US20110121482A1 - Methods of forming low static non-woven chopped strand mats - Google Patents

Methods of forming low static non-woven chopped strand mats Download PDF

Info

Publication number
US20110121482A1
US20110121482A1 US12/780,563 US78056310A US2011121482A1 US 20110121482 A1 US20110121482 A1 US 20110121482A1 US 78056310 A US78056310 A US 78056310A US 2011121482 A1 US2011121482 A1 US 2011121482A1
Authority
US
United States
Prior art keywords
fibers
chopped strand
bonding material
chopped
glass fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/780,563
Inventor
Bertrand J. Roekens
Enamul Haque
Steven E. Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/688,013 external-priority patent/US7138023B2/en
Application filed by Individual filed Critical Individual
Priority to US12/780,563 priority Critical patent/US20110121482A1/en
Publication of US20110121482A1 publication Critical patent/US20110121482A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2223/00Use of polyalkenes or derivatives thereof as reinforcement
    • B29K2223/04Polymers of ethylene
    • B29K2223/08Use of copolymers of ethylene as reinforcement
    • B29K2223/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2223/00Use of polyalkenes or derivatives thereof as reinforcement
    • B29K2223/10Polymers of propylene
    • B29K2223/12PP, i.e. polypropylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2402Coating or impregnation specified as a size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2418Coating or impregnation increases electrical conductivity or anti-static quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Definitions

  • the present invention relates generally to reinforced composite products, and more particularly, to a method of forming a chopped strand mat formed of bonding materials and reinforcing fibers which demonstrate a reduced occurrence of static electricity.
  • glass fibers are formed by drawing molten glass into filaments through a bushing or orifice plate and applying a sizing composition containing lubricants, coupling agents, and film-forming binder resins to the filaments.
  • a sizing composition containing lubricants, coupling agents, and film-forming binder resins
  • a low solids sizing composition that contains high dispersive chemistries are applied to the glass strands.
  • Such a sizing aids in the dispersion of the wet chopped glass fibers in the white water solution during a wet-laid process in which the chopped fibers are dispersed in an aqueous solution and formed into a fibrous mat product.
  • the aqueous sizing composition also provides protection to the fibers from interfilament abrasion and promotes compatibility between the glass fibers and any matrix in which the glass fibers are to be used for reinforcement purposes.
  • the fibers may be gathered into one or more strands and wound into a package or, alternatively, the fibers may be chopped while wet and collected.
  • the collected chopped strands can then be dried and cured to form dry use chopped strand glass (DUCS), or they can be packaged in their wet condition as wet use chopped strand glass (WUCS).
  • DUCS dry use chopped strand glass
  • WUCS wet use chopped strand glass
  • Such dried chopped glass fiber strands are commonly used as reinforcement materials in thermoplastic articles. It is known in the art that glass fiber reinforced polymer composites possess higher mechanical properties compared to unreinforced polymers. Thus, better dimensional stability, tensile strength and modulus, flexural strength and modulus, impact resistance, and creep resistance can be achieved with glass fiber reinforced composites.
  • Fibrous mats which are one form of fibrous non-woven reinforcements, are extremely suitable as reinforcements for many kinds of synthetic plastic composites.
  • the two most common methods for producing glass fiber mats from chopped glass fibers are wet-laid processing and dry-laid processing.
  • the wet chopped fibers are dispersed in a water slurry which may contain surfactants, viscosity modifiers, defoaming agents, or other chemical agents.
  • the slurry is agitated so that the fibers become dispersed.
  • the slurry containing the fibers is deposited onto a moving screen, and a substantial portion of the water is removed to form a web.
  • a binder is then applied, and the resulting mat is dried to remove the remaining water and cure the binder.
  • the formed non-woven mat is an assembly of dispersed, individual glass filaments. Wet-laid processes are commonly used when a very uniform distribution of fibers is desired.
  • Conventional dry-laid processes include processes such as an air-laid process and a carding process.
  • dried glass fibers are chopped and air blown onto a conveyor or screen and consolidated to form a mat.
  • dry chopped fibers and polymeric fibers are suspended in air, collected as a loose web on a screen or perforated drum, and then consolidated to form a randomly oriented mat.
  • a series of rotating drums covered with fine wires and teeth comb the glass fibers into parallel arrays to impart directional properties to the web.
  • the precise configuration of the drums will depend on the mat weight and fiber orientation desired.
  • the formed web may be parallel-laid, where a majority of the fibers are laid in the direction of the web travel, or they can be random-laid, where the fibers have no particular orientation.
  • Dry-laid processes are particularly suitable for the production of highly porous mats and are suitable where an open structure is desired in the resulting mat to allow the rapid penetration of various liquids or resins.
  • such conventional dry-laid processes tend to produce mats that do not have a uniform weight distribution throughout their surface areas, especially when compared to mats formed by conventional wet-laid processes.
  • the use of dry-chopped input fibers can be more expensive to process than the fibers used in a wet-laid process because the fibers in a dry-laid process are typically dried and packaged in separate steps before being chopped.
  • the reinforcement fibers are preferably wet use chopped strand glass fibers that are dried and then subsequently used in a dry-laid process.
  • the glass fibers are coated with a size composition containing a film forming agent, a coupling agent, and at least one lubricant.
  • the occurrence of static electricity on the glass fibers is reduced or eliminated by increasing the total solids content on the glass fibers, such as by applying excess amount of size composition to the glass fibers.
  • the amount of hydrophilic components present in the size may be increased while the other components in the size are maintained in their original amounts or substantially in their original amounts.
  • the size composition may be applied to the fibers in an amount of from about 0.4 to about 2.0% by weight solids.
  • an anti-static agent is added directly to the sizing composition, and the modified sizing composition is applied to the surface of the glass fibers, such as by application rollers or a spraying apparatus.
  • the antistatic agent may be any antistatic agent that is soluble in the sizing composition.
  • One or more antistatic agents may be added to the size composition.
  • the antistatic agent may be added to the sizing composition in an amount of from about 0.05 to about 0.20% by weight solids.
  • an antistatic agent is added directly to the glass fibers after the fibers have been sized and chopped.
  • the antistatic agent is sprayed onto the glass fibers to achieve a substantially uniform distribution of antistatic agent on the chopped strands.
  • the antistatic agent may be added to the glass fibers in an amount of from about 0.05 to about 0.20% by weight solids.
  • the chopped strand mat contains a bonding material and reinforcement fibers that have been treated to reduce the occurrence of static electricity between the fibers.
  • the reinforcement fibers are wet use chopped strand glass fibers that have been treated with an antistatic agent or with an excess of size and/or hydrophilic components as described herein.
  • the bonding material may be any thermoplastic or thermosetting material having a melting point less than the reinforcing fibers.
  • the chopped strand mat has a uniform or substantially uniform distribution of dried chopped glass fibers and bonding fibers which provides improved strength, acoustical properties, thermal properties, stiffness, impact resistance, and acoustical absorbance to the mat.
  • Reinforcement fibers that have been treated to reduce the occurrence of static electricity between the fibers and a bonding material such as the wet use chopped strand glass fibers discussed herein are dried and mixed with bonding fibers. It is desirable to distribute the dried chopped fibers and bonding fibers as uniformly as possible.
  • the mixture of dry chopped glass fibers and bonding fibers are then formed into a sheet.
  • One or more sheet formers may be utilized in forming the chopped strand mat.
  • the sheet may be passed through a thermal bonder to thermally bond the reinforcement fibers and polymer fibers and form the chopped strand mat.
  • the wet use chopped strand glass fibers treated with an antistatic agent or with an excess of size and/or hydrophilic components within the size as described herein forms a chopped strand mat that is static free or substantially static free.
  • the reduction in the occurrence of static electricity on the glass fibers results in an improvement in the ability to control the distribution of the wet use chopped strand glass fibers (or other reinforcement fibers) and bonding fibers in the chopped strand mat, and assists in forming a mat that has a substantially even distribution of glass fibers and bonding fibers.
  • the static free wet use chopped strand glass fibers eliminates the need for the presence of anti-static bars or other antistatic equipment in the mat manufacturing line. Further, the static free fibers eliminates the need for the use an anti-static chemical mixture in the manufacturing line of the chopped strand mat.
  • the reduction or elimination of static electricity on the dried wet use chopped strand glass fibers also creates a worker-friendly environment by reducing the amount of free fibers or fibers in the air in the workplace and reducing potential irritation to workers forming the mats that may be caused by the “free” glass fibers.
  • FIG. 1 is a flow diagram illustrating steps for using wet reinforcement fibers in a dry-laid process according to one aspect of the present invention.
  • FIG. 2 is a schematic illustration of an air-laid process using wet use chopped strand glass fibers to form a chopped strand mat according to at least one exemplary embodiment of the present invention.
  • the invention relates to reinforcement fibers which demonstrate a reduced occurrence of static electricity, a chopped strand mat that demonstrates a reduced tendency to accumulate static electricity, and a process of forming the chopped strand mat.
  • the chopped strand mat is formed of reinforcing fibers and organic bonding fibers.
  • the reinforcing fibers may be any type of organic, inorganic, thermosetting, thermoplastic, or natural fiber suitable for providing good structural qualities as well as good acoustical and thermal properties.
  • suitable reinforcing fibers include glass fibers, wool glass fibers, basalt fibers, natural fibers, metal fibers, ceramic fibers, mineral fibers, carbon fibers, graphite fibers, nylon fibers, rayon fibers, nanofibers, and polymer based thermoplastic materials such as, but not limited to, polyester fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate (PET) fibers, polyphenylene sulfide (PPS) fibers, polyvinyl chloride (PVC) fibers, and ethylene vinyl acetate/vinyl chloride (EVA/VC) fibers, and combinations thereof.
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PVC polyvinyl chloride
  • EVA/VC ethylene vinyl acetate/vinyl chloride
  • the chopped strand mat may be entirely formed of one type of reinforcement fiber (such as glass fibers) or, alternatively, more than one type of reinforcement fiber may be used in forming the chopped strand mat.
  • the term “natural fiber” as used in conjunction with the present invention refers to plant fibers extracted from any part of a plant, including, but not limited to, the stem, seeds, leaves, roots, or bast.
  • the reinforcement fibers are glass fibers, such as A-type glass, E-type glass, S-type glass, or ECR-type glass such as Owens Corning's Advantex® glass fibers.
  • the reinforcing fibers may have a length of from approximately 11-75 mm in length, and preferably, a length of from about 12 to about 30 mm. Additionally, the reinforcing fibers may have diameters of from about 8 to about 35 microns, and preferably have diameters of from about 12 to about 23 microns. Further, the reinforcing fibers may have varying lengths and diameters from each other within the chopped strand mat. The reinforcing fibers may be present in the chopped strand mat in an amount of from about 40 to about 90% by weight of the total fibers, and are preferably present in the chopped strand mat in an amount of from about 50 to about 60% by weight.
  • wet reinforcement fibers are used in a dry-laid process, such as the dry-laid process described below, to form the chopped strand mat.
  • wet use chopped strand glass (WUCS) fibers are used as the wet reinforcing fiber. It is desirable that the wet use chopped strand glass fibers have a moisture content of from about 5 to about 30%, and more preferably have a moisture content of from about 5 to about 15%. It is to be noted that although wet use chopped strand glass fibers are described herein as a preferred wet reinforcement fiber, any wet reinforcement fiber identified by one of skill that generates a static charge upon drying may be utilized in the instant invention.
  • Wet use chopped strand glass for use in the instant invention may be formed by attenuating streams of molten glass from a bushing or orifice and collecting the fibers into a strand. Any suitable apparatus for producing such fibers and collecting them into a strand can be used in the present invention.
  • the fibers are coated with a size composition.
  • the strands are then chopped and collected or packaged in their wet condition.
  • the wet use chopped strand glass may be stored in the form of a bale or bundle of agglomerated individual fibers.
  • the sizing composition is applied to protect the reinforcement fibers from breakage during subsequent processing and to improve the compatibility of the fibers with the matrix resins that are to be reinforced.
  • the size composition also ensures the integrity of the strands of glass fibers (e.g., the interconnection of the glass filaments that form the strand).
  • the sizing composition is a low solids sizing composition that contains one or more film forming polymeric or resinous components (film formers), glass-resin coupling agents, and one or more lubricants dissolved or dispersed in a liquid medium.
  • film formers film formers
  • lubricants dissolved or dispersed in a liquid medium.
  • Conventional additives such as biocides may be optionally included in the size composition.
  • a preferred example of such a sizing is Owens Corning's sizing designated as 9501.
  • Other suitable sizings include Owens Corning's wet chopped sizes 9502, 786, 685, 777, 790, and 619.
  • the occurrence of static electricity on the glass fibers is reduced or eliminated by increasing the total solids content on the wet glass fiber.
  • the increased amount of total solids on the wet fibers is an amount of solids that is greater than the amount of solids conventionally or typically applied to the wet fibers (e.g., wet use chopped strand glass fibers).
  • hydrophilic components in the size composition act as antistatic agents if they are present in sufficient quantities on the glass fibers.
  • the total solids content on the wet glass fibers may be increased, for example, by applying an increased or excess amount of size composition to the glass fibers.
  • the size composition may be applied to the wet fibers in an amount of at least about 0.4% by weight solids, preferably in an amount of from about 0.4 to about 2.0% by weight solids, and more preferably in an amount of from about 0.8 to about 1.2% by weight solids.
  • the amount of hydrophilic components present in the size may be increased while the other components in the size are maintained in their original amounts or substantially in their original amounts. It is desirable that the total amount of hydrophilic components be present on the wet glass fibers in an amount of at least about 0.05% by weight solids, preferably in an amount of from about 0.05 to about 0.2% by weight solids. By increasing the amount of hydrophilic components in the size, the solids content of the hydrophilic components present on the fibers is increased. Due to the high cost of coupling agents, it is desirable to maintain the amount of the coupling agent identical or substantially identical to the amount originally present in the sizing composition.
  • At least one an anti-static agent is added directly to the sizing composition.
  • This modified sizing composition that includes an antistatic agent is applied to the glass fibers by any suitable application device such as application rollers or a spraying apparatus.
  • Antistatic agents especially suitable for use herein include antistatic agents that are soluble in the sizing composition.
  • antistatic agents examples include Katax 6660A (available from Cognis Corporation), Emerstat® 6660 and Emerstat® 6665 (quaternary ammonium antistatic agents available from Emery Industries, Inc.), Neoxil® AO 5620 (cationic organic alkoxylated quaternary ammonium antistatic agent available from DSM Resins), Larostat 264A (quaternary ammonium antistatic agent available from BASF), teteraethylammonium chloride, lithium chloride, fatty acid esters, ethoxylated amines, quaternary ammonium compounds.
  • One or more antistatic agents may be added to the size composition.
  • the antistatic agent may be added to the sizing composition in an amount of at least about 0.05% by weight solids, and preferably in an amount of from about 0.05 to about 0.2% by weight solids.
  • the antistatic agent is applied to the wet use chopped strand glass prior to being packaged.
  • the anti-static agent may be sprayed on the glass strands prior to chopping the strands or as the wet chopped strands are being collected and packaged.
  • the amount of anti-static agent applied to the chopped glass may be automatically adjusted pro-rata in accordance with the throughput of the molten glass through the bushings.
  • the antistatic agent is sprayed onto the chopped glass to achieve a substantially uniform distribution of antistatic agent on the chopped strands.
  • the antistatic agent may be added to the glass fibers in an amount of at least about 0.05% by weight, and preferably in an amount of from about 0.05 to about 0.2% by weight solids.
  • the low static or “static free” wet use chopped strand glass fibers described above may be used in dry-laid processes to form chopped strand mats that have a reduced tendency to accumulate static electricity.
  • An exemplary dry-laid process for forming the chopped strand mat using the low static or “static free” WUCS fibers described above is generally illustrated in FIG. 1 , and includes at least partially opening the wet use chopped strand glass fibers and bonding fibers (step 100 ), blending the chopped glass fibers and bonding fibers (step 110 ), forming the chopped glass fibers and bonding fibers into a sheet (step 120 ), optionally needling the sheet to give the sheet structural integrity (step 130 ), and bonding the chopped glass fibers and bonding fibers (step 140 ).
  • the bonding material is not limited, and may be any thermoplastic or thermosetting material having a melting point less than the reinforcing fibers.
  • thermoplastic and thermosetting materials suitable for use in the chopped strand mat include, but are not limited to, polyester fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate (PET) fibers, polyphenylene sulfide (PPS) fibers, polyvinyl chloride (PVC) fibers, ethylene vinyl acetate/vinyl chloride (EVA/VC) fibers, lower alkyl acrylate polymer fibers, acrylonitrile polymer fibers, partially hydrolyzed polyvinyl acetate fibers, polyvinyl alcohol fibers, polyvinyl pyrrolidone fibers, styrene acrylate fibers, polyolefins, polyamides, polysulfides, polycarbonates, rayon, nylon, phenolic resins, epoxy resins, and butadiene copolymers such as
  • the bonding fibers may be functionalized with acidic groups, for example, by carboxylating with an acid such as a maleated acid or an acrylic acid, or the bonding fibers may be functionalized by adding an anhydride group or vinyl acetate.
  • the bonding material may also be in the form of a polymeric mat, a flake, a granule, a resin, or a powder rather than in the form of a polymeric fiber.
  • the bonding material may also be in the form of multicomponent fibers such as bicomponent polymer fibers, tricomponent polymer fibers, or plastic-coated mineral fibers such as thermosetting coated glass fibers.
  • the bicomponent fibers may be arranged in a sheath-core, side-by-side, islands-in-the-sea, or segmented-pie arrangement.
  • the bicomponent fibers are formed in a sheath-core arrangement in which the sheath is formed of first polymer fibers that substantially surround a core formed of second polymer fibers. It is not required that the sheath fibers totally surround the core fibers.
  • the first polymer fibers have a melting point lower than the melting point of the second polymer fibers so that upon heating the bicomponent fibers to a temperature above the melting point of the first polymer fibers (sheath fibers) and below the melting point of the second polymer fibers (core fibers), the first polymer fibers will soften or melt while the second polymer fibers remain intact. This softening of the first polymer fibers (sheath fibers) will cause the first polymer fibers to become sticky and bond the first polymer fibers to themselves and other fibers that may be in close proximity.
  • bicomponent polymer fibers such as, but not limited to, combinations using polyester, polypropylene, polysulfide, polyolefin, and polyethylene fibers.
  • Specific polymer combinations for the bicomponent fibers include polyethylene terephthalate/polypropylene, polyethylene terephthalate/polyethylene, and polypropylene/polyethylene.
  • bicomponent fiber examples include copolyester polyethylene terephthalate/polyethylene terephthalate (coPET/PET), poly 1,4 cyclohexanedimethyl terephthalate/polypropylene (PCT/PP), high density polyethylene/polyethylene terephthalate (HDPE/PET), high density polyethylene/polypropylene (HDPE/PP), linear low density polyethylene/polyethylene terephthalate (LLDPE/PET), nylon 6/nylon 6,6 (PA6/PA6,6), and glycol modified polyethylene terephthalate/polyethylene terephthalate (6PETg/PET).
  • the bicomponent fibers may be present in an amount up to about 20% by weight of the total fibers.
  • the bicomponent polymer fibers may have a denier of from about 1 to about 18 denier and a length of from about 2 to about 4 mm. It is preferred that the first polymer fibers (sheath fibers) have a melting point within the range of from about 150 to about 400° F., and even more preferably in the range of from about 170 to about 300° F. The second polymer fibers (core fibers) have a higher melting point, preferably above about 350° F.
  • the wet use chopped strand glass fibers and the fibers forming the bonding material are typically agglomerated in the form of a bale of individual fibers.
  • the wet use chopped strand glass fibers 200 are fed into a first opening system 220 and the bonding fibers 210 are fed into a second opening system 230 to at least partially open the wet chopped glass fiber bales and bonding fiber bales respectively.
  • the opening system serves to decouple the clustered fibers and enhance fiber-to-fiber contact.
  • the first and second opening systems 220 , 230 are preferably bale openers, but may be any type of opener suitable for opening the bales of bonding fibers 210 and bales of wet use chopped strand glass fibers 200 .
  • Suitable openers for use in the present invention include any conventional standard type bale openers with or without a weighing device.
  • the bonding fibers 210 may be fed directly into the fiber transfer system 250 if the bonding fibers 210 are present or obtained in a filamentized form (not shown), and not present or obtained in the form of a bale. Such an embodiment is considered to be within the purview of this invention.
  • the second opening system 230 may be replaced with an apparatus suitable for distributing the powdered or flaked bonding material to the fiber transfer system 250 for mixing with the WUCS fibers 200 .
  • wet use chopped strand glass fibers 200 may be fed directly to the condensing unit 240 ( FIG. 2 ), especially if they are provided in a filamentized or partially filamentized form.
  • the at least partially opened wet use chopped strand glass fibers 200 may be dosed or fed from the first opening system 220 to a condensing unit 240 to remove water from the wet fibers.
  • a condensing unit 240 to remove water from the wet fibers.
  • greater than about 70% of the free water (water that is external to the reinforcement fibers) is removed.
  • substantially all of the water is removed by the condensing unit 240 . It should be noted that the phrase “substantially all of the water” as it is used herein is meant to denote that all or nearly all of the free water is removed.
  • the condensing unit 240 may be any known drying or water removal device known in the art, such as, but not limited to, an air dryer, an oven, rollers, a suction pump, a heated drum dryer, an infrared heating source, a hot air blower, or a microwave emitting source.
  • the dried or substantially dried chopped strand glass fibers (not illustrated in FIGS. 1 and 2 ) and the bonding fibers 210 are blended together by the fiber transfer system 250 .
  • the fibers are blended in a high velocity air stream.
  • the fiber transfer system 250 serves both as a conduit to transport the bonding fibers 210 and dried wet use chopped glass fibers to the sheet former 270 and to substantially uniformly mix the fibers in the air stream. It is desirable to distribute the dried chopped fibers and bonding fibers 210 as uniformly as possible.
  • the ratio of dried chopped glass fibers and bonding fibers 210 entering the air stream in the fiber transfer system 250 may be controlled by the weighing device described above with respect to the first and second opening systems 220 , 230 or by the amount and/or speed at which the fibers are passed through the first and second opening systems 220 , 230 .
  • the ratio of dried chopped glass fibers to bonding fibers 210 present in the air stream is 90:10, dried chopped fibers to bonding fibers 210 respectively.
  • the mixture of dry chopped glass fibers and bonding fibers 210 may be transferred by the air stream in the fiber transfer system 250 to a sheet former 270 where the fibers are formed into a sheet.
  • One or more sheet formers may be utilized in forming the chopped strand mat.
  • the blended fibers are transported by the fiber transfer system 250 to a filling box tower 260 where the dry chopped glass fibers and bonding fibers 210 are volumetrically fed into the sheet former 270 , such as by a computer monitored electronic weighing apparatus, prior to entering the sheet former 270 .
  • the filling box tower 260 may be located internally in the sheet former 270 or it may be positioned external to the sheet former 270 .
  • the filling box tower 260 may also include baffles to further blend and mix the dried chopped glass fibers and bonding fibers 210 prior to entering the sheet former 270 .
  • a sheet former 270 having a condenser and a distribution conveyor may be used to achieve a higher fiber feed into the filling box tower 260 and an increased volume of air through the filling box tower 260 .
  • the distributor conveyor may run transversally to the direction of the sheet. As a result, the bonding fibers 210 and the dried chopped fibers may be transferred into the filling box tower 260 with little or no pressure and minimal fiber breakage.
  • the sheet formed by the sheet former 270 contains a substantially uniform distribution of dried chopped glass fibers and bonding fibers 210 at a desired ratio and weight distribution.
  • the sheet formed by the sheet former 270 may have a weight distribution of from about 250 to about 2500 g/m 2 , with a preferred weight distribution of from about 800 to about 1400 g/m 2 .
  • the sheet exiting the sheet former 270 is optionally subjected to a needling process in a needle felting apparatus 280 in which barbed or forked needles are pushed in a downward and/or upward motion through the fibers of the sheet to entangle or intertwine the dried chopped glass fibers and bonding fibers 210 and impart mechanical strength and integrity to the mat.
  • Mechanical interlocking of the dried chopped glass fibers and bonding fibers 210 is achieved by passing the barbed felting needles repeatedly into and out of the sheet.
  • a binder resin 285 may be added as an additional bonding agent prior to passing the sheet through the thermal bonding system 290 .
  • the binder resin 285 may be in the form of a resin powder, flake, granule, foam, or liquid spray.
  • the binder resin 285 may be added by any suitable manner, such as, for example, a flood and extract method or by spraying the binder resin 285 on the sheet.
  • the amount of binder resin 285 added to the sheet may be varied depending of the desired characteristics of the chopped strand mat.
  • a catalyst such as ammonium chloride, p-toluene, sulfonic acid, aluminum sulfate, ammonium phosphate, or zinc nitrate may be used to improve the rate of curing and the quality of the cured binder resin 285 .
  • latex bonding Another process that may be employed to further bond the reinforcing fibers 200 either alone, or in addition to, the other bonding methods described herein, is latex bonding.
  • polymers formed from monomers such as ethylene (T g ⁇ 125° C.), butadiene (T g ⁇ 78° C.), butyl acrylate (T g ⁇ 52° C.), ethyl acrylate (T g ⁇ 22° C.), vinyl acetate (T g 30° C.), vinyl chloride (T g 80° C.), methyl methacrylate (T g 105° C.), styrene (T g 105 C°), and acrylonitrile (T g 130° C.) are used as bonding agents.
  • Latex polymers may be added as a spray prior to the sheet entering the thermal bonding system 290 . Once the sheet enters the thermal bonding system 290 , the latex polymers melt and bond the dried chopped glass fibers together.
  • a further optional bonding process that may be used alone, or in combination with the other bonding processes described herein is chemical bonding.
  • Liquid based bonding agents, powdered adhesives, foams, and, in some instances, organic solvents can be used as the chemical bonding agent.
  • Suitable examples of chemical bonding agents include, but are not limited to, acrylate polymers and copolymers, styrene-butadiene copolymers, vinyl acetate ethylene copolymers, and combinations thereof.
  • polyvinyl acetate PVA
  • EVA/VC ethylene vinyl acetate/vinyl chloride
  • lower alkyl acrylate polymer styrene-butadiene rubber
  • acrylonitrile polymer polyurethane
  • epoxy resins epoxy resins
  • polyvinyl chloride polyvinylidene chloride
  • copolymers of vinylidene chloride with other monomers partially hydrolyzed polyvinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, polyester resins, and styrene acrylate
  • the chemical bonding agent may be applied uniformly by impregnating, coating, or spraying the sheet.
  • the sheet may be passed through a thermal bonding system 290 to bond the dried chopped glass fibers and bonding fibers 210 and form the chopped strand mat 300 .
  • a thermal bonding system 290 to bond the dried chopped glass fibers and bonding fibers 210 and form the chopped strand mat 300 .
  • the sheet is heated to a temperature that is above the melting point of the bonding fibers 210 but below the melting point of the dried chopped glass fibers.
  • the temperature in the thermal bonding system 290 is raised to a temperature that is above the melting temperature of the sheath fibers, but below the melting temperature of the dried chopped glass fibers. Heating the bonding fibers 210 to a temperature above their melting point, or the melting point of the sheath fibers in the instance where the bonding fibers 210 are bicomponent fibers, causes the bonding fibers 210 to become adhesive and bond the bonding fibers 210 both to themselves and to adjacent dried chopped glass fibers.
  • the bonding fibers 210 completely melt, the melted fibers may encapsulate the dried chopped glass fibers. As long as the temperature within the thermal bonding system 290 is not raised as high as the melting point of the dried chopped strand glass fibers and/or core fibers, these fibers will remain in a fibrous form within the thermal bonding system 290 and chopped strand mat 300 .
  • the thermal bonding system 290 may include any known heating and/or bonding method known in the art, such as oven bonding, oven bonding using forced air, infrared heating, hot calendaring, belt calendaring, ultrasonic bonding, microwave heating, and heated drums. Optionally, two or more of these bonding methods may be used in combination to bond the dried chopped strand glass fibers and bonding fibers 210 .
  • the temperature of the thermal bonding system 290 varies depending on the melting point of the particular bonding fibers 210 , binder resins, and/or latex polymers used, and whether or not bicomponent fibers are present in the sheet.
  • the chopped strand mat 300 that emerges from the thermal bonding system 290 contains a uniform or substantially uniform distribution of dried chopped glass fibers and bonding fibers 210 which provides improved strength, acoustical and thermal properties, stiffness, impact resistance, and acoustical absorbance to the mat 300 .
  • the chopped strand mat 300 formed has a substantially uniform weight consistency and uniform properties.
  • the chopped strand mat 300 may be used in numerous applications, such as, for example, a reinforcement material in automotive applications such as in headliners, hood liners, floor liners, trim panels, parcel shelves, sunshades, instrument panel structures, door inners, and the like, in hand lay-ups for marine industries (boat building), vacuum and pressure bagging, cold press molding, matched metal die molding, and centrifugal casting.
  • the chopped strand mat 300 may also be used in a number of non-structural acoustical applications such as in appliances, in office screens and partitions, in ceiling tiles, and in building panels.
  • the physical properties of the mat may be optimized and/or tailored by altering the weight, length, and/or diameter of the reinforcement and/or bonding fibers used in the chopped strand mat. As a result, a large variety of chopped strand mats and composite products formed from the chopped strand mats can be manufactured.
  • the wet use chopped strand glass fibers formed according to the instant invention provides a chopped strand mat that is static free or substantially static free.
  • the reduction in the occurrence of static electricity on the glass fibers results in an improvement in the ability to control the distribution of the wet use chopped strand glass fibers (or other reinforcement fibers) and bonding fibers in the chopped strand mat, and assists in forming a mat that has a substantially even distribution of glass fibers and bonding fibers.
  • the static free wet use chopped strand glass fibers eliminates the need for the presence of anti-static bars or other antistatic equipment in the mat manufacturing line.
  • the static free WUCS eliminates any need for the presence and/or use of an anti-static chemical mixture in the manufacturing line of the chopped strand mat.
  • the reduction or elimination of static electricity on the WUCS fibers also reduces the amount of free fibers or fibers in the air in the workplace and reduces potential irritation to workers forming the mats that may be caused by the “free” glass fibers, thereby creating a worker-friendly environment.
  • wet use chopped strand glass fibers were coated with Owens Corning's 9501 size (no added antistatic agent(s)).
  • the wet use glass fibers were chopped, dried, and the static value was measured as described above.
  • the static generated on the glass fibers coated with Owens Corning's 9501 size containing no added antistatic agent(s) was measured at 1000 Volts.

Abstract

A method of forming a chopped strand mat formed of bonding materials and wet use chopped strand glass fibers (WUCS) which demonstrate a reduced occurrence of static electricity is provided. In one exemplary embodiment, the occurrence of static electricity on the glass fibers is reduced or eliminated by increasing the total solids content on the glass fibers, such as by applying an increased or excess amount of size composition to the glass fibers. Alternatively, an anti-static agent may be added directly to the sizing composition and applied to the glass filaments by any suitable application device. The antistatic agent may be applied to the wet chopped strand glass prior to chopping the strands or as the wet chopped strands are packaged. The static free wet use chopped strand glass fibers may be used in dry-laid processes to form chopped strand mats having a reduced tendency to accumulate static electricity.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 10/688,013 entitled “Development Of Thermoplastic Composites Using Wet Use Chopped Strand Glass In A Dry Laid Process” filed Oct. 17, 2003, the content of which is incorporated by reference in its entirety.
  • TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
  • The present invention relates generally to reinforced composite products, and more particularly, to a method of forming a chopped strand mat formed of bonding materials and reinforcing fibers which demonstrate a reduced occurrence of static electricity.
  • BACKGROUND OF THE INVENTION
  • Typically, glass fibers are formed by drawing molten glass into filaments through a bushing or orifice plate and applying a sizing composition containing lubricants, coupling agents, and film-forming binder resins to the filaments. When the fibers are to be chopped and stored and/or formed as wet use chopped strand glass, a low solids sizing composition that contains high dispersive chemistries are applied to the glass strands. Such a sizing aids in the dispersion of the wet chopped glass fibers in the white water solution during a wet-laid process in which the chopped fibers are dispersed in an aqueous solution and formed into a fibrous mat product. The aqueous sizing composition also provides protection to the fibers from interfilament abrasion and promotes compatibility between the glass fibers and any matrix in which the glass fibers are to be used for reinforcement purposes.
  • After the sizing composition is applied, the fibers may be gathered into one or more strands and wound into a package or, alternatively, the fibers may be chopped while wet and collected. The collected chopped strands can then be dried and cured to form dry use chopped strand glass (DUCS), or they can be packaged in their wet condition as wet use chopped strand glass (WUCS). Such dried chopped glass fiber strands are commonly used as reinforcement materials in thermoplastic articles. It is known in the art that glass fiber reinforced polymer composites possess higher mechanical properties compared to unreinforced polymers. Thus, better dimensional stability, tensile strength and modulus, flexural strength and modulus, impact resistance, and creep resistance can be achieved with glass fiber reinforced composites.
  • Fibrous mats, which are one form of fibrous non-woven reinforcements, are extremely suitable as reinforcements for many kinds of synthetic plastic composites. The two most common methods for producing glass fiber mats from chopped glass fibers are wet-laid processing and dry-laid processing. Generally, in a conventional wet-laid process, the wet chopped fibers are dispersed in a water slurry which may contain surfactants, viscosity modifiers, defoaming agents, or other chemical agents. Once the chopped glass fibers are introduced into the slurry, the slurry is agitated so that the fibers become dispersed. The slurry containing the fibers is deposited onto a moving screen, and a substantial portion of the water is removed to form a web. A binder is then applied, and the resulting mat is dried to remove the remaining water and cure the binder. The formed non-woven mat is an assembly of dispersed, individual glass filaments. Wet-laid processes are commonly used when a very uniform distribution of fibers is desired.
  • Conventional dry-laid processes include processes such as an air-laid process and a carding process. In a conventional air-laid process, dried glass fibers are chopped and air blown onto a conveyor or screen and consolidated to form a mat. For example, dry chopped fibers and polymeric fibers are suspended in air, collected as a loose web on a screen or perforated drum, and then consolidated to form a randomly oriented mat. In a conventional carding process, a series of rotating drums covered with fine wires and teeth comb the glass fibers into parallel arrays to impart directional properties to the web. The precise configuration of the drums will depend on the mat weight and fiber orientation desired. The formed web may be parallel-laid, where a majority of the fibers are laid in the direction of the web travel, or they can be random-laid, where the fibers have no particular orientation.
  • Dry-laid processes are particularly suitable for the production of highly porous mats and are suitable where an open structure is desired in the resulting mat to allow the rapid penetration of various liquids or resins. However, such conventional dry-laid processes tend to produce mats that do not have a uniform weight distribution throughout their surface areas, especially when compared to mats formed by conventional wet-laid processes. In addition, the use of dry-chopped input fibers can be more expensive to process than the fibers used in a wet-laid process because the fibers in a dry-laid process are typically dried and packaged in separate steps before being chopped.
  • For certain reinforcement applications in the formation of composite parts, it is desirable to form fiber mats in which the mat includes an open, porous structure (as in a dry-laid process) and which has a uniform weight (as in a wet-laid process). Therefore, there exists a need in the art for a cost-effective and efficient process for forming a non-woven mat which has a substantially uniform weight distribution, and which has an open, porous structure that can be used in the production of reinforced composite parts that overcomes the disadvantages of conventional wet-laid and dry-laid processes.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide reinforcement fibers which demonstrate a reduced occurrence of static electricity. The reinforcement fibers are preferably wet use chopped strand glass fibers that are dried and then subsequently used in a dry-laid process. The glass fibers are coated with a size composition containing a film forming agent, a coupling agent, and at least one lubricant. In one embodiment of the invention, the occurrence of static electricity on the glass fibers is reduced or eliminated by increasing the total solids content on the glass fibers, such as by applying excess amount of size composition to the glass fibers. Alternatively, the amount of hydrophilic components present in the size may be increased while the other components in the size are maintained in their original amounts or substantially in their original amounts. The size composition may be applied to the fibers in an amount of from about 0.4 to about 2.0% by weight solids.
  • In a second embodiment of the invention, an anti-static agent is added directly to the sizing composition, and the modified sizing composition is applied to the surface of the glass fibers, such as by application rollers or a spraying apparatus. The antistatic agent may be any antistatic agent that is soluble in the sizing composition. One or more antistatic agents may be added to the size composition. The antistatic agent may be added to the sizing composition in an amount of from about 0.05 to about 0.20% by weight solids.
  • In a third embodiment, an antistatic agent is added directly to the glass fibers after the fibers have been sized and chopped. In preferred embodiments, the antistatic agent is sprayed onto the glass fibers to achieve a substantially uniform distribution of antistatic agent on the chopped strands. The antistatic agent may be added to the glass fibers in an amount of from about 0.05 to about 0.20% by weight solids.
  • It is another object of the present invention to provide a chopped strand mat that demonstrates a reduced tendency to accumulate static electricity. The chopped strand mat contains a bonding material and reinforcement fibers that have been treated to reduce the occurrence of static electricity between the fibers. Preferably, the reinforcement fibers are wet use chopped strand glass fibers that have been treated with an antistatic agent or with an excess of size and/or hydrophilic components as described herein. The bonding material may be any thermoplastic or thermosetting material having a melting point less than the reinforcing fibers. The chopped strand mat has a uniform or substantially uniform distribution of dried chopped glass fibers and bonding fibers which provides improved strength, acoustical properties, thermal properties, stiffness, impact resistance, and acoustical absorbance to the mat.
  • It is a further object of the present invention to provide a process of forming a chopped strand mat that has a reduced tendency to accumulate static electricity. Reinforcement fibers that have been treated to reduce the occurrence of static electricity between the fibers and a bonding material such as the wet use chopped strand glass fibers discussed herein are dried and mixed with bonding fibers. It is desirable to distribute the dried chopped fibers and bonding fibers as uniformly as possible. The mixture of dry chopped glass fibers and bonding fibers are then formed into a sheet. One or more sheet formers may be utilized in forming the chopped strand mat. The sheet may be passed through a thermal bonder to thermally bond the reinforcement fibers and polymer fibers and form the chopped strand mat.
  • It is an advantage of the present invention that the wet use chopped strand glass fibers treated with an antistatic agent or with an excess of size and/or hydrophilic components within the size as described herein forms a chopped strand mat that is static free or substantially static free. The reduction in the occurrence of static electricity on the glass fibers results in an improvement in the ability to control the distribution of the wet use chopped strand glass fibers (or other reinforcement fibers) and bonding fibers in the chopped strand mat, and assists in forming a mat that has a substantially even distribution of glass fibers and bonding fibers.
  • It is also an advantage of the present invention that the static free wet use chopped strand glass fibers eliminates the need for the presence of anti-static bars or other antistatic equipment in the mat manufacturing line. Further, the static free fibers eliminates the need for the use an anti-static chemical mixture in the manufacturing line of the chopped strand mat. The reduction or elimination of static electricity on the dried wet use chopped strand glass fibers also creates a worker-friendly environment by reducing the amount of free fibers or fibers in the air in the workplace and reducing potential irritation to workers forming the mats that may be caused by the “free” glass fibers.
  • The foregoing and other objects, features, and advantages of the invention will appear more fully hereinafter from a consideration of the detailed description that follows. It is to be expressly understood, however, that the drawings are for illustrative purposes and are not to be construed as defining the limits of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The advantages of this invention will be apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the accompanying drawings wherein:
  • FIG. 1 is a flow diagram illustrating steps for using wet reinforcement fibers in a dry-laid process according to one aspect of the present invention; and
  • FIG. 2 is a schematic illustration of an air-laid process using wet use chopped strand glass fibers to form a chopped strand mat according to at least one exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION AND PREFERRED EMBODIMENTS OF THE INVENTION
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All references cited herein, including published or corresponding U.S. or foreign patent applications, issued U.S. or foreign patents, or any other references, are each incorporated by reference in their entireties, including all data, tables, figures, and text presented in the cited references.
  • In the drawings, the thickness of the lines, layers, and regions may be exaggerated for clarity. The terms “top”, “bottom”, “side”, and the like are used herein for the purpose of explanation only. It will be understood that when an element is referred to as being “on”, “adjacent to”, or “against” another element, it can be directly on, directly adjacent to, or directly against the other element or intervening elements may be present. It will also be understood that when an element is referred to as being “over” another element, it can be directly over the other element, or intervening elements may be present. In addition, the terms “reinforcing fibers” and “reinforcement fibers” may be used interchangeably herein. The terms “bonding fibers” and “bonding material” and the terms “size” and “sizing”, respectively, may be interchangeably used. It is to be noted that like numbers found throughout the figures denote like elements.
  • The invention relates to reinforcement fibers which demonstrate a reduced occurrence of static electricity, a chopped strand mat that demonstrates a reduced tendency to accumulate static electricity, and a process of forming the chopped strand mat. The chopped strand mat is formed of reinforcing fibers and organic bonding fibers. The reinforcing fibers may be any type of organic, inorganic, thermosetting, thermoplastic, or natural fiber suitable for providing good structural qualities as well as good acoustical and thermal properties. Non-limiting examples of suitable reinforcing fibers include glass fibers, wool glass fibers, basalt fibers, natural fibers, metal fibers, ceramic fibers, mineral fibers, carbon fibers, graphite fibers, nylon fibers, rayon fibers, nanofibers, and polymer based thermoplastic materials such as, but not limited to, polyester fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate (PET) fibers, polyphenylene sulfide (PPS) fibers, polyvinyl chloride (PVC) fibers, and ethylene vinyl acetate/vinyl chloride (EVA/VC) fibers, and combinations thereof. The chopped strand mat may be entirely formed of one type of reinforcement fiber (such as glass fibers) or, alternatively, more than one type of reinforcement fiber may be used in forming the chopped strand mat. The term “natural fiber” as used in conjunction with the present invention refers to plant fibers extracted from any part of a plant, including, but not limited to, the stem, seeds, leaves, roots, or bast. Preferably, the reinforcement fibers are glass fibers, such as A-type glass, E-type glass, S-type glass, or ECR-type glass such as Owens Corning's Advantex® glass fibers.
  • The reinforcing fibers may have a length of from approximately 11-75 mm in length, and preferably, a length of from about 12 to about 30 mm. Additionally, the reinforcing fibers may have diameters of from about 8 to about 35 microns, and preferably have diameters of from about 12 to about 23 microns. Further, the reinforcing fibers may have varying lengths and diameters from each other within the chopped strand mat. The reinforcing fibers may be present in the chopped strand mat in an amount of from about 40 to about 90% by weight of the total fibers, and are preferably present in the chopped strand mat in an amount of from about 50 to about 60% by weight.
  • In the process of the instant invention, wet reinforcement fibers are used in a dry-laid process, such as the dry-laid process described below, to form the chopped strand mat. In a preferred embodiment, wet use chopped strand glass (WUCS) fibers are used as the wet reinforcing fiber. It is desirable that the wet use chopped strand glass fibers have a moisture content of from about 5 to about 30%, and more preferably have a moisture content of from about 5 to about 15%. It is to be noted that although wet use chopped strand glass fibers are described herein as a preferred wet reinforcement fiber, any wet reinforcement fiber identified by one of skill that generates a static charge upon drying may be utilized in the instant invention.
  • Wet use chopped strand glass for use in the instant invention may be formed by attenuating streams of molten glass from a bushing or orifice and collecting the fibers into a strand. Any suitable apparatus for producing such fibers and collecting them into a strand can be used in the present invention. Once the reinforcing fibers are formed, and prior to their collection into a strand, the fibers are coated with a size composition. The strands are then chopped and collected or packaged in their wet condition. The wet use chopped strand glass may be stored in the form of a bale or bundle of agglomerated individual fibers. The sizing composition is applied to protect the reinforcement fibers from breakage during subsequent processing and to improve the compatibility of the fibers with the matrix resins that are to be reinforced. The size composition also ensures the integrity of the strands of glass fibers (e.g., the interconnection of the glass filaments that form the strand).
  • In conventional sizing compositions for wet use chopped strand glass, the sizing composition is a low solids sizing composition that contains one or more film forming polymeric or resinous components (film formers), glass-resin coupling agents, and one or more lubricants dissolved or dispersed in a liquid medium. Conventional additives such as biocides may be optionally included in the size composition. A preferred example of such a sizing is Owens Corning's sizing designated as 9501. Other suitable sizings include Owens Corning's wet chopped sizes 9502, 786, 685, 777, 790, and 619.
  • When wet use chopped strand glass fibers are utilized in a wet-laid process, the fibers remain in a wet condition throughout the formation of the mat and, as a result, there is no generation or accumulation of static electricity between the glass fibers. Therefore, little sizing is needed to protect the wet glass fibers from friction and abrasion, and the sizing is conventionally added at a low weight percentage on the wet glass fibers (e.g., from about 0.10 to about 0.30 wt % solids). However, when wet use chopped strand glass is used in a dry-laid process, there is a potential for a substantial generation of static electricity between the glass fibers as the glass is dried, which may cause safety concerns to workers. In addition, the generation and/or accumulation of static electricity affects the distribution of the reinforcement fibers and bonding fibers in the chopped strand mat formed by the dry-laid process which, in turn, may have a negative impact on the physical and mechanical properties of the mat.
  • In one exemplary embodiment of the present invention, the occurrence of static electricity on the glass fibers is reduced or eliminated by increasing the total solids content on the wet glass fiber. In the present invention, the increased amount of total solids on the wet fibers is an amount of solids that is greater than the amount of solids conventionally or typically applied to the wet fibers (e.g., wet use chopped strand glass fibers). Although not wishing to be bound by theory, it is believed that hydrophilic components in the size composition act as antistatic agents if they are present in sufficient quantities on the glass fibers. The total solids content on the wet glass fibers may be increased, for example, by applying an increased or excess amount of size composition to the glass fibers. By applying an increased amount of size, the solids content of each of the individual size components on the glass fibers is increased by the same amount and the ratio of the different components forming the sizing is maintained. The size composition may be applied to the wet fibers in an amount of at least about 0.4% by weight solids, preferably in an amount of from about 0.4 to about 2.0% by weight solids, and more preferably in an amount of from about 0.8 to about 1.2% by weight solids.
  • Alternatively, the amount of hydrophilic components present in the size (such as film formers or lubricants) may be increased while the other components in the size are maintained in their original amounts or substantially in their original amounts. It is desirable that the total amount of hydrophilic components be present on the wet glass fibers in an amount of at least about 0.05% by weight solids, preferably in an amount of from about 0.05 to about 0.2% by weight solids. By increasing the amount of hydrophilic components in the size, the solids content of the hydrophilic components present on the fibers is increased. Due to the high cost of coupling agents, it is desirable to maintain the amount of the coupling agent identical or substantially identical to the amount originally present in the sizing composition.
  • In an another exemplary embodiment, at least one an anti-static agent is added directly to the sizing composition. This modified sizing composition that includes an antistatic agent is applied to the glass fibers by any suitable application device such as application rollers or a spraying apparatus. Antistatic agents especially suitable for use herein include antistatic agents that are soluble in the sizing composition. Examples of suitable antistatic agents include Katax 6660A (available from Cognis Corporation), Emerstat® 6660 and Emerstat® 6665 (quaternary ammonium antistatic agents available from Emery Industries, Inc.), Neoxil® AO 5620 (cationic organic alkoxylated quaternary ammonium antistatic agent available from DSM Resins), Larostat 264A (quaternary ammonium antistatic agent available from BASF), teteraethylammonium chloride, lithium chloride, fatty acid esters, ethoxylated amines, quaternary ammonium compounds. One or more antistatic agents may be added to the size composition. The antistatic agent may be added to the sizing composition in an amount of at least about 0.05% by weight solids, and preferably in an amount of from about 0.05 to about 0.2% by weight solids.
  • In an alternate embodiment, the antistatic agent is applied to the wet use chopped strand glass prior to being packaged. The anti-static agent may be sprayed on the glass strands prior to chopping the strands or as the wet chopped strands are being collected and packaged. The amount of anti-static agent applied to the chopped glass may be automatically adjusted pro-rata in accordance with the throughput of the molten glass through the bushings. Preferably, the antistatic agent is sprayed onto the chopped glass to achieve a substantially uniform distribution of antistatic agent on the chopped strands. By spraying the antistatic agent directly onto the glass fibers, there are no issues of solubility or compatibility with the size composition. In addition, spraying the antistatic agent onto the chopped glass reduces waste, as 100% or about 100% of the antistatic agent is placed onto the glass and is not lost in the forming process. The antistatic agent may be added to the glass fibers in an amount of at least about 0.05% by weight, and preferably in an amount of from about 0.05 to about 0.2% by weight solids.
  • The low static or “static free” wet use chopped strand glass fibers described above may be used in dry-laid processes to form chopped strand mats that have a reduced tendency to accumulate static electricity. An exemplary dry-laid process for forming the chopped strand mat using the low static or “static free” WUCS fibers described above is generally illustrated in FIG. 1, and includes at least partially opening the wet use chopped strand glass fibers and bonding fibers (step 100), blending the chopped glass fibers and bonding fibers (step 110), forming the chopped glass fibers and bonding fibers into a sheet (step 120), optionally needling the sheet to give the sheet structural integrity (step 130), and bonding the chopped glass fibers and bonding fibers (step 140).
  • The bonding material is not limited, and may be any thermoplastic or thermosetting material having a melting point less than the reinforcing fibers. Examples of thermoplastic and thermosetting materials suitable for use in the chopped strand mat include, but are not limited to, polyester fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate (PET) fibers, polyphenylene sulfide (PPS) fibers, polyvinyl chloride (PVC) fibers, ethylene vinyl acetate/vinyl chloride (EVA/VC) fibers, lower alkyl acrylate polymer fibers, acrylonitrile polymer fibers, partially hydrolyzed polyvinyl acetate fibers, polyvinyl alcohol fibers, polyvinyl pyrrolidone fibers, styrene acrylate fibers, polyolefins, polyamides, polysulfides, polycarbonates, rayon, nylon, phenolic resins, epoxy resins, and butadiene copolymers such as styrene/butadiene rubber (SBR) and butadiene/acrylonitrile rubber (NBR). It is desirable that one or more types of thermosetting materials be used to form the molding mat. The bonding material may be present in the molding mat in an amount of from about 10 to about 60% by weight of the total fibers, and preferably from about 40 to about 50% by weight.
  • In addition, the bonding fibers may be functionalized with acidic groups, for example, by carboxylating with an acid such as a maleated acid or an acrylic acid, or the bonding fibers may be functionalized by adding an anhydride group or vinyl acetate. The bonding material may also be in the form of a polymeric mat, a flake, a granule, a resin, or a powder rather than in the form of a polymeric fiber.
  • The bonding material may also be in the form of multicomponent fibers such as bicomponent polymer fibers, tricomponent polymer fibers, or plastic-coated mineral fibers such as thermosetting coated glass fibers. The bicomponent fibers may be arranged in a sheath-core, side-by-side, islands-in-the-sea, or segmented-pie arrangement. Preferably, the bicomponent fibers are formed in a sheath-core arrangement in which the sheath is formed of first polymer fibers that substantially surround a core formed of second polymer fibers. It is not required that the sheath fibers totally surround the core fibers. The first polymer fibers have a melting point lower than the melting point of the second polymer fibers so that upon heating the bicomponent fibers to a temperature above the melting point of the first polymer fibers (sheath fibers) and below the melting point of the second polymer fibers (core fibers), the first polymer fibers will soften or melt while the second polymer fibers remain intact. This softening of the first polymer fibers (sheath fibers) will cause the first polymer fibers to become sticky and bond the first polymer fibers to themselves and other fibers that may be in close proximity.
  • Numerous combinations of materials can be used to make the bicomponent polymer fibers, such as, but not limited to, combinations using polyester, polypropylene, polysulfide, polyolefin, and polyethylene fibers. Specific polymer combinations for the bicomponent fibers include polyethylene terephthalate/polypropylene, polyethylene terephthalate/polyethylene, and polypropylene/polyethylene. Other non-limiting bicomponent fiber examples include copolyester polyethylene terephthalate/polyethylene terephthalate (coPET/PET), poly 1,4 cyclohexanedimethyl terephthalate/polypropylene (PCT/PP), high density polyethylene/polyethylene terephthalate (HDPE/PET), high density polyethylene/polypropylene (HDPE/PP), linear low density polyethylene/polyethylene terephthalate (LLDPE/PET), nylon 6/nylon 6,6 (PA6/PA6,6), and glycol modified polyethylene terephthalate/polyethylene terephthalate (6PETg/PET). When bicomponent fibers are used as a component of the bonding material, the bicomponent fibers may be present in an amount up to about 20% by weight of the total fibers.
  • The bicomponent polymer fibers may have a denier of from about 1 to about 18 denier and a length of from about 2 to about 4 mm. It is preferred that the first polymer fibers (sheath fibers) have a melting point within the range of from about 150 to about 400° F., and even more preferably in the range of from about 170 to about 300° F. The second polymer fibers (core fibers) have a higher melting point, preferably above about 350° F.
  • The wet use chopped strand glass fibers and the fibers forming the bonding material are typically agglomerated in the form of a bale of individual fibers. Turning now to FIG. 2, the wet use chopped strand glass fibers 200 are fed into a first opening system 220 and the bonding fibers 210 are fed into a second opening system 230 to at least partially open the wet chopped glass fiber bales and bonding fiber bales respectively. The opening system serves to decouple the clustered fibers and enhance fiber-to-fiber contact. The first and second opening systems 220, 230 are preferably bale openers, but may be any type of opener suitable for opening the bales of bonding fibers 210 and bales of wet use chopped strand glass fibers 200. Suitable openers for use in the present invention include any conventional standard type bale openers with or without a weighing device.
  • Although the exemplary process depicted in FIGS. 1 and 2 show opening the bonding fibers 210 by a second opening system 230, the bonding fibers 210 may be fed directly into the fiber transfer system 250 if the bonding fibers 210 are present or obtained in a filamentized form (not shown), and not present or obtained in the form of a bale. Such an embodiment is considered to be within the purview of this invention. In alternate embodiments where the bonding material is in the form of a flake, granule, or powder (not shown in FIG. 2), and not a bonding fiber, the second opening system 230 may be replaced with an apparatus suitable for distributing the powdered or flaked bonding material to the fiber transfer system 250 for mixing with the WUCS fibers 200. A suitable apparatus would be easily identified by those of skill in the art. It is also considered to be within the purview of the invention that the wet use chopped strand glass fibers 200 may be fed directly to the condensing unit 240 (FIG. 2), especially if they are provided in a filamentized or partially filamentized form.
  • The at least partially opened wet use chopped strand glass fibers 200 may be dosed or fed from the first opening system 220 to a condensing unit 240 to remove water from the wet fibers. In exemplary embodiments, greater than about 70% of the free water (water that is external to the reinforcement fibers) is removed. Preferably, however, substantially all of the water is removed by the condensing unit 240. It should be noted that the phrase “substantially all of the water” as it is used herein is meant to denote that all or nearly all of the free water is removed. The condensing unit 240 may be any known drying or water removal device known in the art, such as, but not limited to, an air dryer, an oven, rollers, a suction pump, a heated drum dryer, an infrared heating source, a hot air blower, or a microwave emitting source.
  • The dried or substantially dried chopped strand glass fibers (not illustrated in FIGS. 1 and 2) and the bonding fibers 210 are blended together by the fiber transfer system 250. In preferred embodiments, the fibers are blended in a high velocity air stream. The fiber transfer system 250 serves both as a conduit to transport the bonding fibers 210 and dried wet use chopped glass fibers to the sheet former 270 and to substantially uniformly mix the fibers in the air stream. It is desirable to distribute the dried chopped fibers and bonding fibers 210 as uniformly as possible. The ratio of dried chopped glass fibers and bonding fibers 210 entering the air stream in the fiber transfer system 250 may be controlled by the weighing device described above with respect to the first and second opening systems 220, 230 or by the amount and/or speed at which the fibers are passed through the first and second opening systems 220, 230. In preferred embodiments, the ratio of dried chopped glass fibers to bonding fibers 210 present in the air stream is 90:10, dried chopped fibers to bonding fibers 210 respectively.
  • The mixture of dry chopped glass fibers and bonding fibers 210 may be transferred by the air stream in the fiber transfer system 250 to a sheet former 270 where the fibers are formed into a sheet. One or more sheet formers may be utilized in forming the chopped strand mat. In some embodiments of the present invention, the blended fibers are transported by the fiber transfer system 250 to a filling box tower 260 where the dry chopped glass fibers and bonding fibers 210 are volumetrically fed into the sheet former 270, such as by a computer monitored electronic weighing apparatus, prior to entering the sheet former 270. The filling box tower 260 may be located internally in the sheet former 270 or it may be positioned external to the sheet former 270. The filling box tower 260 may also include baffles to further blend and mix the dried chopped glass fibers and bonding fibers 210 prior to entering the sheet former 270. In some embodiments, a sheet former 270 having a condenser and a distribution conveyor may be used to achieve a higher fiber feed into the filling box tower 260 and an increased volume of air through the filling box tower 260. In order to achieve an improved cross-distribution of the opened fibers, the distributor conveyor may run transversally to the direction of the sheet. As a result, the bonding fibers 210 and the dried chopped fibers may be transferred into the filling box tower 260 with little or no pressure and minimal fiber breakage.
  • The sheet formed by the sheet former 270 contains a substantially uniform distribution of dried chopped glass fibers and bonding fibers 210 at a desired ratio and weight distribution. The sheet formed by the sheet former 270 may have a weight distribution of from about 250 to about 2500 g/m2, with a preferred weight distribution of from about 800 to about 1400 g/m2.
  • In one or more embodiments of the invention, the sheet exiting the sheet former 270 is optionally subjected to a needling process in a needle felting apparatus 280 in which barbed or forked needles are pushed in a downward and/or upward motion through the fibers of the sheet to entangle or intertwine the dried chopped glass fibers and bonding fibers 210 and impart mechanical strength and integrity to the mat. Mechanical interlocking of the dried chopped glass fibers and bonding fibers 210 is achieved by passing the barbed felting needles repeatedly into and out of the sheet. An optimal needle selection for use with the particular reinforcement fiber and polymer fiber chosen for use in the inventive process would be easily identified by one of skill in the art.
  • Although the bonding material 210 is used to bond the dried chopped glass fibers to each other, a binder resin 285 may be added as an additional bonding agent prior to passing the sheet through the thermal bonding system 290. The binder resin 285 may be in the form of a resin powder, flake, granule, foam, or liquid spray. The binder resin 285 may be added by any suitable manner, such as, for example, a flood and extract method or by spraying the binder resin 285 on the sheet. The amount of binder resin 285 added to the sheet may be varied depending of the desired characteristics of the chopped strand mat. A catalyst such as ammonium chloride, p-toluene, sulfonic acid, aluminum sulfate, ammonium phosphate, or zinc nitrate may be used to improve the rate of curing and the quality of the cured binder resin 285.
  • Another process that may be employed to further bond the reinforcing fibers 200 either alone, or in addition to, the other bonding methods described herein, is latex bonding. In latex bonding, polymers formed from monomers such as ethylene (Tg −125° C.), butadiene (Tg −78° C.), butyl acrylate (Tg −52° C.), ethyl acrylate (Tg −22° C.), vinyl acetate (Tg 30° C.), vinyl chloride (Tg 80° C.), methyl methacrylate (Tg 105° C.), styrene (Tg 105 C°), and acrylonitrile (T g 130° C.) are used as bonding agents. A lower glass transition temperature (Tg) results in a softer polymer. Latex polymers may be added as a spray prior to the sheet entering the thermal bonding system 290. Once the sheet enters the thermal bonding system 290, the latex polymers melt and bond the dried chopped glass fibers together.
  • A further optional bonding process that may be used alone, or in combination with the other bonding processes described herein is chemical bonding. Liquid based bonding agents, powdered adhesives, foams, and, in some instances, organic solvents can be used as the chemical bonding agent. Suitable examples of chemical bonding agents include, but are not limited to, acrylate polymers and copolymers, styrene-butadiene copolymers, vinyl acetate ethylene copolymers, and combinations thereof. For example, polyvinyl acetate (PVA), ethylene vinyl acetate/vinyl chloride (EVA/VC), lower alkyl acrylate polymer, styrene-butadiene rubber, acrylonitrile polymer, polyurethane, epoxy resins, polyvinyl chloride, polyvinylidene chloride, and copolymers of vinylidene chloride with other monomers, partially hydrolyzed polyvinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, polyester resins, and styrene acrylate may be used as a chemical bonding agent. The chemical bonding agent may be applied uniformly by impregnating, coating, or spraying the sheet.
  • Either after the sheet exits the sheet former 270 or after the optional needling of the sheet, the sheet may be passed through a thermal bonding system 290 to bond the dried chopped glass fibers and bonding fibers 210 and form the chopped strand mat 300. However, it is to be appreciated that if the sheet is needled in the needle felting apparatus 280 and the dried chopped glass fibers and the bonding fibers 210 are mechanically bonded, it may be unnecessary to pass the sheet through the thermal bonding system 290 to form the chopped strand mat 300.
  • In the thermal bonding system 290, the sheet is heated to a temperature that is above the melting point of the bonding fibers 210 but below the melting point of the dried chopped glass fibers. When bicomponent fibers are used as the bonding fibers 210, the temperature in the thermal bonding system 290 is raised to a temperature that is above the melting temperature of the sheath fibers, but below the melting temperature of the dried chopped glass fibers. Heating the bonding fibers 210 to a temperature above their melting point, or the melting point of the sheath fibers in the instance where the bonding fibers 210 are bicomponent fibers, causes the bonding fibers 210 to become adhesive and bond the bonding fibers 210 both to themselves and to adjacent dried chopped glass fibers. If the bonding fibers 210 completely melt, the melted fibers may encapsulate the dried chopped glass fibers. As long as the temperature within the thermal bonding system 290 is not raised as high as the melting point of the dried chopped strand glass fibers and/or core fibers, these fibers will remain in a fibrous form within the thermal bonding system 290 and chopped strand mat 300.
  • The thermal bonding system 290 may include any known heating and/or bonding method known in the art, such as oven bonding, oven bonding using forced air, infrared heating, hot calendaring, belt calendaring, ultrasonic bonding, microwave heating, and heated drums. Optionally, two or more of these bonding methods may be used in combination to bond the dried chopped strand glass fibers and bonding fibers 210. The temperature of the thermal bonding system 290 varies depending on the melting point of the particular bonding fibers 210, binder resins, and/or latex polymers used, and whether or not bicomponent fibers are present in the sheet. The chopped strand mat 300 that emerges from the thermal bonding system 290 contains a uniform or substantially uniform distribution of dried chopped glass fibers and bonding fibers 210 which provides improved strength, acoustical and thermal properties, stiffness, impact resistance, and acoustical absorbance to the mat 300. In addition, the chopped strand mat 300 formed has a substantially uniform weight consistency and uniform properties.
  • The chopped strand mat 300 may be used in numerous applications, such as, for example, a reinforcement material in automotive applications such as in headliners, hood liners, floor liners, trim panels, parcel shelves, sunshades, instrument panel structures, door inners, and the like, in hand lay-ups for marine industries (boat building), vacuum and pressure bagging, cold press molding, matched metal die molding, and centrifugal casting. The chopped strand mat 300 may also be used in a number of non-structural acoustical applications such as in appliances, in office screens and partitions, in ceiling tiles, and in building panels.
  • It is an advantage of the present invention that the physical properties of the mat may be optimized and/or tailored by altering the weight, length, and/or diameter of the reinforcement and/or bonding fibers used in the chopped strand mat. As a result, a large variety of chopped strand mats and composite products formed from the chopped strand mats can be manufactured.
  • It is also an advantage that the wet use chopped strand glass fibers formed according to the instant invention provides a chopped strand mat that is static free or substantially static free. The reduction in the occurrence of static electricity on the glass fibers results in an improvement in the ability to control the distribution of the wet use chopped strand glass fibers (or other reinforcement fibers) and bonding fibers in the chopped strand mat, and assists in forming a mat that has a substantially even distribution of glass fibers and bonding fibers.
  • In addition, the static free wet use chopped strand glass fibers eliminates the need for the presence of anti-static bars or other antistatic equipment in the mat manufacturing line. Further, the static free WUCS eliminates any need for the presence and/or use of an anti-static chemical mixture in the manufacturing line of the chopped strand mat. The reduction or elimination of static electricity on the WUCS fibers also reduces the amount of free fibers or fibers in the air in the workplace and reduces potential irritation to workers forming the mats that may be caused by the “free” glass fibers, thereby creating a worker-friendly environment.
  • Having generally described this invention, a further understanding can be obtained by reference to certain specific examples illustrated below which are provided for purposes of illustration only and are not intended to be all inclusive or limiting unless otherwise specified.
  • EXAMPLE
  • 70 g of a 40% solution of Katax 6660-A (antistatic agent) was added to 15 kg of Owens Corning's size designated 9501 and agitated to homogenize the sizing. The size was applied to glass fibers by application rollers prior to collecting the fibers into strands. The wet use fibers were then chopped and dried for 12 hours at 120° C. The dried glass was subjected to a simulation which replicated the glass friction as seen in a conventional dry-laid sheet molding line. The static generated on the glass fibers was measured using a Rothschild Static-Voltmeter R-4021. Static measurements were taken at 21° C. and 43% relative humidity. The static value of the wet use chopped strand glass fibers treated with the modified sizing containing an antistatic agent was measured at 35 Volts.
  • For comparison, wet use chopped strand glass fibers were coated with Owens Corning's 9501 size (no added antistatic agent(s)). The wet use glass fibers were chopped, dried, and the static value was measured as described above. The static generated on the glass fibers coated with Owens Corning's 9501 size containing no added antistatic agent(s) was measured at 1000 Volts.
  • Conventional dry-laid equipment can withstand up to approximately 100 Volts of static electricity on the glass fibers before processing problems such as agglomeration of fibers arise. Thus, a static value of up to approximately 100 Volts is considered to be “static free”. From the data presented above, it can be concluded that the wet use chopped strand glass fibers treated with the modified sizing solution (containing an added antistatic agent) demonstrated a reduced tendency to accumulate static electricity on the wet use chopped strand glass fibers, especially when compared to a size containing no antistatic agent(s). It can also be concluded that the wet use chopped strand glass fibers coated with the modified size composition is “static free”.
  • The invention of this application has been described above both generically and with regard to specific embodiments. Although the invention has been set forth in what is believed to be the preferred embodiments, a wide variety of alternatives known to those of skill in the art can be selected within the generic disclosure. The invention is not otherwise limited, except for the recitation of the claims set forth below.

Claims (22)

1.-19. (canceled)
20. A method of forming a low-static non-woven chopped strand mat comprising:
forming wet use chopped strand glass fibers having a size composition applied to at least a portion of a surface thereof;
applying an antistatic agent to a surface of said sized wet use chopped strand glass fibers, said antistatic agent being positioned on said size composition;
removing water from said wet use chopped strand glass fibers to form dried chopped strand fibers;
blending said dried chopped fibers and a thermoplastic bonding material to form a mixture of said dried chopped fibers and said thermoplastic bonding material;
forming said mixture of said dried chopped fibers and said thermoplastic bonding material into a sheet; and
bonding at least a portion of said dried chopped fibers and said thermoplastic bonding material to form a chopped strand mat.
21. The method of claim 20, wherein said antistatic agent is applied to said sized wet use chopped strand glass fibers in an amount from about 0.05 to about 0.20% by weight solids, said antistatic agent being substantially uniformly distributed on said sized wet use chopped strand glass fibers.
22. The method of claim 20, wherein said antistatic agent is selected from quaternary ammonium compounds, tetraethylammonium chloride, lithium chloride, fatty acid esters and ethoxylated amines
23. The method of claim 20, wherein said bonding step comprises:
heating said sheet to a temperature above the melting point of said thermoplastic bonding material and below the melting point of said dried chopped fibers to at least partially melt said thermoplastic bonding material and bond at least a portion of said dried chopped fibers and said thermoplastic bonding material.
24. The method of claim 23, further comprising the step of:
subjecting said sheet to a needling process to mechanically bond said dried chopped fibers and said thermoplastic bonding material prior to said bonding step.
25. The method of claim 20, wherein said bonding step comprises:
subjecting said sheet to a needling process to mechanically bond said dried chopped fibers and said thermoplastic bonding material,
wherein said thermoplastic bonding material is at least one material selected from thermoplastic fibers, thermosetting fibers and bicomponent fibers.
26. A method of forming a low-static non-woven chopped strand mat comprising:
supplying wet use chopped strand glass fibers having a size composition substantially evenly applied to at least a portion of a surface thereof;
removing water from said wet use chopped strand glass fibers to form dried chopped strand fibers;
blending said dried chopped fibers and a thermoplastic bonding material to form a mixture of said dried chopped fibers and said thermoplastic bonding material;
forming said mixture of said dried chopped fibers and said thermoplastic bonding material into a sheet; and
bonding at least a portion of said dried chopped fibers and said thermoplastic bonding material to form a chopped strand mat.
27. The method of claim 26, wherein said supplying step comprises:
adding an antistatic agent to a size composition including a film forming agent, a lubricant, and a coupling agent to form a modified size composition; and
applying said modified size composition containing said antistatic agent to a surface of said wet use chopped strand glass fibers.
28. The method of claim 26, wherein said antistatic agent is present in said modified size composition in an amount from about 0.05 to about 0.2% by weight solids.
29. The method of claim 28, wherein said bonding step comprises:
heating said sheet to a temperature above the melting point of said thermoplastic bonding material and below the melting point of said dried chopped fibers to at least partially melt said thermoplastic bonding material and bond at least a portion of said dried chopped fibers and said thermoplastic bonding material.
30. The method of claim 28, wherein said bonding step comprises:
subjecting said sheet to a needling process to mechanically bond said dried chopped fibers and said thermoplastic bonding material,
wherein said thermoplastic bonding material is at least one material selected from thermoplastic fibers, thermosetting fibers and bicomponent fibers.
31. The method of claim 26, wherein said size composition comprises a film forming agent, a lubricant, and a coupling agent, and
wherein said size composition is applied to said wet use chopped strand glass fibers with an increased total solids content as compared to a total solids content of a size composition containing a film forming agent, a lubricant, and a coupling agent conventionally applied to said wet use chopped strand glass fibers.
32. The method of claim 31, wherein a solids content of each component of said size composition is increased and a ratio of the individual components of said size composition is maintained.
33. The method of claim 31, wherein said size composition is applied to said wet use chopped strand glass fibers in an increased amount, said increased amount being from about 0.4 to about 2.0% by weight solids.
34. A method of forming a low-static non-woven chopped strand mat comprising:
supplying wet use chopped strand glass fibers having a modified size composition including a film forming agent, a lubricant, and a coupling agent substantially evenly applied to at least a portion of a surface thereof, said modified size composition having an increased content of hydrophilic components compared to conventional size compositions containing a film forming agent, a lubricant, and a coupling agent;
removing water from said wet use chopped strand glass fibers to form dried chopped strand fibers;
blending said dried chopped fibers and a thermoplastic bonding material to form a mixture of said dried chopped fibers and said thermoplastic bonding material;
forming said mixture of said dried chopped fibers and said thermoplastic bonding material into a sheet; and
bonding at least a portion of said dried chopped fibers and said thermoplastic bonding material to form a chopped strand mat.
35. The method of claim 34, wherein said amount of hydrophilic components present on said wet use chopped strand glass fibers is at least 0.05% by weight solids.
36. The method of claim 35, wherein said amount of hydrophilic components present on said wet use chopped strand glass fibers is from about 0.4 to about 2.0% by weight solids.
37. The method of claim 35, further comprising:
increasing an amount of said film forming agent and said lubricant present in said size composition to obtain said increased content of hydrophilic components.
38. The method of claim 34, wherein said bonding step comprises:
heating said sheet to a temperature above the melting point of said thermoplastic bonding material and below the melting point of said dried chopped fibers to at least partially melt said thermoplastic bonding material and bond at least a portion of said dried chopped fibers and said thermoplastic bonding material.
39. The method of claim 34, wherein said bonding step comprises:
subjecting said sheet to a needling process to mechanically bond said dried chopped fibers and said thermoplastic bonding material,
wherein said thermoplastic bonding material is at least one material selected from thermoplastic fibers, thermosetting fibers and bicomponent fibers.
40. The method of claim 34, wherein said antistatic agent is selected from quaternary ammonium compounds, tetraethylammonium chloride, lithium chloride, fatty acid esters and ethoxylated amines
US12/780,563 2003-10-17 2010-05-14 Methods of forming low static non-woven chopped strand mats Abandoned US20110121482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/780,563 US20110121482A1 (en) 2003-10-17 2010-05-14 Methods of forming low static non-woven chopped strand mats

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/688,013 US7138023B2 (en) 2003-10-17 2003-10-17 Development of thermoplastic composites using wet use chopped strand (WUCS)
US11/178,769 US20050266757A1 (en) 2003-10-17 2005-07-11 Static free wet use chopped strands (WUCS) for use in a dry laid process
US12/780,563 US20110121482A1 (en) 2003-10-17 2010-05-14 Methods of forming low static non-woven chopped strand mats

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/178,769 Division US20050266757A1 (en) 2003-10-17 2005-07-11 Static free wet use chopped strands (WUCS) for use in a dry laid process

Publications (1)

Publication Number Publication Date
US20110121482A1 true US20110121482A1 (en) 2011-05-26

Family

ID=37637770

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/178,769 Abandoned US20050266757A1 (en) 2003-10-17 2005-07-11 Static free wet use chopped strands (WUCS) for use in a dry laid process
US12/780,563 Abandoned US20110121482A1 (en) 2003-10-17 2010-05-14 Methods of forming low static non-woven chopped strand mats

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/178,769 Abandoned US20050266757A1 (en) 2003-10-17 2005-07-11 Static free wet use chopped strands (WUCS) for use in a dry laid process

Country Status (11)

Country Link
US (2) US20050266757A1 (en)
EP (1) EP1902001A2 (en)
JP (1) JP2009500540A (en)
KR (1) KR20080092329A (en)
CN (1) CN101287686A (en)
AR (1) AR056403A1 (en)
AU (1) AU2006269298A1 (en)
BR (1) BRPI0613456A2 (en)
CA (1) CA2613972A1 (en)
MX (1) MX2008000477A (en)
WO (1) WO2007008661A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090253323A1 (en) * 2008-04-03 2009-10-08 Usg Interiors, Inc. Non-woven material and method of making such material
US20130330994A1 (en) * 2012-05-31 2013-12-12 Wm. T. Burnett Ip, Llc Nonwoven Composite Fabric and Panel Made Therefrom
US8652288B2 (en) 2006-08-29 2014-02-18 Ocv Intellectual Capital, Llc Reinforced acoustical material having high strength, high modulus properties

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251187A1 (en) * 2003-10-17 2008-10-16 Enamul Haque Composite material with improved structural, acoustic and thermal properties
US20060137799A1 (en) * 2004-12-29 2006-06-29 Enamul Haque Thermoplastic composites with improved sound absorbing capabilities
EP1961015A2 (en) * 2005-10-11 2008-08-27 Board of Trustees of Southern Illinois University Composite friction materials having carbon nanotube and carbon nanofiber friction enhancers
US7767746B2 (en) * 2006-05-09 2010-08-03 Alliant Techsystems Inc. Basalt fiber and nanoclay compositions, articles incorporating the same, and methods of insulating a rocket motor with the same
US20080142178A1 (en) * 2006-12-14 2008-06-19 Daphne Haubrich Wet layed bundled fiber mat with binder fiber
US7993724B2 (en) * 2007-05-09 2011-08-09 Owens Corning Intellectual Capital, Llc Insulation for high temperature applications
US20090209681A1 (en) * 2008-02-18 2009-08-20 Adzima Leonard J Urea-formaldehyde resin reinforced gypsum composites and building materials made therefrom
US20110190434A1 (en) * 2008-02-18 2011-08-04 Ocv Intellectual Capital, Llc Urea-formaldehyde resin reinforced gypsum composites and building materials made therefrom
US20090208704A1 (en) * 2008-02-18 2009-08-20 Ashish Diwanji Roofing product constructed from polymer /gypsum/ fiberglass composite material
BE1018695A3 (en) * 2008-07-16 2011-07-05 Sewoon T & S Co Ltd TUBULAR GLASS FIBER ISOLATOR AND METHOD FOR MANUFACTURING THEREOF.
US20120065294A1 (en) 2010-09-10 2012-03-15 Alliant Techsystems Inc. Insulative compositions, article incorporating the same and methods of forming the same
US8505432B2 (en) 2010-09-10 2013-08-13 Alliant Techsystems, Inc. Multilayer backing materials for composite armor
US8734613B1 (en) 2013-07-05 2014-05-27 Usg Interiors, Llc Glass fiber enhanced mineral wool based acoustical tile
CN109024059B (en) * 2018-07-27 2021-03-05 西安工程大学 Processing method of wool short fiber wet felt
US20220250335A1 (en) * 2021-02-11 2022-08-11 Johns Manville Lightweight thermoplastic composite products and methods of making same
CN115232397A (en) * 2022-07-26 2022-10-25 巨石集团有限公司 Glass fiber chopped strand mat, composite board and preparation method

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543101A (en) * 1944-07-20 1951-02-27 American Viscose Corp Composite fibrous products and method of making them
US3498770A (en) * 1965-10-06 1970-03-03 Owens Corning Fiberglass Corp Method for treating and processing nonsized roving of mineral filaments
US3790655A (en) * 1971-03-02 1974-02-05 E B & A C Whiting Co Method for commingling and orienting colored sets of thermoplastic filaments
US3881222A (en) * 1973-11-19 1975-05-06 Crompton & Knowles Corp Method and apparatus for controlling the moisture content of fibrous stock
US4229397A (en) * 1976-12-10 1980-10-21 Agency Of Industrial Science & Technology Method for forming fiber-reinforced composite material
US4240994A (en) * 1977-05-23 1980-12-23 Ottenholm Tor A Method for manufacturing a building element
US4242398A (en) * 1979-01-16 1980-12-30 Teijin Limited Fibrous shaped article having non-level surface
US4379801A (en) * 1982-04-21 1983-04-12 Eastman Kodak Company Stampable reinforced thermoplastic polyester sheets
US4379802A (en) * 1982-04-21 1983-04-12 Eastman Kodak Company Stampable reinforced thermoplastic polyester sheet with improved surface finish
US4394414A (en) * 1981-05-29 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4418031A (en) * 1981-04-06 1983-11-29 Van Dresser Corporation Moldable fibrous mat and method of making the same
US4461804A (en) * 1981-05-29 1984-07-24 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use in producing a mat
US4465500A (en) * 1981-05-29 1984-08-14 Ppg Industries, Inc. Method for sizing glass fibers
US4477496A (en) * 1981-06-15 1984-10-16 Ppg Industries, Inc. Process for preparing sized glass fiber roving
US4546880A (en) * 1983-06-02 1985-10-15 Ppg Industries, Inc. Shippable package of glass fiber strands and process for making the package and continuous strand mat
US4568581A (en) * 1984-09-12 1986-02-04 Collins & Aikman Corporation Molded three dimensional fibrous surfaced article and method of producing same
US4751134A (en) * 1987-05-22 1988-06-14 Guardian Industries Corporation Non-woven fibrous product
US4752527A (en) * 1985-06-25 1988-06-21 Ppg Industries, Inc. Chemically treated glass fibers for reinforcing polymeric materials processes
US4789593A (en) * 1985-06-25 1988-12-06 Ppg Industries, Inc. Glass fibers with fast wettability and method of producing same
US4799986A (en) * 1987-07-30 1989-01-24 Duro-Last Roofing, Inc. Method of fabricating polymer-coated fabric outside corner pieces for single-ply polymer-coated fabric core roof membranes
US4812186A (en) * 1986-10-30 1989-03-14 John Cotton Limited Process for the manufacture of cellular core laminated elements
US4826724A (en) * 1988-06-10 1989-05-02 Manville Corporation Moldable fibrous mat
US4840832A (en) * 1987-06-23 1989-06-20 Collins & Aikman Corporation Molded automobile headliner
US4840755A (en) * 1981-11-27 1989-06-20 Nitto Boseki Co., Ltd. Method of and apparatus for producing compacted chopped strands
US4851283A (en) * 1988-12-05 1989-07-25 Monsanto Company Headliners having improved sound-absorbing characteristics
US4888235A (en) * 1987-05-22 1989-12-19 Guardian Industries Corporation Improved non-woven fibrous product
US4889764A (en) * 1987-05-22 1989-12-26 Guardian Industries Corp. Non-woven fibrous product
US4946738A (en) * 1987-05-22 1990-08-07 Guardian Industries Corp. Non-woven fibrous product
US4948661A (en) * 1987-07-10 1990-08-14 C. H. Masland & Sons Glossy finish fiber reinforced molded product and processes of construction
US4981754A (en) * 1988-06-20 1991-01-01 Owens-Corning Fiberglas Corporation Glass fibers having a size composition containing the reaction product of an acid and/or alcohol with the terminal epoxy groups of a diglycidyl ether of a bisphenol
US5000807A (en) * 1987-03-03 1991-03-19 Concordia Mfg. Co., Inc. Apparatus and method for commingling continuous multifilament yarns
US5055341A (en) * 1987-08-20 1991-10-08 Sekisui Kagaku Kogyo Kabushiki Kaisha Composite molded articles and process for producing same
US5068001A (en) * 1987-12-16 1991-11-26 Reinhold Haussling Method of making a sound absorbing laminate
US5133835A (en) * 1990-03-05 1992-07-28 International Paper Company Printable, high-strength, tear-resistant nonwoven material and related method of manufacture
US5154798A (en) * 1987-07-16 1992-10-13 Montefibre S.P.A. Felts and nonwoven fabrics based on polyester fibers and glass fibers and process for obtaining same
US5205018A (en) * 1989-12-22 1993-04-27 Trutzschler Gmbh & Co. Kg Apparatus for making a lap from textile fibers
US5272000A (en) * 1987-05-22 1993-12-21 Guardian Industries Corp. Non-woven fibrous product containing natural fibers
US5286929A (en) * 1991-12-27 1994-02-15 Nissan Motor Co., Ltd. Sound absorbing materials
US5337455A (en) * 1989-02-17 1994-08-16 Hergeth Hollingsworth Gmbh Device and method for pneumatically feeding a feeding chute
US5355567A (en) * 1992-12-18 1994-10-18 Hoechst Celanese Corporation Process for preparing engineered fiber blend
US5378528A (en) * 1990-04-20 1995-01-03 Makoui; Kambiz B. Absorbent structure containing superabsorbent particles and having a latex binder coating on at least one surface of the absorbent structure
US5492580A (en) * 1992-05-08 1996-02-20 Gates Formed-Fibre Products, Inc. Nonwoven moldable composite and method of manufacture
US5547743A (en) * 1993-11-16 1996-08-20 Rumiesz, Jr.; Joseph Thin high density glass fiber panel
US5554831A (en) * 1993-09-27 1996-09-10 Mitsubishi Kasei Corporation Sound absorbing member
US5565049A (en) * 1993-07-23 1996-10-15 Astechnologies, Inc. Method of making mats of chopped fibrous material
US5571610A (en) * 1993-06-21 1996-11-05 Owens Corning Fiberglass Technology, Inc. Glass mat thermoplastic product
US5584950A (en) * 1993-11-12 1996-12-17 The Noble Company Sound insulating membrane
US5591289A (en) * 1995-06-29 1997-01-07 Davidson Textron Inc. Method of making a fibrous headliner by compression molding
US5614132A (en) * 1993-06-21 1997-03-25 Owens Corning Fiberglas Technology, Inc. Method for manufacturing a mineral fiber product
US5632949A (en) * 1992-02-21 1997-05-27 E. I. Du Pont De Nemours And Company Recyclable molded high modulus fiber reinforced thermoplastic structures and process for preparing the same
US5662981A (en) * 1996-04-30 1997-09-02 Owens-Corning Fiberglas Technology Inc. Molded composite product and method of making
US5693378A (en) * 1995-06-07 1997-12-02 Owens-Corning Fiberglas Technology, Inc. Process for preparing reinforcing fiber pellets
US5736475A (en) * 1993-06-21 1998-04-07 Owens Corning Fiberglas Technology, Inc. Mineral fiber product containing polymeric material
US5804313A (en) * 1996-07-15 1998-09-08 Ppg Industries, Inc. Polyamide and acrylic polymer coated glass fiber reinforcements, reinforced polymeric composites and a method of reinforcing a polymeric material
US5817408A (en) * 1996-09-25 1998-10-06 Nissan Motor Co., Ltd. Sound insulation structure
US5841081A (en) * 1995-06-23 1998-11-24 Minnesota Mining And Manufacturing Company Method of attenuating sound, and acoustical insulation therefor
US5851355A (en) * 1996-11-27 1998-12-22 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
US5876529A (en) * 1997-11-24 1999-03-02 Owens Corning Fiberglas Technology, Inc. Method of forming a pack of organic and mineral fibers
US5945643A (en) * 1995-06-16 1999-08-31 Casser; Donald J. Vibration dampening material and process
USRE36323E (en) * 1993-01-21 1999-10-05 Minnesota Mining And Manufacturing Company Acoustical insulating web
US5965851A (en) * 1997-01-28 1999-10-12 Owens Corning Fiberglas Technology, Inc. Acoustically insulated apparatus
US5976295A (en) * 1996-08-30 1999-11-02 Chrysler Corporation Method of molding a recyclable multi-layer component from plastics material
US6054022A (en) * 1996-09-12 2000-04-25 Owens-Corning Veil U.K. Ltd. Method for producing a non-woven glass fiber mat comprising bundles of fibers
US6103155A (en) * 1996-08-19 2000-08-15 Kawasaki Steel Corporation Method of making a fiber reinforced thermoplastic sheet having essentially no warpage
US6148641A (en) * 1998-12-18 2000-11-21 Ppg Industries Ohio, Inc. Apparatus and method for producing dried, chopped strands
US6156682A (en) * 1998-09-18 2000-12-05 Findlay Industries, Inc. Laminated structures with multiple denier polyester core fibers, randomly oriented reinforcement fibers, and methods of manufacture
US6159882A (en) * 1997-09-09 2000-12-12 Boricel Corporation Nonwoven fibrous product
US6165921A (en) * 1997-03-03 2000-12-26 Nissan Motor Co., Ltd. Fibrous acoustical material for reducing noise transmission and method for producing the same
US6268047B1 (en) * 1999-01-22 2001-07-31 Ppg Industries Ohio, Inc. Glass fiber mats, laminates reinforced with the same and methods for making the same
US6291552B1 (en) * 1999-10-29 2001-09-18 Owens Corning Fiberglas Technology, Inc. Method for producing a glass mat
US6345688B1 (en) * 1999-11-23 2002-02-12 Johnson Controls Technology Company Method and apparatus for absorbing sound
US6365090B1 (en) * 1999-07-16 2002-04-02 Owens Corning Fiberglas Technology, Inc. System for preparing polymer encapsulated glass fiber pellets
US20020160682A1 (en) * 1999-12-29 2002-10-31 Qingyu Zeng Acoustical fibrous insulation product for use in a vehicle
US6497787B1 (en) * 2000-04-18 2002-12-24 Owens-Corning Veil Netherlands B.V. Process of manufacturing a wet-laid veil
US20030003835A1 (en) * 2000-06-30 2003-01-02 Tilton Jeffrey A. Under carpet heat shield and floor pan insulator
US20030008592A1 (en) * 2000-06-30 2003-01-09 Block Thomas L. Hood, dash, firewall or engine cover liner
US20030044566A1 (en) * 2001-09-06 2003-03-06 Certainteed Corporation Insulation containing a mixed layer of textile fibers and of natural fibers, and process for producing the same
US20030060113A1 (en) * 2001-09-20 2003-03-27 Christie Peter A. Thermo formable acoustical panel
US6572723B1 (en) * 2000-06-30 2003-06-03 Owens Corning Fiberglas Technology, Inc. Process for forming a multilayer, multidensity composite insulator
US20030124314A1 (en) * 2001-12-31 2003-07-03 Michael Rajendran S. Structurally enhanced sound and heat energy absorbing liner and related method
US20030124940A1 (en) * 2001-12-31 2003-07-03 Michael Rajendran S. Tunable or adjustable liner for selectively absorbing sound energy and related methods
US20030121898A1 (en) * 2001-11-26 2003-07-03 Tom Kane Heated vacuum support apparatus
US20030176131A1 (en) * 2002-03-15 2003-09-18 Tilton Jeffrey A. Insulating material
US20030194933A1 (en) * 2002-04-16 2003-10-16 H.R. Technologies, Inc. Chopped glass strand mat and method of producing same
US6669265B2 (en) * 2000-06-30 2003-12-30 Owens Corning Fiberglas Technology, Inc. Multidensity liner/insulator
US20040023586A1 (en) * 2002-08-02 2004-02-05 Tilton Jeffrey A. Low porosity facings for acoustic applications
US6695939B1 (en) * 1999-11-04 2004-02-24 Toyoda Boshoku Corporation Method of producing interior trim material
US20040051212A1 (en) * 2002-09-18 2004-03-18 Michael Rajendran S. Moldable preform with B-stage thermoset polymer powder binder
US6713167B2 (en) * 2000-10-16 2004-03-30 Industrialesud S.P.A. Multilayer product, its use for the production of light, acoustic-insulated, self-supporting articles and articles obtained with said multilayer product
US20040065507A1 (en) * 2002-07-08 2004-04-08 Jacobsen William W. Five-layer sound absorbing pad: improved acoustical absorber
US6756332B2 (en) * 1998-01-30 2004-06-29 Jason Incorporated Vehicle headliner and laminate therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277778A (en) * 1994-04-04 1995-10-24 Nippon Electric Glass Co Ltd Glass fiber
JPH1160289A (en) * 1997-08-08 1999-03-02 Nippon Electric Glass Co Ltd Antistatic agent for glass fiber, antistatic glass roving and sheet molding compound
FR2826359B1 (en) * 2001-06-21 2004-05-07 Saint Gobain Vetrotex SIZED GLASS WIRES, SIZING COMPOSITION AND COMPOSITES COMPRISING SAID WIRES
US7138023B2 (en) * 2003-10-17 2006-11-21 Owens-Corning Fiberglas Technology, Inc. Development of thermoplastic composites using wet use chopped strand (WUCS)

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543101A (en) * 1944-07-20 1951-02-27 American Viscose Corp Composite fibrous products and method of making them
US3498770A (en) * 1965-10-06 1970-03-03 Owens Corning Fiberglass Corp Method for treating and processing nonsized roving of mineral filaments
US3790655A (en) * 1971-03-02 1974-02-05 E B & A C Whiting Co Method for commingling and orienting colored sets of thermoplastic filaments
US3881222A (en) * 1973-11-19 1975-05-06 Crompton & Knowles Corp Method and apparatus for controlling the moisture content of fibrous stock
US4229397A (en) * 1976-12-10 1980-10-21 Agency Of Industrial Science & Technology Method for forming fiber-reinforced composite material
US4240994A (en) * 1977-05-23 1980-12-23 Ottenholm Tor A Method for manufacturing a building element
US4242398A (en) * 1979-01-16 1980-12-30 Teijin Limited Fibrous shaped article having non-level surface
US4418031A (en) * 1981-04-06 1983-11-29 Van Dresser Corporation Moldable fibrous mat and method of making the same
US4465500A (en) * 1981-05-29 1984-08-14 Ppg Industries, Inc. Method for sizing glass fibers
US4394414A (en) * 1981-05-29 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use on chopped glass fibers
US4461804A (en) * 1981-05-29 1984-07-24 Ppg Industries, Inc. Aqueous sizing composition for glass fibers for use in producing a mat
US4477496A (en) * 1981-06-15 1984-10-16 Ppg Industries, Inc. Process for preparing sized glass fiber roving
US4840755A (en) * 1981-11-27 1989-06-20 Nitto Boseki Co., Ltd. Method of and apparatus for producing compacted chopped strands
US4379802A (en) * 1982-04-21 1983-04-12 Eastman Kodak Company Stampable reinforced thermoplastic polyester sheet with improved surface finish
US4379801A (en) * 1982-04-21 1983-04-12 Eastman Kodak Company Stampable reinforced thermoplastic polyester sheets
US4546880A (en) * 1983-06-02 1985-10-15 Ppg Industries, Inc. Shippable package of glass fiber strands and process for making the package and continuous strand mat
US4568581A (en) * 1984-09-12 1986-02-04 Collins & Aikman Corporation Molded three dimensional fibrous surfaced article and method of producing same
US4752527A (en) * 1985-06-25 1988-06-21 Ppg Industries, Inc. Chemically treated glass fibers for reinforcing polymeric materials processes
US4789593A (en) * 1985-06-25 1988-12-06 Ppg Industries, Inc. Glass fibers with fast wettability and method of producing same
US4812186A (en) * 1986-10-30 1989-03-14 John Cotton Limited Process for the manufacture of cellular core laminated elements
US5000807A (en) * 1987-03-03 1991-03-19 Concordia Mfg. Co., Inc. Apparatus and method for commingling continuous multifilament yarns
US5272000A (en) * 1987-05-22 1993-12-21 Guardian Industries Corp. Non-woven fibrous product containing natural fibers
US4751134A (en) * 1987-05-22 1988-06-14 Guardian Industries Corporation Non-woven fibrous product
US4889764A (en) * 1987-05-22 1989-12-26 Guardian Industries Corp. Non-woven fibrous product
US4946738A (en) * 1987-05-22 1990-08-07 Guardian Industries Corp. Non-woven fibrous product
US4888235A (en) * 1987-05-22 1989-12-19 Guardian Industries Corporation Improved non-woven fibrous product
US4840832A (en) * 1987-06-23 1989-06-20 Collins & Aikman Corporation Molded automobile headliner
US4948661A (en) * 1987-07-10 1990-08-14 C. H. Masland & Sons Glossy finish fiber reinforced molded product and processes of construction
US5154798A (en) * 1987-07-16 1992-10-13 Montefibre S.P.A. Felts and nonwoven fabrics based on polyester fibers and glass fibers and process for obtaining same
US4799986A (en) * 1987-07-30 1989-01-24 Duro-Last Roofing, Inc. Method of fabricating polymer-coated fabric outside corner pieces for single-ply polymer-coated fabric core roof membranes
US5055341A (en) * 1987-08-20 1991-10-08 Sekisui Kagaku Kogyo Kabushiki Kaisha Composite molded articles and process for producing same
US5068001A (en) * 1987-12-16 1991-11-26 Reinhold Haussling Method of making a sound absorbing laminate
US4826724A (en) * 1988-06-10 1989-05-02 Manville Corporation Moldable fibrous mat
US4981754A (en) * 1988-06-20 1991-01-01 Owens-Corning Fiberglas Corporation Glass fibers having a size composition containing the reaction product of an acid and/or alcohol with the terminal epoxy groups of a diglycidyl ether of a bisphenol
US4851283A (en) * 1988-12-05 1989-07-25 Monsanto Company Headliners having improved sound-absorbing characteristics
US5337455A (en) * 1989-02-17 1994-08-16 Hergeth Hollingsworth Gmbh Device and method for pneumatically feeding a feeding chute
US5205018A (en) * 1989-12-22 1993-04-27 Trutzschler Gmbh & Co. Kg Apparatus for making a lap from textile fibers
US5133835A (en) * 1990-03-05 1992-07-28 International Paper Company Printable, high-strength, tear-resistant nonwoven material and related method of manufacture
US5378528A (en) * 1990-04-20 1995-01-03 Makoui; Kambiz B. Absorbent structure containing superabsorbent particles and having a latex binder coating on at least one surface of the absorbent structure
US5286929A (en) * 1991-12-27 1994-02-15 Nissan Motor Co., Ltd. Sound absorbing materials
US5632949A (en) * 1992-02-21 1997-05-27 E. I. Du Pont De Nemours And Company Recyclable molded high modulus fiber reinforced thermoplastic structures and process for preparing the same
US5492580A (en) * 1992-05-08 1996-02-20 Gates Formed-Fibre Products, Inc. Nonwoven moldable composite and method of manufacture
US5721177A (en) * 1992-05-08 1998-02-24 Gates Formed-Fibre Products, Inc. Nonwoven moldable composite
US5355567A (en) * 1992-12-18 1994-10-18 Hoechst Celanese Corporation Process for preparing engineered fiber blend
USRE36323E (en) * 1993-01-21 1999-10-05 Minnesota Mining And Manufacturing Company Acoustical insulating web
US5614132A (en) * 1993-06-21 1997-03-25 Owens Corning Fiberglas Technology, Inc. Method for manufacturing a mineral fiber product
US5571610A (en) * 1993-06-21 1996-11-05 Owens Corning Fiberglass Technology, Inc. Glass mat thermoplastic product
US5736475A (en) * 1993-06-21 1998-04-07 Owens Corning Fiberglas Technology, Inc. Mineral fiber product containing polymeric material
US5565049A (en) * 1993-07-23 1996-10-15 Astechnologies, Inc. Method of making mats of chopped fibrous material
US5554831A (en) * 1993-09-27 1996-09-10 Mitsubishi Kasei Corporation Sound absorbing member
US5584950A (en) * 1993-11-12 1996-12-17 The Noble Company Sound insulating membrane
US6077613A (en) * 1993-11-12 2000-06-20 The Noble Company Sound insulating membrane
US5547743A (en) * 1993-11-16 1996-08-20 Rumiesz, Jr.; Joseph Thin high density glass fiber panel
US5693378A (en) * 1995-06-07 1997-12-02 Owens-Corning Fiberglas Technology, Inc. Process for preparing reinforcing fiber pellets
US5945643A (en) * 1995-06-16 1999-08-31 Casser; Donald J. Vibration dampening material and process
US5841081A (en) * 1995-06-23 1998-11-24 Minnesota Mining And Manufacturing Company Method of attenuating sound, and acoustical insulation therefor
US5591289A (en) * 1995-06-29 1997-01-07 Davidson Textron Inc. Method of making a fibrous headliner by compression molding
US5662981A (en) * 1996-04-30 1997-09-02 Owens-Corning Fiberglas Technology Inc. Molded composite product and method of making
US5804313A (en) * 1996-07-15 1998-09-08 Ppg Industries, Inc. Polyamide and acrylic polymer coated glass fiber reinforcements, reinforced polymeric composites and a method of reinforcing a polymeric material
US6123882A (en) * 1996-08-19 2000-09-26 Kawasaki Steel Corporation Fiber reinforced thermoplastic resin sheet and method of wet manufacturing
US6103155A (en) * 1996-08-19 2000-08-15 Kawasaki Steel Corporation Method of making a fiber reinforced thermoplastic sheet having essentially no warpage
US5976295A (en) * 1996-08-30 1999-11-02 Chrysler Corporation Method of molding a recyclable multi-layer component from plastics material
US6054022A (en) * 1996-09-12 2000-04-25 Owens-Corning Veil U.K. Ltd. Method for producing a non-woven glass fiber mat comprising bundles of fibers
US5817408A (en) * 1996-09-25 1998-10-06 Nissan Motor Co., Ltd. Sound insulation structure
US5851355A (en) * 1996-11-27 1998-12-22 Bba Nonwovens Simpsonville, Inc. Reverse osmosis support substrate and method for its manufacture
US5965851A (en) * 1997-01-28 1999-10-12 Owens Corning Fiberglas Technology, Inc. Acoustically insulated apparatus
US6312542B1 (en) * 1997-03-03 2001-11-06 Nissan Motor Co., Ltd. Fibrous acoustical material for reducing noise transmission and method for producing same
US6165921A (en) * 1997-03-03 2000-12-26 Nissan Motor Co., Ltd. Fibrous acoustical material for reducing noise transmission and method for producing the same
US6159882A (en) * 1997-09-09 2000-12-12 Boricel Corporation Nonwoven fibrous product
US5876529A (en) * 1997-11-24 1999-03-02 Owens Corning Fiberglas Technology, Inc. Method of forming a pack of organic and mineral fibers
US6756332B2 (en) * 1998-01-30 2004-06-29 Jason Incorporated Vehicle headliner and laminate therefor
US6156682A (en) * 1998-09-18 2000-12-05 Findlay Industries, Inc. Laminated structures with multiple denier polyester core fibers, randomly oriented reinforcement fibers, and methods of manufacture
US6364976B2 (en) * 1998-09-18 2002-04-02 Findlay Industries, Inc. Method of manufacturing laminated structures with multiple denier polyester core fibers, randomly oriented reinforcement fibers
US6148641A (en) * 1998-12-18 2000-11-21 Ppg Industries Ohio, Inc. Apparatus and method for producing dried, chopped strands
US6268047B1 (en) * 1999-01-22 2001-07-31 Ppg Industries Ohio, Inc. Glass fiber mats, laminates reinforced with the same and methods for making the same
US6365090B1 (en) * 1999-07-16 2002-04-02 Owens Corning Fiberglas Technology, Inc. System for preparing polymer encapsulated glass fiber pellets
US6291552B1 (en) * 1999-10-29 2001-09-18 Owens Corning Fiberglas Technology, Inc. Method for producing a glass mat
US6695939B1 (en) * 1999-11-04 2004-02-24 Toyoda Boshoku Corporation Method of producing interior trim material
US6345688B1 (en) * 1999-11-23 2002-02-12 Johnson Controls Technology Company Method and apparatus for absorbing sound
US20020117352A1 (en) * 1999-11-23 2002-08-29 Veen Gerald R. Apparatus for absorbing sound
US20020160682A1 (en) * 1999-12-29 2002-10-31 Qingyu Zeng Acoustical fibrous insulation product for use in a vehicle
US6497787B1 (en) * 2000-04-18 2002-12-24 Owens-Corning Veil Netherlands B.V. Process of manufacturing a wet-laid veil
US20030000663A1 (en) * 2000-04-18 2003-01-02 Geel Paul Adriaan Process of manufacturing a wet-laid veil
US20030008592A1 (en) * 2000-06-30 2003-01-09 Block Thomas L. Hood, dash, firewall or engine cover liner
US6572723B1 (en) * 2000-06-30 2003-06-03 Owens Corning Fiberglas Technology, Inc. Process for forming a multilayer, multidensity composite insulator
US20030003835A1 (en) * 2000-06-30 2003-01-02 Tilton Jeffrey A. Under carpet heat shield and floor pan insulator
US6669265B2 (en) * 2000-06-30 2003-12-30 Owens Corning Fiberglas Technology, Inc. Multidensity liner/insulator
US6713167B2 (en) * 2000-10-16 2004-03-30 Industrialesud S.P.A. Multilayer product, its use for the production of light, acoustic-insulated, self-supporting articles and articles obtained with said multilayer product
US20030044566A1 (en) * 2001-09-06 2003-03-06 Certainteed Corporation Insulation containing a mixed layer of textile fibers and of natural fibers, and process for producing the same
US20030060113A1 (en) * 2001-09-20 2003-03-27 Christie Peter A. Thermo formable acoustical panel
US20030134556A1 (en) * 2001-09-20 2003-07-17 Christie Peter A. Thermo formable acoustical panel
US20030121898A1 (en) * 2001-11-26 2003-07-03 Tom Kane Heated vacuum support apparatus
US20030124940A1 (en) * 2001-12-31 2003-07-03 Michael Rajendran S. Tunable or adjustable liner for selectively absorbing sound energy and related methods
US20030124314A1 (en) * 2001-12-31 2003-07-03 Michael Rajendran S. Structurally enhanced sound and heat energy absorbing liner and related method
US20030176131A1 (en) * 2002-03-15 2003-09-18 Tilton Jeffrey A. Insulating material
US20030194933A1 (en) * 2002-04-16 2003-10-16 H.R. Technologies, Inc. Chopped glass strand mat and method of producing same
US20040065507A1 (en) * 2002-07-08 2004-04-08 Jacobsen William W. Five-layer sound absorbing pad: improved acoustical absorber
US20040023586A1 (en) * 2002-08-02 2004-02-05 Tilton Jeffrey A. Low porosity facings for acoustic applications
US20040051212A1 (en) * 2002-09-18 2004-03-18 Michael Rajendran S. Moldable preform with B-stage thermoset polymer powder binder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652288B2 (en) 2006-08-29 2014-02-18 Ocv Intellectual Capital, Llc Reinforced acoustical material having high strength, high modulus properties
US20090253323A1 (en) * 2008-04-03 2009-10-08 Usg Interiors, Inc. Non-woven material and method of making such material
US8563449B2 (en) 2008-04-03 2013-10-22 Usg Interiors, Llc Non-woven material and method of making such material
US20130330994A1 (en) * 2012-05-31 2013-12-12 Wm. T. Burnett Ip, Llc Nonwoven Composite Fabric and Panel Made Therefrom
US9689097B2 (en) * 2012-05-31 2017-06-27 Wm. T. Burnett Ip, Llc Nonwoven composite fabric and panel made therefrom

Also Published As

Publication number Publication date
WO2007008661A3 (en) 2007-07-19
WO2007008661A2 (en) 2007-01-18
AU2006269298A1 (en) 2007-01-18
CN101287686A (en) 2008-10-15
KR20080092329A (en) 2008-10-15
MX2008000477A (en) 2008-03-18
JP2009500540A (en) 2009-01-08
EP1902001A2 (en) 2008-03-26
US20050266757A1 (en) 2005-12-01
BRPI0613456A2 (en) 2011-01-11
AR056403A1 (en) 2007-10-10
AU2006269298A8 (en) 2008-02-21
CA2613972A1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US20110121482A1 (en) Methods of forming low static non-woven chopped strand mats
EP1675892B1 (en) Development of thermoplastic composites using wet use chopped strand (wucs)
US8057614B2 (en) Polymer/WUCS mat for use in sheet molding compounds
EP1831444B1 (en) Polymer/wucs mat for use in automotive applications
US20040161993A1 (en) Inorganic fiber insulation made from glass fibers and polymer bonding fibers
US8652288B2 (en) Reinforced acoustical material having high strength, high modulus properties
US20070032157A1 (en) Dually dispersed fiber construction for nonwoven mats using chopped strands
US20070009722A1 (en) Polymer/WUCS mat and method of forming same
KR20070019657A (en) Development of thermoplastic composites using wet use chopped strand wucs

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION