US20110098813A1 - Complementary drug delivery sheath for an implantable medical device - Google Patents

Complementary drug delivery sheath for an implantable medical device Download PDF

Info

Publication number
US20110098813A1
US20110098813A1 US12/668,003 US66800308A US2011098813A1 US 20110098813 A1 US20110098813 A1 US 20110098813A1 US 66800308 A US66800308 A US 66800308A US 2011098813 A1 US2011098813 A1 US 2011098813A1
Authority
US
United States
Prior art keywords
drug
sheath
component
delivery sheath
kit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/668,003
Inventor
Peter Gibson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cochlear Ltd
Cochlear Americas Corp
Original Assignee
Cochlear Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cochlear Ltd filed Critical Cochlear Ltd
Priority to US12/668,003 priority Critical patent/US20110098813A1/en
Assigned to COCHLEAR AMERICAS reassignment COCHLEAR AMERICAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIBSON, PETER
Publication of US20110098813A1 publication Critical patent/US20110098813A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0541Cochlear electrodes

Definitions

  • the present invention relates generally to implantable medical devices, and more particularly, to a complementary drug delivery sheath for an implantable medical device.
  • Implantable medical devices are devices comprising one or more implantable components which are capable of providing a wide range of benefits to a patient.
  • implantable prosthetic hearing devices that process ambient sound to supplement or provide hearing ability to hearing impaired patients (sometimes referred to herein as “recipients”).
  • Implantable prosthetic hearing devices include, for example, partially or fully implantable acoustic hearing aids, mechanically stimulation implants, auditory brain stimulators and cochlear prostheses (commonly referred to as cochlear prosthetic devices, cochlear implants, cochlear devices, and the like; simply “cochlear implants” herein.)
  • cochlear implants an array of stimulation electrodes is implanted in a recipient's cochlea. This array is controlled by an electronic system encased in a hermetically sealed, biocompatible housing typically implanted in the recipient's mastoid bone.
  • the electronic system essentially contains components which decode and process signals received thereby, and circuits or other components which deliver stimulation signals to a recipient via the implanted electrodes.
  • Acoustic sound reception and conversion of acoustic signals into electrical signals typically occurs externally in a sound processor worn by the recipient.
  • the sound processor superimposes the preprocessed signals, properly coded, on a high frequency carrier signal which is transmitted transcutaneously to the implanted components through the closed skin.
  • a microphone is located outside of the recipient's body, typically in a behind-the-ear housing worn on the auricle.
  • bioactive substances or chemicals generally and collectively referred to herein as “drugs”
  • the implantable medical device is coated with a bioactive substance.
  • a bioactive substance is integrated into the polymeric coating of the implantable medical device.
  • liquid drugs are contained in an external or implanted reservoir and are transferred to a target location in a patient.
  • the use of reservoirs the administration of the drugs to the recipient.
  • kits of implantable components for implantation in a recipient comprise an implantable medical device and a drug delivery sheath physically separate from the device and configured to be implanted in the recipient proximate to the device, comprising: at least one pannicular substrate configured to be operably positioned adjacent to one or more surfaces of the device subsequent to the device's manufacture, and at least one drug carried on the at least one substrate so as to be released into the recipient.
  • a complementary drug-delivery sheath for implantation into a recipient of an implantable medical device comprising: a pannicular substrate having dimensions which enable the sheath to be implanted proximate to one or more surfaces of the device; and at least one drug carried in the substrate for release into the body of the recipient.
  • FIG. 1A is an exemplary cochlear implant which may be advantageously complemented with an embodiment of a drug-delivery sheath of the present invention
  • FIG. 1B is a perspective view of a portion of a drug-delivery sheath of the present invention on which drugs are releasably secured, in accordance with embodiments of the present invention
  • FIG. 2A is a top view of an embodiment of the present invention comprising a single drug-delivery sheath configured to be, when implanted, disposed on the surface of a stimulator unit of the cochlear implant; illustrated in FIG. 1A
  • FIG. 2B is a side view of the embodiment the present invention illustrated in FIG. 2A ;
  • FIG. 3A is a side view of an embodiment the drug-delivery sheath of the present invention in the form of a conformal pouch or pocket configured to receive a component of an implantable medical device, such as the stimulator unit illustrated in FIG. 1A ;
  • FIG. 3B is a side view of the embodiment the present invention illustrated in FIG. 3A ;
  • FIG. 4 is a top view of an embodiment the present invention having a drug-delivery sheath configured to be partially disposed on the stimulator unit illustrated in FIG. 1A ;
  • FIG. 5 is a top view of an alternative embodiment a drug-delivery sheath configured to be secured at the implant site of a component of an implantable medical device;
  • FIG. 6 is a side view of an alternative embodiment a drug-delivery sheath of the present invention.
  • the present invention is generally directed to a complementary drug-delivery sheath for implantable medical devices.
  • Embodiments of the complementary drug-delivery sheath are covered, impregnated or otherwise carry one or more drugs and, as such, are at times referred to herein as drug-delivery sheaths.
  • Embodiments of the complementary drug-delivery sheaths physically separate from the implantable medical device having one or more implantable components.
  • the drug-delivery sheath may be manufactured separately from to the device components, referred to herein as being separate from the medical device.
  • the complementary drug-delivery sheath is operationally combined with a component of the implantable medical device subsequent to the device's manufacture and/or sterilization.
  • embodiments of the complementary drug-delivery sheath may be configured, for example, to attain an implanted position adjacent to one or more surfaces of an implantable medical device component.
  • the sheath is configured in the form of a glove, pocket, pouch, or the like (collectively and generally referred to as a “pouch” herein), to receive and to partially or completely wrap around or envelop (“envelop” herein) all or a portion of an implantable medical device and any components thereof.
  • a pouch herein
  • Embodiments of the complementary drug delivery sheath may be implanted into the recipient prior to, concurrently with, or subsequent to the implantation of the implantable medical device.
  • Providing an independently-manufactured and physically distinct, complementary drug delivery sheath to an implantable medical device increases flexibility in the applied therapy while reducing the undesirable aspects associated with manufacturing an implantable medical device with a drug integrated therein. For example, this enables manufacturing efforts to be focused solely on the successful manufacture of the implantable medical device rather than on manufacturing an integrated assembly of the device and drug-delivery mechanism.
  • the implantable medical device may be manufactured as a universal device which may be complemented with different embodiments of the drug-delivery sheath. This advantageously enables a single implantable component to be manufactured and inventoried for a length of time not determined by a drug. This is particularly advantageous in those circumstances in which the drug to be delivered via the sheath has a limited shelf life.
  • drug refers to any bioactive substance now or later developed, including, but not limited to, pharmaceuticals and other chemical compounds such as those intended to provide therapeutic benefits to, or other reactions in, an implant recipient, whether localized or distributed throughout the recipient.
  • bioactive substances may include, for example, steroids or other anti-inflammatory drug to reduce inflammation at the implantation site.
  • Another class of bioactive substances that may be included in the drug-delivery sheath are antibiotics to mitigate bacterial growth related to the implantation of the medical device.
  • FIG. 1A is a perspective view of an exemplary cochlear implant with which a complementary drug-delivery sheath of the present invention may be implemented.
  • outer ear 101 comprises an auricle 105 and an ear canal 106 .
  • a sound wave or acoustic pressure 107 is collected by auricle 105 and channeled into and through ear canal 106 .
  • Disposed across the distal end of ear canal 106 is a tympanic membrane 104 which vibrates in response to acoustic wave 107 .
  • This vibration is coupled to oval window or fenestra ovalis 110 through three bones of middle ear 102 , collectively referred to as the ossicles 111 and comprising the malleus 112 , the incus 113 and the stapes 114 .
  • Bones 112 , 113 and 114 of middle ear 102 serve to filter and amplify acoustic wave 107 , causing oval window 110 to articulate, or vibrate.
  • Such vibration sets up waves of fluid motion within cochlea 115 .
  • Such fluid motion activates tiny hair cells (not shown) that line the inside of cochlea 115 .
  • Activation of the hair cells causes appropriate nerve impulses to be transferred through the spiral ganglion cells and auditory nerve 116 to the brain (not shown), where they are perceived as sound. In deaf persons, there is an absence or destruction of the hair cells.
  • a cochlear implant 120 is utilized to directly stimulate the ganglion cells to provide a hearing sensation to the recipient.
  • FIG. 1A also shows the positioning of cochlear implant 120 relative to outer ear 101 , middle ear 102 and inner ear 103 .
  • Cochlear implant 120 comprises external component assembly 122 which is directly or indirectly attached to the body of the recipient, and an internal component assembly 124 which is temporarily or permanently implanted in the recipient.
  • External assembly 122 comprises microphone 125 for detecting sound which is outputted to a behind-the-ear (BTE) speech processing unit 126 that generates coded signals which are provided to an external transmitter unit 128 , along with power from a power source 129 such as a battery.
  • External transmitter unit 128 comprises an external coil 130 and, preferably, a magnet (not shown) secured directly or indirectly in external coil 130 .
  • Internal component assembly 124 comprise an internal coil housing 132 that receives and transmits power and coded signals received from external assembly 122 to a stimulator unit 134 to apply the coded signal to cochlea 115 via an implanted electrode assembly 140 .
  • Internal coil housing 132 and stimulator 134 are sometimes collectively referred to herein as receiver/stimulator unit 134 .
  • Electrode assembly 140 enters cochlea 115 at cochleostomy region 142 and has one or more electrodes 150 positioned on an electrode array 144 to be substantially aligned with portions of tonotopically-mapped cochlea 115 . Signals generated by stimulator unit 134 are typically applied by an array 144 of electrodes 150 to cochlea 115 , thereby stimulating auditory nerve 116 .
  • cochlear implant components such as electrode assembly 140 are often constructed using a material, or combination of materials, which curls or is capable of being curled in a manner which follows the curvature of cochlea 115 .
  • the portion of electrode assembly 140 intended to be inserted into cochlea 115 will often have a stiffening stylet (not shown) inserted into a channel, for example a lumen (not shown), which extends distally from the proximate end of electrode assembly 140 .
  • the stylet contained in the lumen of electrode assembly 140 is removed from the proximate end of electrode assembly 140 as electrode assembly 140 is inserted into cochlea 115 .
  • Electrode assembly 140 is constructed using a flexible material, or is constructed so as to flex upon a fixed amount of force being exerted on the tip or body of electrode assembly 140 as it is being inserted into cochlea 115 .
  • electrode assembly 140 has a length which results in it extending to the first turn of cochlea 115 .
  • the stylet becomes flexible in response to fluids and/or body temperature thereby allowing electrode assembly 140 to curl so as to follow the curvature of the inner wall of cochlea 115 .
  • embodiments of the present invention may be advantageously implemented in a variety of implantable medical devices, components, etc., (collectively and generally referred to as implantable “devices” or “components” herein).
  • implantable devices include implantable medical devices, components, etc.
  • cochlear implant 120 described above with reference to FIG. 1A is a partially-implantable device
  • embodiments of the present invention provide particular benefits to devices which have limited sources of power such as fully-implantable prosthetic hearing devices including fully-implantable bone-anchored hearing aids, fully-implantable cochlear implants, middle ear implants, and the like.
  • FIG. 1B is a perspective view of a region or portion of an exemplary drug-delivery sheath 194 of the present invention.
  • Drug-delivery sheath 194 comprises a pannicular substrate 190 .
  • a pannicular substrate is sheet or layer of material comprising two opposing surfaces separate by a thickness. At least one dimension of the opposing surfaces is large greater than the sheet thickness.
  • a drug 192 is carried in or on (collectively and generally “in” herein) substrate 190 ; that is, a drug 192 is releasably secured in substrate 190 such that drug 192 is implanted in the recipient with sheath 194 so as to complement an implantable device or component (not shown in FIG. 1B ).
  • the drug 192 is subsequently released in to the body of the recipient in which the drug-delivery sheath 194 and its complimentary component are implanted.
  • components of drug 192 are schematically illustrated as small solid circles distributed across a distinct region of substrate 190 . It should be appreciated, however, that the quantity of different drugs, the amount of each such drug, the location of such drug or drugs, and so on, may be determined based on the particular substrate 190 , drug or drugs 192 , the condition or conditions to be treated by the drug or drugs, the implant location, recipient physiology and other factors.
  • Substrate 190 may be composed of a variety of materials, and have a variety of structures, depending on the particular application and type of drug(s) 192 which substrate 190 is to carry. Embodiments of substrate 190 are described below. It should also be appreciated that the mechanism by which drug 192 is releasably secured to substrate 190 may be a characteristic of substrate 190 , a characteristic of drug 192 , or a characteristic of both substrate 190 and drug 192 . Additionally or alternatively, an additional treatment or agent may be employed to releasably secure drug 192 to substrate 190 .
  • a complementary drug delivery sheath in accordance with embodiments of the present invention may be used to complement a number of different implantable components of variety of implantable medical devices.
  • a drug-delivery sheath in accordance embodiments of the present invention may complement substantially any element of the internal component assembly, including the internal coil housing, stimulator unit 134 , electrode assembly 140 , etc.
  • embodiments of the present invention will be described with reference to a complimentary drug-delivery sheath used in conjunction with a stimulator unit of a cochlear implant. Such examples are merely illustrative and should not be construed as limiting the present invention.
  • FIGS. 2A and 2B are top and side perspective views, respectively, of one embodiment of a complementary drug-delivery sheath of the present invention, referred to herein as complementary drug-delivery sheath 200 .
  • This illustrative embodiment of complementary drug-delivery sheath 200 is configured to be positioned adjacent to stimulator unit 134 of cochlear implant 120 ( FIG. 1 ) when stimulator unit 134 is implanted in a recipient. This is shown schematically in FIG. 2B .
  • FIG. 2A is a top view of such an arrangement of stimulator unit 134 and drug-delivery sheath 200
  • FIG. 2B is a side view of stimulator unit 134 and drug-delivery sheath 200 shown in an implanted position; that is, disposed between a recipient's skin 220 and a recessed portion of mastoid bone 222 .
  • FIGS. 3A and 3B are top and side perspective views, respectively, of another embodiment of a complementary drug-delivery sheath of the present invention, referred to herein as complementary drug-delivery sheath 300 .
  • This illustrative embodiment of the complementary drug-delivery sheath is configured as a pouch that partially or substantially wraps around or envelops stimulator unit 134 ( FIG. 1 ).
  • drug-delivery sheath 300 comprises a top sheath 302 A and a bottom sheath 302 B that are permanently or temporarily joined together to form a pouch 304 configured to receive stimulator unit 134 .
  • sheath 300 wraps around and substantially conforms to the surface of stimulator unit 134 .
  • top sheath 302 A and a bottom sheath 302 B are manufactured as a single, unitary drug-delivery sheath.
  • the sheath is generally shaped to have one or more exterior dimensions that approximate the corresponding exterior dimensions of the component of the implantable medical device it complements, here, stimulator unit 134 .
  • FIG. 4 is a top view of a drug-delivery sheath 400 configured to be positioned proximate to a central region 402 of stimulator unit 134 .
  • drug-delivery sheath 400 in lateral direction 404 has a perimeter that is encompassed within the corresponding perimeter of stimulator unit 143 that it complements.
  • drug-delivery sheath 400 has a perimeter that approximates the corresponding perimeter of stimulator unit 134 .
  • Such embodiments may be useful in those applications in which it is desirable to minimize the size of the drug-delivery sheath being implanted in the recipient, for example, to limit the amount of drugs delivered to the recipient, or due to the location or dimension of the implant site.
  • a complementary drug delivery sheath may be implanted to complement an electrode assembly implanted in a recipient's cochlea.
  • the sheath is designed so to have outer dimensions such that the sheath and electrode assembly fit within the cochlea, but have inner dimensions that receive the electrode assembly.
  • FIG. 5 is a top view of an alternative embodiment of a drug-delivery sheath of the present invention.
  • Drug-delivery sheath 500 comprises additional securing tabs or flaps 502 .
  • Securing flaps 502 are configured to attach drug-delivery sheath 500 to the implantable medical device, or other component or anatomical structure.
  • securing tabs 502 are provided to enable drug-delivery sheath 500 to be secured directly to neighboring tissue 220 ( FIG. 2 ) and/or mastoid bone 222 ( FIG. 2 ). As such, securing tabs 502 prevent drug-delivery sheath 500 from migrating from the implantation site.
  • Securing tabs 502 may be attached to the desired object using an appropriate method such as sutures, staples, adhesives, or other attaching methods and techniques now or later developed.
  • securing mechanisms may be integrated into embodiments of drug-delivery sheath of the present invention other than tabs 502 .
  • loops, hooks, or other securing mechanisms that attach to bone or tissue may be used in alternative embodiments of the present invention.
  • embodiments of the drug-delivery sheath of the present invention need not be configured to have or to take on a shape that conforms with the surface of the implantable medical device with which it is implanted, as illustrated in FIGS. 2A , 2 B, 3 A and 3 B.
  • all or a portion of the drug-delivery sheath may be only partially conformable to the adjacent surface of the implantable medical device.
  • the drug-delivery sheath of the present invention may be positioned in any position or orientation relative to the implantable medical device components.
  • the drug-delivery sheath will be in direct contact with the components while in other embodiments the drug-delivery sheath will be in close proximity to the component.
  • the side of the component to which the drug-delivery sheath is adjacently positioned may be based on factors such as therapeutic benefits of the drugs, ease of implantation, long-term effects, desired migration or absorption path of the drugs, and other factors.
  • FIG. 6 is a side view of a portion of a drug-delivery sheath 600 .
  • Drug-delivery sheath 600 is a composite of three layers 602 A-C joined by an adhesive 604 A-B. Each layer 602 may serve a different function.
  • layer 602 A carries a drug 606
  • layer 602 B carries a drug 608
  • layer 602 C carries a drug 610 .
  • drugs 606 , 608 and 610 are the same drug and/or are different drugs designed to treat the same or different conditions, and sheet(s) 602 and/or drug(s) 606 , 608 and 610 is/are configured such that the drug(s) is/are released at the same or different rate.
  • bioactive substances may be disposed on or in a portion or substantially all of each drug-delivery sheath depending on the particular application.
  • a drug-delivery sheath it may be beneficial for a drug-delivery sheath to have a bioactive substance disposed in only a portion of the sheath, with the remaining portion of the sheath configured as a carrier or supporting member for delivery of the bioactive substance to the recipient.
  • Embodiments of the drug-delivery sheath of the present invention may be constructed as a woven mesh.
  • the threads of the woven mesh may be treated with one or more drugs during the fabrication of the mesh, or the mesh may be treated with one or more drugs subsequent to fabrication and prior to implantation with the implantable medical device.
  • the drug-delivery sheath may be constructed of a polymeric material, in which molecules or other components of a bioactive substance disposed within the chemical structure of the drug-delivery sheath.
  • a polymeric material which may be used to construct an embodiment of a drug-delivery sheath of the present invention is silicone.
  • Bioactive substances may be disposed within the silicone drug-delivery sheath such that the bioactive substance is released from the drug-delivery sheath.
  • the surface of the drug-delivery sheath may be constructed to have microsurface geometry.
  • a microsurface geometry may be constructed using nano-technologies, or may be constructed using other technologies presently known or developed in the future. Having a microsurface geometry may enable the drug-delivery sheath to be useful in partially or completely inhibiting growth of bacteria and other biological organisms on the surface of drug-delivery sheath.
  • the drug-delivery sheath of the present invention may be constructed of a resorbable material, so that while bioactive substances are being absorbed at the implant site, or after they are absorbed, the drug-delivery sheath may be partially or completely resorbed by the tissue surrounding the implant site.
  • the drug-delivery sheath is comprised of a resorbable material that partially or completely degrades over time through interaction with various body fluids.
  • the drug-delivery sheath is comprised of a resorbable material that partially or completely degrades over time through exposure to body temperatures or fluids.
  • the drug-delivery sheath may be constructed of a non-resorbable material.
  • the use of a non-resorbable material may offer different benefits from the use of a resorbable material, such as the continued provision of spacing or support for other tissue or implanted components.
  • the drug-delivery sheath may be made of a polymeric material configured to enable bioactive substances to be embedded within the structure of the polymeric material, and to release the bioactive substances either naturally or through the interaction of body fluids or body heat which may permeate the sheath.
  • the drug-delivery sheath may have micro-surface geometry, such as those possible through advances in nano-technologies, which may limit or inhibit bacteria growth.
  • drug delivery sheath 300 comprises separate top and bottom sheaths 302 A, 302 B which are separately manufactured and joined together where necessary to form a pouch having desired dimensions for a particular implantable medical device.
  • a bioactive substance to combat the formation of, or to remove, a biofilm.
  • a bioactive substance may be an anti-bacterial drug that is embedded into the sheath of the present invention alone or in combination with other bioactive substances.
  • the drug-delivery sheath is configured to be bonded to the surface of the implantable medical device thereby eliminating the space or gap that may form between the drug-delivery sheath and the adjacent surface of the medical device component. The reduction and/or elimination of this gap reduces or eliminates the likelihood of bacterial growth between the two.
  • bonding is performed in a sterile field immediately prior to surgery. Alternatively, such bonding is performed after the medical device is implanted in the patient. In another embodiment, such bonding is performed during manufacturing, such as one of the last few steps of manufacturing.
  • the above bonding is performed by disposing a glue layer on the complementary component so that the drug-delivery sheath may be pressed on prior to surgery. This may be performed manually or with a simple press-tool that aligns the two components and presses them together with a predefined maximum pressure.
  • a liquid glue may be applied between the medical device surface and the drug-delivery sheath.
  • the liquid glue sets and/or cures rapidly.
  • a UV-cured glue is pre-applied to the component, or applied as a liquid, or is a separate component that is inserted between the drug-delivery sheath and the medical device.
  • a liquid perfluoropol polymer such as that described in International Application WO 2007/021620 A2 may be utilized.
  • International Application WO 2007/021620 A2 is hereby incorporated by reference herein.
  • Other adhesives which may be used include, bur are not limited to, fibrin glues, cyanoacrylates, polyurethane adhesives, silicone adhesives, and UC-cured acrylics.
  • chemical surface modification may be utilized to attain a desired bonding. For example, in one embodiment, covalently bonded proteins, or sulfonation may be performed to increase the wetability of the surface.

Abstract

A complementary drug delivery sheath for implantable medical devices. The complementary drug delivery sheath is covered, impregnated or otherwise carries one or more drugs. The complementary drug-delivery sheaths are manufactured separately from to the implantable device and are operationally combined with one or more components subsequent to the device's manufacture and/or sterilization.

Description

    CROSS-REFERENCE TO REPLATED APPLICATIONS
  • This application is a National Stage application of International Application PCT/US2008/069332, entitled “COMPLEMENTARY DRUG DELIVERY SHEATH FOR AN IMPLANTABLE MEDICAL DEVICE,” filed Jul. 7, 2008, which claims the benefit of U.S. Provisional Patent Application 60/948,411, entitled “COMPLEMENTARY DRUG DELIVERY SHEATH FOR AN IMPLANTABLE MEDICAL DEVICE,” filed on Jul. 6, 2007. The contents of these applications are hereby incorporated by reference herein.
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention relates generally to implantable medical devices, and more particularly, to a complementary drug delivery sheath for an implantable medical device.
  • 2. Related Art
  • Implantable medical devices are devices comprising one or more implantable components which are capable of providing a wide range of benefits to a patient. One particular type of implantable medical devices which are widely used today are implantable prosthetic hearing devices that process ambient sound to supplement or provide hearing ability to hearing impaired patients (sometimes referred to herein as “recipients”).
  • Implantable prosthetic hearing devices include, for example, partially or fully implantable acoustic hearing aids, mechanically stimulation implants, auditory brain stimulators and cochlear prostheses (commonly referred to as cochlear prosthetic devices, cochlear implants, cochlear devices, and the like; simply “cochlear implants” herein.) In cochlear implants, an array of stimulation electrodes is implanted in a recipient's cochlea. This array is controlled by an electronic system encased in a hermetically sealed, biocompatible housing typically implanted in the recipient's mastoid bone. The electronic system essentially contains components which decode and process signals received thereby, and circuits or other components which deliver stimulation signals to a recipient via the implanted electrodes. Acoustic sound reception and conversion of acoustic signals into electrical signals typically occurs externally in a sound processor worn by the recipient. The sound processor superimposes the preprocessed signals, properly coded, on a high frequency carrier signal which is transmitted transcutaneously to the implanted components through the closed skin. A microphone is located outside of the recipient's body, typically in a behind-the-ear housing worn on the auricle.
  • Traditionally, there has been interest in delivering bioactive substances or chemicals (generally and collectively referred to herein as “drugs”) in conjunction with a cochlear implant or other implantable medical device. In one conventional drug delivery approach the implantable medical device is coated with a bioactive substance. In another conventional approach a bioactive substance is integrated into the polymeric coating of the implantable medical device. These and other conventional approaches typically require the incorporation of the drug into the implantable medical device during the manufacturing process of the device. This introduces a number of difficult problems and challenges for the manufacturing and sterilization processes, particularly for complex implantable medical devices.
  • In other conventional drug delivery approaches, liquid drugs are contained in an external or implanted reservoir and are transferred to a target location in a patient. However, the use of reservoirs the administration of the drugs to the recipient.
  • SUMMARY
  • In accordance with one aspect of the present invention, a kit of implantable components for implantation in a recipient is disclosed. Embodiments of the kit comprise an implantable medical device and a drug delivery sheath physically separate from the device and configured to be implanted in the recipient proximate to the device, comprising: at least one pannicular substrate configured to be operably positioned adjacent to one or more surfaces of the device subsequent to the device's manufacture, and at least one drug carried on the at least one substrate so as to be released into the recipient.
  • In accordance with a second aspect of the present invention, a complementary drug-delivery sheath for implantation into a recipient of an implantable medical device is disclosed. Embodiments of the complementary drug-delivery sheath comprise: a pannicular substrate having dimensions which enable the sheath to be implanted proximate to one or more surfaces of the device; and at least one drug carried in the substrate for release into the body of the recipient.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Illustrative embodiments of the present invention are described herein with reference to the accompanying drawings, in which:
  • FIG. 1A is an exemplary cochlear implant which may be advantageously complemented with an embodiment of a drug-delivery sheath of the present invention;
  • FIG. 1B is a perspective view of a portion of a drug-delivery sheath of the present invention on which drugs are releasably secured, in accordance with embodiments of the present invention;
  • FIG. 2A is a top view of an embodiment of the present invention comprising a single drug-delivery sheath configured to be, when implanted, disposed on the surface of a stimulator unit of the cochlear implant; illustrated in FIG. 1A
  • FIG. 2B is a side view of the embodiment the present invention illustrated in FIG. 2A;
  • FIG. 3A is a side view of an embodiment the drug-delivery sheath of the present invention in the form of a conformal pouch or pocket configured to receive a component of an implantable medical device, such as the stimulator unit illustrated in FIG. 1A;
  • FIG. 3B is a side view of the embodiment the present invention illustrated in FIG. 3A;
  • FIG. 4 is a top view of an embodiment the present invention having a drug-delivery sheath configured to be partially disposed on the stimulator unit illustrated in FIG. 1A;
  • FIG. 5 is a top view of an alternative embodiment a drug-delivery sheath configured to be secured at the implant site of a component of an implantable medical device; and
  • FIG. 6 is a side view of an alternative embodiment a drug-delivery sheath of the present invention.
  • DETAILED DESCRIPTION
  • The present invention is generally directed to a complementary drug-delivery sheath for implantable medical devices. Embodiments of the complementary drug-delivery sheath are covered, impregnated or otherwise carry one or more drugs and, as such, are at times referred to herein as drug-delivery sheaths.
  • Embodiments of the complementary drug-delivery sheaths physically separate from the implantable medical device having one or more implantable components. As such, the drug-delivery sheath may be manufactured separately from to the device components, referred to herein as being separate from the medical device. The complementary drug-delivery sheath is operationally combined with a component of the implantable medical device subsequent to the device's manufacture and/or sterilization. For example, embodiments of the complementary drug-delivery sheath may be configured, for example, to attain an implanted position adjacent to one or more surfaces of an implantable medical device component. In certain embodiments, the sheath is configured in the form of a glove, pocket, pouch, or the like (collectively and generally referred to as a “pouch” herein), to receive and to partially or completely wrap around or envelop (“envelop” herein) all or a portion of an implantable medical device and any components thereof. Embodiments of the complementary drug delivery sheath may be implanted into the recipient prior to, concurrently with, or subsequent to the implantation of the implantable medical device.
  • Providing an independently-manufactured and physically distinct, complementary drug delivery sheath to an implantable medical device increases flexibility in the applied therapy while reducing the undesirable aspects associated with manufacturing an implantable medical device with a drug integrated therein. For example, this enables manufacturing efforts to be focused solely on the successful manufacture of the implantable medical device rather than on manufacturing an integrated assembly of the device and drug-delivery mechanism. Additionally, the implantable medical device may be manufactured as a universal device which may be complemented with different embodiments of the drug-delivery sheath. This advantageously enables a single implantable component to be manufactured and inventoried for a length of time not determined by a drug. This is particularly advantageous in those circumstances in which the drug to be delivered via the sheath has a limited shelf life.
  • As used herein, the term “drug” refers to any bioactive substance now or later developed, including, but not limited to, pharmaceuticals and other chemical compounds such as those intended to provide therapeutic benefits to, or other reactions in, an implant recipient, whether localized or distributed throughout the recipient. Such bioactive substances may include, for example, steroids or other anti-inflammatory drug to reduce inflammation at the implantation site. Another class of bioactive substances that may be included in the drug-delivery sheath are antibiotics to mitigate bacterial growth related to the implantation of the medical device.
  • FIG. 1A is a perspective view of an exemplary cochlear implant with which a complementary drug-delivery sheath of the present invention may be implemented. In fully functional human hearing anatomy, outer ear 101 comprises an auricle 105 and an ear canal 106. A sound wave or acoustic pressure 107 is collected by auricle 105 and channeled into and through ear canal 106. Disposed across the distal end of ear canal 106 is a tympanic membrane 104 which vibrates in response to acoustic wave 107. This vibration is coupled to oval window or fenestra ovalis 110 through three bones of middle ear 102, collectively referred to as the ossicles 111 and comprising the malleus 112, the incus 113 and the stapes 114. Bones 112, 113 and 114 of middle ear 102 serve to filter and amplify acoustic wave 107, causing oval window 110 to articulate, or vibrate. Such vibration sets up waves of fluid motion within cochlea 115. Such fluid motion, in turn, activates tiny hair cells (not shown) that line the inside of cochlea 115. Activation of the hair cells causes appropriate nerve impulses to be transferred through the spiral ganglion cells and auditory nerve 116 to the brain (not shown), where they are perceived as sound. In deaf persons, there is an absence or destruction of the hair cells. A cochlear implant 120 is utilized to directly stimulate the ganglion cells to provide a hearing sensation to the recipient.
  • FIG. 1A also shows the positioning of cochlear implant 120 relative to outer ear 101, middle ear 102 and inner ear 103. Cochlear implant 120 comprises external component assembly 122 which is directly or indirectly attached to the body of the recipient, and an internal component assembly 124 which is temporarily or permanently implanted in the recipient. External assembly 122 comprises microphone 125 for detecting sound which is outputted to a behind-the-ear (BTE) speech processing unit 126 that generates coded signals which are provided to an external transmitter unit 128, along with power from a power source 129 such as a battery. External transmitter unit 128 comprises an external coil 130 and, preferably, a magnet (not shown) secured directly or indirectly in external coil 130.
  • Internal component assembly 124 comprise an internal coil housing 132 that receives and transmits power and coded signals received from external assembly 122 to a stimulator unit 134 to apply the coded signal to cochlea 115 via an implanted electrode assembly 140. Internal coil housing 132 and stimulator 134 are sometimes collectively referred to herein as receiver/stimulator unit 134. Electrode assembly 140 enters cochlea 115 at cochleostomy region 142 and has one or more electrodes 150 positioned on an electrode array 144 to be substantially aligned with portions of tonotopically-mapped cochlea 115. Signals generated by stimulator unit 134 are typically applied by an array 144 of electrodes 150 to cochlea 115, thereby stimulating auditory nerve 116.
  • Given the coiling shape of cochlea 115, cochlear implant components such as electrode assembly 140 are often constructed using a material, or combination of materials, which curls or is capable of being curled in a manner which follows the curvature of cochlea 115. The portion of electrode assembly 140 intended to be inserted into cochlea 115 will often have a stiffening stylet (not shown) inserted into a channel, for example a lumen (not shown), which extends distally from the proximate end of electrode assembly 140. During implantation of electrode assembly 140, the stylet contained in the lumen of electrode assembly 140 is removed from the proximate end of electrode assembly 140 as electrode assembly 140 is inserted into cochlea 115. The act of removing the stiffening stylet from the lumen allows electrode assembly 140 to curl. In further embodiments of cochlear implant 120, the stiffness of the stylet decreases in response to fluids and/or body temperature allowing electrode assembly 140 to curl in order to follow the curvature of the inner walls of cochlea 115. In other embodiments, electrode assembly 140 is naturally straight without the assistance of a stylet inserted into the lumen. Electrode assembly 140 is constructed using a flexible material, or is constructed so as to flex upon a fixed amount of force being exerted on the tip or body of electrode assembly 140 as it is being inserted into cochlea 115. In other embodiments, electrode assembly 140 has a length which results in it extending to the first turn of cochlea 115. In further embodiments of implanted cochlear devices, the stylet becomes flexible in response to fluids and/or body temperature thereby allowing electrode assembly 140 to curl so as to follow the curvature of the inner wall of cochlea 115.
  • As one of ordinary skill in the art will appreciate from the present disclosure, embodiments of the present invention may be advantageously implemented in a variety of implantable medical devices, components, etc., (collectively and generally referred to as implantable “devices” or “components” herein). Although cochlear implant 120 described above with reference to FIG. 1A is a partially-implantable device, embodiments of the present invention provide particular benefits to devices which have limited sources of power such as fully-implantable prosthetic hearing devices including fully-implantable bone-anchored hearing aids, fully-implantable cochlear implants, middle ear implants, and the like.
  • FIG. 1B is a perspective view of a region or portion of an exemplary drug-delivery sheath 194 of the present invention. Drug-delivery sheath 194 comprises a pannicular substrate 190. As used herein, a pannicular substrate is sheet or layer of material comprising two opposing surfaces separate by a thickness. At least one dimension of the opposing surfaces is large greater than the sheet thickness. A drug 192 is carried in or on (collectively and generally “in” herein) substrate 190; that is, a drug 192 is releasably secured in substrate 190 such that drug 192 is implanted in the recipient with sheath 194 so as to complement an implantable device or component (not shown in FIG. 1B). The drug 192 is subsequently released in to the body of the recipient in which the drug-delivery sheath 194 and its complimentary component are implanted. For ease of illustration, components of drug 192 are schematically illustrated as small solid circles distributed across a distinct region of substrate 190. It should be appreciated, however, that the quantity of different drugs, the amount of each such drug, the location of such drug or drugs, and so on, may be determined based on the particular substrate 190, drug or drugs 192, the condition or conditions to be treated by the drug or drugs, the implant location, recipient physiology and other factors.
  • Substrate 190 may be composed of a variety of materials, and have a variety of structures, depending on the particular application and type of drug(s) 192 which substrate 190 is to carry. Embodiments of substrate 190 are described below. It should also be appreciated that the mechanism by which drug 192 is releasably secured to substrate 190 may be a characteristic of substrate 190, a characteristic of drug 192, or a characteristic of both substrate 190 and drug 192. Additionally or alternatively, an additional treatment or agent may be employed to releasably secure drug 192 to substrate 190.
  • As discussed elsewhere herein, a complementary drug delivery sheath in accordance with embodiments of the present invention may be used to complement a number of different implantable components of variety of implantable medical devices. For example, referring specifically to cochlear implants, a drug-delivery sheath in accordance embodiments of the present invention may complement substantially any element of the internal component assembly, including the internal coil housing, stimulator unit 134, electrode assembly 140, etc. For ease of illustration, embodiments of the present invention will be described with reference to a complimentary drug-delivery sheath used in conjunction with a stimulator unit of a cochlear implant. Such examples are merely illustrative and should not be construed as limiting the present invention.
  • FIGS. 2A and 2B are top and side perspective views, respectively, of one embodiment of a complementary drug-delivery sheath of the present invention, referred to herein as complementary drug-delivery sheath 200. This illustrative embodiment of complementary drug-delivery sheath 200 is configured to be positioned adjacent to stimulator unit 134 of cochlear implant 120 (FIG. 1) when stimulator unit 134 is implanted in a recipient. This is shown schematically in FIG. 2B. FIG. 2A is a top view of such an arrangement of stimulator unit 134 and drug-delivery sheath 200; FIG. 2B is a side view of stimulator unit 134 and drug-delivery sheath 200 shown in an implanted position; that is, disposed between a recipient's skin 220 and a recessed portion of mastoid bone 222.
  • FIGS. 3A and 3B are top and side perspective views, respectively, of another embodiment of a complementary drug-delivery sheath of the present invention, referred to herein as complementary drug-delivery sheath 300. This illustrative embodiment of the complementary drug-delivery sheath is configured as a pouch that partially or substantially wraps around or envelops stimulator unit 134 (FIG. 1). As shown in FIG. 3A, drug-delivery sheath 300 comprises a top sheath 302A and a bottom sheath 302B that are permanently or temporarily joined together to form a pouch 304 configured to receive stimulator unit 134. As such, sheath 300 wraps around and substantially conforms to the surface of stimulator unit 134. It should be appreciated that in alternative embodiments, top sheath 302A and a bottom sheath 302B are manufactured as a single, unitary drug-delivery sheath.
  • In the embodiments of the drug-delivery sheath described above, the sheath is generally shaped to have one or more exterior dimensions that approximate the corresponding exterior dimensions of the component of the implantable medical device it complements, here, stimulator unit 134. It should be understood, however, that the shape and size of other embodiments of the drug-delivery sheath may vary depending on the particular application. For example, FIG. 4 is a top view of a drug-delivery sheath 400 configured to be positioned proximate to a central region 402 of stimulator unit 134. In this exemplary embodiment, in lateral direction 404 drug-delivery sheath 400 has a perimeter that is encompassed within the corresponding perimeter of stimulator unit 143 that it complements. In longitudinal direction 406 drug-delivery sheath 400 has a perimeter that approximates the corresponding perimeter of stimulator unit 134.
  • Such embodiments may be useful in those applications in which it is desirable to minimize the size of the drug-delivery sheath being implanted in the recipient, for example, to limit the amount of drugs delivered to the recipient, or due to the location or dimension of the implant site. For example, as noted elsewhere, a complementary drug delivery sheath may be implanted to complement an electrode assembly implanted in a recipient's cochlea. In such embodiments, the sheath is designed so to have outer dimensions such that the sheath and electrode assembly fit within the cochlea, but have inner dimensions that receive the electrode assembly.
  • FIG. 5 is a top view of an alternative embodiment of a drug-delivery sheath of the present invention. Drug-delivery sheath 500 comprises additional securing tabs or flaps 502. Securing flaps 502 are configured to attach drug-delivery sheath 500 to the implantable medical device, or other component or anatomical structure. In this illustrative embodiment, securing tabs 502 are provided to enable drug-delivery sheath 500 to be secured directly to neighboring tissue 220 (FIG. 2) and/or mastoid bone 222 (FIG. 2). As such, securing tabs 502 prevent drug-delivery sheath 500 from migrating from the implantation site. Securing tabs 502 may be attached to the desired object using an appropriate method such as sutures, staples, adhesives, or other attaching methods and techniques now or later developed.
  • As one of ordinary skill in the art should appreciate, other securing mechanisms may be integrated into embodiments of drug-delivery sheath of the present invention other than tabs 502. For example, loops, hooks, or other securing mechanisms that attach to bone or tissue may be used in alternative embodiments of the present invention.
  • As one of ordinary skill in the relevant art would appreciate, embodiments of the drug-delivery sheath of the present invention need not be configured to have or to take on a shape that conforms with the surface of the implantable medical device with which it is implanted, as illustrated in FIGS. 2A, 2B, 3A and 3B. For example, in alternative embodiments, all or a portion of the drug-delivery sheath may be only partially conformable to the adjacent surface of the implantable medical device.
  • It should also be appreciated that the drug-delivery sheath of the present invention may be positioned in any position or orientation relative to the implantable medical device components. In many applications, the drug-delivery sheath will be in direct contact with the components while in other embodiments the drug-delivery sheath will be in close proximity to the component. Also, there are no restrictions regarding the side of the component to which the drug-delivery sheath is adjacently positioned. Such a determination may be based on factors such as therapeutic benefits of the drugs, ease of implantation, long-term effects, desired migration or absorption path of the drugs, and other factors.
  • It should also be appreciated that embodiments of the drug-delivery sheath of the present invention may be formed of one or more sheets or layers, as shown in FIG. 6. FIG. 6 is a side view of a portion of a drug-delivery sheath 600. Drug-delivery sheath 600 is a composite of three layers 602A-C joined by an adhesive 604A-B. Each layer 602 may serve a different function. For example, in the exemplary embodiment illustrated in FIG. 6, layer 602A carries a drug 606; layer 602B carries a drug 608; and layer 602C carries a drug 610. In an alternative embodiment, drugs 606, 608 and 610 are the same drug and/or are different drugs designed to treat the same or different conditions, and sheet(s) 602 and/or drug(s) 606, 608 and 610 is/are configured such that the drug(s) is/are released at the same or different rate.
  • Furthermore, it is to be understood that one or more bioactive substances may be disposed on or in a portion or substantially all of each drug-delivery sheath depending on the particular application. For example, it may be beneficial for a drug-delivery sheath to have a bioactive substance disposed in only a portion of the sheath, with the remaining portion of the sheath configured as a carrier or supporting member for delivery of the bioactive substance to the recipient.
  • Embodiments of the drug-delivery sheath of the present invention may be constructed as a woven mesh. In such embodiments, the threads of the woven mesh may be treated with one or more drugs during the fabrication of the mesh, or the mesh may be treated with one or more drugs subsequent to fabrication and prior to implantation with the implantable medical device.
  • According to a further embodiment of the present invention, the drug-delivery sheath may be constructed of a polymeric material, in which molecules or other components of a bioactive substance disposed within the chemical structure of the drug-delivery sheath. One example of a polymeric material which may be used to construct an embodiment of a drug-delivery sheath of the present invention is silicone. Bioactive substances may be disposed within the silicone drug-delivery sheath such that the bioactive substance is released from the drug-delivery sheath.
  • According to another embodiment of the present invention, the surface of the drug-delivery sheath may be constructed to have microsurface geometry. Such a microsurface geometry may be constructed using nano-technologies, or may be constructed using other technologies presently known or developed in the future. Having a microsurface geometry may enable the drug-delivery sheath to be useful in partially or completely inhibiting growth of bacteria and other biological organisms on the surface of drug-delivery sheath.
  • It may be desirable for embodiments of the drug-delivery sheath of the present invention to be constructed of a resorbable material, so that while bioactive substances are being absorbed at the implant site, or after they are absorbed, the drug-delivery sheath may be partially or completely resorbed by the tissue surrounding the implant site. In certain embodiments, the drug-delivery sheath is comprised of a resorbable material that partially or completely degrades over time through interaction with various body fluids. In other embodiments, the drug-delivery sheath is comprised of a resorbable material that partially or completely degrades over time through exposure to body temperatures or fluids.
  • However, it may also be desirable for the drug-delivery sheath to be constructed of a non-resorbable material. The use of a non-resorbable material may offer different benefits from the use of a resorbable material, such as the continued provision of spacing or support for other tissue or implanted components. For example, the drug-delivery sheath may be made of a polymeric material configured to enable bioactive substances to be embedded within the structure of the polymeric material, and to release the bioactive substances either naturally or through the interaction of body fluids or body heat which may permeate the sheath. Furthermore, the drug-delivery sheath may have micro-surface geometry, such as those possible through advances in nano-technologies, which may limit or inhibit bacteria growth.
  • It is also to be understood that, although the embodiments of the drug-delivery sheath depicted herein have been constructed as a single continuous unit, in alternative embodiments the drug-delivery sheath may also be constructed from several parts joined together to form a single integrated sheath which is then capable of enveloping or surrounding at least a part of an implantable medical device. For example, in one alternative embodiment drug delivery sheath 300 (FIGS. 3A and 3B) comprises separate top and bottom sheaths 302A, 302B which are separately manufactured and joined together where necessary to form a pouch having desired dimensions for a particular implantable medical device.
  • In a further embodiment of the present invention, a bioactive substance to combat the formation of, or to remove, a biofilm. Such a bioactive substance may be an anti-bacterial drug that is embedded into the sheath of the present invention alone or in combination with other bioactive substances.
  • In another embodiment, the drug-delivery sheath is configured to be bonded to the surface of the implantable medical device thereby eliminating the space or gap that may form between the drug-delivery sheath and the adjacent surface of the medical device component. The reduction and/or elimination of this gap reduces or eliminates the likelihood of bacterial growth between the two. In one embodiment, such bonding is performed in a sterile field immediately prior to surgery. Alternatively, such bonding is performed after the medical device is implanted in the patient. In another embodiment, such bonding is performed during manufacturing, such as one of the last few steps of manufacturing.
  • In one embodiment, the above bonding is performed by disposing a glue layer on the complementary component so that the drug-delivery sheath may be pressed on prior to surgery. This may be performed manually or with a simple press-tool that aligns the two components and presses them together with a predefined maximum pressure. Alternatively, a liquid glue may be applied between the medical device surface and the drug-delivery sheath. In one preferred embodiment, the liquid glue sets and/or cures rapidly. In another embodiment, a UV-cured glue is pre-applied to the component, or applied as a liquid, or is a separate component that is inserted between the drug-delivery sheath and the medical device. In one embodiment, a liquid perfluoropol polymer such as that described in International Application WO 2007/021620 A2 may be utilized. International Application WO 2007/021620 A2 is hereby incorporated by reference herein. Other adhesives which may be used include, bur are not limited to, fibrin glues, cyanoacrylates, polyurethane adhesives, silicone adhesives, and UC-cured acrylics. In another embodiment, chemical surface modification may be utilized to attain a desired bonding. For example, in one embodiment, covalently bonded proteins, or sulfonation may be performed to increase the wetability of the surface.
  • While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. All patents and publications discussed herein are incorporated in their entirety by reference thereto.

Claims (38)

1. A kit implantable in a recipient, comprising:
an implantable medical device component;
a implantable drug-delivery sheath physically separate from the component, and comprising:
at least one pannicular substrate configured to be operably positioned adjacent to one or more surfaces of the component subsequent to the component's manufacture, and
at least one drug carried on the at least one substrate so as to be released into the recipient.
2. The kit of claim 1, wherein the at least one substrate is configured in the form of a pouch having interior dimensions that enable the pouch to receive and to partially or completely envelop the component.
3. The kit of claim 1, wherein the at least one drug comprises one or more of the group consisting of: an anti-inflammatory drug; and an antibiotic.
4. The kit of claim 1, wherein the implantable component is an implantable component of a cochlear implant.
5. The kit of claim 4, wherein the implantable component of the cochlear implant is a receiver/stimulator unit, and wherein the drug-delivery sheath is configured to be disposed between the recipient's skin and the receiver/stimulator unit when the receiver/stimulator unit is implanted in a recessed portion of the recipient's mastoid bone.
6. The kit of claim 4, wherein the implantable component of the cochlear implant is an electrode assembly, and wherein the drug-delivery sheath is configured to be disposed about at least a portion of the electrode assembly.
7. The kit of claim 1, wherein the drug-delivery sheath comprises:
a first substrate configured to configured to be operably positioned adjacent a first surface of the component; and
a second substrate configured to configured to be operably positioned adjacent a second surface of the component.
8. The kit of claim 7, wherein the first and second substrates are joined to each other to form a pouch dimensioned to receive the device.
9. The kit of claim 1, wherein the sheath is sufficiently flexible that the sheath may be manually urged to physically conform to a surface of the device.
10. The kit of claim 1, wherein one or more exterior dimensions of the drug-delivery sheath approximate a corresponding exterior dimension of the implantable medical device.
11. The kit of claim 1, wherein the drug-delivery sheath further comprises:
one or more securing mechanisms each configured to attach the drug-delivery sheath to one or more of the implantable component, a second implantable component or anatomical structure.
12. The kit of claim 11, wherein the one or more securing mechanisms are configured to be attached using one or more of sutures, staples and adhesives.
13. The kit of claim 11, wherein the securing mechanisms comprise one or more of the group consisting of: tabs; loops; and hooks.
14. The kit of claim 9, wherein the surface is on a side of the implantable medical device determined based on one or more factors such as therapeutic benefits of the drugs, ease of implantation, long-term effects, and desired migration path of the drug.
15. The kit of claim 1, wherein the drug-delivery sheath further comprises a plurality of pannicular substrates adhered together.
16. The kit of claim 15, wherein two or more of the substrates carry different drugs.
17. The kit of claim 11, wherein the pannicular substrate is constructed of a polymeric material in which components of the drug are disposed within the chemical structure of the substrate.
18. The kit of claim 1, wherein the pannicular substrate is constructed of a resorbable material.
19. A complementary drug-delivery sheath for implantation into a recipient of an implantable component comprising:
a pannicular substrate having dimensions which enable the sheath to be implanted proximate to one or more surfaces of the component; and
at least one drug carried in the substrate for release into the body of the recipient.
20. The sheath of claim 19, wherein the at least one substrate is configured in the form of a pouch having interior dimensions that enable the pouch to receive and to partially or completely envelop the implantable component.
21. The sheath of claim 19, wherein the at least one drug comprises one or more of the group consisting of: an anti-inflammatory drug; and an antibiotic.
22. The sheath of claim 19, wherein the implantable component is an implantable component of a cochlear implant.
23. The sheath of claim 22, wherein the implantable component of the cochlear implant is a receiver/stimulator unit, and wherein the drug-delivery sheath is configured to be disposed between the recipient's skin and the receiver/stimulator unit when the receiver/stimulator unit is implanted in a recessed portion of the recipient's mastoid bone.
24. The sheath of claim 22, wherein the implantable component of the cochlear implant is an electrode assembly, and wherein the drug-delivery sheath is configured to be disposed about at least a portion of the electrode assembly.
25. The sheath of claim 19, wherein the drug-delivery sheath comprises:
a first substrate configured to configured to be operably positioned adjacent a first surface of the component; and
a second substrate configured to configured to be operably positioned adjacent a second surface of the component.
26. The sheath of claim 25, wherein the first and second substrates are joined to each other to form a pouch dimensioned to receive the component.
27. The sheath of claim 19, wherein the sheath is sufficiently flexible that the sheath may be manually urged to physically conform to a surface of the device.
28. The sheath of claim 19, wherein one or more exterior dimensions of the drug-delivery sheath approximate a corresponding exterior dimension of the implantable medical device.
29. The sheath of claim 19, wherein the drug-delivery sheath further comprises:
one or more securing mechanisms each configured to attach the drug-delivery sheath to or more one of the implantable component, a second implantable component or anatomical structure.
30. The sheath of claim 29, wherein the one or more securing mechanisms are configured to be attached using one or more of sutures, staples and adhesives.
31. The sheath of claim 29, wherein the securing mechanisms comprise one or more of the group consisting of: tabs; loops; and hooks.
32. The sheath of claim 19, wherein the drug-delivery sheath further comprises a plurality of pannicular substrates adhered together.
33. The sheath of claim 32, wherein two or more of the substrates carry different drugs.
34. The sheath of claim 19, wherein the the pannicular substrate is constructed of a polymeric material in which components of the drug are disposed within the chemical structure of the substrate.
35. The sheath of claim 19, wherein the pannicular substrate is constructed of a resorbable material.
36. The kit of claim 1, further comprising:
a second implantable component; and
a second implantable drug-delivery sheath physically separate from the component.
37. The kit of claim 36, wherein the second drug-delivery sheath comprises:
one or more pannicular substrates configured to be operably positioned adjacent to one or more surfaces of the second component subsequent to the second component's manufacture, and
at least one drug carried on the one or more substrates so as to be released into the recipient.
38. The kit of claim 36, wherein the first implantable component comprises a receiver/stimulator unit of a cochlear implant, and wherein the second implantable component comprises an electrode array of the cochlear implant.
US12/668,003 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device Abandoned US20110098813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/668,003 US20110098813A1 (en) 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US94841107P 2007-07-06 2007-07-06
PCT/US2008/069332 WO2009009487A1 (en) 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device
US12/668,003 US20110098813A1 (en) 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device

Publications (1)

Publication Number Publication Date
US20110098813A1 true US20110098813A1 (en) 2011-04-28

Family

ID=40222082

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/668,003 Abandoned US20110098813A1 (en) 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device
US12/168,468 Active 2031-02-15 US8160714B2 (en) 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device
US13/448,875 Abandoned US20120265170A1 (en) 2007-07-06 2012-04-17 Complementary drug delivery sheath for an implantable medical device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/168,468 Active 2031-02-15 US8160714B2 (en) 2007-07-06 2008-07-07 Complementary drug delivery sheath for an implantable medical device
US13/448,875 Abandoned US20120265170A1 (en) 2007-07-06 2012-04-17 Complementary drug delivery sheath for an implantable medical device

Country Status (2)

Country Link
US (3) US20110098813A1 (en)
WO (1) WO2009009487A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090124535A1 (en) * 2007-11-13 2009-05-14 Peter Markland Viscous terpolymers as drug delivery platform
US20100158969A1 (en) * 2008-12-23 2010-06-24 Tice Thomas R Flexible implantable composites and implants comprising same
US20100160892A1 (en) * 2008-12-23 2010-06-24 Tice Thomas R Implantable suction cup composites and implants comprising same
US20100168807A1 (en) * 2008-12-23 2010-07-01 Burton Kevin W Bioactive terpolymer compositions and methods of making and using same
US8190271B2 (en) 2007-08-29 2012-05-29 Advanced Bionics, Llc Minimizing trauma during and after insertion of a cochlear lead
US8271101B2 (en) 2007-08-29 2012-09-18 Advanced Bionics Modular drug delivery system for minimizing trauma during and after insertion of a cochlear lead
US8492512B2 (en) 2010-08-30 2013-07-23 Surmodics Pharmaceuticals, Inc. Process for reducing moisture in a biodegradable implant device
US8974808B2 (en) 2008-12-23 2015-03-10 Surmodics, Inc. Elastic implantable composites and implants comprising same
US9480643B2 (en) 2008-12-23 2016-11-01 Surmodics Pharmaceuticals, Inc. Implantable composites and implants comprising same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098813A1 (en) * 2007-07-06 2011-04-28 Cochlear Limited Complementary drug delivery sheath for an implantable medical device
EP2683332A2 (en) * 2011-03-07 2014-01-15 Heddon, Chris Outer ear bone anchor
US9011384B2 (en) 2011-06-22 2015-04-21 Chris Heddon Outer ear bone anchor
US20130190839A1 (en) * 2012-01-20 2013-07-25 Jane Rapsey Drug delivery using a sacrificial host
US10537743B2 (en) 2016-02-24 2020-01-21 Cochlear Limited Implant infection control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421569B1 (en) * 1999-05-21 2002-07-16 Cochlear Limited Cochlear implant electrode array
US20050008671A1 (en) * 2003-07-10 2005-01-13 Medtronic Minimed, Inc. Methods and compositions for the inhibition of biofilms on medical devices
US20050196421A1 (en) * 2003-11-20 2005-09-08 Angiotech International Ag Polymer compositions and methods for their use
US6968234B2 (en) * 2002-04-25 2005-11-22 Medtronic, Inc. Implantable medical device having biologically active polymeric casing
US20060142829A1 (en) * 2004-12-23 2006-06-29 Siemens Aktiengesellschaft Intravenous pacemaker electrode
US20070265692A1 (en) * 2006-05-15 2007-11-15 Cardiac Pacemakers, Inc. Porous surface electrode for coronary venous applications
US20080161871A1 (en) * 2005-06-10 2008-07-03 Cardiac Pacemakers, Inc. Polymer lead covering with varied material properties
US8160714B2 (en) * 2007-07-06 2012-04-17 Cochlear Limited Complementary drug delivery sheath for an implantable medical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108701B2 (en) * 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
US8636763B2 (en) * 2003-07-24 2014-01-28 Clozex Medical, Llc Device for laceration or incision closure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421569B1 (en) * 1999-05-21 2002-07-16 Cochlear Limited Cochlear implant electrode array
US6968234B2 (en) * 2002-04-25 2005-11-22 Medtronic, Inc. Implantable medical device having biologically active polymeric casing
US20050008671A1 (en) * 2003-07-10 2005-01-13 Medtronic Minimed, Inc. Methods and compositions for the inhibition of biofilms on medical devices
US20050196421A1 (en) * 2003-11-20 2005-09-08 Angiotech International Ag Polymer compositions and methods for their use
US20060142829A1 (en) * 2004-12-23 2006-06-29 Siemens Aktiengesellschaft Intravenous pacemaker electrode
US20080161871A1 (en) * 2005-06-10 2008-07-03 Cardiac Pacemakers, Inc. Polymer lead covering with varied material properties
US20070265692A1 (en) * 2006-05-15 2007-11-15 Cardiac Pacemakers, Inc. Porous surface electrode for coronary venous applications
US8160714B2 (en) * 2007-07-06 2012-04-17 Cochlear Limited Complementary drug delivery sheath for an implantable medical device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8190271B2 (en) 2007-08-29 2012-05-29 Advanced Bionics, Llc Minimizing trauma during and after insertion of a cochlear lead
US8271101B2 (en) 2007-08-29 2012-09-18 Advanced Bionics Modular drug delivery system for minimizing trauma during and after insertion of a cochlear lead
US20110129422A1 (en) * 2007-11-13 2011-06-02 Brookwood Pharmaceuticals Viscous Terpolymers as Drug Delivery Platform
US20090124535A1 (en) * 2007-11-13 2009-05-14 Peter Markland Viscous terpolymers as drug delivery platform
US9090737B2 (en) 2007-11-13 2015-07-28 Surmodics, Inc. Viscous terpolymers as drug delivery platform
US9415197B2 (en) 2008-12-23 2016-08-16 Surmodics, Inc. Implantable suction cup composites and implants comprising same
US20100158969A1 (en) * 2008-12-23 2010-06-24 Tice Thomas R Flexible implantable composites and implants comprising same
US20100160892A1 (en) * 2008-12-23 2010-06-24 Tice Thomas R Implantable suction cup composites and implants comprising same
US20100168807A1 (en) * 2008-12-23 2010-07-01 Burton Kevin W Bioactive terpolymer compositions and methods of making and using same
US9480643B2 (en) 2008-12-23 2016-11-01 Surmodics Pharmaceuticals, Inc. Implantable composites and implants comprising same
US8951546B2 (en) * 2008-12-23 2015-02-10 Surmodics Pharmaceuticals, Inc. Flexible implantable composites and implants comprising same
US8974808B2 (en) 2008-12-23 2015-03-10 Surmodics, Inc. Elastic implantable composites and implants comprising same
US8920921B2 (en) 2010-08-30 2014-12-30 Surmodics Pharmaceuticals, Inc. Terpolymer blends and their use as pressure-sensitive adhesives
US9416221B2 (en) 2010-08-30 2016-08-16 Surmodics, Inc. Biodegradable terpolymers and terpolymer blends as pressure-sensitive adhesives
US8492512B2 (en) 2010-08-30 2013-07-23 Surmodics Pharmaceuticals, Inc. Process for reducing moisture in a biodegradable implant device
US9598532B2 (en) 2010-08-30 2017-03-21 Surmodics, Inc. Terpolymers as pressure-sensitive adhesives

Also Published As

Publication number Publication date
US20120265170A1 (en) 2012-10-18
US20090012594A1 (en) 2009-01-08
WO2009009487A1 (en) 2009-01-15
US8160714B2 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
US8160714B2 (en) Complementary drug delivery sheath for an implantable medical device
US8133215B2 (en) Independently-manufactured drug delivery module and corresponding receptacle in an implantable medical device
US9089450B2 (en) Implantatable component having an accessible lumen and a drug release capsule for introduction into same
US9101732B2 (en) Drug-delivery accessory for an implantable medical device
US10022535B2 (en) Securing an implanted medical device in a patient
US20130245569A1 (en) Accessory Device for Inner Ear Drug Delivery
US20040078057A1 (en) Apparatus for delivery of pharmaceuticals to the cochlea
US20080082141A1 (en) Electrode assembly for a stimulating medical device
US20070127745A1 (en) Prevention of static bonding between medical device components
EP2047884B1 (en) Implantable component having an accessible lumen and a drug delivery capsule for introduction into same
US20070162098A1 (en) Prosthetic hearing implant electrode assembly having optimal length for atraumatic implantation
US20110288500A1 (en) Drug-delivery element for an elongate implantable medical device component
US9162009B2 (en) Drug delivery using a sacrificial host
US9008796B2 (en) Drug retaining surface features in an implantable medical device
AU2002223298B2 (en) Pre-curved cochlear implant electrode array

Legal Events

Date Code Title Description
AS Assignment

Owner name: COCHLEAR AMERICAS, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GIBSON, PETER;REEL/FRAME:023726/0289

Effective date: 20091027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION