therefor
US20050137480A1 (en) 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
US7357891B2 (en) 2001-10-12 2008-04-15 Monosol Rx, Llc Process for making an ingestible film
US6745082B2 (en) 2001-10-22 2004-06-01 Jens Axelgaard Current-controlling electrode with adjustable contact area
US20030152622A1 (en) 2001-10-25 2003-08-14 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral diuretic
US20030083559A1 (en) 2001-10-31 2003-05-01 Thompson David L. Non-contact monitor
US7377647B2 (en) 2001-11-13 2008-05-27 Philadelphia Retina Endowment Fund Clarifying an image of an object to perform a procedure on the object
US6643541B2 (en) 2001-12-07 2003-11-04 Motorola, Inc Wireless electromyography sensor and system
US20030107487A1 (en) 2001-12-10 2003-06-12 Ronen Korman Method and device for measuring physiological parameters at the wrist
US7016648B2 (en) 2001-12-18 2006-03-21 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for downloading a software component to a device in a short distance wireless network
IL162293A0 (en) 2001-12-19 2005-11-20 Alza Corp Formulation and dosage form for increasing oral bioavailability of hydrophilic macromolecules
US7729776B2 (en) 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US7877273B2 (en) 2002-01-08 2011-01-25 Fredric David Abramson System and method for evaluating and providing nutrigenomic data, information and advice
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
EP1464026A2 (en) 2002-01-11 2004-10-06 Hexalog SA Systems and methods for medication monitoring
JP3957272B2 (en) 2002-01-22 2007-08-15 オリンパス株式会社 Capsule medical device
US7184820B2 (en) 2002-01-25 2007-02-27 Subqiview, Inc. Tissue monitoring system for intravascular infusion
US7519416B2 (en) 2002-02-04 2009-04-14 Heartview, Llc Diagnostic method utilizing standard lead ECG signals
FR2835730B1 (en) 2002-02-11 2004-12-10 C T M Ct De Transfert Des Micr DEVICE FOR DELIVERY OF SUBSTANCES AND INTRACORPOREAL SAMPLING
US6958034B2 (en) 2002-02-11 2005-10-25 Given Imaging Ltd. Self propelled device
US6935560B2 (en) 2002-02-26 2005-08-30 Safety Syringes, Inc. Systems and methods for tracking pharmaceuticals within a facility
US8660645B2 (en) 2002-02-28 2014-02-25 Greatbatch Ltd. Electronic network components utilizing biocompatible conductive adhesives for direct body fluid exposure
US20030162556A1 (en) 2002-02-28 2003-08-28 Libes Michael A. Method and system for communication between two wireless-enabled devices
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US20040122296A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management for triaging health-related data
US7468032B2 (en) 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
US7081693B2 (en) 2002-03-07 2006-07-25 Microstrain, Inc. Energy harvesting for wireless sensor operation and data transmission
JP4363843B2 (en) 2002-03-08 2009-11-11 オリンパス株式会社 Capsule endoscope
US6968153B1 (en) 2002-03-13 2005-11-22 Nokia Corporation Apparatus, method and system for a Bluetooth repeater
US6957107B2 (en) 2002-03-13 2005-10-18 Cardionet, Inc. Method and apparatus for monitoring and communicating with an implanted medical device
US7188767B2 (en) 2002-03-18 2007-03-13 Precision Dynamics Corporation Physical condition or environmental threat detection appliance system
US7022070B2 (en) 2002-03-22 2006-04-04 Mini-Mitter Co., Inc. Method for continuous monitoring of patients to detect the potential onset of sepsis
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
JP3869291B2 (en) 2002-03-25 2007-01-17 オリンパス株式会社 Capsule medical device
US7376435B2 (en) 2002-04-01 2008-05-20 Intel Corporation Transferring multiple data units over a wireless communication link
US7797033B2 (en) 2002-04-08 2010-09-14 Smart Pill Corporation Method of using, and determining location of, an ingestible capsule
US7654901B2 (en) 2002-04-10 2010-02-02 Breving Joel S Video game system using bio-feedback devices
EP1356762A1 (en) 2002-04-22 2003-10-29 UbiCom Gesellschaft für Telekommunikation mbH Device for remote monitoring of body functions
AU2003234159A1 (en) 2002-04-22 2003-11-03 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
US7424268B2 (en) 2002-04-22 2008-09-09 Cisco Technology, Inc. System and method for management of a shared frequency band
KR101124876B1 (en) 2002-04-22 2012-03-28 마시오 마크 아우렐리오 마틴스 애브리우 Apparatus and method for measuring biological parameters
US7485093B2 (en) 2002-04-25 2009-02-03 Given Imaging Ltd. Device and method for in-vivo sensing
US20030216622A1 (en) 2002-04-25 2003-11-20 Gavriel Meron Device and method for orienting a device in vivo
TW553735B (en) 2002-05-01 2003-09-21 Jin-Shing Luo Common electrode using human body as common electric reservoir and application thereof
US7368190B2 (en) 2002-05-02 2008-05-06 Abbott Diabetes Care Inc. Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
US6946156B2 (en) 2002-05-15 2005-09-20 Mcneil-Ppc, Inc. Process for enrobing a core
JP2003325439A (en) 2002-05-15 2003-11-18 Olympus Optical Co Ltd Capsule type medical treatment device
JP4187463B2 (en) 2002-05-16 2008-11-26 オリンパス株式会社 Capsule medical device
JP2004041709A (en) 2002-05-16 2004-02-12 Olympus Corp Capsule medical care device
SE0201490D0 (en) 2002-05-17 2002-05-17 St Jude Medical Implantable Antenna
US20030216729A1 (en) 2002-05-20 2003-11-20 Marchitto Kevin S. Device and method for wound healing and uses therefor
JP3576150B2 (en) 2002-05-31 2004-10-13 株式会社東芝 Relay device and power control method
US6847844B2 (en) 2002-06-06 2005-01-25 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of data communication with implanted device and associated apparatus
US8003179B2 (en) 2002-06-20 2011-08-23 Alcan Packaging Flexible France Films having a desiccant material incorporated therein and methods of use and manufacture
AU2003280415A1 (en) 2002-07-01 2004-01-19 Gmp Wireless Medicine, Inc. Wireless ecg system
US20060129060A1 (en) 2002-07-02 2006-06-15 Healthpia America Management method of fat mass and management device of fat mass using mobile phone
US7211349B2 (en) 2002-08-06 2007-05-01 Wilson Greatbatch Technologies, Inc. Silver vanadium oxide provided with a metal oxide coating
US7291014B2 (en) 2002-08-08 2007-11-06 Fats, Inc. Wireless data communication link embedded in simulated weapon systems
US20040143182A1 (en) 2002-08-08 2004-07-22 Pavel Kucera System and method for monitoring and stimulating gastro-intestinal motility
US6909878B2 (en) 2002-08-20 2005-06-21 Ixi Mobile (Israel) Ltd. Method, system and computer readable medium for providing an output signal having a theme to a device in a short distance wireless network
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7294105B1 (en) 2002-09-03 2007-11-13 Cheetah Omni, Llc System and method for a wireless medical communication system
US20040049245A1 (en) 2002-09-09 2004-03-11 Volker Gass Autonomous patch for communication with an implantable device, and medical kit for using said patch
US7102508B2 (en) 2002-09-09 2006-09-05 Persephone, Inc. Method and apparatus for locating and tracking persons
US7388903B2 (en) 2002-09-18 2008-06-17 Conexant, Inc. Adaptive transmission rate and fragmentation threshold mechanism for local area networks
US7118531B2 (en) 2002-09-24 2006-10-10 The Johns Hopkins University Ingestible medical payload carrying capsule with wireless communication
US7736309B2 (en) 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US6842636B2 (en) 2002-09-27 2005-01-11 Axelgaard Manufacturing Co., Ltd. Medical electrode
US7209790B2 (en) 2002-09-30 2007-04-24 Medtronic, Inc. Multi-mode programmer for medical device communication
US7686762B1 (en) 2002-10-03 2010-03-30 Integrated Sensing Systems, Inc. Wireless device and system for monitoring physiologic parameters
MXPA05003688A (en) 2002-10-09 2005-09-30 Bodymedia Inc Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters.
US20050272989A1 (en) 2004-06-04 2005-12-08 Medtronic Minimed, Inc. Analyte sensors and methods for making and using them
EP1432140B1 (en) 2002-10-31 2017-12-20 Nippon Telegraph And Telephone Corporation Transceiver capable of causing series resonance with parasitic capacitance
US7027871B2 (en) 2002-10-31 2006-04-11 Medtronic, Inc. Aggregation of data from external data sources within an implantable medical device
US20030126593A1 (en) 2002-11-04 2003-07-03 Mault James R. Interactive physiological monitoring system
US7232627B2 (en) 2002-11-08 2007-06-19 Honda Motor Co., Ltd. Electrode for solid polymer fuel cell
US20040092801A1 (en) 2002-11-13 2004-05-13 Budimir Drakulic System for, and method of, acquiring physiological signals of a patient
JP2006509537A (en) 2002-11-14 2006-03-23 エシコン・エンド−サージェリィ・インコーポレイテッド Method and apparatus for detecting tissue cells
AU2003282373A1 (en) 2002-11-29 2004-06-23 Given Imaging Ltd. Methods device and system for in vivo diagnosis
US20040115507A1 (en) 2002-12-05 2004-06-17 Potter Curtis N Monolithic fuel cell and method of manufacture
JP2006510655A (en) 2002-12-11 2006-03-30 ファイザー・プロダクツ・インク Controlled release of active substances into high fat environments
EP1578260B1 (en) 2002-12-16 2012-10-24 Given Imaging Ltd. Device, system and method for selective activation of in vivo sensors
US20040167226A1 (en) 2002-12-16 2004-08-26 Serafini Tito A. Methods for the treatment of pain and traumatic injury using benzamides and compositions containing the same
US7009511B2 (en) 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
WO2004056418A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. An electrode assembly and a system with impedance control
US20050038680A1 (en) 2002-12-19 2005-02-17 Mcmahon Kevin Lee System and method for glucose monitoring
US7127300B2 (en) 2002-12-23 2006-10-24 Cardiac Pacemakers, Inc. Method and apparatus for enabling data communication between an implantable medical device and a patient management system
US7547278B2 (en) 2002-12-27 2009-06-16 Matsushita Electric Industrial Co., Ltd. Tele-care monitoring device
EP1578262A4 (en) 2002-12-31 2007-12-05 Therasense Inc Continuous glucose monitoring system and methods of use
US6975174B1 (en) 2002-12-31 2005-12-13 Radioframe Networks, Inc. Clock oscillator
US7396330B2 (en) 2003-01-07 2008-07-08 Triage Data Networks Wireless, internet-based medical-diagnostic system
US20060142648A1 (en) 2003-01-07 2006-06-29 Triage Data Networks Wireless, internet-based, medical diagnostic system
US7512448B2 (en) 2003-01-10 2009-03-31 Phonak Ag Electrode placement for wireless intrabody communication between components of a hearing system
US20040147326A1 (en) 2003-01-14 2004-07-29 Stiles Thomas William Gaming device system
KR100522132B1 (en) 2003-01-25 2005-10-18 한국과학기술연구원 Data receiving method and apparatus in human body communication system
KR100873683B1 (en) 2003-01-25 2008-12-12 한국과학기술연구원 Method and system for data communication in human body and capsule-type endoscope used therein
US20040267240A1 (en) 2003-01-29 2004-12-30 Yossi Gross Active drug delivery in the gastrointestinal tract
CN1774239A (en) 2003-01-29 2006-05-17 埃-皮尔制药公司 Active drug delivery in the gastrointestinal tract
EP1443780B1 (en) 2003-01-30 2013-05-29 Accenture Global Services Limited Event data acquisition and transmission system
US7149581B2 (en) 2003-01-31 2006-12-12 Medtronic, Inc. Patient monitoring device with multi-antenna receiver
US7162307B2 (en) 2003-02-11 2007-01-09 Medtronic, Inc. Channel occupancy in multi-channel medical device communication
US7392015B1 (en) 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems
US7215660B2 (en) 2003-02-14 2007-05-08 Rearden Llc Single transceiver architecture for a wireless network
JP4158097B2 (en) 2003-02-27 2008-10-01 ソニー株式会社 Authentication system
US7155232B2 (en) 2003-03-05 2006-12-26 Conexant Systems, Inc. Transmit request signaling between transceivers
US7653031B2 (en) 2003-03-05 2010-01-26 Timothy Gordon Godfrey Advance notification of transmit opportunities on a shared-communications channel
JP2004274452A (en) 2003-03-10 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Transceiver
JP2006520657A (en) 2003-03-21 2006-09-14 ウェルチ・アリン・インコーポレーテッド Personal condition physiological monitoring system and structure, and monitoring method
US7321920B2 (en) 2003-03-21 2008-01-22 Vocel, Inc. Interactive messaging system
DE10313005B4 (en) 2003-03-24 2007-05-03 Siemens Ag Backup battery and method for its manufacture
IL161096A (en) 2003-03-27 2008-08-07 Given Imaging Ltd Device, system and method for measuring a gradient in-vivo
US20040193446A1 (en) 2003-03-27 2004-09-30 Mayer Steven Lloyd System and method for managing a patient treatment program including a prescribed drug regimen
JP2006522658A (en) 2003-04-08 2006-10-05 メドラッド インコーポレーテッド Fluid transport system, fluid transport device, and method for transporting hazardous fluid
GB0308114D0 (en) 2003-04-08 2003-05-14 Glaxo Group Ltd Novel compounds
JP2006522819A (en) 2003-04-08 2006-10-05 プロジェニックス ファーマシューティカルズ,インコーポレーテッド Combination therapy of constipation combined with laxatives and peripheral opioid antagonists
JP4593083B2 (en) 2003-04-11 2010-12-08 オリンパス株式会社 Inspection data management method
JP2004318534A (en) 2003-04-16 2004-11-11 Matsushita Electric Ind Co Ltd System for supporting health promotion
FI116117B (en) 2003-04-17 2005-09-30 Polar Electro Oy Measuring device and method for measuring heart rate and the method of manufacture of the measuring device
US7855015B1 (en) 2003-04-17 2010-12-21 University Of South Florida Aluminum and solid alkali peroxide galvanic cell
US7972616B2 (en) 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
AU2004233667B2 (en) 2003-04-25 2007-11-29 Olympus Corporation Radio-type in-subject information acquisition system and device for introduction into subject
AU2004233670B2 (en) 2003-04-25 2007-11-29 Olympus Corporation Radio-type in-subject information acquisition system and outside-subject device
US20040218683A1 (en) 2003-05-01 2004-11-04 Texas Instruments Incorporated Multi-mode wireless devices having reduced-mode receivers
US20040225199A1 (en) 2003-05-08 2004-11-11 Evanyk Shane Walter Advanced physiological monitoring systems and methods
TWI226761B (en) 2003-05-08 2005-01-11 Ind Tech Res Inst Dual band transceiver architecture for wireless application
US7031745B2 (en) 2003-05-12 2006-04-18 Shen Ein-Yiao Cellular phone combined physiological condition examination and processing device
US7311665B2 (en) 2003-05-19 2007-12-25 Alcohol Monitoring Systems, Inc. Bio-information sensor monitoring system and method
DE10323216B3 (en) 2003-05-22 2004-12-23 Siemens Ag Endoscope apparatus has cameras which are provided at respective ends of endoscope capsule, such that one of camera is tilted or rotated to change photography range
KR100542101B1 (en) 2003-06-02 2006-01-11 삼성전자주식회사 Power control method and bluetooth device using the same
US20040249257A1 (en) 2003-06-04 2004-12-09 Tupin Joe Paul Article of manufacture for extracting physiological data using ultra-wideband radar and improved signal processing techniques
JP4399625B2 (en) 2003-06-05 2010-01-20 Qファクター株式会社 Electronic device, quasi-electrostatic field generation method and communication system
JP4507058B2 (en) 2003-06-05 2010-07-21 ソニー株式会社 Distance detection system
EP1635908A1 (en) 2003-06-06 2006-03-22 Medtronic, Inc. Implantable medical device including a hermetic connector block extension
JP4414682B2 (en) 2003-06-06 2010-02-10 オリンパス株式会社 Ultrasound endoscope device
US7313163B2 (en) 2003-06-17 2007-12-25 Motorola, Inc. Fast synchronization for half duplex digital communications
US20040260154A1 (en) 2003-06-18 2004-12-23 Boris Sidelnik Human physiological and chemical monitoring system
US7252152B2 (en) 2003-06-18 2007-08-07 Weatherford/Lamb, Inc. Methods and apparatus for actuating a downhole tool
JP2005031840A (en) 2003-07-09 2005-02-03 Seiko Instruments Inc Emergency notifying device
WO2005007223A2 (en) 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
WO2005006968A1 (en) 2003-07-16 2005-01-27 Koninklijke Philips Electronics N.V. A portable electronic device and a health management system arranged for monitoring a physiological condition of an individual
US7554452B2 (en) 2003-07-18 2009-06-30 Cary Cole Ingestible tracking and locating device
US7653350B2 (en) 2003-07-24 2010-01-26 Sony Ericsson Mobile Communications Ab Wireless terminals and methods for communicating over cellular and enhanced mode bluetooth communication links
JP4038575B2 (en) 2003-07-25 2008-01-30 独立行政法人産業技術総合研究所 Biosensor, biosensor device or biosensor storage method
US20050021372A1 (en) 2003-07-25 2005-01-27 Dimagi, Inc. Interactive motivation systems and methods for self-care compliance
US7243118B2 (en) 2003-07-30 2007-07-10 Broadcom Corporation Method and apparatus for efficient derivation of modulo arithmetic for frequency selection
US20050027175A1 (en) 2003-07-31 2005-02-03 Zhongping Yang Implantable biosensor
US7295877B2 (en) 2003-07-31 2007-11-13 Biosense Webster, Inc. Encapsulated sensor with external antenna
US7591801B2 (en) * 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20050055014A1 (en) 2003-08-04 2005-03-10 Coppeta Jonathan R. Methods for accelerated release of material from a reservoir device
EP1670547B1 (en) 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
US20050172958A1 (en) 2003-08-20 2005-08-11 The Brigham And Women's Hospital, Inc. Inhalation device and system for the remote monitoring of drug administration
JP4398204B2 (en) 2003-08-29 2010-01-13 オリンパス株式会社 In-subject introduction apparatus and wireless in-subject information acquisition system
JP4332152B2 (en) 2003-09-02 2009-09-16 富士通株式会社 Drug administration status management method and drug
JP4432625B2 (en) 2003-09-05 2010-03-17 セイコーエプソン株式会社 Capacitance detection device
JP3993546B2 (en) 2003-09-08 2007-10-17 オリンパス株式会社 In-subject introduction apparatus and wireless in-subject information acquisition system
CA2896407A1 (en) 2003-09-11 2005-03-24 Theranos, Inc. Medical device for analyte monitoring and drug delivery
CA2538710A1 (en) 2003-09-12 2005-03-31 Bodymedia, Inc. Method and apparatus for measuring heart related parameters
US7499674B2 (en) 2003-09-12 2009-03-03 Nokia Corporation Method and system for repeat request in hybrid ultra wideband-bluetooth radio
US7352998B2 (en) 2003-09-12 2008-04-01 Nokia Corporation Method and system for establishing a wireless communications link
US20090157358A1 (en) 2003-09-22 2009-06-18 Hyeung-Yun Kim System for diagnosing and monitoring structural health conditions
JP2007521490A (en) 2003-09-22 2007-08-02 ヒョン−ユン,キム Structural health monitor sensor and system
US7218967B2 (en) 2003-09-26 2007-05-15 Medtronic, Inc. System and method for real-time remote monitoring of implantable medical devices
JP4503979B2 (en) 2003-10-22 2010-07-14 オリンパス株式会社 Internal devices and medical devices
US20050075145A1 (en) 2003-10-03 2005-04-07 Dvorak Joseph L. Method and system for coordinating use of objects using wireless communications
US8626262B2 (en) 2003-10-30 2014-01-07 Halthion Medical Technologies, Inc. Physiological data collection system
US20050096514A1 (en) 2003-11-01 2005-05-05 Medtronic, Inc. Gastric activity notification
ATE482650T1 (en) 2003-11-03 2010-10-15 Microchips Inc MEDICAL DEVICE FOR MEASURING GLUCOSE
US6892590B1 (en) 2003-11-04 2005-05-17 Andermotion Technologies Llc Single-balanced shield electrode configuration for use in capacitive displacement sensing systems and methods
US7101343B2 (en) 2003-11-05 2006-09-05 Temple University Of The Commonwealth System Of Higher Education Implantable telemetric monitoring system, apparatus, and method
US20050101843A1 (en) 2003-11-06 2005-05-12 Welch Allyn, Inc. Wireless disposable physiological sensor
US7415242B1 (en) 2003-11-10 2008-08-19 Sprint Spectrum L.P. Method and system for proximity detection for an in-building wireless repeater
DE102004032812B4 (en) 2003-11-11 2006-07-20 Dräger Safety AG & Co. KGaA Combination sensor for physiological measurements
JP4324858B2 (en) 2003-11-19 2009-09-02 ソニー株式会社 Motion detection system and distance determination device
JP2005158770A (en) 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Laminated substrate and manufacturing method thereof, manufacturing method and apparatus of module using the laminated substrate
CA2536188A1 (en) 2003-11-20 2005-06-09 Angiotech International Ag Electrical devices and anti-scarring agents
JP4041058B2 (en) 2003-11-20 2008-01-30 日本電信電話株式会社 Urine test system and method and recording medium recording urine test program
US7045177B2 (en) 2003-11-21 2006-05-16 Nitto Denko Corporation Sulfoderivatives of acenaphtho[1,2-b]quinoxaline, lyotropic liquid crystal and anisotropic film on their base
JP4683554B2 (en) 2003-11-28 2011-05-18 日本碍子株式会社 Method for producing porous titania molded body
WO2005053517A1 (en) 2003-12-01 2005-06-16 Olympus Corporation Endoscope system
US6987691B2 (en) 2003-12-02 2006-01-17 International Business Machines Corporation Easy axis magnetic amplifier
US7427266B2 (en) 2003-12-15 2008-09-23 Hewlett-Packard Development Company, L.P. Method and apparatus for verification of ingestion
US8306592B2 (en) 2003-12-19 2012-11-06 Olympus Corporation Capsule medical device
JP4198045B2 (en) 2003-12-25 2008-12-17 オリンパス株式会社 In-subject position detection system
JP2005185567A (en) 2003-12-25 2005-07-14 Olympus Corp Medical capsule apparatus
US8185191B1 (en) 2003-12-29 2012-05-22 Michael Evan Shapiro Pulse monitoring and warning system for infants
US7392091B2 (en) 2003-12-30 2008-06-24 Cochlear Limited Implanted antenna and radio communications link
JP2005192821A (en) 2004-01-07 2005-07-21 Olympus Corp Capsule type medical apparatus
JP2005193535A (en) 2004-01-07 2005-07-21 Alps Electric Co Ltd Thermal head, method of manufacturing the same, and method of adjusting dot aspect ratio of the thermal head
US7081807B2 (en) 2004-01-14 2006-07-25 Joseph Lai Automatic pill reminder bottles
US8082024B2 (en) 2004-01-16 2011-12-20 Alfano Robert R Micro-scale compact device for in vivo medical diagnosis combining optical imaging and point fluorescence spectroscopy
US7342895B2 (en) 2004-01-30 2008-03-11 Mark Serpa Method and system for peer-to-peer wireless communication over unlicensed communication spectrum
US7647112B2 (en) 2004-02-11 2010-01-12 Ethicon, Inc. System and method for selectively stimulating different body parts
WO2005089103A2 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US20060154642A1 (en) 2004-02-20 2006-07-13 Scannell Robert F Jr Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses
US20050187789A1 (en) 2004-02-25 2005-08-25 Cardiac Pacemakers, Inc. Advanced patient and medication therapy management system and method
ATE473678T1 (en) 2004-02-27 2010-07-15 Koninkl Philips Electronics Nv PORTABLE WIRELESS DEVICE FOR MONITORING, ANALYZING AND COMMUNICATING PHYSIOLOGICAL STATUS
CN1284505C (en) 2004-02-28 2006-11-15 重庆金山科技(集团)有限公司 Radio capsule like endoscope system for medical use
US7406105B2 (en) 2004-03-03 2008-07-29 Alfred E. Mann Foundation For Scientific Research System and method for sharing a common communication channel between multiple systems of implantable medical devices
DE602004024227D1 (en) 2004-03-04 2009-12-31 Olympus Corp MEDICAL SYSTEM OF CAPSULE TYPE
GB0405798D0 (en) 2004-03-15 2004-04-21 E San Ltd Medical data display
EP1734858B1 (en) 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
JP4119863B2 (en) 2004-03-31 2008-07-16 ソフトバンクモバイル株式会社 Information communication terminal
US20050234307A1 (en) * 2004-04-15 2005-10-20 Nokia Corporation Physiological event handling system and method
US8512219B2 (en) 2004-04-19 2013-08-20 The Invention Science Fund I, Llc Bioelectromagnetic interface system
US9011329B2 (en) 2004-04-19 2015-04-21 Searete Llc Lumenally-active device
JP2005304880A (en) 2004-04-23 2005-11-04 Hitachi Ltd In-vivo object management system utilizing non-contact ic tag
EP1749246A4 (en) 2004-04-24 2011-11-02 Inrange Systems Inc Integrated, non-sequential, remote medication management and compliance system
US20050245794A1 (en) 2004-04-29 2005-11-03 Medtronic, Inc. Communication with implantable monitoring probe
GB0410248D0 (en) 2004-05-07 2004-06-09 Isis Innovation Signal analysis method
US7899526B2 (en) 2004-05-10 2011-03-01 Regents Of The University Of Minnesota Portable device for monitoring electrocardiographic signals and indices of blood flow
US20080051667A1 (en) 2004-05-16 2008-02-28 Rami Goldreich Method And Device For Measuring Physiological Parameters At The Hand
US7575005B2 (en) 2004-05-18 2009-08-18 Excel-Tech Ltd. Mask assembly with integrated sensors
US20050261559A1 (en) 2004-05-18 2005-11-24 Mumford John R Wireless physiological monitoring system
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
KR100592934B1 (en) 2004-05-21 2006-06-23 한국전자통신연구원 Wearable physiological signal detection module and measurement apparatus with the same
US20050259768A1 (en) 2004-05-21 2005-11-24 Oki Techno Centre (Singapore) Pte Ltd Digital receiver and method for processing received signals
US7653542B2 (en) 2004-05-26 2010-01-26 Verizon Business Global Llc Method and system for providing synthesized speech
US20050267556A1 (en) 2004-05-28 2005-12-01 Allan Shuros Drug eluting implants to prevent cardiac apoptosis
US7712288B2 (en) 2004-05-28 2010-05-11 Narayanan Ramasubramanian Unified ingestion package and process for patient compliance with prescribed medication regimen
EP1766591B1 (en) 2004-05-28 2008-01-16 Jan De Geest Communication unit for a person's skin
US20050267550A1 (en) 2004-05-28 2005-12-01 Medtronic Minimed, Inc. System and method for medical communication device and communication protocol for same
JP4666951B2 (en) 2004-06-03 2011-04-06 シーケーディ株式会社 Blister packaging machine and pharmaceutical solid preparation
CA2572455C (en) 2004-06-04 2014-10-28 Therasense, Inc. Diabetes care host-client architecture and data management system
US7289855B2 (en) 2004-06-09 2007-10-30 Medtronic, Inc. Implantable medical device package antenna
WO2006022993A2 (en) 2004-06-10 2006-03-02 Ndi Medical, Llc Implantable generator for muscle and nerve stimulation
US7697994B2 (en) 2004-06-18 2010-04-13 Medtronic, Inc. Remote scheduling for management of an implantable medical device
US7498940B2 (en) 2004-06-22 2009-03-03 Vubiq, Inc. RFID system utilizing parametric reradiated technology
JP2006006377A (en) 2004-06-22 2006-01-12 Elquest Corp Powder paper for packing medicine
KR100615431B1 (en) 2004-06-22 2006-08-25 한국전자통신연구원 Physiological signal detection module, a multi-channel connector module and physiological signal detection apparatus with the same
US20050285746A1 (en) 2004-06-25 2005-12-29 Sengupta Uttam K Radio frequency identification based system to track consumption of medication
US20050285732A1 (en) 2004-06-25 2005-12-29 Sengupta Uttam K Radio frequency identification based system to track consumption of medication
EP1759425A2 (en) 2004-06-25 2007-03-07 Dublin City University An electroluminescent device for the production of ultra-violet light
US7206630B1 (en) 2004-06-29 2007-04-17 Cleveland Medical Devices, Inc Electrode patch and wireless physiological measurement system and method
JP4488810B2 (en) 2004-06-30 2010-06-23 富士通株式会社 Communication system and reception method
US20070027383A1 (en) 2004-07-01 2007-02-01 Peyser Thomas A Patches, systems, and methods for non-invasive glucose measurement
JP4462614B2 (en) 2004-07-05 2010-05-12 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Short-range wireless communication system, portable terminal device, and wireless communication device
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
EP1781162A1 (en) 2004-07-09 2007-05-09 Tadiran Spectralink Ltd. Wearable device, system and method for measuring vital parameters
CN1314134C (en) 2004-07-15 2007-05-02 上海交通大学 Method for preparing silicon thin film heterojunction solar cell
US7614743B2 (en) 2004-07-20 2009-11-10 Medtronic, Inc. Vital signs monitoring system with wireless pupilometer interface
US20080027679A1 (en) 2004-07-21 2008-01-31 Dror Shklarski Wearable Device, System and Method for Measuring Physiological and/or Environmental Parameters
CN100459614C (en) 2004-07-22 2009-02-04 华为技术有限公司 Mobile phone external device and method
KR20060009472A (en) 2004-07-23 2006-02-01 이기방 Systems with water-activated battery
US7336732B1 (en) 2004-07-28 2008-02-26 L-3 Communications Titan Corporation Carrier frequency detection for signal acquisition
ATE540981T1 (en) 2004-08-11 2012-01-15 Univ Ramot SOLUBLE FUSION PROTEINS CONTAINING HETEROLOGUE POLYPEPTIDES
US8518022B2 (en) 2004-08-27 2013-08-27 Medimetrics Personalized Drug Delivery, Inc. Electronically and remotely controlled pill and system for delivering at least one medicament
JP5032321B2 (en) 2004-08-31 2012-09-26 ライフスキャン・スコットランド・リミテッド Manufacturing method of automatic calibration sensor
CA2578078A1 (en) 2004-09-08 2006-03-16 Alertis Medical As Sensor
KR20060023228A (en) 2004-09-09 2006-03-14 이기방 Battery with porous material and fabrication method thereof
GB2418144A (en) 2004-09-17 2006-03-22 Psimedica Ltd Medical device for delivery of beneficial substance
US7618374B2 (en) 2004-09-27 2009-11-17 Siemens Medical Solutions Usa, Inc. Image plane sensing methods and systems for intra-patient probes
US7341560B2 (en) 2004-10-05 2008-03-11 Rader, Fishman & Grauer Pllc Apparatuses and methods for non-invasively monitoring blood parameters
JP2008515505A (en) 2004-10-07 2008-05-15 ノボ・ノルデイスク・エー/エス Methods and systems for disease self-management
US20060078765A1 (en) 2004-10-12 2006-04-13 Laixia Yang Nano-structured ion-conducting inorganic membranes for fuel cell applications
US20060089858A1 (en) 2004-10-25 2006-04-27 Tun Ling Means and method of applying RFID and PKI technologies for patient safety
JP2008011865A (en) 2004-10-27 2008-01-24 Sharp Corp Healthcare apparatus and program for driving the same to function
ATE490724T1 (en) 2004-11-02 2010-12-15 Medtronic Inc DEVICE FOR DATA RETENTION IN AN IMPLANTABLE MEDICAL DEVICE
US7917199B2 (en) 2004-11-02 2011-03-29 Medtronic, Inc. Patient event marking in combination with physiological signals
AU2005229684A1 (en) 2004-11-04 2006-05-18 Given Imaging Ltd Apparatus and method for receiving device selection and combining
KR20060040500A (en) 2004-11-06 2006-05-10 삼성전자주식회사 Method and appratus for measuring bio signal
US7414534B1 (en) * 2004-11-09 2008-08-19 Pacesetter, Inc. Method and apparatus for monitoring ingestion of medications using an implantable medical device
US7930064B2 (en) 2004-11-19 2011-04-19 Parata Systems, Llc Automated drug discrimination during dispensing
US7214107B2 (en) 2004-11-22 2007-05-08 Cardiodynamics International Corporation Electrical connector apparatus and methods
US20060109130A1 (en) 2004-11-22 2006-05-25 Hattick John B Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
KR100661116B1 (en) 2004-11-22 2006-12-22 가부시키가이샤후지쿠라 Electrode, photoelectric conversion element, and dye-sensitized solar cell
WO2006059338A2 (en) 2004-12-02 2006-06-08 Given Imaging Ltd. Device, system and method of in-vivo electro-stimulation
US8374693B2 (en) 2004-12-03 2013-02-12 Cardiac Pacemakers, Inc. Systems and methods for timing-based communication between implantable medical devices
US7154071B2 (en) 2004-12-07 2006-12-26 Dräger Safety AG & Co. KGaA Device for transmitting an electric signal detected by contact with the skin surface
US7616710B2 (en) 2004-12-08 2009-11-10 Electronics And Telecommunications Research Institute Frequency offset estimating method and receiver employing the same
US7449262B2 (en) 2004-12-09 2008-11-11 Praxair Technology, Inc. Current collector to conduct an electrical current to or from an electrode layer
US20100100237A1 (en) 2004-12-11 2010-04-22 Novation Science Holding, Llc Smart Medicine Container
ATE545361T1 (en) 2004-12-13 2012-03-15 Koninkl Philips Electronics Nv MOBILE MONITORING
EP1827388A2 (en) 2004-12-14 2007-09-05 E-Pill Pharma Ltd. Local delivery of drugs or substances using electronic permeability increase
US20060136266A1 (en) 2004-12-20 2006-06-22 E-San Limited Medicinal product order processing system
US7860731B2 (en) 2004-12-20 2010-12-28 Confidant Hawaii, Llc Monitoring and feedback wireless medical system and method
JP4432766B2 (en) 2004-12-21 2010-03-17 Jfeスチール株式会社 Electrical resistance measurement method and apparatus
US7146449B2 (en) 2004-12-22 2006-12-05 International Business Machines Corporation Bluetooth association with simple power connection
US7249212B2 (en) 2004-12-22 2007-07-24 International Business Machines Corporation Bluetooth association based on docking connection
KR20060077523A (en) 2004-12-30 2006-07-05 충북대학교 산학협력단 Systema and method for monitoring prescription
CN2748032Y (en) 2004-12-30 2005-12-28 雪红梅 Portable multifunctional health status monitoring apparatus with multi-transmission path
EP1676522B1 (en) 2004-12-30 2008-07-02 Given Imaging Ltd. System for locating an in-vivo signal source
US20060148254A1 (en) 2005-01-05 2006-07-06 Mclean George Y Activated iridium oxide electrodes and methods for their fabrication
EP1841476B1 (en) 2005-01-17 2011-06-29 Novo Nordisk A/S Fluid delivery device with integrated monitoring of physiological characteristics
WO2006077530A2 (en) 2005-01-18 2006-07-27 Koninklijke Philips Electronics, N.V. Electronically controlled ingestible capsule for sampling fluids in alimentary tract
WO2006077528A2 (en) 2005-01-18 2006-07-27 Koninklijke Philips Electronics, N.V. Electronically controlled capsule
US20080269664A1 (en) 2005-01-18 2008-10-30 Koninklijke Philips Electronics, N.V. System and Method For Controlling Traversal of an Igested Capsule
WO2006077527A2 (en) 2005-01-18 2006-07-27 Koninklijke Philips Electronics, N.V. Electronically controlled capsule for releasing radiation
US7683761B2 (en) 2005-01-26 2010-03-23 Battelle Memorial Institute Method for autonomous establishment and utilization of an active-RF tag network
JP4731936B2 (en) 2005-02-09 2011-07-27 本田技研工業株式会社 Rotary variable resistor
US7850645B2 (en) 2005-02-11 2010-12-14 Boston Scientific Scimed, Inc. Internal medical devices for delivery of therapeutic agent in conjunction with a source of electrical power
EP1871219A4 (en) 2005-02-22 2011-06-01 Health Smart Ltd Methods and systems for physiological and psycho-physiological monitoring and uses thereof
US7504954B2 (en) * 2005-03-17 2009-03-17 Spaeder Jeffrey A Radio frequency identification pharmaceutical tracking system and method
EP1863559A4 (en) 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
JP5011275B2 (en) 2005-03-22 2012-08-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Addressing scheme for high performance wireless medical sensor networks
US20060252999A1 (en) 2005-05-03 2006-11-09 Devaul Richard W Method and system for wearable vital signs and physiology, activity, and environmental monitoring
US20060267774A1 (en) 2005-03-24 2006-11-30 Feinberg Stewart C Transponder overmolded with ethylene copolymers
US20060216603A1 (en) 2005-03-26 2006-09-28 Enable Ipc Lithium-ion rechargeable battery based on nanostructures
JP2006278091A (en) 2005-03-29 2006-10-12 Hitachi Maxell Ltd Coin-shaped silver-oxide battery
US20060224326A1 (en) 2005-03-31 2006-10-05 St Ores John W Integrated data collection and analysis for clinical study
IL174531A0 (en) 2005-04-06 2006-08-20 Given Imaging Ltd System and method for performing capsule endoscopy diagnosis in remote sites
GB0506925D0 (en) 2005-04-06 2005-05-11 Zarlink Semiconductor Ab Ultra low power wake-up solution for implantable RF telemetry devices
CA2953847C (en) 2005-04-07 2019-06-18 Proteus Digital Health, Inc. Pharma-informatics system
WO2006107244A1 (en) 2005-04-07 2006-10-12 St. Jude Medical Ab System and method for radio communication between an implantable medical device and an external base unit
WO2006109072A2 (en) 2005-04-14 2006-10-19 Hidalgo Limited Apparatus and system for monitoring
US7270633B1 (en) 2005-04-22 2007-09-18 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US20120024889A1 (en) 2005-04-28 2012-02-02 Timothy Robertson Polypharmacy Co-Packaged Medication Dosing Unit Including Communication System Therefor
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US20060247505A1 (en) 2005-04-28 2006-11-02 Siddiqui Waqaas A Wireless sensor system
AU2006239221C1 (en) 2005-04-28 2012-08-16 Otsuka Pharmaceutical Co., Ltd. Pharma-informatics system
US7414543B2 (en) 2005-04-28 2008-08-19 Honeywell International Inc. Multiple miniature avionic displays
US20060264829A1 (en) 2005-05-10 2006-11-23 Par Technologies, Llc Disposable fluid container with integrated pump motive assembly
US7359674B2 (en) 2005-05-10 2008-04-15 Nokia Corporation Content distribution & communication system for enhancing service distribution in short range radio environment
EP2330524A3 (en) 2005-05-10 2012-07-11 CareFusion 303, Inc. Medication safety system featuring a multiplexed RFID interrogator panel
US20060262181A1 (en) 2005-05-17 2006-11-23 Robbins Gene A Laser-based image former operable to form dynamically variable images in objects in single shot events
US20060276844A1 (en) 2005-05-19 2006-12-07 Ruth Alon Ingestible device for nitric oxide production in tissue
WO2006127355A2 (en) 2005-05-20 2006-11-30 Dow Global Technologies Inc. Oral drug compliance monitoring using radio frequency identification tags
US8285205B2 (en) 2005-05-26 2012-10-09 Broadcom Corporation Method and system for a single chip integrated Bluetooth and FM transceiver and baseband processor
US20060273882A1 (en) 2005-06-01 2006-12-07 Intel Corporation RFID tag with separate transmit and receive clocks and related method
US20060276702A1 (en) 2005-06-03 2006-12-07 Mcginnis William Neurophysiological wireless bio-sensor
US7387607B2 (en) 2005-06-06 2008-06-17 Intel Corporation Wireless medical sensor system
US20060287693A1 (en) 2005-06-08 2006-12-21 Clifford Kraft Implanted telephone system
US20060282001A1 (en) 2005-06-09 2006-12-14 Michel Noel Physiologic sensor apparatus
DE102005026739A1 (en) 2005-06-09 2006-12-21 Lucas Automotive Gmbh Devices and methods for hydraulic brake systems for land vehicles
WO2006130988A1 (en) 2005-06-10 2006-12-14 Telecommunications Research Laboratories Wireless communication system
ITTO20050407A1 (en) 2005-06-13 2006-12-14 Ist Superiore Mario Boella REMOTE MONITORING SYSTEM FOR PHYSIOLOGICAL PARAMETERS OF AN INDIVIDUAL, PROCEDURE AND IT PRODUCT
JP2006346000A (en) 2005-06-14 2006-12-28 Aruze Corp Game machine and server
US20060285607A1 (en) 2005-06-16 2006-12-21 The Boeing Company High availability narrowband channel for bandwidth efficient modulation applications
US7616111B2 (en) 2005-06-20 2009-11-10 Carestream Health, Inc. System to monitor the ingestion of medicines
US7782189B2 (en) * 2005-06-20 2010-08-24 Carestream Health, Inc. System to monitor the ingestion of medicines
US7857766B2 (en) 2005-06-20 2010-12-28 Alfred E. Mann Foundation For Scientific Research System of implantable ultrasonic emitters for preventing restenosis following a stent procedure
US7299034B2 (en) 2005-06-21 2007-11-20 Lawrence Kates System and method for wearable electronics
WO2007002697A2 (en) 2005-06-28 2007-01-04 Mayo Foundation For Medical Education And Research System for monitoring a physical parameter of a subject
FI20055366A0 (en) 2005-06-30 2005-06-30 Gen Electric An electrode for obtaining a biopotential signal
US20070016443A1 (en) 2005-07-13 2007-01-18 Vitality, Inc. Medication compliance systems, methods and devices with configurable and adaptable escalation engine
US20090134181A1 (en) 2005-07-13 2009-05-28 Vitality, Inc. Medication dispenser with automatic refill
US20070016089A1 (en) 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
CA2616010C (en) 2005-07-20 2013-11-05 Neil R. Euliano Medication compliance system and associated methods
US9047746B1 (en) 2005-07-20 2015-06-02 Neil Euliano Electronic medication compliance monitoring system and associated methods
US20100135907A1 (en) 2005-07-22 2010-06-03 Cranley Paul E Oral Drug Compliance Monitoring Using Sound Detection
GB2428949B (en) 2005-07-28 2007-11-14 Artimi Inc Communications systems and methods
CN100471445C (en) 2005-08-01 2009-03-25 周常安 Paster style physiological monitoring device, system and network
JP4427014B2 (en) 2005-08-02 2010-03-03 セイコーインスツル株式会社 Electronic equipment
US20070072156A1 (en) 2005-08-05 2007-03-29 Abk Ventures Lifestyle coach behavior modification system
WO2007021813A2 (en) 2005-08-11 2007-02-22 Eksigent Technologies, Llc Microfluidic system and methods
WO2007021496A2 (en) 2005-08-18 2007-02-22 Walker Digital, Llc Systems and methods for improved health care compliance
US20090124871A1 (en) 2005-08-22 2009-05-14 Khalil Arshak Tracking system
US7871734B2 (en) 2005-08-23 2011-01-18 Massachusetts Institute Of Technology Micro fuel cell
US8827904B2 (en) 2005-08-31 2014-09-09 Medtronic, Inc. Automatic parameter status on an implantable medical device system
WO2007028035A2 (en) 2005-09-01 2007-03-08 Proteus Biomedical, Inc. Implantable zero-wire communications system
JP2007068622A (en) 2005-09-05 2007-03-22 Olympus Corp Acquisition system for biological information of subject
JP2009507617A (en) 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド Method and apparatus for performing transluminal and other operations
US20070196456A1 (en) 2005-09-15 2007-08-23 Visible Assets, Inc. Smart patch
US20080058614A1 (en) 2005-09-20 2008-03-06 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
GB0519837D0 (en) 2005-09-29 2005-11-09 Smartlife Technology Ltd Knitting techniques
GB0519836D0 (en) 2005-09-29 2005-11-09 Smartlife Technology Ltd Contact sensors
GB0519945D0 (en) 2005-09-30 2005-11-09 Cambridge Silicon Radio Ltd Communication in dual protocol environments
US20070078324A1 (en) 2005-09-30 2007-04-05 Textronics, Inc. Physiological Monitoring Wearable Having Three Electrodes
CN100466966C (en) 2005-10-08 2009-03-11 周常安 Physiological signal extracting and monitoring device and system
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US9154616B2 (en) 2005-10-18 2015-10-06 Oia Intellectuals, Inc. Wearable capture and communication
US7720036B2 (en) 2005-10-26 2010-05-18 Intel Corporation Communication within a wireless network using multiple frequency bands
US7499739B2 (en) 2005-10-27 2009-03-03 Smiths Medical Pm, Inc. Single use pulse oximeter
US8515348B2 (en) 2005-10-28 2013-08-20 Electro Industries/Gauge Tech Bluetooth-enable intelligent electronic device
US9067047B2 (en) 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
GB0523447D0 (en) 2005-11-17 2005-12-28 E San Ltd System and method for communicating environmentally-based medical support advice
WO2007063436A1 (en) 2005-11-30 2007-06-07 Koninklijke Philips Electronics N.V. Electro-mechanical connector for thin medical monitoring patch
US8016776B2 (en) 2005-12-02 2011-09-13 Medtronic, Inc. Wearable ambulatory data recorder
TWI400800B (en) 2005-12-02 2013-07-01 Semiconductor Energy Lab Semiconductor device
US8295932B2 (en) 2005-12-05 2012-10-23 Metacure Limited Ingestible capsule for appetite regulation
JP4789607B2 (en) 2005-12-05 2011-10-12 オリンパスメディカルシステムズ株式会社 Receiver
NL1030608C2 (en) 2005-12-06 2007-06-07 Patrick Antonius Hendri Meeren Blister package, assembly of a blister package and a holder, and method for packaging objects.
JP2007159631A (en) 2005-12-09 2007-06-28 Taito Corp Game machine and game program
US20070135691A1 (en) 2005-12-12 2007-06-14 General Electric Company Medicament compliance monitoring system, method, and medicament container
US20070180047A1 (en) 2005-12-12 2007-08-02 Yanting Dong System and method for providing authentication of remotely collected external sensor measures
CN1985752A (en) 2005-12-19 2007-06-27 周常安 Distributed physiological signal monitor
BRPI0620863A8 (en) 2005-12-29 2018-01-16 Osmotica Kereskedelmi Es Szolgaltato Kft triple-release combination tablet
US20070156016A1 (en) 2005-12-29 2007-07-05 Ido Betesh Method and system for communication with an ingestible imaging device
TWI306023B (en) 2005-12-30 2009-02-11 Ind Tech Res Inst Monitoring apparatus for physical movements of a body organ and method for acouiring the same
US8301254B2 (en) 2006-01-09 2012-10-30 Greatbatch Ltd. Cross-band communications in an implantable device
US20070162089A1 (en) 2006-01-09 2007-07-12 Transoma Medical, Inc. Cross-band communications in an implantable device
US8078278B2 (en) 2006-01-10 2011-12-13 Remon Medical Technologies Ltd. Body attachable unit in wireless communication with implantable devices
ATE499812T1 (en) 2006-01-11 2011-03-15 Qualcomm Inc DISCOVERY OF WIRELESS DEVICES IN A WIRELESS PEER-TO-PEER NETWORK
CN100571239C (en) 2006-01-16 2009-12-16 华为技术有限公司 Synchronizing pilot sequence generation system and method in the communication system
US20100228113A1 (en) 2006-01-23 2010-09-09 Koninklijke Philips Electronics N.V. Improved biomedical electrode for extended patient wear featuring a tap, or snap, which is isolated from the retentional seal
US20070172424A1 (en) * 2006-01-26 2007-07-26 Mark Costin Roser Enabling drug adherence through closed loop monitoring & communication
JP2007200739A (en) 2006-01-27 2007-08-09 Keio Gijuku Living body swallow-type power generating cell
US8762733B2 (en) 2006-01-30 2014-06-24 Adidas Ag System and method for identity confirmation using physiologic biometrics to determine a physiologic fingerprint
US20070185393A1 (en) 2006-02-03 2007-08-09 Triage Wireless, Inc. System for measuring vital signs using an optical module featuring a green light source
US8150502B2 (en) 2006-02-06 2012-04-03 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive cardiac monitor and methods of using continuously recorded cardiac data
US7809399B2 (en) 2006-02-10 2010-10-05 Syntek International Holding Ltd. Method and device for providing multiple communication protocols with a single transceiver
JP4509042B2 (en) 2006-02-13 2010-07-21 株式会社デンソー Hospitality information provision system for automobiles
CN101389265B (en) 2006-02-24 2011-01-26 皇家飞利浦电子股份有限公司 Wireless body sensor network
WO2007101141A2 (en) 2006-02-24 2007-09-07 Hmicro, Inc. A medical signal processing system with distributed wireless sensors
US8781566B2 (en) 2006-03-01 2014-07-15 Angel Medical Systems, Inc. System and methods for sliding-scale cardiac event detection
US8200320B2 (en) 2006-03-03 2012-06-12 PhysioWave, Inc. Integrated physiologic monitoring systems and methods
US8209018B2 (en) 2006-03-10 2012-06-26 Medtronic, Inc. Probabilistic neurological disorder treatment
US8457798B2 (en) 2006-03-14 2013-06-04 Jamie Hackett Long-range radio frequency receiver-controller module and wireless control system comprising same
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US20070244810A1 (en) 2006-03-27 2007-10-18 Altruism In Action Llc Dba Giving Corps Enabling a selectable charitable donation as an incentive for a customer transaction
MX2008012587A (en) 2006-03-29 2009-01-14 Electronic Dietary Foods Inc Ingestible implement for weight control.
CN101415382A (en) 2006-03-30 2009-04-22 皇家飞利浦电子股份有限公司 Expandable digestive pill
WO2007115087A1 (en) 2006-03-30 2007-10-11 Dow Global Technologies Inc. Method and system for monitoring and analyzing compliance with internal dosing regimen
US7806852B1 (en) 2006-04-03 2010-10-05 Jurson Phillip A Method and apparatus for patient-controlled medical therapeutics
TW200738212A (en) 2006-04-12 2007-10-16 Guo Terry Bo Jau Miniature wireless apparatus for collecting physiological signals of animals
WO2007123923A2 (en) 2006-04-18 2007-11-01 Susan Mirow Method and apparatus for analysis of psychiatric and physical conditions
JP2009535103A (en) 2006-04-25 2009-10-01 ダウ グローバル テクノロジーズ インコーポレイティド Compliance monitoring of oral drugs using magnetic field sensors
US7912537B2 (en) 2006-04-27 2011-03-22 Medtronic, Inc. Telemetry-synchronized physiological monitoring and therapy delivery systems
MY187399A (en) 2006-04-28 2021-09-22 Qualcomm Inc Method and apparatus for enhanced paging
US7942844B2 (en) 2006-04-28 2011-05-17 Medtronic Minimed, Inc. Remote monitoring for networked fluid infusion systems
US8956287B2 (en) * 2006-05-02 2015-02-17 Proteus Digital Health, Inc. Patient customized therapeutic regimens
GB0608829D0 (en) 2006-05-04 2006-06-14 Husheer Shamus L G In-situ measurement of physical parameters
US9031853B2 (en) 2006-05-06 2015-05-12 Irody, Inc. Apparatus and method for obtaining an identification of drugs for enhanced safety
WO2007128165A1 (en) 2006-05-09 2007-11-15 Fangen Xiong A short-range wireless networks system and erection method which allot time slots with multi-channel rf transceiver
KR101289601B1 (en) 2006-05-10 2013-08-07 인터디지탈 테크날러지 코포레이션 Method and apparatus for battery management in a converged wireless transmit/receive unit
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
KR101095589B1 (en) 2006-05-15 2011-12-19 노키아 코포레이션 Contactless programming and testing of memory elements
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
US20080077015A1 (en) 2006-05-17 2008-03-27 Olga Boric-Lubecke Determining presence and/or physiological motion of one or more subjects with multiple receiver Doppler radar systems
CN101073494B (en) 2006-05-18 2010-09-08 周常安 Non-invasive life evidence monitor, monitor system and method
JP2009537281A (en) 2006-05-19 2009-10-29 シーブイレクス インコーポレイテッド Characterization and regulation of physiological responses combined with baroreflex activation and drug treatment
US20070279217A1 (en) 2006-06-01 2007-12-06 H-Micro, Inc. Integrated mobile healthcare system for cardiac care
CA2654095C (en) 2006-06-01 2015-12-22 Biancamed Ltd. Apparatus, system, and method for monitoring physiological signs
FI120482B (en) 2006-06-08 2009-11-13 Suunto Oy Anturointijärjestely
US7462150B1 (en) 2006-06-09 2008-12-09 Pacesetter, Inc. System and method for evaluating impaired glucose tolerance and diabetes mellitus within a patient using an implantable medical device
US7346380B2 (en) 2006-06-16 2008-03-18 Axelgaard Manufacturing Co., Ltd. Medical electrode
JP2007330677A (en) 2006-06-19 2007-12-27 Nikon Corp Chemical with built-in memory
WO2007149545A2 (en) 2006-06-21 2007-12-27 Proteus Biomedical, Inc. Metal binary and ternary compounds produced by cathodic arc deposition
US20100081895A1 (en) 2006-06-21 2010-04-01 Jason Matthew Zand Wireless medical telemetry system and methods using radio frequency energized biosensors
JP2009541018A (en) 2006-06-23 2009-11-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Drug administration system
US20080046038A1 (en) 2006-06-26 2008-02-21 Hill Gerard J Local communications network for distributed sensing and therapy in biomedical applications
US7949404B2 (en) 2006-06-26 2011-05-24 Medtronic, Inc. Communications network for distributed sensing and therapy in biomedical applications
EP1872765B1 (en) 2006-06-29 2009-04-29 Edwin Kohl Personalized blister pack and method for automated packaging of an individually determined composition
US8165896B2 (en) 2006-06-29 2012-04-24 The Invention Science Fund I, Llc Compliance data for health-related procedures
US20080004503A1 (en) 2006-06-29 2008-01-03 Micha Nisani Data recorder and method for recording a data signal received from an in-vivo sensing device
IL176712A0 (en) 2006-07-05 2007-10-31 Michael Cohen Alloro Medication dispenser
EP2037999B1 (en) 2006-07-07 2016-12-28 Proteus Digital Health, Inc. Smart parenteral administration system
US20080020037A1 (en) 2006-07-11 2008-01-24 Robertson Timothy L Acoustic Pharma-Informatics System
US20080015494A1 (en) 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
US7962174B2 (en) 2006-07-12 2011-06-14 Andrew Llc Transceiver architecture and method for wireless base-stations
US20080015893A1 (en) * 2006-07-17 2008-01-17 Walgreen Co. Identification of Inappropriate Medications In A Medication Therapy Regimen
US20080021521A1 (en) 2006-07-18 2008-01-24 Cardiac Pacemakers, Inc. Implantable Medical Device Communication System
DE102007020583B4 (en) 2006-07-19 2012-10-11 Erbe Elektromedizin Gmbh Electrode device with an impedance measuring device and method for producing such an electrode device
EP2051615A4 (en) 2006-08-10 2011-03-23 Given Imaging Ltd System and method for in vivo imaging
US7657708B2 (en) 2006-08-18 2010-02-02 Mips Technologies, Inc. Methods for reducing data cache access power in a processor using way selection bits
US8142513B2 (en) 2006-08-23 2012-03-27 Svip 2 Llc Devices and methods for altering eating behavior
US20080097549A1 (en) 2006-09-01 2008-04-24 Colbaugh Michael E Electrode Assembly and Method of Using Same
US7756573B2 (en) 2006-09-05 2010-07-13 Cardiac Pacemakers, Inc. Implantable medical device diagnostic data acquisition and storage
EP2063766B1 (en) 2006-09-06 2017-01-18 Innurvation, Inc. Ingestible low power sensor device and system for communicating with same
US8512241B2 (en) * 2006-09-06 2013-08-20 Innurvation, Inc. Methods and systems for acoustic data transmission
JP2008097585A (en) 2006-09-11 2008-04-24 Seiko Epson Corp Contactless data communication system and contactless ic tag
WO2008036518A1 (en) 2006-09-18 2008-03-27 Koninklijke Philips Electronics, N.V. Ip based monitoring and alarming
US20080077430A1 (en) 2006-09-25 2008-03-27 Singer Michael S Systems and methods for improving medication adherence
US20080077028A1 (en) 2006-09-27 2008-03-27 Biotronic Crm Patent Personal health monitoring and care system
US20080077184A1 (en) 2006-09-27 2008-03-27 Stephen Denker Intravascular Stimulation System With Wireless Power Supply
KR100770010B1 (en) 2006-09-29 2007-10-25 한국전자통신연구원 Intra-body communication system for high-speed data transmission
RU2009116271A (en) 2006-09-29 2010-11-10 Конинклейке Филипс Электроникс, Н.В. (Nl) MINIATURE THRESHOLD SENSORS
US20080091114A1 (en) 2006-10-11 2008-04-17 Pacesetter, Inc. Techniques for Correlating Thoracic Impedance with Physiological Status
US20080091089A1 (en) 2006-10-12 2008-04-17 Kenneth Shane Guillory Single use, self-contained surface physiological monitor
US8054140B2 (en) 2006-10-17 2011-11-08 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
US20080097917A1 (en) 2006-10-24 2008-04-24 Kent Dicks Systems and methods for wireless processing and medical device monitoring via remote command execution
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
US7764996B2 (en) * 2006-10-31 2010-07-27 Cardiac Pacemakers, Inc. Monitoring of chronobiological rhythms for disease and drug management using one or more implantable device
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
KR20160072276A (en) 2006-11-09 2016-06-22 오렉시젠 세러퓨틱스 인크. Unit dosage packages
NZ706217A (en) 2006-11-14 2016-01-29 Cfph Llc Gaming system and method of use
US20080119705A1 (en) 2006-11-17 2008-05-22 Medtronic Minimed, Inc. Systems and Methods for Diabetes Management Using Consumer Electronic Devices
EP2069004A4 (en) 2006-11-20 2014-07-09 Proteus Digital Health Inc Active signal processing personal health signal receivers
EP2094158B1 (en) 2006-11-21 2018-05-02 STOCO 10 GmbH Ingestible electronic capsule and in vivo drug delivery or diagnostic system
US8060249B2 (en) 2006-11-22 2011-11-15 Senticare Inc. Medication dispenser with integrated monitoring system
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US8180425B2 (en) 2006-12-05 2012-05-15 Tyco Healthcare Group Lp ECG lead wire organizer and dispenser
US20080137566A1 (en) 2006-12-06 2008-06-12 Bojko Marholev Method and System for Shared High-Power Transmit Path for a Multi-Protocol Transceiver
US8315687B2 (en) 2006-12-07 2012-11-20 Koninklijke Philips Electronics N.V. Handheld, repositionable ECG detector
US20080146889A1 (en) 2006-12-13 2008-06-19 National Yang-Ming University Method of monitoring human physiological parameters and safty conditions universally
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
TWI334747B (en) 2006-12-22 2010-12-11 Unimicron Technology Corp Circuit board structure having embedded electronic components
WO2008085131A1 (en) 2007-01-08 2008-07-17 Freesystems Pte. Ltd. A wireless network for personal computer human interface devices
JP2010516179A (en) 2007-01-10 2010-05-13 リコルディ,カミロ Portable emergency alert system and method
JP2010516004A (en) 2007-01-12 2010-05-13 ヘルスオーナーズ コーポレイション Behavior modification using intermittent rewards
CN101663014A (en) 2007-01-16 2010-03-03 陶氏环球技术公司 Oral drug capsule component incorporating a communication device
JP5054984B2 (en) 2007-01-17 2012-10-24 株式会社日立メディコ Individual health guidance support system
WO2008091838A2 (en) 2007-01-22 2008-07-31 Intelliject, Inc. Medical injector with compliance tracking and monitoring
WO2008091683A2 (en) 2007-01-25 2008-07-31 Senior Vitals, Inc. System and method for physiological data readings, transmission and presentation
US20080183245A1 (en) 2007-01-31 2008-07-31 Van Oort Geeske Telemetry of external physiological sensor data and implantable medical device data to a central processing system
EP3785599B1 (en) 2007-02-01 2022-08-03 Otsuka Pharmaceutical Co., Ltd. Ingestible event marker systems
US20080214985A1 (en) 2007-02-02 2008-09-04 Activatek, Inc. Active transdermal medicament patch
JP2008191955A (en) 2007-02-05 2008-08-21 Rvision Corp Payment charging office work representative system
WO2008097652A2 (en) 2007-02-08 2008-08-14 Senior Vitals, Inc. Body patch for none-invasive physiological data readings
CA2676280C (en) 2007-02-14 2018-05-22 Proteus Biomedical, Inc. In-body power source having high surface area electrode
WO2008112578A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a deployable antenna
US8091790B2 (en) 2007-03-16 2012-01-10 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Security for blister packs
US20080303638A1 (en) 2007-03-24 2008-12-11 Hap Nguyen Portable patient devices, systems, and methods for providing patient aid and preventing medical errors, for monitoring patient use of ingestible medications, and for preventing distribution of counterfeit drugs
WO2008120128A2 (en) 2007-03-30 2008-10-09 Koninklijke Philips Electronics N.V. System and method for pill communication and control
US8810260B1 (en) 2007-04-02 2014-08-19 Cypress Semiconductor Corporation Device and method for detecting characteristics of a material occupying a volume with capactive sensing of mirrored plates
KR100895297B1 (en) 2007-04-30 2009-05-07 한국전자통신연구원 A multi channel electrode sensor apparatus for measuring a plurality of physiological signals
WO2008131557A1 (en) 2007-05-01 2008-11-06 Urodynamix Technologies Ltd. Apparatus and methods for evaluating physiological conditions of tissue
GB0709248D0 (en) 2007-05-14 2007-06-20 T & Medical Ltd System for monitoring chemotherapy associated adverse drug reactions
US8412293B2 (en) 2007-07-16 2013-04-02 Optiscan Biomedical Corporation Systems and methods for determining physiological parameters using measured analyte values
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
JP2008289724A (en) 2007-05-25 2008-12-04 Olympus Corp Inspection device for capsule endoscope and capsule endoscope system using the same
US7946101B1 (en) 2007-05-30 2011-05-24 Walgreen Co. Method and system for verification of contents of a multi-cell, multi-product blister pack
US20080300572A1 (en) 2007-06-01 2008-12-04 Medtronic Minimed, Inc. Wireless monitor for a personal medical device system
US20080306362A1 (en) 2007-06-05 2008-12-11 Owen Davis Device and system for monitoring contents of perspiration
US20080303665A1 (en) 2007-06-08 2008-12-11 Bilcare, Inc. Package-companion-user interactive system and associated method
US20080311968A1 (en) 2007-06-13 2008-12-18 Hunter Thomas C Method for improving self-management of a disease
US20080311852A1 (en) 2007-06-15 2008-12-18 Broadcom Corporation Multiple communication link coordination for shared data transmissions
US8060175B2 (en) 2007-06-15 2011-11-15 General Electric Company System and apparatus for collecting physiological signals from a plurality of electrodes
WO2009002622A2 (en) 2007-06-27 2008-12-31 F. Hoffman-La Roche Ag Patient information input interface for a therapy system
GB2450517A (en) 2007-06-27 2008-12-31 Smartlife Technology Ltd Electrical resistance of yarn or fabric changes with temperature
US8577835B2 (en) 2007-06-28 2013-11-05 Salesforce.Com, Inc. Method and system for sharing data between subscribers of a multi-tenant database service
CN201076456Y (en) 2007-06-29 2008-06-25 洪金叶 Clamp style wireless transmission pulse detection device
US8404275B2 (en) 2007-07-01 2013-03-26 Vitalis Llc Combination tablet with chewable outer layer
FR2918522B1 (en) 2007-07-02 2011-04-01 St Microelectronics Rousset METHOD AND DEVICE FOR PROCESSING A PULSE TRAIN OF A MODULATED SIGNAL, IN PARTICULAR A MODULAR ULTRA-WIDEBAND SIGNAL, BY DIGITAL MODULATION BY INTERVAL OF PULSES
JP5065780B2 (en) 2007-07-03 2012-11-07 株式会社日立製作所 RFID tag mounting board
US20090009332A1 (en) 2007-07-03 2009-01-08 Endotronix, Inc. System and method for monitoring ingested medication via rf wireless telemetry
JP4520491B2 (en) 2007-07-09 2010-08-04 オリンパス株式会社 Capsule medical system
US8801636B2 (en) 2007-07-19 2014-08-12 Cardiac Pacemakers, Inc. Method and apparatus for determining wellness based on decubitus posture
US8340750B2 (en) 2007-07-19 2012-12-25 Medtronic, Inc. Mechanical function marker channel for cardiac monitoring and therapy control
GB0714807D0 (en) 2007-07-30 2007-09-12 Oxford Biosignals Ltd Method and apparatus for measuring breathing rate
JP2009034345A (en) 2007-08-01 2009-02-19 Hoya Corp Receiver and medical equipment
KR101080423B1 (en) 2007-08-03 2011-11-04 삼성전자주식회사 Multi module combination type portable electronic device
KR100863064B1 (en) 2007-08-03 2008-10-13 한국전자통신연구원 Garment for measuring physiological signals and method of fabricating the same
US20110130658A1 (en) 2007-08-16 2011-06-02 Rdc Ltd. Ultrasonic capsule
US8926509B2 (en) 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
JP4914786B2 (en) 2007-08-28 2012-04-11 オリンパス株式会社 In-subject position detection system
US20090062670A1 (en) 2007-08-30 2009-03-05 Gary James Sterling Heart monitoring body patch and system
US20090062728A1 (en) 2007-09-01 2009-03-05 Sang Hoon Woo Control of Body Fluid Condition Using Diuretics, Based on Weight Measurement
JP2009065726A (en) 2007-09-04 2009-03-26 Fujifilm Corp Rectenna device
WO2009031150A2 (en) 2007-09-05 2009-03-12 Sensible Medical Innovations Ltd. Method and system for monitoring thoracic tissue fluid
CN101827555B (en) 2007-09-07 2012-11-21 英戈·弗洛尔 Diagnostic sensor unit
JP2009061236A (en) 2007-09-07 2009-03-26 Arimasa Nishida Small terminal with functions of reading and inputting multi-data on personal medical information, of data management, analysis, and display, and of entertainment, game, and communication to facilitate self-management for health, having strong bio-feedback effect on life-style related disease, which allows unified management of measured personal data at first when developing medical information database at medical institute, or local/national government
US20090069642A1 (en) 2007-09-11 2009-03-12 Aid Networks, Llc Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device
US8591430B2 (en) 2007-09-14 2013-11-26 Corventis, Inc. Adherent device for respiratory monitoring
WO2009036319A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent emergency patient monitor
US8460189B2 (en) 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
WO2009036260A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Data collection in a multi-sensor patient monitor
WO2009036334A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent multi-sensor device with empathic monitoring
WO2009036333A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Dynamic pairing of patients to data collection gateways
PT2192946T (en) 2007-09-25 2022-11-17 Otsuka Pharma Co Ltd In-body device with virtual dipole signal amplification
US20090087483A1 (en) 2007-09-27 2009-04-02 Sison Raymundo A Oral dosage combination pharmaceutical packaging
US20100183199A1 (en) 2007-09-28 2010-07-22 Eye Controls, Llc Systems and methods for biometric identification
US20090088618A1 (en) 2007-10-01 2009-04-02 Arneson Michael R System and Method for Manufacturing a Swallowable Sensor Device
WO2009051965A1 (en) 2007-10-14 2009-04-23 Board Of Regents, The University Of Texas System A wireless neural recording and stimulating system for pain management
US20090105561A1 (en) 2007-10-17 2009-04-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical or veterinary digestive tract utilization systems and methods
US20090105567A1 (en) 2007-10-19 2009-04-23 Smiths Medical Pm, Inc. Wireless telecommunications network adaptable for patient monitoring
US8134459B2 (en) 2007-10-19 2012-03-13 Smiths Medical Asd, Inc. Wireless telecommunications system adaptable for patient monitoring
US8139225B2 (en) 2007-10-24 2012-03-20 Siemens Medical Solutions Usa, Inc. System for processing patient monitoring power and data signals
GB0721117D0 (en) 2007-10-26 2007-12-05 T & Medical Ltd system for assisting in drug dose optimisaion
US20090112626A1 (en) 2007-10-30 2009-04-30 Cary Talbot Remote wireless monitoring, processing, and communication of patient data
WO2009063377A1 (en) 2007-11-13 2009-05-22 Koninklijke Philips Electronics N.V. Ingestible electronic capsule
EP2215726B1 (en) 2007-11-27 2018-01-10 Proteus Digital Health, Inc. Transbody communication systems employing communication channels
EP2217138A4 (en) 2007-11-29 2013-05-01 Integrated Sensing Systems Inc Sensor unit and procedure for monitoring intracranial physiological properties
US20090149839A1 (en) 2007-12-11 2009-06-11 Hyde Roderick A Treatment techniques using ingestible device
US20090287109A1 (en) 2008-05-14 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20100036269A1 (en) 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090157113A1 (en) 2007-12-18 2009-06-18 Ethicon Endo-Surgery, Inc. Wearable elements for implantable restriction systems
EP2241032B1 (en) 2007-12-20 2018-02-28 Koninklijke Philips N.V. Capacitive sensing and communicating
US8177611B2 (en) 2007-12-21 2012-05-15 Sony Computer Entertainment America Llc Scheme for inserting a mimicked performance into a scene and providing an evaluation of same
JP5091657B2 (en) 2007-12-21 2012-12-05 株式会社東芝 Wireless communication apparatus and wireless communication method
US20090171180A1 (en) 2007-12-28 2009-07-02 Trevor Pering Method and apparatus for configuring wearable sensors
EP2230993B1 (en) 2008-01-15 2018-08-15 Cardiac Pacemakers, Inc. Implantable medical device with antenna
US8401659B2 (en) 2008-01-15 2013-03-19 Cardiac Pacemakers, Inc. Implantable medical device with wireless communications
US20090182207A1 (en) 2008-01-16 2009-07-16 Tenxsys Inc. Ingestible animal health sensor
GB2456567B (en) 2008-01-18 2010-05-05 Oxford Biosignals Ltd Novelty detection
JP5132335B2 (en) 2008-01-29 2013-01-30 富士フイルム株式会社 Capsule endoscope and capsule endoscope system
JP5156427B2 (en) 2008-02-13 2013-03-06 富士フイルム株式会社 Capsule endoscope system
US20090247836A1 (en) 2008-02-28 2009-10-01 Confidant Inc. Medical System and Method for Serving Users with a Chronic Disease or Health State
CN101524267A (en) 2008-03-04 2009-09-09 黄林 Comprehensive evaluating system and proposal for checking personal physical and psychological health
EP3827811A1 (en) 2008-03-05 2021-06-02 Otsuka Pharmaceutical Co., Ltd. Multi-mode communication ingestible event markers and systems
WO2009112977A1 (en) 2008-03-10 2009-09-17 Koninklijke Philips Electronics N.V. Ecg monitoring system with configurable alarm limits
RU2010141557A (en) 2008-03-10 2012-04-20 Конинклейке Филипс Электроникс Н.В. (Nl) CELL PHONE TUBE WITH COVER FOR ECG MONITORING SYSTEM
EP2262419B1 (en) 2008-03-10 2019-06-26 Koninklijke Philips N.V. Wireless outpatient ecg monitoring system
JP2009240756A (en) 2008-03-14 2009-10-22 Fujitsu Component Ltd Capsule for medical device
US20090243833A1 (en) 2008-03-31 2009-10-01 Ching Ching Huang Monitoring system and method for patient care
WO2009146082A2 (en) 2008-04-01 2009-12-03 The Research Foundation Of The State University Of New York Rfid monitoring of drug regimen compliance
AU2009231586A1 (en) 2008-04-03 2009-10-08 Kai Medical, Inc. Non-contact physiologic motion sensors and methods for use
US20090253960A1 (en) 2008-04-03 2009-10-08 Olympus Medical Systems Corp. Antenna unit and receiving apparatus for capsule medical apparatus
US8185646B2 (en) 2008-11-03 2012-05-22 Veritrix, Inc. User authentication for social networks
US20090292194A1 (en) 2008-05-23 2009-11-26 Corventis, Inc. Chiropractic Care Management Systems and Methods
US8989837B2 (en) 2009-12-01 2015-03-24 Kyma Medical Technologies Ltd. Methods and systems for determining fluid content of tissue
US9538937B2 (en) 2008-06-18 2017-01-10 Covidien Lp System and method of evaluating a subject with an ingestible capsule
US20090318303A1 (en) 2008-06-20 2009-12-24 International Business Machines Corporation Microfluidic selection of library elements
US9014778B2 (en) 2008-06-24 2015-04-21 Biosense Webster, Inc. Disposable patch and reusable sensor assembly for use in medical device localization and mapping systems
CH699071A2 (en) 2008-07-02 2010-01-15 Flakes S A A braking and / or mechanical locking.
WO2010005877A2 (en) 2008-07-08 2010-01-14 Proteus Biomedical, Inc. Ingestible event marker data framework
WO2010011833A1 (en) 2008-07-23 2010-01-28 Alexander Stuck Secure tracking of tablets
US8731506B2 (en) 2008-07-28 2014-05-20 Marvell World Trade Ltd. Complementary low noise transductor with active single ended to differential signal conversion
KR101028584B1 (en) 2008-08-27 2011-04-12 주식회사 바이오프로테크 Tab electrode and wire leading to the same
US20100056878A1 (en) 2008-08-28 2010-03-04 Partin Dale L Indirectly coupled personal monitor for obtaining at least one physiological parameter of a subject
GB2463054A (en) 2008-08-30 2010-03-03 Adavanced Telecare Solutions L Device for monitoring the removal of items placed in compartments of a blister package using ambient light
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US20100069002A1 (en) 2008-09-16 2010-03-18 Vcan Sports, Inc. Method and apparatus for a wireless communication device utilizing bluetooth technology
CA2680952A1 (en) 2008-10-01 2010-04-01 Loyaltyone Us, Inc. System and method for providing a health management program
CN102246198A (en) 2008-10-14 2011-11-16 普罗秋斯生物医学公司 Method and system for incorporating physiologic data in a gaming environment
KR101192690B1 (en) 2008-11-13 2012-10-19 프로테우스 디지털 헬스, 인코포레이티드 Ingestible therapy activator system, therapeutic device and method
US20100131434A1 (en) 2008-11-24 2010-05-27 Air Products And Chemicals, Inc. Automated patient-management system for presenting patient-health data to clinicians, and methods of operation thereor
WO2010068818A2 (en) 2008-12-11 2010-06-17 Proteus Biomedical, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
TWI503101B (en) 2008-12-15 2015-10-11 Proteus Digital Health Inc Body-associated receiver and method
US20100160742A1 (en) 2008-12-18 2010-06-24 General Electric Company Telemetry system and method
AU2010203738B2 (en) 2009-01-06 2016-02-25 Otsuka Pharmaceutical Co., Ltd. High-throughput production of ingestible event markers
SG172846A1 (en) 2009-01-06 2011-08-29 Proteus Biomedical Inc Ingestion-related biofeedback and personalized medical therapy method and system
WO2010080764A2 (en) 2009-01-06 2010-07-15 Proteus Biomedical, Inc. Pharmaceutical dosages delivery system
KR100927471B1 (en) 2009-01-07 2009-11-19 주식회사 두성기술 The breast attachment type wireless heart rate apparatus
EP2208458A1 (en) 2009-01-14 2010-07-21 Roche Diagnostics GmbH Medical monitoring network
US8224667B1 (en) 2009-02-06 2012-07-17 Sprint Communications Company L.P. Therapy adherence methods and architecture
US20100203394A1 (en) 2009-02-06 2010-08-12 In Tae Bae Thin metal-air batteries
US8395521B2 (en) 2009-02-06 2013-03-12 University Of Dayton Smart aerospace structures
US8073401B2 (en) 2009-02-17 2011-12-06 Rfaxis, Inc. Multi mode radio frequency transceiver front end circuit with inter-stage matching circuit
US20100217100A1 (en) 2009-02-25 2010-08-26 Leboeuf Steven Francis Methods and Apparatus for Measuring Physiological Conditions
WO2010099268A1 (en) 2009-02-25 2010-09-02 Xanthia Global Limited Wireless physiology monitor
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
EP2408357A4 (en) 2009-03-19 2014-12-17 Univ Florida A miniaturized electronic device ingestible by a subject or implantable inside a body of the subject
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
WO2010111489A2 (en) 2009-03-27 2010-09-30 LifeWatch Corp. Methods and apparatus for processing physiological data acquired from an ambulatory physiological monitoring unit
US8805528B2 (en) 2009-03-31 2014-08-12 Medtronic, Inc. Channel assessment and selection for wireless communication between medical devices
CA2757612A1 (en) 2009-04-03 2010-10-07 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
US8253586B1 (en) 2009-04-24 2012-08-28 Mayfonk Art, Inc. Athletic-wear having integral measuring sensors
WO2010129288A2 (en) 2009-04-28 2010-11-11 Proteus Biomedical, Inc. Highly reliable ingestible event markers and methods for using the same
EP2432458A4 (en) 2009-05-12 2014-02-12 Proteus Digital Health Inc Ingestible event markers comprising an ingestible component
US20100299155A1 (en) 2009-05-19 2010-11-25 Myca Health, Inc. System and method for providing a multi-dimensional contextual platform for managing a medical practice
US8200321B2 (en) 2009-05-20 2012-06-12 Sotera Wireless, Inc. Method for measuring patient posture and vital signs
US8440274B2 (en) 2009-05-26 2013-05-14 Apple Inc. Electronic device moisture indicators
US20110029622A1 (en) 2009-06-24 2011-02-03 Walker Jay S Systems and methods for group communications
US8468115B2 (en) 2009-06-25 2013-06-18 George Mason Intellectual Properties, Inc. Cyclical behavior modification
JP5305396B2 (en) 2009-07-09 2013-10-02 国立大学法人大阪大学 Multi electrode fabric
EP2465323B1 (en) 2009-08-14 2015-10-07 Telefonaktiebolaget LM Ericsson (publ) Connection set-up between two terminals
EP2471439B1 (en) 2009-08-28 2016-10-19 Olympus Corporation Receiver system
US9024766B2 (en) 2009-08-28 2015-05-05 The Invention Science Fund, Llc Beverage containers with detection capability
ES2952361T3 (en) 2009-08-31 2023-10-31 Abbott Diabetes Care Inc Displays for a medical device
US20110230732A1 (en) 2009-09-14 2011-09-22 Philometron, Inc. System utilizing physiological monitoring and electronic media for health improvement
US20110077719A1 (en) 2009-09-30 2011-03-31 Broadcom Corporation Electromagnetic power bio-medical unit
JP2011076034A (en) 2009-10-02 2011-04-14 Sony Corp Image display device and method for driving the same
US8879994B2 (en) 2009-10-02 2014-11-04 Blackberry Limited Methods and devices for facilitating Bluetooth pairing using a camera as a barcode scanner
JP5471294B2 (en) 2009-10-23 2014-04-16 株式会社デンソー Communication device for human body communication
US20110270112A1 (en) 2009-11-02 2011-11-03 Applied Cardiac Systems, Inc. Multi-Function Health Monitor
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
US8838217B2 (en) 2009-11-10 2014-09-16 Makor Issues And Rights Ltd. System and apparatus for providing diagnosis and personalized abnormalities alerts and for providing adaptive responses in clinical trials
US20110112686A1 (en) 2009-11-10 2011-05-12 Nolan James S Devices and methods and systems for determining and/or indicating a medicament dosage regime
US9183601B2 (en) 2010-03-22 2015-11-10 Ai Cure Technologies Llc Method and apparatus for collection of protocol adherence data
US20110270135A1 (en) 2009-11-30 2011-11-03 Christopher John Dooley Augmented reality for testing and training of human performance
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
TW201120673A (en) 2009-12-11 2011-06-16 Univ Ling Tung Medication reminder and physiological information transmission system, and follow-up visit reminder and physiological information transmission system.
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
WO2011076884A2 (en) 2009-12-23 2011-06-30 Delta, Dansk Elektronik, Lys Og Akustik A monitoring system
US8560040B2 (en) 2010-01-04 2013-10-15 Koninklijke Philips N.V. Shielded biomedical electrode patch
KR101034998B1 (en) 2010-02-18 2011-05-17 대한메디칼시스템(주) Connecting structure for snap electrode and electric wire
WO2011112972A2 (en) 2010-03-11 2011-09-15 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
US9872637B2 (en) 2010-04-21 2018-01-23 The Rehabilitation Institute Of Chicago Medical evaluation system and method using sensors in mobile devices
WO2011143490A2 (en) 2010-05-12 2011-11-17 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
EP3492001A1 (en) 2010-05-21 2019-06-05 Medicomp, INC. Method of determining an optimum electrode vector length with a retractable muti-use cardiac monitor
US8301232B2 (en) 2010-06-08 2012-10-30 Alivecor, Inc. Wireless, ultrasonic personal health monitoring system
US20110301439A1 (en) 2010-06-08 2011-12-08 AliveUSA LLC Wireless, ultrasonic personal health monitoring system
EP2580687A4 (en) 2010-06-14 2014-04-30 Trutag Technologies Inc System for verifying an item in a package using a database
SG186282A1 (en) 2010-06-14 2013-01-30 Trutag Technologies Inc System for verifying an item in a package
EP2580688A4 (en) 2010-06-14 2017-05-10 Trutag Technologies, Inc. Labeling and verifying an item with an identifier
KR20130057451A (en) 2010-06-14 2013-05-31 트루테그 테크놀로지스, 인코포레이티드 System for producing a packaged item with an identifier
KR20110137001A (en) 2010-06-16 2011-12-22 (주)유카이트 Health risk warning system
US20130196012A1 (en) 2010-11-30 2013-08-01 Wellesley Pharmaceuticals, Llc Extended-release formulation for reducing the frequency of urination and method of use thereof
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US20120032816A1 (en) 2010-08-06 2012-02-09 Cho Jeffrey C System And Method For Controlling Sport Event Transducers
WO2012040401A2 (en) 2010-09-21 2012-03-29 Somaxis Incorporated Systems for assessing and optimizing muscular performance
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US20120089000A1 (en) 2010-10-08 2012-04-12 Jon Mikalson Bishay Ambulatory Electrocardiographic Monitor For Providing Ease Of Use In Women And Method Of Use
USD639437S1 (en) 2010-10-08 2011-06-07 Cardiac Science Corporation Wearable ambulatory electrocardiographic monitor
TW201219006A (en) 2010-11-05 2012-05-16 Univ Nat Cheng Kung A peripheral physiology inspection apparatus and a peripheral auxiliary device for smart phone
US8823510B2 (en) 2010-12-23 2014-09-02 Klindown, Llc Systems and methods for wirelessly programming a prescription bottle cap
UA109691C2 (en) 2010-12-29 2015-09-25 WIRELESS ENERGY SOURCES FOR USE IN INTEGRATED CIRCUITS
SG191923A1 (en) 2011-01-10 2013-08-30 Proteus Digital Health Inc System, method, and article to prompt behavior change
US20120316413A1 (en) 2011-01-18 2012-12-13 Beijing Choice Electronic Technology Co., Ltd. Measurement apparatus
US20120197144A1 (en) 2011-01-27 2012-08-02 Koninklijke Philips Electronics N.V. Exchangeable electrode and ecg cable snap connector
GB2487758A (en) 2011-02-03 2012-08-08 Isansys Lifecare Ltd Health monitoring electrode assembly
US8966973B1 (en) 2011-02-15 2015-03-03 Christopher J. Milone Low cost capacitive liquid level sensor
KR101836876B1 (en) 2011-03-02 2018-03-09 삼성전자주식회사 Apparatus and method for performing network connection in portable terminal
JP2014514032A (en) 2011-03-11 2014-06-19 プロテウス デジタル ヘルス, インコーポレイテッド Wearable personal body-related devices with various physical configurations
US9189941B2 (en) 2011-04-14 2015-11-17 Koninklijke Philips N.V. Stepped alarm method for patient monitors
US10853819B2 (en) 2011-04-14 2020-12-01 Elwha Llc Cost-effective resource apportionment technologies suitable for facilitating therapies
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
IN2014MN00183A (en) 2011-07-21 2015-06-19 Proteus Digital Health Inc
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US8785569B2 (en) 2011-11-22 2014-07-22 Original Biomedicals Co., Ltd. Drug carrier with chelating complex micelles and the application thereof
US20140315170A1 (en) 2011-11-23 2014-10-23 Proteus Digital Health, Inc. Apparatus, System, and Method to Promote Behavior Change Based on Mindfulness Methodologies
US20130171596A1 (en) 2012-01-04 2013-07-04 Barry J. French Augmented reality neurological evaluation method
WO2013102908A1 (en) 2012-01-08 2013-07-11 Powermat Technologies Ltd System and method for providing and controlling inductive power charging
US20130185228A1 (en) 2012-01-18 2013-07-18 Steven Dresner System and Method of Data Collection, Analysis and Distribution
US20130275296A1 (en) 2012-03-16 2013-10-17 esdatanetworks INC Proximal Customer Transaction Incented By Donation of Auto-Boarded Merchant
US8908943B2 (en) 2012-05-22 2014-12-09 Orca Health, Inc. Personalized anatomical diagnostics and simulations
US9277864B2 (en) 2012-05-24 2016-03-08 Vital Connect, Inc. Modular wearable sensor device
US20140039445A1 (en) 2012-08-06 2014-02-06 Xerox Corporation Computer-based reusable bidirectional medical adherence system and method for personalized medication packaging
US10772522B2 (en) 2013-03-12 2020-09-15 Vital Connect, Inc. Disposable biometric patch device
US20140280125A1 (en) 2013-03-14 2014-09-18 Ebay Inc. Method and system to build a time-sensitive profile
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US20140308930A1 (en) 2013-04-12 2014-10-16 Bao Tran Timely, glanceable information on a wearable device
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US10545132B2 (en) 2013-06-25 2020-01-28 Lifescan Ip Holdings, Llc Physiological monitoring system communicating with at least a social network
US9517012B2 (en) 2013-09-13 2016-12-13 Welch Allyn, Inc. Continuous patient monitoring
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US20150127738A1 (en) 2013-11-05 2015-05-07 Proteus Digital Health, Inc. Bio-language based communication system
US20150149375A1 (en) 2013-11-22 2015-05-28 Proteus Digital Health, Inc. Crowd endorsement system
WO2015112604A1 (en) 2014-01-22 2015-07-30 Proteus Digital Health, Inc. Edible adhesives and ingestible compositions including the same
US9226663B2 (en) 2014-04-07 2016-01-05 Physical Enterprises, Inc. Systems and methods for optical isolation in measuring physiological parameters
EP3487393A4 (en) 2016-07-22 2020-01-15 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
TWI780183B (en) 2017-07-20 2022-10-11 日商大塚製藥股份有限公司 Ingestible electronic medical device

Patent Citations (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799802A (en) * 1966-06-28 1974-03-26 F Schneble Plated through hole printed circuit boards
US3719183A (en) * 1970-03-05 1973-03-06 H Schwartz Method for detecting blockage or insufficiency of pancreatic exocrine function
US4251795A (en) * 1977-11-29 1981-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Semiconductor magnetoresistive element having a differential effect
US4425117A (en) * 1979-07-14 1984-01-10 Battelle-Institut E.V. Device for the release of substances at defined locations in the alimentary tract
US4578061A (en) * 1980-10-28 1986-03-25 Lemelson Jerome H Injection catheter and method
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4564363A (en) * 1983-07-13 1986-01-14 Smithkline Beckman Corporation Delayed action assembly
US4654165A (en) * 1985-04-16 1987-03-31 Micro Tracers, Inc. Microingredient containing tracer
US4725997A (en) * 1986-08-22 1988-02-16 Aprex Corporation Contingent dosing device
US4896261A (en) * 1986-11-24 1990-01-23 Motorola Inc. System for scheduling serial message transmission on a bus which is adoptable for rescheduling prioritized messages using a doubly-linked list
US5079006A (en) * 1987-07-15 1992-01-07 Aprex Corporation Pharmaceutical compositions containing a magnetically detectable material
US5305745A (en) * 1988-06-13 1994-04-26 Fred Zacouto Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood
US4987897A (en) * 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US5279607A (en) * 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5176626A (en) * 1992-01-15 1993-01-05 Wilson-Cook Medical, Inc. Indwelling stent
US5283136A (en) * 1992-06-03 1994-02-01 Ramot University Authority For Applied Research And Industrial Development Ltd. Rechargeable batteries
US5705189A (en) * 1994-08-31 1998-01-06 Roehm Gmbh Chemische Fabrik Thermoplastic material for drug coatings which dissolve in intestinal juices
US5485841A (en) * 1995-02-14 1996-01-23 Univ Mcgill Ultrasonic lung tissue assessment
US20020032385A1 (en) * 1995-02-24 2002-03-14 Raymond Stephen A. Health monitoring system
US6374670B1 (en) * 1995-03-13 2002-04-23 University Of Washington Non-invasive gut motility monitor
US5738708A (en) * 1995-06-07 1998-04-14 The Regents Of The University Of California Office Of Technology Transfer Composite metal membrane
US5596302A (en) * 1996-01-17 1997-01-21 Lucent Technologies Inc. Ring oscillator using even numbers of differential stages with current mirrors
US6200625B1 (en) * 1997-07-24 2001-03-13 Nestec S.A. Preparation of chocolate products with limonene to reduce fat content
US6371927B1 (en) * 1997-08-22 2002-04-16 Innotek Pet Products, Inc. Ingestible animal temperature sensor
US5862808A (en) * 1997-08-26 1999-01-26 Cigar Savor Enterprises Llc Cigar punch
US6042710A (en) * 1997-12-17 2000-03-28 Caliper Technologies Corp. Methods and compositions for performing molecular separations
US20040018476A1 (en) * 1998-01-27 2004-01-29 Symbix Corp. Active symbolic self design method and apparatus
US6009350A (en) * 1998-02-06 1999-12-28 Medtronic, Inc. Implant device telemetry antenna
US6704602B2 (en) * 1998-07-02 2004-03-09 Medtronic, Inc. Implanted medical device/external medical instrument communication utilizing surface electrodes
US20050021103A1 (en) * 1998-08-05 2005-01-27 Dilorenzo Daniel John Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6409674B1 (en) * 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6217744B1 (en) * 1998-12-18 2001-04-17 Peter Crosby Devices for testing fluid
US6366206B1 (en) * 1999-06-02 2002-04-02 Ball Semiconductor, Inc. Method and apparatus for attaching tags to medical and non-medical devices
US6531026B1 (en) * 1999-06-23 2003-03-11 Sony Chemicals Corp. Method for mounting electronic elements
US20060068006A1 (en) * 1999-08-05 2006-03-30 Dimensional Foods Corporation Edible holographic products, particularly pharmaceuticals and methods and apparatus for producing same
US6206702B1 (en) * 1999-08-24 2001-03-27 Deborah A. Hayden Methods and devices for treating unilateral neglect
US7668437B1 (en) * 1999-09-30 2010-02-23 Sony Corporation Recording apparatus, recording method, and record medium
US6380858B1 (en) * 1999-12-29 2002-04-30 Becton, Dickinson And Company Systems and methods for monitoring patient compliance with medication regimens
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
US6839659B2 (en) * 2000-06-16 2005-01-04 Isis Innovation Limited System and method for acquiring data
US7647185B2 (en) * 2000-06-16 2010-01-12 Oxford Biosignals Limited Combining measurements from different sensors
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20020040278A1 (en) * 2000-07-05 2002-04-04 Rolls-Royce Plc Health monitoring
US20040005051A1 (en) * 2000-08-04 2004-01-08 Wheeler Lynn Henry Entity authentication in eletronic communications by providing verification status of device
US6673474B2 (en) * 2000-08-09 2004-01-06 Fujitsu Limited Medium substrate, production method thereof and magnetic disk device
US6689117B2 (en) * 2000-12-18 2004-02-10 Cardiac Pacemakers, Inc. Drug delivery system for implantable medical device
US20030139661A1 (en) * 2001-01-22 2003-07-24 Yoav Kimchy Ingestible device
US20040054278A1 (en) * 2001-01-22 2004-03-18 Yoav Kimchy Ingestible pill
US6342774B1 (en) * 2001-03-27 2002-01-29 Motorola, Inc. Battery having user charge capacity control
US7161484B2 (en) * 2001-04-17 2007-01-09 Micrel Medical Devices S.A. System for monitoring medical parameters
US6694161B2 (en) * 2001-04-20 2004-02-17 Monsanto Technology Llc Apparatus and method for monitoring rumen pH
US7160258B2 (en) * 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
US20080039700A1 (en) * 2001-06-29 2008-02-14 Darrel Drinan Hydration monitoring
US20070060800A1 (en) * 2001-06-29 2007-03-15 Darrel Drinan Gateway platform for biological monitoring and delivery of therapeutic compounds
US20030023150A1 (en) * 2001-07-30 2003-01-30 Olympus Optical Co., Ltd. Capsule-type medical device and medical system
US20030076179A1 (en) * 2001-09-07 2003-04-24 Branch Charles M. Low Jitter ring oscillator architecture
US20030063522A1 (en) * 2001-09-28 2003-04-03 Koninklijke Philips Electronics N.V. Bottle -cap medication reminder and overdose safeguard
US6840904B2 (en) * 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20050027205A1 (en) * 2001-12-14 2005-02-03 Lionel Tarassenko Combining measurements from breathing rate sensors
US7318808B2 (en) * 2001-12-14 2008-01-15 Isis Innovation Limited Combining measurements from breathing rate sensors
US20040008123A1 (en) * 2002-07-15 2004-01-15 Battelle Memorial Institute System and method for tracking medical devices
US20040019172A1 (en) * 2002-07-26 2004-01-29 Tou-Hsiung Yang Biodegradable, water absorbable resin and its preparation method
US20050281439A1 (en) * 2002-07-29 2005-12-22 Lange Daniel H Method and apparatus for electro-biometric identity recognition
US20060028727A1 (en) * 2002-08-20 2006-02-09 Moon John A Method and apparatus for drug product tracking using encoded optical identification elements
US20060036134A1 (en) * 2002-09-18 2006-02-16 E-San Limited Telemedicine system
US20040073454A1 (en) * 2002-10-10 2004-04-15 John Urquhart System and method of portal-mediated, website-based analysis of medication dosing
US20040082982A1 (en) * 2002-10-24 2004-04-29 Gord John C. Multi-mode crystal oscillator system selectively configurable to minimize power consumption or noise generation
US20050154277A1 (en) * 2002-12-31 2005-07-14 Jing Tang Apparatus and methods of using built-in micro-spectroscopy micro-biosensors and specimen collection system for a wireless capsule in a biological body in vivo
US7002476B2 (en) * 2003-01-30 2006-02-21 Leap Of Faith Technologies, Inc. Medication compliance system
US7640802B2 (en) * 2003-04-11 2010-01-05 Oxford Biosignals Limited Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
US20070006636A1 (en) * 2003-04-11 2007-01-11 Oxford Biosignals Limited Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components
US20050038321A1 (en) * 2003-05-14 2005-02-17 Olympus Corporation Capsular medical apparatus
US20050043634A1 (en) * 2003-06-24 2005-02-24 Olympus Corporation Communication system for capsule type medical apparatus capsule type medical apparatus, and information receiver
US20050043894A1 (en) * 2003-08-22 2005-02-24 Fernandez Dennis S. Integrated biosensor and simulation system for diagnosis and therapy
US20050062644A1 (en) * 2003-09-08 2005-03-24 Leci Jonathan Ilan Capsule device to identify the location of an individual
US20050065407A1 (en) * 2003-09-18 2005-03-24 Olympus Corporation Energy supplying coil and capsule endoscope system
US7176784B2 (en) * 2004-01-21 2007-02-13 Battelle Memorial Institute K1-53 Multi-mode radio frequency device
US20070002038A1 (en) * 2004-04-07 2007-01-04 Olympus Corporation Intra-subject position display system
US20060001496A1 (en) * 2004-07-02 2006-01-05 Abrosimov Igor A Array oscillator and polyphase clock generator
US7505795B1 (en) * 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
US20080045843A1 (en) * 2004-08-12 2008-02-21 Tomoharu Tsuji Via-Human-Body Information Transmission System and Transmitter-Receiver
US20060061472A1 (en) * 2004-08-17 2006-03-23 Tagent Corporation Trackable pills with electronic ID tags
US7317378B2 (en) * 2004-08-17 2008-01-08 Tagent Corporation Product identification tag device and reader
US20060058602A1 (en) * 2004-08-17 2006-03-16 Kwiatkowski Krzysztof C Interstitial fluid analyzer
US7171177B2 (en) * 2004-09-07 2007-01-30 Electronics And Telecommunications Research Institute Communication apparatus and method using human body as medium
US20060065713A1 (en) * 2004-09-24 2006-03-30 John Russell Kingery System and method for monitored administration of medical products to patients
US20090184842A1 (en) * 2004-09-30 2009-07-23 Koninklijke Philips Electronics N.V. System for automatic continuous and reliable patient identification for association of wireless medical devices to patients
US20100062709A1 (en) * 2005-02-09 2010-03-11 Kaiser Technology, Inc. Communication System
US20090030293A1 (en) * 2005-02-11 2009-01-29 The University Court Of The University Of Glasgow Sensing device, apparatus and system, and method for operating the same
US20070088194A1 (en) * 2005-05-19 2007-04-19 Eliav Tahar Bolus, method and system for monitoring health condition of ruminant animals
US7672703B2 (en) * 2005-06-07 2010-03-02 Samsung Electronics Co., Ltd. Electrode for measuring electrocardiogram and electrocardiogram device including the same
US20070073353A1 (en) * 2005-06-09 2007-03-29 Medtronic, Inc. Implantable medical device with electrodes on multiple housing surfaces
US20070049339A1 (en) * 2005-08-29 2007-03-01 Amit Barak Method and apparatus of multiple entity wireless communication adapter
US7673679B2 (en) * 2005-09-19 2010-03-09 Schlumberger Technology Corporation Protective barriers for small devices
US7678043B2 (en) * 2005-12-29 2010-03-16 Given Imaging, Ltd. Device, system and method for in-vivo sensing of a body lumen
US20080051647A1 (en) * 2006-05-11 2008-02-28 Changwang Wu Non-invasive acquisition of large nerve action potentials (NAPs) with closely spaced surface electrodes and reduced stimulus artifacts
US20080249808A1 (en) * 2006-06-29 2008-10-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Generating output data based on patient monitoring
US20100049069A1 (en) * 2006-12-01 2010-02-25 Oxford Biosignals Limited Biomedical signal morphology analysis method
US20100056939A1 (en) * 2006-12-01 2010-03-04 Oxford Biosignals Limited Method of biomedical signal analysis including improved automatic segmentation
US20100022836A1 (en) * 2007-03-09 2010-01-28 Olivier Colliou In-body device having a multi-directional transmitter
US20090048498A1 (en) * 2007-08-17 2009-02-19 Frank Riskey System and method of monitoring an animal
US20110077660A1 (en) * 2008-03-06 2011-03-31 Janik John J Foldable, implantable electrode assembly and tool for implanting same
US20100049004A1 (en) * 2008-04-21 2010-02-25 Philometron, Inc. Metabolic energy monitoring system
US20100001841A1 (en) * 2008-07-07 2010-01-07 Cardullo Mario W Dynamically distributable nano rfid device and related method
US20100006585A1 (en) * 2008-07-09 2010-01-14 Flowers Mary E Dosage dispensing and tracking container
US20110065983A1 (en) * 2008-08-13 2011-03-17 Hooman Hafezi Ingestible Circuitry
US20100063841A1 (en) * 2008-09-05 2010-03-11 Vital Data Technology, Llc System and method of notifying designated entities of access to personal medical records
US20120062371A1 (en) * 2010-09-13 2012-03-15 Nokia Corporation Haptic communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Takeshi et al. Machine Translation of JP2004-313242, 11/11/2004 *

Cited By (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649066B2 (en) 2005-04-28 2017-05-16 Proteus Digital Health, Inc. Communication system with partial power source
US8816847B2 (en) 2005-04-28 2014-08-26 Proteus Digital Health, Inc. Communication system with partial power source
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US9439582B2 (en) 2005-04-28 2016-09-13 Proteus Digital Health, Inc. Communication system with remote activation
US8847766B2 (en) 2005-04-28 2014-09-30 Proteus Digital Health, Inc. Pharma-informatics system
US9681842B2 (en) 2005-04-28 2017-06-20 Proteus Digital Health, Inc. Pharma-informatics system
US10517507B2 (en) 2005-04-28 2019-12-31 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US11476952B2 (en) 2005-04-28 2022-10-18 Otsuka Pharmaceutical Co., Ltd. Pharma-informatics system
US10610128B2 (en) 2005-04-28 2020-04-07 Proteus Digital Health, Inc. Pharma-informatics system
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US9161707B2 (en) 2005-04-28 2015-10-20 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8674825B2 (en) 2005-04-28 2014-03-18 Proteus Digital Health, Inc. Pharma-informatics system
US9119554B2 (en) 2005-04-28 2015-09-01 Proteus Digital Health, Inc. Pharma-informatics system
US9962107B2 (en) 2005-04-28 2018-05-08 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US10542909B2 (en) 2005-04-28 2020-01-28 Proteus Digital Health, Inc. Communication system with partial power source
US20140309505A1 (en) * 2005-07-20 2014-10-16 Etect, Inc Electronic medication compliance monitoring system and associated methods
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8956287B2 (en) 2006-05-02 2015-02-17 Proteus Digital Health, Inc. Patient customized therapeutic regimens
US11928614B2 (en) 2006-05-02 2024-03-12 Otsuka Pharmaceutical Co., Ltd. Patient customized therapeutic regimens
US10238604B2 (en) 2006-10-25 2019-03-26 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US11357730B2 (en) 2006-10-25 2022-06-14 Otsuka Pharmaceutical Co., Ltd. Controlled activation ingestible identifier
US8945005B2 (en) 2006-10-25 2015-02-03 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US9444503B2 (en) 2006-11-20 2016-09-13 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US9083589B2 (en) 2006-11-20 2015-07-14 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US10441194B2 (en) 2007-02-01 2019-10-15 Proteus Digital Heal Th, Inc. Ingestible event marker systems
US8858432B2 (en) 2007-02-01 2014-10-14 Proteus Digital Health, Inc. Ingestible event marker systems
US8956288B2 (en) 2007-02-14 2015-02-17 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US11464423B2 (en) 2007-02-14 2022-10-11 Otsuka Pharmaceutical Co., Ltd. In-body power source having high surface area electrode
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US10517506B2 (en) 2007-05-24 2019-12-31 Proteus Digital Health, Inc. Low profile antenna for in body device
US8961412B2 (en) 2007-09-25 2015-02-24 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US9433371B2 (en) 2007-09-25 2016-09-06 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US11612321B2 (en) 2007-11-27 2023-03-28 Otsuka Pharmaceutical Co., Ltd. Transbody communication systems employing communication channels
US8810409B2 (en) 2008-03-05 2014-08-19 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US9060708B2 (en) 2008-03-05 2015-06-23 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US8542123B2 (en) 2008-03-05 2013-09-24 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US9258035B2 (en) 2008-03-05 2016-02-09 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US20210158927A1 (en) * 2008-07-08 2021-05-27 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US11217342B2 (en) 2008-07-08 2022-01-04 Otsuka Pharmaceutical Co., Ltd. Ingestible event marker data framework
US10682071B2 (en) 2008-07-08 2020-06-16 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
WO2014144727A1 (en) * 2008-07-08 2014-09-18 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9415010B2 (en) 2008-08-13 2016-08-16 Proteus Digital Health, Inc. Ingestible circuitry
US8540633B2 (en) 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8721540B2 (en) 2008-08-13 2014-05-13 Proteus Digital Health, Inc. Ingestible circuitry
US8583227B2 (en) 2008-12-11 2013-11-12 Proteus Digital Health, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US9883819B2 (en) * 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US8597186B2 (en) 2009-01-06 2013-12-03 Proteus Digital Health, Inc. Pharmaceutical dosages delivery system
US20110270052A1 (en) * 2009-01-06 2011-11-03 Marc Jensen Ingestion-Related Biofeedback and Personalized Medical Therapy Method and System
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US9119918B2 (en) 2009-03-25 2015-09-01 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US10588544B2 (en) 2009-04-28 2020-03-17 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US9320455B2 (en) 2009-04-28 2016-04-26 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US8545402B2 (en) 2009-04-28 2013-10-01 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
US20100306232A1 (en) * 2009-05-28 2010-12-02 Harris Corporation Multimedia system providing database of shared text comment data indexed to video source data and related methods
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
US10305544B2 (en) 2009-11-04 2019-05-28 Proteus Digital Health, Inc. System for supply chain management
US9941931B2 (en) 2009-11-04 2018-04-10 Proteus Digital Health, Inc. System for supply chain management
US8868453B2 (en) 2009-11-04 2014-10-21 Proteus Digital Health, Inc. System for supply chain management
US8784308B2 (en) 2009-12-02 2014-07-22 Proteus Digital Health, Inc. Integrated ingestible event marker system with pharmaceutical product
US11173290B2 (en) 2010-04-07 2021-11-16 Otsuka Pharmaceutical Co., Ltd. Miniature ingestible device
US9597487B2 (en) 2010-04-07 2017-03-21 Proteus Digital Health, Inc. Miniature ingestible device
US10207093B2 (en) 2010-04-07 2019-02-19 Proteus Digital Health, Inc. Miniature ingestible device
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US9107806B2 (en) 2010-11-22 2015-08-18 Proteus Digital Health, Inc. Ingestible device with pharmaceutical product
US11504511B2 (en) 2010-11-22 2022-11-22 Otsuka Pharmaceutical Co., Ltd. Ingestible device with pharmaceutical product
EP3065095A1 (en) 2011-01-10 2016-09-07 Proteus Digital Health, Inc. System, method, and article to prompt behavior change
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US11229378B2 (en) 2011-07-11 2022-01-25 Otsuka Pharmaceutical Co., Ltd. Communication system with enhanced partial power source and method of manufacturing same
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
WO2013012869A1 (en) * 2011-07-21 2013-01-24 Proteus Digital Health, Inc. Mobile communication device, system, and method
US10192037B2 (en) 2011-08-26 2019-01-29 Elwah LLC Reporting system and method for ingestible product preparation system and method
US9922576B2 (en) 2011-08-26 2018-03-20 Elwha Llc Ingestion intelligence acquisition system and method for ingestible material preparation system and method
US9240028B2 (en) 2011-08-26 2016-01-19 Elwha Llc Reporting system and method for ingestible product preparation system and method
US9947167B2 (en) 2011-08-26 2018-04-17 Elwha Llc Treatment system and method for ingestible product dispensing system and method
US10115093B2 (en) 2011-08-26 2018-10-30 Elwha Llc Food printing goal implementation substrate structure ingestible material preparation system and method
US10026336B2 (en) * 2011-08-26 2018-07-17 Elwha Llc Refuse intelligence acquisition system and method for ingestible product preparation system and method
US9997006B2 (en) 2011-08-26 2018-06-12 Elwha Llc Treatment system and method for ingestible product dispensing system and method
US9785985B2 (en) 2011-08-26 2017-10-10 Elwha Llc Selection information system and method for ingestible product preparation system and method
US9600850B2 (en) 2011-08-26 2017-03-21 Elwha Llc Controlled substance authorization system and method for ingestible product preparation system and method
US20130054013A1 (en) * 2011-08-26 2013-02-28 Elwha LLC, a limited liability company of the State of Delaware Refuse intelligence acquisition system and method for ingestible product preparation system and method
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
EP2783343A4 (en) * 2011-11-23 2015-07-08 Proteus Digital Health Inc Apparatus, system, and method to promote behavior change based on mindfulness methodologies
WO2013078416A2 (en) * 2011-11-23 2013-05-30 Proteus Digital Health, Inc. Apparatus, system, and method to promote behavior change based on mindfulness methodologies
WO2013078416A3 (en) * 2011-11-23 2013-07-18 Proteus Digital Health, Inc. Apparatus, system, and method to promote behavior change based on mindfulness methodologies
US20140315170A1 (en) * 2011-11-23 2014-10-23 Proteus Digital Health, Inc. Apparatus, System, and Method to Promote Behavior Change Based on Mindfulness Methodologies
US20150382325A1 (en) * 2011-11-30 2015-12-31 Ecofit Networks Inc. Exercise usage monitoring system
US9844032B2 (en) * 2011-11-30 2017-12-12 Ecofit Networks Inc. Exercise usage monitoring system
US20130166420A1 (en) * 2011-12-23 2013-06-27 Fluor Technologies Corporation Enterprise inventory asset control with transaction stacker
US10239256B2 (en) 2012-06-12 2019-03-26 Elwha Llc Food printing additive layering substrate structure ingestible material preparation system and method
US10104904B2 (en) 2012-06-12 2018-10-23 Elwha Llc Substrate structure parts assembly treatment system and method for ingestible product system and method
US10121218B2 (en) 2012-06-12 2018-11-06 Elwha Llc Substrate structure injection treatment system and method for ingestible product system and method
US9271897B2 (en) 2012-07-23 2016-03-01 Proteus Digital Health, Inc. Techniques for manufacturing ingestible event markers comprising an ingestible component
US10068059B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method and system for providing automated conversations
US10650920B2 (en) 2012-08-16 2020-05-12 Ginger.io, Inc. Method and system for improving care determination
US11195626B2 (en) 2012-08-16 2021-12-07 Ginger.io, Inc. Method for modeling behavior and health changes
US11929156B2 (en) 2012-08-16 2024-03-12 OrangeDot, Inc. Method and system for providing automated conversations
US11908585B2 (en) 2012-08-16 2024-02-20 OrangeDot, Inc. Method for modeling behavior and depression state
US10102341B2 (en) 2012-08-16 2018-10-16 Ginger.io, Inc. Method for managing patient quality of life
US11195625B2 (en) 2012-08-16 2021-12-07 Ginger.io, Inc. Method for modeling behavior and depression state
US10068670B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method for modeling behavior and depression state
US10242754B2 (en) 2012-08-16 2019-03-26 Ginger.io, Inc. Method for providing therapy to an individual
US10068060B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method for modeling behavior and psychotic disorders
US11901046B2 (en) 2012-08-16 2024-02-13 OrangeDot, Inc. Method for providing therapy to an individual
US10269448B2 (en) 2012-08-16 2019-04-23 Ginger.io, Inc. Method for providing patient indications to an entity
US10265028B2 (en) 2012-08-16 2019-04-23 Ginger.io, Inc. Method and system for modeling behavior and heart disease state
US10276260B2 (en) 2012-08-16 2019-04-30 Ginger.io, Inc. Method for providing therapy to an individual
US10068673B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method for modeling behavior and health changes
US11875895B2 (en) 2012-08-16 2024-01-16 OrangeDot, Inc. Method and system for characterizing and/or treating poor sleep behavior
US11200984B2 (en) 2012-08-16 2021-12-14 Ginger.io, Inc. Method for modeling behavior and psychotic disorders
EP2884888A4 (en) * 2012-08-16 2016-04-20 Ginger Io Inc Method for modeling behavior and health changes
US10068672B2 (en) 2012-08-16 2018-09-04 Ginger.io, Inc. Method for modeling behavior and health changes
US10748645B2 (en) 2012-08-16 2020-08-18 Ginger.io, Inc. Method for providing patient indications to an entity
US11769576B2 (en) 2012-08-16 2023-09-26 OrangeDot, Inc. Method and system for improving care determination
US10740438B2 (en) 2012-08-16 2020-08-11 Ginger.io, Inc. Method and system for characterizing and/or treating poor sleep behavior
US10014077B2 (en) 2012-08-16 2018-07-03 Ginger.io, Inc. Method and system for improving care determination
US10741285B2 (en) 2012-08-16 2020-08-11 Ginger.io, Inc. Method and system for providing automated conversations
US9836581B2 (en) 2012-08-16 2017-12-05 Ginger.io, Inc. Method for modeling behavior and health changes
US10650916B2 (en) 2012-08-16 2020-05-12 Ginger.io, Inc. Method for providing therapy to an individual
US20150220839A1 (en) * 2012-09-07 2015-08-06 Hugh Macnaught Comparison of user experience with experience of larger group
US20180182493A1 (en) * 2012-09-07 2018-06-28 Hugh Macnaught Comparison of user experience with experience of larger group
US9268909B2 (en) 2012-10-18 2016-02-23 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
US11612352B1 (en) * 2013-02-22 2023-03-28 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
US11872053B1 (en) * 2013-02-22 2024-01-16 Cloud Dx, Inc. Systems and methods for monitoring medication effectiveness
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US10421658B2 (en) 2013-08-30 2019-09-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US20200143926A1 (en) * 2013-12-17 2020-05-07 Etectrx, Inc. Electronic compliance system and associated methods
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US10754745B2 (en) 2014-03-31 2020-08-25 Honeywell International Inc. Subscription methods and systems for component information of a system
US9971665B2 (en) * 2014-03-31 2018-05-15 Honeywell International Inc. Subscription methods and systems for component information of a system
US20150278071A1 (en) * 2014-03-31 2015-10-01 Honeywell International Inc. Subscription methods and systems for component information of a system
US11527315B2 (en) 2014-06-03 2022-12-13 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US10245323B2 (en) 2014-06-03 2019-04-02 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US9878138B2 (en) * 2014-06-03 2018-01-30 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US10625063B2 (en) 2014-06-03 2020-04-21 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US9662392B2 (en) * 2014-06-03 2017-05-30 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US20170106178A1 (en) * 2014-06-03 2017-04-20 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US20150343144A1 (en) * 2014-06-03 2015-12-03 Pop Test LLC Drug Device Configured for Wireless Communication
US10137288B2 (en) * 2014-06-03 2018-11-27 Pop Test Abuse Deterrent Technology, LLC Drug device configured for wireless communication
US10010703B2 (en) * 2014-06-03 2018-07-03 Pop Test Abuse Deterrent Technology, LLC Drug device configured for wireless communication
US9878139B2 (en) * 2014-06-03 2018-01-30 Pop Test Abuse Deterrent Technology, LLC Drug device configured for wireless communication
US10441762B2 (en) 2014-06-03 2019-10-15 Pop Test Abuse Deterrent Technology Llc Drug device configured for wireless communication
US20160063278A1 (en) * 2014-09-02 2016-03-03 Eckehard Kraska Privacy Compliance Event Analysis System
US9805216B2 (en) * 2014-09-02 2017-10-31 Eckehard Kraska Privacy compliance event analysis system
US10347373B2 (en) * 2014-09-14 2019-07-09 Voalte, Inc. Intelligent integration, analysis, and presentation of notifications in mobile health systems
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US10797758B2 (en) 2016-07-22 2020-10-06 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US11793419B2 (en) 2016-10-26 2023-10-24 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US11529071B2 (en) 2016-10-26 2022-12-20 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US20190385723A1 (en) * 2017-03-14 2019-12-19 Omron Corporation Medication support apparatus, method, and program
CN111133523A (en) * 2017-07-20 2020-05-08 普罗秋斯数字健康公司 Ingestible electronic medical device
WO2019018762A1 (en) * 2017-07-20 2019-01-24 Proteus Digital Health, Inc. Ingestible electronic medical device
TWI780183B (en) * 2017-07-20 2022-10-11 日商大塚製藥股份有限公司 Ingestible electronic medical device
US11819337B2 (en) 2017-07-20 2023-11-21 Otsuka Pharmaceutical Co., Ltd. Ingestible electronic medical device
US11571165B1 (en) * 2017-09-11 2023-02-07 Massachusetts Mutual Life Insurance Company System and method for ingestible drug delivery
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11094407B2 (en) * 2019-06-13 2021-08-17 International Business Machines Corporation Electronics miniaturization platform for medication verification and tracking
US11710576B2 (en) 2021-05-24 2023-07-25 OrangeDot, Inc. Method and system for computer-aided escalation in a digital health platform
US11868384B2 (en) 2022-03-25 2024-01-09 OrangeDot, Inc. Method and system for automatically determining responses in a messaging platform

Also Published As

Publication number Publication date
DK2313002T3 (en) 2018-12-03
CA2730275A1 (en) 2010-01-14
WO2010005877A3 (en) 2010-03-11
JP5654988B2 (en) 2015-01-14
HK1160751A1 (en) 2012-08-17
CN102159134A (en) 2011-08-17
MY154234A (en) 2015-05-15
CN102159134B (en) 2015-05-27
EP2313002A4 (en) 2014-11-19
CA2730275C (en) 2019-05-21
US9603550B2 (en) 2017-03-28
JP2011527802A (en) 2011-11-04
US20170290513A1 (en) 2017-10-12
EP3427660A1 (en) 2019-01-16
SG195535A1 (en) 2013-12-30
AU2009268827B2 (en) 2013-10-24
SG10201702853UA (en) 2017-06-29
WO2010005877A2 (en) 2010-01-14
IL210228A (en) 2016-10-31
MY172060A (en) 2019-11-13
US20220189606A1 (en) 2022-06-16
US20210158927A1 (en) 2021-05-27
US11217342B2 (en) 2022-01-04
ES2696984T3 (en) 2019-01-21
US20170303818A1 (en) 2017-10-26
WO2014144727A1 (en) 2014-09-18
US10682071B2 (en) 2020-06-16
KR20110039236A (en) 2011-04-15
CA3039236C (en) 2022-05-17
EP2313002A2 (en) 2011-04-27
CA3039236A1 (en) 2010-01-14
KR101615128B1 (en) 2016-04-26
US20130217982A1 (en) 2013-08-22
IL210228A0 (en) 2011-03-31
EP2313002B1 (en) 2018-08-29
AU2009268827A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US20220189606A1 (en) Ingestible event marker data framework
US8540664B2 (en) Probablistic pharmacokinetic and pharmacodynamic modeling
US10368810B2 (en) Method and apparatus for monitoring a functional capacity of an individual
US11744481B2 (en) System, apparatus and methods for data collection and assessing outcomes
US20190019573A1 (en) Patient care system
US20180075199A1 (en) Method and apparatus for processing data associated with a monitored individual
Chai et al. Ingestible electronic sensors to measure instantaneous medication adherence: A narrative review
TWI649761B (en) System for state characterization based on multi-variate data fusion techniques
AU2013273755B2 (en) Ingestible event marker data framework

Legal Events

Date Code Title Description
AS Assignment

Owner name: PROTEUS BIOMEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:O'REILLY, DAVID;KARPLUS, ERIKA;THOMPSON, ANDREW;AND OTHERS;SIGNING DATES FROM 20090701 TO 20090702;REEL/FRAME:023504/0316

AS Assignment

Owner name: PROTEUS DIGITAL HEALTH, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:PROTEUS BIOMEDICAL, INC.;REEL/FRAME:029228/0436

Effective date: 20120705

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION