US20110062192A1 - Spout for Flexible Fluid Reservoirs - Google Patents

Spout for Flexible Fluid Reservoirs Download PDF

Info

Publication number
US20110062192A1
US20110062192A1 US12/842,002 US84200210A US2011062192A1 US 20110062192 A1 US20110062192 A1 US 20110062192A1 US 84200210 A US84200210 A US 84200210A US 2011062192 A1 US2011062192 A1 US 2011062192A1
Authority
US
United States
Prior art keywords
spout
canceled
film
weld interface
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/842,002
Inventor
Thomas Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cascade Designs Inc
Original Assignee
Cascade Designs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cascade Designs Inc filed Critical Cascade Designs Inc
Priority to US12/842,002 priority Critical patent/US20110062192A1/en
Assigned to CASCADE DESIGNS, INC. reassignment CASCADE DESIGNS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRUBER, THOMAS, MR.
Publication of US20110062192A1 publication Critical patent/US20110062192A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5872Non-integral spouts
    • B65D75/5883Non-integral spouts connected to the package at the sealed junction of two package walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/234Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being in the form of tessellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/343Making tension-free or wrinkle-free joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • B29C66/53261Enclosing tubular articles between substantially flat elements
    • B29C66/53262Enclosing spouts between the walls of bags, e.g. of medical bags
    • B29C66/53263Enclosing spouts between the walls of bags, e.g. of medical bags said spouts comprising wings, e.g. said spouts being of ship-like or canoe-like form to avoid leaks in the corners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • B29C66/73116Melting point of different melting point, i.e. the melting point of one of the parts to be joined being different from the melting point of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/04Dielectric heating, e.g. high-frequency welding, i.e. radio frequency welding of plastic materials having dielectric properties, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0082Flexural strength; Flexion stiffness

Definitions

  • spout rib geometries of the prior art generally produced excessive pressure at the weld interface, causing the material of the film subject to bonding with the spout to be displaced rather than bond with adjacent material on the spout rib. As this material was displaced, the remaining film at this location was considerably weakened, making it particularly subject to tearing.
  • prior art spouts often included a spout geometry that resulted in stress concentration at the spout corners (in most forms, the spout corners are considered those locations where the two generally opposing side surfaces of the spout's weld interface converge) when the reservoir was filled to near capacity.
  • This intrinsic stress was greatly amplified when the reservoir was subjected to additional loads such as those experienced during “drop-testing”.
  • conventional spout geometries, particularly in conjunction with stiff material selection created high stress and abrasion of the film where it wrapped around the internal edge of the spout. This could result in premature failure of the film in this area.
  • LLDPE linear low density polyethylene
  • the invention is intended to provide a spout, particularly for flexible fluid reservoirs comprising opposing film panels such as the type broadly characterized as personal hydration reservoirs, which minimizes stresses and abrasion resulting from manufacture and/or use of such reservoirs as well as enhances the strength of the weld/bond between the films and the spout.
  • the various invention embodiments minimize stresses to and abrasion of the film(s) comprising such reservoirs by exploiting certain spout geometries, and enhances the strength of the weld/bond between the films and the spout through material selection and spout surface characteristics, the details of which will be disclosed in the following paragraphs.
  • Each spout according to the invention comprises a generally cylindrical neck portion and a pair of opposed, generally triangular portions extending laterally there from that comprise a spout-film interface (also referred to herein as a “spout weld interface”).
  • the neck portion includes an axis that is congruent with a longitudinal direction.
  • the spout weld interface(s) may comprise one or more portions of the neck portion.
  • Certain spout embodiments of the invention comprise at least one material having a melting temperature, at least at spout weld interfaces thereof, which is closely matched to at least a portion of film-spout interfaces that that are part of a flexible fluid reservoir film (also referred to herein as “film weld interface(s)”).
  • film weld interface(s) By closely matching the melt temperatures of the contacting materials at the film/spout weld interfaces, preferably at least within 5° C. and most preferably within 2° C., undesirable material displacement at the weld interfaces can be eliminated (presuming substantially homogeneous material temperatures).
  • the film weld interfaces which is usually, but not always, an inner surface of the film at such interface, comprises a material, preferably a LLDPE, that has a melting temperature closely matched to the melting temperature of the material at the spout weld interface, which is usually, but not always, an outer surface of the spout, which is also preferably a LLDPE.
  • a convenient means for matching melting temperature requirements is thereby provided.
  • pre-welded or exposed spout and/or film weld interface material may not be the primary or ultimate bonding media, but may be removed or overcome during the bonding process (as in the case of a volatile coating that is flashed or becomes a flux during bonding operations).
  • the pre-bonded spout and/or film weld interfaces comprise the closely matched melting temperature materials that form a suitable bond during a bonding or welding process comprising the application of heat and/or radio frequency (RF) energy.
  • RF radio frequency
  • Spout embodiments of the invention also may provide for enhanced spout weld interface surface and sectional characteristics as well as geometries.
  • the surface characteristics comprise substantially flat and/or smooth surfaces, which permit uniform and/or lower material compression pressure to be used during welding, when compared to the prior art.
  • sectional thickness differences in adjacent portions of the spout weld interfaces e.g., no substantial ridges, lands, protrusions or similar positive relief features reside on at least a substantial portion of the spout weld interfaces, displacement/extrusion of film weld interface material(s) is thus greatly minimized.
  • film thickness and integrity at and proximate to the film weld interface can be maintained during and after the bonding process.
  • Certain embodiments of the immediately preceding type may also comprise negative relief surface features such as holes or depressions defined by the spout weld interface surfaces.
  • negative relief surface features such as depressions or holes beneficially permit air entrapped between film and spout weld interfaces during boding to escape or not adversely affect the desired weld, thus enhancing the film-to-spout bond.
  • surface features also may accept displaced film/spout material, further enhancing the nature of the bond there between.
  • spouts having weld interfaces comprising lands and grooves are not equivalent to weld interfaces comprising a generally smooth surface (no positive relief features) but also defining negative relief features, which may include linear negative reliefs.
  • the peaks of the lands do not constitute a “surface” within the meaning of this patent; “surface” as used herein denotes the nominal surface of the material.
  • negative surface features of the various invention embodiments are generally limited by the sectional thickness of the spout weld interface; positive relief features have no equivalent limitation.
  • spout embodiments of the invention also may comprise at least one stress delocalizing feature (“SDF”), which is particularly useful when spouts according to the invention are used with flexible fluid reservoirs having opposing film panels at the spout weld interface.
  • SDF stress delocalizing feature
  • displacement of reservoir panels at the spout weld interfaces causes the localization of stress along the free edge of the interfaces. This stress localization is often a precursor condition to failure of the weld/bond at the spout/panel weld interfaces.
  • stresses otherwise directed to the interfaces are distributed over a wider area (of both the spout and the panels), thereby reducing the likelihood of failure at the interfaces.
  • One form of SDF comprises flexible appendages, preferably at the convergence of opposing sides of a spout (the apex of the triangular portions) or at neck portions that form a portion of the spout weld interfaces, which depend beyond the spout weld interface and into the reservoir.
  • These flexible appendages are functionally hinged to the spout weld interfaces such that upon divergent flexing of the opposing film panels, resulting “peeling” forces from the panels to the spout are also imparted to the SDF, thereby reducing the imparted forces to the panels.
  • the geometry of the SDFs is such that a weld between the spout and the panel experiences reduced peel stress in favor of shear stress. The remaining peel stress is generally directed to the spout itself, which is considerably stronger than the film.
  • SDFs according to several invention embodiments do not have a constant longitudinal profile, nor necessarily a linear edge.
  • Selected embodiments of the invention may also therefore include spout edges and/or portions of the spout weld interfaces that are flexible in comparison to the neck portion of the spout.
  • Such an arrangement significantly reduce stress and abrasion of the film panels in this area by permitting portions of the spout to flex in response to flexing of the film panels, as opposed to localizing stresses at the spout weld interface periphery. This flexing ability also constitutes a form of an SDF.
  • FIG. 1 is a perspective view of a first embodiment of the invention shown welded to a flexible fluid container;
  • FIG. 2 is a side elevation view of the first embodiment of the invention with alternative weld interface treatments, the left side illustrating a spout weld interface comprising a plurality of negative relief elements and the right side illustrating a spout weld interface comprising a plurality of holes;
  • FIG. 3A is a cross section taken substantially along the lines 3 A- 3 A in FIG. 2 ;
  • FIG. 3B is a cross section taken substantially along the lines 3 B- 3 B in FIG. 2 ;
  • FIG. 4 is an end elevation view of the first embodiment
  • FIG. 5 is a perspective view of a second embodiment of the invention.
  • FIG. 6 is a side elevation of the second embodiment
  • FIG. 7 is an end elevation view of the second embodiment.
  • FIG. 8 is a bottom plan view of the second embodiment.
  • spout 10 includes neck portion 20 having external threads 26 formed on outer surface 24 thereof.
  • Neck portion 20 further includes portions 28 that comprise part of spout weld interfaces 30 .
  • Spout weld interfaces 30 generally include extensions 32 a and 32 b , each having spout weld interface surfaces 34 a and 34 b . These surfaces, in conjunction with neck portions 28 , form the entirety of the surface that is bonded or welded to opposing film panels 82 a and 82 b of reservoir 80 .
  • Each extension 32 further includes peripheral edges 36 and converging edge 38 . It should be noted that peripheral edges 36 and adjacent portions of spout weld interfaces 30 are somewhat flexible in that they are able to converge and diverge relative to each other; this is a result of not having any spanning or structural element restricting such movement.
  • This ability to flex relative to neck portion 20 provides one means for reducing stress and abrasion to film panels 82 a and 82 b at film weld interfaces 90 , and therefore constitutes a form of a Stress Delocalization Feature or SDF.
  • FIGS. 3 , 3 A and 3 B illustrate several forms in which these surfaces may exist.
  • spout weld interface surfaces 34 a and 34 b may also comprise negative relief features 40 such as a plurality of dimples 42 or holes 44 . These negative relief features provide a means for beneficially mitigating the effects of gas(es) trapped between opposing film panels 82 a and 82 b of reservoir 80 and spout weld interface surfaces 34 a and 34 b during the welding/bonding process and/or providing a location for material displacement resulting from such process.
  • FIGS. 1-4 further comprises flexible appendages 50 , each having extending body portion 52 , which is linked to extensions 32 via hinge element 54 , and curvilinear periphery 56 .
  • Opposing film panels 82 a and 82 b of reservoir 80 may or may not be bonded to appendages 50 ; in either instance, if hydrostatic pressure within reservoir 80 causes opposing film panels 82 a and 82 b to diverge, then extending body portions 52 will pivot about hinge elements 54 and maintain contact with the panels.
  • FIGS. 5-8 a second embodiment of the invention is shown that is substantially similar to the first illustrated embodiment, except that flexible appendages 50 ′ are positioned proximate to portions 28 of neck portion 20 .
  • flexible appendages 50 or 50 ′ are intended to function as SDFs, greatest benefit there from can be achieved with such appendages are positioned at or adjacent to portions of spout weld interfaces 30 that are less flexible than other portions thereof. In many instances, the least flexible portions of spout weld interfaces are at converging edges 38 or portions 28 .
  • flexible appendages 50 ′ are positioned at or adjacent to portions 28 (in the first embodiment, flexible appendages 50 were positioned at or adjacent to edges 38 ). Burst test data have shown that similar stress delocalization occurs in the second embodiment when compared to the first. In most other respects, the two embodiments are similar.

Abstract

A spout, particularly for flexible fluid reservoirs having opposing film panels, which minimizes stresses and abrasion resulting from manufacture and/or use of such reservoirs as well as enhances the strength of the weld/bond between the films and the spout. Spouts according to the invention include a generally cylindrical neck portion and a pair of opposed, generally triangular portions extending laterally there from that form a spout-film interface. This interface may be smooth and/or define depressions or holes to increase bond integrity. Spout embodiments of the invention also may include at least one, and preferably four, stress delocalizing feature(s) (“SDF”) to disperse material stress from edges of the spout-film interface that might form during use of the spout. Exemplary SDFs include flexible appendages, preferably at the apex of the triangular portions or at neck portions that form a portion of the spout-weld interfaces, which depend beyond the spout weld interface and into the reservoir.

Description

    BACKGROUND
  • In the field of flexible fluid reservoirs, particularly those comprised of two opposing panels of film selectively bonded together and incorporating a closable spout there between, attention has been directed to providing a secure and durable bond between the opposing panels of film and the spout. To enhance the nature of bond between the films and the spout, various approaches have been taken, including inclusion of surface features such as ribs, lands and/or grooves in the spout. While intended to address a perceived problem, such solutions were not without deficiencies. Moreover, little attention has been paid to the parameters surrounding the components, namely the spout and the film, with respect to the chemical properties thereof, and how best to optimize the same.
  • Turning first to issues pertaining to the physical attributes of the spout, spout rib geometries of the prior art generally produced excessive pressure at the weld interface, causing the material of the film subject to bonding with the spout to be displaced rather than bond with adjacent material on the spout rib. As this material was displaced, the remaining film at this location was considerably weakened, making it particularly subject to tearing.
  • In addition to the foregoing, prior art spouts often included a spout geometry that resulted in stress concentration at the spout corners (in most forms, the spout corners are considered those locations where the two generally opposing side surfaces of the spout's weld interface converge) when the reservoir was filled to near capacity. This intrinsic stress was greatly amplified when the reservoir was subjected to additional loads such as those experienced during “drop-testing”. In addition, conventional spout geometries, particularly in conjunction with stiff material selection, created high stress and abrasion of the film where it wrapped around the internal edge of the spout. This could result in premature failure of the film in this area.
  • As noted above, prior art spouts for flexible fluid reservoirs were not known to possess nor designed to possess melting temperatures that were matched to that of target films intended to be heat or radio frequency (RF) welded thereto. As a consequence, when such a spout and target film were subjected to such welding, desired bonding qualities were not always achieved. While one solution was to apply excess heat and/or pressure to accommodate these disparities, such a solution jeopardized material performance features, particularly in the more susceptible films. In certain instances, the melt temperature of the spout base material, such as high density polyethylene (HDPE), was 8° C. higher than the base material of the film's bonding layer, such as linear low density polyethylene (LLDPE), which resulted in a less than desirable final weld. As a consequence, flexible fluid reservoirs constructed from a film material that was welded to such a spout would experience preventable failures at this interface.
  • SUMMARY OF THE INVENTION
  • The invention is intended to provide a spout, particularly for flexible fluid reservoirs comprising opposing film panels such as the type broadly characterized as personal hydration reservoirs, which minimizes stresses and abrasion resulting from manufacture and/or use of such reservoirs as well as enhances the strength of the weld/bond between the films and the spout. The various invention embodiments minimize stresses to and abrasion of the film(s) comprising such reservoirs by exploiting certain spout geometries, and enhances the strength of the weld/bond between the films and the spout through material selection and spout surface characteristics, the details of which will be disclosed in the following paragraphs.
  • Each spout according to the invention comprises a generally cylindrical neck portion and a pair of opposed, generally triangular portions extending laterally there from that comprise a spout-film interface (also referred to herein as a “spout weld interface”). The neck portion includes an axis that is congruent with a longitudinal direction. Depending upon embodiments, the spout weld interface(s) may comprise one or more portions of the neck portion.
  • For purposes of this patent, the terms “area”, “boundary”, “part”, “portion”, “surface”, “zone”, and their synonyms, equivalents and plural forms, as may be used herein and by way of example, are intended to provide descriptive references or landmarks with respect to the article and/or process being described. These and similar or equivalent terms are not intended, nor should be inferred, to delimit or define per se elements of the referenced article, unless specifically stated as such or facially clear from the several drawings and/or the context in which the term(s) is/are used. Specifically as used herein, reference to a “weld interface” also includes the plural form and vice versa, and should not be inferred as limiting the embodiments or claimed invention to one form or the other based solely upon term selection and usage.
  • Certain spout embodiments of the invention comprise at least one material having a melting temperature, at least at spout weld interfaces thereof, which is closely matched to at least a portion of film-spout interfaces that that are part of a flexible fluid reservoir film (also referred to herein as “film weld interface(s)”). By closely matching the melt temperatures of the contacting materials at the film/spout weld interfaces, preferably at least within 5° C. and most preferably within 2° C., undesirable material displacement at the weld interfaces can be eliminated (presuming substantially homogeneous material temperatures). Research has shown that by reducing and preferably eliminating material displacement during the welding process, weld and/or material failures that might otherwise occur at the weld interface, and/or at areas of the film immediately adjacent to such interfaces, are significantly reduced. Thus, the film weld interfaces, which is usually, but not always, an inner surface of the film at such interface, comprises a material, preferably a LLDPE, that has a melting temperature closely matched to the melting temperature of the material at the spout weld interface, which is usually, but not always, an outer surface of the spout, which is also preferably a LLDPE. In such preferred compositions comprising LLDPE at the film and spout weld interfaces, a convenient means for matching melting temperature requirements is thereby provided.
  • In certain embodiments of the invention, pre-welded or exposed spout and/or film weld interface material may not be the primary or ultimate bonding media, but may be removed or overcome during the bonding process (as in the case of a volatile coating that is flashed or becomes a flux during bonding operations). However, in presently preferred embodiments, the pre-bonded spout and/or film weld interfaces comprise the closely matched melting temperature materials that form a suitable bond during a bonding or welding process comprising the application of heat and/or radio frequency (RF) energy. Thus, weld material selection is not constrained to that of the spout and/or film outermost or exposed surface, but to the functional material (surface) exposed during bonding operations.
  • Spout embodiments of the invention also may provide for enhanced spout weld interface surface and sectional characteristics as well as geometries. The surface characteristics comprise substantially flat and/or smooth surfaces, which permit uniform and/or lower material compression pressure to be used during welding, when compared to the prior art. By minimizing sectional thickness differences in adjacent portions of the spout weld interfaces, e.g., no substantial ridges, lands, protrusions or similar positive relief features reside on at least a substantial portion of the spout weld interfaces, displacement/extrusion of film weld interface material(s) is thus greatly minimized. As a consequence, film thickness and integrity at and proximate to the film weld interface can be maintained during and after the bonding process.
  • Certain embodiments of the immediately preceding type may also comprise negative relief surface features such as holes or depressions defined by the spout weld interface surfaces. As opposed to positive relief surface features, negative relief surface features such as depressions or holes beneficially permit air entrapped between film and spout weld interfaces during boding to escape or not adversely affect the desired weld, thus enhancing the film-to-spout bond. Additionally, such surface features also may accept displaced film/spout material, further enhancing the nature of the bond there between.
  • The skilled practitioner should appreciate that with respect to the foregoing, spouts having weld interfaces comprising lands and grooves are not equivalent to weld interfaces comprising a generally smooth surface (no positive relief features) but also defining negative relief features, which may include linear negative reliefs. In the former instance, the peaks of the lands do not constitute a “surface” within the meaning of this patent; “surface” as used herein denotes the nominal surface of the material. Moreover, negative surface features of the various invention embodiments are generally limited by the sectional thickness of the spout weld interface; positive relief features have no equivalent limitation.
  • In addition to the foregoing, spout embodiments of the invention also may comprise at least one stress delocalizing feature (“SDF”), which is particularly useful when spouts according to the invention are used with flexible fluid reservoirs having opposing film panels at the spout weld interface. As noted previously, displacement of reservoir panels at the spout weld interfaces causes the localization of stress along the free edge of the interfaces. This stress localization is often a precursor condition to failure of the weld/bond at the spout/panel weld interfaces. By incorporating at least one SDF, stresses otherwise directed to the interfaces are distributed over a wider area (of both the spout and the panels), thereby reducing the likelihood of failure at the interfaces.
  • One form of SDF comprises flexible appendages, preferably at the convergence of opposing sides of a spout (the apex of the triangular portions) or at neck portions that form a portion of the spout weld interfaces, which depend beyond the spout weld interface and into the reservoir. These flexible appendages are functionally hinged to the spout weld interfaces such that upon divergent flexing of the opposing film panels, resulting “peeling” forces from the panels to the spout are also imparted to the SDF, thereby reducing the imparted forces to the panels. Thus, the geometry of the SDFs is such that a weld between the spout and the panel experiences reduced peel stress in favor of shear stress. The remaining peel stress is generally directed to the spout itself, which is considerably stronger than the film.
  • Desirably, SDFs according to several invention embodiments do not have a constant longitudinal profile, nor necessarily a linear edge. A tapered form, preferably comprising a curvilinear edge, appears to most effectively delocalize forces that would otherwise be directed to the spout weld interface.
  • The prior art heavily relies upon spouts that have a generally rigid body, which is desirable at the spout neck portion where a cap may be fitted, but causes localized stress and abrasion of the flexible film panels when and where bonded thereto. Selected embodiments of the invention may also therefore include spout edges and/or portions of the spout weld interfaces that are flexible in comparison to the neck portion of the spout. Such an arrangement significantly reduce stress and abrasion of the film panels in this area by permitting portions of the spout to flex in response to flexing of the film panels, as opposed to localizing stresses at the spout weld interface periphery. This flexing ability also constitutes a form of an SDF.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a first embodiment of the invention shown welded to a flexible fluid container;
  • FIG. 2 is a side elevation view of the first embodiment of the invention with alternative weld interface treatments, the left side illustrating a spout weld interface comprising a plurality of negative relief elements and the right side illustrating a spout weld interface comprising a plurality of holes;
  • FIG. 3A is a cross section taken substantially along the lines 3A-3A in FIG. 2;
  • FIG. 3B is a cross section taken substantially along the lines 3B-3B in FIG. 2;
  • FIG. 4 is an end elevation view of the first embodiment;
  • FIG. 5 is a perspective view of a second embodiment of the invention;
  • FIG. 6 is a side elevation of the second embodiment;
  • FIG. 7 is an end elevation view of the second embodiment; and
  • FIG. 8 is a bottom plan view of the second embodiment.
  • DESCRIPTION OF INVENTION EMBODIMENTS
  • Preface: The terminal end of any numeric lead line in the several drawings, when associated with any structure, reference or landmark described in this section, is intended to representatively identify and associate such structure, reference or landmark with respect to the written description of such object. It is not intended, nor should be inferred, to delimit or define per se boundaries of the referenced object, unless specifically stated as such or facially clear from the drawings and the context in which the term(s) is/are used. Unless specifically stated as such or facially clear from the several drawings and the context in which the term(s) is/are used, all words and visual aids should be given their common commercial and/or scientific meaning consistent with the context of the disclosure herein.
  • Turning then to the several drawings, wherein like parts are numbered the same, and more particularly to FIGS. 1-4, a first embodiment of the invention is shown. Here, spout 10 includes neck portion 20 having external threads 26 formed on outer surface 24 thereof. Neck portion 20 further includes portions 28 that comprise part of spout weld interfaces 30.
  • Spout weld interfaces 30 generally include extensions 32 a and 32 b, each having spout weld interface surfaces 34 a and 34 b. These surfaces, in conjunction with neck portions 28, form the entirety of the surface that is bonded or welded to opposing film panels 82 a and 82 b of reservoir 80. Each extension 32 further includes peripheral edges 36 and converging edge 38. It should be noted that peripheral edges 36 and adjacent portions of spout weld interfaces 30 are somewhat flexible in that they are able to converge and diverge relative to each other; this is a result of not having any spanning or structural element restricting such movement. This ability to flex relative to neck portion 20, for example, provides one means for reducing stress and abrasion to film panels 82 a and 82 b at film weld interfaces 90, and therefore constitutes a form of a Stress Delocalization Feature or SDF.
  • Returning to spout weld interface surfaces 34 a and 34 b, FIGS. 3, 3A and 3B illustrate several forms in which these surfaces may exist. In addition to a smooth surface, spout weld interface surfaces 34 a and 34 b may also comprise negative relief features 40 such as a plurality of dimples 42 or holes 44. These negative relief features provide a means for beneficially mitigating the effects of gas(es) trapped between opposing film panels 82 a and 82 b of reservoir 80 and spout weld interface surfaces 34 a and 34 b during the welding/bonding process and/or providing a location for material displacement resulting from such process.
  • The embodiment shown in FIGS. 1-4 further comprises flexible appendages 50, each having extending body portion 52, which is linked to extensions 32 via hinge element 54, and curvilinear periphery 56. Opposing film panels 82 a and 82 b of reservoir 80 may or may not be bonded to appendages 50; in either instance, if hydrostatic pressure within reservoir 80 causes opposing film panels 82 a and 82 b to diverge, then extending body portions 52 will pivot about hinge elements 54 and maintain contact with the panels. As a consequence, separation forces that otherwise would be solely directed to the panels, which would cause localization of peeling forces at peripheral edges 36, is dispersed partly to flexible appendages 50 which in turn compressively coact against portions of opposing film panels 82 a and 82 b that otherwise would not be affected. In this manner, flexible appendages 50 function as SDFs.
  • In FIGS. 5-8, a second embodiment of the invention is shown that is substantially similar to the first illustrated embodiment, except that flexible appendages 50′ are positioned proximate to portions 28 of neck portion 20. Because flexible appendages 50 or 50′ are intended to function as SDFs, greatest benefit there from can be achieved with such appendages are positioned at or adjacent to portions of spout weld interfaces 30 that are less flexible than other portions thereof. In many instances, the least flexible portions of spout weld interfaces are at converging edges 38 or portions 28. In this second embodiment, flexible appendages 50′ are positioned at or adjacent to portions 28 (in the first embodiment, flexible appendages 50 were positioned at or adjacent to edges 38). Burst test data have shown that similar stress delocalization occurs in the second embodiment when compared to the first. In most other respects, the two embodiments are similar.

Claims (40)

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. A spout for flexible fluid reservoirs, the reservoirs comprising at least one film material having an inner surface, an outer surface, and at least one film weld interface having a material with a known melting temperature TF, the spout comprising:
a substantially cylindrical neck portion having an axis congruent with a longitudinal direction; and
at least one spout weld interface having an exposed surface and extending from the neck portion, wherein the at least one spout weld interface comprises a material with a known melting temperature TS and has at least one stress delocalizing feature.
12. The spout of claim 11, wherein the at least one stress delocalizing feature comprises a peripheral edge characterized as flexible relative to the neck portion.
13. The spout of claim 11, wherein the at least one stress delocalizing feature comprises at least one generally flexible appendage extending in a longitudinal direction from the at least one spout weld interface.
14. The spout of claim 13, wherein the at least one generally flexible appendage is at or adjacent to an apex of the at least one spout weld interface.
15. The spout of claim 13, wherein the at least one generally flexible appendage is at or adjacent to the neck portion of the at least one spout weld interface.
16. The spout of claim 13, wherein the at least one generally flexible appendage comprises a curvilinear peripheral edge.
17. The spout of claim 13, wherein the at least one generally flexible appendage comprises an irregular longitudinal profile.
18. The spout of claim 13, wherein the at least one generally flexible appendage is at least partially mechanically linkable to at least a portion of the at least one film material of the reservoir.
19. The spout of claim 13, wherein the spout comprises four generally flexible appendages.
20. The spout of claim 11, wherein the at least one stress delocalizing feature comprises a peripheral edge characterized as flexible relative to the neck portion, and at least one generally flexible appendage extending in a longitudinal direction from the at least one spout weld interface.
21. (canceled)
22. The spout of claim 11, wherein the difference between TS and TF is ±5° C.
23. (canceled)
24. The spout of claim 11, wherein the at least one spout weld interface material is of the same type as the at least one film weld interface material.
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. The spout of claim 11, wherein the at least one spout weld interface comprises an exposed surface wherein at least a major portion of the exposed surface is characterized as smooth.
36. The spout of claim 35, wherein the at least a major portion of the exposed surface is further characterized as defining a plurality of holes.
37. The spout of claim 35, wherein the at least a major portion of the exposed surface is further characterized as defining a plurality of negative relief features.
38. The spout of claim 35, wherein the at least a major portion of the exposed surface is further characterized as defining a plurality of holes and negative relief features.
39. The spout of claim 11, wherein the at least one film weld interface material is between the inner surface and the outer surface of the film.
40. The spout of claim 11, wherein the at least one stress delocalizing feature comprises a peripheral edge characterized as flexible relative to the neck portion and at least one generally flexible appendage extends in the longitudinal direction from the at least one spout weld interface, and wherein the difference between TS and TF is ±5° C.
US12/842,002 2008-01-22 2010-07-22 Spout for Flexible Fluid Reservoirs Abandoned US20110062192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/842,002 US20110062192A1 (en) 2008-01-22 2010-07-22 Spout for Flexible Fluid Reservoirs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1196308P 2008-01-22 2008-01-22
PCT/US2009/000481 WO2009094215A2 (en) 2008-01-22 2009-01-22 Spout for flexible fluid reservoir
US12/842,002 US20110062192A1 (en) 2008-01-22 2010-07-22 Spout for Flexible Fluid Reservoirs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/000481 Continuation WO2009094215A2 (en) 2008-01-22 2009-01-22 Spout for flexible fluid reservoir

Publications (1)

Publication Number Publication Date
US20110062192A1 true US20110062192A1 (en) 2011-03-17

Family

ID=40901588

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/842,002 Abandoned US20110062192A1 (en) 2008-01-22 2010-07-22 Spout for Flexible Fluid Reservoirs

Country Status (5)

Country Link
US (1) US20110062192A1 (en)
EP (1) EP2252523A4 (en)
JP (1) JP2011509897A (en)
CA (1) CA2712761A1 (en)
WO (1) WO2009094215A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013074953A1 (en) * 2011-11-16 2013-05-23 Meadwestvaco Calmar, Inc. Canoe fitments for pouches
US20140110433A1 (en) * 2011-01-11 2014-04-24 Poppelmann Holding GmbH & Co.KG Spout and container having such a spout
WO2016151519A1 (en) * 2015-03-25 2016-09-29 Ready To Feed Pty Ltd Discharge spout for a container and a container incorporating such discharge spout
US9481495B2 (en) * 2014-04-24 2016-11-01 Scholle Ipn Corporation Dispensing system
DE102015215864A1 (en) 2015-08-20 2017-02-23 Robert Bosch Gmbh Outlet with a projecting flange
US10155615B2 (en) 2016-09-26 2018-12-18 Dow Global Technologies Llc Seal bar and process for using same
US10173821B2 (en) 2016-09-26 2019-01-08 Dow Global Technologies Llc Flexible fitment for flexible container

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163991B2 (en) * 2013-09-17 2017-07-19 セイコーエプソン株式会社 Liquid container and liquid container
KR20170031705A (en) * 2014-07-16 2017-03-21 다우 글로벌 테크놀로지스 엘엘씨 Flexible container with fitment and process for producing same
ES2731935A1 (en) * 2018-05-18 2019-11-19 Georg Menshen Gmbh & Co Kg Welding of an intake nozzle (Machine-translation by Google Translate, not legally binding)
ES2731698A1 (en) * 2018-05-18 2019-11-18 Georg Menshen Gmbh & Co Kg Socket with a welding area (Machine-translation by Google Translate, not legally binding)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297185A (en) * 1965-04-12 1967-01-10 Owens Illinois Glass Co Plastic bottle finish
US3355340A (en) * 1964-08-13 1967-11-28 Union Carbide Corp Method and apparatus for securing spouts to film
US3498868A (en) * 1966-02-24 1970-03-03 Schjeldahl Co G T Method of joining plastic
US4732299A (en) * 1986-02-10 1988-03-22 Hoyt Earl E Collapsible container
US4872935A (en) * 1988-11-28 1989-10-10 Forward Technology Industries, Inc. Apparatus and method for bonding a plastic container and spout
US5290105A (en) * 1990-12-28 1994-03-01 Safta S.P.A. Container made of flexible laminated sheet with insert for opening and reclosing
US6090029A (en) * 1996-11-26 2000-07-18 Custom Packaging Systems, Inc. Spout construction for bulk box liquid liner
US20020028318A1 (en) * 1996-09-13 2002-03-07 Clark Brian Hall Structural dimple panel
US6612466B1 (en) * 2000-08-21 2003-09-02 Illinois Tool Works Inc. Thin wall fitment for spouted pouch
US6860406B2 (en) * 2001-08-13 2005-03-01 Illinois Tool Works Inc. Flexible pouch fitment structure
US20070051746A1 (en) * 2005-09-08 2007-03-08 L'oreal Packaging and dispenser device comprising an endpiece, and a flexible pouch fastened to the endpiece
US20070110344A1 (en) * 2004-08-03 2007-05-17 Ppi Technologies, Inc. Flexible pouch with ergonomic shape and method of forming
US7232042B2 (en) * 2001-10-11 2007-06-19 Itsac N.V. Plastic spout
US20070211967A1 (en) * 2006-03-07 2007-09-13 Ppi Technologies, Inc. Flexible pouch for an alcoholic beverage and method of forming
US7344052B2 (en) * 2004-11-02 2008-03-18 Gas-O-Haul, Incorporated Apparatus for storing and dispensing liquids
US7357276B2 (en) * 1999-11-10 2008-04-15 Scholle Corporation Collapsible bag for dispensing liquids and method
US20090285510A1 (en) * 2008-05-13 2009-11-19 Ching-Sen Huang Structure of a packing container
US7850044B2 (en) * 2004-11-04 2010-12-14 Georg Menshen Gmbh & Co. Kg Welded in plastic spout part
US7981343B2 (en) * 2005-10-21 2011-07-19 Lisa Draexlmaier Gmbh Method and apparatus for welding plastic bodies
US20110290798A1 (en) * 2008-11-10 2011-12-01 Julie Corbett Thermoformed liquid-holding vessels

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251881A (en) * 1994-03-14 1995-10-03 Toyo Seikan Kaisha Ltd Bag with spout and aerosol vessel containing the bag
JPH10152162A (en) * 1996-11-20 1998-06-09 Dainippon Printing Co Ltd Pouring port assembly and packing member fitted with pouring port
GB9716009D0 (en) * 1997-07-29 1997-10-01 Ici Plc Container for aqueous thixotropic coating compositions and the like
JP3953160B2 (en) * 1997-10-28 2007-08-08 株式会社フジシールインターナショナル Container spout sealing method and container with spout
JP4048610B2 (en) * 1998-07-08 2008-02-20 東洋製罐株式会社 Spout
JP2006001623A (en) * 2004-06-21 2006-01-05 Toppan Printing Co Ltd Barrier bung and bag-like container with barrier bung
JP4883600B2 (en) * 2005-02-22 2012-02-22 日本クラウンコルク株式会社 Spout
JP2007021885A (en) * 2005-07-15 2007-02-01 Fuji Seal International Inc Container with spout and manufacturing method of the same
JP2007076696A (en) * 2005-09-14 2007-03-29 Plasto:Kk Spout, packaging bag with spout and packaging body with spout
JP4768550B2 (en) * 2006-09-04 2011-09-07 東洋製罐株式会社 Pouch with spout

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355340A (en) * 1964-08-13 1967-11-28 Union Carbide Corp Method and apparatus for securing spouts to film
US3297185A (en) * 1965-04-12 1967-01-10 Owens Illinois Glass Co Plastic bottle finish
US3498868A (en) * 1966-02-24 1970-03-03 Schjeldahl Co G T Method of joining plastic
US4732299A (en) * 1986-02-10 1988-03-22 Hoyt Earl E Collapsible container
US4872935A (en) * 1988-11-28 1989-10-10 Forward Technology Industries, Inc. Apparatus and method for bonding a plastic container and spout
US5290105A (en) * 1990-12-28 1994-03-01 Safta S.P.A. Container made of flexible laminated sheet with insert for opening and reclosing
US20020028318A1 (en) * 1996-09-13 2002-03-07 Clark Brian Hall Structural dimple panel
US6090029A (en) * 1996-11-26 2000-07-18 Custom Packaging Systems, Inc. Spout construction for bulk box liquid liner
US7357276B2 (en) * 1999-11-10 2008-04-15 Scholle Corporation Collapsible bag for dispensing liquids and method
US6612466B1 (en) * 2000-08-21 2003-09-02 Illinois Tool Works Inc. Thin wall fitment for spouted pouch
US6860406B2 (en) * 2001-08-13 2005-03-01 Illinois Tool Works Inc. Flexible pouch fitment structure
US7232042B2 (en) * 2001-10-11 2007-06-19 Itsac N.V. Plastic spout
US20070110344A1 (en) * 2004-08-03 2007-05-17 Ppi Technologies, Inc. Flexible pouch with ergonomic shape and method of forming
US7344052B2 (en) * 2004-11-02 2008-03-18 Gas-O-Haul, Incorporated Apparatus for storing and dispensing liquids
US7850044B2 (en) * 2004-11-04 2010-12-14 Georg Menshen Gmbh & Co. Kg Welded in plastic spout part
US20070051746A1 (en) * 2005-09-08 2007-03-08 L'oreal Packaging and dispenser device comprising an endpiece, and a flexible pouch fastened to the endpiece
US7981343B2 (en) * 2005-10-21 2011-07-19 Lisa Draexlmaier Gmbh Method and apparatus for welding plastic bodies
US20070211967A1 (en) * 2006-03-07 2007-09-13 Ppi Technologies, Inc. Flexible pouch for an alcoholic beverage and method of forming
US20090285510A1 (en) * 2008-05-13 2009-11-19 Ching-Sen Huang Structure of a packing container
US20110290798A1 (en) * 2008-11-10 2011-12-01 Julie Corbett Thermoformed liquid-holding vessels

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140110433A1 (en) * 2011-01-11 2014-04-24 Poppelmann Holding GmbH & Co.KG Spout and container having such a spout
US9132944B2 (en) * 2011-01-11 2015-09-15 Pöppelmann Holding GmbH & Co. KG Spout and container having such a spout
WO2013074953A1 (en) * 2011-11-16 2013-05-23 Meadwestvaco Calmar, Inc. Canoe fitments for pouches
US9481495B2 (en) * 2014-04-24 2016-11-01 Scholle Ipn Corporation Dispensing system
WO2016151519A1 (en) * 2015-03-25 2016-09-29 Ready To Feed Pty Ltd Discharge spout for a container and a container incorporating such discharge spout
DE102015215864A1 (en) 2015-08-20 2017-02-23 Robert Bosch Gmbh Outlet with a projecting flange
US10961034B2 (en) 2015-08-20 2021-03-30 Syntegon Pouch Systems Ag Outlet connector piece having a protruding flange
US10155615B2 (en) 2016-09-26 2018-12-18 Dow Global Technologies Llc Seal bar and process for using same
US10173821B2 (en) 2016-09-26 2019-01-08 Dow Global Technologies Llc Flexible fitment for flexible container

Also Published As

Publication number Publication date
JP2011509897A (en) 2011-03-31
EP2252523A2 (en) 2010-11-24
CA2712761A1 (en) 2009-07-30
WO2009094215A2 (en) 2009-07-30
WO2009094215A3 (en) 2010-01-14
EP2252523A4 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US20110062192A1 (en) Spout for Flexible Fluid Reservoirs
US20200140176A1 (en) Tabbed Seal Concepts
US9776769B2 (en) Steam release standing pouch and content-enclosing standing pouch
CN107207143B (en) It peels away envelope package body and peels away the Kaifeng structure of envelope package body
KR101969919B1 (en) Lamination peeling container
EP2892818B1 (en) Tabbed inner seal
KR20100015384A (en) Laminated container seal with removal tab bound by adhesive
US20090196537A1 (en) Pouch with spout
TWI629220B (en) Container
JP5931340B2 (en) Packaging container, packaging container manufacturing method and manufacturing apparatus
TW201527180A (en) Seal head and container sealed by using the same
EP1459996B1 (en) Fill-out container
KR101548843B1 (en) Flexible packaging bag
JP2019500285A (en) Rigid packaging with tensile characteristics
WO2014054760A1 (en) Pouch container
JPH02233378A (en) Manufacture of sealed container
JP4237906B2 (en) Tube container using laminated sheet and manufacturing method thereof
JPH11171249A (en) Easily opening sealed container and manufacture of container main body used for container
JP5869765B2 (en) Resin sheet and filled tofu container
JP2024507625A (en) Recyclable packaging manufactured by welding and its manufacturing method
AU2018288115A1 (en) Spout-equipped packaging bag and manufacturing method therefor, and spout-equipped packaging bag that contains contents
WO2005108228A1 (en) Pouring spout for container and container with pouring spout
JP4402489B2 (en) Easy-open sealant film and packaging material and container using the same
JP6666544B2 (en) Delamination container
KR102598312B1 (en) Manufacturing method of high pressure vessel for vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: CASCADE DESIGNS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRUBER, THOMAS, MR.;REEL/FRAME:025451/0258

Effective date: 20101027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION