US20110120953A1 - Water treatment system and method - Google Patents

Water treatment system and method Download PDF

Info

Publication number
US20110120953A1
US20110120953A1 US12/950,050 US95005010A US2011120953A1 US 20110120953 A1 US20110120953 A1 US 20110120953A1 US 95005010 A US95005010 A US 95005010A US 2011120953 A1 US2011120953 A1 US 2011120953A1
Authority
US
United States
Prior art keywords
water
canceled
treated
species
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/950,050
Inventor
Frederick Wilkins
Evgeniya Freydina
Aytac Sezgi
Reshma Madhusudan
Anil D. Jha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evoqua Water Technologies LLC
Original Assignee
Siemens Water Technologies Holding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Water Technologies Holding Corp filed Critical Siemens Water Technologies Holding Corp
Priority to US12/950,050 priority Critical patent/US20110120953A1/en
Priority to US12/962,064 priority patent/US8658043B2/en
Assigned to SIEMENS INDUSTRY, INC. reassignment SIEMENS INDUSTRY, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS WATER TECHNOLOGIES HOLDING CORP.
Publication of US20110120953A1 publication Critical patent/US20110120953A1/en
Assigned to SIEMENS WATER TECHNOLOGIES LLC reassignment SIEMENS WATER TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS INDUSTRY, INC.
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN) Assignors: SIEMENS TREATED WATER OUTSOURCING CORP., SIEMENS WATER TECHNOLOGIES LLC, WTG HOLDINGS II CORP., WTG HOLDINGS III CORP.
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN) Assignors: SIEMENS TREATED WATER OUTSOURCING CORP., SIEMENS WATER TECHNOLOGIES LLC, WTG HOLDINGS II CORP., WTG HOLDINGS III CORP.
Assigned to EVOQUA WATER TECHNOLOGIES LLC reassignment EVOQUA WATER TECHNOLOGIES LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS WATER TECHNOLOGIES LLC
Assigned to SIEMENS WATER TECHNOLOGIES LLC reassignment SIEMENS WATER TECHNOLOGIES LLC RELEASE OF SECURITY INTEREST (REEL/FRAME 032126/0430) Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT
Assigned to SIEMENS WATER TECHNOLOGIES LLC reassignment SIEMENS WATER TECHNOLOGIES LLC RELEASE OF SECURITY INTEREST (REEL/FRAME 032126/0487) Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/54Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • C02F9/20Portable or detachable small-scale multistage treatment devices, e.g. point of use or laboratory water purification systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Definitions

  • the invention is directed to a method and apparatus for treating water and, more specifically, for providing a high quality water for consumption and use.
  • Water that contains hardness species such as calcium and magnesium may be undesirable for some uses in industrial, commercial and household applications.
  • the typical guidelines for a classification of water hardness are: zero to 60 milligrams per liter (mg/l) as calcium carbonate is classified as soft; 61 to 120 mg/l as moderately hard; 121 to 180 mg/l as hard; and more than 180 mg/l as very hard.
  • Hard water can be softened or purified by removing the hardness ion species.
  • Examples of systems that remove such species include those that use ion exchange beds.
  • the hardness ions become ionically bound to oppositely charged ionic species that are mixed on the surface of the ion exchange resin.
  • the ion exchange resin eventually becomes saturated with ionically bound hardness ion species and must be regenerated.
  • Regeneration typically involves replacing the bound hardness species with more soluble ionic species, such as sodium chloride.
  • the hardness species bound on the ion exchange resin are replaced by the sodium ions and the ion exchange resins are ready again for a subsequent water softening step.
  • Gadini et al. in International Application Publication No. WO00/64325, disclose a household appliance using water with an improved device for reducing the water hardness.
  • Gadini et al. teach of a household appliance having a control system, a water supply system from an external source and a softening system with an electrochemical cell.
  • Electrodeionization is one process that may be used to soften water.
  • EDI is a process that removes ionizable species from liquids using electrically active media and an electrical potential to influence ion transport.
  • the electrically active media may function to alternately collect and discharge ionizable species, or to facilitate the transport of ions continuously by ionic or electronic substitution mechanisms.
  • EDI devices can include media having permanent or temporary charge and can be operated to cause electrochemical reactions designed to achieve or enhance performance. These devices also include electrically active membranes such as semi-permeable ion exchange or bipolar membranes.
  • Continuous electrodeionization is a process wherein the primary sizing parameter is the transport through the media, not the ionic capacity of the media.
  • a typical CEDI device includes alternating electroactive semi-permeable anion and cation exchange membranes. The spaces between the membranes are configured to create liquid flow compartments with inlets and outlets.
  • a transverse DC electrical field is imposed by an external power source using electrodes at the bounds of the membranes and compartments. Often, electrolyte compartments are provided so that reaction product from the electrodes can be separated from the other flow compartments. Upon imposition of the electric field, ions in the liquid are attracted to their respective counter-electrodes.
  • the volume within the ion-depleting compartments and, in some embodiments, within the ion-concentrating compartments also includes electrically active media.
  • the media may include intimately mixed anion and cation exchange resins.
  • the ion-exchange media typically enhances the transport of ions within the compartments and may participate as a substrate for controlled electrochemical reactions.
  • Electrodeionization devices have been described by, for example, Giuffrida et al. in U.S. Pat. Nos. 4,632,745, 4,925,541 and 5,211,823, by Ganzi in U.S. Pat. Nos. 5,259,936 and 5,316,637, by Oren et al. in U.S. Pat. No. 5,154,809 and by Kedem in U.S. Pat. No. 5,240,579, which are incorporated herein by reference.
  • the invention provides a method of providing water comprising passing a first water stream through a depleting compartment of an electrodeionization device to produce a second water stream having an LSI less than about 0, passing the second water stream through a cathode compartment of the electrodeionization device to produce a third water stream, the third water stream being less corrosive than the first water stream and having an LSI of less than about 0.
  • the invention provides a method of providing potable water comprising passing a first water stream through a cathode compartment of an electrochemical device to produce a second water stream passing the second water stream through a depleting compartment of an electrochemical device to produce a third water stream having an LSI less than about 0, the third water stream being less corrosive than the first water stream.
  • the invention provides a method of retaining a residual chlorine level in water comprising removing greater than 90% of active chlorine from a first water stream; passing the water stream through a depleting compartment of an electrochemical device; removing a portion of any ions dissolved in the water stream, introducing the water stream to a loop, the loop including a storage vessel; and introducing active chlorine in a second water stream into the loop at a rate adequate to maintain an effective average chlorine concentration in the loop.
  • the invention provides a method of selectively retaining ions in a water supply comprising passing a feed water through a depleting compartment of an electrochemical device, the feed water comprising monovalent and divalent ions; removing at least 30% of the divalent cations from the feed water and retaining at least about 80% of a species selected from silica, boron and fluoride, to produce a treated water; and supplying the treated water for household consumption.
  • the invention provides a method of producing a purified water comprising passing a water stream through a depleting compartment of an electrochemical device and adjusting a voltage applied to the electrochemical device to control the current passing through the electrochemical device at a level adequate to remove greater than about 25% of any calcium in the water stream and inadequate to remove greater than about 10% of any fluoride or silica species from the water stream.
  • the invention provides a method comprising softening a feed water through a bed of ion exchange material to remove greater than 30% of any hardness ions from the feed water to produce a softened water, supplying the softened water for household consumption, and discharging a concentrated solution comprising calcium, wherein the sum of the ionic content of the softened water and the ionic content of the concentrated solution is no greater than the total ionic content supplied by the feed water.
  • FIG. 1 is a schematic illustration of an electrochemical device or module in accordance with one or more embodiments of the invention
  • FIG. 2 is a schematic diagram of another electrochemical module in accordance with one or more embodiments of the invention.
  • FIG. 3 is a schematic illustration of a system in accordance with one or more embodiments of the invention.
  • FIG. 4 is a graph showing copper extracted from a copper coupon by three different water samples
  • FIG. 5 is a graph showing copper extracted from a copper coupon after exposure to three different waters for various lengths of time
  • FIG. 6 is a graph showing the amount of copper extracted from copper coupons after exposure to three different waters where the water is being changed out at various intervals;
  • FIG. 7 graphically illustrates product water conductivity and current applied in accordance with one or more embodiments of the invention.
  • FIG. 8 graphically illustrates water conductivity out of a stack and out of a tank, as well as the current applied during operation in accordance with one or more embodiments of the invention.
  • the present invention provides a method and apparatus for providing purified or treated water from a variety of source types.
  • Possible water sources include well water, surface water, municipal water and rain water.
  • the treated product may be for general use or for human consumption or other domestic uses, for example, bathing, laundering, and dishwashing.
  • water that has been purified to a high resistivity for example, greater than about 1 megaOhm
  • water that has been purified to a high resistivity may be so devoid of ionic content that it becomes “hungry” and corrosive to material such as copper, that may be used in water piping systems.
  • Taste may also be affected by, for instance, the removal of bicarbonate species.
  • beneficial or desirable chemicals that have been added to the water for example, fluoride and chlorine species, may be removed along with undesirable species, resulting in a water that may need to be re-fortified.
  • a household is supplied with hard water, i.e., water containing greater than about 60 ppm calcium carbonate, it is often treated prior to use by being passed through a water softener.
  • the water softener is of the rechargeable ion exchange type and is charged with cation resin in the sodium form and anion resin in the chloride form.
  • major contributors to hardness such as calcium and magnesium species, are exchanged for sodium.
  • the water can be softened as the concentration of divalent cations and, in particular, calcium and magnesium ions, decreases.
  • an equivalent of sodium is added to the treated water for every equivalent of calcium that is removed.
  • Continuous electrodeionization can also be used to remove hardness components from a water supply.
  • CEDI systems have power, space and service requirements that make them impractical for domestic use.
  • chlorine may be undesirable in the presence of ion exchange resins, if a chlorinated water supply is to be softened, the chlorine often should first be removed from the water. This means that any water treated in this manner does not benefit from the residual bactericidal properties of the chlorinated water supply.
  • CEDI systems are designed to remove as many ions as possible, and easily ionizable species such as calcium and sodium are efficiently removed so that less than 1% of the cations present in the feed water remains in the treated water.
  • this highly purified water may be beneficial, however, this level of purity may be undesirable for a household water supply in which some level of cation content may be beneficial.
  • this highly purified water may be corrosive and may be prone to attack copper pipes that are often present in domestic water distribution systems.
  • Some domestic water distribution systems may include lead soldered joints, and heavy metals, such as lead, may also leach into water passing through the pipes.
  • minimum levels of calcium may be necessary in order to comply with health and safety regulations.
  • a high purity system that removes greater than, for example, 90 or 99% of the calcium from the water supply may be inappropriate in these locations.
  • the present invention in accordance with one or more embodiments, can utilize CEDI technology to produce purified or treated water with properties that may be ideal water for domestic consumption.
  • the apparatus can soften a hard or very hard water supply, yet retain some level of calcium, at a level below about 60 ppm calcium carbonate.
  • chlorine can be retained in the water so that if the water, after treatment, is stored for any length of time, it retains at least some of its bactericidal qualities.
  • Bicarbonate species may also be retained at levels that provide better tasting water.
  • Fluoride may also be retained so that additional fluoride supplements may be unnecessary.
  • compounds such as silica, boron and other less ionizable species may also be retained at desirable levels greater than other CEDI methods.
  • the properties of the treated water may be improved over water which has had a greater amount of these materials removed.
  • at least 80 or 90% of these compounds can be retained while more than 25%, 30% or 50% of hardness contributing compounds, such as calcium, are removed.
  • the invention provides for the addition of hydrogen (H 2 ) to the water, which may contribute to reducing the corrosivity of the treated water.
  • the addition of hydrogen to the water may manifest itself by a detectable increase in dissolved hydrogen or a resulting decrease in the concentration of oxidative species. This may provide for desirable anti-oxidant properties as well.
  • the pH, if altered at all, is generally close to that of the supply water and thus will not have deleterious effects on equipment or systems that are designed to use un-softened tap water at approximately neutral pH.
  • the apparatus of the invention while having a relatively small foot print and using less energy than many CEDI, or other, treatment systems, still can supply quantities of treated or softened water that satisfy peak domestic demand situations. It may be able to supply softened water continuously, as no recharging cycle is required and a reserve of treated water may be formed.
  • the method and apparatus of the present invention may provide treated water without increasing the ionic load discharged from the treatment system.
  • Conventional chemical treatment systems may require recharging with, for example, sodium chloride, that in turn is substituted for hardness species that are removed from the water. This means that both the hardness species and the substituted species are present in either the softened water or in discharged brine. This may add to the ionic load of waste water discharged from the home and may result in, for example, harm to ground water.
  • Some embodiments of the present invention may discharge only that ionic material that enters the home via the feed water.
  • the total amount of waste water discharged as a result of the softening process may be significantly less than that with conventionally softened waters, for example, less than 10% or 5% of the volume of water treated.
  • FIG. 1 shows a water softening system 10 that may be used in a variety of installations, such as in a home. Feed water is supplied at point of entry 14 , that may be, for example, well water or a municipal water supply.
  • conduits 26 and 28 water can enter either or both of conduits 26 and 28 .
  • Water passing through conduit 26 is typically directed to conduit 94 at tee 22 and feeds storage vessel 12 after passing by pressure indicator 20 a and through inlet 62 .
  • water exits through outlet 64 passes by pressure sensor 20 B and enters either conduit 96 , conduit 98 or both depending on the demand source.
  • Conduit 98 leads past pressure sensor 20 d and valves 32 a and 32 b to service point 18 .
  • Service point 18 may be fluidly connected to a plumbing system or may be selectively joined to a specific point of use, such as appliance or bath.
  • Water that passes through conduit 96 may enter either conduit 52 or conduit 54 , or both.
  • water entering conduit 52 is directed by valve 32 c to conduit 70 and pump 30 a .
  • conduit 72 and optional pretreatment device 28 a which may be, for example, a carbon filter, particulate filter, or aeration device, the water is directed to conduit 60 at which point it enters electrodeionization module 100 .
  • Water entering via conduit 60 is purified by passing through one or more ion-depleting (depleting) compartments and may also pass through an electrode compartment, for example, the cathode compartment.
  • the system By plumbing the depleting compartments (where treated, product water is produced) either upstream or downstream of the cathode compartment, the system can be grounded via the cathode. This may be particularly advantageous in a household setting, as it may reduce safety hazards for the consumer. Furthermore, hydrogen gas that may be formed at the cathode can be dissolved into the product water passing through, resulting in a product water that may be less corrosive than had the water bypassed the cathode compartment.
  • Product water may feed (or receive water from) the cathode, the anode, or both. If the product water communicates with both electrodes, the system may be plumbed so that the depleting compartments are in series or parallel with the electrode compartments.
  • storage vessel 12 may include purified water from conduit 92 as well as untreated, or minimally treated, water that is provided from point of entry 14 .
  • Storage vessel 12 may be configured so that these two water sources are mixed, or alternatively, that the two water sources are segregated, for example, one of the water sources may enter the bottom of storage vessel 12 and proceed in plug-flow manner upwardly to outlet 64 .
  • Performance of electrodeionization module 100 may be improved by pretreatment that includes the removal of chlorine, a municipally treated water supply may be passed through a chlorine reducing filter such as carbon filter 28 a or another pre-treatment device prior to entry into electrodeionization module 100 .
  • Pre-treatment devices may also be placed elsewhere in the loop.
  • Water that enters storage vessel 12 after being treated in electrodeionization module 100 may contain little or no chlorine (or alternative disinfectant) and to retain a residual chlorine level in storage tank 12 the water can be mixed with untreated water from point of entry 14 .
  • the chlorinated water is added at a rate adequate to result in a mixed water that contains enough chlorine to inhibit bacteriologic activity.
  • Active chlorine refers to those chlorine containing species that exhibit anti-microbial activity.
  • An effective chlorine concentration is defined herein as a concentration of active chlorine compounds, for example, sodium hypochlorite, that inhibits the growth of bacteria, such as e-Coli, in storage vessel 12 .
  • the ratio at which the feed water and treated water are mixed in storage vessel 12 may be dependent upon a number of factors including the efficiency of electrodeionization device 100 , a desired effective chlorine concentration, the rate at which water contained in storage vessel 12 will be depleted, the temperature of storage vessel 12 and the source and quality of the feed water.
  • a desired effective chlorine concentration the rate at which water contained in storage vessel 12 will be depleted
  • the temperature of storage vessel 12 the temperature of storage vessel 12 and the source and quality of the feed water.
  • maintenance of an effective disinfectant level may be disregarded.
  • water While water is being recycled through the purification loop, additional water may be supplied via conduit 54 to valve 32 d where it is directed to conduit 88 , pump 30 b , conduit 90 , pretreatment unit 28 b and conduit 80 prior to entering electrodeionization module 100 .
  • water may feed one or more ion-concentrating (concentrating) compartments which may also be plumbed in series with the anode compartment.
  • the anode compartment may lie either upstream or downstream of the concentrating compartment. By passing through the anode compartment, the pH of the water can be lowered and may result in water having a lower LSI.
  • Concentrate exiting electrodeionization module 100 typically enters conduit 82 and can be directed by valve 32 f to conduits 84 and 64 where a portion of the concentrate may be discharged to waste either constantly or intermittently via valve 32 g and drain 26 . An additional portion of the water may enter conduit 66 and can be recycled to the electrodeionization module 100 via conduit 86 and valve 32 d .
  • a concentrate solution may accept ions until a specific level is reached, for example, a pre-chosen LSI, so that a minimal amount of water can be discharged while maintaining a non-scaling environment throughout the loop. Water conservation can be improved further by using the concentrate for applications such as irrigation, that do not require softened water.
  • the previously described loops can be switched so that the purification loop operates as the concentrating loop and the concentrating loop operates as the purification loop.
  • the function of the concentrating and depleting compartments are also switched and pump 30 a , pre-treatment device 28 a , conduit 60 and conduit 62 , as well as valve 32 e each become part of the concentrating loop.
  • pump 30 b , pre-treatment device 28 b , conduits 80 and 82 and valve 32 f become part of the purified loop supplying water to storage vessel 12 .
  • Electrodeionization module compartments switched but all of the associated parts such as pre-treatment devices, pumps, valves, gauges and tees possibly excepting valve 32 g are alternated between carrying purified water and concentrate water, resulting in decreased opportunity for prolonged scaling and increased opportunity for the dissolution of any scale that may have formed.
  • Reverse polarity cycles may be based on a number of factors, including time, source water quality, temperature, purified water quality, desired water quality and water use rates.
  • the system can be operated to maintain levels of other components such as bicarbonate, fluoride, silica and boron.
  • the electrodeionization module 100 may contain ion exchange material and may be operated at a current and flow rate designed to minimize the removal of some or all of those species.
  • some of the calcium, magnesium, iron, manganese or other hardness components present in the water may be retained to provide a purified water containing, for example, about 200, 300, 400 or 500 ppm hardness. This may result in a water that is less corrosive, and exhibits better aesthetic qualities than does water which has been reduced to a lower level of hardness.
  • the device may require less power and a smaller foot print than would a device designed to more completely remove divalent cations from the water in a single pass.
  • the systems and techniques of the present invention can comprise a post treatment system of subsystem capable of destroying or rendering inactive any bacteria that may be delivered to a point of use.
  • the post treatment system can comprise an apparatus or device that can irradiate treated or purified water with actinic radiation or expose with ozone or remove any bacteria by ultrafiltration and/or microfiltration.
  • the systems and techniques of the present invention can comprise providing systems and methods for disinfecting any wetted component of the treatment system by, for example, delivering or exposing at least a portion of the wetted component to a disinfectant such as halogen, a halogen donor, and/or a oxidizing compound such peroxygen compounds.
  • a disinfectant such as halogen, a halogen donor, and/or a oxidizing compound such peroxygen compounds.
  • CEDI treated water was tested to determine how corrosive the product water might be. These results may be of particular importance when the CEDI treated water is to be used in a system including copper plumbing, such as many residential water systems.
  • water treated according to one embodiment of the invention was tested for copper corrosivity side-by-side with untreated water, CEDI treated water, and water treated by a conventional softening system. The corrosion, or leach, test was performed on 1′′ diameter ⁇ 2′′ long copper pipes as coupons.
  • the samples included CEDI treated water (2 configurations) as the challenge water with untreated water and softened water as two controls.
  • the untreated water was well-water from Northbrook, Ill. having a TDS level of about 490 ppm, a hardness of about 18 gpg and a pH of about 7.8.
  • the LSI of the untreated water ranged from 0.8 to 1.0.
  • Conventionally softened water SOFT
  • SOFT was obtained by treating the well-water with a 9′′ softener containing 1 cu.ft. of standard CULLEX® resin available from Culligan Corporation, Northbrook, Ill.
  • CEDI water was produced in trial 1 with a system that did not include an inline reservoir.
  • CEDI treated water PRODUCT
  • trial 2 included passing CEDI product water through the depleting compartments and then through the cathode compartment of the CEDI module.
  • test coupons were prepared by cutting a 1′′ dia copper pipe into 2′′ long pieces and trimming them to remove all burrs. The coupons were rinsed in acetone followed by RO water to remove any grease and metal shavings from the cutting operation. The coupons were each cleaned in 150 mls of 2N HCl solution for 1 minute and sequestered in a neutralizing solution. They were then stored in a dessicator overnight after being rinsed again in RO water and wiped clean. A total of 12 coupons were prepared for trial 2 .
  • Each category of water was set aside into five 500-ml beakers. Each of the samples of water were sampled periodically and in similar patterns. The samples were tested as follows:
  • the first trial included fewer samples than Trial 2 and corrosion analysis was performed under stagnant conditions.
  • the product water samples were taken from the system and analyzed at day 1, day 4 and day 12.
  • Water was treated in a low flow CEDI system without an inline reservoir. The water was passed once through the depleting compartments (not through the cathode) under the following conditions:
  • Trial 2 was performed with a CEDI system using an inline reservoir and product-through-cathode technology under the following conditions:
  • FIG. 4 illustrates graphically the results under stagnant conditions from Trial 2 .
  • FIG. 5 illustrates graphically the results under stagnant conditions from Trial 1 . Both FIGS. 4 and 5 show that the CEDI treated water is less corrosive than both the feed water and the conventionally softened water.
  • FIG. 6 illustrates graphically the results from Trial 2 when the water samples where intermittently changed. Again, the CEDI product water of the present invention was consistently less corrosive than both the feed water and the conventionally softened water.
  • FIG. 7 illustrates the current used and the conductivity of the water produced in trial 1 .
  • FIG. 8 illustrates the current used and the conductivity of the water produced in trial 2 and shows improved water quality over that achieved in trial 1 ( FIG. 7 ).
  • the water treated using the apparatus of FIG. 3 resulted in reduced copper leaching despite exhibiting a lower pH, a lower (negative) LSI and a lower alkalinity than either the hard feed water or the conventionally softened water.
  • the CEDI water of trial 2 was significantly less conductive (purer) than that of trial 1 , yet was as non-corrosive as was the higher conductivity water.
  • the method and apparatus of trial 2 may be particularly suitable for use in a water supply system presenting copper pipes or other materials where corrosion may be a concern.
  • a water is considered to be less corrosive if it exhibits a lower copper concentration when subjected to one or more of the testing procedures described above.
  • the product water of the present invention therefore may be less corrosive than either the feed water or the conventionally softened water.

Abstract

A method and apparatus for producing purified water. Treated water may be provided for domestic use wherein the water may be treated by removing selected dissolved species while retaining properties that may improve the properties or aesthetics of the water.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a divisional application of pending U.S. patent application Ser. No. 10/712,162, titled WATER TREATMENT SYSTEM AND METHOD, filed on Nov. 13, 2003, which is incorporated herein by reference in its entirety for all purposes.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention is directed to a method and apparatus for treating water and, more specifically, for providing a high quality water for consumption and use.
  • 2. Description of Related Art
  • Water that contains hardness species such as calcium and magnesium may be undesirable for some uses in industrial, commercial and household applications. The typical guidelines for a classification of water hardness are: zero to 60 milligrams per liter (mg/l) as calcium carbonate is classified as soft; 61 to 120 mg/l as moderately hard; 121 to 180 mg/l as hard; and more than 180 mg/l as very hard.
  • Hard water can be softened or purified by removing the hardness ion species. Examples of systems that remove such species include those that use ion exchange beds. In such systems, the hardness ions become ionically bound to oppositely charged ionic species that are mixed on the surface of the ion exchange resin. The ion exchange resin eventually becomes saturated with ionically bound hardness ion species and must be regenerated. Regeneration typically involves replacing the bound hardness species with more soluble ionic species, such as sodium chloride. The hardness species bound on the ion exchange resin are replaced by the sodium ions and the ion exchange resins are ready again for a subsequent water softening step.
  • Such systems have been disclosed. For example, Dosch, in U.S. Pat. No. 3,148,687 teaches a washing machine including a water softening arrangement using ion exchange resins. Similarly, Gadini et al., in International Application Publication No. WO00/64325, disclose a household appliance using water with an improved device for reducing the water hardness. Gadini et al. teach of a household appliance having a control system, a water supply system from an external source and a softening system with an electrochemical cell.
  • Electrodeionization (EDI) is one process that may be used to soften water. EDI is a process that removes ionizable species from liquids using electrically active media and an electrical potential to influence ion transport. The electrically active media may function to alternately collect and discharge ionizable species, or to facilitate the transport of ions continuously by ionic or electronic substitution mechanisms. EDI devices can include media having permanent or temporary charge and can be operated to cause electrochemical reactions designed to achieve or enhance performance. These devices also include electrically active membranes such as semi-permeable ion exchange or bipolar membranes.
  • Continuous electrodeionization (CEDI) is a process wherein the primary sizing parameter is the transport through the media, not the ionic capacity of the media. A typical CEDI device includes alternating electroactive semi-permeable anion and cation exchange membranes. The spaces between the membranes are configured to create liquid flow compartments with inlets and outlets. A transverse DC electrical field is imposed by an external power source using electrodes at the bounds of the membranes and compartments. Often, electrolyte compartments are provided so that reaction product from the electrodes can be separated from the other flow compartments. Upon imposition of the electric field, ions in the liquid are attracted to their respective counter-electrodes. The adjoining compartments, bounded by the electroactive anion permeable membrane facing the anode and the electroactive cation membrane facing the cathode, typically become ionically depleted and the compartments, bounded by the electroactive cation permeable membrane facing the anode and the electroactive anion membrane facing the cathode, typically become ionically concentrated. The volume within the ion-depleting compartments and, in some embodiments, within the ion-concentrating compartments, also includes electrically active media. In CEDI devices, the media may include intimately mixed anion and cation exchange resins. The ion-exchange media typically enhances the transport of ions within the compartments and may participate as a substrate for controlled electrochemical reactions. Electrodeionization devices have been described by, for example, Giuffrida et al. in U.S. Pat. Nos. 4,632,745, 4,925,541 and 5,211,823, by Ganzi in U.S. Pat. Nos. 5,259,936 and 5,316,637, by Oren et al. in U.S. Pat. No. 5,154,809 and by Kedem in U.S. Pat. No. 5,240,579, which are incorporated herein by reference.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides a method of providing water comprising passing a first water stream through a depleting compartment of an electrodeionization device to produce a second water stream having an LSI less than about 0, passing the second water stream through a cathode compartment of the electrodeionization device to produce a third water stream, the third water stream being less corrosive than the first water stream and having an LSI of less than about 0.
  • In another aspect, the invention provides a method of providing potable water comprising passing a first water stream through a cathode compartment of an electrochemical device to produce a second water stream passing the second water stream through a depleting compartment of an electrochemical device to produce a third water stream having an LSI less than about 0, the third water stream being less corrosive than the first water stream.
  • In another aspect, the invention provides a method of retaining a residual chlorine level in water comprising removing greater than 90% of active chlorine from a first water stream; passing the water stream through a depleting compartment of an electrochemical device; removing a portion of any ions dissolved in the water stream, introducing the water stream to a loop, the loop including a storage vessel; and introducing active chlorine in a second water stream into the loop at a rate adequate to maintain an effective average chlorine concentration in the loop.
  • In another aspect, the invention provides a method of selectively retaining ions in a water supply comprising passing a feed water through a depleting compartment of an electrochemical device, the feed water comprising monovalent and divalent ions; removing at least 30% of the divalent cations from the feed water and retaining at least about 80% of a species selected from silica, boron and fluoride, to produce a treated water; and supplying the treated water for household consumption.
  • In another aspect, the invention provides a method of producing a purified water comprising passing a water stream through a depleting compartment of an electrochemical device and adjusting a voltage applied to the electrochemical device to control the current passing through the electrochemical device at a level adequate to remove greater than about 25% of any calcium in the water stream and inadequate to remove greater than about 10% of any fluoride or silica species from the water stream.
  • In another aspect, the invention provides a method comprising softening a feed water through a bed of ion exchange material to remove greater than 30% of any hardness ions from the feed water to produce a softened water, supplying the softened water for household consumption, and discharging a concentrated solution comprising calcium, wherein the sum of the ionic content of the softened water and the ionic content of the concentrated solution is no greater than the total ionic content supplied by the feed water.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred, non-limiting embodiments of the present invention will be described by way of example and with reference to the accompanying drawings, in which:
  • FIG. 1 is a schematic illustration of an electrochemical device or module in accordance with one or more embodiments of the invention;
  • FIG. 2 is a schematic diagram of another electrochemical module in accordance with one or more embodiments of the invention;
  • FIG. 3 is a schematic illustration of a system in accordance with one or more embodiments of the invention;
  • FIG. 4 is a graph showing copper extracted from a copper coupon by three different water samples;
  • FIG. 5 is a graph showing copper extracted from a copper coupon after exposure to three different waters for various lengths of time;
  • FIG. 6 is a graph showing the amount of copper extracted from copper coupons after exposure to three different waters where the water is being changed out at various intervals;
  • FIG. 7 graphically illustrates product water conductivity and current applied in accordance with one or more embodiments of the invention; and
  • FIG. 8 graphically illustrates water conductivity out of a stack and out of a tank, as well as the current applied during operation in accordance with one or more embodiments of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • United States patent applications titled WATER TREATMENT SYSTEM AND METHOD by Wilkins et al., which was filed on Nov. 13, 2003 and assigned application Ser. No. 10/712,674, and issued as U.S. Pat. No. 7,582,198 on Sep. 1, 2009; titled WATER TREATMENT SYSTEM AND METHOD by Jha et al, which was filed on Nov. 13, 2003, assigned application Ser. No. 10/712,621; titled WATER TREATMENT SYSTEM AND METHOD by Ganzi et al., which was filed on Nov. 13, 2003, assigned application Ser. No. 10/712,250, and issued as U.S. Pat. No. 7,604,725 on Oct. 20, 2009; titled WATER TREATMENT SYSTEM AND METHOD by Freydina et al., which was filed on Nov. 13, 2003, assigned application Ser. No. 10/712,248, and issued as U.S. Pat. No. 7,083,733 on Aug. 1, 2006; titled WATER TREATMENT SYSTEM AND METHOD by Wilkins et al., which was filed on Nov. 13, 2003 and assigned application Ser. No. 10/712,163, and issued as U.S. Pat. No. 7,563,351 on Jul. 21, 2009; titled WATER TREATMENT SYSTEM AND METHOD by Freydina et al., which was filed on Nov. 13, 2003 and assigned application Ser. No. 10/712,685; and titled WATER TREATMENT SYSTEM AND METHOD by Jha et al, which was filed on Nov. 13, 2003 and assigned application Ser. No. 10/712,166, each of which is hereby incorporated by reference herein for all purposes.
  • The present invention provides a method and apparatus for providing purified or treated water from a variety of source types. Possible water sources include well water, surface water, municipal water and rain water. The treated product may be for general use or for human consumption or other domestic uses, for example, bathing, laundering, and dishwashing.
  • Often, quality drinking water is associated with highly purified water. However, as long as the water is free of microbial contamination, the best drinking water may not necessarily be the most chemically pure. For example, water that has been purified to a high resistivity, for example, greater than about 1 megaOhm, may be so devoid of ionic content that it becomes “hungry” and corrosive to material such as copper, that may be used in water piping systems. Taste may also be affected by, for instance, the removal of bicarbonate species. Furthermore, beneficial or desirable chemicals that have been added to the water, for example, fluoride and chlorine species, may be removed along with undesirable species, resulting in a water that may need to be re-fortified.
  • If a household is supplied with hard water, i.e., water containing greater than about 60 ppm calcium carbonate, it is often treated prior to use by being passed through a water softener. Typically, the water softener is of the rechargeable ion exchange type and is charged with cation resin in the sodium form and anion resin in the chloride form. As water passes through the resin bed, major contributors to hardness, such as calcium and magnesium species, are exchanged for sodium. In this manner, the water can be softened as the concentration of divalent cations and, in particular, calcium and magnesium ions, decreases. However, an equivalent of sodium is added to the treated water for every equivalent of calcium that is removed. Thus, although the water is softened, the hardness is replaced with sodium ions that some consumers may find undesirable. Furthermore, when these ion exchange beds are recharged by rinsing with sodium chloride solution, the resulting brine must be disposed of and is often discharged to a septic system where the brine becomes available to re-enter the ground water. In some jurisdictions, discharge of brine to a domestic septic system is regulated or prohibited.
  • Other methods of softening water include the use of reverse osmosis devices that can supply high purity water, but generally do so at a slow rate and require the use of a high pressure pump. Furthermore, many reverse osmosis membranes can be fouled by the presence of dissolved materials such as silica, which may often be found in well water.
  • Although the examples described herein use electrodeionization devices, other water treatment techniques, such as capacitive deionization, may be just as applicable.
  • Continuous electrodeionization can also be used to remove hardness components from a water supply. However, most CEDI systems have power, space and service requirements that make them impractical for domestic use. In addition, because chlorine may be undesirable in the presence of ion exchange resins, if a chlorinated water supply is to be softened, the chlorine often should first be removed from the water. This means that any water treated in this manner does not benefit from the residual bactericidal properties of the chlorinated water supply.
  • Frequently, CEDI systems are designed to remove as many ions as possible, and easily ionizable species such as calcium and sodium are efficiently removed so that less than 1% of the cations present in the feed water remains in the treated water. For many industrial and commercial uses, this highly purified water may be beneficial, however, this level of purity may be undesirable for a household water supply in which some level of cation content may be beneficial. Furthermore, this highly purified water may be corrosive and may be prone to attack copper pipes that are often present in domestic water distribution systems. Some domestic water distribution systems may include lead soldered joints, and heavy metals, such as lead, may also leach into water passing through the pipes.
  • In some jurisdictions, minimum levels of calcium may be necessary in order to comply with health and safety regulations. Thus, a high purity system that removes greater than, for example, 90 or 99% of the calcium from the water supply may be inappropriate in these locations.
  • The present invention in accordance with one or more embodiments, can utilize CEDI technology to produce purified or treated water with properties that may be ideal water for domestic consumption. For example, the apparatus can soften a hard or very hard water supply, yet retain some level of calcium, at a level below about 60 ppm calcium carbonate. In addition, chlorine can be retained in the water so that if the water, after treatment, is stored for any length of time, it retains at least some of its bactericidal qualities. Bicarbonate species may also be retained at levels that provide better tasting water. Fluoride may also be retained so that additional fluoride supplements may be unnecessary. In addition, compounds such as silica, boron and other less ionizable species may also be retained at desirable levels greater than other CEDI methods. By retaining some of these trace materials, such as boron and silica, the properties of the treated water may be improved over water which has had a greater amount of these materials removed. In some embodiments of the present invention, at least 80 or 90% of these compounds can be retained while more than 25%, 30% or 50% of hardness contributing compounds, such as calcium, are removed.
  • In addition, the invention provides for the addition of hydrogen (H2) to the water, which may contribute to reducing the corrosivity of the treated water. The addition of hydrogen to the water may manifest itself by a detectable increase in dissolved hydrogen or a resulting decrease in the concentration of oxidative species. This may provide for desirable anti-oxidant properties as well. The pH, if altered at all, is generally close to that of the supply water and thus will not have deleterious effects on equipment or systems that are designed to use un-softened tap water at approximately neutral pH.
  • The apparatus of the invention, while having a relatively small foot print and using less energy than many CEDI, or other, treatment systems, still can supply quantities of treated or softened water that satisfy peak domestic demand situations. It may be able to supply softened water continuously, as no recharging cycle is required and a reserve of treated water may be formed.
  • Furthermore, the method and apparatus of the present invention may provide treated water without increasing the ionic load discharged from the treatment system. Conventional chemical treatment systems may require recharging with, for example, sodium chloride, that in turn is substituted for hardness species that are removed from the water. This means that both the hardness species and the substituted species are present in either the softened water or in discharged brine. This may add to the ionic load of waste water discharged from the home and may result in, for example, harm to ground water. Some embodiments of the present invention, however, may discharge only that ionic material that enters the home via the feed water. Furthermore, the total amount of waste water discharged as a result of the softening process may be significantly less than that with conventionally softened waters, for example, less than 10% or 5% of the volume of water treated.
  • One embodiment of a system of the invention is illustrated schematically in FIG. 1. FIG. 1 shows a water softening system 10 that may be used in a variety of installations, such as in a home. Feed water is supplied at point of entry 14, that may be, for example, well water or a municipal water supply.
  • At tee 24 water can enter either or both of conduits 26 and 28. Water passing through conduit 26 is typically directed to conduit 94 at tee 22 and feeds storage vessel 12 after passing by pressure indicator 20 a and through inlet 62. When demand for water exists downstream of the storage device, water exits through outlet 64, passes by pressure sensor 20B and enters either conduit 96, conduit 98 or both depending on the demand source. Conduit 98 leads past pressure sensor 20 d and valves 32 a and 32 b to service point 18. Service point 18 may be fluidly connected to a plumbing system or may be selectively joined to a specific point of use, such as appliance or bath.
  • Water that passes through conduit 96 may enter either conduit 52 or conduit 54, or both. In one configuration, water entering conduit 52 is directed by valve 32 c to conduit 70 and pump 30 a. After passing through conduit 72 and optional pretreatment device 28 a which may be, for example, a carbon filter, particulate filter, or aeration device, the water is directed to conduit 60 at which point it enters electrodeionization module 100. Water entering via conduit 60 is purified by passing through one or more ion-depleting (depleting) compartments and may also pass through an electrode compartment, for example, the cathode compartment.
  • By plumbing the depleting compartments (where treated, product water is produced) either upstream or downstream of the cathode compartment, the system can be grounded via the cathode. This may be particularly advantageous in a household setting, as it may reduce safety hazards for the consumer. Furthermore, hydrogen gas that may be formed at the cathode can be dissolved into the product water passing through, resulting in a product water that may be less corrosive than had the water bypassed the cathode compartment. Product water may feed (or receive water from) the cathode, the anode, or both. If the product water communicates with both electrodes, the system may be plumbed so that the depleting compartments are in series or parallel with the electrode compartments. After exiting electrodeionization module 100 via conduit 62 the purified water may be directed by valve 32 e to conduit 92 and pressure reading device 20 c. The water then proceeds to tee 22 and is directed to conduit 94 prior to entering storage vessel 12. Thus, storage vessel 12 may include purified water from conduit 92 as well as untreated, or minimally treated, water that is provided from point of entry 14. Storage vessel 12 may be configured so that these two water sources are mixed, or alternatively, that the two water sources are segregated, for example, one of the water sources may enter the bottom of storage vessel 12 and proceed in plug-flow manner upwardly to outlet 64. Performance of electrodeionization module 100 may be improved by pretreatment that includes the removal of chlorine, a municipally treated water supply may be passed through a chlorine reducing filter such as carbon filter 28 a or another pre-treatment device prior to entry into electrodeionization module 100.
  • Pre-treatment devices may also be placed elsewhere in the loop. Water that enters storage vessel 12 after being treated in electrodeionization module 100 may contain little or no chlorine (or alternative disinfectant) and to retain a residual chlorine level in storage tank 12 the water can be mixed with untreated water from point of entry 14. Preferably, the chlorinated water is added at a rate adequate to result in a mixed water that contains enough chlorine to inhibit bacteriologic activity. Active chlorine refers to those chlorine containing species that exhibit anti-microbial activity. An effective chlorine concentration is defined herein as a concentration of active chlorine compounds, for example, sodium hypochlorite, that inhibits the growth of bacteria, such as e-Coli, in storage vessel 12. Therefore, the ratio at which the feed water and treated water are mixed in storage vessel 12 may be dependent upon a number of factors including the efficiency of electrodeionization device 100, a desired effective chlorine concentration, the rate at which water contained in storage vessel 12 will be depleted, the temperature of storage vessel 12 and the source and quality of the feed water. Of course, if well water or another source of untreated water is used, maintenance of an effective disinfectant level may be disregarded.
  • While water is being recycled through the purification loop, additional water may be supplied via conduit 54 to valve 32 d where it is directed to conduit 88, pump 30 b, conduit 90, pretreatment unit 28 b and conduit 80 prior to entering electrodeionization module 100. From conduit 80, water may feed one or more ion-concentrating (concentrating) compartments which may also be plumbed in series with the anode compartment. The anode compartment may lie either upstream or downstream of the concentrating compartment. By passing through the anode compartment, the pH of the water can be lowered and may result in water having a lower LSI. The lower LSI, which may be reduced to less than 0 (non-scaling), decreases the scaling potential of the water and thus provides for a lower maintenance, higher water recovery, increased longevity and more reliable system. Concentrate exiting electrodeionization module 100 typically enters conduit 82 and can be directed by valve 32 f to conduits 84 and 64 where a portion of the concentrate may be discharged to waste either constantly or intermittently via valve 32 g and drain 26. An additional portion of the water may enter conduit 66 and can be recycled to the electrodeionization module 100 via conduit 86 and valve 32 d. In this manner, a concentrate solution may accept ions until a specific level is reached, for example, a pre-chosen LSI, so that a minimal amount of water can be discharged while maintaining a non-scaling environment throughout the loop. Water conservation can be improved further by using the concentrate for applications such as irrigation, that do not require softened water.
  • If a polarity reversal system or technique is used, the previously described loops can be switched so that the purification loop operates as the concentrating loop and the concentrating loop operates as the purification loop. In accordance with one or more embodiments of the invention, when the polarity of the anode and cathode are switched, the function of the concentrating and depleting compartments are also switched and pump 30 a, pre-treatment device 28 a, conduit 60 and conduit 62, as well as valve 32 e each become part of the concentrating loop. Likewise, pump 30 b, pre-treatment device 28 b, conduits 80 and 82 and valve 32 f become part of the purified loop supplying water to storage vessel 12. Thus, not only are the electrodeionization module compartments switched but all of the associated parts such as pre-treatment devices, pumps, valves, gauges and tees possibly excepting valve 32 g are alternated between carrying purified water and concentrate water, resulting in decreased opportunity for prolonged scaling and increased opportunity for the dissolution of any scale that may have formed. This has proved particularly advantageous in reducing scaling in components such as valves, orifices, filters or tees. Reverse polarity cycles may be based on a number of factors, including time, source water quality, temperature, purified water quality, desired water quality and water use rates.
  • In addition to providing for effective levels of chlorine in storage tank 12, the system can be operated to maintain levels of other components such as bicarbonate, fluoride, silica and boron. The electrodeionization module 100 may contain ion exchange material and may be operated at a current and flow rate designed to minimize the removal of some or all of those species. In addition, some of the calcium, magnesium, iron, manganese or other hardness components present in the water may be retained to provide a purified water containing, for example, about 200, 300, 400 or 500 ppm hardness. This may result in a water that is less corrosive, and exhibits better aesthetic qualities than does water which has been reduced to a lower level of hardness. By removing, for example, about 20, 30, 40, 50 or 60% of the divalent cations in a single pass through the electrodeionization device, the device may require less power and a smaller foot print than would a device designed to more completely remove divalent cations from the water in a single pass.
  • In accordance with further embodiments, the systems and techniques of the present invention can comprise a post treatment system of subsystem capable of destroying or rendering inactive any bacteria that may be delivered to a point of use. For example, the post treatment system can comprise an apparatus or device that can irradiate treated or purified water with actinic radiation or expose with ozone or remove any bacteria by ultrafiltration and/or microfiltration.
  • In accordance with still further embodiments, the systems and techniques of the present invention can comprise providing systems and methods for disinfecting any wetted component of the treatment system by, for example, delivering or exposing at least a portion of the wetted component to a disinfectant such as halogen, a halogen donor, and/or a oxidizing compound such peroxygen compounds.
  • Example
  • As water treated with a CEDI system may contain reduced levels of TDS, pH and LSI when compared to untreated water, CEDI treated water was tested to determine how corrosive the product water might be. These results may be of particular importance when the CEDI treated water is to be used in a system including copper plumbing, such as many residential water systems. Specifically, water treated according to one embodiment of the invention was tested for copper corrosivity side-by-side with untreated water, CEDI treated water, and water treated by a conventional softening system. The corrosion, or leach, test was performed on 1″ diameter×2″ long copper pipes as coupons. The samples included CEDI treated water (2 configurations) as the challenge water with untreated water and softened water as two controls.
  • The untreated water (HARD) was well-water from Northbrook, Ill. having a TDS level of about 490 ppm, a hardness of about 18 gpg and a pH of about 7.8. The LSI of the untreated water ranged from 0.8 to 1.0. Conventionally softened water (SOFT) was obtained by treating the well-water with a 9″ softener containing 1 cu.ft. of standard CULLEX® resin available from Culligan Corporation, Northbrook, Ill. CEDI water was produced in trial 1 with a system that did not include an inline reservoir. In trial 2, CEDI treated water (PRODUCT) was obtained at the tank outlet of the inline reservoir of the CEDI system illustrated in FIG. 3. Thus, trial 2 included passing CEDI product water through the depleting compartments and then through the cathode compartment of the CEDI module.
  • The test coupons were prepared by cutting a 1″ dia copper pipe into 2″ long pieces and trimming them to remove all burrs. The coupons were rinsed in acetone followed by RO water to remove any grease and metal shavings from the cutting operation. The coupons were each cleaned in 150 mls of 2N HCl solution for 1 minute and sequestered in a neutralizing solution. They were then stored in a dessicator overnight after being rinsed again in RO water and wiped clean. A total of 12 coupons were prepared for trial 2.
  • Each category of water was set aside into five 500-ml beakers. Each of the samples of water were sampled periodically and in similar patterns. The samples were tested as follows:
  • Trial 1
  • The first trial included fewer samples than Trial 2 and corrosion analysis was performed under stagnant conditions. The product water samples were taken from the system and analyzed at day 1, day 4 and day 12. Water was treated in a low flow CEDI system without an inline reservoir. The water was passed once through the depleting compartments (not through the cathode) under the following conditions:
      • 25 cell pairs—low flow small stack with continuous duty, once through operation
      • Compartment size: 7.5″×1.2″ wide
      • Resin filling: 60% IRA-458 Anion Resin, 40% SF-120 Cation Resin
      • Concentrate re-circulation and product discharge flow rate: ˜1 l/min
      • Waste/reject continuous discharge flow rate: ˜500 ml/min
      • Electrode continuous flow rate: ˜300 ml/min per electrode. Fresh feed water sent to electrode compartments
      • Applied voltage=36 V, or 1.45V/cell
      • Feed Conductivity=740 μS
      • Product obtained from a once through operation
  • Corrosion results from Trial 1 are reported in FIGS. 5 and 7 and provide a comparison of raw water, conventionally softened water and the water produced by the CEDI system, as described above.
  • Trial 2
    • A—Stagnant water was used as a control (control) without any coupons. Samples of stagnant water not containing a coupon were analyzed on the 1st, 5th and 12th day, as were samples C, D and E (see below).
    • B—Each of the three waters (changing) was placed in a separate beaker and the water was changed periodically to allow the coupon immersed to come into contact with fresh water. This was done to observe the effect of fresh water on leaching. The exchanged water was analyzed each time the water was changed. The water in these samples was changed on the 1st, 5th, 9th and the 12th day.
    • C—A coupon was immersed in each of the three waters (stagnant) for exactly one day. The water was sent for analysis after one day.
    • D—A coupon was immersed in each of the three waters (stagnant) for 5 days. The water was sent for analyses after five days of stagnation.
    • E—A coupon was immersed in each of the three waters (stagnant) for 12 days. The water was sent for analyses after 12 days of stagnation.
  • Trial 2 was performed with a CEDI system using an inline reservoir and product-through-cathode technology under the following conditions:
      • 25 cell pairs—product through cathode stack with inline reservoir/tank system
      • Compartment size: 7.5″×1.2″ wide
      • Resin filling: 60% IRA-458 Anion Resin, 40% SF-120 Cation Resin
      • Concentrate re-circulation and product re-circulation flow rate: ˜1.4 l/min
      • Waste/reject flush (flushed periodically) flow rate: ˜200 ml/min
      • Product water through cathode, concentrate re-circ. flow through anode
      • Applied voltage=51V, or 2.04 V/cell
      • Feed Conductivity=740 μS
      • Sample of product water collected from tank at set point of about 220 microsiemens.
  • Data from Trial 2 are presented below in FIG. 8. A comparison of the copper concentration, pH, LSI and alkalinity of the water treated by the CEDI system (PRODUCT), conventionally treated soft water (SOFT) and untreated hard water (HARD) is provided in Tables 1-4 below.
  • TABLE 1
    Cu Concentration in ppm
    PRODUCT SOFT HARD
    Day Control Stagnant Changing Control Stagnant Changing Control Stagnant Changing
    0 0 0 0.004
    1 0 0.17 0.142 0 0.289 0.318 0.005 0.309 0.273
    5 0 0.538 0.493 0 0.685 0.752 0.006 0.764 0.741
    9 0.418 0.703 0.922
    12 0 0.529 0.489 0 0.843 0.725 0 0.867 1.101
  • TABLE 2
    pH
    PRODUCT SOFT HARD
    Day Control Stagnant Changing Control Stagnant Changing Control Stagnant Changing
    0 7.3 8 7.9
    1 7.8 7.7 7.7 8.2 8.3 8.1 8.2 8.2 8.2
    5 8.2 8 7.9 8.7 8.7 8.5 8.2 8.5 8.5
    9 8 8.6 8.4
    12 8.2 8.2 8 8.8 8.8 8.6 8.4 8.7 8.5
  • TABLE 3
    LSI @ 22 deg. C.
    PRODUCT SOFT HARD
    Day Control Stagnant Changing Control Stagnant Changing Control Stagnant Changing
    0 −1.3 −1.7 0.6
    1 −0.7 −0.8 −0.8 −1.4 −1.3 −1.5 1 0.9 0.9
    5 −0.4 −0.6 −0.7 −0.9 −1 −0.8 0.8 1.2 1.2
    9 −0.7 −1.6 1.1
    12 −0.4 −0.4 −0.6 −0.9 −0.9 −0.5 0.4 1.4 1.2
  • TABLE 4
    Alkalinity @ 22 deg. C.
    PRODUCT SOFT HARD
    Day Control Stagnant Changing Control Stagnant Changing Control Stagnant Changing
    0 47 197 198
    1 48 48 48 201.3 202 198 196.3 198 198
    5 48 48 47 217 212 198 165 208 207
    9 44 218 207
    12 49 48 47 217 216 207 104 220 211

    TDS levels: CDI treated water—about 135 ppm, Soft water—about 480 ppm, Hard water—about 490 ppm.
  • FIG. 4 illustrates graphically the results under stagnant conditions from Trial 2. FIG. 5 illustrates graphically the results under stagnant conditions from Trial 1. Both FIGS. 4 and 5 show that the CEDI treated water is less corrosive than both the feed water and the conventionally softened water.
  • FIG. 6 illustrates graphically the results from Trial 2 when the water samples where intermittently changed. Again, the CEDI product water of the present invention was consistently less corrosive than both the feed water and the conventionally softened water. FIG. 7 illustrates the current used and the conductivity of the water produced in trial 1. FIG. 8 illustrates the current used and the conductivity of the water produced in trial 2 and shows improved water quality over that achieved in trial 1 (FIG. 7).
  • The results show that the concentration of copper leached in all trials and under all conditions was the lowest in the CEDI treated samples. The CEDI water had lower pH values than both the conventionally softened and the hard water. As expected, the pH, alkalinity and LSI values in the conventionally softened and the CEDI treated water samples increased with stagnation. The LSI and alkalinity values for untreated hard water decreased with stagnation. The concentration of copper leached increased with stagnation except in the CEDI treated water samples where the level of copper leached stabilized out after 5 days, as shown in FIG. 4.
  • Thus, the water treated using the apparatus of FIG. 3 (product through cathode) resulted in reduced copper leaching despite exhibiting a lower pH, a lower (negative) LSI and a lower alkalinity than either the hard feed water or the conventionally softened water. In addition, the CEDI water of trial 2 was significantly less conductive (purer) than that of trial 1, yet was as non-corrosive as was the higher conductivity water. This means the method and apparatus of trial 2 may be particularly suitable for use in a water supply system presenting copper pipes or other materials where corrosion may be a concern. As defined herein, a water is considered to be less corrosive if it exhibits a lower copper concentration when subjected to one or more of the testing procedures described above. The product water of the present invention therefore may be less corrosive than either the feed water or the conventionally softened water.
  • Those skilled in the art would readily appreciate that all parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the systems and methods of the present invention are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. For example, those skilled in the art may recognize that the system, and components thereof, according to the present invention may further comprise a network of systems or be a component of a system such as a household or residential management system. Further, the systems and techniques of the present invention has been described in terms of an electrodeionization device; however, other electrochemical devices or systems may be utilized as a treatment apparatus that reduces a concentration or removes, at least partially, any undesirable species in a fluid to be treated. Other suitable electrochemical devices can include electrodialysis apparatus and capacitive deionization apparatus. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described. The present invention is directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present invention.

Claims (20)

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. A method of selectively retaining ions in a water supply comprising:
passing a feed water through a depleting compartment of an electrochemical device, the feed water comprising monovalent and divalent ions;
removing at least 30% of the divalent ions from the feed water and retaining at least about 80% of a species selected from silica, boron and fluoride, to produce a treated water; and
supplying the treated water for household consumption.
12. A method of producing a purified water comprising:
passing a water stream through a depleting compartment of an electrochemical device; and
adjusting a voltage applied to the electrochemical device to control the current passing through the electrochemical device at a level adequate to remove greater than about 25% of any hardness ions in the water stream and inadequate to remove greater than about 10% of any fluoride or silica species from the water stream.
13. The method of claim 12 wherein less than 10% of any fluoride species is removed.
14. The method of claim 12 wherein less than 10% of any silica species is removed.
15. The method of claim 12 further comprising passing the purified water through the depleting compartment a second time.
16. The method of claim 12 wherein the electrochemical device comprises an electrodeionization device.
17. The method of claim 12 wherein the electrochemical device comprises an electrodialysis device.
18. A method comprising:
passing a feed water through a bed of ion exchange material to remove greater than 30% of any hardness ions from the feed water to produce a softened water;
supplying the softened water for household consumption; and
discharging a concentrated solution comprising calcium, wherein the sum of the ionic content of the softened water and the ionic content of the concentrated solution is no greater than the total ionic content supplied by the feed water.
19. The method of claim 18 wherein the softened water is less corrosive than the feed water.
20. The method of claim 18 further comprising applying an electric current across the bed of ion exchange material.
US12/950,050 2003-11-13 2010-11-19 Water treatment system and method Abandoned US20110120953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/950,050 US20110120953A1 (en) 2003-11-13 2010-11-19 Water treatment system and method
US12/962,064 US8658043B2 (en) 2003-11-13 2010-12-07 Water treatment system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/712,162 US7862700B2 (en) 2003-11-13 2003-11-13 Water treatment system and method
US12/950,050 US20110120953A1 (en) 2003-11-13 2010-11-19 Water treatment system and method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/712,166 Continuation US8377279B2 (en) 2003-11-13 2003-11-13 Water treatment system and method
US10/712,162 Division US7862700B2 (en) 2003-11-13 2003-11-13 Water treatment system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/712,162 Continuation US7862700B2 (en) 2003-11-13 2003-11-13 Water treatment system and method

Publications (1)

Publication Number Publication Date
US20110120953A1 true US20110120953A1 (en) 2011-05-26

Family

ID=34573492

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/712,162 Active 2028-05-18 US7862700B2 (en) 2003-11-13 2003-11-13 Water treatment system and method
US12/950,050 Abandoned US20110120953A1 (en) 2003-11-13 2010-11-19 Water treatment system and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/712,162 Active 2028-05-18 US7862700B2 (en) 2003-11-13 2003-11-13 Water treatment system and method

Country Status (2)

Country Link
US (2) US7862700B2 (en)
CN (1) CN1901996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164318A1 (en) * 2014-04-22 2015-10-29 Purewater Therapeutics, LLC Water treatment system
WO2015187511A1 (en) * 2014-06-04 2015-12-10 F & T Water Solutions Llc Electrocoagulation chamber with atmospheric and pressurized flow regimes

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147785B2 (en) * 2000-09-28 2006-12-12 Usfilter Corporation Electrodeionization device and methods of use
ES2361004T3 (en) 2001-10-15 2011-06-13 Siemens Water Technologies Holding Corp. APPARATUS AND METHOD FOR PURIFICATION OF FLUIDS.
US7501061B2 (en) * 2002-10-23 2009-03-10 Siemens Water Technologies Holding Corp. Production of water for injection using reverse osmosis
US7563351B2 (en) 2003-11-13 2009-07-21 Siemens Water Technologies Holding Corp. Water treatment system and method
US20050103717A1 (en) 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US7862700B2 (en) * 2003-11-13 2011-01-04 Siemens Water Technologies Holding Corp. Water treatment system and method
US7083733B2 (en) * 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
US8377279B2 (en) * 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7329358B2 (en) * 2004-05-27 2008-02-12 Siemens Water Technologies Holding Corp. Water treatment process
US7658828B2 (en) * 2005-04-13 2010-02-09 Siemens Water Technologies Holding Corp. Regeneration of adsorption media within electrical purification apparatuses
US20060231406A1 (en) * 2005-04-13 2006-10-19 Usfilter Corporation Regeneration of adsorption media within electrical purification apparatuses
EP1885655B1 (en) * 2005-06-01 2014-12-17 Evoqua Water Technologies LLC Water treatment process by intermittent sanitization
US8114259B2 (en) * 2006-06-13 2012-02-14 Siemens Industry, Inc. Method and system for providing potable water
US10213744B2 (en) 2006-06-13 2019-02-26 Evoqua Water Technologies Llc Method and system for water treatment
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US8277627B2 (en) 2006-06-13 2012-10-02 Siemens Industry, Inc. Method and system for irrigation
US20080067069A1 (en) 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
US7820024B2 (en) * 2006-06-23 2010-10-26 Siemens Water Technologies Corp. Electrically-driven separation apparatus
US7744760B2 (en) 2006-09-20 2010-06-29 Siemens Water Technologies Corp. Method and apparatus for desalination
WO2008048656A2 (en) * 2006-10-18 2008-04-24 Kinetico Incorporated Electroregeneration apparatus and water treatment method
AU2008331796B2 (en) 2007-11-30 2013-01-10 Evoqua Water Technologies Llc Systems and methods for water treatment
DE102009053659A1 (en) * 2009-11-17 2011-06-09 Dietrich Roland Jersch Method utilizing electrodialysis, with an additional membrane, anode and cathode, using nanotechnology, microsystems technology and magnetism
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9045357B2 (en) 2012-01-06 2015-06-02 AquaMost, Inc. System for reducing contaminants from a photoelectrocatalytic oxidization apparatus through polarity reversal and method of operation
CA2863322A1 (en) 2012-01-30 2013-08-08 Hydronovation, Inc. Performance enhancement of electrochemical deionization devices by pre-treatment with cation exchange resins
US9724645B2 (en) 2012-02-02 2017-08-08 Tangent Company Llc Electrochemically regenerated water deionization
TW201422537A (en) * 2012-08-29 2014-06-16 Brita Professional Gmbh & Co Kg Adjusting a system for controlling operation of a fluid treatment apparatus
US11046596B2 (en) 2012-10-25 2021-06-29 Hydrus Technology Pty. Ltd. Electrochemical liquid treatment apparatus
EP2943440B1 (en) * 2013-01-11 2018-03-14 Sartorius Lab Instruments GmbH & Co. KG Electro-deionization control method
WO2014120871A1 (en) 2013-01-30 2014-08-07 3M Innovative Properties Company Electrochemical cells for supply of acid water
MX2015010269A (en) 2013-02-11 2016-05-10 Aquamost Inc Apparatus and method for treating aqueous solutions and contaminants therein.
US10570044B2 (en) * 2013-02-18 2020-02-25 Biopuremax (2015) Ltd. Method and system for treating water
EP2971253A1 (en) 2013-03-15 2016-01-20 Hydronovation, Inc. Electrochemical water softening system
US9831641B2 (en) * 2013-03-15 2017-11-28 G-Ro Technologies, Llc Variable ion generation and delivery
CN106573801B (en) 2014-05-23 2020-12-15 海卓斯科技有限公司 Electrochemical liquid treatment device
US11046595B2 (en) 2014-05-23 2021-06-29 Hydrus Technology Pty. Ltd. Electrochemical treatment methods
JP7154277B2 (en) 2017-08-21 2022-10-17 エヴォクア ウォーター テクノロジーズ エルエルシー Treatment of salt water for agriculture and drinking
US11346772B2 (en) 2018-01-16 2022-05-31 Ows Agri Limited Gas concentration measurement apparatus and techniques
US11366088B2 (en) 2018-01-23 2022-06-21 Ows Agri Limited System and method for ozone concentration measurement in ice
WO2019147215A1 (en) * 2018-01-23 2019-08-01 Ows Agri Limited System and method for ozone concentration measurement in liquids having a negative scaling index
US11231357B2 (en) 2018-01-24 2022-01-25 Ows Agri Limited System and method for ozone concentration in liquids having a positive scaling factor
US11883551B2 (en) 2018-01-30 2024-01-30 Ows Agri Limited Systems and methods for bulk sterilization using ozone
WO2019156679A1 (en) 2018-02-09 2019-08-15 Ows Agri Limited Systems and methods for continuous flow sterilization
CN113307336A (en) * 2020-02-27 2021-08-27 佛山市美的清湖净水设备有限公司 Waterway system and water purifying equipment
CN114409125A (en) * 2021-12-23 2022-04-29 广州高澜节能技术股份有限公司 Reverse osmosis intelligent dosing control system and dosing process

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681319A (en) * 1951-01-10 1954-06-15 Rohm & Haas Permselective films of anionexchange resins
US2777814A (en) * 1954-12-02 1957-01-15 Gen Electric Water heating and demineralizing apparatus
US2788319A (en) * 1956-02-07 1957-04-09 Clayton Manufacturing Co Ion exchange method and apparatus
US2794777A (en) * 1956-08-27 1957-06-04 Clayton Manufacturing Co Electrolytic deionization
US2923674A (en) * 1958-02-03 1960-02-02 Permutit Co Ltd Process for the removal of dissolved solids from liquids
US3074864A (en) * 1959-04-21 1963-01-22 Gen Electric Methods of and apparatus for demineralizing raw water
US3091583A (en) * 1959-10-27 1963-05-28 Aqua Ionics Inc Electrodialysis cell
US3165460A (en) * 1962-04-11 1965-01-12 American Mach & Foundry Electrolytic acid generator
US3375208A (en) * 1967-07-26 1968-03-26 Esb Inc Method for preparing a microporous thermoplastic resin material
US3645884A (en) * 1969-07-10 1972-02-29 Edwin R Gilliland Electrolytic ion exchange apparatus
US3786924A (en) * 1971-07-22 1974-01-22 Delro Inc Water purification system
US3869376A (en) * 1973-05-14 1975-03-04 Alvaro R Tejeda System for demineralizing water by electrodialysis
US3869375A (en) * 1970-12-23 1975-03-04 Asahi Chemical Ind Gasket structure
US3870033A (en) * 1973-11-30 1975-03-11 Aqua Media Ultra pure water process and apparatus
US3876565A (en) * 1972-09-01 1975-04-08 Mitsubishi Petrochemical Co Ion exchanger - polyolefin membranes
US4089758A (en) * 1974-05-24 1978-05-16 Imperial Chemical Industries Limited Electrolytic process
US4153761A (en) * 1978-04-21 1979-05-08 The United States Of America As Represented By The Secretary Of The Army Method of removing foulants from ion exchange resins
US4191811A (en) * 1977-03-01 1980-03-04 Ionics, Incorported Ion exchange membranes based upon polyphenylene sulfide and fluorocarbon polymeric binder
US4197206A (en) * 1978-09-13 1980-04-08 Karn William S Heat sealable ion permeable membranes
US4321145A (en) * 1980-06-11 1982-03-23 Carlson Lee G Ion exchange treatment for removing toxic metals and cyanide values from waste waters
US4330654A (en) * 1980-06-11 1982-05-18 The Dow Chemical Company Novel polymers having acid functionality
US4374232A (en) * 1979-01-26 1983-02-15 Gelman Sciences Inc. Graft copolymer membrane and processes of manufacturing and using the same
US4430226A (en) * 1981-03-09 1984-02-07 Millipore Corporation Method and apparatus for producing ultrapure water
US4505797A (en) * 1983-03-24 1985-03-19 Ionics, Incorporated Ion-exchange membranes reinforced with non-woven carbon fibers
US4574049A (en) * 1984-06-04 1986-03-04 Arrowhead Industrial Water, Inc. Reverse osmosis system
US4636296A (en) * 1983-08-18 1987-01-13 Gerhard Kunz Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions
US4655909A (en) * 1983-12-20 1987-04-07 Nippon Paint Co., Ltd. Water-deionizing system
US4661411A (en) * 1986-02-25 1987-04-28 The Dow Chemical Company Method for depositing a fluorocarbonsulfonic acid polymer on a support from a solution
US4747929A (en) * 1986-10-01 1988-05-31 Millipore Corporation Depletion compartment and spacer construction for electrodeionization apparatus
US4747955A (en) * 1987-04-13 1988-05-31 The Graver Company Purification of liquids with treated polyester fibers
US4804451A (en) * 1986-10-01 1989-02-14 Millipore Corporation Depletion compartment for deionization apparatus and method
US4808287A (en) * 1987-12-21 1989-02-28 Hark Ernst F Water purification process
US4830721A (en) * 1987-01-26 1989-05-16 S.E.R.E. S.R.L. Electrochemical deoxygenation process for corrosion control in deionized waters
US4915803A (en) * 1988-09-26 1990-04-10 The Dow Chemical Company Combination seal and frame cover member for a filter press type electrolytic cell
US4925541A (en) * 1984-07-09 1990-05-15 Millipore Corporation Electodeionization apparatus and method
US4983267A (en) * 1988-10-18 1991-01-08 Innova/Pure Water, Inc. Water deionization and contaminants removal or degradation
US5082472A (en) * 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
US5084148A (en) * 1990-02-06 1992-01-28 Olin Corporation Electrochemical process for producing chloric acid - alkali metal chlorate mixtures
US5092970A (en) * 1989-12-20 1992-03-03 Olin Corporation Electrochemical process for producing chlorine dioxide solutions from chlorites
US5106465A (en) * 1989-12-20 1992-04-21 Olin Corporation Electrochemical process for producing chlorine dioxide solutions from chlorites
US5107896A (en) * 1991-07-09 1992-04-28 John J. Gianfrancesco Multi-functional valve
US5116509A (en) * 1989-09-08 1992-05-26 Millipore Corporation Electrodeionization and ultraviolet light treatment method for purifying water
US5176828A (en) * 1991-02-04 1993-01-05 Millipore Corporation Manifold segment stack with intermediate feed manifold
US5196115A (en) * 1990-04-23 1993-03-23 Andelman Marc D Controlled charge chromatography system
US5203976A (en) * 1990-03-19 1993-04-20 Ionics, Incorporated Introducing and removing ion-exchange and other particulates rom an assembled electrodeionization stack
US5211823A (en) * 1991-06-19 1993-05-18 Millipore Corporation Process for purifying resins utilizing bipolar interface
US5286354A (en) * 1992-11-30 1994-02-15 Sachem, Inc. Method for preparing organic and inorganic hydroxides and alkoxides by electrolysis
US5292422A (en) * 1992-09-15 1994-03-08 Ip Holding Company Modules for electrodeionization apparatus
US5308467A (en) * 1991-03-13 1994-05-03 Ebara Corporation Electrically regenerable demineralizing apparatus
US5308466A (en) * 1990-12-17 1994-05-03 Ip Holding Company Electrodeionization apparatus
US5411641A (en) * 1993-11-22 1995-05-02 E. I. Du Pont De Nemours And Company Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
US5489370A (en) * 1989-05-08 1996-02-06 Ionex Removal of ions from a bulk source by electropotential ion transport using a host receptor matrix
US5503729A (en) * 1994-04-25 1996-04-02 Ionics Incorporated Electrodialysis including filled cell electrodialysis (electrodeionization)
US5518626A (en) * 1993-12-23 1996-05-21 United Technologies Corporation Process employing thermally sterilizable aqueous polishing agents
US5518627A (en) * 1994-03-01 1996-05-21 Mitsubishi Chemical Corporation Method for treating water or an aqueous solution
US5593563A (en) * 1996-04-26 1997-01-14 Millipore Corporation Electrodeionization process for purifying a liquid
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5714521A (en) * 1994-04-07 1998-02-03 Yeda Research And Development Company Ltd. Ion exchange membranes
USRE35741E (en) * 1984-07-09 1998-03-10 Millipore Corporation Process for purifying water
US5736023A (en) * 1994-05-20 1998-04-07 U.S. Filter/Ionpure, Inc. Polarity reversal and double reversal electrodeionization apparatus and method
US5858191A (en) * 1996-09-23 1999-01-12 United States Filter Corporation Electrodeionization apparatus and method
US5868937A (en) * 1996-02-13 1999-02-09 Mainstream Engineering Corporation Process and system for recycling and reusing gray water
US5891328A (en) * 1995-03-23 1999-04-06 Ionics, Incorporated Membrane-frame for processes including electrodialysis
US6017433A (en) * 1997-11-12 2000-01-25 Archer Daniels Midland Company Desalting aqueous streams via filled cell electrodialysis
US6056878A (en) * 1998-08-03 2000-05-02 E-Cell Corporation Method and apparatus for reducing scaling in electrodeionization systems and for improving efficiency thereof
US6171374B1 (en) * 1998-05-29 2001-01-09 Ballard Power Systems Inc. Plate and frame fluid exchanging assembly with unitary plates and seals
US6187154B1 (en) * 1997-10-23 2001-02-13 Hoshizaki Denki Kabushiki Kaisha Electrolyzed water production system
US6187162B1 (en) * 1999-09-13 2001-02-13 Leon Mir Electrodeionization apparatus with scaling control
US6190558B1 (en) * 1999-04-01 2001-02-20 Nimbus Water Systems, Inc. Reverse osmosis purification system
US6190528B1 (en) * 1998-03-19 2001-02-20 Xiang Li Helical electrodeionization apparatus
US6190553B1 (en) * 1998-12-01 2001-02-20 Sangeul Lee Purification system for disposal of polluted or waste water using water plants
US6193869B1 (en) * 1996-02-09 2001-02-27 Glegg Water Conditioning, Inc. Modular apparatus for the demineralization of liquids
US6197189B1 (en) * 1997-06-19 2001-03-06 Oxygen8, Inc. Oxygenated water cooler
US6197174B1 (en) * 1998-11-25 2001-03-06 E-Cell Corporation Method and apparatus for electrodeionization of water using mixed bed and single phase ion exchange materials in the diluting compartment
US6214204B1 (en) * 1999-08-27 2001-04-10 Corning Incorporated Ion-removal from water using activated carbon electrodes
US6228240B1 (en) * 1996-03-21 2001-05-08 Asahi Glass Company Ltd. Method and apparatus for producing deionized water
US6235166B1 (en) * 1999-06-08 2001-05-22 E-Cell Corporation Sealing means for electrically driven water purification units
US6344122B1 (en) * 1999-07-13 2002-02-05 Kurita Water Industries Ltd. Electrodeionization apparatus
US6365023B1 (en) * 2000-06-22 2002-04-02 Millipore Corporation Electrodeionization process
US6375812B1 (en) * 2000-03-13 2002-04-23 Hamilton Sundstrand Corporation Water electrolysis system
US6391178B1 (en) * 2000-07-13 2002-05-21 Millipore Corporation Electrodeionization system
US6392278B1 (en) * 1999-06-28 2002-05-21 Nec Corporation Fet having a reliable gate electrode
US20030034292A1 (en) * 2001-08-17 2003-02-20 Matthew Rela Water purifier
US20030080467A1 (en) * 1999-02-09 2003-05-01 Andrews Craig C. Microorganism control of point of use potable water sources
US20030089609A1 (en) * 2001-10-15 2003-05-15 United States Filter Corporation Apparatus for fluid purification and methods of manufacture and use thereof
US20030098266A1 (en) * 2001-09-07 2003-05-29 Lih-Ren Shiue Fully automatic and energy-efficient deionizer
US20040060823A1 (en) * 2000-08-11 2004-04-01 Carson William W. Device and method for eletrodialysis
US20040079700A1 (en) * 2002-10-23 2004-04-29 Jonathan Wood Production of water for injection using reverse osmosis
US6733646B2 (en) * 2001-01-05 2004-05-11 Kurita Water Industries Ltd. Method and apparatus for electrodeionization of water
US20040089551A1 (en) * 2001-05-29 2004-05-13 United States Filter Corporation Electrodeionization apparatus and method
US20050103717A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050103723A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050103622A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050103631A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050109703A1 (en) * 2003-11-13 2005-05-26 Culligan International Company Flow-through tank for water treatment
US20060060532A1 (en) * 2004-09-13 2006-03-23 The University Of South Carolina Water desalination process and apparatus

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US201235A (en) * 1878-03-12 Improvement in middlings-separators
US2535035A (en) * 1945-04-30 1950-12-26 Robert E Briggs Method of electrolytic water softening and ph adjustment
US2514415A (en) 1946-02-27 1950-07-11 Carl H Rasch Storage battery paste with ion exchange expander
US2681320A (en) 1950-12-23 1954-06-15 Rohm & Haas Permselective films of cationexchange resins
US2815320A (en) 1953-10-23 1957-12-03 Kollsman Paul Method of and apparatus for treating ionic fluids by dialysis
GB776469A (en) 1953-12-17 1957-06-05 Tno Process and apparatus for the electrolytic deionisation of salt-containing liquids
US2854394A (en) 1954-11-01 1958-09-30 Kollsman Paul Method of and apparatus for fractionation by electrodialysis
NL95176C (en) 1955-07-30
US3296112A (en) 1957-07-16 1967-01-03 Kollsman Paul Method of modifying the chemical composition of substances by ion transfer
GB877239A (en) 1957-12-24 1961-09-13 Permutit Co Ltd Improvements relating to electrodialytic cells
GB882601A (en) 1958-05-07 1961-11-15 Permutit Co Ltd Improvements relating to the treatment of aqueous liquids by electro-dialysis
GB880344A (en) 1958-06-19 1961-10-18 Permutit Co Ltd Improvements relating to electrodialytic cells
GB893051A (en) 1959-04-30 1962-04-04 John Thompson Kennicott Ltd Improvements in or relating to an electrodialysis apparatus
GB942762A (en) 1960-05-13 1963-11-27 John Thompson Kennicott Ltd A method of packing a receptacle with comminuted material
US3099615A (en) 1961-02-13 1963-07-30 Kollsman Paul Electrodialysis involving periodic current reversal
DE1225569B (en) 1961-05-20 1966-09-22 Paul Dosch Method and device for water softening for washing machines and dishwashers
NL288721A (en) 1962-02-19
DE1494902A1 (en) 1962-05-04 1969-06-26 American Mach & Foundry Polymeric products and processes for their manufacture
NL294289A (en) 1962-06-20
DE1201055B (en) 1962-09-27 1965-09-16 Wolfen Filmfab Veb Process for the production of heterogeneous ion exchange membranes
US3341441A (en) 1964-01-07 1967-09-12 Ionics Method for preventing scale buildup during electrodialysis operation
US3291713A (en) 1964-05-27 1966-12-13 Ionics Removal of weakly basic substances from solution by electrodeionization
GB1137679A (en) 1965-02-24 1968-12-27 Wallace Tiernan Inc Procedures and apparatus for electrodialytic treatment of liquids
FR1547493A (en) 1967-07-25 1968-11-29 Improvements to the means for removing ions from a solution
US3630378A (en) 1968-05-24 1971-12-28 Dow Chemical Co Novel water treating and storage apparatus
US3627703A (en) 1968-10-31 1971-12-14 Mitsubishi Petrochemical Co Polypropylene resin composites and production thereof
US3755135A (en) 1971-01-20 1973-08-28 A Johnson Electric demineralizing apparatus
US3989615A (en) 1971-07-06 1976-11-02 Nippon Soda Company Limited Diaphragm process electrolytic cell
BE794634A (en) 1972-01-28 1973-07-26 Rhone Poulenc Sa DIAPHRAGM SEPARATOR
JPS532160B2 (en) 1973-08-17 1978-01-25
US4167551A (en) 1974-10-21 1979-09-11 Mitsubishi Petrochemical Company Limited Process for the production of an ion exchange membrane
CH586059A5 (en) 1974-11-29 1977-03-31 Yeda Res & Dev
US4032452A (en) 1975-11-13 1977-06-28 Sybron Corporation Electrically regenerated ion exchange system
US4130473A (en) 1976-03-05 1978-12-19 Eddleman William L Electrode structure for use in metal in exchange apparatus useful in purifying spent acids and the like
US4102752A (en) 1976-07-09 1978-07-25 Rugh Ii John L Municipal water supply system
US4116889A (en) 1976-08-19 1978-09-26 Allied Chemical Corporation Bipolar membranes and method of making same
US4119581A (en) 1977-02-23 1978-10-10 California Institute Of Technology Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer
IL52758A0 (en) 1977-08-16 1977-10-31 Yeda Res & Dev Improved device for electrodialysis
IL52757A0 (en) 1977-08-16 1977-10-31 Yeda Res & Dev Dimensionally stable ion exchange membranes for electrodialysis
JPS5512141A (en) 1978-07-13 1980-01-28 Mitsubishi Petrochem Co Ltd Manufacturing of ion exchange membrane
US4228000A (en) 1979-01-08 1980-10-14 Hoeschler Frank A Water treatment apparatus with means for automatic disinfection thereof
US4216073A (en) 1979-05-29 1980-08-05 Ionics Inc. Ion exchange resin containing activated carbon
US4358545A (en) 1980-06-11 1982-11-09 The Dow Chemical Company Sulfonic acid electrolytic cell having flourinated polymer membrane with hydration product less than 22,000
US4298442A (en) 1980-08-04 1981-11-03 Ionics, Incorporated Electrodialysis process for silica removal
US4465573A (en) 1981-05-12 1984-08-14 Hare Harry M O Method and apparatus for the purification of water
SU990256A1 (en) 1981-08-05 1983-01-23 Институт Твердого Тела И Переработки Минерального Сырья Со Ан Ссср Ion-exchange membrane
WO1983003984A1 (en) 1982-05-13 1983-11-24 Gerhard Kunz Method for the treatment of a liquid phase, particularly method for desalting aqueous solutions, as well as device for its implementation
SU1118389A1 (en) 1982-10-05 1984-10-15 Предприятие П/Я М-5885 Electric dialyzer
DE3238280A1 (en) 1982-10-15 1984-04-19 Hans-Wilhelm Prof. Dr.-Ing. 1000 Berlin Lieber Process for desalting solutions
US4473450A (en) 1983-04-15 1984-09-25 Raychem Corporation Electrochemical method and apparatus
DE3423653A1 (en) 1984-06-27 1986-01-09 Gerhard K. Dipl.-Chem. Dr.-Ing. 5628 Heiligenhaus Kunz Method and device for metering in ions into liquids, in particular aqueous solutions
US5154809A (en) 1984-07-09 1992-10-13 Millipore Corporation Process for purifying water
EP0170895B1 (en) 1984-07-09 1989-03-22 Millipore Corporation Improved electrodeionization apparatus and method
US4956071A (en) 1984-07-09 1990-09-11 Millipore Corporation Electrodeionization apparatus and module
US4931160A (en) 1987-05-11 1990-06-05 Millipore Corporation Electrodeionization method and apparatus
GB8513114D0 (en) 1985-05-23 1985-06-26 Ici Plc Membranes
US4614576A (en) 1985-10-22 1986-09-30 Ionics, Incorporated Microliter scale electrodialysis apparatus
US4671863A (en) 1985-10-28 1987-06-09 Tejeda Alvaro R Reversible electrolytic system for softening and dealkalizing water
ZA87553B (en) 1986-01-31 1988-03-30 Water Res Commission Dewatering slurries
EP0253119A3 (en) 1986-06-13 1989-07-19 Asahi Glass Company Ltd. Ion exchange membrane for electrolysis
US4707240A (en) 1986-09-15 1987-11-17 Ionics Incorporated Method and apparatus for improving the life of an electrode
US4753681A (en) 1986-09-30 1988-06-28 Millipore Corporation Method for defouling electrodeionization apparatus
US4751153A (en) 1987-01-02 1988-06-14 Continental Can Company, Inc. Frame for a cell construction
US4849102A (en) 1988-05-31 1989-07-18 Filtron Technology Corporation Bidirectional ultrafiltration apparatus
US4969983A (en) 1988-07-11 1990-11-13 Ionics, Incorporated Apparatus and process for the removal of acidic and basic gases from fluid mixtures using bipolar membranes
US4871431A (en) * 1988-07-11 1989-10-03 Ionics, Incorporated Apparatus for the removal of dissolved solids from liquids using bipolar membranes
US4964970A (en) 1988-10-05 1990-10-23 Hoh Water Technology Corp. Compact low volume water purification apparatus
CN1021828C (en) 1989-01-24 1993-08-18 上海市合成树脂研究所 Continuous prepn. of ion exchange membrane used for different phase
US5254227A (en) 1989-06-16 1993-10-19 Olin Corporation Process for removing catalyst impurities from polyols
US5026465A (en) 1989-08-03 1991-06-25 Ionics, Incorporated Electrodeionization polarity reversal apparatus and process
JPH0647105B2 (en) 1989-12-19 1994-06-22 株式会社荏原総合研究所 Purification method and device for pure water or ultrapure water
US5120416A (en) 1990-03-19 1992-06-09 Ionics, Incorporated Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack
US5066375A (en) 1990-03-19 1991-11-19 Ionics, Incorporated Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack
DE4016000C2 (en) 1990-05-18 1993-10-21 Hager & Elsaesser Device for the treatment of metal-containing liquids by ion exchange and simultaneous or periodic regeneration of the ion exchange resin by electrodialysis
FR2666245B1 (en) 1990-08-31 1992-10-23 Lyonnaise Eaux METHOD FOR CONTROLLING THE OPERATING MODES OF AN AUTOMATIC WATER FILTRATION APPARATUS ON TUBULAR MEMBRANES.
US5126026A (en) 1990-09-28 1992-06-30 Allied-Signal Inc. Guard membranes for use in electrodialysis cells
USH1206H (en) 1991-01-24 1993-07-06 The United States Of America As Represented By The Secretary Of The Air Force Cascade crossflow tower
US5128043A (en) 1991-02-13 1992-07-07 Wildermuth Glen W Method and apparatus for purifying liquids
IL97543A (en) 1991-03-14 1994-11-11 Yeda Res & Dev Electrodialysis reversal process and apparatus with bipolar membranes for hard-water softening
US5259936A (en) 1991-06-19 1993-11-09 Millipore Corporation Purified ion exchange resins and process
DE9208456U1 (en) * 1991-06-25 1992-09-10 Baumann-Schilp, Lucia, 8031 Woerthsee, De
JPH05262902A (en) 1992-03-23 1993-10-12 Tanaka Kikinzoku Kogyo Kk Preparation of ion-exchange membrane
US5316740A (en) 1992-03-26 1994-05-31 Los Alamos Technical Associates, Inc. Electrolytic cell for generating sterilization solutions having increased ozone content
ATE142900T1 (en) 1992-05-15 1996-10-15 Christ Ag DEVICE FOR THE CONTINUOUS ELECTROCHEMICAL DESALINATION OF AQUEOUS SOLUTIONS
US5166220A (en) 1992-06-01 1992-11-24 Mcmahon John M Water softening process
US5358640A (en) 1992-07-20 1994-10-25 Nalco Chemical Company Method for inhibiting scale formation and/or dispersing iron in reverse osmosis systems
US5346924B1 (en) 1992-09-23 2000-04-25 Ionpure Techn Corp Heterogenous ion exchange materials comprising polyethylene of linear low density or high density high molecular weight
US5292442A (en) * 1992-10-01 1994-03-08 Texaco Inc. Process for disposing of sewage sludge
US5346624A (en) 1993-01-11 1994-09-13 The Graver Company Method and apparatus for treatment of aqueous solutions
US5356849A (en) 1993-01-21 1994-10-18 Calgon Carbon Corporation Catalytic carbon
US5444031A (en) 1993-01-21 1995-08-22 Calgon Carbon Corporation Process for making catalytic carbon
JP2751090B2 (en) 1993-04-21 1998-05-18 日本錬水株式会社 Pure water production equipment
US5538611A (en) 1993-05-17 1996-07-23 Marc D. Andelman Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor
US6402916B1 (en) 1993-10-27 2002-06-11 Richard L. Sampson Electrolytic process and apparatus controlled regeneration of modified ion exchangers to purify aqueous solutions and adjust ph
US5434020A (en) 1993-11-15 1995-07-18 The Regents Of The University Of California Continuous-feed electrochemical cell with nonpacking particulate electrode
JP3187629B2 (en) 1993-12-16 2001-07-11 オルガノ株式会社 Reverse osmosis membrane treatment method
US5460728A (en) 1993-12-21 1995-10-24 Shell Oil Company Method for inhibiting the plugging of conduits by gas hydrates
US5584981A (en) 1994-05-06 1996-12-17 United Kingdom Atomic Energy Authority Electrochemical deionization
DE69522035T2 (en) 1994-05-06 2002-06-06 Accentus Plc Didcot Electrochemical deionization
EP0683136A3 (en) 1994-05-06 1998-05-13 AEA Technology plc Silver removal
US5451309A (en) 1994-05-09 1995-09-19 B&W Nuclear Technologies, Inc. Ion exchange resin regeneration apparatus
US5425858A (en) 1994-05-20 1995-06-20 The Regents Of The University Of California Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
DE4418812C2 (en) 1994-05-30 1999-03-25 Forschungszentrum Juelich Gmbh Single and multiple electrolysis cells and arrangements thereof for the deionization of aqueous media
US5460725A (en) 1994-06-21 1995-10-24 The Dow Chemical Company Polymeric adsorbents with enhanced adsorption capacity and kinetics and a process for their manufacture
US5538655A (en) 1994-06-29 1996-07-23 Arthur D. Little, Inc. Molecular complexes for use as electrolyte components
US5520816A (en) 1994-08-18 1996-05-28 Kuepper; Theodore A. Zero waste effluent desalination system
US5458787A (en) 1994-10-27 1995-10-17 Uop Extraction of certain metal cations from aqueous solutions
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
MY113226A (en) 1995-01-19 2001-12-31 Asahi Glass Co Ltd Porous ion exchanger and method for producing deionized water
US5783050A (en) 1995-05-04 1998-07-21 Eltech Systems Corporation Electrode for electrochemical cell
US5766479A (en) 1995-08-07 1998-06-16 Zenon Environmental Inc. Production of high purity water using reverse osmosis
US5670053A (en) 1995-08-07 1997-09-23 Zenon Environmental, Inc. Purification of gases from water using reverse osmosis
DE19542475C2 (en) 1995-11-15 1999-10-28 Ballard Power Systems Polymer electrolyte membrane fuel cell and method for producing a distributor plate for such a cell
JP3518112B2 (en) 1995-12-06 2004-04-12 東京瓦斯株式会社 Fuel cell water treatment equipment
US6248226B1 (en) 1996-06-03 2001-06-19 Organo Corporation Process for producing deionized water by electrodeionization technique
RO114874B1 (en) 1996-06-21 1999-08-30 Sc Ind Etans Srl Process for making support boards for filter cells, fluid distribution system of micro- and ultrafiltration filter and mould for manufacturing the same
JPH10128338A (en) 1996-10-29 1998-05-19 Ebara Corp Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
US5762774A (en) 1996-12-20 1998-06-09 Glegg Water Conditioning, Inc. Apparatus for the purification of liquids and a method of manufacturing and of operating same
US5788826A (en) 1997-01-28 1998-08-04 Pionetics Corporation Electrochemically assisted ion exchange
US6258278B1 (en) 1997-03-03 2001-07-10 Zenon Environmental, Inc. High purity water production
US6267891B1 (en) 1997-03-03 2001-07-31 Zenon Environmental Inc. High purity water production using ion exchange
JPH10277557A (en) 1997-04-10 1998-10-20 Asahi Glass Co Ltd Deionized water making apparatus
US5925240A (en) 1997-05-20 1999-07-20 United States Filter Corporation Water treatment system having dosing control
WO1998058727A1 (en) 1997-06-20 1998-12-30 Ionics, Incorporated Fluid purification devices and methods employing deionization followed by ionization followed by deionization
US6146524A (en) 1997-09-15 2000-11-14 Story; Craig W. Multi-stage ozone injection water treatment system
US5971368A (en) 1997-10-29 1999-10-26 Fsi International, Inc. System to increase the quantity of dissolved gas in a liquid and to maintain the increased quantity of dissolved gas in the liquid until utilized
US6402917B1 (en) 1998-02-09 2002-06-11 Otv Societe Anonyme Electrodialysis apparatus
US6099716A (en) 1998-05-26 2000-08-08 Proton Energy Systems, Inc. Electrochemical cell frame
US6149788A (en) * 1998-10-16 2000-11-21 E-Cell Corporation Method and apparatus for preventing scaling in electrodeionization units
US6284124B1 (en) 1999-01-29 2001-09-04 United States Filter Corporation Electrodeionization apparatus and method
IT1309792B1 (en) 1999-04-22 2002-01-30 Eltek Spa HOUSEHOLD APPLIANCES USING WATER, IN PARTICULAR A WASHING MACHINE, WITH PERFECTED DEVICE FOR BLAST CHILLING
US6482304B1 (en) 1999-05-07 2002-11-19 Otv Societe Anonyme Apparatus and method of recirculating electrodeionization
CN1167628C (en) 1999-06-08 2004-09-22 E-Cell公司 Sealing means for electrically driven water purification units and method for manufacturing thereof
US6254741B1 (en) 1999-08-05 2001-07-03 Stuart Energy Systems Corporation Electrolytic cells of improved fluid sealability
US6379518B1 (en) 1999-08-11 2002-04-30 Kurita Water Industries Ltd. Electrodeionization apparatus and pure water producing apparatus
JP3570304B2 (en) 1999-08-11 2004-09-29 栗田工業株式会社 Sterilization method of deionized water production apparatus and method of producing deionized water
DE19942347B4 (en) 1999-09-04 2004-07-22 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Electrochemically regenerable ion exchanger
US6296751B1 (en) 1999-09-13 2001-10-02 Leon Mir Electrodeionization apparatus with scaling control
US6284399B1 (en) 1999-09-17 2001-09-04 Plug Power Llc Fuel cell system having humidification membranes
JP3508647B2 (en) 1999-10-07 2004-03-22 栗田工業株式会社 Electrodeionization equipment
JP4110689B2 (en) 1999-10-14 2008-07-02 栗田工業株式会社 Electrodeionization equipment
JP4172117B2 (en) 1999-10-14 2008-10-29 栗田工業株式会社 Electrodeionization equipment
JP3593932B2 (en) 1999-10-18 2004-11-24 栗田工業株式会社 High-purity water production apparatus and high-purity water production method
JP3801821B2 (en) 1999-10-29 2006-07-26 株式会社荏原製作所 Electric desalination equipment
US6503957B1 (en) 1999-11-19 2003-01-07 Electropure, Inc. Methods and apparatus for the formation of heterogeneous ion-exchange membranes
EP1106241A1 (en) 1999-12-10 2001-06-13 Asahi Glass Company Ltd. Electro-regenerating type apparatus for producing deionized water
US6627073B2 (en) 1999-12-16 2003-09-30 Sanyo Electric Co, Ltd. Water treatment device
FR2803284B1 (en) 2000-01-03 2002-04-12 Michel Bernard AUTOMATIC DRINKING WATER PURIFICATION DEVICE
US6274019B1 (en) 2000-03-08 2001-08-14 Organo Corporation Electrodeionization apparatus
GB0016846D0 (en) 2000-07-10 2000-08-30 United States Filter Corp Electrodeionisation Apparatus
KR100465580B1 (en) 2000-07-13 2005-01-13 쿠리타 고교 가부시키가이샤 Electro-deionization device and method for operating the same
US6607647B2 (en) 2001-04-25 2003-08-19 United States Filter Corporation Electrodeionization apparatus with expanded conductive mesh electrode and method
JP4507270B2 (en) 2001-06-26 2010-07-21 三浦工業株式会社 Water softening device and regeneration control method thereof
JP4997678B2 (en) 2001-09-27 2012-08-08 栗田工業株式会社 Electrodeionization equipment
EP1456132B1 (en) 2001-12-20 2014-01-22 Aquatech International Corporation Fractional deionization process
US20030155243A1 (en) 2002-02-21 2003-08-21 Eet Corporation Multi-path split cell spacer and electrodialysis stack design
US6808608B2 (en) 2002-03-13 2004-10-26 Dionex Corporation Water purifier and method
US6758954B2 (en) 2002-04-11 2004-07-06 U.S. Filter Corporation Electrodeionization apparatus with resilient endblock
AU2003231488A1 (en) 2002-05-17 2003-12-02 Ebara Corporation Electric demineralizer
JP2005007347A (en) 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Electrodialysis type water purifier
JP2005007348A (en) 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Electric deionizer
US20060231403A1 (en) 2005-04-14 2006-10-19 Riviello John M Chambered electrodeionization apparatus with uniform current density, and method of use

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681319A (en) * 1951-01-10 1954-06-15 Rohm & Haas Permselective films of anionexchange resins
US2777814A (en) * 1954-12-02 1957-01-15 Gen Electric Water heating and demineralizing apparatus
US2788319A (en) * 1956-02-07 1957-04-09 Clayton Manufacturing Co Ion exchange method and apparatus
US2794777A (en) * 1956-08-27 1957-06-04 Clayton Manufacturing Co Electrolytic deionization
US2923674A (en) * 1958-02-03 1960-02-02 Permutit Co Ltd Process for the removal of dissolved solids from liquids
US3074864A (en) * 1959-04-21 1963-01-22 Gen Electric Methods of and apparatus for demineralizing raw water
US3091583A (en) * 1959-10-27 1963-05-28 Aqua Ionics Inc Electrodialysis cell
US3165460A (en) * 1962-04-11 1965-01-12 American Mach & Foundry Electrolytic acid generator
US3375208A (en) * 1967-07-26 1968-03-26 Esb Inc Method for preparing a microporous thermoplastic resin material
US3645884A (en) * 1969-07-10 1972-02-29 Edwin R Gilliland Electrolytic ion exchange apparatus
US3869375A (en) * 1970-12-23 1975-03-04 Asahi Chemical Ind Gasket structure
US3786924A (en) * 1971-07-22 1974-01-22 Delro Inc Water purification system
US3876565A (en) * 1972-09-01 1975-04-08 Mitsubishi Petrochemical Co Ion exchanger - polyolefin membranes
US3869376A (en) * 1973-05-14 1975-03-04 Alvaro R Tejeda System for demineralizing water by electrodialysis
US3870033A (en) * 1973-11-30 1975-03-11 Aqua Media Ultra pure water process and apparatus
US4089758A (en) * 1974-05-24 1978-05-16 Imperial Chemical Industries Limited Electrolytic process
US4191811A (en) * 1977-03-01 1980-03-04 Ionics, Incorported Ion exchange membranes based upon polyphenylene sulfide and fluorocarbon polymeric binder
US4153761A (en) * 1978-04-21 1979-05-08 The United States Of America As Represented By The Secretary Of The Army Method of removing foulants from ion exchange resins
US4197206A (en) * 1978-09-13 1980-04-08 Karn William S Heat sealable ion permeable membranes
US4374232A (en) * 1979-01-26 1983-02-15 Gelman Sciences Inc. Graft copolymer membrane and processes of manufacturing and using the same
US4321145A (en) * 1980-06-11 1982-03-23 Carlson Lee G Ion exchange treatment for removing toxic metals and cyanide values from waste waters
US4330654A (en) * 1980-06-11 1982-05-18 The Dow Chemical Company Novel polymers having acid functionality
US4430226A (en) * 1981-03-09 1984-02-07 Millipore Corporation Method and apparatus for producing ultrapure water
US4505797A (en) * 1983-03-24 1985-03-19 Ionics, Incorporated Ion-exchange membranes reinforced with non-woven carbon fibers
US4636296A (en) * 1983-08-18 1987-01-13 Gerhard Kunz Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions
US4655909A (en) * 1983-12-20 1987-04-07 Nippon Paint Co., Ltd. Water-deionizing system
US4574049A (en) * 1984-06-04 1986-03-04 Arrowhead Industrial Water, Inc. Reverse osmosis system
US4574049B1 (en) * 1984-06-04 1999-02-02 Ionpure Filter Us Inc Reverse osmosis system
US4925541A (en) * 1984-07-09 1990-05-15 Millipore Corporation Electodeionization apparatus and method
USRE35741E (en) * 1984-07-09 1998-03-10 Millipore Corporation Process for purifying water
US4925541B1 (en) * 1984-07-09 1994-08-02 Millipore Corp Electrodeionization apparatus and method
US4661411A (en) * 1986-02-25 1987-04-28 The Dow Chemical Company Method for depositing a fluorocarbonsulfonic acid polymer on a support from a solution
US4747929A (en) * 1986-10-01 1988-05-31 Millipore Corporation Depletion compartment and spacer construction for electrodeionization apparatus
US4804451A (en) * 1986-10-01 1989-02-14 Millipore Corporation Depletion compartment for deionization apparatus and method
US4830721A (en) * 1987-01-26 1989-05-16 S.E.R.E. S.R.L. Electrochemical deoxygenation process for corrosion control in deionized waters
US4747955A (en) * 1987-04-13 1988-05-31 The Graver Company Purification of liquids with treated polyester fibers
US4808287A (en) * 1987-12-21 1989-02-28 Hark Ernst F Water purification process
US4915803A (en) * 1988-09-26 1990-04-10 The Dow Chemical Company Combination seal and frame cover member for a filter press type electrolytic cell
US4983267A (en) * 1988-10-18 1991-01-08 Innova/Pure Water, Inc. Water deionization and contaminants removal or degradation
US5489370A (en) * 1989-05-08 1996-02-06 Ionex Removal of ions from a bulk source by electropotential ion transport using a host receptor matrix
US5116509A (en) * 1989-09-08 1992-05-26 Millipore Corporation Electrodeionization and ultraviolet light treatment method for purifying water
US5106465A (en) * 1989-12-20 1992-04-21 Olin Corporation Electrochemical process for producing chlorine dioxide solutions from chlorites
US5092970A (en) * 1989-12-20 1992-03-03 Olin Corporation Electrochemical process for producing chlorine dioxide solutions from chlorites
US5084148A (en) * 1990-02-06 1992-01-28 Olin Corporation Electrochemical process for producing chloric acid - alkali metal chlorate mixtures
US5203976A (en) * 1990-03-19 1993-04-20 Ionics, Incorporated Introducing and removing ion-exchange and other particulates rom an assembled electrodeionization stack
US5196115A (en) * 1990-04-23 1993-03-23 Andelman Marc D Controlled charge chromatography system
US5082472A (en) * 1990-11-05 1992-01-21 Mallouk Robert S Composite membrane for facilitated transport processes
US5308466A (en) * 1990-12-17 1994-05-03 Ip Holding Company Electrodeionization apparatus
US5316637A (en) * 1990-12-17 1994-05-31 Ip Holding Company Electrodeionization apparatus
US5176828A (en) * 1991-02-04 1993-01-05 Millipore Corporation Manifold segment stack with intermediate feed manifold
US5308467A (en) * 1991-03-13 1994-05-03 Ebara Corporation Electrically regenerable demineralizing apparatus
US5211823A (en) * 1991-06-19 1993-05-18 Millipore Corporation Process for purifying resins utilizing bipolar interface
US5107896A (en) * 1991-07-09 1992-04-28 John J. Gianfrancesco Multi-functional valve
US5292422A (en) * 1992-09-15 1994-03-08 Ip Holding Company Modules for electrodeionization apparatus
US5286354A (en) * 1992-11-30 1994-02-15 Sachem, Inc. Method for preparing organic and inorganic hydroxides and alkoxides by electrolysis
US5411641A (en) * 1993-11-22 1995-05-02 E. I. Du Pont De Nemours And Company Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
US5518626A (en) * 1993-12-23 1996-05-21 United Technologies Corporation Process employing thermally sterilizable aqueous polishing agents
US5518627A (en) * 1994-03-01 1996-05-21 Mitsubishi Chemical Corporation Method for treating water or an aqueous solution
US5714521A (en) * 1994-04-07 1998-02-03 Yeda Research And Development Company Ltd. Ion exchange membranes
US5503729A (en) * 1994-04-25 1996-04-02 Ionics Incorporated Electrodialysis including filled cell electrodialysis (electrodeionization)
US5736023A (en) * 1994-05-20 1998-04-07 U.S. Filter/Ionpure, Inc. Polarity reversal and double reversal electrodeionization apparatus and method
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5891328A (en) * 1995-03-23 1999-04-06 Ionics, Incorporated Membrane-frame for processes including electrodialysis
US6193869B1 (en) * 1996-02-09 2001-02-27 Glegg Water Conditioning, Inc. Modular apparatus for the demineralization of liquids
US5868937A (en) * 1996-02-13 1999-02-09 Mainstream Engineering Corporation Process and system for recycling and reusing gray water
US6228240B1 (en) * 1996-03-21 2001-05-08 Asahi Glass Company Ltd. Method and apparatus for producing deionized water
US5593563A (en) * 1996-04-26 1997-01-14 Millipore Corporation Electrodeionization process for purifying a liquid
US5858191A (en) * 1996-09-23 1999-01-12 United States Filter Corporation Electrodeionization apparatus and method
US5868915A (en) * 1996-09-23 1999-02-09 United States Filter Corporation Electrodeionization apparatus and method
US6197189B1 (en) * 1997-06-19 2001-03-06 Oxygen8, Inc. Oxygenated water cooler
US6187154B1 (en) * 1997-10-23 2001-02-13 Hoshizaki Denki Kabushiki Kaisha Electrolyzed water production system
US6017433A (en) * 1997-11-12 2000-01-25 Archer Daniels Midland Company Desalting aqueous streams via filled cell electrodialysis
US6190528B1 (en) * 1998-03-19 2001-02-20 Xiang Li Helical electrodeionization apparatus
US6171374B1 (en) * 1998-05-29 2001-01-09 Ballard Power Systems Inc. Plate and frame fluid exchanging assembly with unitary plates and seals
US6056878A (en) * 1998-08-03 2000-05-02 E-Cell Corporation Method and apparatus for reducing scaling in electrodeionization systems and for improving efficiency thereof
US6197174B1 (en) * 1998-11-25 2001-03-06 E-Cell Corporation Method and apparatus for electrodeionization of water using mixed bed and single phase ion exchange materials in the diluting compartment
US6190553B1 (en) * 1998-12-01 2001-02-20 Sangeul Lee Purification system for disposal of polluted or waste water using water plants
US20030080467A1 (en) * 1999-02-09 2003-05-01 Andrews Craig C. Microorganism control of point of use potable water sources
US6190558B1 (en) * 1999-04-01 2001-02-20 Nimbus Water Systems, Inc. Reverse osmosis purification system
US6235166B1 (en) * 1999-06-08 2001-05-22 E-Cell Corporation Sealing means for electrically driven water purification units
US6392278B1 (en) * 1999-06-28 2002-05-21 Nec Corporation Fet having a reliable gate electrode
US6344122B1 (en) * 1999-07-13 2002-02-05 Kurita Water Industries Ltd. Electrodeionization apparatus
US6214204B1 (en) * 1999-08-27 2001-04-10 Corning Incorporated Ion-removal from water using activated carbon electrodes
US6187162B1 (en) * 1999-09-13 2001-02-13 Leon Mir Electrodeionization apparatus with scaling control
US6375812B1 (en) * 2000-03-13 2002-04-23 Hamilton Sundstrand Corporation Water electrolysis system
US6365023B1 (en) * 2000-06-22 2002-04-02 Millipore Corporation Electrodeionization process
US6391178B1 (en) * 2000-07-13 2002-05-21 Millipore Corporation Electrodeionization system
US6726822B2 (en) * 2000-07-13 2004-04-27 Millipore Corporation Electrodeionization process
US20040060823A1 (en) * 2000-08-11 2004-04-01 Carson William W. Device and method for eletrodialysis
US6733646B2 (en) * 2001-01-05 2004-05-11 Kurita Water Industries Ltd. Method and apparatus for electrodeionization of water
US20040089551A1 (en) * 2001-05-29 2004-05-13 United States Filter Corporation Electrodeionization apparatus and method
US20030034292A1 (en) * 2001-08-17 2003-02-20 Matthew Rela Water purifier
US20030098266A1 (en) * 2001-09-07 2003-05-29 Lih-Ren Shiue Fully automatic and energy-efficient deionizer
US20030089609A1 (en) * 2001-10-15 2003-05-15 United States Filter Corporation Apparatus for fluid purification and methods of manufacture and use thereof
US20040079700A1 (en) * 2002-10-23 2004-04-29 Jonathan Wood Production of water for injection using reverse osmosis
US20050103717A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050103723A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050103622A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050103631A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
US20050109703A1 (en) * 2003-11-13 2005-05-26 Culligan International Company Flow-through tank for water treatment
US20060060532A1 (en) * 2004-09-13 2006-03-23 The University Of South Carolina Water desalination process and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164318A1 (en) * 2014-04-22 2015-10-29 Purewater Therapeutics, LLC Water treatment system
WO2015164384A1 (en) * 2014-04-22 2015-10-29 Purewater Therapeutics, LLC Fluid handling system
WO2015187511A1 (en) * 2014-06-04 2015-12-10 F & T Water Solutions Llc Electrocoagulation chamber with atmospheric and pressurized flow regimes

Also Published As

Publication number Publication date
US20050103723A1 (en) 2005-05-19
US7862700B2 (en) 2011-01-04
CN1901996A (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US7862700B2 (en) Water treatment system and method
US8658043B2 (en) Water treatment system and method
US9701548B2 (en) Electrochemical water softening system
US7582198B2 (en) Water treatment system and method
US8377279B2 (en) Water treatment system and method
US20140251824A1 (en) Rechargeable electrochemical cells
MXPA06005385A (en) Water treatment system and method
MXPA06005384A (en) Water treatment system and method
CA2471391C (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
EP1684902B1 (en) Water treatment methods
WO2013151618A2 (en) Hybrid softener

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS INDUSTRY, INC., GEORGIA

Free format text: MERGER;ASSIGNOR:SIEMENS WATER TECHNOLOGIES HOLDING CORP.;REEL/FRAME:026138/0605

Effective date: 20110401

AS Assignment

Owner name: SIEMENS WATER TECHNOLOGIES LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS INDUSTRY, INC.;REEL/FRAME:031249/0788

Effective date: 20130731

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:WTG HOLDINGS III CORP.;WTG HOLDINGS II CORP.;SIEMENS TREATED WATER OUTSOURCING CORP.;AND OTHERS;REEL/FRAME:032126/0487

Effective date: 20140115

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:WTG HOLDINGS III CORP.;WTG HOLDINGS II CORP.;SIEMENS TREATED WATER OUTSOURCING CORP.;AND OTHERS;REEL/FRAME:032126/0430

Effective date: 20140115

AS Assignment

Owner name: EVOQUA WATER TECHNOLOGIES LLC, GEORGIA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS WATER TECHNOLOGIES LLC;REEL/FRAME:032173/0401

Effective date: 20140116

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SIEMENS WATER TECHNOLOGIES LLC, GEORGIA

Free format text: RELEASE OF SECURITY INTEREST (REEL/FRAME 032126/0487);ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:055845/0245

Effective date: 20210401

Owner name: SIEMENS WATER TECHNOLOGIES LLC, GEORGIA

Free format text: RELEASE OF SECURITY INTEREST (REEL/FRAME 032126/0430);ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:055845/0311

Effective date: 20210401