US20110077736A1 - Breast implant system including bio-medical units - Google Patents

Breast implant system including bio-medical units Download PDF

Info

Publication number
US20110077736A1
US20110077736A1 US12/648,992 US64899209A US2011077736A1 US 20110077736 A1 US20110077736 A1 US 20110077736A1 US 64899209 A US64899209 A US 64899209A US 2011077736 A1 US2011077736 A1 US 2011077736A1
Authority
US
United States
Prior art keywords
bio
medical
module
function
medical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/648,992
Inventor
Ahmadreza Rofougaran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Priority to US12/648,992 priority Critical patent/US20110077736A1/en
Assigned to BROADCOM CORPORATION, A CALIFORNIA CORPORATION reassignment BROADCOM CORPORATION, A CALIFORNIA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROFOUGARAN, AHMADREZA REZA
Publication of US20110077736A1 publication Critical patent/US20110077736A1/en
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: BROADCOM CORPORATION
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROADCOM CORPORATION
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • G16H10/65ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records stored on portable record carriers, e.g. on smartcards, RFID tags or CD
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/13ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered from dispensers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • A61M2205/3523Communication with implanted devices, e.g. external control using telemetric means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • This invention relates generally to medical equipment and more particularly to wireless medical equipment.
  • MRI magnetic resonance imaging
  • RFID radio frequency identification
  • robotics etc.
  • RFID technology has been used for in vitro use to store patient information for easy access. While such in vitro applications have begun, the technical advancement in this area is in its infancy.
  • FIG. 1 is a diagram of an embodiment of a system in accordance with the present invention.
  • FIG. 2 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 3 is a diagram of an embodiment of an artificial body part including one or more bio-medical units in accordance with the present invention
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part in accordance with the present invention.
  • FIG. 5 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 6 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 7 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention.
  • FIG. 13 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 14 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 15 is a diagram of an example of a communication protocol within a system in accordance with the present invention.
  • FIG. 16 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 17 is a diagram of another example of a communication protocol within a system in accordance with the present invention.
  • FIG. 18 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 19 is a diagram of another embodiment of a system in accordance with the present invention.
  • FIG. 20 is a diagram of an embodiment of a network of bio-medical units in accordance with the present invention.
  • FIG. 21 is a logic diagram of an embodiment of a method for bio-medical unit communications in accordance with the present invention.
  • FIG. 22 is a diagram of an embodiment of a network of bio-medical units collecting image data in accordance with the present invention.
  • FIG. 23 is a diagram of an embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention.
  • FIG. 24 is a diagram of another embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention.
  • FIG. 25 is a diagram of an embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention.
  • FIG. 26 is a diagram of another embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention.
  • FIG. 27 is a diagram of an embodiment of a bio-medical unit collecting image data in accordance with the present invention.
  • FIG. 28 is a diagram of another embodiment of a network of bio-medical units communicating via light signaling in accordance with the present invention.
  • FIG. 29 is a diagram of an embodiment of a bio-medical unit collecting audio and/or ultrasound data in accordance with the present invention.
  • FIG. 30 is a diagram of another embodiment of a network of bio-medical units communicating via audio and/or ultrasound signaling in accordance with the present invention.
  • FIG. 31 is a diagram of an embodiment of a network of bio-medical units collecting ultrasound data in accordance with the present invention.
  • FIG. 32 is a diagram of an embodiment of a network of bio-medical units within a breast implant in accordance with the present invention.
  • FIG. 33 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 34 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 35 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 36 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 37 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 38 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention.
  • FIG. 39 is a diagram of an embodiment of a bio-medical unit determining relative distance using Doppler shifting in accordance with the present invention.
  • FIG. 40 is a diagram of an example of determining relative distance using Doppler shifting in accordance with the present invention.
  • FIG. 41 is a diagram of an example of determining vibrations using Doppler shifting and ultrasound in accordance with the present invention.
  • FIG. 42 is a diagram of an embodiment of a bio-medical unit including a controlled release module in accordance with the present invention.
  • FIG. 43 is a diagram of an embodiment of a controlled release module in accordance with the present invention.
  • FIG. 44 is a diagram of an embodiment of a system of bio-medical units for controlled release of a medication in accordance with the present invention.
  • FIG. 45 is a diagram of an embodiment of a bio-medical unit including sampling modules in accordance with the present invention.
  • FIG. 46 is a logic diagram of an embodiment of a method for MMW communications within a MRI sequence in accordance with the invention.
  • FIG. 47 is a logic diagram of an embodiment of a method for processing of MRI signals in accordance with the present invention.
  • FIG. 48 is a logic diagram of an embodiment of a method for communication utilizing MRI signals in accordance with the present invention.
  • FIG. 49 is a logic diagram of an embodiment of a method for coordination of bio-medical unit task execution in accordance with the present invention.
  • FIG. 1 is a diagram of an embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections.
  • Each of the bio-medical units 10 is a passive device (e.g., it does not include a power source (e.g., a battery)) and, as such, includes a power harvesting module.
  • the bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. Alternatively, or in addition to, each of the bio-medical units 10 may include a power source.
  • a transmitter emits 12 electromagnetic signals 16 that pass through the body and are received by a receiver 14 .
  • the transmitter 12 and receiver 14 may be part of a piece of medical diagnostic equipment (e.g., magnetic resonance imaging (MRI), X-ray, etc.) or independent components for stimulating and communicating with the network of bio-medical units in and/or on a body.
  • One or more of the bio-medical units 10 receives the transmitted electromagnetic signals 16 and generates a supply voltage therefrom. Examples of this will be described in greater detail with reference to FIGS. 8-12 .
  • the transmitter 12 communicates with one or more of the bio-medical units 10 .
  • the electromagnetic signals 16 may have a frequency in the range of a few MHz to 900 MHz and the communication with the bio-medical units 10 is modulated on the electromagnetic signals 16 at a much higher frequency (e.g., 5 GHz to 300 GHz).
  • the communication with the bio-medical units 10 may occur during gaps (e.g., per protocol of medical equipment or injected for communication) of transmitting the electromagnetic signals 16 .
  • the communication with the bio-medical units 10 occurs in a different frequency band and/or using a different transmission medium (e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.).
  • a different transmission medium e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.
  • the communication signals 18 may be instructions to collect data, to transmit collected data, to move the unit's position in the body, to perform a function, to administer a treatment, etc. If the received communication signals 18 require a response, the bio-medical unit 10 prepares an appropriate response and transmits it to the receiver 14 using a similar communication convention used by the transmitter 12 .
  • FIG. 2 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections.
  • Each of the bio-medical units 10 is a passive device and, as such, includes a power harvesting module.
  • the bio-medical units 10 may also include one or more of memory, a processing module, and functional modules.
  • the person is placed in an MRI machine (fixed or portable) that generates a magnetic field 26 through which the MRI transmitter 20 transmits MRI signals 28 to the MRI receiver 22 .
  • One or more of the bio-medical units 10 powers itself by harvesting energy from the magnetic field 26 or changes thereof as produced by gradient coils, from the magnetic fields of the MRI signals 28 , from the electrical fields of the MRI signals 28 , and/or from the electromagnetic aspects of the MRI signals 28 .
  • a unit 10 converts the harvested energy into a supply voltage that supplies other components of the unit (e.g., a communication module, a processing module, memory, a functional module, etc.).
  • a communication device 24 communicates data and/or control communications 30 with one or more of the bio-medical units 10 over one or more wireless links.
  • the communication device 24 may be a separate device from the MRI machine or integrated into the MRI machine.
  • the communication device 24 may be a cellular telephone, a computer with a wireless interface (e.g., a WLAN station and/or access point, Bluetooth, a proprietary protocol, etc.), etc.
  • a wireless link may be one or more frequencies in the ISM band, in the 60 GHz frequency band, the ultrasound frequency band, and/or other frequency bands that supports one or more communication protocols (e.g., data modulation schemes, beamforming, RF or MMW modulation, encoding, error correction, etc.).
  • the composition of the bio-medical units 10 includes non-ferromagnetic materials (e.g., paramagnetic or diamagnetic) and/or metal alloys that are minimally affected by an external magnetic field 26 .
  • the units harvest power from the MRI signals 28 and communicate using RF and/or MMW electromagnetic signals with negligible chance of encountering the projectile or missile effect of implants that include ferromagnetic materials.
  • FIG. 3 is a diagram of an embodiment of an artificial body part 32 including one or more bio-medical units 10 that may be surgically implanted into a body.
  • the artificial body part 32 may be a pace maker, a breast implant, a joint replacement, an artificial bone, splints, fastener devices (e.g., screws, plates, pins, sutures, etc.), artificial organ, etc.
  • the artificial body part 32 may be permanently embedded in the body or temporarily embedded into the body.
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part 32 that includes one or more bio-medical units 10 .
  • one bio-medical unit 10 may be used to detect infections, the body's acceptance of the artificial body part 32 , measure localized body temperature, monitor performance of the artificial body part 32 , and/or data gathering for other diagnostics.
  • Another bio-medical unit 10 may be used for deployment of treatment (e.g., disperse medication, apply electrical stimulus, apply RF radiation, apply laser stimulus, etc.).
  • Yet another bio-medical unit 10 may be used to adjust the position of the artificial body part 32 and/or a setting of the artificial body part 32 .
  • a bio-medical unit 10 may be used to mechanically adjust the tension of a splint, screws, etc.
  • a bio-medical unit 10 may be used to adjust an electrical setting of the artificial body part 32 .
  • FIG. 5 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 and one or more communication devices 24 coupled to a wide area network (WAN) communication device 34 (e.g., a cable modem, DSL modem, base station, access point, hot spot, etc.).
  • WAN wide area network
  • the WAN communication device 34 is coupled to a network 42 (e.g., cellular telephone network, internet, etc.), which has coupled to it a plurality of remote monitors 36 , a plurality of databases 40 , and a plurality of computers 38 .
  • a network 42 e.g., cellular telephone network, internet, etc.
  • one or more of the remote monitors 36 may receive images and/or other data 30 from one or more of the bio-medical units 10 via the communication device 24 , the WAN communication device 34 , and the network 42 . In this manner, a person(s) operating the remote monitors 36 may view images and/or the data 30 gathered by the bio-medical units 10 . This enables a specialist to be consulted without requiring the patient to travel to the specialist's office.
  • one or more of the computers 38 may communicate with the bio-medical units 10 via the communication device 24 , the WAN communication device 34 , and the network 42 .
  • the computer 36 may provide commands 30 to one or more of the bio-medical units 10 to gather data, to dispense a medication, to move to a new position in the body, to perform a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), etc.
  • the bio-medical units 10 may be remotely controlled via one or more of the computers 36 .
  • one or more of the bio-medical units 10 may read and/or write data from or to one or more of the databases 40 .
  • data e.g., a blood sample analysis
  • the communication device 24 and/or one of the computers 36 may control the writing of data to or the reading of data from the database(s) 40 .
  • the data may further include medical records, medical images, prescriptions, etc.
  • FIG. 6 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 .
  • the bio-medical units 10 can communicate with each other directly and/or communicate with the communication device 24 directly.
  • the communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound.
  • the units may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 7 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 .
  • one of the bio-medical units 44 functions as an access point for the other units.
  • the designated unit 44 routes communications between the units 10 and between one or more units 10 and the communication device 24 .
  • the communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound.
  • the units 10 may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit 10 that includes a power harvesting module 46 , a communication module 48 , a processing module 50 , memory 52 , and one or more functional modules 54 .
  • the processing module 50 may be a single processing device or a plurality of processing devices.
  • Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions.
  • the processing module 50 may have an associated memory 52 and/or memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of the processing module.
  • a memory device 52 may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
  • the processing module 50 includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network).
  • the processing module 50 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry
  • the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
  • the memory element stores, and the processing module executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in FIGS. 1-49 .
  • the power harvesting module 46 may generate one or more supply voltages 56 (Vdd) from one or more of MRI electromagnetic signals 16 , magnetic fields 26 , RF signals, MMW signals, and body motion.
  • the power harvesting module 46 may be implemented as disclosed in U.S. Pat. No. 7,595,732 to generate one or more supply voltages from an RF signal.
  • the power harvesting module 46 may be implemented as shown in one or more FIGS. 9-11 to generate one or more supply voltages 56 from an MRI signal 28 and/or magnetic field 26 .
  • the power harvesting module 46 may be implemented as shown in FIG. 12 to generate one or more supply voltage 56 from body motion.
  • the communication module 48 may include a receiver section and a transmitter section.
  • the transmitter section converts an outbound symbol stream into an outbound RF or MMW signal 60 that has a carrier frequency within a given frequency band (e.g., 900 MHz, 2.5 GHz, 5 GHz, 57-66 GHz, etc.). In an embodiment, this may be done by mixing the outbound symbol stream with a local oscillation to produce an up-converted signal.
  • One or more power amplifiers and/or power amplifier drivers amplifies the up-converted signal, which may be RF or MMW bandpass filtered, to produce the outbound RF or MMW signal 60 .
  • the transmitter section includes an oscillator that produces an oscillation.
  • the outbound symbol stream provides phase information (e.g., +/ ⁇ [phase shift] and/or ⁇ (t) [phase modulation]) that adjusts the phase of the oscillation to produce a phase adjusted RF or MMW signal, which is transmitted as the outbound RF signal 60 .
  • the outbound symbol stream includes amplitude information (e.g., A(t) [amplitude modulation]), which is used to adjust the amplitude of the phase adjusted RF or MMW signal to produce the outbound RF or MMW signal 60 .
  • the transmitter section includes an oscillator that produces an oscillation.
  • the outbound symbol provides frequency information (e.g., +/ ⁇ f [frequency shift] and/or f(t) [frequency modulation]) that adjusts the frequency of the oscillation to produce a frequency adjusted RF or MMW signal, which is transmitted as the outbound RF or MMW signal 60 .
  • the outbound symbol stream includes amplitude information, which is used to adjust the amplitude of the frequency adjusted RF or MMW signal to produce the outbound RF or MMW signal 60 .
  • the transmitter section includes an oscillator that produces an oscillation.
  • the outbound symbol provides amplitude information (e.g., +/ ⁇ A [amplitude shift] and/or A(t) [amplitude modulation) that adjusts the amplitude of the oscillation to produce the outbound RF or MMW signal 60 .
  • the receiver section amplifies an inbound RF or MMW signal 60 to produce an amplified inbound RF or MMW signal.
  • the receiver section may then mix in-phase (I) and quadrature (Q) components of the amplified inbound RF or MMW signal with in-phase and quadrature components of a local oscillation to produce a mixed I signal and a mixed Q signal.
  • the mixed I and Q signals are combined to produce an inbound symbol stream.
  • the inbound symbol may include phase information (e.g., +/ ⁇ [phase shift] and/or ⁇ (t) [phase modulation]) and/or frequency information (e.g., +/ ⁇ f [frequency shift] and/or f(t) [frequency modulation]).
  • the inbound RF or MMW signal includes amplitude information (e.g., +/ ⁇ A [amplitude shift] and/or A(t) [amplitude modulation]).
  • the receiver section includes an amplitude detector such as an envelope detector, a low pass filter, etc.
  • the processing module 50 generates the outbound symbol stream from outbound data and converts the inbound symbol stream into inbound data.
  • the processing module 50 converts the inbound symbol stream into inbound data (e.g., voice, text, audio, video, graphics, etc.) in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).
  • Such a conversion may include one or more of: digital intermediate frequency to baseband conversion, time to frequency domain conversion, space-time-block decoding, space-frequency-block decoding, demodulation, frequency spread decoding, frequency hopping decoding, beamforming decoding, constellation demapping, deinterleaving, decoding, depuncturing, and/or descrambling.
  • the processing module 50 converts outbound data (e.g., voice, text, audio, video, graphics, etc.) into outbound symbol stream in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.).
  • wireless communication standards e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.
  • Such a conversion includes one or more of: scrambling, puncturing, encoding, interleaving, constellation mapping, modulation, frequency spreading, frequency hopping, beamforming, space-time-block encoding, space-frequency-block encoding, frequency to time domain conversion, and/or digital baseband to intermediate frequency conversion.
  • Each of the one or more functional modules 54 provides a function to support treatment, data gathering, motion, repairs, and/or diagnostics.
  • the functional modules 54 may be implemented using nanotechnology and/or microelectronic mechanical systems (MEMS) technology.
  • MEMS microelectronic mechanical systems
  • FIGS. 13-49 Various examples of functional modules 54 are illustrated in one or more of FIGS. 13-49 .
  • the bio-medical unit 10 may be encapsulated by an encapsulate 58 that is non-toxic to the body.
  • the encapsulate 58 may be a silicon based product, a non-ferromagnetic metal alloy (e.g., stainless steel), etc.
  • the encapsulate 58 may include a spherical shape and have a ferromagnetic liner that shields the unit from a magnetic field and to offset the forces of the magnetic field.
  • the bio-medical unit 10 may be implemented on a single die that has an area of a few millimeters or less.
  • the die may be fabricated in accordance with CMOS technology, Gallium-Arsenide technology, and/or any other integrated circuit die fabrication process.
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module 46 that includes an array of on-chip air core inductors 64 , a rectifying circuit 66 , capacitors, and a regulation circuit 68 .
  • the inductors 64 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts.
  • the air core inductors 64 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28 .
  • the air core inductors 64 may generate a voltage from the magnetic field 26 and changes thereof produced by the gradient coils.
  • the rectifying circuit 66 rectifies the AC voltage produced by the inductors to produce a first DC voltage.
  • the regulation circuit generates one or more desired supply voltages 56 from the first DC voltage.
  • the inductors 64 may be implemented on one more metal layers of the die and include one or more turns per layer. Note that trace thickness, trace length, and other physical properties affect the resulting inductance.
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of on-chip air core inductors 70 , a plurality of switching units (S), a rectifying circuit 66 , a capacitor, and a switch controller 72 .
  • the inductors 70 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts.
  • the air core inductors 70 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28 .
  • the switching module 72 engages the switches via control signals 74 to couple the inductors 70 in series and/or parallel to generate a desired AC voltage.
  • the rectifier circuit 66 and the capacitor(s) convert the desired AC voltage into the one or more supply voltages 56 .
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of Hall effect devices 76 , a power combining module 78 , and a capacitor(s).
  • the Hall effect devices 76 generate a voltage based on the constant magnetic field (H) and/or a varying magnetic field.
  • the power combining module 78 e.g., a wire, a switch network, a transistor network, a diode network, etc.
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of piezoelectric devices 82 , a power combining module 78 , and a capacitor(s).
  • the piezoelectric devices 82 generate a voltage based on body movement, ultrasound signals, movement of body fluids, etc.
  • the power combining module 78 e.g., a wire, a switch network, a transistor network, a diode network, etc.
  • the piezoelectric devices 82 may include one or more of a piezoelectric motor, a piezoelectric actuator, a piezoelectric sensor, and/or a piezoelectric high voltage device.
  • the various embodiments of the power harvesting module 46 may be combined to generate more power, more supply voltages, etc.
  • the embodiment of FIG. 9 may be combined with one or more of the embodiments of FIGS. 11 and 12 .
  • FIG. 13 is a schematic block diagram of another embodiment of a bio-medical unit 10 that includes a power harvesting module 46 , a communication module 48 , a processing module 50 , memory 52 , and may include one or more functional modules 54 and/or a Hall effect communication module 116 .
  • the communication module 48 may include one or more of an ultrasound transceiver 118 , an electromagnetic transceiver 122 , an RF and/or MMW transceiver 120 , and a light source (LED) transceiver 124 . Note that examples of the various types of communication modules 48 will be described in greater detail with reference to one or more of FIGS. 14-49 .
  • the one or more functional modules 54 may perform a repair function, an imaging function, and/or a leakage detection function, which may utilize one or more of a motion propulsion module 96 , a camera module 98 , a sampling robotics module 100 , a treatment robotics module 102 , an accelerometer module 104 , a flow meter module 106 , a transducer module 108 , a gyroscope module 110 , a high voltage generator module 112 , a control release robotics module 114 , and/or other functional modules described with reference to one or more other figures.
  • the functional modules 54 may be implemented using MEMS technology and/or nanotechnology.
  • the camera module 98 may be implemented as a digital image sensor in MEMS technology. Example of these various modules will be described in greater detail with reference to one or more of FIGS. 14-49 .
  • the Hall effect communication module 116 utilizes variations in the magnetic field and/or electrical field to produce a plus or minus voltage, which can be encoded to convey information.
  • the charge applied to one or more Hall effect devices 76 may be varied to produce the voltage change.
  • an MRI transmitter 20 and/or gradient unit may modulate a signal on the magnetic field 26 it generates to produce variations in the magnetic field 26 .
  • FIG. 14 is a diagram of another embodiment of a system that includes one or more bio-medical units 10 , a transmitter unit 126 , and a receiver unit 128 .
  • Each of the bio-medical units 10 includes a power harvesting module 46 , a MMW transceiver 138 , a processing module 50 , and memory 52 .
  • the transmitter unit 126 includes a MRI transmitter 130 and a MMW transmitter 132 .
  • the receiver unit 128 includes a MRI receiver 134 and a MMW receiver 136 . Note that the MMW transmitter 132 and MMW receiver 136 may be in the same unit (e.g., in the transmitter unit, in the receiver unit, or housed in a separate device).
  • the bio-medical unit 10 recovers power from the electromagnetic (EM) signals 146 transmitted by the MRI transmitter 130 and communicates via MMW signals 148 - 150 with the MMW transmitter 132 and MMW receiver 136 .
  • the MRI transmitter 130 may be part of a portable MRI device, may be part of a full sized MRI machine, and/or part of a separate device for generating EM signals 146 for powering the bio-medical unit 10 .
  • FIG. 15 is a diagram of an example of a communication protocol within the system of FIG. 14 .
  • the MRI transmitter 20 transmits RF signals 152 , which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths.
  • the power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10 .
  • a constant magnetic field and various gradient magnetic fields 154 - 164 are created (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz).
  • the power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154 - 164 to create power for the bio-medical unit 10 .
  • the bio-medical unit 10 may communicate 168 with the MMW transmitter 132 and/or MMW receiver 136 .
  • the bio-medical unit 10 alternates from generating power to MMW communication in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 16 is a diagram of another embodiment of a system includes one or more bio-medical units 10 , a transmitter unit 126 , and a receiver unit 128 .
  • Each of the bio-medical units 10 includes a power harvesting module 46 , an EM transceiver 174 , a processing module 50 , and memory 52 .
  • the transmitter unit 126 includes a MRI transmitter 130 and electromagnetic (EM) modulator 170 .
  • the receiver unit 128 includes a MRI receiver 134 and an EM demodulator 172 .
  • the transmitter unit 126 and receiver unit 128 may be part of a portable MRI device, may be part of a full sized MRI machine, or part of a separate device for generating EM signals for powering the bio-medical unit 10 .
  • the MRI transmitter 130 generates an electromagnetic signal that is received by the EM modulator 170 .
  • the EM modulator 170 modulates a communication signal on the EM signal to produce an inbound modulated EM signal 176 .
  • the EM modulator 170 may modulate (e.g., amplitude modulation, frequency modulation, amplitude shift keying, frequency shift keying, etc.) the magnetic field and/or electric field of the EM signal.
  • the EM modulator 170 may modulate the magnetic fields produced by the gradient coils to produce the inbound modulated EM signals 176 .
  • the bio-medical unit 10 recovers power from the modulated electromagnetic (EM) signals.
  • the EM transceiver 174 demodulates the modulated EM signals 178 to recover the communication signal.
  • the EM transceiver 174 modulates an outbound communication signal to produce outbound modulated EM signals 180 .
  • the EM transceiver 174 is generating an EM signal that, in air, is modulated on the EM signal transmitted by the transmitter unit 126 .
  • the communication in this system is half duplex such that the modulation of the inbound and outbound communication signals is at the same frequency.
  • the modulation of the inbound and outbound communication signals are at different frequencies to enable full duplex communication.
  • FIG. 17 is a diagram of another example of a communication protocol within the system of FIG. 19 .
  • the MRI transmitter 20 transmits RF signals 152 , which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths.
  • the power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10 .
  • a constant magnetic field and various gradient magnetic fields are created 154-164 (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz).
  • the power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154 - 164 to create power for the bio-medical unit 10 .
  • the bio-medical unit 10 may communicate via the modulated EM signals 182 .
  • the bio-medical unit 10 generates power and communicates in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 18 is a diagram of another embodiment of a system that includes one or more bio-medical units 10 , the patient's cell phone 200 , a WAN communication device 34 , a service provider's computer 186 , a network 42 , one or more databases 40 , and a server 188 .
  • the bio-medical unit 10 includes a power harvesting module 46 , a processing module 50 , memory 52 , and a MMW transceiver 138 .
  • the memory 52 is storing URL data for the patient 190 .
  • the bio-medical unit 10 may be implanted in the patient, on the patient's body, or on the patient's person (e.g., in a medical tag, a key chain, etc.).
  • the URL data 190 includes one or more URLs 192 that identify locations of the patient's medical records.
  • one URL may be for the patient's prescription records, another may be for hospitalizations, another for general office visits, etc.
  • the bio-medical unit 10 is an index to easily access the patient's medical history.
  • the patient's cell phone retrieves 200 the URL(s) 192 from the bio-medical unit 10 .
  • the cell phone 200 generates a request to access the patient's information, where the request includes the URL(s) 192 , the service provider's ID, the patient's ID, and a data request.
  • the request is provided, via the WAN device 34 and the network 42 , to the server 188 .
  • the server 188 processes 198 the request. If the service provider is authenticated and the request is valid, the server issues a data retrieval message to the one or more databases 40 identified by the URL(s) 192 .
  • the addressed database(s) 40 retrieves the data and provides it via the network 42 and the WAN device 34 to the service provider's computer 186 .
  • FIG. 19 is a diagram of another embodiment of a system that includes one or more bio-medical units 10 , the patient's cell phone 200 , a WAN communication device 34 , a service provider's computer 186 , a network 42 , one or more databases 40 , and a server 188 .
  • the bio-medical unit 10 includes a power harvesting module 46 , a processing module 50 , memory 52 , and a MMW transceiver 138 .
  • the memory 52 is storing URL data for the patient.
  • the bio-medical unit 10 may be implanted in the patient, on the patient's body, or on the patient's person (e.g., in a medical tag, a key chain, etc.).
  • the URL data includes one or more URLs that identify locations of the patient's medical records.
  • one URL may be for the patient's prescription records, another may be for hospitalizations, another for general office visits, etc.
  • the bio-medical unit is an index to easily access the patient's medical history.
  • the server 188 determines when an update is needed 212 .
  • the server 188 When an update is needed, the server 188 generates an update message that includes the identity of the patient's cell phone 200 , the updated URL data 208 , and the identity of the bio-medical unit 10 .
  • the server 188 provides the update message to the patient's cell phone 200 via the network 42 and a base station 202 .
  • the patient's cell phone 200 processes the update message and, when validated, provides the updated URL data 208 to the bio-medical unit 10 for storage in memory 52 as stored updated patient URL(s) 206 .
  • FIG. 20 is a schematic block diagram of an embodiment of networked bio-medical units 10 that communicate with each other, perform sensing functions to produce sensed data 218 - 232 , process the sensed data to produce processed data, and transmit the processed data 216 .
  • the bio-medical units 10 may be positioned in a body part to sense data across the body part and to transmit data to an external communication device. The transmitted data may be further processed or aggregated from sensed data.
  • the bio-medical units 10 may monitor various types of biological functions over a short term or a long term to produce the sensed data 218 - 232 .
  • the sensed data 218 - 232 may include blood flow rate, blood pressure, temperature, air flow, blood oxygen level, density, white cell count, red cell count, position information, etc.
  • the bio-medical unit 10 establishes communications with one or more other bio-medical units 10 to facilitate the communication of sensed data 218 - 232 and processed data 216 .
  • the communication may include EM signals, MMW signals, optical signals, sound signals, and/or RF signals.
  • the bio-medical unit 10 may determine position information based on the sensed data 218 - 232 and include the position information in the communication.
  • the bio-medical unit 10 may also determine a mode of operation based on one or more of a command, a list, a predetermination, sensed data, and/or processed data. For example, a bio-medical unit 10 at the center of the body part may be in a mode to sense temperature and a bio-medical unit 10 at the outside edge of the body part may sense blood flow.
  • the bio-medical unit 10 may receive processed data 218 - 232 from another bio-medical unit and re-send the same processed data 218 - 232 to yet another bio-medical unit 10 .
  • the bio-medical unit 10 may produce processed data based on sensed data 218 - 232 from the bio-medical unit 10 and/or received processed data from another bio-medical unit 10 .
  • FIG. 21 is a flowchart illustrating the processing of networked bio-medical unit data where the bio-medical unit determines the sense mode based on one or more of a predetermination, a stored mode indicator in memory, a command, and/or a dynamic sensed data condition.
  • the method begins at step 234 where the bio-medical unit 10 determines the mode.
  • the method branches to step 240 when the bio-medical unit 10 determines that the mode is process and sense.
  • the method continues to step 236 when the bio-medical unit 10 determines that the mode is sense only.
  • the bio-medical unit 10 gathers data from one or more of the functional modules 54 to produce sensed data.
  • the bio-medical unit 10 may transmit the sensed data 238 to another bio-medical unit 10 and/or an external communication device in accordance with the sense mode.
  • the bio-medical unit 10 may transmit the sensed data at a specific time, to a specific bio-medical unit 10 , to a specific external communication device, after a certain time period, when the data is sensed, and/or when the sensed data compares favorably to a threshold (e.g., a temperature trip point).
  • a threshold e.g., a temperature trip point
  • step 240 the bio-medical unit 10 determines whether it has received data from another unit 10 . If not, the method continues to step 250 , where the bio-medical unit 10 transmits its sensed data to another bio-medical unit 10 and/or an external communication device in accordance with the sense mode.
  • the method continues at step 242 , where the bio-medical unit 10 determines a data function to perform based on one or more of the content of the received data, the sensed data, a command, and/or a predetermination.
  • the data function may one or more of initialization, comparing, compiling, and/or performing a data analysis algorithm.
  • the method continues at step 244 , where the bio-medical unit 10 gathers data from the functional modules 54 , and/or the received data from one or more other bio-medical units 10 .
  • the method continues at step 246 , where the bio-medical unit 10 processes the data in accordance with a function to produce processed data.
  • the function may also include the functional assignment of the bio-medical unit 10 as determined by a predetermination, a command, sensed data, and/or processed data (e.g., measure blood pressure from the plurality of bio-medical units and summarize the high, low, and average).
  • the bio-medical unit 10 transmits the processed data to another bio-medical unit 10 and/or to an external communication device in accordance with the sense mode.
  • the bio-medical unit 10 may transmit the sensed data at a specific time, to a specific bio-medical unit 10 , to a specific external communication device, after a certain time period, when the data is sensed, and/or when the sensed data compares favorably to a threshold (e.g., a temperature trip point).
  • a threshold e.g., a temperature trip point
  • the communication protocol may be the same or different between bio-medical units 10 and/or between the bio-medical unit 10 and the external communication device.
  • FIG. 22 is a schematic block diagram of an embodiment of a plurality of imaging bio-medical units 10 in a body part 214 where image data A-H 218 - 232 is provided by the plurality of imaging bio-medical units 10 that may pertain to a mass 216 within the body part 214 .
  • the bio-medical units 10 may determine an operational mode based on a pre-determination (e.g., pre-programmed) and/or system level coordination commands received from an external communication device.
  • the operational mode may specify how to gather image data (e.g., MMW radar sweep, ultrasound, light) and where to gather it (e.g., pointing at a specific location within the body).
  • the bio-medical units 10 perform the MMW radar sweep of a mass 216 in a body part in a coordinated fashion such that each bio-medical unit 10 performs the MMW radar sweep sequentially.
  • one bio-medical unit 10 transmits a radar sweep while the other bio-medical units 10 generate image data based on received reflections.
  • FIG. 23 is a schematic block diagram of an embodiment of plurality bio-medical units 10 that is encircling cancer cells.
  • the bio-medical units 10 disperse a drug therapy 236 (e.g., chemotherapy cancer drugs) and substantially contain the drug therapy 236 to a localized area 234 in a body part 214 (e.g., around the cancer cells) via electromagnetic energy.
  • a drug therapy 236 e.g., chemotherapy cancer drugs
  • the drug 236 may be induced with a magnetic charge that is opposite to the electromagnetic energy of the bio-medical units such that is substantially stays in a desired location.
  • the drug 236 may be ionized and/or include an inert catalyst.
  • One or more of the bio-medical units 10 may determine to deliver the drug therapy 236 and/or one or more of the bio-medical units 10 may determine to contain the drug therapy 236 to the localized area 234 .
  • the determinations are based on one or more of a predetermination (e.g., in memory), a command (e.g., via communication from an external communication device), a time schedule, and/or sensed data (e.g., the proximity of the localized area, cancer cell growth, white blood cell count, etc.).
  • FIG. 24 is a schematic block diagram of an embodiment of a plurality of bio-medical units 10 containing an ionized drug therapy 236 around a cancer cell mass 234 .
  • the bio-medical unit communication module 48 may utilize beam forming in conjunction with one or more other bio-medical unit communication modules 48 such that the resulting composite electric field E substantially contains the ionized drug therapy 236 .
  • the communication module 48 may communicate with other communication modules 48 to coordinate the beam forming.
  • the communication modules 48 may receive a command from the external communication device to coordinate the beamforming.
  • the bio-medical unit 10 may vary the E field generation based on one or more of sensed data (e.g., the drug therapy is moving), a command, and/or available power.
  • FIG. 25 is a schematic block diagram of an embodiment of a parent bio-medical unit (on the left) communicating with an external unit to coordinates the functions of one or more children bio-medical units 10 (on the right).
  • the parent unit includes a communication module 48 for external communications, a communication module 48 for communication with the children units, the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the parent unit may be implemented one or more chips and may in the body or one the body.
  • Each of the child units includes a communication module 48 for communication with the parent unit and/or other children units, a MEMS robotics 244 , and the power harvesting module 46 .
  • the MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator.
  • the communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the child units in accordance with external communications commands.
  • the patent bio-medical unit receives a communication from the external source, where the communication indicates a particular function the child units are to perform.
  • the parent unit processes the communication and relays relative portions to the child units in accordance with a control mode.
  • Each of the child units receives their respective commands and performs the corresponding functions to achieve the desired function.
  • FIG. 26 is a schematic block diagram of another embodiment of a plurality of task coordinated bio-medical units 10 including a parent bio-medical unit 10 (on the left) and one or more children bio-medical units 10 (on the right).
  • the parent unit may be implemented one or more chips and may in the body or one the body.
  • the parent unit may harvest power in conjunction with the power booster 84 .
  • the parent unit includes the communication module 48 for external communications, the communication module 48 for communication with the children units, the processing module 50 , the memory 52 , a MEMS electrostatic motor 248 , and the power harvesting module 46 .
  • the child unit includes the communication module 48 for communication with the parent unit and/or other children units, a MEMS electrostatic motor 248 , the MEMS robotics 244 , and the power harvesting module 46 . Note that the child unit has fewer components as compared to the parent unit and may be smaller facilitating more applications where smaller bio-medical units 10 enhances their effectiveness.
  • the MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator.
  • the MEMS electrostatic motor 248 may provide mechanical power for the MEMS robotics 244 and/or may provide movement propulsion for the child unit such that the child unit may be positioned to optimize effectiveness.
  • the child units may operate in unison to affect a common task. For example, the plurality of child units may operate in unison to saw through a tissue area.
  • the child unit communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the children units in accordance with external communications commands.
  • the child unit may determine a control mode and operate in accordance with the control mode.
  • the child unit determines the control mode based on one or more of a command from a parent bio-medical unit, external communications, a preprogrammed list, and/or in response to sensor data.
  • the control mode may include autonomous, parent (bio-medical unit), server, and/or peer as previously discussed.
  • FIG. 27 is a schematic block diagram of an embodiment of a bio-medical unit 10 based imaging system that includes the bio-medical unit 10 , the communication device 24 , a database 254 , and an in vivo image unit 252 .
  • the bio-medical unit 10 may perform scans and provide the in vivo image unit 252 with processed image data for diagnostic visualization.
  • the bio-medical unit 10 includes a MEMS image sensor 256 , the communication module 48 for external communications with the communication device, the processing module 50 , the memory 52 , the MEMS electrostatic motor 248 , and the power harvesting module 46 .
  • the bio-medical unit 10 and communication device 24 communicate directly.
  • the bio-medical unit 10 and communication device 24 communicate through one or more intermediate networks (e.g., wireline, wireless, cellular, local area wireless, Bluetooth, etc.).
  • the MEMS image sensor 256 may include one or more sensors scan types for optical signals, MMW signals, RF signals, EM signals, and/or sound signals.
  • the in vivo unit 252 may send a command to the bio-medical unit 10 via the communication device 24 to request scan data.
  • the request may include the scan type.
  • the in vivo unit 252 may receive the processed image data from the bio-medical unit 10 , compare it to data in the database 254 , process the data further, and provide image visualization.
  • FIG. 28 is a schematic block diagram of an embodiment of a communication and diagnostic bio-medical unit 10 pair where the pair utilize an optical communication medium between them to analyze material between them (e.g., tissue, blood flow, air flow, etc,) and to carry messages (e.g., status, commands, records, test results, scan data, processed scan data, etc.).
  • material e.g., tissue, blood flow, air flow, etc.
  • messages e.g., status, commands, records, test results, scan data, processed scan data, etc.
  • the bio-medical unit 10 includes a MEMS light source 256 , a MEMS image sensor 258 , the communication module 48 (e.g., for external communications with the communication device 24 ), the processing module 50 , the memory 52 , the MEMS electrostatic motor 248 (e.g., for propulsion and/or tasks), and the power harvesting module 46 .
  • the bio-medical unit 10 may also include the MEMS light source 256 to facilitate the performance of light source tasks.
  • the MEMS image sensor 258 may be a camera, a light receiving diode, or infrared receiver.
  • the MEMS light source 256 may emit visible light, infrared light, ultraviolet light, and may be capable of varying or sweeping the frequency across a wide band.
  • the processing module 50 may utilize the MEMS image sensor 258 and the MEMS light source 256 to communicate with the other bio-medical unit 10 using pulse code modulation, pulse position modulation, or any other modulation scheme suitable for light communications.
  • the processing module 50 may multiplex messages utilizing frequency division, wavelength division, and/or time division multiplexing.
  • the bio-medical optical communications may facilitate communication with one or more other bio-medical units 10 .
  • a star architecture is utilized where one bio-medical unit 10 at the center of the star communicates to a plurality of bio-medical units 10 around the center where each of the plurality of bio-medical units 10 only communicate with the bio-medical unit 10 at the center of the star.
  • a mesh architecture is utilized where each bio-medical unit 10 communicates as many of the plurality of other bio-medical units 10 as possible and where each of the plurality of bio-medical units 10 may relay messages from one unit to another unit through the mesh.
  • the processing module 50 may utilize the MEMS image sensor 258 and the MEMS light source 256 of one bio-medical unit 10 to reflect light signals off of matter in the body to determine the composition and position of the matter.
  • the processing module 50 may utilize the MEMS light source 256 of one bio-medical unit 10 and the MEMS image sensor 258 of a second bio-medical unit 10 to pass light signals through matter in the body to determine the composition and position of the matter.
  • the processing module 50 may pulse the light on and off, sweep the light frequency, vary the amplitude and may use other perturbations to determine the matter composition and location.
  • FIG. 29 is a schematic block diagram of an embodiment of a bio-medical unit 10 based sounding system that includes the bio-medical unit 10 , the communication device 24 , the database 254 , and a speaker 260 .
  • the bio-medical unit 10 may perform scans and provide the speaker 260 with processed sounding data for diagnostic purposes via the communication device 24 .
  • the bio-medical unit 10 includes a MEMS microphone 262 , the communication module 48 for external communications with the communication device 24 , the processing module 50 , the memory 52 , the MEMS electrostatic motor 248 , and the power harvesting module 46 .
  • the bio-medical unit 10 and communication device 24 communicate directly.
  • the bio-medical unit 10 and communication device 24 communicate through one or more intermediate networks (e.g., wireline, wireless, cellular, local area wireless, Bluetooth, etc.)
  • the MEMS microphone 262 may include one or more sensors to detect audible sound signals, sub-sonic sound signals, and/or ultrasonic sound signals.
  • the processing module 50 may produce the processed sounding data based in part on the received sound signals and in part on data in the database 254 .
  • the processing module 50 may retrieve data via the communication module 48 and communication device 24 link from the database 254 to assist in the processing of the signals (e.g., pattern matching, filter recommendations, sound field types).
  • the processing module 50 may process the signals to detect objects, masses, air flow, liquid flow, tissue, distances, etc.
  • the processing module 50 may provide the processed sounding data to the speaker 260 for audible interpretation.
  • the bio-medical unit 10 assists an ultrasound imaging system by relaying ultrasonic sounds from the MEMS microphone 262 to the ultrasound imaging system instead of to the speaker 260 .
  • FIG. 30 is a schematic block diagram of another embodiment of a bio-medical unit 10 communication and diagnostic pair where the pair utilize an audible communication medium between them to analyze material between them (e.g., tissue, blood flow, air flow, etc,) and to carry messages (e.g., status, commands, records, test results, scan data, processed scan data, etc.).
  • the bio-medical unit 10 includes the MEMS microphone 262 , a MEMS speaker 264 , the communication module 48 (e.g., for external communications with the communication device), the processing module 50 , the memory 52 , the MEMS electrostatic motor 248 (e.g., for propulsion and/or tasks), and the power harvesting module 46 .
  • the bio-medical unit 10 may also include the MEMS speaker 264 to facilitate performance of sound source tasks.
  • the MEMS microphone 262 and MEMS speaker 264 may utilize audible sound signals, sub-sonic sound signals, and/or ultrasonic sound signals and may be capable of varying or sweeping sound frequencies across a wide band.
  • the processing module 50 may utilize the MEMS microphone 262 and MEMS speaker 264 to communicate with the other bio-medical unit 10 using pulse code modulation, pulse position modulation, amplitude modulation, frequency modulation, or any other modulation scheme suitable for sound communications.
  • the processing module 50 may multiplex messages utilizing frequency division and/or time division multiplexing.
  • the bio-medical sound based communications may facilitate communication with one or more other bio-medical units 10 .
  • a star architecture is utilized where one bio-medical unit 10 at the center of the star communicates to a plurality of bio-medical units 10 around the center where each of the plurality of bio-medical units 10 only communicate with the bio-medical unit 10 at the center of the star.
  • a mesh architecture is utilized where each bio-medical unit 10 communicates as many of the plurality of other bio-medical units 10 as possible and where each of the plurality of bio-medical units 10 may relay messages from one unit to another unit through the mesh.
  • the processing module 50 may utilize the MEMS microphone 262 and MEMS speaker 264 of one bio-medical unit 10 to reflect sound signals off of matter in the body to determine the composition and position of the matter. In another embodiment, the processing module 50 may utilize the MEMS microphone 262 of one bio-medical unit 10 and the MEMS speaker 264 of a second bio-medical unit 10 to pass sound signals through matter in the body to determine the composition and position of the matter. The processing module 50 may pulse the sound on and off, sweep the sound frequency, vary the amplitude and may use other perturbations to determine the matter composition and location.
  • FIG. 31 is a schematic block diagram of an embodiment of a sound based imaging system including a plurality of bio-medical units 10 utilizing short range ultrasound signals in the 2-18 MHz range to facilitate imaging a body object 268 .
  • the bio-medical unit 10 includes at least one ultrasound transducer 266 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the ultrasound transducer 266 may be implemented utilizing MEMS technology.
  • the processing module 50 controls the ultrasonic transducer 266 to produce ultrasonic signals and receive resulting reflections from the body object 268 .
  • the processing module 50 may coordinate with the processing module 50 of at least one other bio-medical unit 10 to produce ultrasonic signal beams (e.g., constructive simultaneous phased transmissions directed in one direction) and receive resulting reflections from the body object.
  • the processing module 50 may perform the coordination and/or the plurality of processing modules 50 may perform the coordination.
  • the plurality of processing modules 50 receives coordination information via the communication module 48 from at least one other bio-medical unit 10 .
  • the plurality of processing modules 50 receives coordination information via the communication module 48 from an external communication device.
  • the processing module produces processed ultrasonic signals based on the received ultrasonic reflections from the body object 268 .
  • the processed ultrasonic signals may represent a sonogram of the body part.
  • the processing module 50 may send the processed ultrasonic signals to the external communication device and/or to one or more of the plurality of bio-medical units 10 .
  • FIG. 32 is a schematic block diagram of an embodiment of a breast implant system 308 that may be implanted within breast tissue 306 and may communicate with a communication device 24 .
  • the breast implant system 308 includes a shell 311 (e.g., silicon), a viscous material 313 (e.g., saline and/or silicon), and a plurality of bio-medical units 310 - 316 .
  • the bio-medical units may include one or more image sensing bio-medical units 310 , one or more repair tool bio-medical units 312 , one or more leakage detection bio-medical units 314 , and/or one or more repair material bio-medical units 316 .
  • Each of the bio-medical units 310 - 316 includes a wireless power harvesting module, a functional module, and a wireless communication module.
  • the wireless power harvesting module generates a supply voltage from a wireless source (e.g., MRI signals, RF signals, body motion, ultrasound signals, etc.) as previously discussed.
  • the wireless communication module facilitates wireless communications between the functional module and the communication device 24 in a manner as previously discussed. For example, the communication may involve gathering of data by the unit, transmitting data by the unit, performing a command from the communication device 24 , etc.
  • the functional module of a bio-medical unit 310 - 316 performs a function when activated and powered by the supply voltage.
  • the function may be one or more of a repair function (e.g., tool and/or repair material), an imaging function, and a leakage detection function.
  • the repair function may be one or more of a cutting function (e.g., laser, knife, scissors, etc.), a grasping function (e.g., pliers, clamp, etc.) and a patching function. (e.g., stapler, sewing, canister for holding a repair material of silicon, saline, and/or other patching material, etc.).
  • the leakage detection function may include one or more of a pressure detection function and a position detection function.
  • the imaging function may include one or more of a radio frequency radar imaging function, an ultrasound imaging function, a magnetic resonance imaging function, a digital image sensor function, a millimeter wave radar imaging function, and a light imaging function.
  • bio-medical units 310 - 316 may each be affixed to the shell 311 and/or to the viscous material 313 .
  • at least some of bio-medical units 310 - 316 are fixed in a stationary position in the shell.
  • some of the units 310 - 316 may be embedded in the shell during the manufacture of the shell 311 .
  • some of the units 310 - 316 may be affixed to the shell during the breast augmentation surgery.
  • some of the units may include a housing that enables the bio-medical unit to be suspended in a desired position within the viscous material.
  • the housing may of a material, include a magnetic polarization, and/or be ionized to enable its suspension within the viscous material 313 .
  • one or more of the bio-medical unit 310 - 316 further includes a motion module that enables the bio-medical unit to be positioned within the viscous material 313 based on positioning wireless communications received by the wireless communication module. Examples of motion modules have been discussed in one or more of the preceding figures.
  • the breast implant system 308 communicates with the communication device 24 to perform a mammogram function, to detect damage to the shell 311 that may cause a leak, to detect a leak within the shell, to repair the leak, etc.
  • the communication device 24 may instruct the plurality of image sensing bio-medical units 310 to capture images of the surround breast tissue 306 and provide the images to the communication device 24 .
  • the communication device 24 may process the images to produce a mammogram or provide the images to another device for processing. In either situation, a mammogram can be performed without a visit to a doctor's office, may be performed at any time, and with any regularity.
  • the breast implant system 308 enables easy and early detection of breast cancer and will help to save lives.
  • the communication device 24 may instruct the breast implant system 308 to periodically check for leaks.
  • many breast implants have an effect life of about 10 years, meaning they have to be repaired and/or replaced every ten years; subjecting a woman to surgery every 10 years of her life.
  • the plurality of leakage detection bio-medical units 314 function to measure the shape, volume, and/or pressure of the breast implant system 306 . This information is provided to the communication device 24 , which can determine whether a changed has occurred since the last measurement and determine whether the change is due to a potential leak.
  • the communication device 24 may engage the imaging sensing bio-medical units 310 to capture images of the shell 311 and provide it with the images.
  • the communication device 24 processes the images to determine whether the shell has a leak or may be on the verge of have a leak.
  • the communication device 24 may engage the leakage detection bio-medical units 314 to gather data regarding movement of the viscous material 313 within the shell 311 and provide it with the data. From the data, the communication device 24 analyzes the movement of the viscous material 311 and may detect a leak therefrom.
  • the communication device determines a leak, it engages the plurality of repair tool bio-medical units 312 and the plurality of repair material bio-medical units 316 to repair it.
  • the communication device 24 may instruct the repair tool units 312 to hold a damaged area of the shell while it instructs the repair material units 316 to repair the damage.
  • the repair tool units 312 may clasp the punctured area closed while the repair material units 316 dispense a patch material (e.g., silicon) to patch the punctured area.
  • a patch material e.g., silicon
  • the bio-medical units 310 - 316 operation in an autonomous manner to gather image data, process the image data, detect leaks, and/or repair leaks or weakened areas of the shell.
  • the plurality of image sensing bio-medical units 310 periodically (e.g., once a week, once a month, etc.) captures images of the surround breast tissue 306 .
  • the units 310 may store the data and provide it to the communication device 24 when communication is established therebetween.
  • the units 310 may process the images to produce a mammogram, which is subsequently provided to the communication device 24 .
  • the plurality of leakage detection bio-medical units 314 periodically measures the shape, volume, and/or pressure of the breast implant system 306 .
  • the units 314 store the information and provided it to the communication device 24 when communication is established therebetween.
  • the units may process the data to determine whether a changed has occurred since the last measurement and determine whether the change is due to a potential leak.
  • the detection units 314 may engage the imaging sensing bio-medical units 310 to capture images of the shell 311 to determine whether the shell has a leak or may be on the verge of have a leak. Alternatively, the leakage detection bio-medical units 314 may gather data regarding movement of the viscous material 313 within the shell 311 and analyze the movement of the viscous material 311 to detect a leak therefrom. If a leak is detected, the plurality of repair tool bio-medical units 312 and the plurality of repair material bio-medical units 316 are activated to repair it.
  • the breast implant system 308 includes the shell 311 , the viscous material 313 , and a bio-medical unit (e.g., 310 ).
  • the bio-medical unit is affixed to the shell and/or the viscous material and includes a wireless power harvesting module, a breast cancer detection module, and a wireless communication module.
  • the wireless power harvesting and the wireless communication modules function as previously described.
  • the breast cancer detection module is operable to detect possible breast cancer when activated and powered by the supply voltage.
  • the breast cancer detection module includes one or more of a radio frequency radar imaging module, an ultrasound imaging module, a magnetic resonance imaging module, a digital image sensor, a millimeter wave radar imaging module, and a light imaging module.
  • the bio-medical unit may also include a motion module operable to position the bio-medical unit within the viscous material based on positioning wireless communications received by the wireless communication module.
  • the bio-medical unit may further include a housing to contain the wireless power harvesting module, the functional module, and the wireless communication module, wherein the bio-medical unit is suspended in a desired position within the viscous material.
  • FIG. 33 is a schematic block diagram of an embodiment of a leakage detection bio-medical unit 314 where the bio-medical unit 314 may detect leakage in a breast implant and report the leakage.
  • the bio-medical unit 314 includes a MEMS pressure sensor 320 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may utilize the MEMS pressure sensor 320 to periodically sample the pressure, save a pressure indicator in the memory 52 , and process the plurality of pressure indicators to produce a processed pressure indicator.
  • the processed pressure indicator may be an average, mean, medium, and may include short term and long term metrics.
  • a short term metric may include a rolling average of one hundred samples over the last twenty four hours and a long term metric may include a rolling average of one thousand samples over the last sixty days.
  • the processing module 50 may send the processed pressure indicator to one or more other bio-medical units 10 and/or to the communication device 24 for further processing and decision making. In another embodiment, the processing module 50 may compare the processed pressure indicator to one or more thresholds to determine if a leak may be present. The processing module 50 may acquire the thresholds from one or more of a predetermination, a command, and/or an adaptive algorithm (e.g., to filter out false alarms).
  • FIG. 34 is a schematic block diagram of another embodiment of a leakage detection bio-medical unit 314 where the bio-medical unit may detect leakage in a breast implant and report the leakage.
  • the bio-medical unit 314 includes a MEMS position sensor 324 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may utilize the MEMS position sensor 324 to periodically determine the position of the unit relative to the position of other units and/or the breast implant 308 , save a position indicator in the memory 52 , and process the plurality of position indicators to produce a processed position indicator.
  • the processed position indicator may be an average, mean, medium, and may include short term and long term metrics. For example, a short term metric may include a rolling average of one hundred samples over the last twenty four hours and a long term metric may include a rolling average of one thousand samples over the last sixty days.
  • the processing module 50 may send the processed position indicator to one or more other bio-medical units 10 and/or to the communication device 24 for further processing and decision making.
  • the processing module 50 may compare the processed position indicator to one or more thresholds to determine if a leak may be present (e.g., the position indicators suggest a volume change).
  • the processing module 50 may acquire the thresholds from one or more of a predetermination, a command, and/or an adaptive algorithm (e.g., to filter out false alarms).
  • FIG. 35 is a schematic block diagram of an embodiment of an image sensing bio-medical unit 310 where the bio-medical unit 310 may provide one or more imaging functions.
  • the bio-medical unit 310 includes a MEMS image sensor, 328 the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may utilize the MEMS image sensor 328 to periodically determine images including images based on a camera, ultrasound, RF radar, MMW radar, and light.
  • the processing module 50 may process the image to produce a processed image. For example, the processing module 50 may pattern match the image to determine the location of a leak in a breast implant 308 .
  • the processing module 50 may send the processed image to one or more other bio-medical units 10 and/or to the communication device 24 for further processing and decision making. In another embodiment, the processing module 50 may compare the processed image to one or more image templates to determine if a leak may be present. The processing module 50 may acquire the image templates from one or more of a predetermination, a command, and/or an adaptive algorithm (e.g., to filter out false alarms by storing images of previous actual leaks).
  • an adaptive algorithm e.g., to filter out false alarms by storing images of previous actual leaks.
  • FIG. 36 is a schematic block diagram of an embodiment of a repair tool bio-medical unit 312 where the bio-medical unit 312 may provide a cutting function.
  • the bio-medical unit 312 includes a MEMS cutting tool 332 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may determine to utilize the MEMS cutting tool 332 to affect a breast implant repair.
  • the MEMS cutting tool 332 may include a cutting method including a laser, an ultrasonic beam, and/or a knife edge. The determination may be based on one of more of a predetermination, a command, and/or an adaptive algorithm (e.g., to cut a moving object).
  • FIG. 37 is a schematic block diagram of another embodiment of a repair tool bio-medical unit 312 where the bio-medical unit 312 may provide a grasping function.
  • the bio-medical unit 312 includes a MEMS grasping tool 336 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may determine to utilize the MEMS grasping tool 336 to affect a breast implant repair.
  • the MEMS grasping tool 336 may include a grasping method including pliers, clamp, latch, hooks, etc. The determination may be based on one of more of a predetermination, a command, and/or an adaptive algorithm (e.g., to grasp a moving object).
  • FIG. 38 is a schematic block diagram of an embodiment of a repair material bio-medical unit 316 where the bio-medical unit 316 may provide a repair material dispensing function.
  • the bio-medical unit 316 includes a MEMS canister 340 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may determine to utilize the MEMS canister 340 to affect a breast implant repair.
  • the MEMS canister 340 may include a dispensing method including faster injection, slower injection, transfer, spreading, patching, etc. The determination may be based on one of more of a predetermination, a command, and/or an adaptive algorithm (e.g., to patch a moving object).
  • FIG. 39 is a schematic block diagram of an embodiment of a Doppler radar bio-medical unit to provide a distancing radar function to determine the location of a body object 268 .
  • the bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the MEMS propulsion 348 , the processing module 50 , the memory 52 , the power harvesting module 46 , a MMW frequency adjust 358 , a mixer 362 , a low noise amplifier 360 (LNA), and a power amplifier 356 (PA).
  • the bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands.
  • the bio-medical unit 10 may send a transmitted MMW signal 364 to the body object 268 and receive a reflected MMW signal 366 from the body object. 268 . Some of the transmitted MMW signal energy is absorbed, reflected in other directions, and/or transmitted to other directions.
  • the bio-medical unit 10 forms a Doppler radar sequence by varying the frequency of the transmitted MMW signal 364 over a series of transmission steps.
  • the bio-medical unit 10 may determine the distance and location information based on the reflected MMW signal 366 in response to the Doppler radar.
  • the bio-medical unit 10 may receive a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals to perform the Doppler radar function.
  • the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the body object.
  • the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the Doppler radar function from two, three or more bio-medical units 10 to triangulate the body object location based on the distance information.
  • the processing module 50 may control the MEMS propulsion 348 to reposition the bio-medical unit 10 .
  • the processing module 50 may determine how to control the MMW frequency adjust 358 to affect the distance information detection based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects course distance ranges at first and fine tunes the accuracy over time).
  • the processing module 50 controls the MMW frequency adjust 358 in accordance with the determination such that the PA 356 generates the desired transmitted MMW signal 364 .
  • the LNA 360 amplifies the reflected MMW signal 366 and the mixer 362 down converts the signal such that the processing module 50 receives and processes the signal.
  • FIG. 40 is a timing diagram of an embodiment of a Doppler radar sequence where a transmit (TX) series 368 of MMW transmissions for the transmit sequence of transmitted MMW signals 364 and a receive (RX) series of MMW receptions for the receive sequence of reflected MMW signals 366 .
  • the transmit sequence may modulo cycle through frequencies that are ⁇ f apart (e.g., f 1 , f 1 +2 ⁇ f, f 1 +2 ⁇ f, . . . ) spaced apart in time at intervals t 1 , t 2 , t 3 , etc.
  • the receive sequence 370 provides the reflection signals in the same order of the transmit sequence 368 with small differences in time (e.g., at r 1 , r 2 , r 3 , . . . ) and frequency.
  • the processing module 50 determines distance information based on the small differences in time and frequency between the receive sequence 370 and the originally transmitted sequence 368 .
  • FIG. 41 is a schematic block diagram of another embodiment of a Doppler radar bio-medical unit 10 to provide a distancing radar function to determine the density of a body object 268 when the body object 268 vibrates from an ultrasound signal 372 .
  • At least one other bio-medical unit 10 may provide the ultrasound signal.
  • the bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the MEMS propulsion 348 , the processing module 50 , the memory 52 , the power harvesting module 46 , a MMW frequency adjust 358 , a mixer 362 , a low noise amplifier 360 (LNA), and a power amplifier 356 (PA).
  • the bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands.
  • the bio-medical unit 10 may coordinate with at least one other bio-medical unit 10 to provide the ultrasound signal 372 .
  • the bio-medical unit 10 may send a transmitted MMW signal 364 to the body object and receive a reflected MMW signal 366 from the body object. Some of the transmitted MMW signal energy is absorbed by the body object, reflected in other directions, and/or transmitted to other directions. Note that the reflections may vary as a function of the ultrasound signal where the reflected signals vary according to the density of the body object.
  • the bio-medical unit 10 forms a Doppler radar sequence by varying the frequency of the transmitted MMW signal 364 over a series of transmission steps.
  • the bio-medical unit 10 may determine the distance and density based on the reflected MMW signal 366 in response to the Doppler radar.
  • the bio-medical unit 10 may receive a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals 364 to perform the Doppler radar function.
  • the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the body object 268 and determine the density.
  • the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the Doppler radar function from two, three or more bio-medical units 10 to triangulate the body object 268 location based on the distance information.
  • the processing module 50 may control the MEMS propulsion 348 to reposition the bio-medical unit 10 .
  • the processing module 50 may determine how to control the MMW frequency adjust 358 to affect the distance and density information detection based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects course distance ranges at first and fine tunes the accuracy over time).
  • the processing module 50 controls the MMW frequency adjust 358 in accordance with the determination such that the PA 356 generates the desired transmitted MMW signal 364 .
  • the LNA 360 amplifies the reflected MMW signal 366 and the mixer 362 down converts the signal such that the processing module 50 receives and processes the signal.
  • FIG. 42 is a schematic block diagram of an embodiment of a controlled release bio-medical unit 10 that administers potentially complex medications.
  • the bio-medical unit 10 includes a MEMS controlled release module 374 , the communication module 50 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands.
  • the bio-medical unit 10 may coordinate with at least one other bio-medical unit 10 to provide the administration of medications.
  • the processing module 50 may determine when and how to administer the medication based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain).
  • the MEMS controlled release module 374 may contain materials that comprise medications and a unit ID to identify the materials.
  • the processing module 50 may control the MEMS controlled release module 374 to mix particular materials to produce a desired medication in accordance with the unit ID, and the determination of the when and how to administer the medication.
  • FIG. 43 is a schematic block diagram of an embodiment of a MEMS controlled release module 374 that controls the formation and delivery of medications created with materials previously stored in the MEMS controlled release module 374 .
  • the MEMS controlled release module 374 may include a MEMS canister 340 , a MEMS valve 376 , a MEMS pump 378 , a MEMS needle 380 , MEMS delivery tube 382 , and pathways between the elements.
  • the MEMS canister 340 holds one or more materials.
  • the MEMS valve 376 may control the flow of a material.
  • the MEMS pump 378 may actively move a material.
  • the MEMS needle 380 may facilitate injection of the medication.
  • the MEMS delivery tube 382 may facilitate delivery of the medication.
  • the MEMS controlled release module 374 may receive requests and/or commands from the processing module 50 including request for unit ID, commands to mix 10% material A and 90% material B, a command to inject the needle, and/or a command to administer the mixture through a MEMS needle 380 and/or MEMS delivery tube 382 .
  • FIG. 44 is a schematic block diagram of an embodiment of a controlled release bio-medical unit 10 system that administers potentially complex medications.
  • a plurality of bio-medical units 10 transfers (e.g., from at least one unit to another), mix, and administer the medications.
  • a first type of bio-medical unit 10 includes a MEMS controlled release module 374 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the first type of bio-medical unit 10 substantially provides the medication ingredients to a second type of bio-medical unit 10 .
  • the second type of bio-medical unit 10 includes at least one MEMS controlled receptacle module 386 , a MEMS composition mix and release 388 , the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the second type of bio-medical unit 10 substantially mixes the final medication and administers the medication.
  • the first and second types of bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands.
  • the second type bio-medical unit 10 may coordinate with at least one first type of bio-medical unit 10 to provide the administration of medications.
  • the processing module 50 of the second type of bio-medical unit 10 may determine when and how to administer the medication based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain).
  • the processing module 50 of the second type of bio-medical unit 10 may determine which of the plurality of the first type of bio-medical units 10 contain the required materials based on a unit ID status update, a command, and/or a predetermination.
  • the processing module 50 of the second type of bio-medical unit 10 may send a command to the plurality of the first type of bio-medical units 10 to dock with the second type of bio-medical unit 10 and transfer the required materials to the MEMS controlled receptacle module 386 of the second type of bio-medical unit 10 .
  • the processing module 50 of the second type of bio-medical unit 10 may control the MEMS composition mix and release 388 to mix the required materials from the plurality of first type of bio-medical units 10 .
  • the processing module 50 of the second type of bio-medical unit 10 may control the MEMS composition mix and release 388 to release the mixture in accordance with the determination of the when and how to administer the medication.
  • FIG. 45 is a schematic block diagram of an embodiment of a self-cleaning sampling bio-medical unit 10 where a wave based MEMS cleaner 390 facilitates cleaning of a sampling sub-system.
  • the bio-medical unit 10 includes the wave based MEMS cleaner 390 for a MEMS sample analyzer 392 , a pipette 394 , a needle 396 , and a MEMS actuator 276 .
  • the bio-medical unit 10 also includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50 , the memory 52 , and the power harvesting module 46 .
  • the processing module 50 may determine when to perform a sampling and cleaning of the sampling sub-system based on a command, a predetermination, and/or an adaptive algorithm (e.g., based on a sample history).
  • the processing module 50 may precede each sampling with a cleaning, follow each sampling with a cleaning, or some combination of both.
  • the processing module 50 may command the wave based MEMS cleaner 390 to clean the components of the sampling sub-system.
  • the wave based MEMS cleaner 390 may perform the cleaning with one or methods including heating, vibrating, RF energy, laser light, and/or sound waves.
  • the bio-medical unit 10 includes a MEMS canister 340 with a cleaning agent that is released during the cleaning sequence and expelled through the needle 396 .
  • the processing module 50 may command the MEMS actuator 276 to apply force 286 to move the needle 396 into the sampling position where the needle 396 is exposed to the outside of the bio-medical unit 10 (e.g., extends into the body).
  • the pipette 394 moves the sample from the needle 396 to the MEMS sample analyzer 392 .
  • the MEMS sample analyzer 392 provides the processing module 50 with sample information, which may include blood analysis, pH analysis, temperature, oxygen level, other gas levels, toxin analysis, medication analysis, and/or chemical analysis.
  • sample information may include blood analysis, pH analysis, temperature, oxygen level, other gas levels, toxin analysis, medication analysis, and/or chemical analysis.
  • the processing module 50 may process the sample information to produce processed sample information.
  • the processing module 50 may send the processed sample information to another bio-medical unit 10 or to a communication unit 24 for further processing.
  • FIG. 46 is a flowchart illustrating MMW communications within a MRI sequence where the processing module 50 determines MMW communications in accordance with an MRI sequence.
  • the method begins with step 442 where the processing module 50 determines if the MRI is active based on receiving MRI EM signals.
  • the method branches to step 448 when the processing module 50 determines that the MRI is active.
  • the method continues to step 446 when the processing module 50 determines that the MRI is not active.
  • the processing module 50 performs MMW communications.
  • the MRI sequence may not start until the processing module 50 performs MMW communications.
  • the method branches to step 442 .
  • the processing module 50 determines the MRI sequence based on received MRI EM signals (e.g., gradient pulses and/or MRI RF pulses).
  • the processing module 50 determines when it is time to perform receive MMW communication in accordance with the MRI sequence.
  • the MMW transceiver 138 may receive MMW inbound signals 148 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may receive MMW inbound signals 148 between specific predetermined steps of the MRI sequence.
  • the method branches back to step 450 when the processing module 50 determines that it is not time to perform receive MMW communication. The method continues when the processing module 50 determines that it is time to perform receive MMW communication.
  • the processing module 50 directs the MMW transceiver 138 to receive MMW inbound signals 148 .
  • the processing module 50 may decode messages from the MMW inbound signals 148 such that the messages include one or more of a status request, a records request, a sensor data request, a processed data request, a position request, a command, and/or a request for MRI echo signal data.
  • the processing module 50 determines if there is at least one message pending to transmit (e.g., in a transmit queue). The method branches back to step 442 when the processing module 50 determines that there is not at least one message pending to transmit. The method continues to step 460 when the processing module 50 determines that there is at least one message pending to transmit.
  • the processing module 50 determines when it is time to perform transmit MMW communication in accordance with the MRI sequence.
  • the MMW transceiver 138 may transmit MMW outbound signals 150 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may transmit MMW outbound signals 150 between specific predetermined steps of the MRI sequence.
  • the processing module 50 branches back to step 460 when the processing module 50 determines it is not time to perform transmit MMW communication.
  • the method continues to step 464 when the processing module 50 determines it is time to perform transmit MMW communication.
  • the processing module 50 directs the MMW transceiver 138 to prepare the MMW outbound signals 150 based on the at least one message pending to transmit.
  • the processing module 50 may encode messages into the MMW outbound signals 150 such that the messages include one or more of a status request response, a records request response, a sensor data request response, a processed data request response, a position request response, a command response, and/or a request for MRI echo signal data response.
  • the method branches back to step 442 .
  • FIG. 47 is a flowchart illustrating the processing of MRI signals where the processing module 50 of the bio-medical unit 10 may assist the MRI in the reception and processing of MRI EM signals 146 .
  • the method begins at step 466 where the processing module 50 determines if the MRI is active based on receiving MRI EM signals 146 .
  • the method branches back to step 466 when the processing module 50 determines that the MRI is not active.
  • the MRI sequence may not start until the processing module 50 communicates to the MRI that it is available to assist.
  • the method continues to step 470 when the processing module 50 determines that the MRI is active.
  • the processing module 50 determines the MRI sequence based on received MRI EM signals 146 (e.g., gradient pulses and/or MRI RF pulses).
  • the processing module receives EM signals 146 and/or MMW communication 532 in accordance with the MRI sequence and decodes a message for the processing module 50 .
  • the MMW transceiver 138 may receive MMW inbound signals 148 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may receive MMW inbound signals 148 between specific predetermined steps of the MRI sequence.
  • the processing module 50 may receive EM signals 146 at any point of the MRI sequence such that the EM signals 146 contain a message for the processing module 50 .
  • the processing module 50 may decode messages from the EM signals 146 and/or MMW inbound signals 148 such that the messages include one or more of a request to assist in the MRI sequence, a status request, a records request, a sensor data request, a processed data request, a position request, a command, and/or a request for MRI echo signal data.
  • the processing module 50 determines whether to assist in the MRI sequence based in part on the decoded message. The determination may be based on a comparison of the assist request to the capabilities of the bio-medical unit 10 .
  • the method branches to step 480 when the processing module 50 determines to assist in the MRI sequence. The method continues with step 478 when the processing module 50 determines to not assist in the MRI sequence.
  • the processing module 50 performs other instructions contained in the message. The method ends.
  • the processing module 50 begins the assist steps by receiving echo signals 530 during the MRI sequence.
  • the echo signals 530 may comprise EM RF signals across a wide frequency band as reflected off of tissue during the MRI sequence.
  • the processing module 50 processes the received echo signals 530 to produce processed echo signals. Note that this may be a portion of the overall processing required to lead to the desired MRI imaging.
  • the processing module 50 determines the assist type based on the decoded message from the MRI unit.
  • the assist type may be at least passive or active where the passive type collects echo signal 530 information and sends it to the MRI unit via MMW outbound signals 150 and the active type collects echo signal information and re-generates a form of the echo signals 530 and sends the re-generated echo signals to the MRI unit via outbound modulated EM signals (e.g., the MRI unit interprets the re-generated echo signals as echo signals to improve the overall system gain and sensitivity).
  • the method branches to step 494 when the processing module 50 determines the assist type to be active.
  • the method continues to step 486 when the processing module 50 determines the assist type to be passive.
  • the processing module 50 creates an echo message based on the processed echo signals where the echo message contains information about the echo signals 530 .
  • the processing module 50 determines when it is time to transmit the echo message encoded as MMW outbound signals 150 via MMW communication in accordance with the MRI sequence.
  • the MMW transceiver 138 may transmit MMW outbound signals 150 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may transmit MMW outbound signals 150 between specific predetermined steps of the MRI sequence.
  • step 490 the method branches back to step 488 when the processing module 50 determines that it is not time to transmit the echo message.
  • the method continues to step 492 when the processing module 50 determines that it is time to transmit the echo message.
  • the processing module 50 transmits the echo message encoded as MMW outbound signals 150 . The method ends.
  • the processing module 50 creates echo signals based on the processed echo signals.
  • the processing module 50 determines when it is time to transmit the echo signals as outbound modulated EM signals 180 in accordance with the MRI sequence.
  • the EM transceiver 174 may transmit the outbound modulated EM signals 180 between any of the MRI sequence steps.
  • the EM transceiver 174 may transmit the outbound modulated EM signals 180 between specific predetermined steps of the MRI sequence.
  • the EM transceiver 174 may transmit the outbound modulated EM signals 180 during the time period when the MRI receiver is receiving echo signals 530 .
  • the method branches back to step 496 when the processing module 50 determines that it is not time to transmit the echo signals.
  • the method continues to step 500 when the processing module 50 determines that it is time to transmit the echo signals.
  • the processing module 50 transmits the echo signals encoded as outbound modulated EM signals 180 . Note that the transmitted echo signals emulate the received echo signals 530 with improvements to overcome low MRI power levels and/or low MRI receiver sensitivity.
  • FIG. 48 is a flowchart illustrating communication utilizing MRI signals where the processing module 50 determines MMW signaling in accordance with an MRI sequence.
  • the method begins at step 502 where the processing module 50 determines if the MRI is active based on receiving MRI EM signals 146 .
  • the method branches to step 508 when the processing module 50 determines that the MRI is active.
  • the method continues to step 506 when the processing module 50 determines that the MRI is not active.
  • the processing module 50 queues pending transmit messages. The method branches to step 502 .
  • the processing module 50 determines the MRI sequence based on received MRI EM signals 146 (e.g., gradient pulses and/or MRI RF pulses).
  • the processing module 50 determines when it is time to perform receive communication in accordance with the MRI sequence.
  • the EM transceiver 174 may receive inbound modulated EM signals 146 containing message information from any of the MRI sequence steps.
  • step 512 the method branches back to step 510 when the processing module 50 determines that it is not time to perform receive communication.
  • the method continues to step 514 when the processing module 50 determines that it is time to perform receive communication.
  • the processing module 50 directs the EM transceiver 174 to receive the inbound modulated EM signals.
  • the processing module 50 may decode messages from the inbound modulated EM signals 146 such that the messages include one or more of a echo signal collection assist request, a status request, a records request, a sensor data request, a processed data request, a position request, a command, and/or a request for MRI echo signal data.
  • the message may be decoded from the inbound modulated EM signals 146 in one or more ways including detection of the ordering of the magnetic gradient pulses, counting the number of gradient pulses, the slice pulse orderings, detecting small differences in the timing of the pulses, and/or demodulation of the MRI RF pulse.
  • the processing module 50 determines if there is at least one message pending to transmit (e.g., in a transmit queue). At step 518 , the method branches back to step 502 when the processing module 50 determines that there is not at least one message pending to transmit. At step 518 , the method continues to step 520 when the processing module 50 determines that there is at least one message pending to transmit.
  • the processing module 50 determines when it is time to perform transmit communication in accordance with the MRI sequence.
  • the EM transceiver 174 may transmit outbound modulated EM signals 180 between any of the MRI sequence steps.
  • the EM transceiver 174 may transmit the outbound modulated EM signals 180 between specific predetermined steps of the MRI sequence.
  • the EM transceiver 174 may transmit the outbound modulated EM signals 180 in parallel with specific predetermined steps of the MRI sequence, but may utilize a different set of frequencies unique to the EM transceiver 174 .
  • step 522 the method branches back to step 520 when the processing module 50 determines that it is not time to perform transmit communication. At step 522 , the method continues to step 524 when the processing module 50 determines that it is time to perform transmit communication.
  • the processing module 50 directs the EM transceiver 174 to prepare the outbound modulated EM signals 180 based on the at least one message pending to transmit.
  • the processing module 50 may encode messages into the outbound modulated EM signals 180 such that the messages include one or more of a status request response, a records request response, a sensor data request response, a processed data request response, a position request response, a command response, and/or a request for MRI echo signal data response.
  • the method branches back to step 502 .
  • FIG. 49 is a flowchart illustrating the coordination of bio-medical unit task execution where the processing module 50 determines and executes tasks with at least one other bio-medical unit 10 .
  • the method begins at step 592 where the processing module 50 determines if communication is allowed. The determination may be based on one or more of a timer, a command, available power, a priority indicator, an MRI sequence, and/or interference indicator.
  • the method branches back to step 592 when the processing module 50 determines that communication is not allowed.
  • the method continues to step 596 when the processing module 50 determines that communication is allowed.
  • the processing module 50 directs the communication module 48 to communicate with a plurality of bio-medical units 10 utilizing RF and/or MMW inbound and/or outbound signals.
  • the processing module 50 may decode messages from the RF and/or MMW inbound and/or outbound signals inbound signals.
  • the processing module 50 determines if communications with the plurality of bio-medical units 10 is successful based in part on the decoded messages.
  • step 600 the method branches back to step 592 when the processing module determines that communications with the plurality of bio-medical units 10 is not successful. Note that forming a network with the other bio-medical units 10 may be required to enable joint actions.
  • step 600 the method continues to step 602 when the processing module 50 determines that communications with the plurality of bio-medical units 10 is successful.
  • the processing module 50 determines the task and task requirements.
  • the task determination may be based on one or more of a command from a parent bio-medical unit 10 , external communications, a preprogrammed list, and/or in response to sensor data.
  • the task requirements determination may be based on one or more of the task, a command from a parent bio-medical unit 10 , external communications, a preprogrammed list, and/or in response to sensor data.
  • the task may include actions including one or more of drilling, moving, sawing, jumping, spreading, sensing, lighting, pinging, testing, and/or administering medication.
  • the processing module 50 determines the control mode based on one or more of a command from a parent bio-medical unit 10 , external communications, a preprogrammed list, and/or in response to sensor data.
  • the control mode may include autonomous, parent (bio-medical unit), server, and/or peer.
  • the processing module 50 determines if task execution criteria are met based on sensor data, communication with other bio-medical units 10 , a command, a status indicator, a safety indicator, a stop indicator, and/or location information.
  • the task execution criteria may include one or more of safety checks, position information of the bio-medical unit 10 , position information of other bio-medical units 10 , and/or sensor data thresholds.
  • step 608 the method branches back to step 606 when the processing module 50 determines that the task execution criteria are not met.
  • the method continues to step 610 when the processing module 50 determines that the task execution criteria are met.
  • the processing module 50 executes a task element.
  • a task element may include a portion or step of the overall task. For example, move one centimeter of a task to move three centimeters.
  • the processing module 50 determines if task exit criteria are met based on a task element checklist status, sensor data, communication with other bio-medical units 10 , a command, a status indicator, a safety indicator, a stop indicator, and/or location information. Note that the task exit criteria define successful completion of the task.
  • step 614 the method branches back to step 592 when the processing module 50 determines that the task exit criteria are met. In other words, the plurality of bio-medical units 10 is done with the current task and is ready for the next task.
  • step 614 the method continues to step 616 when the processing module 50 determines that the task exit criteria are not met.
  • the processing module 50 directs the communication module 48 to communicate with the plurality of bio-medical units 10 utilizing RF and/or MMW inbound and/or outbound.
  • the processing module 50 may decode messages from the RF and/or MMW inbound and/or outbound signals inbound signals. Note that the messages may include information in regards to task modifications (e.g., course corrections).
  • the processing module 50 determines if communications with the plurality of bio-medical units 10 is successful based in part on the decoded messages.
  • step 620 the method branches back to step 592 when the processing module determines that communications with the plurality of bio-medical units is not successful (e.g., to potentially restart). Note that maintaining the network with the other bio-medical unit may be required to enable joint actions.
  • step 620 the method continues to step 622 when the processing module determines that communications with the plurality of bio-medical units is successful.
  • the processing module 50 determines task modifications.
  • the task modifications may be based on one or more of a command from a parent bio-medical unit 10 , and/or external communications.
  • the task modifications determination may be based on one or more of the task, a command from a parent bio-medical unit 10 , external communications, a preprogrammed list, and/or in response to sensor data.
  • the method branches back to step 606 to attempt to complete the current task.
  • the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
  • the term(s) “coupled to” and/or “coupling” and/or includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
  • an intervening item e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module
  • inferred coupling i.e., where one element is coupled to another element by inference
  • the term “operable to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform one or more its corresponding functions and may further include inferred coupling to one or more other items.
  • the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
  • the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2 , a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1 .

Abstract

A breast implant system includes a shell, a viscous material for substantially filling the shell, and a plurality of bio-medical units affixed to at least one of the shell and the viscous material. A bio-medical unit of the plurality of bio-medical unit includes a wireless power harvesting module, a functional module, and a wireless communication module. The wireless power harvesting module is operable to generate a supply voltage from a wireless source. The functional module is operable to perform a function when activated and powered by the supply voltage. The wireless communication module is operable to facilitate wireless communication with the functional module.

Description

  • This patent application is claiming priority under 35 USC §119 to a provisionally filed patent application entitled BIO-MEDICAL UNIT AND APPLICATIONS THEREOF, having a provisional filing date of Sep. 30, 2009, and a provisional Ser. No. 61/247,060.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable
  • INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC
  • Not Applicable
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field of the Invention
  • This invention relates generally to medical equipment and more particularly to wireless medical equipment.
  • 2. Description of Related Art
  • As is known, there is a wide variety of medical equipment that aids in the diagnosis, monitoring, and/or treatment of patients' medical conditions. For instances, there are diagnostic medical devices, therapeutic medical devices, life support medical devices, medical monitoring devices, medical laboratory equipment, etc. As specific exampled magnetic resonance imaging (MRI) devices produce images that illustrate the internal structure and function of a body.
  • The advancement of medical equipment is in step with the advancements of other technologies (e.g., radio frequency identification (RFID), robotics, etc.). Recently, RFID technology has been used for in vitro use to store patient information for easy access. While such in vitro applications have begun, the technical advancement in this area is in its infancy.
  • Therefore, a need exists for a bio-medical unit that has applications within breast implants.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is directed to apparatus and methods of operation that are further described in the following Brief Description of the Drawings, the Detailed Description of the Invention, and the claims. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • FIG. 1 is a diagram of an embodiment of a system in accordance with the present invention;
  • FIG. 2 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 3 is a diagram of an embodiment of an artificial body part including one or more bio-medical units in accordance with the present invention;
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part in accordance with the present invention;
  • FIG. 5 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 6 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 7 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module in accordance with the present invention;
  • FIG. 13 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 14 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 15 is a diagram of an example of a communication protocol within a system in accordance with the present invention;
  • FIG. 16 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 17 is a diagram of another example of a communication protocol within a system in accordance with the present invention;
  • FIG. 18 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 19 is a diagram of another embodiment of a system in accordance with the present invention;
  • FIG. 20 is a diagram of an embodiment of a network of bio-medical units in accordance with the present invention;
  • FIG. 21 is a logic diagram of an embodiment of a method for bio-medical unit communications in accordance with the present invention;
  • FIG. 22 is a diagram of an embodiment of a network of bio-medical units collecting image data in accordance with the present invention;
  • FIG. 23 is a diagram of an embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention;
  • FIG. 24 is a diagram of another embodiment of a network of bio-medical units facilitating cancer treatment in accordance with the present invention;
  • FIG. 25 is a diagram of an embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention;
  • FIG. 26 is a diagram of another embodiment of a network of bio-medical units that include MEMS robotics in accordance with the present invention;
  • FIG. 27 is a diagram of an embodiment of a bio-medical unit collecting image data in accordance with the present invention;
  • FIG. 28 is a diagram of another embodiment of a network of bio-medical units communicating via light signaling in accordance with the present invention;
  • FIG. 29 is a diagram of an embodiment of a bio-medical unit collecting audio and/or ultrasound data in accordance with the present invention;
  • FIG. 30 is a diagram of another embodiment of a network of bio-medical units communicating via audio and/or ultrasound signaling in accordance with the present invention;
  • FIG. 31 is a diagram of an embodiment of a network of bio-medical units collecting ultrasound data in accordance with the present invention;
  • FIG. 32 is a diagram of an embodiment of a network of bio-medical units within a breast implant in accordance with the present invention;
  • FIG. 33 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 34 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 35 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 36 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 37 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 38 is a schematic block diagram of another embodiment of a bio-medical unit in accordance with the present invention;
  • FIG. 39 is a diagram of an embodiment of a bio-medical unit determining relative distance using Doppler shifting in accordance with the present invention;
  • FIG. 40 is a diagram of an example of determining relative distance using Doppler shifting in accordance with the present invention;
  • FIG. 41 is a diagram of an example of determining vibrations using Doppler shifting and ultrasound in accordance with the present invention;
  • FIG. 42 is a diagram of an embodiment of a bio-medical unit including a controlled release module in accordance with the present invention;
  • FIG. 43 is a diagram of an embodiment of a controlled release module in accordance with the present invention;
  • FIG. 44 is a diagram of an embodiment of a system of bio-medical units for controlled release of a medication in accordance with the present invention;
  • FIG. 45 is a diagram of an embodiment of a bio-medical unit including sampling modules in accordance with the present invention;
  • FIG. 46 is a logic diagram of an embodiment of a method for MMW communications within a MRI sequence in accordance with the invention;
  • FIG. 47 is a logic diagram of an embodiment of a method for processing of MRI signals in accordance with the present invention;
  • FIG. 48 is a logic diagram of an embodiment of a method for communication utilizing MRI signals in accordance with the present invention; and
  • FIG. 49 is a logic diagram of an embodiment of a method for coordination of bio-medical unit task execution in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a diagram of an embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections. Each of the bio-medical units 10 is a passive device (e.g., it does not include a power source (e.g., a battery)) and, as such, includes a power harvesting module. The bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. Alternatively, or in addition to, each of the bio-medical units 10 may include a power source.
  • In operation, a transmitter emits 12 electromagnetic signals 16 that pass through the body and are received by a receiver 14. The transmitter 12 and receiver 14 may be part of a piece of medical diagnostic equipment (e.g., magnetic resonance imaging (MRI), X-ray, etc.) or independent components for stimulating and communicating with the network of bio-medical units in and/or on a body. One or more of the bio-medical units 10 receives the transmitted electromagnetic signals 16 and generates a supply voltage therefrom. Examples of this will be described in greater detail with reference to FIGS. 8-12.
  • Embedded within the electromagnetic signals 16 (e.g., radio frequency (RF) signals, millimeter wave (MMW) signals, MRI signals, etc.) or via separate signals, the transmitter 12 communicates with one or more of the bio-medical units 10. For example, the electromagnetic signals 16 may have a frequency in the range of a few MHz to 900 MHz and the communication with the bio-medical units 10 is modulated on the electromagnetic signals 16 at a much higher frequency (e.g., 5 GHz to 300 GHz). As another example, the communication with the bio-medical units 10 may occur during gaps (e.g., per protocol of medical equipment or injected for communication) of transmitting the electromagnetic signals 16. As another example, the communication with the bio-medical units 10 occurs in a different frequency band and/or using a different transmission medium (e.g., use RF or MMW signals when the magnetic field of the electromagnetic signals are dominate, use ultrasound signals when the electromagnetic signals 16 are RF and/or MMW signals, etc.).
  • One or more of the bio-medical units 10 receives the communication signals 18 and processes them accordingly. The communication signals 18 may be instructions to collect data, to transmit collected data, to move the unit's position in the body, to perform a function, to administer a treatment, etc. If the received communication signals 18 require a response, the bio-medical unit 10 prepares an appropriate response and transmits it to the receiver 14 using a similar communication convention used by the transmitter 12.
  • FIG. 2 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 embedded within a body and/or placed on the surface of the body to facilitate diagnosis, treatment, and/or data collections. Each of the bio-medical units 10 is a passive device and, as such, includes a power harvesting module. The bio-medical units 10 may also include one or more of memory, a processing module, and functional modules. In this embodiment, the person is placed in an MRI machine (fixed or portable) that generates a magnetic field 26 through which the MRI transmitter 20 transmits MRI signals 28 to the MRI receiver 22.
  • One or more of the bio-medical units 10 powers itself by harvesting energy from the magnetic field 26 or changes thereof as produced by gradient coils, from the magnetic fields of the MRI signals 28, from the electrical fields of the MRI signals 28, and/or from the electromagnetic aspects of the MRI signals 28. A unit 10 converts the harvested energy into a supply voltage that supplies other components of the unit (e.g., a communication module, a processing module, memory, a functional module, etc.).
  • A communication device 24 communicates data and/or control communications 30 with one or more of the bio-medical units 10 over one or more wireless links. The communication device 24 may be a separate device from the MRI machine or integrated into the MRI machine. For example, the communication device 24, whether integrated or separate, may be a cellular telephone, a computer with a wireless interface (e.g., a WLAN station and/or access point, Bluetooth, a proprietary protocol, etc.), etc. A wireless link may be one or more frequencies in the ISM band, in the 60 GHz frequency band, the ultrasound frequency band, and/or other frequency bands that supports one or more communication protocols (e.g., data modulation schemes, beamforming, RF or MMW modulation, encoding, error correction, etc.).
  • The composition of the bio-medical units 10 includes non-ferromagnetic materials (e.g., paramagnetic or diamagnetic) and/or metal alloys that are minimally affected by an external magnetic field 26. In this regard, the units harvest power from the MRI signals 28 and communicate using RF and/or MMW electromagnetic signals with negligible chance of encountering the projectile or missile effect of implants that include ferromagnetic materials.
  • FIG. 3 is a diagram of an embodiment of an artificial body part 32 including one or more bio-medical units 10 that may be surgically implanted into a body. The artificial body part 32 may be a pace maker, a breast implant, a joint replacement, an artificial bone, splints, fastener devices (e.g., screws, plates, pins, sutures, etc.), artificial organ, etc. The artificial body part 32 may be permanently embedded in the body or temporarily embedded into the body.
  • FIG. 4 is a schematic block diagram of an embodiment of an artificial body part 32 that includes one or more bio-medical units 10. For instance, one bio-medical unit 10 may be used to detect infections, the body's acceptance of the artificial body part 32, measure localized body temperature, monitor performance of the artificial body part 32, and/or data gathering for other diagnostics. Another bio-medical unit 10 may be used for deployment of treatment (e.g., disperse medication, apply electrical stimulus, apply RF radiation, apply laser stimulus, etc.). Yet another bio-medical unit 10 may be used to adjust the position of the artificial body part 32 and/or a setting of the artificial body part 32. For example, a bio-medical unit 10 may be used to mechanically adjust the tension of a splint, screws, etc. As another example, a bio-medical unit 10 may be used to adjust an electrical setting of the artificial body part 32.
  • FIG. 5 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10 and one or more communication devices 24 coupled to a wide area network (WAN) communication device 34 (e.g., a cable modem, DSL modem, base station, access point, hot spot, etc.). The WAN communication device 34 is coupled to a network 42 (e.g., cellular telephone network, internet, etc.), which has coupled to it a plurality of remote monitors 36, a plurality of databases 40, and a plurality of computers 38.
  • In an example of operation, one or more of the remote monitors 36 may receive images and/or other data 30 from one or more of the bio-medical units 10 via the communication device 24, the WAN communication device 34, and the network 42. In this manner, a person(s) operating the remote monitors 36 may view images and/or the data 30 gathered by the bio-medical units 10. This enables a specialist to be consulted without requiring the patient to travel to the specialist's office.
  • In another example of operation, one or more of the computers 38 may communicate with the bio-medical units 10 via the communication device 24, the WAN communication device 34, and the network 42. In this example, the computer 36 may provide commands 30 to one or more of the bio-medical units 10 to gather data, to dispense a medication, to move to a new position in the body, to perform a mechanical function (e.g., cut, grasp, drill, puncture, stitch, patch, etc.), etc. As such, the bio-medical units 10 may be remotely controlled via one or more of the computers 36.
  • In another example of operation, one or more of the bio-medical units 10 may read and/or write data from or to one or more of the databases 40. For example, data (e.g., a blood sample analysis) generated by one or more of the bio-medical units 10 may be written to one of the databases 40. The communication device 24 and/or one of the computers 36 may control the writing of data to or the reading of data from the database(s) 40. The data may further include medical records, medical images, prescriptions, etc.
  • FIG. 6 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10. In this embodiment, the bio-medical units 10 can communicate with each other directly and/or communicate with the communication device 24 directly. The communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound. The units may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 7 is a diagram of another embodiment of a system that includes a plurality of bio-medical units 10. In this embodiment, one of the bio-medical units 44 functions as an access point for the other units. As such, the designated unit 44 routes communications between the units 10 and between one or more units 10 and the communication device 24. The communication medium may be an infrared channel(s), an RF channel(s), a MMW channel(s), and/or ultrasound. The units 10 may use a communication protocol such as token passing, carrier sense, time division multiplexing, code division multiplexing, frequency division multiplexing, etc.
  • FIG. 8 is a schematic block diagram of an embodiment of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, and one or more functional modules 54. The processing module 50 may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module 50 may have an associated memory 52 and/or memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of the processing module. Such a memory device 52 may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module 50 includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that when the processing module 50 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element stores, and the processing module executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in FIGS. 1-49.
  • The power harvesting module 46 may generate one or more supply voltages 56 (Vdd) from one or more of MRI electromagnetic signals 16, magnetic fields 26, RF signals, MMW signals, and body motion. The power harvesting module 46 may be implemented as disclosed in U.S. Pat. No. 7,595,732 to generate one or more supply voltages from an RF signal. The power harvesting module 46 may be implemented as shown in one or more FIGS. 9-11 to generate one or more supply voltages 56 from an MRI signal 28 and/or magnetic field 26. The power harvesting module 46 may be implemented as shown in FIG. 12 to generate one or more supply voltage 56 from body motion.
  • The communication module 48 may include a receiver section and a transmitter section. The transmitter section converts an outbound symbol stream into an outbound RF or MMW signal 60 that has a carrier frequency within a given frequency band (e.g., 900 MHz, 2.5 GHz, 5 GHz, 57-66 GHz, etc.). In an embodiment, this may be done by mixing the outbound symbol stream with a local oscillation to produce an up-converted signal. One or more power amplifiers and/or power amplifier drivers amplifies the up-converted signal, which may be RF or MMW bandpass filtered, to produce the outbound RF or MMW signal 60. In another embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol stream provides phase information (e.g., +/−Δθ[phase shift] and/or θ(t) [phase modulation]) that adjusts the phase of the oscillation to produce a phase adjusted RF or MMW signal, which is transmitted as the outbound RF signal 60. In another embodiment, the outbound symbol stream includes amplitude information (e.g., A(t) [amplitude modulation]), which is used to adjust the amplitude of the phase adjusted RF or MMW signal to produce the outbound RF or MMW signal 60.
  • In yet another embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol provides frequency information (e.g., +/−Δf [frequency shift] and/or f(t) [frequency modulation]) that adjusts the frequency of the oscillation to produce a frequency adjusted RF or MMW signal, which is transmitted as the outbound RF or MMW signal 60. In another embodiment, the outbound symbol stream includes amplitude information, which is used to adjust the amplitude of the frequency adjusted RF or MMW signal to produce the outbound RF or MMW signal 60. In a further embodiment, the transmitter section includes an oscillator that produces an oscillation. The outbound symbol provides amplitude information (e.g., +/−ΔA [amplitude shift] and/or A(t) [amplitude modulation) that adjusts the amplitude of the oscillation to produce the outbound RF or MMW signal 60.
  • The receiver section amplifies an inbound RF or MMW signal 60 to produce an amplified inbound RF or MMW signal. The receiver section may then mix in-phase (I) and quadrature (Q) components of the amplified inbound RF or MMW signal with in-phase and quadrature components of a local oscillation to produce a mixed I signal and a mixed Q signal. The mixed I and Q signals are combined to produce an inbound symbol stream. In this embodiment, the inbound symbol may include phase information (e.g., +/−Δθ[phase shift] and/or θ(t) [phase modulation]) and/or frequency information (e.g., +/−Δf [frequency shift] and/or f(t) [frequency modulation]). In another embodiment and/or in furtherance of the preceding embodiment, the inbound RF or MMW signal includes amplitude information (e.g., +/−ΔA [amplitude shift] and/or A(t) [amplitude modulation]). To recover the amplitude information, the receiver section includes an amplitude detector such as an envelope detector, a low pass filter, etc.
  • The processing module 50 generates the outbound symbol stream from outbound data and converts the inbound symbol stream into inbound data. For example, the processing module 50 converts the inbound symbol stream into inbound data (e.g., voice, text, audio, video, graphics, etc.) in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.). Such a conversion may include one or more of: digital intermediate frequency to baseband conversion, time to frequency domain conversion, space-time-block decoding, space-frequency-block decoding, demodulation, frequency spread decoding, frequency hopping decoding, beamforming decoding, constellation demapping, deinterleaving, decoding, depuncturing, and/or descrambling.
  • As another example, the processing module 50 converts outbound data (e.g., voice, text, audio, video, graphics, etc.) into outbound symbol stream in accordance with one or more wireless communication standards (e.g., GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, universal mobile telecommunications system (UMTS), long term evolution (LTE), IEEE 802.16, evolution data optimized (EV-DO), etc.). Such a conversion includes one or more of: scrambling, puncturing, encoding, interleaving, constellation mapping, modulation, frequency spreading, frequency hopping, beamforming, space-time-block encoding, space-frequency-block encoding, frequency to time domain conversion, and/or digital baseband to intermediate frequency conversion.
  • Each of the one or more functional modules 54 provides a function to support treatment, data gathering, motion, repairs, and/or diagnostics. The functional modules 54 may be implemented using nanotechnology and/or microelectronic mechanical systems (MEMS) technology. Various examples of functional modules 54 are illustrated in one or more of FIGS. 13-49.
  • The bio-medical unit 10 may be encapsulated by an encapsulate 58 that is non-toxic to the body. For example, the encapsulate 58 may be a silicon based product, a non-ferromagnetic metal alloy (e.g., stainless steel), etc. As another example, the encapsulate 58 may include a spherical shape and have a ferromagnetic liner that shields the unit from a magnetic field and to offset the forces of the magnetic field.
  • The bio-medical unit 10 may be implemented on a single die that has an area of a few millimeters or less. The die may be fabricated in accordance with CMOS technology, Gallium-Arsenide technology, and/or any other integrated circuit die fabrication process.
  • FIG. 9 is a schematic block diagram of an embodiment of a power harvesting module 46 that includes an array of on-chip air core inductors 64, a rectifying circuit 66, capacitors, and a regulation circuit 68. The inductors 64 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • In an example of operation, the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts. The air core inductors 64 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28. Alternatively or in addition to, the air core inductors 64 may generate a voltage from the magnetic field 26 and changes thereof produced by the gradient coils. The rectifying circuit 66 rectifies the AC voltage produced by the inductors to produce a first DC voltage. The regulation circuit generates one or more desired supply voltages 56 from the first DC voltage.
  • The inductors 64 may be implemented on one more metal layers of the die and include one or more turns per layer. Note that trace thickness, trace length, and other physical properties affect the resulting inductance.
  • FIG. 10 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of on-chip air core inductors 70, a plurality of switching units (S), a rectifying circuit 66, a capacitor, and a switch controller 72. The inductors 70 may each having an inductance of a few nano-Henries to a few micro-Henries and may be coupled in series, in parallel, or a series parallel combination.
  • In an example of operation, the MRI transmitter 20 transmits MRI signals 28 at a frequency of 3-45 MHz at a power level of up to 35 KWatts. The air core inductors 70 are electromagnetically coupled to generate a voltage from the magnetic and/or electric field generated by the MRI signals 28. The switching module 72 engages the switches via control signals 74 to couple the inductors 70 in series and/or parallel to generate a desired AC voltage. The rectifier circuit 66 and the capacitor(s) convert the desired AC voltage into the one or more supply voltages 56.
  • FIG. 11 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of Hall effect devices 76, a power combining module 78, and a capacitor(s). In an example of operation, the Hall effect devices 76 generate a voltage based on the constant magnetic field (H) and/or a varying magnetic field. The power combining module 78 (e.g., a wire, a switch network, a transistor network, a diode network, etc.) combines the voltages of the Hall effect devices 76 to produce the one or more supply voltages 56.
  • FIG. 12 is a schematic block diagram of another embodiment of a power harvesting module 46 that includes a plurality of piezoelectric devices 82, a power combining module 78, and a capacitor(s). In an example of operation, the piezoelectric devices 82 generate a voltage based on body movement, ultrasound signals, movement of body fluids, etc. The power combining module 78 (e.g., a wire, a switch network, a transistor network, a diode network, etc.) combines the voltages of the Hall effect devices 82 to produce the one or more supply voltages 56. Note that the piezoelectric devices 82 may include one or more of a piezoelectric motor, a piezoelectric actuator, a piezoelectric sensor, and/or a piezoelectric high voltage device.
  • The various embodiments of the power harvesting module 46 may be combined to generate more power, more supply voltages, etc. For example, the embodiment of FIG. 9 may be combined with one or more of the embodiments of FIGS. 11 and 12.
  • FIG. 13 is a schematic block diagram of another embodiment of a bio-medical unit 10 that includes a power harvesting module 46, a communication module 48, a processing module 50, memory 52, and may include one or more functional modules 54 and/or a Hall effect communication module 116. The communication module 48 may include one or more of an ultrasound transceiver 118, an electromagnetic transceiver 122, an RF and/or MMW transceiver 120, and a light source (LED) transceiver 124. Note that examples of the various types of communication modules 48 will be described in greater detail with reference to one or more of FIGS. 14-49.
  • The one or more functional modules 54 may perform a repair function, an imaging function, and/or a leakage detection function, which may utilize one or more of a motion propulsion module 96, a camera module 98, a sampling robotics module 100, a treatment robotics module 102, an accelerometer module 104, a flow meter module 106, a transducer module 108, a gyroscope module 110, a high voltage generator module 112, a control release robotics module 114, and/or other functional modules described with reference to one or more other figures. The functional modules 54 may be implemented using MEMS technology and/or nanotechnology. For example, the camera module 98 may be implemented as a digital image sensor in MEMS technology. Example of these various modules will be described in greater detail with reference to one or more of FIGS. 14-49.
  • The Hall effect communication module 116 utilizes variations in the magnetic field and/or electrical field to produce a plus or minus voltage, which can be encoded to convey information. For example, the charge applied to one or more Hall effect devices 76 may be varied to produce the voltage change. As another example, an MRI transmitter 20 and/or gradient unit may modulate a signal on the magnetic field 26 it generates to produce variations in the magnetic field 26.
  • FIG. 14 is a diagram of another embodiment of a system that includes one or more bio-medical units 10, a transmitter unit 126, and a receiver unit 128. Each of the bio-medical units 10 includes a power harvesting module 46, a MMW transceiver 138, a processing module 50, and memory 52. The transmitter unit 126 includes a MRI transmitter 130 and a MMW transmitter 132. The receiver unit 128 includes a MRI receiver 134 and a MMW receiver 136. Note that the MMW transmitter 132 and MMW receiver 136 may be in the same unit (e.g., in the transmitter unit, in the receiver unit, or housed in a separate device).
  • In an example of operation, the bio-medical unit 10 recovers power from the electromagnetic (EM) signals 146 transmitted by the MRI transmitter 130 and communicates via MMW signals 148-150 with the MMW transmitter 132 and MMW receiver 136. The MRI transmitter 130 may be part of a portable MRI device, may be part of a full sized MRI machine, and/or part of a separate device for generating EM signals 146 for powering the bio-medical unit 10.
  • FIG. 15 is a diagram of an example of a communication protocol within the system of FIG. 14. In this diagram, the MRI transmitter 20 transmits RF signals 152, which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths. The power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10.
  • In addition to the MRI transmitter 20 transmitting its signal, a constant magnetic field and various gradient magnetic fields 154-164 are created (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz). The power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154-164 to create power for the bio-medical unit 10.
  • During non-transmission periods of the cycle, the bio-medical unit 10 may communicate 168 with the MMW transmitter 132 and/or MMW receiver 136. In this regard, the bio-medical unit 10 alternates from generating power to MMW communication in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 16 is a diagram of another embodiment of a system includes one or more bio-medical units 10, a transmitter unit 126, and a receiver unit 128. Each of the bio-medical units 10 includes a power harvesting module 46, an EM transceiver 174, a processing module 50, and memory 52. The transmitter unit 126 includes a MRI transmitter 130 and electromagnetic (EM) modulator 170. The receiver unit 128 includes a MRI receiver 134 and an EM demodulator 172. The transmitter unit 126 and receiver unit 128 may be part of a portable MRI device, may be part of a full sized MRI machine, or part of a separate device for generating EM signals for powering the bio-medical unit 10.
  • In an example of operation, the MRI transmitter 130 generates an electromagnetic signal that is received by the EM modulator 170. The EM modulator 170 modulates a communication signal on the EM signal to produce an inbound modulated EM signal 176. The EM modulator 170 may modulate (e.g., amplitude modulation, frequency modulation, amplitude shift keying, frequency shift keying, etc.) the magnetic field and/or electric field of the EM signal. In another embodiment, the EM modulator 170 may modulate the magnetic fields produced by the gradient coils to produce the inbound modulated EM signals 176.
  • The bio-medical unit 10 recovers power from the modulated electromagnetic (EM) signals. In addition, the EM transceiver 174 demodulates the modulated EM signals 178 to recover the communication signal. For outbound signals, the EM transceiver 174 modulates an outbound communication signal to produce outbound modulated EM signals 180. In this instance, the EM transceiver 174 is generating an EM signal that, in air, is modulated on the EM signal transmitted by the transmitter unit 126. In one embodiment, the communication in this system is half duplex such that the modulation of the inbound and outbound communication signals is at the same frequency. In another embodiment, the modulation of the inbound and outbound communication signals are at different frequencies to enable full duplex communication.
  • FIG. 17 is a diagram of another example of a communication protocol within the system of FIG. 19. In this diagram, the MRI transmitter 20 transmits RF signals 152, which have a frequency in the range of 3-45 MHz, at various intervals with varying signal strengths. The power harvesting module 46 of the bio-medical units 10 may use these signals to generate power for the bio-medical unit 10.
  • In addition to the MRI transmitter 20 transmitting its signal, a constant magnetic field and various gradient magnetic fields are created 154-164 (one or more in the x dimension Gx, one or more in the y dimension Gy, and one or more in the z direction Gz). The power harvesting module 46 of the bio-medical unit 10 may further use the constant magnetic field and/or the varying magnetic fields 154-164 to create power for the bio-medical unit 10.
  • During the transmission periods of the cycle, the bio-medical unit 10 may communicate via the modulated EM signals 182. In this regard, the bio-medical unit 10 generates power and communicates in accordance with the conventional transmission-magnetic field pattern of an MRI machine.
  • FIG. 18 is a diagram of another embodiment of a system that includes one or more bio-medical units 10, the patient's cell phone 200, a WAN communication device 34, a service provider's computer 186, a network 42, one or more databases 40, and a server 188. The bio-medical unit 10 includes a power harvesting module 46, a processing module 50, memory 52, and a MMW transceiver 138. The memory 52 is storing URL data for the patient 190. Note that the bio-medical unit 10 may be implanted in the patient, on the patient's body, or on the patient's person (e.g., in a medical tag, a key chain, etc.).
  • The URL data 190 includes one or more URLs 192 that identify locations of the patient's medical records. For example, one URL may be for the patient's prescription records, another may be for hospitalizations, another for general office visits, etc. In this regard, the bio-medical unit 10 is an index to easily access the patient's medical history.
  • For a service provider to access the patient's medical records, or a portion thereof, the patient's cell phone retrieves 200 the URL(s) 192 from the bio-medical unit 10. The cell phone 200 generates a request to access the patient's information, where the request includes the URL(s) 192, the service provider's ID, the patient's ID, and a data request. The request is provided, via the WAN device 34 and the network 42, to the server 188.
  • The server 188 processes 198 the request. If the service provider is authenticated and the request is valid, the server issues a data retrieval message to the one or more databases 40 identified by the URL(s) 192. The addressed database(s) 40 retrieves the data and provides it via the network 42 and the WAN device 34 to the service provider's computer 186.
  • FIG. 19 is a diagram of another embodiment of a system that includes one or more bio-medical units 10, the patient's cell phone 200, a WAN communication device 34, a service provider's computer 186, a network 42, one or more databases 40, and a server 188. The bio-medical unit 10 includes a power harvesting module 46, a processing module 50, memory 52, and a MMW transceiver 138. The memory 52 is storing URL data for the patient. Note that the bio-medical unit 10 may be implanted in the patient, on the patient's body, or on the patient's person (e.g., in a medical tag, a key chain, etc.).
  • The URL data includes one or more URLs that identify locations of the patient's medical records. For example, one URL may be for the patient's prescription records, another may be for hospitalizations, another for general office visits, etc. In this regard, the bio-medical unit is an index to easily access the patient's medical history.
  • To update the URL(s) in the bio-medical unit 10, the server 188 determines when an update is needed 212. When an update is needed, the server 188 generates an update message that includes the identity of the patient's cell phone 200, the updated URL data 208, and the identity of the bio-medical unit 10. The server 188 provides the update message to the patient's cell phone 200 via the network 42 and a base station 202. The patient's cell phone 200 processes the update message and, when validated, provides the updated URL data 208 to the bio-medical unit 10 for storage in memory 52 as stored updated patient URL(s) 206.
  • FIG. 20 is a schematic block diagram of an embodiment of networked bio-medical units 10 that communicate with each other, perform sensing functions to produce sensed data 218-232, process the sensed data to produce processed data, and transmit the processed data 216. The bio-medical units 10 may be positioned in a body part to sense data across the body part and to transmit data to an external communication device. The transmitted data may be further processed or aggregated from sensed data.
  • The bio-medical units 10 may monitor various types of biological functions over a short term or a long term to produce the sensed data 218-232. Note that the sensed data 218-232 may include blood flow rate, blood pressure, temperature, air flow, blood oxygen level, density, white cell count, red cell count, position information, etc.
  • The bio-medical unit 10 establishes communications with one or more other bio-medical units 10 to facilitate the communication of sensed data 218-232 and processed data 216. The communication may include EM signals, MMW signals, optical signals, sound signals, and/or RF signals.
  • The bio-medical unit 10 may determine position information based on the sensed data 218-232 and include the position information in the communication. The bio-medical unit 10 may also determine a mode of operation based on one or more of a command, a list, a predetermination, sensed data, and/or processed data. For example, a bio-medical unit 10 at the center of the body part may be in a mode to sense temperature and a bio-medical unit 10 at the outside edge of the body part may sense blood flow.
  • The bio-medical unit 10 may receive processed data 218-232 from another bio-medical unit and re-send the same processed data 218-232 to yet another bio-medical unit 10. The bio-medical unit 10 may produce processed data based on sensed data 218-232 from the bio-medical unit 10 and/or received processed data from another bio-medical unit 10.
  • FIG. 21 is a flowchart illustrating the processing of networked bio-medical unit data where the bio-medical unit determines the sense mode based on one or more of a predetermination, a stored mode indicator in memory, a command, and/or a dynamic sensed data condition. The method begins at step 234 where the bio-medical unit 10 determines the mode. The method branches to step 240 when the bio-medical unit 10 determines that the mode is process and sense. The method continues to step 236 when the bio-medical unit 10 determines that the mode is sense only.
  • At step 236, the bio-medical unit 10 gathers data from one or more of the functional modules 54 to produce sensed data. The bio-medical unit 10 may transmit the sensed data 238 to another bio-medical unit 10 and/or an external communication device in accordance with the sense mode. For example, the bio-medical unit 10 may transmit the sensed data at a specific time, to a specific bio-medical unit 10, to a specific external communication device, after a certain time period, when the data is sensed, and/or when the sensed data compares favorably to a threshold (e.g., a temperature trip point).
  • The method continues at step 240 where the bio-medical unit 10 determines whether it has received data from another unit 10. If not, the method continues to step 250, where the bio-medical unit 10 transmits its sensed data to another bio-medical unit 10 and/or an external communication device in accordance with the sense mode.
  • When the bio-medical unit 10 has received data from another unit, the method continues at step 242, where the bio-medical unit 10 determines a data function to perform based on one or more of the content of the received data, the sensed data, a command, and/or a predetermination. The data function may one or more of initialization, comparing, compiling, and/or performing a data analysis algorithm.
  • The method continues at step 244, where the bio-medical unit 10 gathers data from the functional modules 54, and/or the received data from one or more other bio-medical units 10. The method continues at step 246, where the bio-medical unit 10 processes the data in accordance with a function to produce processed data. In addition to the example provided above, the function may also include the functional assignment of the bio-medical unit 10 as determined by a predetermination, a command, sensed data, and/or processed data (e.g., measure blood pressure from the plurality of bio-medical units and summarize the high, low, and average).
  • The method continues at step 248, where the bio-medical unit 10 transmits the processed data to another bio-medical unit 10 and/or to an external communication device in accordance with the sense mode. For example, the bio-medical unit 10 may transmit the sensed data at a specific time, to a specific bio-medical unit 10, to a specific external communication device, after a certain time period, when the data is sensed, and/or when the sensed data compares favorably to a threshold (e.g., a temperature trip point). Note that the communication protocol may be the same or different between bio-medical units 10 and/or between the bio-medical unit 10 and the external communication device.
  • FIG. 22 is a schematic block diagram of an embodiment of a plurality of imaging bio-medical units 10 in a body part 214 where image data A-H 218-232 is provided by the plurality of imaging bio-medical units 10 that may pertain to a mass 216 within the body part 214.
  • The bio-medical units 10 may determine an operational mode based on a pre-determination (e.g., pre-programmed) and/or system level coordination commands received from an external communication device. The operational mode may specify how to gather image data (e.g., MMW radar sweep, ultrasound, light) and where to gather it (e.g., pointing at a specific location within the body).
  • In an example, the bio-medical units 10 perform the MMW radar sweep of a mass 216 in a body part in a coordinated fashion such that each bio-medical unit 10 performs the MMW radar sweep sequentially. In another example, one bio-medical unit 10 transmits a radar sweep while the other bio-medical units 10 generate image data based on received reflections.
  • FIG. 23 is a schematic block diagram of an embodiment of plurality bio-medical units 10 that is encircling cancer cells. The bio-medical units 10 disperse a drug therapy 236 (e.g., chemotherapy cancer drugs) and substantially contain the drug therapy 236 to a localized area 234 in a body part 214 (e.g., around the cancer cells) via electromagnetic energy. For example, the drug 236 may be induced with a magnetic charge that is opposite to the electromagnetic energy of the bio-medical units such that is substantially stays in a desired location. As another example, the drug 236 may be ionized and/or include an inert catalyst.
  • One or more of the bio-medical units 10 may determine to deliver the drug therapy 236 and/or one or more of the bio-medical units 10 may determine to contain the drug therapy 236 to the localized area 234. The determinations are based on one or more of a predetermination (e.g., in memory), a command (e.g., via communication from an external communication device), a time schedule, and/or sensed data (e.g., the proximity of the localized area, cancer cell growth, white blood cell count, etc.).
  • FIG. 24 is a schematic block diagram of an embodiment of a plurality of bio-medical units 10 containing an ionized drug therapy 236 around a cancer cell mass 234. The bio-medical unit communication module 48 may utilize beam forming in conjunction with one or more other bio-medical unit communication modules 48 such that the resulting composite electric field E substantially contains the ionized drug therapy 236.
  • In an embodiment of a bio-medical unit, the communication module 48 may communicate with other communication modules 48 to coordinate the beam forming. Alternatively, the communication modules 48 may receive a command from the external communication device to coordinate the beamforming. Note that the bio-medical unit 10 may vary the E field generation based on one or more of sensed data (e.g., the drug therapy is moving), a command, and/or available power.
  • FIG. 25 is a schematic block diagram of an embodiment of a parent bio-medical unit (on the left) communicating with an external unit to coordinates the functions of one or more children bio-medical units 10 (on the right). The parent unit includes a communication module 48 for external communications, a communication module 48 for communication with the children units, the processing module 50, the memory 52, and the power harvesting module 46. Note that the parent unit may be implemented one or more chips and may in the body or one the body.
  • Each of the child units includes a communication module 48 for communication with the parent unit and/or other children units, a MEMS robotics 244, and the power harvesting module 46. The MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator. The communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the child units in accordance with external communications commands.
  • In an example of operation, the patent bio-medical unit receives a communication from the external source, where the communication indicates a particular function the child units are to perform. The parent unit processes the communication and relays relative portions to the child units in accordance with a control mode. Each of the child units receives their respective commands and performs the corresponding functions to achieve the desired function.
  • FIG. 26 is a schematic block diagram of another embodiment of a plurality of task coordinated bio-medical units 10 including a parent bio-medical unit 10 (on the left) and one or more children bio-medical units 10 (on the right). The parent unit may be implemented one or more chips and may in the body or one the body. The parent unit may harvest power in conjunction with the power booster 84.
  • The parent unit includes the communication module 48 for external communications, the communication module 48 for communication with the children units, the processing module 50, the memory 52, a MEMS electrostatic motor 248, and the power harvesting module 46. The child unit includes the communication module 48 for communication with the parent unit and/or other children units, a MEMS electrostatic motor 248, the MEMS robotics 244, and the power harvesting module 46. Note that the child unit has fewer components as compared to the parent unit and may be smaller facilitating more applications where smaller bio-medical units 10 enhances their effectiveness.
  • The MEMS robotics 244 may include one or more of a MEMS technology saw, drill, spreader, needle, injection system, and actuator. The MEMS electrostatic motor 248 may provide mechanical power for the MEMS robotics 244 and/or may provide movement propulsion for the child unit such that the child unit may be positioned to optimize effectiveness. The child units may operate in unison to affect a common task. For example, the plurality of child units may operate in unison to saw through a tissue area.
  • The child unit communication module 48 may support RF and/or MMW inbound and/or outbound signals 60 to the parent unit such that the parent unit may command the children units in accordance with external communications commands.
  • The child unit may determine a control mode and operate in accordance with the control mode. The child unit determines the control mode based on one or more of a command from a parent bio-medical unit, external communications, a preprogrammed list, and/or in response to sensor data. Note that the control mode may include autonomous, parent (bio-medical unit), server, and/or peer as previously discussed.
  • FIG. 27 is a schematic block diagram of an embodiment of a bio-medical unit 10 based imaging system that includes the bio-medical unit 10, the communication device 24, a database 254, and an in vivo image unit 252. The bio-medical unit 10 may perform scans and provide the in vivo image unit 252 with processed image data for diagnostic visualization.
  • The bio-medical unit 10 includes a MEMS image sensor 256, the communication module 48 for external communications with the communication device, the processing module 50, the memory 52, the MEMS electrostatic motor 248, and the power harvesting module 46. In an embodiment the bio-medical unit 10 and communication device 24 communicate directly. In another embodiment, the bio-medical unit 10 and communication device 24 communicate through one or more intermediate networks (e.g., wireline, wireless, cellular, local area wireless, Bluetooth, etc.). The MEMS image sensor 256 may include one or more sensors scan types for optical signals, MMW signals, RF signals, EM signals, and/or sound signals.
  • The in vivo unit 252 may send a command to the bio-medical unit 10 via the communication device 24 to request scan data. The request may include the scan type. The in vivo unit 252 may receive the processed image data from the bio-medical unit 10, compare it to data in the database 254, process the data further, and provide image visualization.
  • FIG. 28 is a schematic block diagram of an embodiment of a communication and diagnostic bio-medical unit 10 pair where the pair utilize an optical communication medium between them to analyze material between them (e.g., tissue, blood flow, air flow, etc,) and to carry messages (e.g., status, commands, records, test results, scan data, processed scan data, etc.).
  • The bio-medical unit 10 includes a MEMS light source 256, a MEMS image sensor 258, the communication module 48 (e.g., for external communications with the communication device 24), the processing module 50, the memory 52, the MEMS electrostatic motor 248 (e.g., for propulsion and/or tasks), and the power harvesting module 46. The bio-medical unit 10 may also include the MEMS light source 256 to facilitate the performance of light source tasks. The MEMS image sensor 258 may be a camera, a light receiving diode, or infrared receiver. The MEMS light source 256 may emit visible light, infrared light, ultraviolet light, and may be capable of varying or sweeping the frequency across a wide band.
  • The processing module 50 may utilize the MEMS image sensor 258 and the MEMS light source 256 to communicate with the other bio-medical unit 10 using pulse code modulation, pulse position modulation, or any other modulation scheme suitable for light communications. The processing module 50 may multiplex messages utilizing frequency division, wavelength division, and/or time division multiplexing.
  • The bio-medical optical communications may facilitate communication with one or more other bio-medical units 10. In an embodiment, a star architecture is utilized where one bio-medical unit 10 at the center of the star communicates to a plurality of bio-medical units 10 around the center where each of the plurality of bio-medical units 10 only communicate with the bio-medical unit 10 at the center of the star. In an embodiment, a mesh architecture is utilized where each bio-medical unit 10 communicates as many of the plurality of other bio-medical units 10 as possible and where each of the plurality of bio-medical units 10 may relay messages from one unit to another unit through the mesh.
  • The processing module 50 may utilize the MEMS image sensor 258 and the MEMS light source 256 of one bio-medical unit 10 to reflect light signals off of matter in the body to determine the composition and position of the matter. In another embodiment, the processing module 50 may utilize the MEMS light source 256 of one bio-medical unit 10 and the MEMS image sensor 258 of a second bio-medical unit 10 to pass light signals through matter in the body to determine the composition and position of the matter. The processing module 50 may pulse the light on and off, sweep the light frequency, vary the amplitude and may use other perturbations to determine the matter composition and location.
  • FIG. 29 is a schematic block diagram of an embodiment of a bio-medical unit 10 based sounding system that includes the bio-medical unit 10, the communication device 24, the database 254, and a speaker 260. The bio-medical unit 10 may perform scans and provide the speaker 260 with processed sounding data for diagnostic purposes via the communication device 24.
  • The bio-medical unit 10 includes a MEMS microphone 262, the communication module 48 for external communications with the communication device 24, the processing module 50, the memory 52, the MEMS electrostatic motor 248, and the power harvesting module 46. In an embodiment the bio-medical unit 10 and communication device 24 communicate directly. In another embodiment, the bio-medical unit 10 and communication device 24 communicate through one or more intermediate networks (e.g., wireline, wireless, cellular, local area wireless, Bluetooth, etc.) The MEMS microphone 262 may include one or more sensors to detect audible sound signals, sub-sonic sound signals, and/or ultrasonic sound signals.
  • The processing module 50 may produce the processed sounding data based in part on the received sound signals and in part on data in the database 254. The processing module 50 may retrieve data via the communication module 48 and communication device 24 link from the database 254 to assist in the processing of the signals (e.g., pattern matching, filter recommendations, sound field types). The processing module 50 may process the signals to detect objects, masses, air flow, liquid flow, tissue, distances, etc. The processing module 50 may provide the processed sounding data to the speaker 260 for audible interpretation. In another embodiment, the bio-medical unit 10 assists an ultrasound imaging system by relaying ultrasonic sounds from the MEMS microphone 262 to the ultrasound imaging system instead of to the speaker 260.
  • FIG. 30 is a schematic block diagram of another embodiment of a bio-medical unit 10 communication and diagnostic pair where the pair utilize an audible communication medium between them to analyze material between them (e.g., tissue, blood flow, air flow, etc,) and to carry messages (e.g., status, commands, records, test results, scan data, processed scan data, etc.). The bio-medical unit 10 includes the MEMS microphone 262, a MEMS speaker 264, the communication module 48 (e.g., for external communications with the communication device), the processing module 50, the memory 52, the MEMS electrostatic motor 248 (e.g., for propulsion and/or tasks), and the power harvesting module 46. The bio-medical unit 10 may also include the MEMS speaker 264 to facilitate performance of sound source tasks.
  • The MEMS microphone 262 and MEMS speaker 264 may utilize audible sound signals, sub-sonic sound signals, and/or ultrasonic sound signals and may be capable of varying or sweeping sound frequencies across a wide band. The processing module 50 may utilize the MEMS microphone 262 and MEMS speaker 264 to communicate with the other bio-medical unit 10 using pulse code modulation, pulse position modulation, amplitude modulation, frequency modulation, or any other modulation scheme suitable for sound communications. The processing module 50 may multiplex messages utilizing frequency division and/or time division multiplexing.
  • The bio-medical sound based communications may facilitate communication with one or more other bio-medical units 10. In an embodiment, a star architecture is utilized where one bio-medical unit 10 at the center of the star communicates to a plurality of bio-medical units 10 around the center where each of the plurality of bio-medical units 10 only communicate with the bio-medical unit 10 at the center of the star. In an embodiment, a mesh architecture is utilized where each bio-medical unit 10 communicates as many of the plurality of other bio-medical units 10 as possible and where each of the plurality of bio-medical units 10 may relay messages from one unit to another unit through the mesh.
  • The processing module 50 may utilize the MEMS microphone 262 and MEMS speaker 264 of one bio-medical unit 10 to reflect sound signals off of matter in the body to determine the composition and position of the matter. In another embodiment, the processing module 50 may utilize the MEMS microphone 262 of one bio-medical unit 10 and the MEMS speaker 264 of a second bio-medical unit 10 to pass sound signals through matter in the body to determine the composition and position of the matter. The processing module 50 may pulse the sound on and off, sweep the sound frequency, vary the amplitude and may use other perturbations to determine the matter composition and location.
  • FIG. 31 is a schematic block diagram of an embodiment of a sound based imaging system including a plurality of bio-medical units 10 utilizing short range ultrasound signals in the 2-18 MHz range to facilitate imaging a body object 268. The bio-medical unit 10 includes at least one ultrasound transducer 266, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46. The ultrasound transducer 266 may be implemented utilizing MEMS technology.
  • The processing module 50 controls the ultrasonic transducer 266 to produce ultrasonic signals and receive resulting reflections from the body object 268. The processing module 50 may coordinate with the processing module 50 of at least one other bio-medical unit 10 to produce ultrasonic signal beams (e.g., constructive simultaneous phased transmissions directed in one direction) and receive resulting reflections from the body object. The processing module 50 may perform the coordination and/or the plurality of processing modules 50 may perform the coordination. In embodiment, the plurality of processing modules 50 receives coordination information via the communication module 48 from at least one other bio-medical unit 10. In another embodiment, the plurality of processing modules 50 receives coordination information via the communication module 48 from an external communication device.
  • The processing module produces processed ultrasonic signals based on the received ultrasonic reflections from the body object 268. For example, the processed ultrasonic signals may represent a sonogram of the body part. The processing module 50 may send the processed ultrasonic signals to the external communication device and/or to one or more of the plurality of bio-medical units 10.
  • FIG. 32 is a schematic block diagram of an embodiment of a breast implant system 308 that may be implanted within breast tissue 306 and may communicate with a communication device 24. The breast implant system 308 includes a shell 311 (e.g., silicon), a viscous material 313 (e.g., saline and/or silicon), and a plurality of bio-medical units 310-316. The bio-medical units may include one or more image sensing bio-medical units 310, one or more repair tool bio-medical units 312, one or more leakage detection bio-medical units 314, and/or one or more repair material bio-medical units 316.
  • Each of the bio-medical units310-316 includes a wireless power harvesting module, a functional module, and a wireless communication module. The wireless power harvesting module generates a supply voltage from a wireless source (e.g., MRI signals, RF signals, body motion, ultrasound signals, etc.) as previously discussed. The wireless communication module facilitates wireless communications between the functional module and the communication device 24 in a manner as previously discussed. For example, the communication may involve gathering of data by the unit, transmitting data by the unit, performing a command from the communication device 24, etc.
  • The functional module of a bio-medical unit 310-316 performs a function when activated and powered by the supply voltage. The function may be one or more of a repair function (e.g., tool and/or repair material), an imaging function, and a leakage detection function. For example, the repair function may be one or more of a cutting function (e.g., laser, knife, scissors, etc.), a grasping function (e.g., pliers, clamp, etc.) and a patching function. (e.g., stapler, sewing, canister for holding a repair material of silicon, saline, and/or other patching material, etc.). As another example, the leakage detection function may include one or more of a pressure detection function and a position detection function. As yet another example, the imaging function may include one or more of a radio frequency radar imaging function, an ultrasound imaging function, a magnetic resonance imaging function, a digital image sensor function, a millimeter wave radar imaging function, and a light imaging function.
  • One or more of bio-medical units 310-316 may each be affixed to the shell 311 and/or to the viscous material 313. For example, at least some of bio-medical units 310-316 are fixed in a stationary position in the shell. As a specific example, some of the units 310-316 may be embedded in the shell during the manufacture of the shell 311. As another specific example, some of the units 310-316 may be affixed to the shell during the breast augmentation surgery. As yet another example, some of the units may include a housing that enables the bio-medical unit to be suspended in a desired position within the viscous material. For instance, the housing may of a material, include a magnetic polarization, and/or be ionized to enable its suspension within the viscous material 313.
  • In another embodiment, one or more of the bio-medical unit 310-316 further includes a motion module that enables the bio-medical unit to be positioned within the viscous material 313 based on positioning wireless communications received by the wireless communication module. Examples of motion modules have been discussed in one or more of the preceding figures.
  • In an example of operation, the breast implant system 308 communicates with the communication device 24 to perform a mammogram function, to detect damage to the shell 311 that may cause a leak, to detect a leak within the shell, to repair the leak, etc. For instance, the communication device 24 may instruct the plurality of image sensing bio-medical units 310 to capture images of the surround breast tissue 306 and provide the images to the communication device 24. The communication device 24 may process the images to produce a mammogram or provide the images to another device for processing. In either situation, a mammogram can be performed without a visit to a doctor's office, may be performed at any time, and with any regularity. With a substantial percentage of US woman having breast implants and about 12% US woman contracting breast cancer, the breast implant system 308 enables easy and early detection of breast cancer and will help to save lives.
  • As another example of operation, the communication device 24 may instruct the breast implant system 308 to periodically check for leaks. (Note that, at the writing of this patent application, many breast implants have an effect life of about 10 years, meaning they have to be repaired and/or replaced every ten years; subjecting a woman to surgery every 10 years of her life.) In this example, the plurality of leakage detection bio-medical units 314 function to measure the shape, volume, and/or pressure of the breast implant system 306. This information is provided to the communication device 24, which can determine whether a changed has occurred since the last measurement and determine whether the change is due to a potential leak.
  • If the communication device 24 suspects a leak, it may engage the imaging sensing bio-medical units 310 to capture images of the shell 311 and provide it with the images. The communication device 24 processes the images to determine whether the shell has a leak or may be on the verge of have a leak. Alternatively, the communication device 24 may engage the leakage detection bio-medical units 314 to gather data regarding movement of the viscous material 313 within the shell 311 and provide it with the data. From the data, the communication device 24 analyzes the movement of the viscous material 311 and may detect a leak therefrom.
  • If the communication device determines a leak, it engages the plurality of repair tool bio-medical units 312 and the plurality of repair material bio-medical units 316 to repair it. For instance, the communication device 24 may instruct the repair tool units 312 to hold a damaged area of the shell while it instructs the repair material units 316 to repair the damage. As a specific example, if the shell has a puncture, the repair tool units 312 may clasp the punctured area closed while the repair material units 316 dispense a patch material (e.g., silicon) to patch the punctured area. Note that the same may be done for a weak area of the shell prior to leak actually occurring. In either of these cases, leakage of a breast implant is substantially reduced and/or eliminated, thus substantially reducing the health risks of a breast implant leak.
  • In another example of operation, the bio-medical units 310-316 operation in an autonomous manner to gather image data, process the image data, detect leaks, and/or repair leaks or weakened areas of the shell. In this example, the plurality of image sensing bio-medical units 310 periodically (e.g., once a week, once a month, etc.) captures images of the surround breast tissue 306. The units 310 may store the data and provide it to the communication device 24 when communication is established therebetween. Alternatively, the units 310 may process the images to produce a mammogram, which is subsequently provided to the communication device 24.
  • In furtherance of this example, the plurality of leakage detection bio-medical units 314 periodically measures the shape, volume, and/or pressure of the breast implant system 306. The units 314 store the information and provided it to the communication device 24 when communication is established therebetween. Alternatively, the units may process the data to determine whether a changed has occurred since the last measurement and determine whether the change is due to a potential leak.
  • If a leak is suspected, the detection units 314 may engage the imaging sensing bio-medical units 310 to capture images of the shell 311 to determine whether the shell has a leak or may be on the verge of have a leak. Alternatively, the leakage detection bio-medical units 314 may gather data regarding movement of the viscous material 313 within the shell 311 and analyze the movement of the viscous material 311 to detect a leak therefrom. If a leak is detected, the plurality of repair tool bio-medical units 312 and the plurality of repair material bio-medical units 316 are activated to repair it.
  • In another embodiment, the breast implant system 308 includes the shell 311, the viscous material 313, and a bio-medical unit (e.g., 310). The bio-medical unit is affixed to the shell and/or the viscous material and includes a wireless power harvesting module, a breast cancer detection module, and a wireless communication module. The wireless power harvesting and the wireless communication modules function as previously described. The breast cancer detection module is operable to detect possible breast cancer when activated and powered by the supply voltage.
  • The breast cancer detection module includes one or more of a radio frequency radar imaging module, an ultrasound imaging module, a magnetic resonance imaging module, a digital image sensor, a millimeter wave radar imaging module, and a light imaging module. The bio-medical unit may also include a motion module operable to position the bio-medical unit within the viscous material based on positioning wireless communications received by the wireless communication module. The bio-medical unit may further include a housing to contain the wireless power harvesting module, the functional module, and the wireless communication module, wherein the bio-medical unit is suspended in a desired position within the viscous material.
  • FIG. 33 is a schematic block diagram of an embodiment of a leakage detection bio-medical unit 314 where the bio-medical unit 314 may detect leakage in a breast implant and report the leakage. The bio-medical unit 314 includes a MEMS pressure sensor 320, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may utilize the MEMS pressure sensor 320 to periodically sample the pressure, save a pressure indicator in the memory 52, and process the plurality of pressure indicators to produce a processed pressure indicator. The processed pressure indicator may be an average, mean, medium, and may include short term and long term metrics. For example, a short term metric may include a rolling average of one hundred samples over the last twenty four hours and a long term metric may include a rolling average of one thousand samples over the last sixty days.
  • The processing module 50 may send the processed pressure indicator to one or more other bio-medical units 10 and/or to the communication device 24 for further processing and decision making. In another embodiment, the processing module 50 may compare the processed pressure indicator to one or more thresholds to determine if a leak may be present. The processing module 50 may acquire the thresholds from one or more of a predetermination, a command, and/or an adaptive algorithm (e.g., to filter out false alarms).
  • FIG. 34 is a schematic block diagram of another embodiment of a leakage detection bio-medical unit 314 where the bio-medical unit may detect leakage in a breast implant and report the leakage. The bio-medical unit 314 includes a MEMS position sensor 324, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may utilize the MEMS position sensor 324 to periodically determine the position of the unit relative to the position of other units and/or the breast implant 308, save a position indicator in the memory 52, and process the plurality of position indicators to produce a processed position indicator. The processed position indicator may be an average, mean, medium, and may include short term and long term metrics. For example, a short term metric may include a rolling average of one hundred samples over the last twenty four hours and a long term metric may include a rolling average of one thousand samples over the last sixty days.
  • The processing module 50 may send the processed position indicator to one or more other bio-medical units 10 and/or to the communication device 24 for further processing and decision making. In another embodiment, the processing module 50 may compare the processed position indicator to one or more thresholds to determine if a leak may be present (e.g., the position indicators suggest a volume change). The processing module 50 may acquire the thresholds from one or more of a predetermination, a command, and/or an adaptive algorithm (e.g., to filter out false alarms).
  • FIG. 35 is a schematic block diagram of an embodiment of an image sensing bio-medical unit 310 where the bio-medical unit 310 may provide one or more imaging functions. The bio-medical unit 310 includes a MEMS image sensor, 328 the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may utilize the MEMS image sensor 328 to periodically determine images including images based on a camera, ultrasound, RF radar, MMW radar, and light. The processing module 50 may process the image to produce a processed image. For example, the processing module 50 may pattern match the image to determine the location of a leak in a breast implant 308.
  • The processing module 50 may send the processed image to one or more other bio-medical units 10 and/or to the communication device 24 for further processing and decision making. In another embodiment, the processing module 50 may compare the processed image to one or more image templates to determine if a leak may be present. The processing module 50 may acquire the image templates from one or more of a predetermination, a command, and/or an adaptive algorithm (e.g., to filter out false alarms by storing images of previous actual leaks).
  • FIG. 36 is a schematic block diagram of an embodiment of a repair tool bio-medical unit 312 where the bio-medical unit 312 may provide a cutting function. The bio-medical unit 312 includes a MEMS cutting tool 332, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may determine to utilize the MEMS cutting tool 332 to affect a breast implant repair. The MEMS cutting tool 332 may include a cutting method including a laser, an ultrasonic beam, and/or a knife edge. The determination may be based on one of more of a predetermination, a command, and/or an adaptive algorithm (e.g., to cut a moving object).
  • FIG. 37 is a schematic block diagram of another embodiment of a repair tool bio-medical unit 312 where the bio-medical unit 312 may provide a grasping function. The bio-medical unit 312 includes a MEMS grasping tool 336, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may determine to utilize the MEMS grasping tool 336 to affect a breast implant repair. The MEMS grasping tool 336 may include a grasping method including pliers, clamp, latch, hooks, etc. The determination may be based on one of more of a predetermination, a command, and/or an adaptive algorithm (e.g., to grasp a moving object).
  • FIG. 38 is a schematic block diagram of an embodiment of a repair material bio-medical unit 316 where the bio-medical unit 316 may provide a repair material dispensing function. The bio-medical unit 316 includes a MEMS canister 340, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may determine to utilize the MEMS canister 340 to affect a breast implant repair. The MEMS canister 340 may include a dispensing method including faster injection, slower injection, transfer, spreading, patching, etc. The determination may be based on one of more of a predetermination, a command, and/or an adaptive algorithm (e.g., to patch a moving object).
  • FIG. 39 is a schematic block diagram of an embodiment of a Doppler radar bio-medical unit to provide a distancing radar function to determine the location of a body object 268. The bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the MEMS propulsion 348, the processing module 50, the memory 52, the power harvesting module 46, a MMW frequency adjust 358, a mixer 362, a low noise amplifier 360 (LNA), and a power amplifier 356 (PA). The bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands.
  • The bio-medical unit 10 may send a transmitted MMW signal 364 to the body object 268 and receive a reflected MMW signal 366 from the body object. 268. Some of the transmitted MMW signal energy is absorbed, reflected in other directions, and/or transmitted to other directions. The bio-medical unit 10 forms a Doppler radar sequence by varying the frequency of the transmitted MMW signal 364 over a series of transmission steps. The bio-medical unit 10 may determine the distance and location information based on the reflected MMW signal 366 in response to the Doppler radar.
  • The bio-medical unit 10 may receive a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals to perform the Doppler radar function. In another embodiment, the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the body object. In yet another embodiment, the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the Doppler radar function from two, three or more bio-medical units 10 to triangulate the body object location based on the distance information.
  • The processing module 50 may control the MEMS propulsion 348 to reposition the bio-medical unit 10. The processing module 50 may determine how to control the MMW frequency adjust 358 to affect the distance information detection based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects course distance ranges at first and fine tunes the accuracy over time). The processing module 50 controls the MMW frequency adjust 358 in accordance with the determination such that the PA 356 generates the desired transmitted MMW signal 364. The LNA 360 amplifies the reflected MMW signal 366 and the mixer 362 down converts the signal such that the processing module 50 receives and processes the signal.
  • FIG. 40 is a timing diagram of an embodiment of a Doppler radar sequence where a transmit (TX) series 368 of MMW transmissions for the transmit sequence of transmitted MMW signals 364 and a receive (RX) series of MMW receptions for the receive sequence of reflected MMW signals 366. The transmit sequence may modulo cycle through frequencies that are Δf apart (e.g., f1, f1+2 Δf, f1+2 Δf, . . . ) spaced apart in time at intervals t1, t2, t3, etc.
  • The receive sequence 370 provides the reflection signals in the same order of the transmit sequence 368 with small differences in time (e.g., at r1, r2, r3, . . . ) and frequency. The processing module 50 determines distance information based on the small differences in time and frequency between the receive sequence 370 and the originally transmitted sequence 368.
  • FIG. 41 is a schematic block diagram of another embodiment of a Doppler radar bio-medical unit 10 to provide a distancing radar function to determine the density of a body object 268 when the body object 268 vibrates from an ultrasound signal 372. At least one other bio-medical unit 10 may provide the ultrasound signal.
  • The bio-medical unit 10 includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the MEMS propulsion 348, the processing module 50, the memory 52, the power harvesting module 46, a MMW frequency adjust 358, a mixer 362, a low noise amplifier 360 (LNA), and a power amplifier 356 (PA). The bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands. For example, the bio-medical unit 10 may coordinate with at least one other bio-medical unit 10 to provide the ultrasound signal 372.
  • The bio-medical unit 10 may send a transmitted MMW signal 364 to the body object and receive a reflected MMW signal 366 from the body object. Some of the transmitted MMW signal energy is absorbed by the body object, reflected in other directions, and/or transmitted to other directions. Note that the reflections may vary as a function of the ultrasound signal where the reflected signals vary according to the density of the body object.
  • The bio-medical unit 10 forms a Doppler radar sequence by varying the frequency of the transmitted MMW signal 364 over a series of transmission steps. The bio-medical unit 10 may determine the distance and density based on the reflected MMW signal 366 in response to the Doppler radar.
  • The bio-medical unit 10 may receive a command from the communication device 24 to reposition, adjust the MMW frequency, and transmit MMW signals 364 to perform the Doppler radar function. In another embodiment, the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the formation of a beam to better pinpoint the body object 268 and determine the density. In yet another embodiment, the communication device 24 may send a command to a plurality of bio-medical units 10 to coordinate the Doppler radar function from two, three or more bio-medical units 10 to triangulate the body object 268 location based on the distance information.
  • The processing module 50 may control the MEMS propulsion 348 to reposition the bio-medical unit 10. The processing module 50 may determine how to control the MMW frequency adjust 358 to affect the distance and density information detection based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects course distance ranges at first and fine tunes the accuracy over time). The processing module 50 controls the MMW frequency adjust 358 in accordance with the determination such that the PA 356 generates the desired transmitted MMW signal 364. The LNA 360 amplifies the reflected MMW signal 366 and the mixer 362 down converts the signal such that the processing module 50 receives and processes the signal.
  • FIG. 42 is a schematic block diagram of an embodiment of a controlled release bio-medical unit 10 that administers potentially complex medications. The bio-medical unit 10 includes a MEMS controlled release module 374, the communication module 50 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands. For example, the bio-medical unit 10 may coordinate with at least one other bio-medical unit 10 to provide the administration of medications. The processing module 50 may determine when and how to administer the medication based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain).
  • The MEMS controlled release module 374 may contain materials that comprise medications and a unit ID to identify the materials. The processing module 50 may control the MEMS controlled release module 374 to mix particular materials to produce a desired medication in accordance with the unit ID, and the determination of the when and how to administer the medication.
  • FIG. 43 is a schematic block diagram of an embodiment of a MEMS controlled release module 374 that controls the formation and delivery of medications created with materials previously stored in the MEMS controlled release module 374. The MEMS controlled release module 374 may include a MEMS canister 340, a MEMS valve 376, a MEMS pump 378, a MEMS needle 380, MEMS delivery tube 382, and pathways between the elements. The MEMS canister 340 holds one or more materials. The MEMS valve 376 may control the flow of a material. The MEMS pump 378 may actively move a material. The MEMS needle 380 may facilitate injection of the medication. The MEMS delivery tube 382 may facilitate delivery of the medication.
  • The MEMS controlled release module 374 may receive requests and/or commands from the processing module 50 including request for unit ID, commands to mix 10% material A and 90% material B, a command to inject the needle, and/or a command to administer the mixture through a MEMS needle 380 and/or MEMS delivery tube 382.
  • FIG. 44 is a schematic block diagram of an embodiment of a controlled release bio-medical unit 10 system that administers potentially complex medications. A plurality of bio-medical units 10 transfers (e.g., from at least one unit to another), mix, and administer the medications.
  • A first type of bio-medical unit 10 includes a MEMS controlled release module 374, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46. The first type of bio-medical unit 10 substantially provides the medication ingredients to a second type of bio-medical unit 10.
  • The second type of bio-medical unit 10 includes at least one MEMS controlled receptacle module 386, a MEMS composition mix and release 388, the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46. The second type of bio-medical unit 10 substantially mixes the final medication and administers the medication.
  • The first and second types of bio-medical unit 10 may communicate with other bio-medical units 10 and/or with a communication device 24 to communicate status information and/or commands. For example, the second type bio-medical unit 10 may coordinate with at least one first type of bio-medical unit 10 to provide the administration of medications.
  • The processing module 50 of the second type of bio-medical unit 10 may determine when and how to administer the medication based on a command, a predetermination, and/or an adaptive algorithm (e.g., that detects local pain). The processing module 50 of the second type of bio-medical unit 10 may determine which of the plurality of the first type of bio-medical units 10 contain the required materials based on a unit ID status update, a command, and/or a predetermination.
  • The processing module 50 of the second type of bio-medical unit 10 may send a command to the plurality of the first type of bio-medical units 10 to dock with the second type of bio-medical unit 10 and transfer the required materials to the MEMS controlled receptacle module 386 of the second type of bio-medical unit 10. The processing module 50 of the second type of bio-medical unit 10 may control the MEMS composition mix and release 388 to mix the required materials from the plurality of first type of bio-medical units 10. The processing module 50 of the second type of bio-medical unit 10 may control the MEMS composition mix and release 388 to release the mixture in accordance with the determination of the when and how to administer the medication.
  • FIG. 45 is a schematic block diagram of an embodiment of a self-cleaning sampling bio-medical unit 10 where a wave based MEMS cleaner 390 facilitates cleaning of a sampling sub-system. The bio-medical unit 10 includes the wave based MEMS cleaner 390 for a MEMS sample analyzer 392, a pipette 394, a needle 396, and a MEMS actuator 276. The bio-medical unit 10 also includes the communication module 48 (e.g., for external communications with the communication device and for communications with other bio-medical units), the processing module 50, the memory 52, and the power harvesting module 46.
  • The processing module 50 may determine when to perform a sampling and cleaning of the sampling sub-system based on a command, a predetermination, and/or an adaptive algorithm (e.g., based on a sample history). The processing module 50 may precede each sampling with a cleaning, follow each sampling with a cleaning, or some combination of both.
  • The processing module 50 may command the wave based MEMS cleaner 390 to clean the components of the sampling sub-system. The wave based MEMS cleaner 390 may perform the cleaning with one or methods including heating, vibrating, RF energy, laser light, and/or sound waves. In another embodiment, the bio-medical unit 10 includes a MEMS canister 340 with a cleaning agent that is released during the cleaning sequence and expelled through the needle 396.
  • The processing module 50 may command the MEMS actuator 276 to apply force 286 to move the needle 396 into the sampling position where the needle 396 is exposed to the outside of the bio-medical unit 10 (e.g., extends into the body). The pipette 394 moves the sample from the needle 396 to the MEMS sample analyzer 392.
  • The MEMS sample analyzer 392 provides the processing module 50 with sample information, which may include blood analysis, pH analysis, temperature, oxygen level, other gas levels, toxin analysis, medication analysis, and/or chemical analysis. The processing module 50 may process the sample information to produce processed sample information. The processing module 50 may send the processed sample information to another bio-medical unit 10 or to a communication unit 24 for further processing.
  • FIG. 46 is a flowchart illustrating MMW communications within a MRI sequence where the processing module 50 determines MMW communications in accordance with an MRI sequence. The method begins with step 442 where the processing module 50 determines if the MRI is active based on receiving MRI EM signals. At step 444, the method branches to step 448 when the processing module 50 determines that the MRI is active. At step 444, the method continues to step 446 when the processing module 50 determines that the MRI is not active.
  • At step 446, the processing module 50 performs MMW communications. In an embodiment, the MRI sequence may not start until the processing module 50 performs MMW communications. The method branches to step 442. At step 448, the processing module 50 determines the MRI sequence based on received MRI EM signals (e.g., gradient pulses and/or MRI RF pulses).
  • At step 450, the processing module 50 determines when it is time to perform receive MMW communication in accordance with the MRI sequence. In an embodiment, the MMW transceiver 138 may receive MMW inbound signals 148 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may receive MMW inbound signals 148 between specific predetermined steps of the MRI sequence.
  • At step 452, the method branches back to step 450 when the processing module 50 determines that it is not time to perform receive MMW communication. The method continues when the processing module 50 determines that it is time to perform receive MMW communication. At step 454, the processing module 50 directs the MMW transceiver 138 to receive MMW inbound signals 148. The processing module 50 may decode messages from the MMW inbound signals 148 such that the messages include one or more of a status request, a records request, a sensor data request, a processed data request, a position request, a command, and/or a request for MRI echo signal data.
  • At step 456, the processing module 50 determines if there is at least one message pending to transmit (e.g., in a transmit queue). The method branches back to step 442 when the processing module 50 determines that there is not at least one message pending to transmit. The method continues to step 460 when the processing module 50 determines that there is at least one message pending to transmit.
  • At step 460, the processing module 50 determines when it is time to perform transmit MMW communication in accordance with the MRI sequence. In an embodiment, the MMW transceiver 138 may transmit MMW outbound signals 150 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may transmit MMW outbound signals 150 between specific predetermined steps of the MRI sequence.
  • At step 462, the processing module 50 branches back to step 460 when the processing module 50 determines it is not time to perform transmit MMW communication. The method continues to step 464 when the processing module 50 determines it is time to perform transmit MMW communication. At step 464, the processing module 50 directs the MMW transceiver 138 to prepare the MMW outbound signals 150 based on the at least one message pending to transmit. The processing module 50 may encode messages into the MMW outbound signals 150 such that the messages include one or more of a status request response, a records request response, a sensor data request response, a processed data request response, a position request response, a command response, and/or a request for MRI echo signal data response. The method branches back to step 442.
  • FIG. 47 is a flowchart illustrating the processing of MRI signals where the processing module 50 of the bio-medical unit 10 may assist the MRI in the reception and processing of MRI EM signals 146. The method begins at step 466 where the processing module 50 determines if the MRI is active based on receiving MRI EM signals 146. The method branches back to step 466 when the processing module 50 determines that the MRI is not active. In an embodiment, the MRI sequence may not start until the processing module 50 communicates to the MRI that it is available to assist. The method continues to step 470 when the processing module 50 determines that the MRI is active.
  • At step 470, the processing module 50 determines the MRI sequence based on received MRI EM signals 146 (e.g., gradient pulses and/or MRI RF pulses). At step 472, the processing module receives EM signals 146 and/or MMW communication 532 in accordance with the MRI sequence and decodes a message for the processing module 50. In an embodiment, the MMW transceiver 138 may receive MMW inbound signals 148 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may receive MMW inbound signals 148 between specific predetermined steps of the MRI sequence. In yet another embodiment, the processing module 50 may receive EM signals 146 at any point of the MRI sequence such that the EM signals 146 contain a message for the processing module 50. The processing module 50 may decode messages from the EM signals 146 and/or MMW inbound signals 148 such that the messages include one or more of a request to assist in the MRI sequence, a status request, a records request, a sensor data request, a processed data request, a position request, a command, and/or a request for MRI echo signal data.
  • At step 474, the processing module 50 determines whether to assist in the MRI sequence based in part on the decoded message. The determination may be based on a comparison of the assist request to the capabilities of the bio-medical unit 10. At step 476, the method branches to step 480 when the processing module 50 determines to assist in the MRI sequence. The method continues with step 478 when the processing module 50 determines to not assist in the MRI sequence. At step 478, the processing module 50 performs other instructions contained in the message. The method ends.
  • At step 480, the processing module 50 begins the assist steps by receiving echo signals 530 during the MRI sequence. Note the echo signals 530 may comprise EM RF signals across a wide frequency band as reflected off of tissue during the MRI sequence. At step 482, the processing module 50 processes the received echo signals 530 to produce processed echo signals. Note that this may be a portion of the overall processing required to lead to the desired MRI imaging.
  • At step 484, the processing module 50 determines the assist type based on the decoded message from the MRI unit. The assist type may be at least passive or active where the passive type collects echo signal 530 information and sends it to the MRI unit via MMW outbound signals 150 and the active type collects echo signal information and re-generates a form of the echo signals 530 and sends the re-generated echo signals to the MRI unit via outbound modulated EM signals (e.g., the MRI unit interprets the re-generated echo signals as echo signals to improve the overall system gain and sensitivity).
  • The method branches to step 494 when the processing module 50 determines the assist type to be active. The method continues to step 486 when the processing module 50 determines the assist type to be passive. At step 486, the processing module 50 creates an echo message based on the processed echo signals where the echo message contains information about the echo signals 530.
  • At step 488, the processing module 50 determines when it is time to transmit the echo message encoded as MMW outbound signals 150 via MMW communication in accordance with the MRI sequence. In an embodiment, the MMW transceiver 138 may transmit MMW outbound signals 150 between any of the MRI sequence steps. In another embodiment, the MMW transceiver 138 may transmit MMW outbound signals 150 between specific predetermined steps of the MRI sequence.
  • At step 490, the method branches back to step 488 when the processing module 50 determines that it is not time to transmit the echo message. At step 490, the method continues to step 492 when the processing module 50 determines that it is time to transmit the echo message. At step 492, the processing module 50 transmits the echo message encoded as MMW outbound signals 150. The method ends.
  • At step 494, the processing module 50 creates echo signals based on the processed echo signals. At step 496, the processing module 50 determines when it is time to transmit the echo signals as outbound modulated EM signals 180 in accordance with the MRI sequence. In an embodiment, the EM transceiver 174 may transmit the outbound modulated EM signals 180 between any of the MRI sequence steps. In another embodiment, the EM transceiver 174 may transmit the outbound modulated EM signals 180 between specific predetermined steps of the MRI sequence. In yet another embodiment, the EM transceiver 174 may transmit the outbound modulated EM signals 180 during the time period when the MRI receiver is receiving echo signals 530.
  • At step 498, the method branches back to step 496 when the processing module 50 determines that it is not time to transmit the echo signals. At step 498, the method continues to step 500 when the processing module 50 determines that it is time to transmit the echo signals. At step 500, the processing module 50 transmits the echo signals encoded as outbound modulated EM signals 180. Note that the transmitted echo signals emulate the received echo signals 530 with improvements to overcome low MRI power levels and/or low MRI receiver sensitivity.
  • FIG. 48 is a flowchart illustrating communication utilizing MRI signals where the processing module 50 determines MMW signaling in accordance with an MRI sequence. The method begins at step 502 where the processing module 50 determines if the MRI is active based on receiving MRI EM signals 146. At step 504, the method branches to step 508 when the processing module 50 determines that the MRI is active. At step 504, the method continues to step 506 when the processing module 50 determines that the MRI is not active. At step 506, the processing module 50 queues pending transmit messages. The method branches to step 502.
  • At step 508, the processing module 50 determines the MRI sequence based on received MRI EM signals 146 (e.g., gradient pulses and/or MRI RF pulses). At step 510, the processing module 50 determines when it is time to perform receive communication in accordance with the MRI sequence. In an embodiment, the EM transceiver 174 may receive inbound modulated EM signals 146 containing message information from any of the MRI sequence steps.
  • At step 512, the method branches back to step 510 when the processing module 50 determines that it is not time to perform receive communication. At step 512, the method continues to step 514 when the processing module 50 determines that it is time to perform receive communication.
  • At step 514, the processing module 50 directs the EM transceiver 174 to receive the inbound modulated EM signals. The processing module 50 may decode messages from the inbound modulated EM signals 146 such that the messages include one or more of a echo signal collection assist request, a status request, a records request, a sensor data request, a processed data request, a position request, a command, and/or a request for MRI echo signal data. Note that the message may be decoded from the inbound modulated EM signals 146 in one or more ways including detection of the ordering of the magnetic gradient pulses, counting the number of gradient pulses, the slice pulse orderings, detecting small differences in the timing of the pulses, and/or demodulation of the MRI RF pulse.
  • At step 516 the processing module 50 determines if there is at least one message pending to transmit (e.g., in a transmit queue). At step 518, the method branches back to step 502 when the processing module 50 determines that there is not at least one message pending to transmit. At step 518, the method continues to step 520 when the processing module 50 determines that there is at least one message pending to transmit.
  • At step 520, the processing module 50 determines when it is time to perform transmit communication in accordance with the MRI sequence. In an embodiment, the EM transceiver 174 may transmit outbound modulated EM signals 180 between any of the MRI sequence steps. In another embodiment, the EM transceiver 174 may transmit the outbound modulated EM signals 180 between specific predetermined steps of the MRI sequence. In another embodiment, the EM transceiver 174 may transmit the outbound modulated EM signals 180 in parallel with specific predetermined steps of the MRI sequence, but may utilize a different set of frequencies unique to the EM transceiver 174.
  • At step 522, the method branches back to step 520 when the processing module 50 determines that it is not time to perform transmit communication. At step 522, the method continues to step 524 when the processing module 50 determines that it is time to perform transmit communication.
  • At step 524, the processing module 50 directs the EM transceiver 174 to prepare the outbound modulated EM signals 180 based on the at least one message pending to transmit. The processing module 50 may encode messages into the outbound modulated EM signals 180 such that the messages include one or more of a status request response, a records request response, a sensor data request response, a processed data request response, a position request response, a command response, and/or a request for MRI echo signal data response. The method branches back to step 502.
  • FIG. 49 is a flowchart illustrating the coordination of bio-medical unit task execution where the processing module 50 determines and executes tasks with at least one other bio-medical unit 10. The method begins at step 592 where the processing module 50 determines if communication is allowed. The determination may be based on one or more of a timer, a command, available power, a priority indicator, an MRI sequence, and/or interference indicator.
  • At step 594, the method branches back to step 592 when the processing module 50 determines that communication is not allowed. At step 594, the method continues to step 596 when the processing module 50 determines that communication is allowed. At step 596, the processing module 50 directs the communication module 48 to communicate with a plurality of bio-medical units 10 utilizing RF and/or MMW inbound and/or outbound signals. The processing module 50 may decode messages from the RF and/or MMW inbound and/or outbound signals inbound signals. At step 598, the processing module 50 determines if communications with the plurality of bio-medical units 10 is successful based in part on the decoded messages.
  • At step 600, the method branches back to step 592 when the processing module determines that communications with the plurality of bio-medical units 10 is not successful. Note that forming a network with the other bio-medical units 10 may be required to enable joint actions. At step 600, the method continues to step 602 when the processing module 50 determines that communications with the plurality of bio-medical units 10 is successful.
  • At step 602, the processing module 50 determines the task and task requirements. The task determination may be based on one or more of a command from a parent bio-medical unit 10, external communications, a preprogrammed list, and/or in response to sensor data. The task requirements determination may be based on one or more of the task, a command from a parent bio-medical unit 10, external communications, a preprogrammed list, and/or in response to sensor data. Note that the task may include actions including one or more of drilling, moving, sawing, jumping, spreading, sensing, lighting, pinging, testing, and/or administering medication.
  • At step 604, the processing module 50 determines the control mode based on one or more of a command from a parent bio-medical unit 10, external communications, a preprogrammed list, and/or in response to sensor data. Note that the control mode may include autonomous, parent (bio-medical unit), server, and/or peer.
  • At step 606, the processing module 50 determines if task execution criteria are met based on sensor data, communication with other bio-medical units 10, a command, a status indicator, a safety indicator, a stop indicator, and/or location information. Note that the task execution criteria may include one or more of safety checks, position information of the bio-medical unit 10, position information of other bio-medical units 10, and/or sensor data thresholds.
  • At step 608, the method branches back to step 606 when the processing module 50 determines that the task execution criteria are not met. At step 608, the method continues to step 610 when the processing module 50 determines that the task execution criteria are met. At step 610, the processing module 50 executes a task element. A task element may include a portion or step of the overall task. For example, move one centimeter of a task to move three centimeters.
  • At step 612, the processing module 50 determines if task exit criteria are met based on a task element checklist status, sensor data, communication with other bio-medical units 10, a command, a status indicator, a safety indicator, a stop indicator, and/or location information. Note that the task exit criteria define successful completion of the task.
  • At step 614, the method branches back to step 592 when the processing module 50 determines that the task exit criteria are met. In other words, the plurality of bio-medical units 10 is done with the current task and is ready for the next task. At step 614, the method continues to step 616 when the processing module 50 determines that the task exit criteria are not met.
  • At step 616, the processing module 50 directs the communication module 48 to communicate with the plurality of bio-medical units 10 utilizing RF and/or MMW inbound and/or outbound. The processing module 50 may decode messages from the RF and/or MMW inbound and/or outbound signals inbound signals. Note that the messages may include information in regards to task modifications (e.g., course corrections). At step 618, the processing module 50 determines if communications with the plurality of bio-medical units 10 is successful based in part on the decoded messages.
  • At step 620, the method branches back to step 592 when the processing module determines that communications with the plurality of bio-medical units is not successful (e.g., to potentially restart). Note that maintaining the network with the other bio-medical unit may be required to enable joint actions. At step 620, the method continues to step 622 when the processing module determines that communications with the plurality of bio-medical units is successful.
  • At step 622, the processing module 50 determines task modifications. The task modifications may be based on one or more of a command from a parent bio-medical unit 10, and/or external communications. The task modifications determination may be based on one or more of the task, a command from a parent bio-medical unit 10, external communications, a preprogrammed list, and/or in response to sensor data. The method branches back to step 606 to attempt to complete the current task.
  • As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “coupled to” and/or “coupling” and/or includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “operable to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item. As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
  • The present invention has also been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claimed invention.
  • The present invention has been described above with the aid of functional building blocks illustrating the performance of certain significant functions. The boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality. To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claimed invention. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.

Claims (20)

1. A breast implant system comprises:
a shell;
a viscous material for substantially filling the shell; and
a plurality of bio-medical units affixed to at least one of the shell and the viscous material, wherein a bio-medical unit of the plurality of bio-medical unit includes:
a wireless power harvesting module operable to generate a supply voltage from a wireless source;
a functional module operable to perform a function when activated and powered by the supply voltage; and
a wireless communication module operable to facilitate wireless communication with the functional module.
2. The breast implant system of claim 1, wherein the functional module is operable to perform the function, wherein the function comprises at least one of:
a repair function;
an imaging function; and
a leakage detection function.
3. The breast implant system of claim 2, wherein the repair function comprises at least one of:
a cutting function;
a grasping function; and
a patching function.
4. The breast implant system of claim 2, wherein the leakage detection function comprises at least one of:
a pressure detection function; and
a position detection function.
5. The breast implant system of clam 2, wherein the imaging function comprises at least one of:
radio frequency radar imaging function;
ultrasound imaging function;
magnetic resonance imaging function;
digital image sensor function;
millimeter wave radar imaging function; and
light imaging function.
6. The breast implant system of claim 1 further comprises:
at least some of the plurality of bio-medical units are fixed in a stationary position in the shell.
7. The breast implant system of claim 1, wherein the bio-medical unit further comprises:
a motion module operable to position the bio-medical unit within the viscous material based on positioning wireless communications received by the wireless communication module.
8. The breast implant system of clam 1, wherein the bio-medical unit further comprises:
a housing to contain the wireless power harvesting module, the functional module, and the wireless communication module, wherein the bio-medical unit is suspended in a desired position within the viscous material.
9. A bio-medical unit for use within breast implants, the bio-medical unit comprises:
a wireless power harvesting module operable to generate a supply voltage from a wireless source;
a functional module operable to perform a function when activated and powered by the supply voltage; and
a wireless communication module operable to facilitate wireless communication with the functional module.
10. The bio-medical unit of claim 9, wherein the functional module is operable to perform the function, wherein the function comprises at least one of:
a repair function;
an imaging function; and
a leakage detection function.
11. The bio-medical unit of claim 10, wherein the repair function comprises at least one of:
a cutting function;
a grasping function; and
a patching function.
12. The bio-medical unit of claim 10, wherein the leakage detection function comprises at least one of:
a pressure detection function; and
a position detection function.
13. The bio-medical unit of claim 10, wherein the imaging function comprises at least one of:
radio frequency radar imaging function;
ultrasound imaging function;
magnetic resonance imaging function;
digital image sensor function;
millimeter wave radar imaging function; and
light imaging function.
14. The bio-medical unit of claim 9 further comprises:
a motion module operable to position the bio-medical unit within a viscous material of the breast implant based on positioning wireless communications received by the wireless communication module.
15. The bio-medical unit of claim 9 further comprises:
a housing to contain the wireless power harvesting module, the functional module, and the wireless communication module, wherein the bio-medical unit is suspended in a desired position within a viscous material of the breast implant.
16. A breast implant system comprises:
a shell;
a viscous material for substantially filling the shell; and
a bio-medical unit affixed to at least one of the shell and the viscous material, wherein the bio-medical unit includes:
a wireless power harvesting module operable to generate a supply voltage from a wireless source;
a breast cancer detection module operable to detect possible breast cancer when activated and powered by the supply voltage; and
a wireless communication module operable to facilitate wireless communication with the breast cancer detection module.
17. The breast implant system of claim 16 further comprises:
a plurality of bio-medical units positioned at desired locations within at least one of the shell and the viscous material, wherein the plurality of bio-medical units includes the bio-medical unit.
18. The breast implant system of clam 16, wherein the breast cancer detection module comprises at least one of:
a radio frequency radar imaging module;
an ultrasound imaging module;
a magnetic resonance imaging module;
a digital image sensor;
a millimeter wave radar imaging module; and
a light imaging module.
19. The breast implant system of claim 16, wherein the bio-medical unit further comprises:
a motion module operable to position the bio-medical unit within the viscous material based on positioning wireless communications received by the wireless communication module.
20. The breast implant system of clam 16, wherein the bio-medical unit further comprises:
a housing to contain the wireless power harvesting module, the functional module, and the wireless communication module, wherein the bio-medical unit is suspended in a desired position within the viscous material.
US12/648,992 2009-09-30 2009-12-29 Breast implant system including bio-medical units Abandoned US20110077736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/648,992 US20110077736A1 (en) 2009-09-30 2009-12-29 Breast implant system including bio-medical units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24706009P 2009-09-30 2009-09-30
US12/648,992 US20110077736A1 (en) 2009-09-30 2009-12-29 Breast implant system including bio-medical units

Publications (1)

Publication Number Publication Date
US20110077736A1 true US20110077736A1 (en) 2011-03-31

Family

ID=43780935

Family Applications (20)

Application Number Title Priority Date Filing Date
US12/626,490 Abandoned US20110077719A1 (en) 2009-09-30 2009-11-25 Electromagnetic power bio-medical unit
US12/626,446 Abandoned US20110077718A1 (en) 2009-09-30 2009-11-25 Electromagnetic power booster for bio-medical units
US12/649,049 Expired - Fee Related US9081878B2 (en) 2009-09-30 2009-12-29 Bio-medical unit and applications for cancer treatment
US12/648,992 Abandoned US20110077736A1 (en) 2009-09-30 2009-12-29 Breast implant system including bio-medical units
US12/649,030 Abandoned US20110077700A1 (en) 2009-09-30 2009-12-29 Artificial body part including bio-medical units
US12/697,263 Abandoned US20110077713A1 (en) 2009-09-30 2010-01-31 Bio-medical unit network communication and applications thereof
US12/783,641 Abandoned US20110077623A1 (en) 2009-09-30 2010-05-20 Implantable bio-medical unit with electro-mechanical function
US12/783,649 Expired - Fee Related US8489199B2 (en) 2009-09-30 2010-05-20 Bio-medical unit with power harvesting module and RF communication
US12/787,786 Active 2032-01-11 US8923967B2 (en) 2009-09-30 2010-05-26 Communication device for communicating with a bio-medical unit
US12/829,291 Abandoned US20110077716A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Adjustable Antenna Radiation Pattern
US12/829,279 Abandoned US20110077459A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Image Sensor for In Vivo Imaging
US12/829,299 Abandoned US20110077476A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Wireless Signaling Micro-Electromechanical Module
US12/829,284 Abandoned US20110077513A1 (en) 2009-09-30 2010-07-01 In Vivo Ultrasound System
US12/848,901 Abandoned US20110077697A1 (en) 2009-09-30 2010-08-02 Neuron system with bio-medical units
US12/848,823 Active 2030-11-20 US8254853B2 (en) 2009-09-30 2010-08-02 Bio-medical unit having storage location information
US12/848,802 Active 2033-04-08 US9111021B2 (en) 2009-09-30 2010-08-02 Bio-medical unit and system with electromagnetic power harvesting and communication
US12/848,812 Abandoned US20110077501A1 (en) 2009-09-30 2010-08-02 Micro mri unit
US12/848,830 Abandoned US20110077675A1 (en) 2009-09-30 2010-08-02 Pain management bio-medical unit
US13/567,664 Active US8526894B2 (en) 2009-09-30 2012-08-06 Bio-medical unit having storage location information
US14/798,336 Abandoned US20150314116A1 (en) 2009-09-30 2015-07-13 Bio-Medical Unit and Applications for Cancer Treatment

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/626,490 Abandoned US20110077719A1 (en) 2009-09-30 2009-11-25 Electromagnetic power bio-medical unit
US12/626,446 Abandoned US20110077718A1 (en) 2009-09-30 2009-11-25 Electromagnetic power booster for bio-medical units
US12/649,049 Expired - Fee Related US9081878B2 (en) 2009-09-30 2009-12-29 Bio-medical unit and applications for cancer treatment

Family Applications After (16)

Application Number Title Priority Date Filing Date
US12/649,030 Abandoned US20110077700A1 (en) 2009-09-30 2009-12-29 Artificial body part including bio-medical units
US12/697,263 Abandoned US20110077713A1 (en) 2009-09-30 2010-01-31 Bio-medical unit network communication and applications thereof
US12/783,641 Abandoned US20110077623A1 (en) 2009-09-30 2010-05-20 Implantable bio-medical unit with electro-mechanical function
US12/783,649 Expired - Fee Related US8489199B2 (en) 2009-09-30 2010-05-20 Bio-medical unit with power harvesting module and RF communication
US12/787,786 Active 2032-01-11 US8923967B2 (en) 2009-09-30 2010-05-26 Communication device for communicating with a bio-medical unit
US12/829,291 Abandoned US20110077716A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Adjustable Antenna Radiation Pattern
US12/829,279 Abandoned US20110077459A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Image Sensor for In Vivo Imaging
US12/829,299 Abandoned US20110077476A1 (en) 2009-09-30 2010-07-01 Bio-Medical Unit with Wireless Signaling Micro-Electromechanical Module
US12/829,284 Abandoned US20110077513A1 (en) 2009-09-30 2010-07-01 In Vivo Ultrasound System
US12/848,901 Abandoned US20110077697A1 (en) 2009-09-30 2010-08-02 Neuron system with bio-medical units
US12/848,823 Active 2030-11-20 US8254853B2 (en) 2009-09-30 2010-08-02 Bio-medical unit having storage location information
US12/848,802 Active 2033-04-08 US9111021B2 (en) 2009-09-30 2010-08-02 Bio-medical unit and system with electromagnetic power harvesting and communication
US12/848,812 Abandoned US20110077501A1 (en) 2009-09-30 2010-08-02 Micro mri unit
US12/848,830 Abandoned US20110077675A1 (en) 2009-09-30 2010-08-02 Pain management bio-medical unit
US13/567,664 Active US8526894B2 (en) 2009-09-30 2012-08-06 Bio-medical unit having storage location information
US14/798,336 Abandoned US20150314116A1 (en) 2009-09-30 2015-07-13 Bio-Medical Unit and Applications for Cancer Treatment

Country Status (1)

Country Link
US (20) US20110077719A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110137413A1 (en) * 2009-12-04 2011-06-09 Peter Osypka Stiftung Stiftung Des Burgerlichen Rechts Breast implant
US20130281793A1 (en) * 2011-01-13 2013-10-24 Sensurtec, Inc. Breach detection in solid structures
WO2013188430A3 (en) * 2012-06-13 2014-03-06 Elwha Llc Breast implant with analyte sensors responsive to external power source
US8673003B1 (en) * 2010-07-20 2014-03-18 Abdullah Khalid Al Rasheed Method for improving the early detection of breast cancer and device therefor
US8790400B2 (en) 2012-06-13 2014-07-29 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US8795359B2 (en) 2012-06-13 2014-08-05 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US8808373B2 (en) 2012-06-13 2014-08-19 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
US9144489B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with covering, analyte sensors and internal power source
US9144488B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with analyte sensors responsive to external power source
US9211185B2 (en) 2012-06-13 2015-12-15 Elwha Llc Breast implant with analyte sensors and internal power source
US20150367581A1 (en) * 2014-06-21 2015-12-24 Michael Tantillo Methods and devices for breast implant surgery and selection
US20170068792A1 (en) * 2015-09-03 2017-03-09 Bruce Reiner System and method for medical device security, data tracking and outcomes analysis
US20190247234A1 (en) * 2016-10-21 2019-08-15 Ohio State Innovation Foundation Antimicrobial wound care dressing
US10874496B2 (en) * 2014-06-25 2020-12-29 Canary Medical Inc. Devices, systems and methods for using and monitoring implants
US10925537B2 (en) 2016-03-23 2021-02-23 Canary Medical Inc. Implantable reporting processor for an alert implant
KR20210029368A (en) * 2019-09-06 2021-03-16 오스템임플란트 주식회사 Shape device
US11071456B2 (en) 2014-09-17 2021-07-27 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices
US20210376464A1 (en) * 2020-06-02 2021-12-02 Metawave Corporation Frequency offset using sige phase shifters
US11191479B2 (en) 2016-03-23 2021-12-07 Canary Medical Inc. Implantable reporting processor for an alert implant
US11537829B2 (en) 2016-02-09 2022-12-27 Establishment Labs S.A. Transponders and sensors for implantable medical devices and methods of use thereof
US11596347B2 (en) 2014-06-25 2023-03-07 Canary Medical Switzerland Ag Devices, systems and methods for using and monitoring orthopedic hardware

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
CA2789262C (en) 2005-04-28 2016-10-04 Proteus Digital Health, Inc. Pharma-informatics system
KR101568660B1 (en) 2006-05-02 2015-11-12 프로테우스 디지털 헬스, 인코포레이티드 Patient customized therapeutic regimens
MY158019A (en) 2006-10-25 2016-08-30 Proteus Digital Health Inc Controlled activation ingestible identifier
JP5524626B2 (en) 2007-02-01 2014-06-18 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible event marker system
CN103066226B (en) 2007-02-14 2016-09-14 普罗透斯数字保健公司 There is the in-body power source of high surface area electrode
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
ES2696984T3 (en) 2008-07-08 2019-01-21 Proteus Digital Health Inc Ingestion event marker data infrastructure
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
DE102008062855B4 (en) * 2008-12-23 2012-08-09 Siemens Aktiengesellschaft Method and device for transmitting signals
CN102341031A (en) 2009-01-06 2012-02-01 普罗秋斯生物医学公司 Ingestion-related biofeedback and personalized medical therapy method and system
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
NZ619375A (en) 2009-04-28 2015-03-27 Proteus Digital Health Inc Highly reliable ingestible event markers and methods for using the same
WO2011022356A1 (en) * 2009-08-20 2011-02-24 Med-El Elektromedizinische Geraete Gmbh Mri-safe implant electronics
US20110077719A1 (en) * 2009-09-30 2011-03-31 Broadcom Corporation Electromagnetic power bio-medical unit
CN102802540A (en) * 2009-10-03 2012-11-28 哈达斯特医学研究与服务发展有限公司 Transdermal antenna
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
CN102687418B (en) * 2009-11-13 2016-08-17 皇家飞利浦电子股份有限公司 System and method and communication unit for the physiological data that communicates
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8686685B2 (en) 2009-12-25 2014-04-01 Golba, Llc Secure apparatus for wirelessly transferring power and communicating with one or more slave devices
US9005198B2 (en) * 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
EP2531099B1 (en) 2010-02-01 2018-12-12 Proteus Digital Health, Inc. Data gathering system
US9107684B2 (en) 2010-03-05 2015-08-18 Covidien Lp System and method for transferring power to intrabody instruments
RU2012143791A (en) 2010-04-07 2014-05-20 Проутьюс Диджитал Хэлс, Инк. MINIATURE INGESTED DEVICE
US20110270362A1 (en) * 2010-04-28 2011-11-03 Medtronic, Inc. Active circuit mri/emi protection powered by interfering energy for a medical stimulation lead and device
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
US9113190B2 (en) * 2010-06-04 2015-08-18 Microsoft Technology Licensing, Llc Controlling power levels of electronic devices through user interaction
US20120116155A1 (en) * 2010-11-04 2012-05-10 Ethicon Endo-Surgery, Inc. Light-based, transcutaneous video signal transmission
JP2014504902A (en) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible device with medicinal product
US9246349B2 (en) 2010-12-27 2016-01-26 Golba Llc Method and system for wireless battery charging utilizing ultrasonic transducer array based beamforming
US9077188B2 (en) 2012-03-15 2015-07-07 Golba Llc Method and system for a battery charging station utilizing multiple types of power transmitters for wireless battery charging
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
DE102011011767A1 (en) * 2011-02-18 2012-08-23 Fresenius Medical Care Deutschland Gmbh Medical device with multi-function display
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US8620113B2 (en) 2011-04-25 2013-12-31 Microsoft Corporation Laser diode modes
US8760395B2 (en) 2011-05-31 2014-06-24 Microsoft Corporation Gesture recognition techniques
US9706137B2 (en) * 2011-06-10 2017-07-11 Flir Systems, Inc. Electrical cabinet infrared monitor
US10841508B2 (en) 2011-06-10 2020-11-17 Flir Systems, Inc. Electrical cabinet infrared monitor systems and methods
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
IN2014MN00183A (en) 2011-07-21 2015-06-19 Proteus Digital Health Inc
US8771206B2 (en) 2011-08-19 2014-07-08 Accenture Global Services Limited Interactive virtual care
US9318785B2 (en) 2011-09-29 2016-04-19 Broadcom Corporation Apparatus for reconfiguring an integrated waveguide
US9570420B2 (en) 2011-09-29 2017-02-14 Broadcom Corporation Wireless communicating among vertically arranged integrated circuits (ICs) in a semiconductor package
US9075105B2 (en) * 2011-09-29 2015-07-07 Broadcom Corporation Passive probing of various locations in a wireless enabled integrated circuit (IC)
US8635637B2 (en) 2011-12-02 2014-01-21 Microsoft Corporation User interface presenting an animated avatar performing a media reaction
GB2497295A (en) * 2011-12-05 2013-06-12 Gassecure As Method and system for gas detection
US9100685B2 (en) 2011-12-09 2015-08-04 Microsoft Technology Licensing, Llc Determining audience state or interest using passive sensor data
CN102622916A (en) * 2012-03-09 2012-08-01 浙江大学 Human body acupuncture point projection demonstration method and device
US8898687B2 (en) 2012-04-04 2014-11-25 Microsoft Corporation Controlling a media program based on a media reaction
CA2775700C (en) 2012-05-04 2013-07-23 Microsoft Corporation Determining a future portion of a currently presented media program
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9444140B2 (en) * 2012-05-23 2016-09-13 Intel Corporation Multi-element antenna beam forming configurations for millimeter wave systems
US8968296B2 (en) * 2012-06-26 2015-03-03 Covidien Lp Energy-harvesting system, apparatus and methods
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US8868199B2 (en) 2012-08-31 2014-10-21 Greatbatch Ltd. System and method of compressing medical maps for pulse generator or database storage
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US10668276B2 (en) 2012-08-31 2020-06-02 Cirtec Medical Corp. Method and system of bracketing stimulation parameters on clinician programmers
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9594877B2 (en) 2012-08-31 2017-03-14 Nuvectra Corporation Virtual reality representation of medical devices
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US9615788B2 (en) 2012-08-31 2017-04-11 Nuvectra Corporation Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer
US8983616B2 (en) 2012-09-05 2015-03-17 Greatbatch Ltd. Method and system for associating patient records with pulse generators
US8812125B2 (en) 2012-08-31 2014-08-19 Greatbatch Ltd. Systems and methods for the identification and association of medical devices
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US8757485B2 (en) 2012-09-05 2014-06-24 Greatbatch Ltd. System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control
US9161171B2 (en) * 2012-09-29 2015-10-13 Mark Shaffer Annett System and method for providing timely therapeutic interventions based on both public and private location-based messaging
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
US9962533B2 (en) * 2013-02-14 2018-05-08 William Harrison Zurn Module for treatment of medical conditions; system for making module and methods of making module
US9848793B2 (en) * 2013-02-15 2017-12-26 Masdar Institute Of Science And Technology Machine-based patient-specific seizure classification system
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
JP6511439B2 (en) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド Systems, devices, and methods for data collection and outcome assessment
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9124305B2 (en) 2013-09-03 2015-09-01 Blackberry Limited Device, method and system for efficiently powering a near field communication device
RU2628404C1 (en) 2013-09-20 2017-08-16 Протеус Диджитал Хелс, Инк. Methods, devices and systems of signals receiving and decoding in the presence of noise using the shears and deformation
US10084880B2 (en) * 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
CN105137374B (en) * 2014-06-03 2018-09-25 中国科学院上海微系统与信息技术研究所 A kind of MR imaging method and device of ultrahigh resolution
US9678183B2 (en) 2014-08-14 2017-06-13 General Electric Company Wireless actuator circuit for wireless actuation of micro electromechanical system switch for magnetic resonance imaging
US10211662B2 (en) 2014-08-15 2019-02-19 Analog Devices Global Wireless charging platform using environment based beamforming for wireless sensor network
US11322969B2 (en) 2014-08-15 2022-05-03 Analog Devices International Unlimited Company Wireless charging platform using beamforming for wireless sensor network
US9808205B2 (en) * 2014-08-27 2017-11-07 Seiko Epson Corporation Abnormality prediction device, abnormality prediction system, abnormality prediction method, biological information measuring device, biological information measuring system, and warning notification method
CA2981004A1 (en) * 2015-01-07 2016-07-14 Northeastern University Ultrasonic multiplexing network for implantable medical devices
US10396948B2 (en) 2015-01-07 2019-08-27 Northeastern University Ultrasonic multiplexing network for implantable medical devices
EP3248296B1 (en) * 2015-02-12 2021-09-08 Huawei Technologies Co., Ltd. Full duplex radio with adaptive reception power reduction
EP3289961A4 (en) 2015-04-30 2018-12-26 Sony Olympus Medical Solutions Inc. Signal processing device and medical observation system
GB2569114B (en) * 2015-05-08 2020-12-16 Synaptive Medical Barbados Inc Magnetic resonance visible labels and markers for encoding information
US10130807B2 (en) 2015-06-12 2018-11-20 Cochlear Limited Magnet management MRI compatibility
US20160381473A1 (en) 2015-06-26 2016-12-29 Johan Gustafsson Magnetic retention device
CN104965989B (en) * 2015-07-09 2017-10-31 成都华西公用医疗信息服务有限公司 A kind of portable medical information system
WO2017009849A1 (en) * 2015-07-14 2017-01-19 Mor Research Applications Ltd Device, system and method for monitoring a surgical site
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US9749017B2 (en) 2015-08-13 2017-08-29 Golba Llc Wireless charging system
WO2017040155A1 (en) * 2015-09-01 2017-03-09 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Miniature acoustic leaky-wave antenna for ultrasonic imaging
CN108028676B (en) * 2015-09-08 2020-04-28 华为技术有限公司 Full duplex MIMO radio unit and method for full duplex MIMO radio transmission and reception
US10917730B2 (en) * 2015-09-14 2021-02-09 Cochlear Limited Retention magnet system for medical device
BR112019000861B1 (en) 2016-07-22 2020-10-27 Proteus Digital Health, Inc electronic device
US10444203B2 (en) * 2016-09-15 2019-10-15 Texas Instruments Incorporated Ultrasonic vibration sensing
TWI735689B (en) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 Methods for manufacturing capsules with ingestible event markers
US11595768B2 (en) 2016-12-02 2023-02-28 Cochlear Limited Retention force increasing components
WO2018154138A1 (en) * 2017-02-27 2018-08-30 Koninklijke Philips N.V. Sequences for wireless charging of batteries in coils and implants
US11123014B2 (en) * 2017-03-21 2021-09-21 Stryker Corporation Systems and methods for ambient energy powered physiological parameter monitoring
CN107070464B (en) * 2017-06-13 2023-03-28 吉林大学 Multi-path synchronous frequency division multiplexing millimeter wave frequency sweep signal generation device and method
US10466353B2 (en) * 2017-09-21 2019-11-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Underwater acoustic leaky wave antenna
CN108039942B (en) * 2017-12-11 2020-10-30 天津工业大学 Method for improving optimal system rate by collecting interference energy through passive relay in SWIPT system
CN108020246A (en) * 2018-01-22 2018-05-11 河北工业大学 Acupuncture gimmick based on electromagnetic induction quantifies equipment
US10756429B1 (en) * 2018-03-22 2020-08-25 Sprint Communications Company L.P. Dynamic variation of power per antenna to facilitate beamforming of antenna array
US11328826B2 (en) 2018-06-12 2022-05-10 Clarius Mobile Health Corp. System architecture for improved storage of electronic health information, and related methods
KR101941578B1 (en) * 2018-06-14 2019-01-23 주식회사 지앤아이테크 Guiding light with solar cell and guiding system therewith
CN109194492B (en) * 2018-06-27 2020-09-18 华为技术有限公司 Powered device PD and power over Ethernet POE system
US11344740B2 (en) 2019-02-07 2022-05-31 Asha Medical, Inc. System and methods for treating cancer cells with alternating polarity magnetic fields
JP2022519782A (en) 2019-02-07 2022-03-24 ヴィヴェーク・ケー・シャルマ Systems and methods for treating cancer cells with alternating polar magnetic fields
US11027143B2 (en) 2020-02-06 2021-06-08 Vivek K. Sharma System and methods for treating cancer cells with alternating polarity magnetic fields
GB2608742A (en) * 2020-02-28 2023-01-11 Biophotas Inc Battery powered systems for light therapy and related methods
US11298564B2 (en) 2020-03-10 2022-04-12 Dennis M. Anderson Medical, surgical and patient lighting apparatus, system, method and controls with pathogen killing electromagnetic radiation
US20230028230A1 (en) * 2021-07-26 2023-01-26 Rfxlabs India Pvt Ltd System and method for bio-medical samples identification and resource optimization
CN115414107A (en) * 2022-11-04 2022-12-02 清华大学 Bone fracture plate for orthopedics department, system and method for monitoring skeletal strain of human body and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559214A (en) * 1968-10-17 1971-02-02 William J Pangman Compound prosthesis
US20060069403A1 (en) * 2004-09-21 2006-03-30 Shalon Ventures, Inc. Tissue expansion devices
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US7266269B2 (en) * 2004-12-16 2007-09-04 General Electric Company Power harvesting
WO2008014283A2 (en) * 2006-07-24 2008-01-31 Novalert, Inc. Method and apparatus for minimally invasive implants
US20090182426A1 (en) * 2008-01-15 2009-07-16 Jeffrey Allen Von Arx Implantable medical device with antenna

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519124A (en) * 1978-07-27 1980-02-09 Olympus Optical Co Camera system for medical treatment
US4301804A (en) * 1979-11-28 1981-11-24 Medtronic, Inc. Pacemaker with Hall effect externally controlled switch
AU569636B2 (en) * 1984-09-07 1988-02-11 University Of Melbourne, The Bipolar paired pulse supplied prosthetic device
US5383915A (en) * 1991-04-10 1995-01-24 Angeion Corporation Wireless programmer/repeater system for an implanted medical device
US5494036A (en) * 1993-11-26 1996-02-27 Medrad, Inc. Patient infusion system for use with MRI
ES2208963T3 (en) * 1997-01-03 2004-06-16 Biosense, Inc. PRESSURE SENSITIVE VASCULAR ENDOPROTESIS.
DE19717023C2 (en) * 1997-04-23 2003-02-06 Micronas Gmbh Device for treating malignant, tumorous tissue areas
US5810888A (en) * 1997-06-26 1998-09-22 Massachusetts Institute Of Technology Thermodynamic adaptive phased array system for activating thermosensitive liposomes in targeted drug delivery
US6240312B1 (en) * 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US6239724B1 (en) * 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for telemetrically providing intrabody spatial position
US8489200B2 (en) * 1998-07-06 2013-07-16 Abiomed, Inc. Transcutaneous energy transfer module with integrated conversion circuitry
US6073050A (en) * 1998-11-10 2000-06-06 Advanced Bionics Corporation Efficient integrated RF telemetry transmitter for use with implantable device
US8636648B2 (en) * 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6273904B1 (en) * 1999-03-02 2001-08-14 Light Sciences Corporation Polymer battery for internal light device
WO2000066204A1 (en) * 1999-04-30 2000-11-09 University Of Southern California Implantable microbolus infusion pump
TW529930B (en) * 1999-08-27 2003-05-01 Yamato Scale Co Ltd Health condition judging/displaying device
US7346391B1 (en) * 1999-10-12 2008-03-18 Flint Hills Scientific Llc Cerebral or organ interface system
US6564104B2 (en) * 1999-12-24 2003-05-13 Medtronic, Inc. Dynamic bandwidth monitor and adjuster for remote communications with a medical device
AU2781401A (en) * 2000-01-10 2001-07-24 Tarian, Llc Device using histological and physiological biometric marker for authentication and activation
US6427088B1 (en) * 2000-01-21 2002-07-30 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using telemetry system with predefined reception listening periods
US7027854B2 (en) * 2000-03-30 2006-04-11 Koninklijke Philips Electronics N.V. Magnetic resonance imaging utilizing a microcoil
DE60126448T2 (en) * 2000-04-17 2007-06-14 Nec Corp. Method and system for providing a home-based health service
US7672730B2 (en) * 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6871099B1 (en) * 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
TW542708B (en) * 2000-08-31 2003-07-21 Yamato Scale Co Ltd Visceral adipose meter with body weighing function
US7627145B2 (en) * 2000-09-06 2009-12-01 Hitachi, Ltd. Personal identification device and method
US6845267B2 (en) * 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US7198603B2 (en) * 2003-04-14 2007-04-03 Remon Medical Technologies, Inc. Apparatus and methods using acoustic telemetry for intrabody communications
US7024248B2 (en) * 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
SE0100284D0 (en) * 2001-01-31 2001-01-31 St Jude Medical Medical communication system
SE0100669D0 (en) * 2001-02-27 2001-02-27 St Jude Medical Implantable device
US20050119580A1 (en) * 2001-04-23 2005-06-02 Eveland Doug C. Controlling access to a medical monitoring system
US20030037054A1 (en) * 2001-08-09 2003-02-20 International Business Machines Corporation Method for controlling access to medical information
DE10148462C1 (en) * 2001-10-01 2003-06-18 Siemens Ag Transmission method for an analog magnetic resonance signal and devices corresponding to it
US7729776B2 (en) * 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US7819826B2 (en) * 2002-01-23 2010-10-26 The Regents Of The University Of California Implantable thermal treatment method and apparatus
US20040057340A1 (en) * 2002-04-10 2004-03-25 Joy Charles-Erickson Personal, medical & financial risk management device
JP2004049345A (en) * 2002-07-17 2004-02-19 Nippon Colin Co Ltd Medical information providing system and cellular phone
US7725160B2 (en) * 2002-08-12 2010-05-25 Boston Scientific Scimed, Inc. Tunable MRI enhancing device
JP2004113629A (en) * 2002-09-27 2004-04-15 Olympus Corp Ultrasonograph
US7349741B2 (en) * 2002-10-11 2008-03-25 Advanced Bionics, Llc Cochlear implant sound processor with permanently integrated replenishable power source
JP2004216125A (en) * 2002-11-19 2004-08-05 Seiko Instruments Inc Biological information detection terminal control system
US7952349B2 (en) * 2002-12-09 2011-05-31 Ferro Solutions, Inc. Apparatus and method utilizing magnetic field
US20120010867A1 (en) * 2002-12-10 2012-01-12 Jeffrey Scott Eder Personalized Medicine System
US7452334B2 (en) * 2002-12-16 2008-11-18 The Regents Of The University Of Michigan Antenna stent device for wireless, intraluminal monitoring
JP3837533B2 (en) * 2003-01-15 2006-10-25 独立行政法人産業技術総合研究所 Attitude angle processing apparatus and attitude angle processing method
CN100475128C (en) * 2003-04-10 2009-04-08 株式会社Ipb Biological information monitoring system
US6972692B2 (en) * 2003-04-25 2005-12-06 Motorola, Inc. Method and device for increasing effective radiated power from a subscriber device
US7267651B2 (en) * 2003-04-25 2007-09-11 Board Of Control Of Michigan Technological Univ. Method and apparatus for blood flow measurement using millimeter wave band
WO2005007223A2 (en) * 2003-07-16 2005-01-27 Sasha John Programmable medical drug delivery systems and methods for delivery of multiple fluids and concentrations
US7285093B2 (en) * 2003-10-10 2007-10-23 Imadent Ltd. systems for ultrasonic imaging of a jaw, methods of use thereof and coupling cushions suited for use in the mouth
JP2005137400A (en) * 2003-11-04 2005-06-02 Pentax Corp Endoscope processor
TWI236533B (en) * 2003-11-07 2005-07-21 Univ Nat Chiao Tung Biochemical sensing method and its sensor
US7597250B2 (en) * 2003-11-17 2009-10-06 Dpd Patent Trust Ltd. RFID reader with multiple interfaces
US20070027532A1 (en) * 2003-12-22 2007-02-01 Xingwu Wang Medical device
JP2005185560A (en) * 2003-12-25 2005-07-14 Konica Minolta Medical & Graphic Inc Medical image processing apparatus and medical image processing system
US7606535B2 (en) * 2004-04-01 2009-10-20 Harris Stratex Networks, Inc. Modular wide-range transceiver
US7794499B2 (en) * 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
US7193712B2 (en) * 2004-10-14 2007-03-20 The Procter & Gamble Company Methods and apparatus for measuring an electromagnetic radiation response property associated with a substrate
US20080108868A1 (en) * 2004-12-02 2008-05-08 Christopher Paul Swain Device, System and Method of In-Vivo Electro-Stimulation
US7353063B2 (en) * 2004-12-22 2008-04-01 Cardiac Pacemakers, Inc. Generating and communicating web content from within an implantable medical device
US20060281435A1 (en) * 2005-06-08 2006-12-14 Firefly Power Technologies, Inc. Powering devices using RF energy harvesting
US7857766B2 (en) * 2005-06-20 2010-12-28 Alfred E. Mann Foundation For Scientific Research System of implantable ultrasonic emitters for preventing restenosis following a stent procedure
US8021384B2 (en) * 2005-07-26 2011-09-20 Ram Weiss Extending intrabody capsule
US7863188B2 (en) * 2005-07-29 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP4664158B2 (en) * 2005-09-01 2011-04-06 富士通株式会社 Authentication processing method and authentication server
WO2007044448A2 (en) * 2005-10-06 2007-04-19 The Johns Hopkins University Mri compatible vascular occlusive devices and related methods of treatment and methods of monitoring implanted devices
US8083710B2 (en) * 2006-03-09 2011-12-27 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
US9067047B2 (en) * 2005-11-09 2015-06-30 The Invention Science Fund I, Llc Injectable controlled release fluid delivery system
US20070129602A1 (en) * 2005-11-22 2007-06-07 Given Imaging Ltd. Device, method and system for activating an in-vivo imaging device
US8265765B2 (en) * 2005-12-08 2012-09-11 Cochlear Limited Multimodal auditory fitting
JP4981316B2 (en) * 2005-12-16 2012-07-18 オリンパスメディカルシステムズ株式会社 Intra-subject introduction device
US7678043B2 (en) * 2005-12-29 2010-03-16 Given Imaging, Ltd. Device, system and method for in-vivo sensing of a body lumen
US20070167723A1 (en) * 2005-12-29 2007-07-19 Intel Corporation Optical magnetometer array and method for making and using the same
JP4822850B2 (en) * 2006-01-16 2011-11-24 株式会社日立製作所 Magnetic resonance measurement method
US7869783B2 (en) * 2006-02-24 2011-01-11 Sky Cross, Inc. Extended smart antenna system
WO2007109272A2 (en) * 2006-03-17 2007-09-27 The Board Of Trustees Of The Leland Stanford Junior University Energy generating systems for implanted medical devices
WO2007124247A1 (en) * 2006-04-24 2007-11-01 Koninklijke Philips Electronics, N.V. Simple decoupling of a multi-element rf coil, enabling also detuning and matching functionality
US7650185B2 (en) * 2006-04-25 2010-01-19 Cardiac Pacemakers, Inc. System and method for walking an implantable medical device from a sleep state
US7821402B2 (en) * 2006-05-05 2010-10-26 Quality Electrodynamics IC tags/RFID tags for magnetic resonance imaging applications
US8086316B2 (en) * 2006-05-24 2011-12-27 Drexel University Wireless controlled neuromodulation system
US20080046038A1 (en) * 2006-06-26 2008-02-21 Hill Gerard J Local communications network for distributed sensing and therapy in biomedical applications
US7925355B2 (en) * 2006-07-17 2011-04-12 Advanced Bionics, Llc Systems and methods for determining a threshold current level required to evoke a stapedial muscle reflex
US20080021732A1 (en) * 2006-07-20 2008-01-24 Athenahealth, Inc. Automated Configuration of Medical Practice Management Systems
US7664548B2 (en) * 2006-10-06 2010-02-16 Cardiac Pacemakers, Inc. Distributed neuromodulation system for treatment of cardiovascular disease
WO2008063338A2 (en) * 2006-10-18 2008-05-29 Buckeye Pharmaceuticals, Llc Chemical compound delivery device and method
US20080280581A1 (en) * 2007-05-11 2008-11-13 Broadcom Corporation, A California Corporation RF receiver with adjustable antenna assembly
US8805530B2 (en) * 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
EP2008584A1 (en) * 2007-06-26 2008-12-31 Julius-Maximilians-Universität Würzburg In vivo device, system and usage thereof
US20090163977A1 (en) * 2007-08-17 2009-06-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System, devices, and methods including sterilizing excitation delivery implants with cryptographic logic components
US20090077024A1 (en) * 2007-09-14 2009-03-19 Klaus Abraham-Fuchs Search system for searching a secured medical server
JP2009095583A (en) * 2007-10-19 2009-05-07 Panasonic Corp Health information collection system and health information collection method
US8457757B2 (en) * 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
US8165668B2 (en) * 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
US7822479B2 (en) * 2008-01-18 2010-10-26 Otologics, Llc Connector for implantable hearing aid
AU2009220201B2 (en) * 2008-03-04 2013-06-20 Cardiac Pacemakers, Inc. Loaded RF antenna for implantable device
WO2009111009A1 (en) * 2008-03-04 2009-09-11 Cardiac Pacemakers, Inc. Implantable multi-length rf antenna
US7917226B2 (en) * 2008-04-23 2011-03-29 Enteromedics Inc. Antenna arrangements for implantable therapy device
US20100256992A1 (en) * 2009-04-02 2010-10-07 Docvia, Llc Web-and mobile-based emergency health registry system and method
US20110077719A1 (en) * 2009-09-30 2011-03-31 Broadcom Corporation Electromagnetic power bio-medical unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559214A (en) * 1968-10-17 1971-02-02 William J Pangman Compound prosthesis
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
US7241266B2 (en) * 2004-05-20 2007-07-10 Digital Angel Corporation Transducer for embedded bio-sensor using body energy as a power source
US20060069403A1 (en) * 2004-09-21 2006-03-30 Shalon Ventures, Inc. Tissue expansion devices
US7266269B2 (en) * 2004-12-16 2007-09-04 General Electric Company Power harvesting
WO2008014283A2 (en) * 2006-07-24 2008-01-31 Novalert, Inc. Method and apparatus for minimally invasive implants
US20090182426A1 (en) * 2008-01-15 2009-07-16 Jeffrey Allen Von Arx Implantable medical device with antenna

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110137413A1 (en) * 2009-12-04 2011-06-09 Peter Osypka Stiftung Stiftung Des Burgerlichen Rechts Breast implant
US8673003B1 (en) * 2010-07-20 2014-03-18 Abdullah Khalid Al Rasheed Method for improving the early detection of breast cancer and device therefor
US8963708B2 (en) * 2011-01-13 2015-02-24 Sensurtec, Inc. Breach detection in solid structures
US20130281793A1 (en) * 2011-01-13 2013-10-24 Sensurtec, Inc. Breach detection in solid structures
US9504576B2 (en) 2011-01-13 2016-11-29 Sensurtec, Inc. Breach detection in solid structures
US8808373B2 (en) 2012-06-13 2014-08-19 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
WO2013188425A3 (en) * 2012-06-13 2014-03-13 Elwha Llc Breast implant with analyte sensors and internal power source
US10034743B2 (en) * 2012-06-13 2018-07-31 Elwha Llc Breast implant with analyte sensors responsive to external power source
US20140288647A1 (en) * 2012-06-13 2014-09-25 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
US20140296663A1 (en) * 2012-06-13 2014-10-02 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US20140296978A1 (en) * 2012-06-13 2014-10-02 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US8790400B2 (en) 2012-06-13 2014-07-29 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US9144489B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with covering, analyte sensors and internal power source
US9144488B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with analyte sensors responsive to external power source
US20150327989A1 (en) * 2012-06-13 2015-11-19 Elwha LLC, a limited liability company of the State of Delaware Breast implant with analyte sensors responsive to external power source
US9211185B2 (en) 2012-06-13 2015-12-15 Elwha Llc Breast implant with analyte sensors and internal power source
WO2013188430A3 (en) * 2012-06-13 2014-03-06 Elwha Llc Breast implant with analyte sensors responsive to external power source
US8795359B2 (en) 2012-06-13 2014-08-05 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US9326730B2 (en) * 2012-06-13 2016-05-03 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US9333071B2 (en) * 2012-06-13 2016-05-10 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US9339372B2 (en) * 2012-06-13 2016-05-17 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
WO2015196184A3 (en) * 2014-06-21 2016-03-03 Tantillo Michael Methods and devices for breast implant surgery and selection
US20150367581A1 (en) * 2014-06-21 2015-12-24 Michael Tantillo Methods and devices for breast implant surgery and selection
CN107155300A (en) * 2014-06-21 2017-09-12 迈克尔·坦蒂洛 The method and apparatus selected for breast implant surgery and implant
US10874496B2 (en) * 2014-06-25 2020-12-29 Canary Medical Inc. Devices, systems and methods for using and monitoring implants
US11596347B2 (en) 2014-06-25 2023-03-07 Canary Medical Switzerland Ag Devices, systems and methods for using and monitoring orthopedic hardware
US11071456B2 (en) 2014-09-17 2021-07-27 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices
US11786126B2 (en) 2014-09-17 2023-10-17 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices
US11596308B2 (en) 2014-09-17 2023-03-07 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices
US20170068792A1 (en) * 2015-09-03 2017-03-09 Bruce Reiner System and method for medical device security, data tracking and outcomes analysis
US11537829B2 (en) 2016-02-09 2022-12-27 Establishment Labs S.A. Transponders and sensors for implantable medical devices and methods of use thereof
US11593601B2 (en) * 2016-02-09 2023-02-28 Establishment Labs S.A. Transponders and sensors for implantable medical devices and methods of use thereof
US10925537B2 (en) 2016-03-23 2021-02-23 Canary Medical Inc. Implantable reporting processor for an alert implant
US11191479B2 (en) 2016-03-23 2021-12-07 Canary Medical Inc. Implantable reporting processor for an alert implant
US11020053B2 (en) 2016-03-23 2021-06-01 Canary Medical Inc. Implantable reporting processor for an alert implant
US11540772B2 (en) 2016-03-23 2023-01-03 Canary Medical Inc. Implantable reporting processor for an alert implant
US11045139B2 (en) 2016-03-23 2021-06-29 Canary Medical Inc. Implantable reporting processor for an alert implant
US11638555B2 (en) 2016-03-23 2023-05-02 Canary Medical Inc. Implantable reporting processor for an alert implant
US11779273B2 (en) 2016-03-23 2023-10-10 Canary Medical Inc. Implantable reporting processor for an alert implant
US11896391B2 (en) 2016-03-23 2024-02-13 Canary Medical Inc. Implantable reporting processor for an alert implant
US20190247234A1 (en) * 2016-10-21 2019-08-15 Ohio State Innovation Foundation Antimicrobial wound care dressing
KR20210029368A (en) * 2019-09-06 2021-03-16 오스템임플란트 주식회사 Shape device
KR102260203B1 (en) * 2019-09-06 2021-06-04 오스템임플란트 주식회사 Shape device
US20210376464A1 (en) * 2020-06-02 2021-12-02 Metawave Corporation Frequency offset using sige phase shifters

Also Published As

Publication number Publication date
US20110077697A1 (en) 2011-03-31
US20110077716A1 (en) 2011-03-31
US20120323088A1 (en) 2012-12-20
US20110077476A1 (en) 2011-03-31
US20150314116A1 (en) 2015-11-05
US20110077623A1 (en) 2011-03-31
US20110077718A1 (en) 2011-03-31
US20110077502A1 (en) 2011-03-31
US20110077513A1 (en) 2011-03-31
US9111021B2 (en) 2015-08-18
US20110077459A1 (en) 2011-03-31
US8489199B2 (en) 2013-07-16
US9081878B2 (en) 2015-07-14
US8254853B2 (en) 2012-08-28
US8526894B2 (en) 2013-09-03
US20110077713A1 (en) 2011-03-31
US20110077715A1 (en) 2011-03-31
US20110076983A1 (en) 2011-03-31
US20110077714A1 (en) 2011-03-31
US20110077700A1 (en) 2011-03-31
US20110077580A1 (en) 2011-03-31
US8923967B2 (en) 2014-12-30
US20110077501A1 (en) 2011-03-31
US20110077719A1 (en) 2011-03-31
US20110077675A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US20110077736A1 (en) Breast implant system including bio-medical units
US8515548B2 (en) Article of clothing including bio-medical units
EP2498196A2 (en) Bio-medical unit system for medication control
US8515533B2 (en) Bio-medical unit system for physical therapy
US20110144573A1 (en) Bio-medical unit system for medication control
AU2019216721A1 (en) Ultra-wideband radar and algorithms for use in dog collar
US20080183910A1 (en) Personal medical device (PMD) docking station
WO2016100346A2 (en) Opportunistic syncing methods for wearable devices
US20090015413A1 (en) Wirelessly transmitting biological parameters
WO2006052957A2 (en) Systems and method for short range wireless communication
US20150185088A1 (en) Microwave Radiometry Using Two Antennas
CN109419489A (en) It can plant subcutaneous microchip and its corollary system
Nattar Ranganathan Wireless Biomedical Sensing: Wireless Power, Communication and Computation for Wearable and Implantable Devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: BROADCOM CORPORATION, A CALIFORNIA CORPORATION, CA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROFOUGARAN, AHMADREZA REZA;REEL/FRAME:023759/0383

Effective date: 20091229

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001

Effective date: 20170119