US20110120964A1 - Media rack configuration - Google Patents

Media rack configuration Download PDF

Info

Publication number
US20110120964A1
US20110120964A1 US12/625,373 US62537309A US2011120964A1 US 20110120964 A1 US20110120964 A1 US 20110120964A1 US 62537309 A US62537309 A US 62537309A US 2011120964 A1 US2011120964 A1 US 2011120964A1
Authority
US
United States
Prior art keywords
media
spool
loop
radius
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/625,373
Other versions
US8443989B2 (en
Inventor
James Walker
Jeffrey Duke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verizon Patent and Licensing Inc
Original Assignee
Verizon Patent and Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verizon Patent and Licensing Inc filed Critical Verizon Patent and Licensing Inc
Priority to US12/625,373 priority Critical patent/US8443989B2/en
Assigned to VERIZON PATENT AND LICENSING INC. reassignment VERIZON PATENT AND LICENSING INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUKE, JEFFREY, WALKER, JAMES S.
Publication of US20110120964A1 publication Critical patent/US20110120964A1/en
Application granted granted Critical
Publication of US8443989B2 publication Critical patent/US8443989B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4473Constructional details without arrangements or adaptations for rotating the core or former
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/18Constructional details
    • B65H75/28Arrangements for positively securing ends of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4457Arrangements of the frame or housing
    • B65H75/446Arrangements of the frame or housing for releasably or permanently attaching the frame to a wall, on a floor or on a post or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • G02B6/44524Distribution frames with frame parts or auxiliary devices mounted on the frame and collectively not covering a whole width of the frame or rack
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4457Bobbins; Reels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/32Optical fibres or optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/44528Patch-cords; Connector arrangements in the system or in the box

Definitions

  • Fiber optic communication employs light to transmit data between electronic devices using optical fibers.
  • Each optical fiber has a reflective inner surface that reflects the light along a length of the fiber.
  • Fiber optic devices used in fiber optic communication may include an optical interface that transmits and/or receives fiber optic signals. The optical fibers are physically connected to the optical interface, and light is transmitted and/or received at each of the optical interfaces.
  • Optical fibers that are damaged generally suffer deterioration in transmission capacity and/or quality as a result of the reduced capability of the fiber to reflect light within the fiber. Accordingly, optical fibers must be protected from being bent, pinched, cut, or otherwise damaged in any way that would impair the transmission capability of the fiber. Additionally, the interface between a fiber and other components, e.g., the end of a fiber where it is secured to a connector, must be carefully managed to minimize signal transmission losses across the interface. For example, fibers may generally be cut only with specialized equipment that leaves the cut fiber with a smooth end that is properly aligned and prepared to minimize any transmission loss from the fiber to an adjacent connector or component. The specialized equipment and/or personnel required for splicing optical fibers for may not be readily available in each facility.
  • the fibers may in some cases be connected to components with relatively large amounts of excess slack that is left unprotected and may be wrapped around portions of the racks.
  • This causes great difficulty in repositioning or removing fibers any time there is a large number of fibers connected to the same rack or component, as the fibers become wrapped upon one another or tangled, thereby preventing removal or adjustment of any individual fiber.
  • This is especially problematic in central office environments that transmit large numbers of communication signals to/from the facility and between components located within the facility, and necessarily use a large number of fibers in relatively confined spaces.
  • a communication component rack system is needed that provides greater protection and installation flexibility for fibers connected to one or more racks.
  • FIG. 1A is a schematic illustration of an exemplary communication facility
  • FIG. 1B illustrates an exemplary media rack used in the communication facility of FIG. 1A ;
  • FIG. 1C illustrates the media rack of FIG. 1B with additional media installed to the rack
  • FIG. 2A illustrates an exemplary media loop housing
  • FIG. 2B illustrates an exemplary spool for a media loop housing with a media secured to the spool
  • FIG. 2C illustrates the spool of FIG. 2B without the media shown in FIG. 2B ;
  • FIG. 2D illustrates an exemplary spool for a media loop housing without any fiber secured thereto
  • FIG. 2E illustrates the spool of FIG. 2D with a media secured to the spool
  • FIG. 3 illustrates an exemplary process for securing a media to a rack.
  • a media racking system and methods for connecting communication-based media are disclosed. While the exemplary systems and methods are described herein generally in the context of optical fiber communication systems, virtually any type of communication-based media may be employed as an alternative or in addition to fiber optic cables in an exemplary rack or method of connecting the media. Examples of such media include, but are not limited to, coaxial cables, wires, strands, or the like.
  • An exemplary media racking system may generally include a rack configured to receive a plurality of components that are selectively connected via a plurality of communication-based media, e.g., optical fibers, coaxial cables, wires, ribbons, strands, or any other wired communication link.
  • An exemplary system may further include one or more media retention housings, which include a spool configured to selectively support one of the media, and a media loop retainer defined by the spool.
  • the media loop retainer includes a predetermined radius for selectively retaining a loop of the media. The predetermined radius may be greater than or equal to a minimum bend radius associated with the media, thereby generally preventing the media from being bent at a radius smaller than the minimum bend radius of the media.
  • An exemplary method may include securing a portion of a communication-based media, e.g., an optical fiber, to a spool, and establishing the portion of the media with a predetermined radius that is greater than or equal to a minimum bend radius of the media.
  • the method may further include supporting the media at least partially on a support surface of the spool.
  • the communication facility 100 may generally include a plurality of racks 102 a , 102 b , 102 c , and 102 d (collectively, 102 ).
  • the racks 102 each generally house components that are connected to each other via a plurality of communication-based media or lines 200 .
  • these media may be optical fibers.
  • the media 200 may connect components to each other that are positioned in a same rack 102 , or in different racks 102 . While FIG.
  • FIG. 1A illustrates five lines or media 200 that are connected between components positioned in four racks 102 , at any given time a very large number of media 200 may be routed between components positioned in the racks 102 , between the racks 102 , and between the communication facility 100 and other components or equipment (not shown) associated with a communication system.
  • each rack may have a large number of components and media 200 at any given time. Accordingly, there is no numerical or geographic limitation on the number of media 200 or racks 102 that may be present in the communication facility 100 .
  • each rack 102 may generally include a plurality of components, e.g., communication components, which are connected to other components by way of one or more of the media 200 .
  • Each rack 102 may include a plurality of bays 104 , each of which define one or more shelves 106 .
  • Each of the shelves 106 may include one or more components to which media 200 are connected to allow transmission of signals, e.g., optical signals, between the components.
  • the racks 102 also may include spacing posts 108 between bays 104 .
  • the spacing posts 108 generally space apart the bays 104 and provide mounting points for media slack or loops, as will be described further below.
  • FIGS. 1B and 1C illustrate media loop housings 206 that generally provide storage and/or protection for portions of the media 200 , e.g., in loops.
  • the spacing posts 108 may be oriented to allow the securement of more than one housing 206 to each of the spacing posts 108 .
  • the spacing posts 108 are oriented generally perpendicular to a longitudinal length of the rack 102 , allowing multiple housings 206 to be hung from a single spacing post 108 . Accordingly, slack portions of different media 200 may be positioned on a same spacing post 108 , as may be convenient where the media 200 lead to components that are each located near the spacing post 108 .
  • Media loop housing 206 may generally include a spool 210 a , 210 b (collectively, 210 ) that may generally be rotatable to allow selective retraction and extension of one of the media 200 from the media loop housing 206 .
  • the spool may include a support surface 212 and a media loop retainer 214 a , 214 b (collectively, 214 ) that allows selective securement of the media 200 to the spool 210 for retraction into and extension from the housing 206 .
  • the spool 210 may be rotatable in any way that is convenient.
  • spool 210 may be generally retractable by way of a spring or other biasing mechanism that tends to rotate the spool 210 to retract the media 200 within the media loop housing 206 .
  • a hand crank or grip (not shown) may be provided that allows for a user to turn the spool 210 manually to retract or extend the media 200 .
  • Spool 210 a may generally include a loop support surface 212 and a media loop retainer 214 a .
  • the media loop retainer 214 a allows selective attachment of a portion or loop of the media 200 to the spool 210 a to allow the spool 210 a to retract the media 200 within the housing 206 .
  • the media loop retainer 214 a generally defines an abutment surface 215 that extends radially away from the spool surface 212 .
  • the media loop retainer 214 a generally defines a curved wall extending radially away from the media support surface 212 toward the outside of the housing 206 .
  • the abutment surface 215 thus provides a surface that is generally perpendicular to the direction that the loop of the media 200 is pulled into the loop housing 206 . Accordingly, a portion of the media 200 may be laid around the media loop retainer 214 , and the abutment surface 215 generally “pulls” the loop of the media 200 into the housing 206 when the spool 210 a is rotated. As best seen in FIG. 2B , the media loop retainer 214 generally defines a minimum radius R along the abutment surface 215 . The abutment surface 215 thus defines a predetermined radius R that is no smaller than a minimum bend radius associated with the media 200 .
  • the media 200 may be secured to the spool 210 a without crimping, pinching or otherwise bending the media 200 in a way that would hinder transmission of a signal through the media 200 .
  • a portion of the media 200 e.g., a slack portion that represents extra media not necessary to reach between components to which the media 200 is connected, may thus be selectively placed on the media loop retainer 214 and retracted within the media loop housing 206 .
  • the housing 206 thereby generally protects the media 200 from damage that may hinder signal transmission.
  • the media loop retainer 214 b generally includes a cavity 216 that is depressed below the support surface 212 of the spool 210 b , i.e., extending radially away from the support surface 212 toward the axis A-A of the spool 210 b .
  • the cavity 216 thus defines an abutment surface 215 b within the cavity 216 , around which a portion or loop of the media 200 may be placed.
  • the cavity 216 may extend around a substantial portion of the circumference of the spool 210 b , thereby generally providing a guide for the media 200 that generally guides the media 200 to a position adjacent the opposing ends of the spool 210 b .
  • side panels 208 (not shown in FIGS. 2D and 2E ), which may be secured to the opposing ends of the spool 210 b , generally provide a lateral abutment surface for the media 200 , such that the media 200 will lay upon itself as it is wrapped around the spool 210 b .
  • the media 200 thus may be supported by the spool surface 212 and/or refracted within the housing 206 by turning the spool 210 b , taking up any excess slack of the media 200 and protecting the media 200 from pinching, crimping, bending, or any other damage that could hinder transmission of an optical signal through the media 200 .
  • Exemplary media loop retainers 214 may extend axially with respect to a spool 210 along substantially an entire length L of a given spool 210 , thereby maximizing the predetermined radius R of the media loop retainer 214 relative to the axial length L of the spool 210 . Accordingly, larger minimum bend radii of media 200 may be accommodated by the spool 210 while also minimizing the overall size of the spool 210 and/or housing 206 . In one exemplary illustration, it may be advantageous to minimize an overall axial length L of the spool 210 in order to allow the greatest flexibility for mounting multiple housings 206 to a rack 102 , e.g., to fit a larger number of housings 206 in a given space.
  • the axial length L of the spool 210 may be as little as twice the largest minimum bend radius of media 200 for which the spool 210 is intended to be used. For example, as best seen in FIGS.
  • the axial length L may be as small as two times the predetermined radius R.
  • the spool 210 itself may define a spool radius R S that is less than or equal to a minimum bend radius associated with the media 200 .
  • An overall shape or curve of the media loop retainer 214 is therefore defined in part by a generally cylindrical shape of the spool 210 , and also a curve of the media loop retainer with respect to the support surface 212 .
  • the media loop housing 206 also may include a mounting mechanism 218 .
  • the mounting mechanism 218 may include a loop or hook that generally allows the housing 206 to be selectively secured to a spacing post 108 of the rack 102 .
  • each media loop housing 206 is secured to a spacing post 108 .
  • the media loop housings 206 may be positioned on any spacing post 108 where it is most convenient, e.g., where it is most convenient to position slack of the media 200 that is looped and retracted within the housing 206 .
  • the housings 206 may each easily be repositioned as may be convenient when connecting, disconnecting and/or reconnecting media 200 to the racks 102 .
  • the spools 210 advantageously allow the media 200 to be selectively secured to the spool 210 at any point along the length of the media 200 .
  • a housing 206 may be repositioned at different points along the length of the media 200 , and further may allow the media 200 to remain connected to components and/or racks 102 to which the media 200 is connected while the housing 206 is repositioned.
  • a media 200 may be fully extended and removed from a housing 206 , and the media may be secured to the media loop retainer 214 at a different point along the length of the media 200 , allowing the housing 206 , and any slack in the media 200 , to be repositioned with respect to the media 200 .
  • the selective repositioning of the housings 206 allows media 200 to generally remain connected while other adjacent media 200 are removed or repositioned, e.g., due to repair or replacement.
  • Process 300 may begin at block 302 , where a media length between components that are desired to be connected is estimated, e.g., a length of an optical fiber extending between the components.
  • This media length may include an estimated distance between racks 102 that house the respective components that are to be connected, e.g., any distance that the media must be travel between the racks 102 .
  • a media length may be determined from a maximum distance, e.g., length and/or height, associated with a rack 102 that houses one of the connected components.
  • Process 300 may then proceed to block 304 .
  • a slack portion associated with the connection of the media 200 in block 302 may be estimated.
  • slack may generally be desired to allow for errors in locations of components connected via media 200 , repositioning of a component to which the media 200 is connected within the rack 102 , or to an entirely different rack 102 .
  • the slack portion of a media 200 may thus include an estimate of an error in distance estimates between components connected via media 200 , or of any other distance that a given component connected to the media 200 may need to be moved at any given time during operation.
  • the slack may in some embodiments be very little or close to zero, e.g., where the estimated distance(s) required for a given media 200 are expected to be no greater than the initial measured distances between the components connected by the media 200 .
  • the slack estimated in block 304 may be used in conjunction with the length determination in block 302 to determine a desired media length for connecting two components together. Process 300 may then proceed to block 306 .
  • each end of the media 200 may be connected to a communication component.
  • the components may include any network equipment that communicates via media 200 , e.g., optical circuits or Ethernet circuits, merely as examples.
  • the components connected by the media 200 may be in a same one of the racks 102 , or may be positioned in two different racks 102 .
  • Process 300 may then proceed to block 308 .
  • a portion of the media 200 is secured to a spool 210 and/or housing 206 .
  • a loop of the media 200 may be secured to a fiber loop retainer 214 that is provided on a spool 210 of the fiber loop housing 206 .
  • the portion of the media 200 that is secured to the spool 210 e.g., a loop of the media 200 , may be secured to an abutment surface 215 of the spool 210 , where the abutment surface defines a predetermined radius R that maintains a minimum bend radius associated with the media 200 .
  • the predetermined radius generally prevents pinching or bending of the media 200 that would impair the ability of the media 200 to transmit signals, e.g., optical communications, through the portion of the media 200 that is secured to the spool 210 .
  • the spool 210 may define a cavity, e.g., cavity 216 , which guides the media 200 from a generally central portion of the spool 210 toward opposing outer edges of the spool 210 .
  • the cavity 216 may thereby position each end of the media 200 at the outer edges of the spool 210 , thereby allowing the media 200 to wrap around the spool 210 and toward the center portion of the spool 210 .
  • the spool 210 may be positioned along the media 200 at any position along the media 200 where it is convenient to secure the media 200 to the spool. For example, it may be convenient to position the spool 210 and/or housing 206 near a component to which the media 200 is connected. Alternatively, it may be convenient to position the spool 210 and/or housing 206 on a rack 102 where there is adequate space to locate the spool 210 and/or housing 206 . For example, a housing 206 and/or spool 210 may be selectively secured to a spacing post 108 or other feature of a rack 102 having space to accommodate the spool 210 .
  • the media 200 be supported by the spool surface 212 , e.g., by retracting the media 200 at least partially onto the spool 210 and/or within the housing 206 .
  • the spool 210 may be rotated, e.g., by a self-retracting mechanism or crank, thereby retracting a slack portion of the media 200 within the housing 206 such that at least a portion of the media 200 sits upon the spool surface 212 .
  • a portion of the media 200 that is retracted within the housing 206 may generally be equal to the slack portion determined in block 304 .
  • Process 300 may then proceed to block 312 .
  • Process 300 may then proceed to block 312 .
  • the spool 210 and/or housing 206 may be secured to the rack 102 .
  • the housing 206 may be secured to a spacing post 108 of a rack 102 , e.g., with a housing hook 218 or other feature that allows for the housing 206 to be selectively secured to the rack 102 .
  • the spacing posts 108 of the rack 102 may be oriented to allow multiple fiber loop housings 206 to be hung from each of the spacing posts 108 .
  • Process 300 may then proceed to block 314 .
  • additional media 200 may be connected to a rack 102 already having a first media 200 .
  • a media 200 a may first be connected to the rack 102 with connectors 202 a , 202 a ′.
  • Additional media 200 b , 200 c may subsequently be secured to connectors 202 b , 202 b ′ and 202 c , 202 c ′, respectively.
  • the multiple media 200 may overlap one or more other media 200 due to the relative proximity of components to which the media 200 are connected.
  • one or more housings 206 may be repositioned on the rack 102 . Further, the housings 206 may be removed from the rack 102 , repositioned elsewhere on the rack 102 , or even on other racks 102 (not shown in FIG. 1C ) despite any overlap of the media 200 that are connected to the rack 102 .
  • media 200 a may be initially connected to rack components via connectors 202 a , 202 a ′. After media 200 a is connected, media 200 b and 200 c are connected, thereby overlapping the media 200 a at certain points on the rack 102 and hindering access to the media 200 a .
  • the media 200 a may be extended from or even removed free of the housing 206 a , allowing the slack in the media 200 a to be pulled to another position on the rack 102 where it is convenient to position the slack of the media 200 a .
  • the media 200 a may also be disconnected entirely from the rack 102 to allow replacement, e.g., when the media 200 a is damaged.
  • Repositioning and/or removal of the housings 206 from their associated media 200 may be convenient where it is necessary to gain access to media 200 a after it has become damaged, and other media 200 b , 200 c overlap the media 200 a .
  • a slack portion of the media 200 a may be removed entirely from the housing 206 a , thereby allowing the media 200 a to be disconnected and replaced without requiring any repositioning of the overlapping media 200 b , 200 c . This may be especially convenient where a large number of media 200 are routed to a particular location on a rack and overlap a damaged media 200 .
  • slack portions of the media 200 b , 200 c may themselves be repositioned on the rack 102 or even spaced away from the rack 102 to allow access to the damaged media 200 a at least temporarily while the service/replacement of the damaged media 200 a occurs. Accordingly, housings 206 may be repositioned while the media 200 associated with the housings 206 remain connected to the components with which they are associated. Process 300 may then terminate.

Abstract

A media rack system is disclosed that generally includes a rack configured to receive a plurality of components that are selectively connected via a plurality of media, e.g., optical fibers or any other wired communication link. An exemplary system may further include one or more media loop retention housings, which include a spool configured to selectively support one of the media, and a media loop retainer defined by the spool. The media loop retainer includes a predetermined radius for selectively retaining a loop of the media. The predetermined radius is greater than or equal to a minimum bend radius associated with the fiber.

Description

    BACKGROUND
  • Fiber optic communication employs light to transmit data between electronic devices using optical fibers. Each optical fiber has a reflective inner surface that reflects the light along a length of the fiber. Fiber optic devices used in fiber optic communication may include an optical interface that transmits and/or receives fiber optic signals. The optical fibers are physically connected to the optical interface, and light is transmitted and/or received at each of the optical interfaces.
  • Optical fibers that are damaged generally suffer deterioration in transmission capacity and/or quality as a result of the reduced capability of the fiber to reflect light within the fiber. Accordingly, optical fibers must be protected from being bent, pinched, cut, or otherwise damaged in any way that would impair the transmission capability of the fiber. Additionally, the interface between a fiber and other components, e.g., the end of a fiber where it is secured to a connector, must be carefully managed to minimize signal transmission losses across the interface. For example, fibers may generally be cut only with specialized equipment that leaves the cut fiber with a smooth end that is properly aligned and prepared to minimize any transmission loss from the fiber to an adjacent connector or component. The specialized equipment and/or personnel required for splicing optical fibers for may not be readily available in each facility.
  • Accordingly, it may be difficult to cut fibers to an exact length between components, and communication facilities must therefore stock a wide variety of fiber lengths. The fibers may in some cases be connected to components with relatively large amounts of excess slack that is left unprotected and may be wrapped around portions of the racks. However, this causes great difficulty in repositioning or removing fibers any time there is a large number of fibers connected to the same rack or component, as the fibers become wrapped upon one another or tangled, thereby preventing removal or adjustment of any individual fiber. This is especially problematic in central office environments that transmit large numbers of communication signals to/from the facility and between components located within the facility, and necessarily use a large number of fibers in relatively confined spaces.
  • Accordingly, a communication component rack system is needed that provides greater protection and installation flexibility for fibers connected to one or more racks.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic illustration of an exemplary communication facility;
  • FIG. 1B illustrates an exemplary media rack used in the communication facility of FIG. 1A;
  • FIG. 1C illustrates the media rack of FIG. 1B with additional media installed to the rack;
  • FIG. 2A illustrates an exemplary media loop housing;
  • FIG. 2B illustrates an exemplary spool for a media loop housing with a media secured to the spool;
  • FIG. 2C illustrates the spool of FIG. 2B without the media shown in FIG. 2B;
  • FIG. 2D illustrates an exemplary spool for a media loop housing without any fiber secured thereto;
  • FIG. 2E illustrates the spool of FIG. 2D with a media secured to the spool; and
  • FIG. 3 illustrates an exemplary process for securing a media to a rack.
  • DETAILED DESCRIPTION
  • Referring now to the discussion that follows and also to the drawings, illustrative approaches to the disclosed apparatuses and methods are shown in detail. Although the drawings represent some possible approaches, the drawings are not necessarily to scale and certain features may be exaggerated, removed, or partially sectioned to better illustrate and explain the disclosed device. Further, the descriptions set forth herein are not intended to be exhaustive or otherwise limit or restrict the claims to the precise forms and configurations shown in the drawings and disclosed in the following detailed description.
  • Various examples of a media racking system and methods for connecting communication-based media are disclosed. While the exemplary systems and methods are described herein generally in the context of optical fiber communication systems, virtually any type of communication-based media may be employed as an alternative or in addition to fiber optic cables in an exemplary rack or method of connecting the media. Examples of such media include, but are not limited to, coaxial cables, wires, strands, or the like.
  • An exemplary media racking system may generally include a rack configured to receive a plurality of components that are selectively connected via a plurality of communication-based media, e.g., optical fibers, coaxial cables, wires, ribbons, strands, or any other wired communication link. An exemplary system may further include one or more media retention housings, which include a spool configured to selectively support one of the media, and a media loop retainer defined by the spool. The media loop retainer includes a predetermined radius for selectively retaining a loop of the media. The predetermined radius may be greater than or equal to a minimum bend radius associated with the media, thereby generally preventing the media from being bent at a radius smaller than the minimum bend radius of the media.
  • An exemplary method may include securing a portion of a communication-based media, e.g., an optical fiber, to a spool, and establishing the portion of the media with a predetermined radius that is greater than or equal to a minimum bend radius of the media. The method may further include supporting the media at least partially on a support surface of the spool.
  • Turning now to FIGS. 1A-1C, an exemplary communication facility 100 is illustrated schematically. The communication facility 100 may generally include a plurality of racks 102 a, 102 b, 102 c, and 102 d (collectively, 102). The racks 102 each generally house components that are connected to each other via a plurality of communication-based media or lines 200. In one exemplary illustration, these media may be optical fibers. As best seen in FIG. 1A, the media 200 may connect components to each other that are positioned in a same rack 102, or in different racks 102. While FIG. 1A illustrates five lines or media 200 that are connected between components positioned in four racks 102, at any given time a very large number of media 200 may be routed between components positioned in the racks 102, between the racks 102, and between the communication facility 100 and other components or equipment (not shown) associated with a communication system. In fact, each rack may have a large number of components and media 200 at any given time. Accordingly, there is no numerical or geographic limitation on the number of media 200 or racks 102 that may be present in the communication facility 100.
  • Turning now to FIGS. 1B and 1C, an exemplary rack 102 is described in further detail. As described above, each rack 102 may generally include a plurality of components, e.g., communication components, which are connected to other components by way of one or more of the media 200. Each rack 102 may include a plurality of bays 104, each of which define one or more shelves 106. Each of the shelves 106 may include one or more components to which media 200 are connected to allow transmission of signals, e.g., optical signals, between the components.
  • The racks 102 also may include spacing posts 108 between bays 104. The spacing posts 108 generally space apart the bays 104 and provide mounting points for media slack or loops, as will be described further below. For example, FIGS. 1B and 1C illustrate media loop housings 206 that generally provide storage and/or protection for portions of the media 200, e.g., in loops. Further, the spacing posts 108 may be oriented to allow the securement of more than one housing 206 to each of the spacing posts 108. For example, as best seen in FIG. 1C, the spacing posts 108 are oriented generally perpendicular to a longitudinal length of the rack 102, allowing multiple housings 206 to be hung from a single spacing post 108. Accordingly, slack portions of different media 200 may be positioned on a same spacing post 108, as may be convenient where the media 200 lead to components that are each located near the spacing post 108.
  • Turning now to FIGS. 2A-2E, an exemplary media loop housing 206 is shown in further detail. Media loop housing 206 may generally include a spool 210 a, 210 b (collectively, 210) that may generally be rotatable to allow selective retraction and extension of one of the media 200 from the media loop housing 206. The spool may include a support surface 212 and a media loop retainer 214 a, 214 b (collectively, 214) that allows selective securement of the media 200 to the spool 210 for retraction into and extension from the housing 206. The spool 210 may be rotatable in any way that is convenient. For example, spool 210 may be generally retractable by way of a spring or other biasing mechanism that tends to rotate the spool 210 to retract the media 200 within the media loop housing 206. Alternatively, a hand crank or grip (not shown) may be provided that allows for a user to turn the spool 210 manually to retract or extend the media 200.
  • Spool 210 a, as best seen in FIGS. 2B and 2C, may generally include a loop support surface 212 and a media loop retainer 214 a. The media loop retainer 214 a allows selective attachment of a portion or loop of the media 200 to the spool 210 a to allow the spool 210 a to retract the media 200 within the housing 206. As best seen in FIGS. 2A and 2C, the media loop retainer 214 a generally defines an abutment surface 215 that extends radially away from the spool surface 212. In other words, the media loop retainer 214 a generally defines a curved wall extending radially away from the media support surface 212 toward the outside of the housing 206. The abutment surface 215 thus provides a surface that is generally perpendicular to the direction that the loop of the media 200 is pulled into the loop housing 206. Accordingly, a portion of the media 200 may be laid around the media loop retainer 214, and the abutment surface 215 generally “pulls” the loop of the media 200 into the housing 206 when the spool 210 a is rotated. As best seen in FIG. 2B, the media loop retainer 214 generally defines a minimum radius R along the abutment surface 215. The abutment surface 215 thus defines a predetermined radius R that is no smaller than a minimum bend radius associated with the media 200.
  • Accordingly, the media 200 may be secured to the spool 210 a without crimping, pinching or otherwise bending the media 200 in a way that would hinder transmission of a signal through the media 200. A portion of the media 200, e.g., a slack portion that represents extra media not necessary to reach between components to which the media 200 is connected, may thus be selectively placed on the media loop retainer 214 and retracted within the media loop housing 206. The housing 206 thereby generally protects the media 200 from damage that may hinder signal transmission.
  • Turning now to FIGS. 2C and 2D, another exemplary spool 210 b is illustrated. The media loop retainer 214 b generally includes a cavity 216 that is depressed below the support surface 212 of the spool 210 b, i.e., extending radially away from the support surface 212 toward the axis A-A of the spool 210 b. The cavity 216 thus defines an abutment surface 215 b within the cavity 216, around which a portion or loop of the media 200 may be placed. Furthermore, as best shown in FIG. 2D, the cavity 216 may extend around a substantial portion of the circumference of the spool 210 b, thereby generally providing a guide for the media 200 that generally guides the media 200 to a position adjacent the opposing ends of the spool 210 b. Furthermore, side panels 208 (not shown in FIGS. 2D and 2E), which may be secured to the opposing ends of the spool 210 b, generally provide a lateral abutment surface for the media 200, such that the media 200 will lay upon itself as it is wrapped around the spool 210 b. The media 200 thus may be supported by the spool surface 212 and/or refracted within the housing 206 by turning the spool 210 b, taking up any excess slack of the media 200 and protecting the media 200 from pinching, crimping, bending, or any other damage that could hinder transmission of an optical signal through the media 200.
  • Exemplary media loop retainers 214 may extend axially with respect to a spool 210 along substantially an entire length L of a given spool 210, thereby maximizing the predetermined radius R of the media loop retainer 214 relative to the axial length L of the spool 210. Accordingly, larger minimum bend radii of media 200 may be accommodated by the spool 210 while also minimizing the overall size of the spool 210 and/or housing 206. In one exemplary illustration, it may be advantageous to minimize an overall axial length L of the spool 210 in order to allow the greatest flexibility for mounting multiple housings 206 to a rack 102, e.g., to fit a larger number of housings 206 in a given space. At the same time, it may also be desirable to maximize the number of different media 200 that may be used with a given housing 206 based upon the minimum bend radii associated with the media 200, and therefore the predetermined radius R in these examples may need to be maximized. Generally, in order to allow a maximum predetermined radius R while also minimizing the overall axial length L for a given spool 210, the axial length L of the spool 210 may be as little as twice the largest minimum bend radius of media 200 for which the spool 210 is intended to be used. For example, as best seen in FIGS. 2C and 2D, where the spool radius RS is no smaller than the minimum bend radius associated with the media 200, and thus is no smaller than the predetermined radius R of the spool 210, the axial length L may be as small as two times the predetermined radius R.
  • Additionally, the spool 210 itself may define a spool radius RS that is less than or equal to a minimum bend radius associated with the media 200. The media loop retainer 214 and, e.g., a corresponding abutment surface 215 or cavity 216 as described above, thus may define a curve by generally following a generally cylindrical shape of the spool surface 212, e.g., as best seen in FIG. 2A. Further, as described above the media loop retainer 214 curves with respect to the spool surface 212, e.g., as best seen in FIGS. 2C and 2D, thereby defining a generally curved guide with respect to the spool surface 212 that extends from a generally central portion of the spool 212 to a position adjacent each opposing end of the spool 210. An overall shape or curve of the media loop retainer 214 is therefore defined in part by a generally cylindrical shape of the spool 210, and also a curve of the media loop retainer with respect to the support surface 212.
  • Referring again to FIG. 2A, the media loop housing 206 also may include a mounting mechanism 218. The mounting mechanism 218 may include a loop or hook that generally allows the housing 206 to be selectively secured to a spacing post 108 of the rack 102. For example, as best seen in FIGS. 1B and 1C, each media loop housing 206 is secured to a spacing post 108. The media loop housings 206 may be positioned on any spacing post 108 where it is most convenient, e.g., where it is most convenient to position slack of the media 200 that is looped and retracted within the housing 206. Furthermore, the housings 206 may each easily be repositioned as may be convenient when connecting, disconnecting and/or reconnecting media 200 to the racks 102.
  • The spools 210 advantageously allow the media 200 to be selectively secured to the spool 210 at any point along the length of the media 200. Accordingly, a housing 206 may be repositioned at different points along the length of the media 200, and further may allow the media 200 to remain connected to components and/or racks 102 to which the media 200 is connected while the housing 206 is repositioned. For example, a media 200 may be fully extended and removed from a housing 206, and the media may be secured to the media loop retainer 214 at a different point along the length of the media 200, allowing the housing 206, and any slack in the media 200, to be repositioned with respect to the media 200. The selective repositioning of the housings 206 allows media 200 to generally remain connected while other adjacent media 200 are removed or repositioned, e.g., due to repair or replacement.
  • Proceeding now to FIG. 3, an exemplary process for retracting a media 200 associated with communication components is described. Process 300 may begin at block 302, where a media length between components that are desired to be connected is estimated, e.g., a length of an optical fiber extending between the components. This media length may include an estimated distance between racks 102 that house the respective components that are to be connected, e.g., any distance that the media must be travel between the racks 102. Additionally, a media length may be determined from a maximum distance, e.g., length and/or height, associated with a rack 102 that houses one of the connected components. Process 300 may then proceed to block 304. In block 304, a slack portion associated with the connection of the media 200 in block 302 may be estimated. For example, slack may generally be desired to allow for errors in locations of components connected via media 200, repositioning of a component to which the media 200 is connected within the rack 102, or to an entirely different rack 102. The slack portion of a media 200 may thus include an estimate of an error in distance estimates between components connected via media 200, or of any other distance that a given component connected to the media 200 may need to be moved at any given time during operation. The slack may in some embodiments be very little or close to zero, e.g., where the estimated distance(s) required for a given media 200 are expected to be no greater than the initial measured distances between the components connected by the media 200. The slack estimated in block 304 may be used in conjunction with the length determination in block 302 to determine a desired media length for connecting two components together. Process 300 may then proceed to block 306.
  • In block 306, each end of the media 200 may be connected to a communication component. The components may include any network equipment that communicates via media 200, e.g., optical circuits or Ethernet circuits, merely as examples. As described above, the components connected by the media 200 may be in a same one of the racks 102, or may be positioned in two different racks 102. Process 300 may then proceed to block 308.
  • In block 308, a portion of the media 200 is secured to a spool 210 and/or housing 206. For example, as described above, a loop of the media 200 may be secured to a fiber loop retainer 214 that is provided on a spool 210 of the fiber loop housing 206. The portion of the media 200 that is secured to the spool 210, e.g., a loop of the media 200, may be secured to an abutment surface 215 of the spool 210, where the abutment surface defines a predetermined radius R that maintains a minimum bend radius associated with the media 200. The predetermined radius generally prevents pinching or bending of the media 200 that would impair the ability of the media 200 to transmit signals, e.g., optical communications, through the portion of the media 200 that is secured to the spool 210. Additionally, as described above the spool 210 may define a cavity, e.g., cavity 216, which guides the media 200 from a generally central portion of the spool 210 toward opposing outer edges of the spool 210. The cavity 216 may thereby position each end of the media 200 at the outer edges of the spool 210, thereby allowing the media 200 to wrap around the spool 210 and toward the center portion of the spool 210.
  • The spool 210, as described above, may be positioned along the media 200 at any position along the media 200 where it is convenient to secure the media 200 to the spool. For example, it may be convenient to position the spool 210 and/or housing 206 near a component to which the media 200 is connected. Alternatively, it may be convenient to position the spool 210 and/or housing 206 on a rack 102 where there is adequate space to locate the spool 210 and/or housing 206. For example, a housing 206 and/or spool 210 may be selectively secured to a spacing post 108 or other feature of a rack 102 having space to accommodate the spool 210.
  • Proceeding to block 310, the media 200 be supported by the spool surface 212, e.g., by retracting the media 200 at least partially onto the spool 210 and/or within the housing 206. For example, as described above, the spool 210 may be rotated, e.g., by a self-retracting mechanism or crank, thereby retracting a slack portion of the media 200 within the housing 206 such that at least a portion of the media 200 sits upon the spool surface 212. Accordingly, a portion of the media 200 that is retracted within the housing 206 may generally be equal to the slack portion determined in block 304. Process 300 may then proceed to block 312. Process 300 may then proceed to block 312.
  • In block 312, the spool 210 and/or housing 206 may be secured to the rack 102. For example, as described above the housing 206 may be secured to a spacing post 108 of a rack 102, e.g., with a housing hook 218 or other feature that allows for the housing 206 to be selectively secured to the rack 102. As described above, the spacing posts 108 of the rack 102 may be oriented to allow multiple fiber loop housings 206 to be hung from each of the spacing posts 108. Process 300 may then proceed to block 314.
  • In block 314, additional media 200 may be connected to a rack 102 already having a first media 200. For example, as shown in FIG. 1C, a media 200 a may first be connected to the rack 102 with connectors 202 a, 202 a′. Additional media 200 b, 200 c may subsequently be secured to connectors 202 b, 202 b′ and 202 c, 202 c′, respectively. The multiple media 200 may overlap one or more other media 200 due to the relative proximity of components to which the media 200 are connected.
  • Proceeding to block 316, one or more housings 206 may be repositioned on the rack 102. Further, the housings 206 may be removed from the rack 102, repositioned elsewhere on the rack 102, or even on other racks 102 (not shown in FIG. 1C) despite any overlap of the media 200 that are connected to the rack 102. For example, referring specifically to FIG. 1C, media 200 a may be initially connected to rack components via connectors 202 a, 202 a′. After media 200 a is connected, media 200 b and 200 c are connected, thereby overlapping the media 200 a at certain points on the rack 102 and hindering access to the media 200 a. However, despite this overlap, the media 200 a may be extended from or even removed free of the housing 206 a, allowing the slack in the media 200 a to be pulled to another position on the rack 102 where it is convenient to position the slack of the media 200 a. The media 200 a may also be disconnected entirely from the rack 102 to allow replacement, e.g., when the media 200 a is damaged.
  • Repositioning and/or removal of the housings 206 from their associated media 200 may be convenient where it is necessary to gain access to media 200 a after it has become damaged, and other media 200 b, 200 c overlap the media 200 a. Instead of requiring each overlapping media 200 b, 200 c to be disconnected or removed to gain access to the damaged media 200 a, a slack portion of the media 200 a may be removed entirely from the housing 206 a, thereby allowing the media 200 a to be disconnected and replaced without requiring any repositioning of the overlapping media 200 b, 200 c. This may be especially convenient where a large number of media 200 are routed to a particular location on a rack and overlap a damaged media 200.
  • Alternatively, for example where only one or a small number of other media or fibers, e.g., media 200 b, 200 c, overlap a damaged fiber, e.g., media 200 a, slack portions of the media 200 b, 200 c may themselves be repositioned on the rack 102 or even spaced away from the rack 102 to allow access to the damaged media 200 a at least temporarily while the service/replacement of the damaged media 200 a occurs. Accordingly, housings 206 may be repositioned while the media 200 associated with the housings 206 remain connected to the components with which they are associated. Process 300 may then terminate.
  • Reference in the specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example. The phrase “in one example” in various places in the specification does not necessarily refer to the same example each time it appears.
  • With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain embodiments, and should in no way be construed so as to limit the claimed invention.
  • Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments and applications other than the examples provided would be upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future embodiments. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
  • All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary in made herein. In particular, use of the singular articles such as “a,” “the,” “the,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.

Claims (25)

1. A media rack system, comprising:
a rack configured to receive a plurality of components selectively connected via a plurality of media;
at least one media retention spool, including:
a support surface configured to selectively support one of the media; and
a media loop retainer secured to the spool support surface, the media loop retainer including a predetermined radius for selectively retaining a loop of the one of the communication media;
wherein the predetermined radius is greater than or equal to a minimum bend radius associated with the one of the media.
2. The media rack system of claim 1, wherein the spool is selectively rotatable to allow retraction and extension of the one of the fibers when the fiber loop is retained by the media loop retainer.
3. The media rack system of claim 1, wherein the media loop retainer is configured to selectively retain a loop of the fiber anywhere along a length of the fiber.
4. The media rack system of claim 1, wherein the media loop retainer includes a wall protruding from a spool surface for selectively supporting the fiber.
5. The media rack system of claim 1, wherein the media loop retainer includes a cavity defined by the spool.
6. The media rack system of claim 1, wherein the media loop retainer extends adjacent to opposing outer edges of the spool, thereby guiding the fiber to the opposing outer edges of the spool.
7. The media rack system of claim 1, wherein the rack includes a plurality of bays and a plurality of posts for selectively mounting the fiber loop housing.
8. The media rack system of claim 1, wherein the spool defines a spool radius and a spool length, the spool radius being greater than or equal to the minimum bend radius associated with the one of the media, the spool length being at least twice the spool radius.
9. A media retention spool, comprising:
a support surface configured to selectively support a communication media; and
a media loop retainer secured to the spool support surface, the media loop retainer including a predetermined radius for selectively retaining a loop of the communication media;
wherein the predetermined radius is greater than or equal to a minimum bend radius associated with the media.
10. The media retention spool of claim 9, wherein the support surface is selectively rotatable to allow retraction and extension of the media when the media loop is retained by the media loop retainer.
11. The media retention spool of claim 9, wherein the media loop retainer is configured to selectively retain a loop of the media anywhere along a length of the media.
12. The media retention spool of claim 9, wherein the media loop retainer includes a cavity defined by the support surface.
13. The media retention spool of claim 9, wherein the media loop retainer extends adjacent to opposing outer edges of the spool, thereby guiding the fiber adjacent to the opposing outer edges of the spool.
14. The media retention spool of claim 13, wherein the media loop retainer extends about substantially an entire portion of a spool circumference defined by the spool.
15. The media retention spool of claim 9, further comprising support panels disposed adjacent opposing ends of the spool and extending radially away from the spool to define lateral supports for the media.
16. The media retention spool of claim 9, wherein the spool defines a spool radius and a spool length, the spool radius being greater than or equal to the minimum bend radius associated with the one of the media, the spool length being at least twice the spool radius.
17. A method, comprising:
securing a portion of a communication media to a spool;
establishing the portion with a predetermined radius that is greater than or equal to a minimum bend radius of the media; and
supporting the portion of the media on a spool surface defined by the spool.
18. The method of claim 17, further comprising repositioning the portion of the media with respect to the spool surface.
19. The method of claim 17, establishing the spool with an abutment surface supporting the media, the abutment surface defining the predetermined radius.
20. The method of claim 17, further comprising guiding the media from a media loop retention feature disposed generally centrally with respect to the spool to a position adjacent to opposing outer edges of the spool.
21. The method of claim 17, further comprising:
estimating a length between components connected by the media; and
determining a slack portion based upon at least the length; and
establishing a retracted portion of the media as generally equal to the slack portion.
22. The method of claim 17, establishing the media as connected to two communication components configured to selectively communicate via the media.
23. The method of claim 22, further comprising securing the spool to a first position on a rack housing at least one of the communication components; and
repositioning the spool with respect to the media.
24. The method of claim 23, establishing repositioning the spool as extending the media from the spool and securing a different portion of the media to the spool.
25. The method of claim 17, further comprising establishing the spool with a spool radius and a spool length, and establishing the spool radius as greater than or equal to the minimum bend radius associated with the media, and establishing the spool length being at least twice the spool radius.
US12/625,373 2009-11-24 2009-11-24 Media rack configuration Expired - Fee Related US8443989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/625,373 US8443989B2 (en) 2009-11-24 2009-11-24 Media rack configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/625,373 US8443989B2 (en) 2009-11-24 2009-11-24 Media rack configuration

Publications (2)

Publication Number Publication Date
US20110120964A1 true US20110120964A1 (en) 2011-05-26
US8443989B2 US8443989B2 (en) 2013-05-21

Family

ID=44061335

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/625,373 Expired - Fee Related US8443989B2 (en) 2009-11-24 2009-11-24 Media rack configuration

Country Status (1)

Country Link
US (1) US8443989B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187072A1 (en) * 2017-04-04 2018-10-11 Cisco Technology, Inc. Adjustable cable management slide and direction control for optimized routing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH711405A1 (en) 2015-08-04 2017-02-15 Diamond Sa A device for receiving an excess length of a cable, installation box, installation cabinet and rack insert with such a device.

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US339738A (en) * 1886-04-13 Spool-holder
US380174A (en) * 1888-03-27 Drawer for spool-thread cases
US406159A (en) * 1889-07-02 Spool-holder
US417793A (en) * 1889-12-24 Reel for check-row planters
US462702A (en) * 1891-11-10 Spool-holder
US470328A (en) * 1892-03-08 Bobbin stand and carrier
US1508105A (en) * 1923-07-31 1924-09-09 Anna M Kamla Thread holder
US2147216A (en) * 1938-06-24 1939-02-14 Emil A G Raasch Yarn rack
US2380117A (en) * 1944-03-01 1945-07-10 Maldonado Joseph Spool holder
US2892598A (en) * 1956-05-24 1959-06-30 Nat Supply Co Cable drum grooving
US2944761A (en) * 1959-08-07 1960-07-12 Bernard H Best Rotary spool rack
US3360137A (en) * 1966-01-14 1967-12-26 William H Novales Adjustable storage rack
US3822834A (en) * 1972-06-05 1974-07-09 Fathom Oceanology Ltd Cable transfer apparatus
US4502801A (en) * 1982-03-23 1985-03-05 Franz B/u/ ttner AG Ribbon cassette for word processors, printers and typewriters
US4552433A (en) * 1982-09-22 1985-11-12 Standard Telephones And Cables, Plc Optical fibre cable manufacture
US5255866A (en) * 1990-10-19 1993-10-26 Leviton Manufacturing Co., Inc. Apparatus for isolating a cord section from tension
US5727699A (en) * 1995-07-18 1998-03-17 Gilcrease; Ann M. Spool holder
US5913485A (en) * 1997-09-15 1999-06-22 Bruffett; Virginia Device for holding a plurality of spools of thread and feeding a selected thread onto an adjacent sewing machine
US5946788A (en) * 1996-12-11 1999-09-07 Koninklijke Kpn N.V. Method and device for inserting a cable-shaped member into an elongated, tubular sheathing wound around, or in, a holder
US6014713A (en) * 1991-06-10 2000-01-11 International Business Machines Corporation Computer with retractable optical fiber connector assembly having rotatable spool with optical fiber for connecting the computer to external component
USD427829S (en) * 1999-10-22 2000-07-11 Yolanda R Fleming Portable tissue holder
US6341187B1 (en) * 1999-06-15 2002-01-22 Industrial Technology Research Institute Automatic light-coupling system for optical components
US6511009B1 (en) * 2000-06-09 2003-01-28 Cisco Technology, Inc. Fiber optic cable spool
US6580866B2 (en) * 2001-05-16 2003-06-17 Lucent Technologies Inc. Fiber splice holder with protected slack storage feature
US6584267B1 (en) * 2000-06-02 2003-06-24 Panduit Corp. Cable management system
US6594434B1 (en) * 2001-10-26 2003-07-15 Ciena Corporation Fiber optic cables management and measurement apparatus
US6634585B1 (en) * 1998-11-06 2003-10-21 Interface, Inc. Compact creel
US20050226574A1 (en) * 2000-12-14 2005-10-13 Walker James K Method and apparatus for fabrication of plastic fiber optic block materials and large flat panel displays
US20060049294A1 (en) * 2002-12-13 2006-03-09 Fabrice Thebault Packaging reel with optical cable winding device
US20060115228A1 (en) * 2004-11-30 2006-06-01 Bei Security Fiber optic cable fastener
US7072560B1 (en) * 2005-03-10 2006-07-04 The United States Of America As Represented By The Secretary Of The Navy Twist free method of optical fiber stowage and payout
US7076144B2 (en) * 1999-12-01 2006-07-11 3M Innovative Properties Company Apparatus and method for controlling the bend radius of an optical fiber cable
US20060239628A1 (en) * 2005-02-14 2006-10-26 Sbc Knowledge Ventures, L.P. Apparatuses having spool assembly for absorbing jumper slack
US7200315B2 (en) * 2004-06-09 2007-04-03 Nortel Networks Limited Dynamic fiber slack management for telecom racks
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
US20080197230A1 (en) * 2005-05-26 2008-08-21 Takashi Namba Spool for fastener strips and method of winding fastener strips
US20110064371A1 (en) * 2009-09-14 2011-03-17 Draka Comteq, B.V. Methods and Devices for Cable Insertion into Latched-Duct Conduit
US20110121529A1 (en) * 2009-11-23 2011-05-26 Albert Louis Cabassa Vertically-Oriented Folding Wire Caddy

Patent Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US339738A (en) * 1886-04-13 Spool-holder
US380174A (en) * 1888-03-27 Drawer for spool-thread cases
US406159A (en) * 1889-07-02 Spool-holder
US417793A (en) * 1889-12-24 Reel for check-row planters
US462702A (en) * 1891-11-10 Spool-holder
US470328A (en) * 1892-03-08 Bobbin stand and carrier
US1508105A (en) * 1923-07-31 1924-09-09 Anna M Kamla Thread holder
US2147216A (en) * 1938-06-24 1939-02-14 Emil A G Raasch Yarn rack
US2380117A (en) * 1944-03-01 1945-07-10 Maldonado Joseph Spool holder
US2892598A (en) * 1956-05-24 1959-06-30 Nat Supply Co Cable drum grooving
US2944761A (en) * 1959-08-07 1960-07-12 Bernard H Best Rotary spool rack
US3360137A (en) * 1966-01-14 1967-12-26 William H Novales Adjustable storage rack
US3822834A (en) * 1972-06-05 1974-07-09 Fathom Oceanology Ltd Cable transfer apparatus
US4502801A (en) * 1982-03-23 1985-03-05 Franz B/u/ ttner AG Ribbon cassette for word processors, printers and typewriters
US4552433A (en) * 1982-09-22 1985-11-12 Standard Telephones And Cables, Plc Optical fibre cable manufacture
US5255866A (en) * 1990-10-19 1993-10-26 Leviton Manufacturing Co., Inc. Apparatus for isolating a cord section from tension
US6014713A (en) * 1991-06-10 2000-01-11 International Business Machines Corporation Computer with retractable optical fiber connector assembly having rotatable spool with optical fiber for connecting the computer to external component
US5727699A (en) * 1995-07-18 1998-03-17 Gilcrease; Ann M. Spool holder
US5946788A (en) * 1996-12-11 1999-09-07 Koninklijke Kpn N.V. Method and device for inserting a cable-shaped member into an elongated, tubular sheathing wound around, or in, a holder
US5913485A (en) * 1997-09-15 1999-06-22 Bruffett; Virginia Device for holding a plurality of spools of thread and feeding a selected thread onto an adjacent sewing machine
US6634585B1 (en) * 1998-11-06 2003-10-21 Interface, Inc. Compact creel
US6341187B1 (en) * 1999-06-15 2002-01-22 Industrial Technology Research Institute Automatic light-coupling system for optical components
USD427829S (en) * 1999-10-22 2000-07-11 Yolanda R Fleming Portable tissue holder
US7076144B2 (en) * 1999-12-01 2006-07-11 3M Innovative Properties Company Apparatus and method for controlling the bend radius of an optical fiber cable
US6584267B1 (en) * 2000-06-02 2003-06-24 Panduit Corp. Cable management system
US6511009B1 (en) * 2000-06-09 2003-01-28 Cisco Technology, Inc. Fiber optic cable spool
US20050226574A1 (en) * 2000-12-14 2005-10-13 Walker James K Method and apparatus for fabrication of plastic fiber optic block materials and large flat panel displays
US6580866B2 (en) * 2001-05-16 2003-06-17 Lucent Technologies Inc. Fiber splice holder with protected slack storage feature
US6594434B1 (en) * 2001-10-26 2003-07-15 Ciena Corporation Fiber optic cables management and measurement apparatus
US20060049294A1 (en) * 2002-12-13 2006-03-09 Fabrice Thebault Packaging reel with optical cable winding device
US7229042B2 (en) * 2002-12-13 2007-06-12 France Telecom Packaging reel with an optical fiber unwinding device
US7200315B2 (en) * 2004-06-09 2007-04-03 Nortel Networks Limited Dynamic fiber slack management for telecom racks
US20060115228A1 (en) * 2004-11-30 2006-06-01 Bei Security Fiber optic cable fastener
US20080232759A1 (en) * 2005-02-14 2008-09-25 Sbc Knowledge Ventures, L.P. Spool asssembly for absorbing jumper slack
US20060239628A1 (en) * 2005-02-14 2006-10-26 Sbc Knowledge Ventures, L.P. Apparatuses having spool assembly for absorbing jumper slack
US7072560B1 (en) * 2005-03-10 2006-07-04 The United States Of America As Represented By The Secretary Of The Navy Twist free method of optical fiber stowage and payout
US20080197230A1 (en) * 2005-05-26 2008-08-21 Takashi Namba Spool for fastener strips and method of winding fastener strips
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
US20110064371A1 (en) * 2009-09-14 2011-03-17 Draka Comteq, B.V. Methods and Devices for Cable Insertion into Latched-Duct Conduit
US20110121529A1 (en) * 2009-11-23 2011-05-26 Albert Louis Cabassa Vertically-Oriented Folding Wire Caddy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187072A1 (en) * 2017-04-04 2018-10-11 Cisco Technology, Inc. Adjustable cable management slide and direction control for optimized routing
CN110463214A (en) * 2017-04-04 2019-11-15 思科技术公司 The adjustable cable management sliding of optimization routing and direction controlling
US10575429B2 (en) 2017-04-04 2020-02-25 Cisco Technology, Inc. Adjustable cable management slide and direction control for optimized routing
US10952347B2 (en) 2017-04-04 2021-03-16 Cisco Technology, Inc. Adjustable cable management slide and direction control for optimized routing
EP3855756A1 (en) * 2017-04-04 2021-07-28 Cisco Technology, Inc. Adjustable cable management slide and direction control for optimized routing

Also Published As

Publication number Publication date
US8443989B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
US11259364B2 (en) Fiber to the antenna
US10819435B2 (en) Rapid deployment indexing terminal arrangement
KR100399659B1 (en) Fiber distribution system
AU2009324815B2 (en) Fiber optic multi dwelling unit deployment apparatus and methods for using the same
US20190072736A1 (en) High density distribution frame with an integrated splicing compartment
JP2010503015A (en) Spare connector connection type fiber optic cable network interconnection device
WO2007136774A2 (en) Fiber handling cart for cables with tethers
WO2000072074A1 (en) Optical fiber routing and support apparatus
CN105229509A (en) There is push rod and start the optic module of formula breech lock and the device for optic module being attached to releasedly equipment
US7756372B2 (en) Fiber optic cable systems and kits and methods for terminating the same
US20080296426A1 (en) Apparatus and method for managing flexible lines
CA2746868C (en) High conductor count packaging capsule
US20130216195A1 (en) Optical Fiber Management Device
US8443989B2 (en) Media rack configuration
US9790051B2 (en) Conductor spool and optical fiber / electrical composite cable with conductor spool assembly
WO2010001155A2 (en) Improvements in or relating to optical fibre distribution systems
US20050238311A1 (en) Support fixture and method for supporting subscriber specific fiber optic drop wire
US6678455B1 (en) Fiber optic cable bend radius management system
WO2012059727A1 (en) Optical fibre tray
US8233762B1 (en) Cable management system
US6511010B1 (en) Optical fiber management installation appliance
US8515236B2 (en) Fiber optic drop cable assembly for deployment on building walls
US7200315B2 (en) Dynamic fiber slack management for telecom racks
US20230189468A1 (en) Managing cables in fiber installation
US20240126031A1 (en) Optical fiber cable and optical communication system including the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERIZON PATENT AND LICENSING INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALKER, JAMES S.;DUKE, JEFFREY;REEL/FRAME:023566/0942

Effective date: 20091120

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210521