US20110146978A1 - Integrated enhanced oil recovery process - Google Patents

Integrated enhanced oil recovery process Download PDF

Info

Publication number
US20110146978A1
US20110146978A1 US12/970,105 US97010510A US2011146978A1 US 20110146978 A1 US20110146978 A1 US 20110146978A1 US 97010510 A US97010510 A US 97010510A US 2011146978 A1 US2011146978 A1 US 2011146978A1
Authority
US
United States
Prior art keywords
stream
hydrocarbon
gas
synthesis gas
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/970,105
Inventor
Andrew Perlman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sure Champion Investment Ltd
Original Assignee
Greatpoint Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greatpoint Energy Inc filed Critical Greatpoint Energy Inc
Priority to US12/970,105 priority Critical patent/US20110146978A1/en
Assigned to GREATPOINT ENERGY, INC. reassignment GREATPOINT ENERGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PERLMAN, ANDREW
Publication of US20110146978A1 publication Critical patent/US20110146978A1/en
Assigned to SURE CHAMPION INVESTMENT LIMITED reassignment SURE CHAMPION INVESTMENT LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREATPOINT ENERGY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04569Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for enhanced or tertiary oil recovery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane (SNG)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or reforming, and an air separation process for generating (i) an oxygen stream for use, for example, in the syngas process or a combustion process, and (ii) a nitrogen stream for EOR use.
  • a synthesis gas generation process such as gasification or reforming
  • an air separation process for generating (i) an oxygen stream for use, for example, in the syngas process or a combustion process, and (ii) a nitrogen stream for EOR use.
  • EOR enhanced oil recovery
  • oil is produced using the natural pressure of an oil reservoir to drive the crude into the well bore from where it is brought to the surface with conventional pumps. After some period of production, the natural pressure of the oil reservoir decreases and production dwindles.
  • producers incorporated secondary recovery by utilizing injected water, steam and/or natural gas to drive the crude to the well bore prior to pumping it to the surface.
  • EOR enhanced oil recovery
  • EOR based on high pressure nitrogen injection can also involve other techniques such as CO 2 injection/flood, which may be done concurrently and/or consecutively with the nitrogen injection.
  • CO 2 injection also helps to repressurize the oil reservoir.
  • the high-pressure CO 2 also acts as a solvent, dissolving the residual oil, thereby reducing its viscosity and improving its flow characteristics, allowing it to be pumped out of an aging reservoir.
  • Nitrogen is generally available from air separation processes, but it is not considered economical to utilize air separation processes solely for the generation of nitrogen for EOR.
  • CO 2 from natural sources can be utilized, but generally requires the natural source to be in the proximity of the oil reservoir to avoid the construction and use of pipelines, which could make such use uneconomical.
  • Synthesis gas production operations include, for example, catalytic gasification and hydromethanation processes, non-catalytic gasification processes and methane reforming processes. These processes typically produce one or more of methane, hydrogen and/or syngas (a mixture of hydrogen and carbon monoxide) as a raw gas product, which can be processed and ultimately used for power generation and/or other industrial applications. These processes also produce CO 2 , which is removed via acid gas removal processes, as is generally known to those of ordinary skill in the relevant art. Historically, this CO 2 has simply been vented to the atmosphere but, in view of environmental concerns, capture and sequestration/use of this CO 2 is becoming a necessity. EOR is thus a logical outlet for CO 2 streams from synthesis gas production operations.
  • At least one such synthesis gas production operation which utilizes a CO 2 by-product stream for EOR currently exists at the Great Plains Synfuels Plant (near Beulah, N. Dak. USA).
  • coal/lignite is gasified to a synthesis gas stream containing carbon dioxide, which is separated via a solvent-based acid gas removal technique.
  • the resulting CO 2 stream (which is greater than 95% pure) is compressed and transported via a 205-mile supercritical CO 2 pipeline to oil fields in Canada for use in EOR operations.
  • This operation is described in more detail in Perry and Eliason, “CO 2 Recovery and Sequestration at Dakota Gasification Company” (October 2004) (available from www.gasification.org), and on the Dakota Gasification Company website (www.dakotagas.com).
  • a disadvantage in this operation is the pipeline, as supercritical CO 2 is considered a hazardous material.
  • the construction, permitting, operation and maintenance of a supercritical CO 2 pipeline, particularly one as long as 205 miles, is expensive.
  • a more advantageous way to get the CO 2 from the synthesis gas operation to the EOR site would, therefore, be highly desirable.
  • the present invention provides an integrated process to (i) produce an acid gas-depleted product gas stream, (ii) produce an oxygen-rich gas stream, (iii) produce a hydrocarbon-containing fluid from an underground hydrocarbon reservoir via a hydrocarbon production well, and (iv) enhance production of the hydrocarbon-containing fluid from the underground hydrocarbon reservoir, the process comprising the steps of:
  • synthesis gas stream from a carbonaceous feedstock, the synthesis gas stream comprising (a) carbon dioxide, and (b) at least one of hydrogen and methane;
  • the present invention provides a process to enhance production of a hydrocarbon-containing fluid from an underground hydrocarbon reservoir via a hydrocarbon production well, by injecting a pressurized nitrogen stream into the underground hydrocarbon reservoir, wherein the pressurized nitrogen stream is generated by a process comprising the steps of:
  • the carbon dioxide-rich stream generated from acid gas removal is pressurized to generate a pressurized carbon dioxide stream, at least a portion of which is injected into the underground hydrocarbon reservoir.
  • steps (7) and (VI) are present, and the combustion is used to produce energy (for example, mechanical and/or electrical energy) that is used at least in part for the air separation step (steps (8) and (VII)) and/or pressurization (compression) steps (steps (9) and (VIII), and/or CO 2 compression).
  • energy for example, mechanical and/or electrical energy
  • the invention provides an apparatus for producing a hydrocarbon-containing fluid, an acid gas-depleted product gas stream and an oxygen-rich stream, the apparatus comprising:
  • synthesis gas production system adapted to produce a synthesis gas from a carbonaceous feedstock, the synthesis gas comprising (i) carbon dioxide and (ii) at least one of hydrogen and methane;
  • a separation device in fluid communication with the hydrocarbon production well, the separation device adapted (i) to receive the hydrocarbon fluid from the hydrocarbon production well, and (ii) to separate the hydrocarbon fluid into a liquid hydrocarbon product stream and a gaseous hydrocarbon product stream;
  • an acid gas removal unit in fluid communication with the synthesis gas generation system, the acid gas removal unit adapted to (i) receive the synthesis gas from the synthesis gas generation system, and (ii) treat the synthesis gas to remove acid gases and produce the acid gas-depleted product gas stream and a carbon dioxide-rich stream;
  • an air separation unit adapted to (i) receive an air stream and (ii) separate the air stream into an oxygen-rich stream and a nitrogen-rich recycle stream;
  • the injection well is further adapted to inject a pressurized carbon dioxide stream into the underground hydrocarbon reservoir
  • the apparatus further comprises a compressor unit in fluid communication with the acid gas removal unit and the injection well, the compressor unit adapted to (i) receive the carbon dioxide-rich stream, and (ii) compress the carbon dioxide recycle stream to generate the pressurized carbon dioxide stream, and (iii) provide the pressurized carbon dioxide stream to the injection well.
  • the acid gas removal unit is adapted to receive a combined stream of the synthesis gas and the gaseous hydrocarbon product stream, and treat the combined stream to remove acid gases and produce an acid gas-depleted product gas stream and a carbon dioxide-rich stream.
  • the acid gas removal unit is also adapted to receive the gaseous hydrocarbon product stream from the separation device, and treat the gaseous hydrocarbon product stream to remove acid gases and produce an acid gas-depleted gaseous hydrocarbon product stream.
  • the acid gas-depleted product gas stream will comprise both the acid gas-depleted gaseous hydrocarbon product stream and an acid gas-depleted synthesis gas stream (separate or combined).
  • FIG. 1 is a diagram of an embodiment of an integrated process in accordance with the present invention.
  • FIG. 2 is a diagram of a first specific embodiment of the integrated process in accordance with the present invention.
  • FIG. 3 is a diagram of an embodiment of the gas processing portion of the integrated process of FIG. 2 .
  • FIG. 4 is a diagram of a second specific embodiment of the integrated process in accordance with the present invention.
  • FIG. 5 is a diagram of an embodiment of the gas processing portion of the integrated process of FIG. 4 .
  • FIG. 6 is a diagram of an electrical power block suitable for use in conjunction with the present invention.
  • the present disclosure relates to integrating synthesis gas production processes and air separation processes with enhanced oil recovery processes. Further details are provided below.
  • pressures expressed in psi units are gauge, and pressures expressed in kPa units are absolute.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • substantially portion means that greater than about 90% of the referenced material, preferably greater than about 95% of the referenced material, and more preferably greater than about 97% of the referenced material.
  • the percent is on a molar basis when reference is made to a molecule (such as methane, carbon dioxide, carbon monoxide and hydrogen sulfide), and otherwise is on a weight basis (such as the liquid component of the hydrocarbon-containing fluid).
  • the term “predominant portion”, as used herein, unless otherwise defined herein, means that greater than about 50% of the referenced material. The percent is on a molar basis when reference is made to a molecule (such as hydrogen, methane, carbon dioxide, carbon monoxide and hydrogen sulfide), and otherwise is on a weight basis (such as the liquid component of the hydrocarbon-containing fluid).
  • hydrocarbon-containing fluid means a fluid comprising any hydrocarbon liquid and/or gas.
  • a hydrocarbon-containing fluid may also comprise solid particles. Oil, gas-condensate and the like, and also their mixtures with other liquids such as water, may be examples of a liquid contained in a hydrocarbon-containing fluid. Any gaseous hydrocarbon (for example, methane, ethane, propane, propylene, butane or the like), and mixtures of gaseous hydrocarbons, may be contained in a hydrocarbon-containing fluid.
  • the hydrocarbon-containing fluid is recovered from an underground hydrocarbon reservoir, such as an oil-bearing formation, a gas-condensate reservoir, a natural gas reservoir and the like.
  • carbonaceous as used herein is synonymous with hydrocarbon.
  • carbonaceous material as used herein is a material containing organic hydrocarbon content. Carbonaceous materials can be classified as biomass or non-biomass materials as defined herein.
  • biomass refers to carbonaceous materials derived from recently (for example, within the past 100 years) living organisms, including plant-based biomass and animal-based biomass.
  • biomass does not include fossil-based carbonaceous materials, such as coal. For example, see US2009/0217575A1 and US2009/0217587A1.
  • plant-based biomass means materials derived from green plants, crops, algae, and trees, such as, but not limited to, sweet sorghum, bagasse, sugarcane, bamboo, hybrid poplar, hybrid willow, albizia trees, eucalyptus, alfalfa, clover, oil palm, switchgrass, sudangrass, millet, jatropha, and miscanthus (e.g., Miscanthus x giganteus ).
  • Biomass further include wastes from agricultural cultivation, processing, and/or degradation such as corn cobs and husks, corn stover, straw, nut shells, vegetable oils, canola oil, rapeseed oil, biodiesels, tree bark, wood chips, sawdust, and yard wastes.
  • animal-based biomass means wastes generated from animal cultivation and/or utilization.
  • biomass includes, but is not limited to, wastes from livestock cultivation and processing such as animal manure, guano, poultry litter, animal fats, and municipal solid wastes (e.g., sewage).
  • non-biomass means those carbonaceous materials which are not encompassed by the term “biomass” as defined herein.
  • non-biomass include, but is not limited to, anthracite, bituminous coal, sub-bituminous coal, lignite, petroleum coke, asphaltenes, liquid petroleum residues or mixtures thereof.
  • anthracite bituminous coal
  • sub-bituminous coal lignite
  • petroleum coke lignite
  • asphaltenes liquid petroleum residues or mixtures thereof.
  • petroleum coke and “petcoke” as used here include both (i) the solid thermal decomposition product of high-boiling hydrocarbon fractions obtained in petroleum processing (heavy residues—“resid petcoke”); and (ii) the solid thermal decomposition product of processing tar sands (bituminous sands or oil sands—“tar sands petcoke”).
  • Such carbonization products include, for example, green, calcined, needle and fluidized bed petcoke.
  • Resid petcoke can also be derived from a crude oil, for example, by coking processes used for upgrading heavy-gravity residual crude oil, which petcoke contains ash as a minor component, typically about 1.0 wt % or less, and more typically about 0.5 wt % of less, based on the weight of the coke.
  • the ash in such lower-ash cokes comprises metals such as nickel and vanadium.
  • Tar sands petcoke can be derived from an oil sand, for example, by coking processes used for upgrading oil sand.
  • Tar sands petcoke contains ash as a minor component, typically in the range of about 2 wt % to about 12 wt %, and more typically in the range of about 4 wt % to about 12 wt %, based on the overall weight of the tar sands petcoke.
  • the ash in such higher-ash cokes comprises materials such as silica and/or alumina.
  • Petroleum coke has an inherently low moisture content, typically, in the range of from about 0.2 to about 2 wt % (based on total petroleum coke weight); it also typically has a very low water soaking capacity to allow for conventional catalyst impregnation methods.
  • the resulting particulate compositions contain, for example, a lower average moisture content which increases the efficiency of downstream drying operation versus conventional drying operations.
  • the petroleum coke can comprise at least about 70 wt % carbon, at least about 80 wt % carbon, or at least about 90 wt % carbon, based on the total weight of the petroleum coke.
  • the petroleum coke comprises less than about 20 wt % inorganic compounds, based on the weight of the petroleum coke.
  • asphalte as used herein is an aromatic carbonaceous solid at room temperature, and can be derived, for example, from the processing of crude oil and crude oil tar sands.
  • coal as used herein means peat, lignite, sub-bituminous coal, bituminous coal, anthracite, or mixtures thereof.
  • the coal has a carbon content of less than about 85%, or less than about 80%, or less than about 75%, or less than about 70%, or less than about 65%, or less than about 60%, or less than about 55%, or less than about 50% by weight, based on the total coal weight.
  • the coal has a carbon content ranging up to about 85%, or up to about 80%, or up to about 75% by weight, based on the total coal weight. Examples of useful coal include, but are not limited to, Illinois #6, Pittsburgh #8, Beulah (N.
  • Anthracite, bituminous coal, sub-bituminous coal, and lignite coal may contain about 10 wt %, from about 5 to about 7 wt %, from about 4 to about 8 wt %, and from about 9 to about 11 wt %, ash by total weight of the coal on a dry basis, respectively.
  • the ash content of any particular coal source will depend on the rank and source of the coal, as is familiar to those skilled in the art. See, for example, “Coal Data: A Reference”, Energy Information Administration, Office of Coal, Nuclear, Electric and Alternate Fuels, U.S. Department of Energy, DOE/EIA-0064(93), February 1995.
  • the ash produced from combustion of a coal typically comprises both a fly ash and a bottom ash, as are familiar to those skilled in the art.
  • the fly ash from a bituminous coal can comprise from about 20 to about 60 wt % silica and from about 5 to about 35 wt % alumina, based on the total weight of the fly ash.
  • the fly ash from a sub-bituminous coal can comprise from about 40 to about 60 wt % silica and from about 20 to about 30 wt % alumina, based on the total weight of the fly ash.
  • the fly ash from a lignite coal can comprise from about 15 to about 45 wt % silica and from about 20 to about 25 wt % alumina, based on the total weight of the fly ash. See, for example, Meyers, et al. “Fly Ash. A Highway Construction Material,” Federal Highway Administration, Report No. FHWA-IP-76-16, Washington, DC, 1976.
  • the bottom ash from a bituminous coal can comprise from about 40 to about 60 wt % silica and from about 20 to about 30 wt % alumina, based on the total weight of the bottom ash.
  • the bottom ash from a sub-bituminous coal can comprise from about 40 to about 50 wt % silica and from about 15 to about 25 wt % alumina, based on the total weight of the bottom ash.
  • the bottom ash from a lignite coal can comprise from about 30 to about 80 wt % silica and from about 10 to about 20 wt % alumina, based on the total weight of the bottom ash. See, for example, Moulton, Lyle K. “Bottom Ash and Boiler Slag,” Proceedings of the Third International Ash Utilization Symposium, U.S. Bureau of Mines, Information Circular No. 8640, Washington, DC, 1973.
  • a carbonaceous material such as methane can be biomass or non-biomass under the above definitions depending on its source of origin.
  • unit refers to a unit operation. When more than one “unit” is described as being present, those units are operated in a parallel fashion.
  • an acid gas removal unit may comprise a hydrogen sulfide removal unit followed in series by a carbon dioxide removal unit.
  • a contaminant removal unit may comprise a first removal unit for a first contaminant followed in series by a second removal unit for a second contaminant.
  • a compressor may comprise a first compressor to compress a stream to a first pressure, followed in series by a second compressor to further compress the stream to a second (higher) pressure.
  • an acid gas-depleted product gas steam ( 38 ), an oxygen-rich stream ( 14 ) and a hydrocarbon-containing fluid ( 82 ) are produced in an integrated EOR, air separation and synthesis gas production process as illustrated in FIGS. 1-6 .
  • the synthesis gas production system (facility) and air separation units are both proximate to the EOR location (field), such as on the same or an adjoining land parcel.
  • the EOR portion of the process involves injecting a pressurized nitrogen stream ( 19 ), and optionally a pressurized carbon dioxide stream ( 89 ), via an injection well ( 500 ) (one or more) into an underground hydrocarbon reservoir ( 20 ) utilizing techniques well known to those of ordinary skill in the relevant art.
  • the pressurized nitrogen stream ( 19 ) assists in the repressurization of the underground reservoir.
  • the pressurized nitrogen stream ( 19 ) will be injected into the underground reservoir at a pressure of at least about 1200 psig (about 8375 kPa), or at least about 1500 psig (about 10444 kPa), or at least about 2000 psig (about 13891 kPa).
  • the pressurized carbon dioxide stream ( 89 ) which will typically be in a supercritical fluid state, serves to enhance production of a hydrocarbon fluid ( 82 ) from a production well ( 600 ) through a combination of mechanisms typically involving a repressurization of the underground reservoir and a viscosity reduction of the trapped hydrocarbon (improving flow properties).
  • the pressurized carbon dioxide stream ( 89 ) will also be injected into the underground reservoir at a pressure of at least about 1200 psig (about 8375 kPa), or at least about 1500 psig (about 10444 kPa), or at least about 2000 psig (about 13891 kPa).
  • EOR using carbon dioxide and nitrogen can utilize co-injection (both at the same time in the same location), concurrent injection (both at the same time at different locations), consecutive injection (one followed by the other in the same or separate locations) or some combination of these various techniques.
  • EOR can also involve co-injection, concurrent injection or consecutive injection of pressurized water, steam and other fluids.
  • the actual carbon dioxide/nitrogen-based EOR process utilized is not critical to the present invention in its broadest sense.
  • the resulting hydrocarbon-containing fluid ( 82 ) is produced and recovered through a hydrocarbon production well ( 600 ) (one or more).
  • the produced hydrocarbon-containing fluid ( 82 ) will typically contain liquid and gas hydrocarbon components, as well as other liquid and gaseous components depending on the hydrocarbon reservoir and EOR conditions.
  • the liquid hydrocarbon component can generally be considered as a crude oil, while the gaseous hydrocarbon component will typically comprise hydrocarbons that are gases at ambient conditions, such as methane, ethane, propane, propylene and butane (typical components of natural gas). Other typical liquid components include water or brine.
  • the hydrocarbon-containing fluid ( 82 ) may also comprise carbon dioxide, and may comprise other gaseous components such as hydrogen sulfide (from a sour well) and nitrogen.
  • the hydrocarbon-containing fluid ( 82 ) may also include solid carbon and mineral matter.
  • the produced hydrocarbon-containing fluid ( 82 ) is passed to a separation device ( 300 ) to separate the gaseous components from the liquid/solid components to generate a gaseous hydrocarbon product stream ( 84 ), a liquid hydrocarbon product stream ( 85 ) and, optionally, a stream ( 86 ) containing solids components from the hydrocarbon-containing fluid ( 82 ).
  • the solids may also optionally be carried with the liquid hydrocarbon product stream ( 85 ) for later separation, or separated out prior to separation device ( 300 ), by well-known techniques such as settling, centrifugation and/or filtration.
  • larger/denser solids are separated in conjunction with separation device ( 300 ), and finer solids that may become entrained in liquid hydrocarbon product stream ( 85 ) are separated subsequently through well-known techniques such as filtration.
  • Suitable separation devices for use as separation device ( 300 ) are well known to those of ordinary skill in the art and include, for example, single and multistage horizontal separators and cyclones.
  • the actual separation device utilized is not critical to the present invention in its broadest sense.
  • the liquid hydrocarbon product stream ( 85 ) can subsequently be processed to separate out the water and other contaminants, then further processed (e.g., refined) to a variety of end products or for a variety of end uses, as is well-known to those or ordinary skill in the relevant art.
  • a stream ( 86 ) containing solids components that will typically be removed from separation device ( 300 ) as a concentrated slurry or with some portion of the liquid content of the hydrocarbon-containing fluid ( 82 ). Oil that may be withdrawn with the solids in stream ( 86 ) can be recovered from the solids via washing or other techniques well-known to those of ordinary skill in the relevant art.
  • the resulting gaseous hydrocarbon product stream ( 84 ) exiting separation device ( 300 ) typically comprises at least a substantial portion (or substantially all) of the gaseous components from the hydrocarbon-containing fluid ( 82 ), including at least a substantial portion (or substantially all) of the gaseous hydrocarbons (and carbon dioxide to the extent present) from the hydrocarbon-containing fluid ( 82 ).
  • the gaseous hydrocarbon product stream ( 84 ) may also comprise minor amounts of water vapor (which should be substantially removed prior to further treatment, for example, in acid gas removal unit ( 200 ) as discussed below) as well as other contaminants if present, such as hydrogen sulfide.
  • the resulting gaseous hydrocarbon stream ( 84 ) will contain a substantial portion (or substantially all) of the acid gases, and in one embodiment will be subject to acid gas removal to remove and recover the acid gases.
  • gaseous hydrocarbon product stream ( 84 ) exiting separation device ( 300 ) may be combined with a synthesis gas stream ( 50 ), or otherwise co-processed with synthesis gas stream ( 50 ) in an acid gas removal unit ( 200 ) as discussed below.
  • gaseous hydrocarbon product stream ( 84 ) Prior to combination with synthesis gas stream ( 50 ) or co-processing in acid gas removal unit ( 200 ), gaseous hydrocarbon product stream ( 84 ) may optionally be compressed or heated (not depicted) to temperature and pressure conditions suitable for combination or other downstream processing as further described below.
  • All or a portion of the gaseous hydrocarbon product stream ( 84 ) may, in addition or alternatively, be combusted in a power block ( 760 a ), for example, for electrical power ( 79 a ) and/or steam generation.
  • An oxygen-rich gas stream ( 14 c ) that comprises at least a portion of oxygen-rich stream ( 14 ) from air separation unit ( 800 ) may be utilized in power block ( 760 a ) as discussed below.
  • Synthesis gas stream ( 50 ) contains (i) carbon dioxide, and (ii) at least one of hydrogen and methane.
  • the actual composition of synthesis gas stream ( 50 ) will depend on the synthesis gas process and carbonaceous feedstock utilized to generate the stream, including any gas processing that may occur before acid gas removal unit ( 200 ) or optional combination with gaseous hydrocarbon stream ( 84 ).
  • synthesis gas stream ( 50 ) comprises carbon dioxide and hydrogen. In another embodiment, synthesis gas stream ( 50 ) comprises carbon dioxide and methane. In another embodiment, synthesis gas stream ( 50 ) comprises carbon dioxide, methane and hydrogen.
  • the synthesis gas stream ( 50 ) may also contain other gaseous components such as, for example, carbon monoxide, hydrogen sulfide, steam and other gaseous hydrocarbons again depending on the synthesis gas production process and carbonaceous feedstock.
  • Synthesis gas stream ( 50 ) is generated in a synthesis gas production system ( 100 ). Any synthesis gas generating process can be utilized in the context of the present invention, so long as the synthesis gas generating process (including gas processing prior to optional combination with gaseous hydrocarbon stream ( 84 ) or prior to acid gas removal unit ( 200 )) results in a synthesis gas stream as required in the context of the present invention. Suitable synthesis gas processes are generally known to those of ordinary skill in the relevant art, and many applicable technologies are commercially available.
  • An oxygen-rich gas stream ( 14 a ) that comprises at least a portion of oxygen-rich stream ( 14 ) from air separation unit ( 800 ) may optionally be utilized in the synthesis gas production system ( 100 ) as described below.
  • Non-limiting examples of different types of suitable synthesis gas generation processes are discussed below. These may be used individually or in combination. All synthesis gas generation process will involve a reactor, which is generically depicted as ( 110 ) in FIGS. 3 and 5 , where a carbonaceous feedstock ( 10 ) will be processed to produce synthesis gases, which may be further treated prior to optional combination with gaseous hydrocarbon stream ( 84 ) and/or prior to acid gas removal unit ( 200 ).
  • a reactor which is generically depicted as ( 110 ) in FIGS. 3 and 5 , where a carbonaceous feedstock ( 10 ) will be processed to produce synthesis gases, which may be further treated prior to optional combination with gaseous hydrocarbon stream ( 84 ) and/or prior to acid gas removal unit ( 200 ).
  • FIGS. 3 and 5 in the context of the various synthesis gas generating processes described below.
  • the synthesis gas generating process is based on a gas-fed methane partial oxidation/reforming process, such as non-catalytic gaseous partial oxidation, catalytic authothermal reforming or catalytic stream-methane reforming process.
  • a gas-fed methane partial oxidation/reforming process such as non-catalytic gaseous partial oxidation, catalytic authothermal reforming or catalytic stream-methane reforming process.
  • these gas-based processes convert a gaseous methane-containing stream as a carbonaceous feedstock ( 10 ), in a reactor ( 110 ) into a syngas (hydrogen plus carbon monoxide) as synthesis gas stream ( 50 ) which, depending on the specific process, will have differing ratios of hydrogen:carbon monoxide, will generally contain minor amounts of carbon dioxide, and may contain minor amounts of other gaseous components such as steam.
  • the methane-containing stream useful in these processes comprises methane in a predominant amount, and may comprise other gaseous hydrocarbon and components.
  • Examples of commonly used methane-containing streams include natural gas and synthetic natural gas.
  • an oxygen-rich gas stream ( 14 a ) is fed into the reactor ( 110 ) along with carbonaceous feedstock ( 10 ).
  • steam ( 16 ) may also be fed into the reactor ( 110 ).
  • steam ( 16 ) is fed into the reactor along with the carbonaceous feedstock ( 10 ).
  • minor amounts of other gases such as carbon dioxide, hydrogen and/or nitrogen may also be fed in the reactor ( 110 ).
  • Reaction and other operating conditions, and equipment and configurations, of the various reactors and technologies are in a general sense known to those of ordinary skill in the relevant art, and are not critical to the present invention in its broadest sense.
  • the synthesis gas generating process is based on a non-catalytic thermal gasification process, such as a partial oxidation gasification process (like an oxygen-blown gasifier), where a non-gaseous (liquid, semi-solid and/or solid) hydrocarbon is utilized as the carbonaceous feedstock ( 10 ).
  • a non-catalytic thermal gasification process such as a partial oxidation gasification process (like an oxygen-blown gasifier)
  • a non-gaseous (liquid, semi-solid and/or solid) hydrocarbon is utilized as the carbonaceous feedstock ( 10 ).
  • a non-catalytic thermal gasification process such as a partial oxidation gasification process (like an oxygen-blown gasifier)
  • a non-gaseous (liquid, semi-solid and/or solid) hydrocarbon is utilized as the carbonaceous feedstock ( 10 ).
  • Oxygen-blown solids/liquids gasifiers potentially suitable for use in conjunction with the present invention are, in a general sense, known to those of ordinary skill in the relevant art and include, for example, those based on technologies available from Royal Dutch Shell plc, ConocoPhillips Company, Siemens AG, Lurgi AG (Sasol), General Electric Company and others.
  • Other potentially suitable syngas generators are disclosed, for example, in US2009/0018222A1, US2007/0205092A1 and U.S. Pat. No. 6,863,878.
  • an oxygen-rich gas stream ( 14 a ) is fed into the reactor ( 110 ) along with the carbonaceous feedstock ( 10 ).
  • steam ( 16 ) may also be fed into the reactor ( 110 ), as well as other gases such as carbon dioxide, hydrogen, methane and/or nitrogen.
  • steam ( 16 ) may be utilized as an oxidant at elevated temperatures in place of all or a part of the oxygen-rich gas stream ( 14 a ).
  • the gasification in the reactor ( 110 ) will typically occur in a fluidized bed of the carbonaceous feedstock ( 10 ) that is fluidized by the flow of the oxygen-rich gas stream ( 14 a ), steam ( 16 ) and/or other fluidizing gases (like carbon dioxide and/or nitrogen) that may be fed to reactor ( 110 ).
  • thermal gasification is a non-catalytic process, so no gasification catalyst needs to be added to the carbonaceous feedstock ( 10 ) or into the reactor ( 110 ); however, a catalyst that promotes syngas formation may be utilized.
  • thermal gasification processes are typically operated under high temperature and pressure conditions, and may run under slagging or non-slagging operating conditions depending on the process and carbonaceous feedstock.
  • Reaction and other operating conditions, and equipment and configurations, of the various reactors and technologies are in a general sense known to those of ordinary skill in the relevant art, and are not critical to the present invention in its broadest sense.
  • the synthesis gas generating process is a catalytic gasification/hydromethanation process, in which gasification of a non-gaseous carbonaceous feedstock ( 10 ) takes place in a reactor ( 110 ) in the presence of steam and a catalyst to result in a methane-enriched gas stream as the synthesis gas stream ( 50 ), which typically comprises methane, hydrogen, carbon monoxide, carbon dioxide and steam.
  • the overall reaction is essentially thermally balanced; however, due to process heat losses and other energy requirements (such as required for evaporation of moisture entering the reactor with the feedstock), some heat must be added to maintain the thermal balance.
  • the reactions are also essentially syngas (hydrogen and carbon monoxide) balanced (syngas is produced and consumed); therefore, as carbon monoxide and hydrogen are withdrawn with the product gases, carbon monoxide and hydrogen need to be added to the reaction as required to avoid a deficiency.
  • a superheated gas stream of steam ( 16 ) and syngas ( 12 ) (carbon monoxide and hydrogen) is often fed to the reactor ( 110 ) (separately or in combination).
  • the carbon monoxide and hydrogen streams are recycle streams separated from the product gas, and/or are provided by reforming a portion of the product methane.
  • all or a portion of the syngas can be generated in situ by feeding an oxygen-rich stream ( 14 a ) directly into reactor ( 110 ).
  • the carbonaceous feedstocks useful in these processes include, for example, a wide variety of biomass and non-biomass materials.
  • Catalysts utilized in these processes include, for example, alkali metals, alkaline earth metals and transition metals, and compounds, mixtures and complexes thereof.
  • the temperature and pressure operating conditions in a catalytic gasification/hydromethanation process are typically milder (lower temperature and pressure) than a non-catalytic gasification process, which can sometimes have advantages in terms of cost and efficiency.
  • All of the above described synthesis gas generation processes typically will generate a synthesis gas stream ( 50 ) of a temperature higher than suitable for feeding downstream gas processes (including acid gas removal unit ( 200 )) and/or combining with gaseous hydrocarbon stream ( 84 ), so upon exit from reactor ( 110 ) the synthesis gas stream ( 50 ) is typically passed through a heat exchanger unit ( 140 ) to remove heat energy and generate a cooled synthesis gas stream ( 52 ).
  • the heat energy recovered in heat exchanger unit ( 140 ) can be used, for example, to generate steam and/or superheat various process streams, as will be recognized by a person of ordinary skill in the art. Any steam generated can be used, for example, for internal process requirements and/or to generate electrical power.
  • the resulting cooled synthesis gas stream ( 52 ) will typically exit heat exchanger unit ( 140 ) at a temperature ranging from about 450° F. (about 232° C.) to about 1100° F. (about 593° C.), more typically from about 550° F. (about 288° C.) to about 950° F. (about 510° C.), and at a pressure suitable for subsequent acid gas removal processing (taking into account any intermediate processing). Typically, this pressure will be from about 50 psig (about 446 kPa) to about 800 psig (about 5617 kPa), more typically from about 400 psig (about 2860 kPa) to about 600 psig (about 4238 kPa).
  • Synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) may be processed separately, or may optionally be combined at various points and individually or co-processed in various treatment processes, or optionally combined and co-treated at or in acid gas removal unit ( 200 ). Specific embodiments where synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) are combined and/or co-processed are depicted in FIGS. 2-5 . The combination point and processing variations will be primarily dependent on the composition, temperature and pressure of the two streams, and any desired end products.
  • Processing options prior to acid gas removal typically include, for example, one or more of sour shift ( 700 ) (water gas shift), contaminant removal ( 710 ) and dehydration ( 720 ). While these intermediate processing steps can occur in any order, dehydration ( 720 ) will usually occur just prior to acid gas removal (last in the series), as a substantial portion of any water in synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) desirably should be removed prior to treatment in acid gas removal unit ( 200 ).
  • synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) are combined prior to acid gas removal unit ( 200 ) to generate a combined gas stream ( 60 ).
  • synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) are combined prior to dehydration ( 720 ).
  • synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) are separately dehydrated ( 720 and 720 a ) and combined before or during acid gas removal.
  • Combination of the two streams may also require compression or expansion of one or both of the streams.
  • the gaseous hydrocarbon stream ( 84 ) will require at least some compression prior to combination with synthesis gas stream ( 50 ).
  • synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) are co-processed within acid gas removal unit ( 200 ), as discussed in more detail below.
  • all or a part of such stream can be supplied to a sour shift reactor ( 700 ).
  • sour shift reactor ( 700 ) the gases undergo a sour shift reaction (also known as a water-gas shift reaction, see formula (II) above) in the presence of an aqueous medium (such as steam) to convert at least a predominant portion (or a substantial portion, or substantially all) of the CO to CO 2 , which also increases the fraction of H 2 in order to produce a hydrogen-enriched stream ( 54 ).
  • a sour shift reaction also known as a water-gas shift reaction, see formula (II) above
  • an aqueous medium such as steam
  • a sour shift process is described in detail, for example, in U.S. Pat. No. 7,074,373.
  • the process involves adding water, or using water contained in the gas, and reacting the resulting water-gas mixture adiabatically over a steam reforming catalyst.
  • Typical steam reforming catalysts include one or more Group VIII metals on a heat-resistant support.
  • Suitable reaction conditions and suitable reactors can vary depending on the amount of CO that must be depleted from the gas stream.
  • the sour gas shift can be performed in a single stage within a temperature range from about 100° C., or from about 150° C., or from about 200° C., to about 250° C., or to about 300° C., or to about 350° C.
  • the shift reaction can be catalyzed by any suitable catalyst known to those of skill in the art.
  • Such catalysts include, but are not limited to, Fe 2 O 3 -based catalysts, such as Fe 2 O 3 —Cr 2 O 3 catalysts, and other transition metal-based and transition metal oxide-based catalysts.
  • the sour gas shift can be performed in multiple stages. In one particular embodiment, the sour gas shift is performed in two stages. This two-stage process uses a high-temperature sequence followed by a low-temperature sequence. The gas temperature for the high-temperature shift reaction ranges from about 350° C. to about 1050° C. Typical high-temperature catalysts include, but are not limited to, iron oxide optionally combined with lesser amounts of chromium oxide. The gas temperature for the low-temperature shift ranges from about 150° C.
  • Low-temperature shift catalysts include, but are not limited to, copper oxides that may be supported on zinc oxide or alumina. Suitable methods for the sour shift process are described in previously incorporated US2009/0246120A1.
  • the sour shift reaction is exothermic, so it is often carried out with a heat exchanger (not depicted) to permit the efficient use of heat energy.
  • Shift reactors employing these features are well known to those of skill in the art. Recovered heat energy can be used, for example, to generate steam, superheat various process streams and/or preheat boiler feed water for use in other steam generating operations.
  • An example of a suitable shift reactor is illustrated in previously incorporated U.S. Pat. No. 7,074,373, although other designs known to those of skill in the art are also effective.
  • sour shift is present and it is desired to retain some carbon monoxide content
  • a portion of the stream can be split off to bypass sour shift reactor ( 700 ) and be combined with hydrogen-enriched stream ( 54 ) at some point prior to acid gas removal unit ( 200 ). This is particularly useful when it is desired to recover a separate methane by-product, as the retained carbon monoxide can be subsequently methanated as discussed below.
  • the contamination levels of synthesis gas stream ( 50 ) will depend on the nature of the carbonaceous feedstock and the synthesis gas generation conditions. For example, petcoke and certain coals can have high sulfur contents, leading to higher sulfur oxide (SOx), H 2 S and/or COS contamination. Certain coals can contain significant levels of mercury which can be volatilized during the synthesis gas generation. Other feedstocks can be high in nitrogen content, leading to ammonia, nitrogen oxides (NOx) and/or cyanides.
  • acid gas removal unit ( 200 ) Some of these contaminants are typically removed in acid gas removal unit ( 200 ), such as H 2 S and COS. Others such as ammonia and mercury, typically require removal prior to acid gas removal unit ( 200 ).
  • contaminant removal of a particular contaminant should remove at least a substantial portion (or substantially all) of that contaminant from the so-treated cleaned gas stream ( 56 ), typically to levels at or lower than the specification limits for the desired acid gas removal unit ( 200 ), or the desired end product.
  • gaseous hydrocarbon stream ( 84 ) and cooled synthesis gas stream ( 54 ) can be combined subsequent to contaminant removal unit ( 700 ), this is only shown for exemplification, as the two streams may be combined prior to contaminant removal unit ( 710 ), or treated separately for contaminant removal as needed and subsequently combined.
  • Contaminant removal process are in a general sense well know to those of ordinary skill in the relevant art, as exemplified in many of the previously-incorporated references.
  • the synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ), individually or in combination, should be treated to reduce residual water content via a dehydration unit ( 720 ) (and ( 720 a ) if present) to produce a dehydrated stream ( 58 ) (and ( 58 a ) if dehydration unit ( 720 a ) is present).
  • Suitable dehydration units include a knock-out drum or similar water separation device, and/or water absorption processes such as glycol treatment.
  • At least the synthesis gas stream ( 50 ) (or a derivative stream resulting from intermediate treatment) is processed in an acid gas removal unit ( 200 ) to remove carbon dioxide and other acid gases (such as hydrogen sulfide if present), and generate a carbon dioxide-rich stream ( 87 ) and an acid gas-depleted synthesis gas stream as the acid gas-depleted product gas stream ( 38 ).
  • the synthesis gas stream ( 50 ) and the gaseous hydrocarbon product stream ( 84 ) (or derivative streams resulting from intermediate treatment) are co-processed in an acid gas removal unit ( 200 ) to remove carbon dioxide and other acid gases (such as hydrogen sulfide if present), and generate the acid gas-depleted product gas steam ( 38 ), which can be a single stream generated from a combination of, or individual stream derived from, the synthesis gas stream ( 50 ) and the gaseous hydrocarbon product stream ( 84 ) (or derivative streams resulting from intermediate treatment). See, for example, previously incorporated U.S. patent application Ser. Nos. 12/906,552 and 12/906,547.
  • synthesis gas stream ( 50 ) and the gaseous hydrocarbon product stream ( 84 ) are co-processed to generate a carbon dioxide-rich stream ( 87 ) and a combined acid-gas depleted gaseous hydrocarbon product stream ( 80 ) (as acid gas-depleted product gas steam ( 38 )).
  • synthesis gas stream ( 50 ) and the gaseous hydrocarbon product stream ( 84 ) are co-processed to generate a carbon dioxide-rich stream ( 87 ), and an individual acid gas-depleted gaseous hydrocarbon product stream ( 31 ) and an individual acid gas-depleted synthesis gas stream ( 30 ) (acid gas-depleted product gas steam ( 38 )).
  • Acid gas removal processes typically involve contacting a gas stream with a solvent such as monoethanolamine, diethanolamine, methyldiethanolamine, diisopropylamine, diglycolamine, a solution of sodium salts of amino acids, methanol, hot potassium carbonate or the like to generate CO 2 and/or H 2 S laden absorbers.
  • a solvent such as monoethanolamine, diethanolamine, methyldiethanolamine, diisopropylamine, diglycolamine, a solution of sodium salts of amino acids, methanol, hot potassium carbonate or the like to generate CO 2 and/or H 2 S laden absorbers.
  • a solvent such as monoethanolamine, diethanolamine, methyldiethanolamine, diisopropylamine, diglycolamine, a solution of sodium salts of amino acids, methanol, hot potassium carbonate or the like.
  • One method can involve the use of Selexol® (UOP LLC, Des Plaines, Ill. USA) or Rectisol® (Lurgi AG, Frankfurt
  • At least a substantial portion (e.g., substantially all) of the CO 2 and/or H 2 S (and other remaining trace contaminants) should be removed via the acid gas removal processes.
  • “Substantial” removal in the context of acid gas removal means removal of a high enough percentage of the component such that a desired end product can be generated. The actual amounts of removal may thus vary from component to component. Desirably, only trace amounts (at most) of H 2 S should be present in the acid gas-depleted product stream, although higher amounts of CO 2 may be tolerable depending on the desired end product.
  • At least about 85%, or at least about 90%, or at least about 92%, of the CO 2 , and at least about 95%, or at least about 98%, or at least about 99.5%, of the H 2 S, should be removed, based on the amount of those components contained in the streams fed to the acid gas removal unit ( 200 ).
  • Any recovered H 2 S ( 88 ) from the acid gas removal can be converted to elemental sulfur by any method known to those skilled in the art, including the Claus process. Sulfur can be recovered as a molten liquid.
  • the carbon dioxide-rich stream ( 87 ) resulting from acid gas removal is a sour CO 2 stream, as disclosed in previously incorporated U.S. patent application Ser. No. ______ (attorney docket no. FN-0058 US NP1, entitled INTEGRATED ENHANCED OIL RECOVERY PROCESS ), filed concurrently herewith.
  • the synthesis gas stream ( 50 ) and the gaseous hydrocarbon stream ( 84 ) may be combined at various stages prior to the acid gas removal unit ( 200 ) to create a combined gas stream ( 60 ) which is fed into acid gas removal unit ( 200 ), or the two streams may be combined at some point in the acid gas removal unit ( 200 ) and co-processed.
  • the resulting acid gas-depleted gaseous hydrocarbon product stream ( 80 ) will generally comprise one or both of CH 4 and H 2 , other gaseous hydrocarbons from the gaseous hydrocarbon stream ( 84 ), and optionally CO (for the downstream methanation), and typically no more than contaminant amounts of CO 2 , H 2 O, H 2 S and other contaminants.
  • a carbon dioxide-rich stream ( 87 ) is also generated containing a substantial portion of carbon dioxide from both synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ). If one or both of synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) contain other acid gas contaminants, such as hydrogen sulfide, then an additional stream may be generated, such as hydrogen sulfide stream ( 88 ).
  • carbon dioxide-rich stream ( 87 ) can remain in carbon dioxide-rich stream ( 87 ), particularly in the case where carbon dioxide-rich stream ( 87 ) is used for EOR, in which case carbon dioxide-rich stream ( 87 ) will be a sour CO 2 stream.
  • the synthesis gas stream ( 50 ) and the gaseous hydrocarbon stream ( 84 ) are co-processed in an acid gas removal unit to remove carbon dioxide and other acid gases (such as hydrogen sulfide if present), and generate a carbon dioxide-rich stream ( 87 ), an acid gas-depleted gaseous hydrocarbon product stream ( 31 ) and an acid gas-depleted synthesis gas stream ( 30 ).
  • the synthesis gas stream ( 50 ) and the gaseous hydrocarbon stream ( 84 ) are first individually treated in a second acid gas absorber unit ( 210 ) and a first acid gas absorber unit ( 230 ), respectively, to generate a separate acid gas-depleted synthesis gas stream ( 30 ) and second acid gas-rich absorber stream ( 35 ), and a separate acid gas-depleted gaseous hydrocarbon product stream ( 31 ) and first acid gas-rich absorber stream ( 36 ).
  • the resulting acid gas-depleted gaseous hydrocarbon product stream ( 31 ) will generally comprise CH 4 and other gaseous hydrocarbons from the gaseous hydrocarbon stream ( 84 ), and typically no more than contaminant amounts of CO 2 , H 2 O, H 2 S and other contaminants.
  • the resulting acid gas-depleted synthesis gas stream ( 30 ) will generally comprise one or both of CH 4 and H 2 , and optionally CO (for the downstream methanation), and typically no more than contaminant amounts of CO 2 , H 2 O, H 2 S and other contaminants.
  • the resulting acid gas-depleted gaseous hydrocarbon product stream ( 31 ) and an acid gas-depleted synthesis gas stream ( 30 ) may be co-processed or separately processed as described further below.
  • first acid gas-rich absorber stream ( 36 ) and second acid gas-rich absorber stream ( 35 ) are co-processed in an absorber regeneration unit ( 250 ) to ultimately result in an acid gas stream containing the combined acid gases (and other contaminants) removed from both synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ).
  • First acid gas-rich absorber stream ( 36 ) and second acid gas-rich absorber stream ( 35 ) may be combined prior to or within absorber regeneration unit ( 250 ) for co-processing.
  • An acid gas-lean absorber stream ( 70 ) is generated, which can be recycled back to one or both of first acid gas absorber unit ( 230 ) and second acid gas absorber unit ( 210 ) along with make-up absorber as required.
  • a carbon dioxide-rich stream ( 87 ) is also generated containing a substantial portion of carbon dioxide from both synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ). If one or both of synthesis gas stream ( 50 ) and gaseous hydrocarbon stream ( 84 ) contain other acid gas contaminants, such as hydrogen sulfide, then an additional stream may be generated, such as hydrogen sulfide stream ( 88 ).
  • carbon dioxide-rich stream ( 87 ) can remain in carbon dioxide-rich stream ( 87 ), particularly in the case where carbon dioxide-rich stream ( 87 ) is used for EOR, in which case carbon dioxide-rich stream ( 87 ) will be a sour CO 2 stream.
  • carbon dioxide-rich stream ( 87 ) is used for EOR.
  • the recovered carbon dioxide-rich recycle stream ( 87 ) is in whole or in part compressed via compressor ( 400 ) to generate pressurized carbon dioxide stream ( 89 ) for the EOR portion of the process.
  • a CO 2 product stream ( 90 ) can also optionally be split off of pressurized carbon dioxide stream ( 89 ).
  • Suitable compressors for compressing carbon dioxide-rich recycle stream ( 87 ) to appropriate pressures and conditions for EOR are in a general sense well-known to those of ordinary skill in the relevant art.
  • All or a portion the of the acid gas-depleted product gas steam ( 38 ) ( FIG. 1 ), acid gas-depleted gaseous hydrocarbon product stream ( 80 ) ( FIGS. 2 and 3 ), or the acid gas-depleted synthesis gas stream ( 30 ) and acid gas-depleted gaseous hydrocarbon product stream ( 31 ) ( FIGS. 4 and 5 ) (individually, or combined in whole or in part), may be processed to end products and/or for end uses as are well known to those of ordinary skill in the relevant art.
  • Non-limiting options are discussed below in reference to FIGS. 3 and 5 .
  • FIGS. 3 and 5 only depict some of the options as applied to acid gas-depleted gaseous hydrocarbon product stream ( 80 ) and acid gas-depleted synthesis gas stream ( 30 ), these options (and others) may be applied to acid gas-depleted gaseous hydrocarbon product stream ( 31 ) (or a combined stream) where appropriate.
  • Hydrogen may be separated from all or a portion of the acid gas-depleted gaseous hydrocarbon product stream ( 80 ) or acid gas-depleted synthesis gas stream ( 30 ) according to methods known to those skilled in the art, such as cryogenic distillation, the use of molecular sieves, gas separation (e.g., ceramic or polymeric) membranes, and/or pressure swing adsorption (PSA) techniques.
  • cryogenic distillation the use of molecular sieves, gas separation (e.g., ceramic or polymeric) membranes, and/or pressure swing adsorption (PSA) techniques.
  • gas separation e.g., ceramic or polymeric membranes
  • PSA pressure swing adsorption
  • a PSA device is utilized for hydrogen separation.
  • PSA technology for separation of hydrogen from gas mixtures containing methane (and optionally carbon monoxide) is in general well-known to those of ordinary skill in the relevant art as disclosed, for example, in U.S. Pat. No. 6,379,645 (and other citations referenced therein).
  • PSA devices are generally commercially available, for example, based on technologies available from Air Products and Chemicals Inc. (Allentown, Pa.), UOP LLC (Des Plaines, Ill.) and others.
  • a hydrogen membrane separator can be used followed by a PSA device.
  • Such separation provides a high-purity hydrogen product stream ( 72 ) and a hydrogen-depleted gas stream ( 74 ).
  • the recovered hydrogen product stream ( 72 ) preferably has a purity of at least about 99 mole %, or at least 99.5 mole %, or at least about 99.9 mole %.
  • the recovered hydrogen can be used, for example, as an energy source and/or as a reactant.
  • the hydrogen can be used as an energy source for hydrogen-based fuel cells, or for power and/or steam generation, for example, in power block ( 760 ).
  • the hydrogen can also be used as a reactant in various hydrogenation processes, such as found in the chemical and petroleum refining industries.
  • the hydrogen-depleted gas stream ( 74 ) will substantially comprise light hydrocarbons, such as methane, with optional minor amounts of carbon monoxide (depending primarily on the extent of the sour shift reaction and bypass), carbon dioxide (depending primarily on the effectiveness of the acid gas removal process) and hydrogen (depending primarily on the extent and effectiveness of the hydrogen separation technology), and can be further processed/utilized as described below.
  • light hydrocarbons such as methane
  • carbon monoxide depending primarily on the extent of the sour shift reaction and bypass
  • carbon dioxide depending primarily on the effectiveness of the acid gas removal process
  • hydrogen depending primarily on the extent and effectiveness of the hydrogen separation technology
  • the acid gas-depleted gaseous hydrocarbon product stream ( 80 ) or the acid gas-depleted synthesis gas stream ( 30 ) (or the hydrogen-depleted sweetened gas stream ( 74 )) contains carbon monoxide and hydrogen, all or part of the stream may be fed to a (trim) methanation unit ( 740 ) to generate additional methane from the carbon monoxide and hydrogen (see formula (III) above), resulting in a methane-enriched gas stream ( 75 ).
  • the methanation reaction can be carried out in any suitable reactor, e.g., a single-stage methanation reactor, a series of single-stage methanation reactors or a multistage reactor.
  • Methanation reactors include, without limitation, fixed bed, moving bed or fluidized bed reactors. See, for instance, U.S. Pat. No. 3,958,957, U.S. Pat. No. 4,252,771, U.S. Pat. No. 3,996,014 and U.S. Pat. No. 4,235,044.
  • Methanation reactors and catalysts are generally commercially available.
  • the catalyst used in the methanation, and methanation conditions are generally known to those of ordinary skill in the relevant art, and will depend, for example, on the temperature, pressure, flow rate and composition of the incoming gas stream.
  • the methane-enriched gas stream ( 75 ) may be, for example, further provided to a heat exchanger unit ( 750 ). While the heat exchanger unit ( 750 ) is depicted as a separate unit, it can exist as such and/or be integrated into methanation unit ( 740 ), thus being capable of cooling the methanation unit ( 740 ) and removing at least a portion of the heat energy from the methane-enriched stream ( 75 ) to reduce the temperature and generate a cooled methane-enriched stream ( 76 ).
  • the recovered heat energy can be utilized, for example, to generate a process steam stream from a water and/or steam source.
  • methane-enriched stream ( 75 ) can be recovered as a methane product stream ( 77 ) or, it can be further processed, when necessary, to separate and recover CH 4 by any suitable gas separation method known to those skilled in the art including, but not limited to, cryogenic distillation and the use of molecular sieves or gas separation (e.g., ceramic) membranes.
  • gas separation method known to those skilled in the art including, but not limited to, cryogenic distillation and the use of molecular sieves or gas separation (e.g., ceramic) membranes.
  • a “pipeline-quality natural gas” typically refers to a natural gas that is (1) within ⁇ 5% of the heating value of pure methane (whose heating value is 1010 btu/ft 3 under standard atmospheric conditions), (2) substantially free of water (typically a dew point of about ⁇ 40° C. or less), and (3) substantially free of toxic or corrosive contaminants.
  • All or a portion of the aforementioned streams can, for example, be utilized for combustion and/or steam generation, for example, in a power generation block ( 760 ) to produce electrical power ( 79 ) which may be either utilized within the plant or can be sold onto the power grid.
  • All or a portion of these streams can also be used as a recycle hydrocarbon stream ( 78 ), for example, for use as carbonaceous feedstock ( 10 ) in a gaseous partial oxidation/methane reforming process, or for the generation of syngas feed stream ( 12 ) for use in a hydromethanation process (in, for example, a gaseous partial oxidation/methane reforming process). Both of these uses can, for example, ultimately result in an optimized production of hydrogen product stream ( 72 ), and carbon dioxide-rich stream ( 87 ).
  • the present process can be integrated with a power generation block ( 760 , 760 a ) for the production of electrical power ( 79 , 79 a ) as a product of the integrated process.
  • the power generation block ( 760 , 760 a ) can be of a configuration similar to that generally utilized in integrated gasification combined cycle (IGCC) applications.
  • the power generation block ( 760 , 760 a ) can comprise an air separation unit ( 800 a) for use in generating oxygen-rich stream ( 14 ) and nitrogen-rich stream ( 17 ) from an air stream ( 18 ).
  • FIG. 6 An example of a power generation block suitable for use in connection with the present invention is depicted in FIG. 6 . Reference is made to power generation block ( 760 ) in FIG. 6 and below, but the discussion is also applicable to power generation block ( 760 a ) as well.
  • a combustible gas stream ( 81 ) is fed into power generation block ( 760 ).
  • Combustible gas stream ( 81 ) is typically a methane-rich and/or hydrogen-rich gas stream, such as a natural or synthetic natural gas stream.
  • combustible gas stream ( 81 ) can comprise all or a portion of one or more of (i) acid-gas depleted product gas stream ( 38 ); (ii) acid-gas depleted gaseous hydrocarbon product stream ( 31 ), (iii) acid gas-depleted hydrocarbon product stream ( 80 ); and/or (iv) a downstream derivative of (i), (ii) and/or (iii), such as hydrogen product stream ( 72 ), hydrogen-depleted gas stream ( 74 ) and/or methane-enriched gas stream ( 76 ).
  • power generation blocks ( 760 ) and ( 760 a ) can be present.
  • the combustible gas stream ( 81 ) is gaseous hydrocarbon stream ( 84 ).
  • Power generation block ( 760 a ) if present can have the same or different configuration as power generation block ( 760 ).
  • combustible gas stream ( 81 ) can initially be fed to an expander ( 987 ), which can be a first turbine generator.
  • a first electrical power stream ( 79 b ) can be generated as a result of this decompression.
  • the decompressed combustible gas stream can then be fed to a combustor ( 980 ) along with a compressed air stream (not depicted) or a compressed oxygen-rich stream ( 14 b ), where it is combusted to produce combustion gases ( 83 ) at an elevated temperature and pressure.
  • compressed oxygen-rich stream ( 14 b ) comprises at least a portion of oxygen-rich stream ( 14 ).
  • Suitable combustors are generally well-known to those of ordinary skill in the relevant art.
  • the resulting combustion gases ( 83 ) are fed to a second turbine generator ( 982 ) where a second electrical power stream ( 79 c ) is generated.
  • the second turbine generator ( 982 ) can be coupled (mechanically and/or electrically) to a compressor for compressing, for example, an air stream ( 18 ) to generate compressed air stream for use in combustor ( 980 ).
  • compressor is air separation unit ( 800 a ) into which air stream ( 18 ) is fed, and oxygen-rich stream ( 14 ) and nitrogen-rich stream ( 17 ) are generated.
  • air separation unit ( 800 ) is operated utilizing electrical power ( 79 ) generated in power generation block ( 760 ).
  • stack gas stream ( 96 ) will comprise substantially CO 2 and can optionally be processed via acid gas removal unit ( 200 ) to capture the carbon dioxide, or directly provided to a compressor (such as compressor ( 400 )) for EOR use.
  • a steam stream ( 91 ) generated in heat recovery steam generator ( 985 ) can be passed to a third turbine generator ( 985 ) where a third electrical power stream ( 79 d ) is generated.
  • a steam/water stream ( 98 ) from third turbine generator ( 985 ) is then passed back to heat recovery steam generator ( 984 ) for reheating and reuse.
  • stack gas stream ( 96 ) will comprise substantially steam which can be recovered and utilized in the process, for example, directly fed to third turbine generator ( 985 ) for the generation of electrical power.
  • Air separation units suitable for use as air separation unit ( 800 ) and ( 800 a ) are in general well-known to those of ordinary skill in the relevant art.
  • Well-know air separation technologies include, for example, cryogenic distillation, ambient temperature adsorption and membrane separations.
  • the nitrogen-rich stream ( 17 ) is in whole or in part compressed via compressor ( 410 ) to generate pressurized nitrogen stream ( 19 ) for the EOR portion of the process.
  • Suitable compressors for compressing nitrogen-rich stream ( 17 ) to appropriate pressures and conditions for EOR are in a general sense well-known to those of ordinary skill in the relevant art.
  • the synthesis gas stream is produced by a catalytic steam methane reforming process utilizing a methane-containing stream as the carbonaceous feedstock.
  • the synthesis gas stream is produced by a non-catalytic (thermal) gaseous partial oxidation process utilizing a methane-containing stream as the carbonaceous feedstock.
  • the synthesis gas stream is produced by a catalytic autothermal reforming process utilizing a methane-containing stream as the carbonaceous feedstock.
  • the methane-containing stream for use in these processes may be a natural gas stream, a synthetic natural gas stream or a combination thereof
  • the methane-containing stream comprises all or a portion of the acid gas-depleted gaseous hydrocarbon product stream (or a derivative of this stream after downstream processing).
  • the resulting synthesis gas stream from these processes will comprise at least hydrogen and one or both of carbon monoxide and carbon dioxide, depending on gas processing prior to acid gas removal.
  • the synthesis gas stream is produced by a non-catalytic thermal gasification process utilizing a non-gaseous carbonaceous material as the carbonaceous feedstock, such as coal, petcoke, biomass and mixtures thereof.
  • a non-gaseous carbonaceous material such as coal, petcoke, biomass and mixtures thereof.
  • the resulting synthesis gas stream from this process will comprise at least hydrogen and one or both of carbon monoxide and carbon dioxide, depending on gas processing prior to acid gas removal.
  • the synthesis gas stream is produced by a catalytic hydromethanation process utilizing a non-gaseous carbonaceous material as the carbonaceous feedstock, such as coal, petcoke, biomass and mixtures thereof.
  • a non-gaseous carbonaceous material such as coal, petcoke, biomass and mixtures thereof.
  • the resulting synthesis gas stream from this process will comprise at least methane, hydrogen and carbon dioxide, and optionally carbon monoxide, depending on gas processing prior to acid gas removal.

Abstract

The present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or reforming, and an air separation process for generating (i) an oxygen stream for use, for example, in the syngas process or a combustion process, and (ii) a nitrogen stream for EOR use.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application Ser. No. 61/287,571 (filed 17 Dec. 2009), the disclosure of which is incorporated by reference herein for all purposes as if fully set forth.
  • This application is related to commonly-owned U.S. patent applications Ser. Nos. 12/906,552 (attorney docket no. FN-0055 US NP1, entitled INTEGRATED ENHANCED OIL RECOVERY PROCESS) and 12/906,547 (attorney docket no. FN-0056 US NP1, entitled INTEGRATED ENHANCED OIL RECOVERY PROCESS), both of which were filed 18 Oct. 2010; and ______ (attorney docket no. FN-0058 US NP1, entitled INTEGRATED ENHANCED OIL RECOVERY PROCESS), filed concurrently herewith.
  • FIELD OF THE INVENTION
  • The present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or reforming, and an air separation process for generating (i) an oxygen stream for use, for example, in the syngas process or a combustion process, and (ii) a nitrogen stream for EOR use.
  • BACKGROUND OF THE INVENTION
  • In view of dwindling supplies of crude oil, enhanced oil recovery (EOR) techniques are receiving renewed attention.
  • Typically, oil is produced using the natural pressure of an oil reservoir to drive the crude into the well bore from where it is brought to the surface with conventional pumps. After some period of production, the natural pressure of the oil reservoir decreases and production dwindles. In the 1940s, producers incorporated secondary recovery by utilizing injected water, steam and/or natural gas to drive the crude to the well bore prior to pumping it to the surface.
  • Once the easily extracted oil already has been recovered, producers may turn to tertiary or enhanced oil recovery (EOR) techniques. One known such EOR technique is high-pressure nitrogen injection, which helps to repressurize the oil reservoir.
  • EOR based on high pressure nitrogen injection can also involve other techniques such as CO2 injection/flood, which may be done concurrently and/or consecutively with the nitrogen injection.
  • CO2 injection also helps to repressurize the oil reservoir. The high-pressure CO2 also acts as a solvent, dissolving the residual oil, thereby reducing its viscosity and improving its flow characteristics, allowing it to be pumped out of an aging reservoir.
  • One difficulty with the use of nitrogen and optionally CO2 to increase oil production is that it requires large quantities of both gases, and the availability of such large quantities is limited.
  • Nitrogen is generally available from air separation processes, but it is not considered economical to utilize air separation processes solely for the generation of nitrogen for EOR.
  • CO2 from natural sources can be utilized, but generally requires the natural source to be in the proximity of the oil reservoir to avoid the construction and use of pipelines, which could make such use uneconomical.
  • Use of CO2 from combustion sources (such as power plants) has also been considered (see, for example, U.S. Pat. No. 7,299,868 and publications cited therein), but the separation of CO2 from the combustion gases is difficult and generally not considered economical.
  • More recently, CO2 from synthesis gas production operations has been considered for use in EOR. See, for example, U.S. Pat. No. 7,481,275. Synthesis gas production operations include, for example, catalytic gasification and hydromethanation processes, non-catalytic gasification processes and methane reforming processes. These processes typically produce one or more of methane, hydrogen and/or syngas (a mixture of hydrogen and carbon monoxide) as a raw gas product, which can be processed and ultimately used for power generation and/or other industrial applications. These processes also produce CO2, which is removed via acid gas removal processes, as is generally known to those of ordinary skill in the relevant art. Historically, this CO2 has simply been vented to the atmosphere but, in view of environmental concerns, capture and sequestration/use of this CO2 is becoming a necessity. EOR is thus a logical outlet for CO2 streams from synthesis gas production operations.
  • At least one such synthesis gas production operation which utilizes a CO2 by-product stream for EOR currently exists at the Great Plains Synfuels Plant (near Beulah, N. Dak. USA). At this facility, coal/lignite is gasified to a synthesis gas stream containing carbon dioxide, which is separated via a solvent-based acid gas removal technique. The resulting CO2 stream (which is greater than 95% pure) is compressed and transported via a 205-mile supercritical CO2 pipeline to oil fields in Canada for use in EOR operations. This operation is described in more detail in Perry and Eliason, “CO2 Recovery and Sequestration at Dakota Gasification Company” (October 2004) (available from www.gasification.org), and on the Dakota Gasification Company website (www.dakotagas.com).
  • A disadvantage in this operation is the pipeline, as supercritical CO2 is considered a hazardous material. The construction, permitting, operation and maintenance of a supercritical CO2 pipeline, particularly one as long as 205 miles, is expensive. A more advantageous way to get the CO2 from the synthesis gas operation to the EOR site would, therefore, be highly desirable.
  • Another disadvantage to the use of CO2 for EOR is that, as more CO2 is pumped into an oil reservoir, more CO2 is also produced along with the other liquids and gases that come out of the well. Traditionally, CO2 that is co-produced with oil is separated and vented to the atmosphere; however, as with synthesis gas production operations, environmental concerns make this CO2 venting undesirable.
  • It would, therefore, be highly desirable to integrate EOR processes with both synthesis gas production processes and air separation processes in a way that minimizes the release of CO2 into the atmosphere (maximizes capture and sequestration of CO2), reduces the need for long nitrogen (and CO2 when utilized) transport pipelines, and improves the overall integration, efficiency and economics of the individual processes. The present invention provides such an integration.
  • SUMMARY OF THE INVENTION
  • In a first aspect, the present invention provides an integrated process to (i) produce an acid gas-depleted product gas stream, (ii) produce an oxygen-rich gas stream, (iii) produce a hydrocarbon-containing fluid from an underground hydrocarbon reservoir via a hydrocarbon production well, and (iv) enhance production of the hydrocarbon-containing fluid from the underground hydrocarbon reservoir, the process comprising the steps of:
  • (1) injecting a pressurized nitrogen stream into the underground hydrocarbon reservoir to enhance production of the hydrocarbon-containing fluid from the underground hydrocarbon reservoir via the hydrocarbon production well;
  • (2) recovering the hydrocarbon-containing fluid produced from the hydrocarbon production well;
  • (3) separating the hydrocarbon-containing fluid into (a) a liquid hydrocarbon product stream and (b) a gaseous hydrocarbon product stream;
  • (4) producing a synthesis gas stream from a carbonaceous feedstock, the synthesis gas stream comprising (a) carbon dioxide, and (b) at least one of hydrogen and methane;
  • (5) treating the synthesis gas stream in an acid gas removal unit to produce the acid gas-depleted product gas stream and a carbon dioxide-rich stream;
  • (6) optionally treating the gaseous hydrocarbon product stream in the acid gas removal unit to produce an acid-gas depleted gaseous hydrocarbon product stream;
  • (7) optionally combusting at least a portion of one or more of the acid gas-depleted synthesis gas stream, the gaseous hydrocarbon product stream and the acid-gas depleted gaseous hydrocarbon product stream;
  • (8) separating an air stream into the oxygen-rich stream and a nitrogen-rich stream; and
  • (9) pressurizing the nitrogen-rich stream to generate the pressurized nitrogen stream,
  • wherein at least a portion of the oxygen-rich stream is used in one or both of steps (4) and (7).
  • In a second aspect, the present invention provides a process to enhance production of a hydrocarbon-containing fluid from an underground hydrocarbon reservoir via a hydrocarbon production well, by injecting a pressurized nitrogen stream into the underground hydrocarbon reservoir, wherein the pressurized nitrogen stream is generated by a process comprising the steps of:
  • (I) recovering the hydrocarbon-containing fluid produced from the hydrocarbon production well;
  • (II) separating the hydrocarbon-containing fluid into (a) a liquid hydrocarbon product stream and (b) a gaseous hydrocarbon product stream;
  • (III) producing a synthesis gas stream from a carbonaceous feedstock, the synthesis gas stream comprising (a) carbon dioxide, and (b) at least one of hydrogen and methane;
  • (IV) treating the synthesis gas stream in an acid gas removal unit to produce an acid gas-depleted synthesis gas stream and a carbon dioxide-rich stream;
  • (V) optionally treating the gaseous hydrocarbon product stream in the acid gas removal unit to produce an acid-gas depleted gaseous hydrocarbon product stream;
  • (VI) optionally combusting at least a portion of one or more of the acid gas-depleted synthesis gas stream, the gaseous hydrocarbon product stream and the acid-gas depleted gaseous hydrocarbon product stream;
  • (VII) separating an air stream into an oxygen-rich stream and a nitrogen-rich stream; and
  • (VIII) pressurizing the nitrogen-rich stream to generate the pressurized nitrogen stream,
  • wherein at least a portion of the oxygen-rich stream is used in one or both of steps (III) and (VI).
  • In a specific embodiment of the first and second aspects, the carbon dioxide-rich stream generated from acid gas removal is pressurized to generate a pressurized carbon dioxide stream, at least a portion of which is injected into the underground hydrocarbon reservoir.
  • In another specific embodiment of the first and second aspects, steps (7) and (VI) are present, and the combustion is used to produce energy (for example, mechanical and/or electrical energy) that is used at least in part for the air separation step (steps (8) and (VII)) and/or pressurization (compression) steps (steps (9) and (VIII), and/or CO2 compression).
  • In a third aspect, the invention provides an apparatus for producing a hydrocarbon-containing fluid, an acid gas-depleted product gas stream and an oxygen-rich stream, the apparatus comprising:
  • (A) a synthesis gas production system adapted to produce a synthesis gas from a carbonaceous feedstock, the synthesis gas comprising (i) carbon dioxide and (ii) at least one of hydrogen and methane;
  • (B) an injection well in fluid communication with an underground hydrocarbon reservoir comprising a hydrocarbon-containing fluid, the injection well adapted to inject a pressurized nitrogen stream into the underground hydrocarbon reservoir for enhanced oil recovery;
  • (C) a hydrocarbon production well in fluid communication with the underground hydrocarbon reservoir, the hydrocarbon production well adapted to remove hydrocarbon-containing fluid from the underground hydrocarbon reservoir;
  • (D) a separation device in fluid communication with the hydrocarbon production well, the separation device adapted (i) to receive the hydrocarbon fluid from the hydrocarbon production well, and (ii) to separate the hydrocarbon fluid into a liquid hydrocarbon product stream and a gaseous hydrocarbon product stream;
  • (E) an acid gas removal unit in fluid communication with the synthesis gas generation system, the acid gas removal unit adapted to (i) receive the synthesis gas from the synthesis gas generation system, and (ii) treat the synthesis gas to remove acid gases and produce the acid gas-depleted product gas stream and a carbon dioxide-rich stream;
  • (F) an air separation unit adapted to (i) receive an air stream and (ii) separate the air stream into an oxygen-rich stream and a nitrogen-rich recycle stream; and
  • (G) a compressor unit in fluid communication with the air separation unit and the injection well, the compressor unit adapted to (i) receive the nitrogen-rich recycle stream, and (ii) compress the nitrogen-rich recycle stream to generate the pressurized nitrogen stream, and (iii) provide the pressurized nitrogen stream to the injection well.
  • In a specific embodiment of the third aspect, the injection well is further adapted to inject a pressurized carbon dioxide stream into the underground hydrocarbon reservoir, and the apparatus further comprises a compressor unit in fluid communication with the acid gas removal unit and the injection well, the compressor unit adapted to (i) receive the carbon dioxide-rich stream, and (ii) compress the carbon dioxide recycle stream to generate the pressurized carbon dioxide stream, and (iii) provide the pressurized carbon dioxide stream to the injection well.
  • In another specific embodiment of the third aspect, the acid gas removal unit is adapted to receive a combined stream of the synthesis gas and the gaseous hydrocarbon product stream, and treat the combined stream to remove acid gases and produce an acid gas-depleted product gas stream and a carbon dioxide-rich stream.
  • In another specific embodiment of the third aspect, the acid gas removal unit is also adapted to receive the gaseous hydrocarbon product stream from the separation device, and treat the gaseous hydrocarbon product stream to remove acid gases and produce an acid gas-depleted gaseous hydrocarbon product stream. In such a case, the acid gas-depleted product gas stream will comprise both the acid gas-depleted gaseous hydrocarbon product stream and an acid gas-depleted synthesis gas stream (separate or combined).
  • These and other embodiments, features and advantages of the present invention will be more readily understood by those of ordinary skill in the art from a reading of the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of an embodiment of an integrated process in accordance with the present invention.
  • FIG. 2 is a diagram of a first specific embodiment of the integrated process in accordance with the present invention.
  • FIG. 3 is a diagram of an embodiment of the gas processing portion of the integrated process of FIG. 2.
  • FIG. 4 is a diagram of a second specific embodiment of the integrated process in accordance with the present invention.
  • FIG. 5 is a diagram of an embodiment of the gas processing portion of the integrated process of FIG. 4.
  • FIG. 6 is a diagram of an electrical power block suitable for use in conjunction with the present invention.
  • DETAILED DESCRIPTION
  • The present disclosure relates to integrating synthesis gas production processes and air separation processes with enhanced oil recovery processes. Further details are provided below.
  • In the context of the present description, all publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict, the present specification, including definitions, will control.
  • Except where expressly noted, trademarks are shown in upper case.
  • Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein.
  • Unless stated otherwise, all percentages, parts, ratios, etc., are by weight.
  • Unless stated otherwise, pressures expressed in psi units are gauge, and pressures expressed in kPa units are absolute.
  • When an amount, concentration, or other value or parameter is given as a range, or a list of upper and lower values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper and lower range limits, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the present disclosure be limited to the specific values recited when defining a range.
  • When the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to.
  • As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • The use of “a” or “an” to describe the various elements and components herein is merely for convenience and to give a general sense of the disclosure. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
  • The term “substantial portion”, as used herein, unless otherwise defined herein, means that greater than about 90% of the referenced material, preferably greater than about 95% of the referenced material, and more preferably greater than about 97% of the referenced material. The percent is on a molar basis when reference is made to a molecule (such as methane, carbon dioxide, carbon monoxide and hydrogen sulfide), and otherwise is on a weight basis (such as the liquid component of the hydrocarbon-containing fluid).
  • The term “predominant portion”, as used herein, unless otherwise defined herein, means that greater than about 50% of the referenced material. The percent is on a molar basis when reference is made to a molecule (such as hydrogen, methane, carbon dioxide, carbon monoxide and hydrogen sulfide), and otherwise is on a weight basis (such as the liquid component of the hydrocarbon-containing fluid).
  • The term “hydrocarbon-containing fluid”, as used herein, means a fluid comprising any hydrocarbon liquid and/or gas. A hydrocarbon-containing fluid may also comprise solid particles. Oil, gas-condensate and the like, and also their mixtures with other liquids such as water, may be examples of a liquid contained in a hydrocarbon-containing fluid. Any gaseous hydrocarbon (for example, methane, ethane, propane, propylene, butane or the like), and mixtures of gaseous hydrocarbons, may be contained in a hydrocarbon-containing fluid. In the context of the present invention, the hydrocarbon-containing fluid is recovered from an underground hydrocarbon reservoir, such as an oil-bearing formation, a gas-condensate reservoir, a natural gas reservoir and the like.
  • The term “carbonaceous” as used herein is synonymous with hydrocarbon.
  • The term “carbonaceous material” as used herein is a material containing organic hydrocarbon content. Carbonaceous materials can be classified as biomass or non-biomass materials as defined herein.
  • The term “biomass” as used herein refers to carbonaceous materials derived from recently (for example, within the past 100 years) living organisms, including plant-based biomass and animal-based biomass. For clarification, biomass does not include fossil-based carbonaceous materials, such as coal. For example, see US2009/0217575A1 and US2009/0217587A1.
  • The term “plant-based biomass” as used herein means materials derived from green plants, crops, algae, and trees, such as, but not limited to, sweet sorghum, bagasse, sugarcane, bamboo, hybrid poplar, hybrid willow, albizia trees, eucalyptus, alfalfa, clover, oil palm, switchgrass, sudangrass, millet, jatropha, and miscanthus (e.g., Miscanthus x giganteus). Biomass further include wastes from agricultural cultivation, processing, and/or degradation such as corn cobs and husks, corn stover, straw, nut shells, vegetable oils, canola oil, rapeseed oil, biodiesels, tree bark, wood chips, sawdust, and yard wastes.
  • The term “animal-based biomass” as used herein means wastes generated from animal cultivation and/or utilization. For example, biomass includes, but is not limited to, wastes from livestock cultivation and processing such as animal manure, guano, poultry litter, animal fats, and municipal solid wastes (e.g., sewage).
  • The term “non-biomass”, as used herein, means those carbonaceous materials which are not encompassed by the term “biomass” as defined herein. For example, non-biomass include, but is not limited to, anthracite, bituminous coal, sub-bituminous coal, lignite, petroleum coke, asphaltenes, liquid petroleum residues or mixtures thereof. For example, see US2009/0166588A1, US2009/0165379A1, US2009/0165380A1, US2009/0165361A1, US2009/0217590A1 and US2009/0217586A1.
  • The terms “petroleum coke” and “petcoke” as used here include both (i) the solid thermal decomposition product of high-boiling hydrocarbon fractions obtained in petroleum processing (heavy residues—“resid petcoke”); and (ii) the solid thermal decomposition product of processing tar sands (bituminous sands or oil sands—“tar sands petcoke”). Such carbonization products include, for example, green, calcined, needle and fluidized bed petcoke.
  • Resid petcoke can also be derived from a crude oil, for example, by coking processes used for upgrading heavy-gravity residual crude oil, which petcoke contains ash as a minor component, typically about 1.0 wt % or less, and more typically about 0.5 wt % of less, based on the weight of the coke. Typically, the ash in such lower-ash cokes comprises metals such as nickel and vanadium.
  • Tar sands petcoke can be derived from an oil sand, for example, by coking processes used for upgrading oil sand. Tar sands petcoke contains ash as a minor component, typically in the range of about 2 wt % to about 12 wt %, and more typically in the range of about 4 wt % to about 12 wt %, based on the overall weight of the tar sands petcoke. Typically, the ash in such higher-ash cokes comprises materials such as silica and/or alumina.
  • Petroleum coke has an inherently low moisture content, typically, in the range of from about 0.2 to about 2 wt % (based on total petroleum coke weight); it also typically has a very low water soaking capacity to allow for conventional catalyst impregnation methods. The resulting particulate compositions contain, for example, a lower average moisture content which increases the efficiency of downstream drying operation versus conventional drying operations.
  • The petroleum coke can comprise at least about 70 wt % carbon, at least about 80 wt % carbon, or at least about 90 wt % carbon, based on the total weight of the petroleum coke. Typically, the petroleum coke comprises less than about 20 wt % inorganic compounds, based on the weight of the petroleum coke.
  • The term “asphaltene” as used herein is an aromatic carbonaceous solid at room temperature, and can be derived, for example, from the processing of crude oil and crude oil tar sands.
  • The term “coal” as used herein means peat, lignite, sub-bituminous coal, bituminous coal, anthracite, or mixtures thereof. In certain embodiments, the coal has a carbon content of less than about 85%, or less than about 80%, or less than about 75%, or less than about 70%, or less than about 65%, or less than about 60%, or less than about 55%, or less than about 50% by weight, based on the total coal weight. In other embodiments, the coal has a carbon content ranging up to about 85%, or up to about 80%, or up to about 75% by weight, based on the total coal weight. Examples of useful coal include, but are not limited to, Illinois #6, Pittsburgh #8, Beulah (N. Dak.), Utah Blind Canyon, and Powder River Basin (PRB) coals. Anthracite, bituminous coal, sub-bituminous coal, and lignite coal may contain about 10 wt %, from about 5 to about 7 wt %, from about 4 to about 8 wt %, and from about 9 to about 11 wt %, ash by total weight of the coal on a dry basis, respectively. However, the ash content of any particular coal source will depend on the rank and source of the coal, as is familiar to those skilled in the art. See, for example, “Coal Data: A Reference”, Energy Information Administration, Office of Coal, Nuclear, Electric and Alternate Fuels, U.S. Department of Energy, DOE/EIA-0064(93), February 1995.
  • The ash produced from combustion of a coal typically comprises both a fly ash and a bottom ash, as are familiar to those skilled in the art. The fly ash from a bituminous coal can comprise from about 20 to about 60 wt % silica and from about 5 to about 35 wt % alumina, based on the total weight of the fly ash. The fly ash from a sub-bituminous coal can comprise from about 40 to about 60 wt % silica and from about 20 to about 30 wt % alumina, based on the total weight of the fly ash. The fly ash from a lignite coal can comprise from about 15 to about 45 wt % silica and from about 20 to about 25 wt % alumina, based on the total weight of the fly ash. See, for example, Meyers, et al. “Fly Ash. A Highway Construction Material,” Federal Highway Administration, Report No. FHWA-IP-76-16, Washington, DC, 1976.
  • The bottom ash from a bituminous coal can comprise from about 40 to about 60 wt % silica and from about 20 to about 30 wt % alumina, based on the total weight of the bottom ash. The bottom ash from a sub-bituminous coal can comprise from about 40 to about 50 wt % silica and from about 15 to about 25 wt % alumina, based on the total weight of the bottom ash. The bottom ash from a lignite coal can comprise from about 30 to about 80 wt % silica and from about 10 to about 20 wt % alumina, based on the total weight of the bottom ash. See, for example, Moulton, Lyle K. “Bottom Ash and Boiler Slag,” Proceedings of the Third International Ash Utilization Symposium, U.S. Bureau of Mines, Information Circular No. 8640, Washington, DC, 1973.
  • A carbonaceous material such as methane can be biomass or non-biomass under the above definitions depending on its source of origin.
  • The term “unit” refers to a unit operation. When more than one “unit” is described as being present, those units are operated in a parallel fashion. A single “unit”, however, may comprise more than one of the units in series, or in parallel, depending on the context. For example, an acid gas removal unit may comprise a hydrogen sulfide removal unit followed in series by a carbon dioxide removal unit. As another example, a contaminant removal unit may comprise a first removal unit for a first contaminant followed in series by a second removal unit for a second contaminant. As yet another example, a compressor may comprise a first compressor to compress a stream to a first pressure, followed in series by a second compressor to further compress the stream to a second (higher) pressure.
  • The materials, methods, and examples herein are illustrative only and, except as specifically stated, are not intended to be limiting.
  • General Process Information
  • In one embodiment of the invention, an acid gas-depleted product gas steam (38), an oxygen-rich stream (14) and a hydrocarbon-containing fluid (82) are produced in an integrated EOR, air separation and synthesis gas production process as illustrated in FIGS. 1-6.
  • In order to facilitate the integration, in one embodiment the synthesis gas production system (facility) and air separation units are both proximate to the EOR location (field), such as on the same or an adjoining land parcel.
  • Enhanced Oil Recovery
  • Referring to FIG. 1, the EOR portion of the process involves injecting a pressurized nitrogen stream (19), and optionally a pressurized carbon dioxide stream (89), via an injection well (500) (one or more) into an underground hydrocarbon reservoir (20) utilizing techniques well known to those of ordinary skill in the relevant art.
  • As indicated above, the pressurized nitrogen stream (19) assists in the repressurization of the underground reservoir. Typically, the pressurized nitrogen stream (19) will be injected into the underground reservoir at a pressure of at least about 1200 psig (about 8375 kPa), or at least about 1500 psig (about 10444 kPa), or at least about 2000 psig (about 13891 kPa).
  • As also indicated above, the pressurized carbon dioxide stream (89), which will typically be in a supercritical fluid state, serves to enhance production of a hydrocarbon fluid (82) from a production well (600) through a combination of mechanisms typically involving a repressurization of the underground reservoir and a viscosity reduction of the trapped hydrocarbon (improving flow properties). Typically, the pressurized carbon dioxide stream (89) will also be injected into the underground reservoir at a pressure of at least about 1200 psig (about 8375 kPa), or at least about 1500 psig (about 10444 kPa), or at least about 2000 psig (about 13891 kPa).
  • As is well-known to those of ordinary skill in the relevant art, EOR using carbon dioxide and nitrogen can utilize co-injection (both at the same time in the same location), concurrent injection (both at the same time at different locations), consecutive injection (one followed by the other in the same or separate locations) or some combination of these various techniques.
  • As is also well-known to those of ordinary skill in the art, EOR can also involve co-injection, concurrent injection or consecutive injection of pressurized water, steam and other fluids. The actual carbon dioxide/nitrogen-based EOR process utilized is not critical to the present invention in its broadest sense.
  • The resulting hydrocarbon-containing fluid (82) is produced and recovered through a hydrocarbon production well (600) (one or more). The produced hydrocarbon-containing fluid (82) will typically contain liquid and gas hydrocarbon components, as well as other liquid and gaseous components depending on the hydrocarbon reservoir and EOR conditions. The liquid hydrocarbon component can generally be considered as a crude oil, while the gaseous hydrocarbon component will typically comprise hydrocarbons that are gases at ambient conditions, such as methane, ethane, propane, propylene and butane (typical components of natural gas). Other typical liquid components include water or brine. The hydrocarbon-containing fluid (82) may also comprise carbon dioxide, and may comprise other gaseous components such as hydrogen sulfide (from a sour well) and nitrogen. The hydrocarbon-containing fluid (82) may also include solid carbon and mineral matter.
  • The produced hydrocarbon-containing fluid (82) is passed to a separation device (300) to separate the gaseous components from the liquid/solid components to generate a gaseous hydrocarbon product stream (84), a liquid hydrocarbon product stream (85) and, optionally, a stream (86) containing solids components from the hydrocarbon-containing fluid (82). The solids may also optionally be carried with the liquid hydrocarbon product stream (85) for later separation, or separated out prior to separation device (300), by well-known techniques such as settling, centrifugation and/or filtration. In one embodiment, larger/denser solids are separated in conjunction with separation device (300), and finer solids that may become entrained in liquid hydrocarbon product stream (85) are separated subsequently through well-known techniques such as filtration.
  • Suitable separation devices for use as separation device (300) are well known to those of ordinary skill in the art and include, for example, single and multistage horizontal separators and cyclones. The actual separation device utilized is not critical to the present invention in its broadest sense.
  • The liquid hydrocarbon product stream (85), consequently, will typically comprise at least a predominant portion (or a substantial portion, or substantially all) of the liquid components from the hydrocarbon-containing fluid (82) including, for example, crude oil and water/brine. The liquid hydrocarbon product stream (85) can subsequently be processed to separate out the water and other contaminants, then further processed (e.g., refined) to a variety of end products or for a variety of end uses, as is well-known to those or ordinary skill in the relevant art.
  • If a stream (86) containing solids components is present, that will typically be removed from separation device (300) as a concentrated slurry or with some portion of the liquid content of the hydrocarbon-containing fluid (82). Oil that may be withdrawn with the solids in stream (86) can be recovered from the solids via washing or other techniques well-known to those of ordinary skill in the relevant art.
  • The resulting gaseous hydrocarbon product stream (84) exiting separation device (300) typically comprises at least a substantial portion (or substantially all) of the gaseous components from the hydrocarbon-containing fluid (82), including at least a substantial portion (or substantially all) of the gaseous hydrocarbons (and carbon dioxide to the extent present) from the hydrocarbon-containing fluid (82). The gaseous hydrocarbon product stream (84) may also comprise minor amounts of water vapor (which should be substantially removed prior to further treatment, for example, in acid gas removal unit (200) as discussed below) as well as other contaminants if present, such as hydrogen sulfide.
  • If the hydrocarbon-containing fluid (82) contains, e.g., more than contaminant amounts of acid gases such as carbon dioxide, the resulting gaseous hydrocarbon stream (84) will contain a substantial portion (or substantially all) of the acid gases, and in one embodiment will be subject to acid gas removal to remove and recover the acid gases.
  • All or a portion of the gaseous hydrocarbon product stream (84) exiting separation device (300) may be combined with a synthesis gas stream (50), or otherwise co-processed with synthesis gas stream (50) in an acid gas removal unit (200) as discussed below. Prior to combination with synthesis gas stream (50) or co-processing in acid gas removal unit (200), gaseous hydrocarbon product stream (84) may optionally be compressed or heated (not depicted) to temperature and pressure conditions suitable for combination or other downstream processing as further described below.
  • All or a portion of the gaseous hydrocarbon product stream (84) may, in addition or alternatively, be combusted in a power block (760 a), for example, for electrical power (79 a) and/or steam generation. An oxygen-rich gas stream (14 c) that comprises at least a portion of oxygen-rich stream (14) from air separation unit (800) may be utilized in power block (760 a) as discussed below.
  • Synthesis Gas Generation (100)
  • Synthesis gas stream (50) contains (i) carbon dioxide, and (ii) at least one of hydrogen and methane. The actual composition of synthesis gas stream (50) will depend on the synthesis gas process and carbonaceous feedstock utilized to generate the stream, including any gas processing that may occur before acid gas removal unit (200) or optional combination with gaseous hydrocarbon stream (84).
  • In one embodiment, synthesis gas stream (50) comprises carbon dioxide and hydrogen. In another embodiment, synthesis gas stream (50) comprises carbon dioxide and methane. In another embodiment, synthesis gas stream (50) comprises carbon dioxide, methane and hydrogen. The synthesis gas stream (50) may also contain other gaseous components such as, for example, carbon monoxide, hydrogen sulfide, steam and other gaseous hydrocarbons again depending on the synthesis gas production process and carbonaceous feedstock.
  • Synthesis gas stream (50) is generated in a synthesis gas production system (100). Any synthesis gas generating process can be utilized in the context of the present invention, so long as the synthesis gas generating process (including gas processing prior to optional combination with gaseous hydrocarbon stream (84) or prior to acid gas removal unit (200)) results in a synthesis gas stream as required in the context of the present invention. Suitable synthesis gas processes are generally known to those of ordinary skill in the relevant art, and many applicable technologies are commercially available.
  • An oxygen-rich gas stream (14 a) that comprises at least a portion of oxygen-rich stream (14) from air separation unit (800) may optionally be utilized in the synthesis gas production system (100) as described below.
  • Non-limiting examples of different types of suitable synthesis gas generation processes are discussed below. These may be used individually or in combination. All synthesis gas generation process will involve a reactor, which is generically depicted as (110) in FIGS. 3 and 5, where a carbonaceous feedstock (10) will be processed to produce synthesis gases, which may be further treated prior to optional combination with gaseous hydrocarbon stream (84) and/or prior to acid gas removal unit (200). General reference can be made to FIGS. 3 and 5 in the context of the various synthesis gas generating processes described below.
  • Gas-Based Methane Reforming/Partial Oxidation
  • In one embodiment, the synthesis gas generating process is based on a gas-fed methane partial oxidation/reforming process, such as non-catalytic gaseous partial oxidation, catalytic authothermal reforming or catalytic stream-methane reforming process. These processes are generally well-known in the relevant art. See, for example, Rice and Mann, “Autothermal Reforming of Natural Gas to Synthesis Gas, Reference: KBR Paper #2031,” Sandia National Laboratory Publication No. SAND2007-2331 (2007); and Bogdan, “Reactor Modeling and Process Analysis for Partial Oxidation of Natural Gas”, printed by Febodruk, B. V., ISBN: 90-365-2100-9 (2004).
  • Technologies and reactors potentially suitable for use in conjunction with the present invention are commercially available from Royal Dutch Shell plc, Siemens AG, General Electric Company, Lurgi AG, Haldor Topsoe A/S, Uhde AG, KBR Inc. and others.
  • Referring to FIGS. 3 and 5, these gas-based processes convert a gaseous methane-containing stream as a carbonaceous feedstock (10), in a reactor (110) into a syngas (hydrogen plus carbon monoxide) as synthesis gas stream (50) which, depending on the specific process, will have differing ratios of hydrogen:carbon monoxide, will generally contain minor amounts of carbon dioxide, and may contain minor amounts of other gaseous components such as steam.
  • The methane-containing stream useful in these processes comprises methane in a predominant amount, and may comprise other gaseous hydrocarbon and components. Examples of commonly used methane-containing streams include natural gas and synthetic natural gas.
  • In non-catalytic gaseous partial oxidation and autothermal reforming, an oxygen-rich gas stream (14 a) is fed into the reactor (110) along with carbonaceous feedstock (10). Optionally, steam (16) may also be fed into the reactor (110). In steam-methane reforming, steam (16) is fed into the reactor along with the carbonaceous feedstock (10). In some cases, minor amounts of other gases such as carbon dioxide, hydrogen and/or nitrogen may also be fed in the reactor (110).
  • Reaction and other operating conditions, and equipment and configurations, of the various reactors and technologies are in a general sense known to those of ordinary skill in the relevant art, and are not critical to the present invention in its broadest sense.
  • Solids/Liquids-Based Gasification to Syngas
  • In another embodiment, the synthesis gas generating process is based on a non-catalytic thermal gasification process, such as a partial oxidation gasification process (like an oxygen-blown gasifier), where a non-gaseous (liquid, semi-solid and/or solid) hydrocarbon is utilized as the carbonaceous feedstock (10). A wide variety of biomass and non-biomass materials (as described above) can be utilized as the carbonaceous feedstock (10) in these processes.
  • Oxygen-blown solids/liquids gasifiers potentially suitable for use in conjunction with the present invention are, in a general sense, known to those of ordinary skill in the relevant art and include, for example, those based on technologies available from Royal Dutch Shell plc, ConocoPhillips Company, Siemens AG, Lurgi AG (Sasol), General Electric Company and others. Other potentially suitable syngas generators are disclosed, for example, in US2009/0018222A1, US2007/0205092A1 and U.S. Pat. No. 6,863,878.
  • These processes convert a solid, semi-solid and/or liquid carbonaceous feedstock (10), in a reactor (110) such as an oxygen-blown gasifier, into a syngas (hydrogen plus carbon monoxide) as synthesis gas stream (50) which, depending on the specific process and carbonaceous feedstock, will have differing ratios of hydrogen:carbon monoxide, will generally contain minor amounts of carbon dioxide, and may contain minor amounts of other gaseous components such as methane, steam, hydrogen sulfide, sulfur oxides and nitrogen oxides.
  • In certain of these processes, an oxygen-rich gas stream (14 a) is fed into the reactor (110) along with the carbonaceous feedstock (10). Optionally, steam (16) may also be fed into the reactor (110), as well as other gases such as carbon dioxide, hydrogen, methane and/or nitrogen.
  • In certain of these processes, steam (16) may be utilized as an oxidant at elevated temperatures in place of all or a part of the oxygen-rich gas stream (14 a).
  • The gasification in the reactor (110) will typically occur in a fluidized bed of the carbonaceous feedstock (10) that is fluidized by the flow of the oxygen-rich gas stream (14 a), steam (16) and/or other fluidizing gases (like carbon dioxide and/or nitrogen) that may be fed to reactor (110).
  • Typically, thermal gasification is a non-catalytic process, so no gasification catalyst needs to be added to the carbonaceous feedstock (10) or into the reactor (110); however, a catalyst that promotes syngas formation may be utilized.
  • These thermal gasification processes are typically operated under high temperature and pressure conditions, and may run under slagging or non-slagging operating conditions depending on the process and carbonaceous feedstock.
  • Reaction and other operating conditions, and equipment and configurations, of the various reactors and technologies are in a general sense known to those of ordinary skill in the relevant art, and are not critical to the present invention in its broadest sense.
  • Catalytic Gasification/Hydromethanation to a Methane-Enriched Gas
  • In another alternative embodiment, the synthesis gas generating process is a catalytic gasification/hydromethanation process, in which gasification of a non-gaseous carbonaceous feedstock (10) takes place in a reactor (110) in the presence of steam and a catalyst to result in a methane-enriched gas stream as the synthesis gas stream (50), which typically comprises methane, hydrogen, carbon monoxide, carbon dioxide and steam.
  • The hydromethanation of a carbon source to methane typically involves four concurrent reactions:

  • Steam carbon: C+H2O→CO+H2  (I)

  • Water-gas shift: CO+H2O→H2+CO2  (II)

  • CO Methanation: CO+3H2→CH4+H2O  (III)

  • Hydro-gasification: 2H2+C→CH4  (IV)
  • In the hydromethanation reaction, the first three reactions (I-III) predominate to result in the following overall reaction:

  • 2C+2H2O→CH4+CO2  (V).
  • The overall reaction is essentially thermally balanced; however, due to process heat losses and other energy requirements (such as required for evaporation of moisture entering the reactor with the feedstock), some heat must be added to maintain the thermal balance.
  • The reactions are also essentially syngas (hydrogen and carbon monoxide) balanced (syngas is produced and consumed); therefore, as carbon monoxide and hydrogen are withdrawn with the product gases, carbon monoxide and hydrogen need to be added to the reaction as required to avoid a deficiency.
  • In order to maintain the net heat of reaction as close to neutral as possible (only slightly exothermic or endothermic), and maintain the syngas balance, a superheated gas stream of steam (16) and syngas (12) (carbon monoxide and hydrogen) is often fed to the reactor (110) (separately or in combination). Frequently, the carbon monoxide and hydrogen streams are recycle streams separated from the product gas, and/or are provided by reforming a portion of the product methane. Optionally, all or a portion of the syngas can be generated in situ by feeding an oxygen-rich stream (14 a) directly into reactor (110).
  • The carbonaceous feedstocks useful in these processes include, for example, a wide variety of biomass and non-biomass materials.
  • Catalysts utilized in these processes include, for example, alkali metals, alkaline earth metals and transition metals, and compounds, mixtures and complexes thereof.
  • The temperature and pressure operating conditions in a catalytic gasification/hydromethanation process are typically milder (lower temperature and pressure) than a non-catalytic gasification process, which can sometimes have advantages in terms of cost and efficiency.
  • Catalytic gasification/hydromethanation processes and conditions are disclosed, for example, in U.S. Pat. No. 3,828,474, U.S. Pat. No. 3,998,607, U.S. Pat. No. 4,057,512, U.S. Pat. No. 4,092,125, U.S. Pat. No. 4,094,650, U.S. Pat. No. 4,204,843, U.S. Pat. No. 4,468,231, U.S. Pat. No. 4,500,323, U.S. Pat. No. 4,541,841, U.S. Pat. No. 4,551,155, U.S. Pat. No. 4,558,027, U.S. Pat. No. 4,606,105, U.S. Pat. No. 4,617,027, U.S. Pat. No. 4,609,456, U.S. Pat. No. 5,017,282, U.S. Pat. No. 5,055,181, U.S. Pat. No. 6,187,465, U.S. Pat. No. 6,790,430, U.S. Pat. No. 6,8941,83, U.S. Pat. No. 6,955,695, US2003/0167961A1 and US2006/0265953A1, as well as in commonly owned US2007/0000177A1, US2007/0083072A1, US2007/0277437A1, US2009/0048476A1, US2009/0090056A1, US2009/0090055A1, US2009/0165383A1, US2009/0166588A1, US2009/0165379A1, US2009/0170968A1, US2009/0165380A1, US2009/0165381A1, US2009/0165361A1, US2009/0165382A1, US2009/0169449A1, US2009/0169448A1, US2009/0165376A1, US2009/0165384A1, US2009/0217582A1, US2009/0220406A1, US2009/0217590A1, US2009/0217586A1, US2009/0217588A1, US2009/0218424A1, US2009/0217589A1, US2009/0217575A1, US2009/0229182A1, US2009/0217587A1, US2009/0246120A1, US2009/0259080A1, US2009/0260287A1, US2009/0324458A1, US2009/0324459A1, US2009/0324460A1, US2009/0324461A1, US2009/0324462A1, US2010/0121125A1, US2010/0120926A1, US2010/0071262A1, US2010/0076235A1, US2010/0179232A1, US2010/0120926A1, US2010/0071262A1, US2010/0076235A1, US2010/0179232A1, US2010/0168495A1 and US2010/0168494A1; U.S. patent application Ser. Nos. 12/778,538 (attorney docket no. FN-0047 US NP1, entitled PROCESS FOR HYDROMETHANATION OF A CARBONACEOUS FEEDSTOCK), 12/778,548 (attorney docket no. FN-0048 US NP1, entitled PROCESSES FOR HYDROMETHANATION OF A CARBONACEOUS FEEDSTOCK) and 12/778,552 (attorney docket no. FN-0049 US NP1, entitled PROCESSES FOR HYDROMETHANATION OF A CARBONACEOUS FEEDSTOCK), each of which was filed 12 May 2010; U.S. patent application Ser. Nos. 12/851,864 (attorney docket no. FN-0050 US NP1, entitled PROCESS FOR HYDROMETHANATION OF A CARBONACEOUS FEEDSTOCK), which was filed 6 Aug. 2010; and U.S. patent applications Ser. Nos. 12/882,415 (attorney docket no. FN-0051 US NP1, entitled PROCESS FOR HYDROMETHANATION OF A CARBONACEOUS FEEDSTOCK), 12/882,412 (attorney docket no. FN-0052 US NP1, entitled INTEGRATED HYDROMETHANATION COMBINED CYCLE PROCESS), 12/882,408 (attorney docket no. FN-0053 US NP1, entitled INTEGRATED HYDROMETHANATION COMBINED CYCLE PROCESS) and 12/882,417 (attorney docket no. FN-0054 US NP1, entitled PROCESS FOR HYDROMETHANATION OF A CARBONACEOUS FEEDSTOCK), each of which was filed 15 Sep. 2010.
  • General reaction and other operating conditions of the various catalytic gasification/hydromethanation reactors and technologies can be found from the above references, and are not critical to the present invention in its broadest sense.
  • Heat Exchange (140)
  • All of the above described synthesis gas generation processes typically will generate a synthesis gas stream (50) of a temperature higher than suitable for feeding downstream gas processes (including acid gas removal unit (200)) and/or combining with gaseous hydrocarbon stream (84), so upon exit from reactor (110) the synthesis gas stream (50) is typically passed through a heat exchanger unit (140) to remove heat energy and generate a cooled synthesis gas stream (52).
  • The heat energy recovered in heat exchanger unit (140) can be used, for example, to generate steam and/or superheat various process streams, as will be recognized by a person of ordinary skill in the art. Any steam generated can be used, for example, for internal process requirements and/or to generate electrical power.
  • In one embodiment, the resulting cooled synthesis gas stream (52) will typically exit heat exchanger unit (140) at a temperature ranging from about 450° F. (about 232° C.) to about 1100° F. (about 593° C.), more typically from about 550° F. (about 288° C.) to about 950° F. (about 510° C.), and at a pressure suitable for subsequent acid gas removal processing (taking into account any intermediate processing). Typically, this pressure will be from about 50 psig (about 446 kPa) to about 800 psig (about 5617 kPa), more typically from about 400 psig (about 2860 kPa) to about 600 psig (about 4238 kPa).
  • Gas Treatment Prior to Acid Gas Removal
  • Synthesis gas stream (50) and gaseous hydrocarbon stream (84) may be processed separately, or may optionally be combined at various points and individually or co-processed in various treatment processes, or optionally combined and co-treated at or in acid gas removal unit (200). Specific embodiments where synthesis gas stream (50) and gaseous hydrocarbon stream (84) are combined and/or co-processed are depicted in FIGS. 2-5. The combination point and processing variations will be primarily dependent on the composition, temperature and pressure of the two streams, and any desired end products.
  • Processing options prior to acid gas removal typically include, for example, one or more of sour shift (700) (water gas shift), contaminant removal (710) and dehydration (720). While these intermediate processing steps can occur in any order, dehydration (720) will usually occur just prior to acid gas removal (last in the series), as a substantial portion of any water in synthesis gas stream (50) and gaseous hydrocarbon stream (84) desirably should be removed prior to treatment in acid gas removal unit (200).
  • In one embodiment as depicted in FIGS. 2 and 3, synthesis gas stream (50) and gaseous hydrocarbon stream (84) are combined prior to acid gas removal unit (200) to generate a combined gas stream (60). In one specific embodiment, synthesis gas stream (50) and gaseous hydrocarbon stream (84) are combined prior to dehydration (720). In another specific embodiment, synthesis gas stream (50) and gaseous hydrocarbon stream (84) are separately dehydrated (720 and 720 a) and combined before or during acid gas removal.
  • Combination of the two streams may also require compression or expansion of one or both of the streams. Typically, the gaseous hydrocarbon stream (84) will require at least some compression prior to combination with synthesis gas stream (50).
  • In another embodiment as depicted in FIGS. 4 and 5, synthesis gas stream (50) and gaseous hydrocarbon stream (84) are co-processed within acid gas removal unit (200), as discussed in more detail below.
  • Sour Shift (700)
  • In certain embodiments, particularly where a stream contains appreciable amounts of carbon monoxide, and it is desired to maximize hydrogen and/or carbon dioxide production, all or a part of such stream (such as synthesis gas stream (50)) can be supplied to a sour shift reactor (700).
  • In sour shift reactor (700), the gases undergo a sour shift reaction (also known as a water-gas shift reaction, see formula (II) above) in the presence of an aqueous medium (such as steam) to convert at least a predominant portion (or a substantial portion, or substantially all) of the CO to CO2, which also increases the fraction of H2 in order to produce a hydrogen-enriched stream (54).
  • A sour shift process is described in detail, for example, in U.S. Pat. No. 7,074,373. The process involves adding water, or using water contained in the gas, and reacting the resulting water-gas mixture adiabatically over a steam reforming catalyst. Typical steam reforming catalysts include one or more Group VIII metals on a heat-resistant support.
  • Methods and reactors for performing the sour gas shift reaction on a CO-containing gas stream are well known to those of skill in the art. Suitable reaction conditions and suitable reactors can vary depending on the amount of CO that must be depleted from the gas stream. In some embodiments, the sour gas shift can be performed in a single stage within a temperature range from about 100° C., or from about 150° C., or from about 200° C., to about 250° C., or to about 300° C., or to about 350° C. In these embodiments, the shift reaction can be catalyzed by any suitable catalyst known to those of skill in the art. Such catalysts include, but are not limited to, Fe2O3-based catalysts, such as Fe2O3—Cr2O3 catalysts, and other transition metal-based and transition metal oxide-based catalysts. In other embodiments, the sour gas shift can be performed in multiple stages. In one particular embodiment, the sour gas shift is performed in two stages. This two-stage process uses a high-temperature sequence followed by a low-temperature sequence. The gas temperature for the high-temperature shift reaction ranges from about 350° C. to about 1050° C. Typical high-temperature catalysts include, but are not limited to, iron oxide optionally combined with lesser amounts of chromium oxide. The gas temperature for the low-temperature shift ranges from about 150° C. to about 300° C., or from about 200° C. to about 250° C. Low-temperature shift catalysts include, but are not limited to, copper oxides that may be supported on zinc oxide or alumina. Suitable methods for the sour shift process are described in previously incorporated US2009/0246120A1.
  • The sour shift reaction is exothermic, so it is often carried out with a heat exchanger (not depicted) to permit the efficient use of heat energy. Shift reactors employing these features are well known to those of skill in the art. Recovered heat energy can be used, for example, to generate steam, superheat various process streams and/or preheat boiler feed water for use in other steam generating operations. An example of a suitable shift reactor is illustrated in previously incorporated U.S. Pat. No. 7,074,373, although other designs known to those of skill in the art are also effective.
  • If sour shift is present and it is desired to retain some carbon monoxide content, a portion of the stream can be split off to bypass sour shift reactor (700) and be combined with hydrogen-enriched stream (54) at some point prior to acid gas removal unit (200). This is particularly useful when it is desired to recover a separate methane by-product, as the retained carbon monoxide can be subsequently methanated as discussed below.
  • Contaminant Removal (710)
  • As is familiar to those skilled in the art, the contamination levels of synthesis gas stream (50) will depend on the nature of the carbonaceous feedstock and the synthesis gas generation conditions. For example, petcoke and certain coals can have high sulfur contents, leading to higher sulfur oxide (SOx), H2S and/or COS contamination. Certain coals can contain significant levels of mercury which can be volatilized during the synthesis gas generation. Other feedstocks can be high in nitrogen content, leading to ammonia, nitrogen oxides (NOx) and/or cyanides.
  • Some of these contaminants are typically removed in acid gas removal unit (200), such as H2S and COS. Others such as ammonia and mercury, typically require removal prior to acid gas removal unit (200).
  • When present, contaminant removal of a particular contaminant should remove at least a substantial portion (or substantially all) of that contaminant from the so-treated cleaned gas stream (56), typically to levels at or lower than the specification limits for the desired acid gas removal unit (200), or the desired end product.
  • While in FIG. 3 it is shown that gaseous hydrocarbon stream (84) and cooled synthesis gas stream (54) can be combined subsequent to contaminant removal unit (700), this is only shown for exemplification, as the two streams may be combined prior to contaminant removal unit (710), or treated separately for contaminant removal as needed and subsequently combined.
  • Contaminant removal process are in a general sense well know to those of ordinary skill in the relevant art, as exemplified in many of the previously-incorporated references.
  • Dehydration (720)
  • In addition, prior to the acid gas removal unit (200), the synthesis gas stream (50) and gaseous hydrocarbon stream (84), individually or in combination, should be treated to reduce residual water content via a dehydration unit (720) (and (720 a) if present) to produce a dehydrated stream (58) (and (58 a) if dehydration unit (720 a) is present).
  • Examples of suitable dehydration units include a knock-out drum or similar water separation device, and/or water absorption processes such as glycol treatment.
  • Such dehydration units and processes again are in a general sense well known to those of ordinary skill in the relevant art.
  • Acid Gas Removal (200)
  • In accordance with the present invention, at least the synthesis gas stream (50) (or a derivative stream resulting from intermediate treatment) is processed in an acid gas removal unit (200) to remove carbon dioxide and other acid gases (such as hydrogen sulfide if present), and generate a carbon dioxide-rich stream (87) and an acid gas-depleted synthesis gas stream as the acid gas-depleted product gas stream (38).
  • Optionally, the synthesis gas stream (50) and the gaseous hydrocarbon product stream (84) (or derivative streams resulting from intermediate treatment) are co-processed in an acid gas removal unit (200) to remove carbon dioxide and other acid gases (such as hydrogen sulfide if present), and generate the acid gas-depleted product gas steam (38), which can be a single stream generated from a combination of, or individual stream derived from, the synthesis gas stream (50) and the gaseous hydrocarbon product stream (84) (or derivative streams resulting from intermediate treatment). See, for example, previously incorporated U.S. patent application Ser. Nos. 12/906,552 and 12/906,547.
  • As set forth in FIGS. 2 and 3, and discussed further below, synthesis gas stream (50) and the gaseous hydrocarbon product stream (84) are co-processed to generate a carbon dioxide-rich stream (87) and a combined acid-gas depleted gaseous hydrocarbon product stream (80) (as acid gas-depleted product gas steam (38)).
  • As set forth in FIGS. 4 and 5, and discussed further below, synthesis gas stream (50) and the gaseous hydrocarbon product stream (84) are co-processed to generate a carbon dioxide-rich stream (87), and an individual acid gas-depleted gaseous hydrocarbon product stream (31) and an individual acid gas-depleted synthesis gas stream (30) (acid gas-depleted product gas steam (38)).
  • Acid gas removal processes typically involve contacting a gas stream with a solvent such as monoethanolamine, diethanolamine, methyldiethanolamine, diisopropylamine, diglycolamine, a solution of sodium salts of amino acids, methanol, hot potassium carbonate or the like to generate CO2 and/or H2S laden absorbers. One method can involve the use of Selexol® (UOP LLC, Des Plaines, Ill. USA) or Rectisol® (Lurgi AG, Frankfurt am Main, Germany) solvent having two trains; each train containing an H2S absorber and a CO2 absorber.
  • One method for removing acid gases is described in previously incorporated US2009/0220406A1.
  • At least a substantial portion (e.g., substantially all) of the CO2 and/or H2S (and other remaining trace contaminants) should be removed via the acid gas removal processes. “Substantial” removal in the context of acid gas removal means removal of a high enough percentage of the component such that a desired end product can be generated. The actual amounts of removal may thus vary from component to component. Desirably, only trace amounts (at most) of H2S should be present in the acid gas-depleted product stream, although higher amounts of CO2 may be tolerable depending on the desired end product.
  • Typically, at least about 85%, or at least about 90%, or at least about 92%, of the CO2, and at least about 95%, or at least about 98%, or at least about 99.5%, of the H2S, should be removed, based on the amount of those components contained in the streams fed to the acid gas removal unit (200).
  • Any recovered H2S (88) from the acid gas removal can be converted to elemental sulfur by any method known to those skilled in the art, including the Claus process. Sulfur can be recovered as a molten liquid.
  • It is, however, not necessary for EOR purposes to separate CO2 and H2S. In one embodiment, consequently, the carbon dioxide-rich stream (87) resulting from acid gas removal is a sour CO2 stream, as disclosed in previously incorporated U.S. patent application Ser. No. ______ (attorney docket no. FN-0058 US NP1, entitled INTEGRATED ENHANCED OIL RECOVERY PROCESS), filed concurrently herewith.
  • Embodiment of FIGS. 2 and 3
  • In this embodiment, as indicated previously, the synthesis gas stream (50) and the gaseous hydrocarbon stream (84) may be combined at various stages prior to the acid gas removal unit (200) to create a combined gas stream (60) which is fed into acid gas removal unit (200), or the two streams may be combined at some point in the acid gas removal unit (200) and co-processed.
  • The resulting acid gas-depleted gaseous hydrocarbon product stream (80) will generally comprise one or both of CH4 and H2, other gaseous hydrocarbons from the gaseous hydrocarbon stream (84), and optionally CO (for the downstream methanation), and typically no more than contaminant amounts of CO2, H2O, H2S and other contaminants.
  • A carbon dioxide-rich stream (87) is also generated containing a substantial portion of carbon dioxide from both synthesis gas stream (50) and gaseous hydrocarbon stream (84). If one or both of synthesis gas stream (50) and gaseous hydrocarbon stream (84) contain other acid gas contaminants, such as hydrogen sulfide, then an additional stream may be generated, such as hydrogen sulfide stream (88).
  • Alternatively, as mentioned above, other acid gases can remain in carbon dioxide-rich stream (87), particularly in the case where carbon dioxide-rich stream (87) is used for EOR, in which case carbon dioxide-rich stream (87) will be a sour CO2 stream.
  • Embodiment of FIGS. 4 and 5
  • In this embodiment, the synthesis gas stream (50) and the gaseous hydrocarbon stream (84) (or derivative streams resulting from intermediate treatment) are co-processed in an acid gas removal unit to remove carbon dioxide and other acid gases (such as hydrogen sulfide if present), and generate a carbon dioxide-rich stream (87), an acid gas-depleted gaseous hydrocarbon product stream (31) and an acid gas-depleted synthesis gas stream (30).
  • In the acid gas removal unit, the synthesis gas stream (50) and the gaseous hydrocarbon stream (84) are first individually treated in a second acid gas absorber unit (210) and a first acid gas absorber unit (230), respectively, to generate a separate acid gas-depleted synthesis gas stream (30) and second acid gas-rich absorber stream (35), and a separate acid gas-depleted gaseous hydrocarbon product stream (31) and first acid gas-rich absorber stream (36).
  • The resulting acid gas-depleted gaseous hydrocarbon product stream (31) will generally comprise CH4 and other gaseous hydrocarbons from the gaseous hydrocarbon stream (84), and typically no more than contaminant amounts of CO2, H2O, H2S and other contaminants. The resulting acid gas-depleted synthesis gas stream (30) will generally comprise one or both of CH4 and H2, and optionally CO (for the downstream methanation), and typically no more than contaminant amounts of CO2, H2O, H2S and other contaminants.
  • The resulting acid gas-depleted gaseous hydrocarbon product stream (31) and an acid gas-depleted synthesis gas stream (30) may be co-processed or separately processed as described further below.
  • The resulting first acid gas-rich absorber stream (36) and second acid gas-rich absorber stream (35) are co-processed in an absorber regeneration unit (250) to ultimately result in an acid gas stream containing the combined acid gases (and other contaminants) removed from both synthesis gas stream (50) and gaseous hydrocarbon stream (84). First acid gas-rich absorber stream (36) and second acid gas-rich absorber stream (35) may be combined prior to or within absorber regeneration unit (250) for co-processing. An acid gas-lean absorber stream (70) is generated, which can be recycled back to one or both of first acid gas absorber unit (230) and second acid gas absorber unit (210) along with make-up absorber as required.
  • A carbon dioxide-rich stream (87) is also generated containing a substantial portion of carbon dioxide from both synthesis gas stream (50) and gaseous hydrocarbon stream (84). If one or both of synthesis gas stream (50) and gaseous hydrocarbon stream (84) contain other acid gas contaminants, such as hydrogen sulfide, then an additional stream may be generated, such as hydrogen sulfide stream (88).
  • Alternatively, as mentioned above, other acid gases can remain in carbon dioxide-rich stream (87), particularly in the case where carbon dioxide-rich stream (87) is used for EOR, in which case carbon dioxide-rich stream (87) will be a sour CO2 stream.
  • Use of Carbon Dioxide-Rich Stream (87) for EOR
  • In one embodiment, carbon dioxide-rich stream (87) is used for EOR.
  • In such embodiment, the recovered carbon dioxide-rich recycle stream (87) is in whole or in part compressed via compressor (400) to generate pressurized carbon dioxide stream (89) for the EOR portion of the process. A CO2 product stream (90) can also optionally be split off of pressurized carbon dioxide stream (89).
  • Suitable compressors for compressing carbon dioxide-rich recycle stream (87) to appropriate pressures and conditions for EOR are in a general sense well-known to those of ordinary skill in the relevant art.
  • Optional Further Processing of Acid Gas-Depleted Product Streams
  • All or a portion the of the acid gas-depleted product gas steam (38) (FIG. 1), acid gas-depleted gaseous hydrocarbon product stream (80) (FIGS. 2 and 3), or the acid gas-depleted synthesis gas stream (30) and acid gas-depleted gaseous hydrocarbon product stream (31) (FIGS. 4 and 5) (individually, or combined in whole or in part), may be processed to end products and/or for end uses as are well known to those of ordinary skill in the relevant art.
  • Non-limiting options are discussed below in reference to FIGS. 3 and 5. Although FIGS. 3 and 5 only depict some of the options as applied to acid gas-depleted gaseous hydrocarbon product stream (80) and acid gas-depleted synthesis gas stream (30), these options (and others) may be applied to acid gas-depleted gaseous hydrocarbon product stream (31) (or a combined stream) where appropriate.
  • Hydrogen Separation (730)
  • Hydrogen may be separated from all or a portion of the acid gas-depleted gaseous hydrocarbon product stream (80) or acid gas-depleted synthesis gas stream (30) according to methods known to those skilled in the art, such as cryogenic distillation, the use of molecular sieves, gas separation (e.g., ceramic or polymeric) membranes, and/or pressure swing adsorption (PSA) techniques.
  • In one embodiment, a PSA device is utilized for hydrogen separation. PSA technology for separation of hydrogen from gas mixtures containing methane (and optionally carbon monoxide) is in general well-known to those of ordinary skill in the relevant art as disclosed, for example, in U.S. Pat. No. 6,379,645 (and other citations referenced therein). PSA devices are generally commercially available, for example, based on technologies available from Air Products and Chemicals Inc. (Allentown, Pa.), UOP LLC (Des Plaines, Ill.) and others.
  • In another embodiment, a hydrogen membrane separator can be used followed by a PSA device.
  • Such separation provides a high-purity hydrogen product stream (72) and a hydrogen-depleted gas stream (74).
  • The recovered hydrogen product stream (72) preferably has a purity of at least about 99 mole %, or at least 99.5 mole %, or at least about 99.9 mole %.
  • The recovered hydrogen can be used, for example, as an energy source and/or as a reactant. For example, the hydrogen can be used as an energy source for hydrogen-based fuel cells, or for power and/or steam generation, for example, in power block (760). The hydrogen can also be used as a reactant in various hydrogenation processes, such as found in the chemical and petroleum refining industries.
  • The hydrogen-depleted gas stream (74) will substantially comprise light hydrocarbons, such as methane, with optional minor amounts of carbon monoxide (depending primarily on the extent of the sour shift reaction and bypass), carbon dioxide (depending primarily on the effectiveness of the acid gas removal process) and hydrogen (depending primarily on the extent and effectiveness of the hydrogen separation technology), and can be further processed/utilized as described below.
  • Methanation (740)
  • If the acid gas-depleted gaseous hydrocarbon product stream (80) or the acid gas-depleted synthesis gas stream (30) (or the hydrogen-depleted sweetened gas stream (74)) contains carbon monoxide and hydrogen, all or part of the stream may be fed to a (trim) methanation unit (740) to generate additional methane from the carbon monoxide and hydrogen (see formula (III) above), resulting in a methane-enriched gas stream (75).
  • The methanation reaction can be carried out in any suitable reactor, e.g., a single-stage methanation reactor, a series of single-stage methanation reactors or a multistage reactor. Methanation reactors include, without limitation, fixed bed, moving bed or fluidized bed reactors. See, for instance, U.S. Pat. No. 3,958,957, U.S. Pat. No. 4,252,771, U.S. Pat. No. 3,996,014 and U.S. Pat. No. 4,235,044. Methanation reactors and catalysts are generally commercially available. The catalyst used in the methanation, and methanation conditions, are generally known to those of ordinary skill in the relevant art, and will depend, for example, on the temperature, pressure, flow rate and composition of the incoming gas stream.
  • As the methanation reaction is exothermic, the methane-enriched gas stream (75) may be, for example, further provided to a heat exchanger unit (750). While the heat exchanger unit (750) is depicted as a separate unit, it can exist as such and/or be integrated into methanation unit (740), thus being capable of cooling the methanation unit (740) and removing at least a portion of the heat energy from the methane-enriched stream (75) to reduce the temperature and generate a cooled methane-enriched stream (76). The recovered heat energy can be utilized, for example, to generate a process steam stream from a water and/or steam source.
  • All or part of the methane-enriched stream (75) can be recovered as a methane product stream (77) or, it can be further processed, when necessary, to separate and recover CH4 by any suitable gas separation method known to those skilled in the art including, but not limited to, cryogenic distillation and the use of molecular sieves or gas separation (e.g., ceramic) membranes.
  • Pipeline-Quality Natural Gas
  • In certain embodiments, the acid gas-depleted hydrocarbon stream (80), or the acid gas-depleted synthesis gas stream (30), or the acid gas-depleted gaseous hydrocarbon product stream (31), or a combination of the acid gas-depleted synthesis gas stream (30) and the acid gas-depleted gaseous hydrocarbon product stream (31), or the hydrogen-depleted gas stream (74), and/or the methane-enriched gas stream (75), are “pipeline-quality natural gas”. A “pipeline-quality natural gas” typically refers to a natural gas that is (1) within ±5% of the heating value of pure methane (whose heating value is 1010 btu/ft3 under standard atmospheric conditions), (2) substantially free of water (typically a dew point of about −40° C. or less), and (3) substantially free of toxic or corrosive contaminants.
  • Uses of Gaseous Hydrocarbon Product Streams
  • All or a portion of the aforementioned streams can, for example, be utilized for combustion and/or steam generation, for example, in a power generation block (760) to produce electrical power (79) which may be either utilized within the plant or can be sold onto the power grid.
  • All or a portion of these streams can also be used as a recycle hydrocarbon stream (78), for example, for use as carbonaceous feedstock (10) in a gaseous partial oxidation/methane reforming process, or for the generation of syngas feed stream (12) for use in a hydromethanation process (in, for example, a gaseous partial oxidation/methane reforming process). Both of these uses can, for example, ultimately result in an optimized production of hydrogen product stream (72), and carbon dioxide-rich stream (87).
  • Power Generation Block (760, 760 a)
  • The present process, as discussed in detail above, can be integrated with a power generation block (760, 760 a) for the production of electrical power (79, 79 a) as a product of the integrated process. The power generation block (760, 760 a) can be of a configuration similar to that generally utilized in integrated gasification combined cycle (IGCC) applications.
  • Particularly, the power generation block (760, 760 a) can comprise an air separation unit (800a) for use in generating oxygen-rich stream (14) and nitrogen-rich stream (17) from an air stream (18).
  • An example of a power generation block suitable for use in connection with the present invention is depicted in FIG. 6. Reference is made to power generation block (760) in FIG. 6 and below, but the discussion is also applicable to power generation block (760 a) as well.
  • A combustible gas stream (81) is fed into power generation block (760). Combustible gas stream (81) is typically a methane-rich and/or hydrogen-rich gas stream, such as a natural or synthetic natural gas stream. In various embodiments, combustible gas stream (81) can comprise all or a portion of one or more of (i) acid-gas depleted product gas stream (38); (ii) acid-gas depleted gaseous hydrocarbon product stream (31), (iii) acid gas-depleted hydrocarbon product stream (80); and/or (iv) a downstream derivative of (i), (ii) and/or (iii), such as hydrogen product stream (72), hydrogen-depleted gas stream (74) and/or methane-enriched gas stream (76).
  • As depicted in FIG. 1, one or both of power generation blocks (760) and (760 a) can be present. When power generation block (760 a) is present, the combustible gas stream (81) is gaseous hydrocarbon stream (84). Power generation block (760 a) if present can have the same or different configuration as power generation block (760).
  • Depending on the pressure of combustible gas stream (81), it can initially be fed to an expander (987), which can be a first turbine generator. A first electrical power stream (79 b) can be generated as a result of this decompression.
  • The decompressed combustible gas stream can then be fed to a combustor (980) along with a compressed air stream (not depicted) or a compressed oxygen-rich stream (14 b), where it is combusted to produce combustion gases (83) at an elevated temperature and pressure. In one embodiment, compressed oxygen-rich stream (14 b) comprises at least a portion of oxygen-rich stream (14). Suitable combustors are generally well-known to those of ordinary skill in the relevant art.
  • The resulting combustion gases (83) are fed to a second turbine generator (982) where a second electrical power stream (79 c) is generated.
  • The second turbine generator (982) can be coupled (mechanically and/or electrically) to a compressor for compressing, for example, an air stream (18) to generate compressed air stream for use in combustor (980). In one embodiment, as depicted in FIG. 6, compressor is air separation unit (800 a) into which air stream (18) is fed, and oxygen-rich stream (14) and nitrogen-rich stream (17) are generated. In another embodiment, air separation unit (800) is operated utilizing electrical power (79) generated in power generation block (760).
  • Combustion gases (83), after passing through second turbine generator (982), still comprise significant heat energy, and can be passed to a heat recovery steam generator (984) before exiting the power generation block (760) as a stack gas stream (96).
  • If combustor (980) is fed with substantially pure oxygen as compressed oxygen-rich stream (14 b) and combustible gas stream (81) is a methane-rich stream, then stack gas stream (96) will comprise substantially CO2 and can optionally be processed via acid gas removal unit (200) to capture the carbon dioxide, or directly provided to a compressor (such as compressor (400)) for EOR use.
  • A steam stream (91) generated in heat recovery steam generator (985) can be passed to a third turbine generator (985) where a third electrical power stream (79 d) is generated. A steam/water stream (98) from third turbine generator (985) is then passed back to heat recovery steam generator (984) for reheating and reuse.
  • If combustor (980) is fed with substantially pure oxygen as compressed oxygen-rich stream (14 b) and combustible gas stream (81) is a hydrogen-rich stream, then stack gas stream (96) will comprise substantially steam which can be recovered and utilized in the process, for example, directly fed to third turbine generator (985) for the generation of electrical power.
  • Air Separation Unit (800)
  • Air separation units suitable for use as air separation unit (800) and (800 a) are in general well-known to those of ordinary skill in the relevant art. Well-know air separation technologies include, for example, cryogenic distillation, ambient temperature adsorption and membrane separations.
  • Operating conditions, and equipment and configurations, of the various technologies in order to achieve the desired oxygen-rich stream (14) and nitrogen-rich stream (17) from air stream (18) are in a general sense known to those of ordinary skill in the relevant art, and are not critical to the present invention in its broadest sense.
  • The nitrogen-rich stream (17) is in whole or in part compressed via compressor (410) to generate pressurized nitrogen stream (19) for the EOR portion of the process. Suitable compressors for compressing nitrogen-rich stream (17) to appropriate pressures and conditions for EOR are in a general sense well-known to those of ordinary skill in the relevant art.
  • Examples of Additional Specific Embodiments
  • In one embodiment, the synthesis gas stream is produced by a catalytic steam methane reforming process utilizing a methane-containing stream as the carbonaceous feedstock.
  • In another embodiment, the synthesis gas stream is produced by a non-catalytic (thermal) gaseous partial oxidation process utilizing a methane-containing stream as the carbonaceous feedstock.
  • In another embodiment, the synthesis gas stream is produced by a catalytic autothermal reforming process utilizing a methane-containing stream as the carbonaceous feedstock.
  • The methane-containing stream for use in these processes may be a natural gas stream, a synthetic natural gas stream or a combination thereof In one embodiment, the methane-containing stream comprises all or a portion of the acid gas-depleted gaseous hydrocarbon product stream (or a derivative of this stream after downstream processing).
  • The resulting synthesis gas stream from these processes will comprise at least hydrogen and one or both of carbon monoxide and carbon dioxide, depending on gas processing prior to acid gas removal.
  • In another embodiment, the synthesis gas stream is produced by a non-catalytic thermal gasification process utilizing a non-gaseous carbonaceous material as the carbonaceous feedstock, such as coal, petcoke, biomass and mixtures thereof.
  • The resulting synthesis gas stream from this process will comprise at least hydrogen and one or both of carbon monoxide and carbon dioxide, depending on gas processing prior to acid gas removal.
  • In another embodiment, the synthesis gas stream is produced by a catalytic hydromethanation process utilizing a non-gaseous carbonaceous material as the carbonaceous feedstock, such as coal, petcoke, biomass and mixtures thereof.
  • The resulting synthesis gas stream from this process will comprise at least methane, hydrogen and carbon dioxide, and optionally carbon monoxide, depending on gas processing prior to acid gas removal.

Claims (20)

1. An integrated process to (i) produce an acid gas-depleted product gas stream, (ii) produce an oxygen-rich gas stream, (iii) produce a hydrocarbon-containing fluid from an underground hydrocarbon reservoir via a hydrocarbon production well, and (iv) enhance production of the hydrocarbon-containing fluid from the underground hydrocarbon reservoir, the process comprising the steps of:
(1) injecting a pressurized nitrogen stream into the underground hydrocarbon reservoir to enhance production of the hydrocarbon-containing fluid from the underground hydrocarbon reservoir via the hydrocarbon production well;
(2) recovering the hydrocarbon-containing fluid produced from the hydrocarbon production well;
(3) separating the hydrocarbon-containing fluid into (a) a liquid hydrocarbon product stream and (b) a gaseous hydrocarbon product stream;
(4) producing a synthesis gas stream from a carbonaceous feedstock, the synthesis gas stream comprising (a) carbon dioxide, and (b) at least one of hydrogen and methane;
(5) treating the synthesis gas stream in an acid gas removal unit to produce the acid gas-depleted synthesis gas stream and a carbon dioxide-rich stream;
(6) optionally treating the gaseous hydrocarbon product stream in the acid gas removal unit to produce an acid-gas depleted gaseous hydrocarbon product stream;
(7) optionally combusting at least a portion of one or more of the acid gas-depleted synthesis gas stream, the gaseous hydrocarbon product stream and the acid-gas depleted gaseous hydrocarbon product stream;
(8) separating an air stream into the oxygen-rich stream and a nitrogen-rich stream; and
(9) pressurizing the nitrogen-rich stream to generate the pressurized nitrogen stream, wherein at least a portion of the oxygen-rich stream is used in one or both of steps (4) and (7).
2. The process of claim 1, wherein at least a portion of one or more of the acid gas-depleted synthesis gas stream, the gaseous hydrocarbon product stream and the acid-gas depleted gaseous hydrocarbon product stream is combusted, and at least a portion of the oxygen-rich stream is used for the combustion.
3. The process of claim 1, wherein at least a portion of the oxygen-rich stream is used to produce the synthesis gas stream.
4. The process of claim 1, wherein the synthesis gas stream is produced by a catalytic steam methane reforming process utilizing a methane-containing stream as the carbonaceous feedstock.
5. The process of claim 1, wherein the synthesis gas stream is produced by a non-catalytic gaseous partial oxidation process utilizing a methane-containing stream as the carbonaceous feedstock.
6. The process of claim 1, wherein the synthesis gas stream is produced by a catalytic autothermal reforming process utilizing a methane-containing stream as the carbonaceous feedstock.
7. The process of claim 1, wherein the synthesis gas stream is produced by a non-catalytic thermal gasification process utilizing a non-gaseous carbonaceous material as the carbonaceous feedstock.
8. The process of claim 1, wherein the synthesis gas stream comprises hydrogen and one or both of carbon monoxide and carbon dioxide.
9. The process of claim 1, wherein the synthesis gas stream is produced by a catalytic hydromethanation process utilizing a non-gaseous carbonaceous material as the carbonaceous feedstock.
10. The process of claim 1, wherein the synthesis gas stream comprises methane, hydrogen and carbon dioxide, and optionally carbon monoxide.
11. The process of claim 1, wherein at least a portion of the synthesis gas stream is subject to a sour shift to generate a hydrogen-enriched stream.
12. The process of claim 1, wherein the acid-gas depleted product gas stream comprises hydrogen, and at least a portion of the hydrogen is separated to generate a hydrogen product stream and a hydrogen-depleted gas stream.
13. The process of claim 1, wherein the gaseous hydrocarbon product stream is treated in the acid gas removal unit.
14. The process of claim 13, wherein the acid gas-depleted product gas stream comprises an acid gas-depleted gaseous hydrocarbon product stream and an acid gas-depleted synthesis gas stream.
15. The process of claim 1, wherein the carbon dioxide-rich stream generated from acid gas removal is pressurized to generate a pressurized carbon dioxide stream, at least a portion of which is injected into the underground hydrocarbon reservoir.
16. A process to enhance production of a hydrocarbon-containing fluid from an underground hydrocarbon reservoir via a hydrocarbon production well, by injecting a pressurized nitrogen stream into the underground hydrocarbon reservoir, wherein the pressurized nitrogen stream is generated by a process comprising the steps of:
(I) recovering the hydrocarbon-containing fluid produced from the hydrocarbon production well;
(II) separating the hydrocarbon-containing fluid into (a) a liquid hydrocarbon product stream and (b) a gaseous hydrocarbon product stream;
(III) producing a synthesis gas stream from a carbonaceous feedstock, the synthesis gas stream comprising (a) carbon dioxide, and (b) at least one of hydrogen and methane;
(IV) treating the synthesis gas stream in an acid gas removal unit to produce an acid gas-depleted synthesis gas stream and a carbon dioxide-rich stream;
(V) optionally treating the gaseous hydrocarbon product stream in the acid gas removal unit to produce an acid-gas depleted gaseous hydrocarbon product stream;
(VI) optionally combusting at least a portion of one or more of the acid gas-depleted synthesis gas stream, the gaseous hydrocarbon product stream and the acid-gas depleted gaseous hydrocarbon product stream;
(VII) separating an air stream into an oxygen-rich stream and a nitrogen-rich stream; and
(VIII) pressurizing the nitrogen-rich stream to generate the pressurized nitrogen stream,
wherein at least a portion of the oxygen-rich stream is used in one or both of steps (III) and (VI).
17. An apparatus for producing a hydrocarbon-containing fluid, an acid gas-depleted product gas stream and an oxygen-rich stream, the apparatus comprising:
(A) a synthesis gas production system adapted to produce a synthesis gas from a carbonaceous feedstock, the synthesis gas comprising (i) carbon dioxide and (ii) at least one of hydrogen and methane;
(B) an injection well in fluid communication with an underground hydrocarbon reservoir comprising a hydrocarbon-containing fluid, the injection well adapted to inject a pressurized nitrogen stream into the underground hydrocarbon reservoir for enhanced oil recovery;
(C) a hydrocarbon production well in fluid communication with the underground hydrocarbon reservoir, the hydrocarbon production well adapted to remove hydrocarbon-containing fluid from the underground hydrocarbon reservoir;
(D) a separation device in fluid communication with the hydrocarbon production well, the separation device adapted (i) to receive the hydrocarbon fluid from the hydrocarbon production well, and (ii) to separate the hydrocarbon fluid into a liquid hydrocarbon product stream and a gaseous hydrocarbon product stream;
(E) an acid gas removal unit in fluid communication with the synthesis gas generation system, the acid gas removal unit adapted to (i) receive the synthesis gas from the synthesis gas generation system, and (ii) treat the synthesis gas to remove acid gases and produce the acid gas-depleted product gas stream and a carbon dioxide-rich stream;
(F) an air separation unit adapted to (i) receive an air stream and (ii) separate the air stream into an oxygen-rich stream and a nitrogen-rich recycle stream; and
(G) a compressor unit in fluid communication with the air separation unit and the injection well, the compressor unit adapted to (i) receive the nitrogen-rich recycle stream, and (ii) compress the nitrogen-rich recycle stream to generate the pressurized nitrogen stream, and (iii) provide the pressurized nitrogen stream to the injection well.
18. The apparatus of claim 17, wherein the injection well is further adapted to inject a pressurized carbon dioxide stream into the underground hydrocarbon reservoir, and the apparatus further comprises a compressor unit in fluid communication with the acid gas removal unit and the injection well, the compressor unit adapted to (i) receive the carbon dioxide-rich stream, and (ii) compress the carbon dioxide recycle stream to generate the pressurized carbon dioxide stream, and (iii) provide the pressurized carbon dioxide stream to the injection well.
19. The apparatus of claim 17, wherein the acid gas removal unit is adapted to receive a combined stream of the synthesis gas and the gaseous hydrocarbon product stream, and treat the combined stream to remove acid gases and produce an acid gas-depleted product gas stream and a carbon dioxide-rich stream.
20. The apparatus of claim 17, wherein the acid gas removal unit is also adapted to receive the gaseous hydrocarbon product stream from the separation device, and treat the gaseous hydrocarbon product stream to remove acid gases and produce an acid gas-depleted gaseous hydrocarbon product stream.
US12/970,105 2009-12-17 2010-12-16 Integrated enhanced oil recovery process Abandoned US20110146978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/970,105 US20110146978A1 (en) 2009-12-17 2010-12-16 Integrated enhanced oil recovery process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28757109P 2009-12-17 2009-12-17
US12/970,105 US20110146978A1 (en) 2009-12-17 2010-12-16 Integrated enhanced oil recovery process

Publications (1)

Publication Number Publication Date
US20110146978A1 true US20110146978A1 (en) 2011-06-23

Family

ID=44060927

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/970,105 Abandoned US20110146978A1 (en) 2009-12-17 2010-12-16 Integrated enhanced oil recovery process

Country Status (5)

Country Link
US (1) US20110146978A1 (en)
CN (1) CN102652205A (en)
AU (1) AU2010339953A1 (en)
CA (1) CA2779712A1 (en)
WO (1) WO2011084581A1 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090217584A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Steam Generation Processes Utilizing Biomass Feedstocks
US20090260287A1 (en) * 2008-02-29 2009-10-22 Greatpoint Energy, Inc. Process and Apparatus for the Separation of Methane from a Gas Stream
US20090324459A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Three-Train Catalytic Gasification Systems
US20100179232A1 (en) * 2008-10-23 2010-07-15 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20110062722A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
US20110062721A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
US20110207002A1 (en) * 2010-02-23 2011-08-25 Greatpoint Energy, Inc. Integrated Hydromethanation Fuel Cell Power Generation
WO2012024369A1 (en) 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of carbonaceous feedstock
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
WO2012033997A1 (en) 2010-09-10 2012-03-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012061235A1 (en) 2010-11-01 2012-05-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012061238A1 (en) 2010-11-01 2012-05-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
WO2012116003A1 (en) 2011-02-23 2012-08-30 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
WO2012145497A1 (en) 2011-04-22 2012-10-26 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with char beneficiation
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
WO2012166879A1 (en) 2011-06-03 2012-12-06 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US20130000352A1 (en) * 2011-06-30 2013-01-03 General Electric Company Air separation unit and systems incorporating the same
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
WO2013025808A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013025812A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013053017A1 (en) * 2011-10-13 2013-04-18 Linc Energy Ltd System and method for integrated enhanced oil recovery
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
EP2716861A1 (en) * 2012-10-08 2014-04-09 Maersk Olie Og Gas A/S Method and apparatus for enhanced oil recovery
EP2716862A1 (en) * 2012-10-08 2014-04-09 Maersk Olie Og Gas A/S Method and apparatus for producing hydrocarbons from a multilayer system
WO2014055351A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
EP2735697A1 (en) * 2012-11-27 2014-05-28 Shell Internationale Research Maatschappij B.V. Method and system for inhibiting contact of a corrosive displacement gas with corrosion prone natural gas production facilities
WO2014091024A1 (en) 2012-12-13 2014-06-19 Shell Internationale Research Maatschappij B.V. Integrated recovery of hydrocarbons from a subsurface reservoir with nitrogen injection
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US9278314B2 (en) 2012-04-11 2016-03-08 ADA-ES, Inc. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9352270B2 (en) 2011-04-11 2016-05-31 ADA-ES, Inc. Fluidized bed and method and system for gas component capture
US10066834B2 (en) 2013-01-30 2018-09-04 Bogdan Wojak Sulphur-assisted carbon capture and storage (CCS) processes and systems
WO2019013855A1 (en) 2017-07-10 2019-01-17 Exxonmobil Upstream Research Company Methods for deep reservoir stimulation using acid-forming fluids
EP3470621A1 (en) * 2019-01-02 2019-04-17 L2 Consultancy B.V. System and method for adjusting pressure in a subsurface reservoir and system for producing at least one gas for adjusting pressure in a subsurface reservoir
US10323495B2 (en) * 2016-03-30 2019-06-18 Exxonmobil Upstream Research Company Self-sourced reservoir fluid for enhanced oil recovery
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
WO2020070298A1 (en) * 2018-10-05 2020-04-09 Total Sa Autonomous plant and method for hydrogen recovery and conversion
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
WO2020141153A1 (en) * 2019-01-02 2020-07-09 L2 Consultancy B.V. System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2956135C (en) * 2014-07-29 2022-08-02 Dow Global Technologies Llc Process for carbon dioxide recovery from a gas stream containing carbon dioxide and hydrocarbons
CN105019874A (en) * 2015-07-03 2015-11-04 石晓岩 Oil extraction method utilizing circulated heating cavity gases
CA3047952A1 (en) * 2019-06-11 2020-12-11 Dustin Clark Systems and methods for storing and extracting natural gas from underground formations and generating electricity
RU2762712C1 (en) * 2021-02-08 2021-12-22 Алексей Леонидович Западинский Method for producing hydrocarbons

Citations (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791549A (en) * 1953-12-30 1957-05-07 Exxon Research Engineering Co Fluid coking process with quenching of hydrocarbon vapors
US2886405A (en) * 1956-02-24 1959-05-12 Benson Homer Edwin Method for separating co2 and h2s from gas mixtures
US3034848A (en) * 1959-04-14 1962-05-15 Du Pont Compaction of dyes
US3150716A (en) * 1959-10-01 1964-09-29 Chemical Construction Corp Pressurizing oil fields
US3164330A (en) * 1960-09-06 1965-01-05 Neidl Georg Rotary-pump apparatus
US3435590A (en) * 1967-09-01 1969-04-01 Chevron Res Co2 and h2s removal
US3876393A (en) * 1972-12-04 1975-04-08 Showa Denko Kk Method and article for removing mercury from gases contaminated therewith
US3958957A (en) * 1974-07-01 1976-05-25 Exxon Research And Engineering Company Methane production
US4005996A (en) * 1975-09-04 1977-02-01 El Paso Natural Gas Company Methanation process for the production of an alternate fuel for natural gas
US4011066A (en) * 1975-01-29 1977-03-08 Metallgesellschaft Aktiengesellschaft Process of purifying gases produced by the gasification of solid or liquid fossil fuels
US4017272A (en) * 1975-06-05 1977-04-12 Bamag Verfahrenstechnik Gmbh Process for gasifying solid carbonaceous fuel
US4021370A (en) * 1973-07-24 1977-05-03 Davy Powergas Limited Fuel gas production
US4025423A (en) * 1975-01-15 1977-05-24 Metallgesellschaft Aktiengesellschaft Process for removing monohydric and polyhydric phenols from waste water
US4052176A (en) * 1975-09-29 1977-10-04 Texaco Inc. Production of purified synthesis gas H2 -rich gas, and by-product CO2 -rich gas
US4069304A (en) * 1975-12-31 1978-01-17 Trw Hydrogen production by catalytic coal gasification
US4077778A (en) * 1975-09-29 1978-03-07 Exxon Research & Engineering Co. Process for the catalytic gasification of coal
US4091073A (en) * 1975-08-29 1978-05-23 Shell Oil Company Process for the removal of H2 S and CO2 from gaseous streams
US4092125A (en) * 1975-03-31 1978-05-30 Battelle Development Corporation Treating solid fuel
US4152119A (en) * 1977-08-01 1979-05-01 Dynecology Incorporated Briquette comprising caking coal and municipal solid waste
US4189307A (en) * 1978-06-26 1980-02-19 Texaco Development Corporation Production of clean HCN-free synthesis gas
US4193771A (en) * 1978-05-08 1980-03-18 Exxon Research & Engineering Co. Alkali metal recovery from carbonaceous material conversion process
US4193772A (en) * 1978-06-05 1980-03-18 Exxon Research & Engineering Co. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue
US4200439A (en) * 1977-12-19 1980-04-29 Exxon Research & Engineering Co. Gasification process using ion-exchanged coal
US4204843A (en) * 1977-12-19 1980-05-27 Exxon Research & Engineering Co. Gasification process
US4223728A (en) * 1978-11-30 1980-09-23 Garrett Energy Research & Engineering Inc. Method of oil recovery from underground reservoirs
US4243639A (en) * 1979-05-10 1981-01-06 Tosco Corporation Method for recovering vanadium from petroleum coke
US4249471A (en) * 1979-01-29 1981-02-10 Gunnerman Rudolf W Method and apparatus for burning pelletized organic fibrous fuel
US4252771A (en) * 1977-04-15 1981-02-24 Asnaprogetti S.P.A. Methanation reactor
US4260421A (en) * 1979-05-18 1981-04-07 Exxon Research & Engineering Co. Cement production from coal conversion residues
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
US4315753A (en) * 1980-08-14 1982-02-16 The United States Of America As Represented By The Secretary Of The Interior Electrochemical apparatus for simultaneously monitoring two gases
US4315758A (en) * 1979-10-15 1982-02-16 Institute Of Gas Technology Process for the production of fuel gas from coal
US4318712A (en) * 1978-07-17 1982-03-09 Exxon Research & Engineering Co. Catalytic coal gasification process
US4322222A (en) * 1975-11-10 1982-03-30 Occidental Petroleum Corporation Process for the gasification of carbonaceous materials
US4330305A (en) * 1976-03-19 1982-05-18 Basf Aktiengesellschaft Removal of CO2 and/or H2 S from gases
US4344486A (en) * 1981-02-27 1982-08-17 Standard Oil Company (Indiana) Method for enhanced oil recovery
US4372755A (en) * 1978-07-27 1983-02-08 Enrecon, Inc. Production of a fuel gas with a stabilized metal carbide catalyst
US4375362A (en) * 1978-07-28 1983-03-01 Exxon Research And Engineering Co. Gasification of ash-containing solid fuels
US4428535A (en) * 1981-07-06 1984-01-31 Liquid Carbonic Corporation Apparatus to cool particulate matter for grinding
US4432773A (en) * 1981-09-14 1984-02-21 Euker Jr Charles A Fluidized bed catalytic coal gasification process
US4433065A (en) * 1981-03-24 1984-02-21 Shell Oil Company Process for the preparation of hydrocarbons from carbon-containing material
US4436531A (en) * 1982-08-27 1984-03-13 Texaco Development Corporation Synthesis gas from slurries of solid carbonaceous fuels
US4436028A (en) * 1982-05-10 1984-03-13 Wilder David M Roll mill for reduction of moisture content in waste material
US4439210A (en) * 1981-09-25 1984-03-27 Conoco Inc. Method of catalytic gasification with increased ash fusion temperature
US4444568A (en) * 1981-04-07 1984-04-24 Metallgesellschaft, Aktiengesellschaft Method of producing fuel gas and process heat fron carbonaceous materials
US4491609A (en) * 1982-08-06 1985-01-01 Bergwerksverband Gmbh Method of manufacturing adsorbents
US4497784A (en) * 1983-11-29 1985-02-05 Shell Oil Company Solution removal of HCN from gaseous streams, with hydrolysis of thiocyanate formed
US4500323A (en) * 1981-08-26 1985-02-19 Kraftwerk Union Aktiengesellschaft Process for the gasification of raw carboniferous materials
US4505881A (en) * 1983-11-29 1985-03-19 Shell Oil Company Ammonium polysulfide removal of HCN from gaseous streams, with subsequent production of NH3, H2 S, and CO2
US4508693A (en) * 1983-11-29 1985-04-02 Shell Oil Co. Solution removal of HCN from gaseous streams, with pH adjustment of reacted solution and hydrolysis of thiocyanate formed
US4508544A (en) * 1981-03-24 1985-04-02 Exxon Research & Engineering Co. Converting a fuel to combustible gas
US4572826A (en) * 1984-12-24 1986-02-25 Shell Oil Company Two stage process for HCN removal from gaseous streams
US4661237A (en) * 1982-03-29 1987-04-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US4720289A (en) * 1985-07-05 1988-01-19 Exxon Research And Engineering Company Process for gasifying solid carbonaceous materials
US4803061A (en) * 1986-12-29 1989-02-07 Texaco Inc. Partial oxidation process with magnetic separation of the ground slag
US4808194A (en) * 1984-11-26 1989-02-28 Texaco Inc. Stable aqueous suspensions of slag, fly-ash and char
US4810475A (en) * 1987-08-18 1989-03-07 Shell Oil Company Removal of HCN, and HCN and COS, from a substantially chloride-free gaseous stream
US4822935A (en) * 1986-08-26 1989-04-18 Scott Donald S Hydrogasification of biomass to produce high yields of methane
US4892567A (en) * 1988-08-15 1990-01-09 Mobil Oil Corporation Simultaneous removal of mercury and water from fluids
US4995193A (en) * 1989-09-29 1991-02-26 Ube Industries, Ltd. Method of preventing adherence of ash to gasifier wall
US5074357A (en) * 1989-12-27 1991-12-24 Marathon Oil Company Process for in-situ enrichment of gas used in miscible flooding
US5093094A (en) * 1989-05-05 1992-03-03 Shell Oil Company Solution removal of H2 S from gas streams
US5094737A (en) * 1990-10-01 1992-03-10 Exxon Research & Engineering Company Integrated coking-gasification process with mitigation of bogging and slagging
US5277884A (en) * 1992-03-02 1994-01-11 Reuel Shinnar Solvents for the selective removal of H2 S from gases containing both H2 S and CO2
US5388645A (en) * 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388650A (en) * 1993-06-14 1995-02-14 Generon Systems Non-cryogenic production of nitrogen for on-site injection in downhole drilling
US5566755A (en) * 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5616154A (en) * 1992-06-05 1997-04-01 Battelle Memorial Institute Method for the catalytic conversion of organic materials into a product gas
US5720785A (en) * 1993-04-30 1998-02-24 Shell Oil Company Method of reducing hydrogen cyanide and ammonia in synthesis gas
US5733515A (en) * 1993-01-21 1998-03-31 Calgon Carbon Corporation Purification of air in enclosed spaces
US5855631A (en) * 1994-12-02 1999-01-05 Leas; Arnold M. Catalytic gasification process and system
US5865898A (en) * 1992-08-06 1999-02-02 The Texas A&M University System Methods of biomass pretreatment
US6013158A (en) * 1994-02-02 2000-01-11 Wootten; William A. Apparatus for converting coal to hydrocarbons
US6015104A (en) * 1998-03-20 2000-01-18 Rich, Jr.; John W. Process and apparatus for preparing feedstock for a coal gasification plant
US6028234A (en) * 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
US6032737A (en) * 1998-04-07 2000-03-07 Atlantic Richfield Company Method and system for increasing oil production from an oil well producing a mixture of oil and gas
EP1004746A1 (en) * 1998-11-27 2000-05-31 Shell Internationale Researchmaatschappij B.V. Process for the production of liquid hydrocarbons
US6180843B1 (en) * 1997-10-14 2001-01-30 Mobil Oil Corporation Method for producing gas hydrates utilizing a fluidized bed
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US6379645B1 (en) * 1999-10-14 2002-04-30 Air Products And Chemicals, Inc. Production of hydrogen using methanation and pressure swing adsorption
US6506349B1 (en) * 1994-11-03 2003-01-14 Tofik K. Khanmamedov Process for removal of contaminants from a gas stream
US6506361B1 (en) * 2000-05-18 2003-01-14 Air Products And Chemicals, Inc. Gas-liquid reaction process including ejector and monolith catalyst
US20030070808A1 (en) * 2001-10-15 2003-04-17 Conoco Inc. Use of syngas for the upgrading of heavy crude at the wellhead
US20040020123A1 (en) * 2001-08-31 2004-02-05 Takahiro Kimura Dewatering device and method for gas hydrate slurrys
US6692711B1 (en) * 1998-01-23 2004-02-17 Exxonmobil Research And Engineering Company Production of low sulfur syngas from natural gas with C4+/C5+ hydrocarbon recovery
US20040244973A1 (en) * 2001-08-15 2004-12-09 Parsley Alan John Teritary oil recovery combined with gas conversion process
US20040256116A1 (en) * 2001-08-31 2004-12-23 Ola Olsvik Method and plant or increasing oil recovery by gas injection
US6855852B1 (en) * 1999-06-24 2005-02-15 Metasource Pty Ltd Natural gas hydrate and method for producing same
US6878358B2 (en) * 2002-07-22 2005-04-12 Bayer Aktiengesellschaft Process for removing mercury from flue gases
US20050288537A1 (en) * 2004-06-29 2005-12-29 Conocophillips Company Blending for density specifications using Fischer-Tropsch diesel fuel
US7077202B2 (en) * 2001-06-15 2006-07-18 The Petroleum Oil and Gas Corporation of South Africa (Proprietary Limited) Process for the recovery of oil from a natural oil reservoir
US20060231252A1 (en) * 2002-12-13 2006-10-19 Shaw Gareth D H Method for oil recovery from an oil field
US20060272813A1 (en) * 2002-12-13 2006-12-07 Ola Olsvik Plant and a method for increased oil recovery
US20070000177A1 (en) * 2005-07-01 2007-01-04 Hippo Edwin J Mild catalytic steam gasification process
US20070051043A1 (en) * 2005-09-07 2007-03-08 Future Energy Gmbh And Manfred Schingnitz Method and device for producing synthesis by partial oxidation of slurries made from fuels containing ash with partial quenching and waste heat recovery
US20070083072A1 (en) * 2005-10-12 2007-04-12 Nahas Nicholas C Catalytic steam gasification of petroleum coke to methane
US7205448B2 (en) * 2003-12-19 2007-04-17 Uop Llc Process for the removal of nitrogen compounds from a fluid stream
US7299868B2 (en) * 2001-03-15 2007-11-27 Alexei Zapadinski Method and system for recovery of hydrocarbons from a hydrocarbon-bearing information
US20080289822A1 (en) * 2007-05-23 2008-11-27 Ex-Tar Technologies, Inc. Integrated system and method for steam-assisted gravity drainage (sagd)-heavy oil production to produce super-heated steam without liquid waste discharge
US20090048476A1 (en) * 2007-08-02 2009-02-19 Greatpoint Energy, Inc. Catalyst-Loaded Coal Compositions, Methods of Making and Use
US20090090056A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US20090090055A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US7666383B2 (en) * 2005-04-06 2010-02-23 Cabot Corporation Method to produce hydrogen or synthesis gas and carbon black
US20100071262A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20100076235A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US7897126B2 (en) * 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7901644B2 (en) * 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7922782B2 (en) * 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US7926750B2 (en) * 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US20120046510A1 (en) * 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US20120060417A1 (en) * 2010-09-10 2012-03-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094650A (en) 1972-09-08 1978-06-13 Exxon Research & Engineering Co. Integrated catalytic gasification process
US3828474A (en) 1973-02-01 1974-08-13 Pullman Inc Process for producing high strength reducing gas
DE2427530C2 (en) 1974-06-07 1984-04-05 Metallgesellschaft Ag, 6000 Frankfurt Methanation reactor
US3998607A (en) 1975-05-12 1976-12-21 Exxon Research And Engineering Company Alkali metal catalyst recovery process
US4057512A (en) 1975-09-29 1977-11-08 Exxon Research & Engineering Co. Alkali metal catalyst recovery system
US4617027A (en) 1977-12-19 1986-10-14 Exxon Research And Engineering Co. Gasification process
US4235044A (en) 1978-12-21 1980-11-25 Union Carbide Corporation Split stream methanation process
US4468231A (en) 1982-05-03 1984-08-28 Exxon Research And Engineering Co. Cation ion exchange of coal
DE3222653C1 (en) 1982-06-16 1983-04-21 Kraftwerk Union AG, 4330 Mülheim Process for converting carbonaceous fuel into a combustible product gas
US4606105A (en) 1982-11-09 1986-08-19 Snavely Harry C Method of banjo construction
US4551155A (en) 1983-07-07 1985-11-05 Sri International In situ formation of coal gasification catalysts from low cost alkali metal salts
FR2559497B1 (en) 1984-02-10 1988-05-20 Inst Francais Du Petrole PROCESS FOR CONVERTING HEAVY OIL RESIDUES INTO HYDROGEN AND GASEOUS AND DISTILLABLE HYDROCARBONS
US4558027A (en) 1984-05-25 1985-12-10 The United States Of America As Represented By The United States Department Of Energy Catalysts for carbon and coal gasification
US5055181A (en) 1987-09-30 1991-10-08 Exxon Research And Engineering Company Hydropyrolysis-gasification of carbonaceous material
IT1222811B (en) 1987-10-02 1990-09-12 Eniricerche Spa PROCEDURE FOR THE LIQUEFACTION OF THE COAL IN A SINGLE STAGE
US6790430B1 (en) 1999-12-09 2004-09-14 The Regents Of The University Of California Hydrogen production from carbonaceous material
FR2808223B1 (en) * 2000-04-27 2002-11-22 Inst Francais Du Petrole PROCESS FOR THE PURIFICATION OF AN EFFLUENT CONTAINING CARBON GAS AND HYDROCARBONS BY COMBUSTION
US7074373B1 (en) 2000-11-13 2006-07-11 Harvest Energy Technology, Inc. Thermally-integrated low temperature water-gas shift reactor apparatus and process
US6894183B2 (en) 2001-03-26 2005-05-17 Council Of Scientific And Industrial Research Method for gas—solid contacting in a bubbling fluidized bed reactor
US6863878B2 (en) 2001-07-05 2005-03-08 Robert E. Klepper Method and apparatus for producing synthesis gas from carbonaceous materials
US6955695B2 (en) 2002-03-05 2005-10-18 Petro 2020, Llc Conversion of petroleum residua to methane
US6622361B1 (en) 2002-03-11 2003-09-23 Timothy R. Wilson Railroad clip removal system having a pair of arms within a guide slot
US7051818B2 (en) * 2002-04-22 2006-05-30 P.E.T. International, Inc. Three in one combined power unit for nitrogen system, fluid system, and coiled tubing system
CN2651444Y (en) * 2003-08-23 2004-10-27 辽河石油勘探局 Combined heat, electric power and gas producing apparatus in oil field
US7575613B2 (en) 2005-05-26 2009-08-18 Arizona Public Service Company Method and apparatus for producing methane from carbonaceous material
US7655215B2 (en) 2006-03-06 2010-02-02 Bioconversion Technology Llc Method and apparatus for producing synthesis gas from waste materials
FR2906879A1 (en) * 2007-02-06 2008-04-11 Air Liquide Installation for producing a mixture of nitrogen and carbon dioxide for injection into a subterranean hydrocarbon reservoir comprises an air separator, an oxygen consumption unit, a carbon dioxide separator and a mixer
US8153027B2 (en) 2007-07-09 2012-04-10 Range Fuels, Inc. Methods for producing syngas
US20090165384A1 (en) 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Continuous Process for Converting Carbonaceous Feedstock into Gaseous Products
WO2009086370A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Processes for making syngas-derived products
WO2009086372A1 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Carbonaceous fuels and processes for making and using them
WO2009086363A1 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Coal compositions for catalytic gasification and process for its preparation
WO2009086407A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US20090170968A1 (en) 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Processes for Making Synthesis Gas and Syngas-Derived Products
WO2009086361A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
WO2009086367A1 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Petroleum coke compositions for catalytic gasification and preparation process thereof
WO2009086374A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
AU2008345189B2 (en) 2007-12-28 2011-09-22 Greatpoint Energy, Inc. Petroleum coke compositions for catalytic gasification
WO2009111342A2 (en) 2008-02-29 2009-09-11 Greatpoint Energy, Inc Carbonaceous fines recycle
WO2009111345A2 (en) 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US20090220406A1 (en) 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Selective Removal and Recovery of Acid Gases from Gasification Products
US20090217575A1 (en) 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
US20090217582A1 (en) 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Processes for Making Adsorbents and Processes for Removing Contaminants from Fluids Using Them
US20090260287A1 (en) 2008-02-29 2009-10-22 Greatpoint Energy, Inc. Process and Apparatus for the Separation of Methane from a Gas Stream
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8114177B2 (en) 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
WO2009124017A2 (en) 2008-04-01 2009-10-08 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
CA2718536C (en) 2008-04-01 2014-06-03 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
CN102076828A (en) 2008-06-27 2011-05-25 格雷特波因特能源公司 Four-train catalytic gasification systems
US20090324459A1 (en) 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Three-Train Catalytic Gasification Systems
US20090324461A1 (en) 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
JP5555696B2 (en) 2008-06-27 2014-07-23 グレイトポイント・エナジー・インコーポレイテッド Two-line catalytic gasification system
US20090324462A1 (en) 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
WO2010033846A2 (en) 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US20100120926A1 (en) 2008-09-19 2010-05-13 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
WO2010048493A2 (en) 2008-10-23 2010-04-29 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
KR101290453B1 (en) 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. Processes for preparing a catalyzed carbonaceous particulate
WO2010078298A1 (en) 2008-12-30 2010-07-08 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate

Patent Citations (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791549A (en) * 1953-12-30 1957-05-07 Exxon Research Engineering Co Fluid coking process with quenching of hydrocarbon vapors
US2886405A (en) * 1956-02-24 1959-05-12 Benson Homer Edwin Method for separating co2 and h2s from gas mixtures
US3034848A (en) * 1959-04-14 1962-05-15 Du Pont Compaction of dyes
US3150716A (en) * 1959-10-01 1964-09-29 Chemical Construction Corp Pressurizing oil fields
US3164330A (en) * 1960-09-06 1965-01-05 Neidl Georg Rotary-pump apparatus
US3435590A (en) * 1967-09-01 1969-04-01 Chevron Res Co2 and h2s removal
US3876393A (en) * 1972-12-04 1975-04-08 Showa Denko Kk Method and article for removing mercury from gases contaminated therewith
US4021370A (en) * 1973-07-24 1977-05-03 Davy Powergas Limited Fuel gas production
US3958957A (en) * 1974-07-01 1976-05-25 Exxon Research And Engineering Company Methane production
US4025423A (en) * 1975-01-15 1977-05-24 Metallgesellschaft Aktiengesellschaft Process for removing monohydric and polyhydric phenols from waste water
US4011066A (en) * 1975-01-29 1977-03-08 Metallgesellschaft Aktiengesellschaft Process of purifying gases produced by the gasification of solid or liquid fossil fuels
US4092125A (en) * 1975-03-31 1978-05-30 Battelle Development Corporation Treating solid fuel
US4017272A (en) * 1975-06-05 1977-04-12 Bamag Verfahrenstechnik Gmbh Process for gasifying solid carbonaceous fuel
US4091073A (en) * 1975-08-29 1978-05-23 Shell Oil Company Process for the removal of H2 S and CO2 from gaseous streams
US4005996A (en) * 1975-09-04 1977-02-01 El Paso Natural Gas Company Methanation process for the production of an alternate fuel for natural gas
US4052176A (en) * 1975-09-29 1977-10-04 Texaco Inc. Production of purified synthesis gas H2 -rich gas, and by-product CO2 -rich gas
US4077778A (en) * 1975-09-29 1978-03-07 Exxon Research & Engineering Co. Process for the catalytic gasification of coal
US4322222A (en) * 1975-11-10 1982-03-30 Occidental Petroleum Corporation Process for the gasification of carbonaceous materials
US4069304A (en) * 1975-12-31 1978-01-17 Trw Hydrogen production by catalytic coal gasification
US4330305A (en) * 1976-03-19 1982-05-18 Basf Aktiengesellschaft Removal of CO2 and/or H2 S from gases
US4252771A (en) * 1977-04-15 1981-02-24 Asnaprogetti S.P.A. Methanation reactor
US4152119A (en) * 1977-08-01 1979-05-01 Dynecology Incorporated Briquette comprising caking coal and municipal solid waste
US4200439A (en) * 1977-12-19 1980-04-29 Exxon Research & Engineering Co. Gasification process using ion-exchanged coal
US4204843A (en) * 1977-12-19 1980-05-27 Exxon Research & Engineering Co. Gasification process
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
US4193771A (en) * 1978-05-08 1980-03-18 Exxon Research & Engineering Co. Alkali metal recovery from carbonaceous material conversion process
US4193772A (en) * 1978-06-05 1980-03-18 Exxon Research & Engineering Co. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue
US4189307A (en) * 1978-06-26 1980-02-19 Texaco Development Corporation Production of clean HCN-free synthesis gas
US4318712A (en) * 1978-07-17 1982-03-09 Exxon Research & Engineering Co. Catalytic coal gasification process
US4372755A (en) * 1978-07-27 1983-02-08 Enrecon, Inc. Production of a fuel gas with a stabilized metal carbide catalyst
US4375362A (en) * 1978-07-28 1983-03-01 Exxon Research And Engineering Co. Gasification of ash-containing solid fuels
US4223728A (en) * 1978-11-30 1980-09-23 Garrett Energy Research & Engineering Inc. Method of oil recovery from underground reservoirs
US4249471A (en) * 1979-01-29 1981-02-10 Gunnerman Rudolf W Method and apparatus for burning pelletized organic fibrous fuel
US4243639A (en) * 1979-05-10 1981-01-06 Tosco Corporation Method for recovering vanadium from petroleum coke
US4260421A (en) * 1979-05-18 1981-04-07 Exxon Research & Engineering Co. Cement production from coal conversion residues
US4315758A (en) * 1979-10-15 1982-02-16 Institute Of Gas Technology Process for the production of fuel gas from coal
US4315753A (en) * 1980-08-14 1982-02-16 The United States Of America As Represented By The Secretary Of The Interior Electrochemical apparatus for simultaneously monitoring two gases
US4344486A (en) * 1981-02-27 1982-08-17 Standard Oil Company (Indiana) Method for enhanced oil recovery
US4433065A (en) * 1981-03-24 1984-02-21 Shell Oil Company Process for the preparation of hydrocarbons from carbon-containing material
US4508544A (en) * 1981-03-24 1985-04-02 Exxon Research & Engineering Co. Converting a fuel to combustible gas
US4444568A (en) * 1981-04-07 1984-04-24 Metallgesellschaft, Aktiengesellschaft Method of producing fuel gas and process heat fron carbonaceous materials
US4428535A (en) * 1981-07-06 1984-01-31 Liquid Carbonic Corporation Apparatus to cool particulate matter for grinding
US4500323A (en) * 1981-08-26 1985-02-19 Kraftwerk Union Aktiengesellschaft Process for the gasification of raw carboniferous materials
US4432773A (en) * 1981-09-14 1984-02-21 Euker Jr Charles A Fluidized bed catalytic coal gasification process
US4439210A (en) * 1981-09-25 1984-03-27 Conoco Inc. Method of catalytic gasification with increased ash fusion temperature
US4661237A (en) * 1982-03-29 1987-04-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US4436028A (en) * 1982-05-10 1984-03-13 Wilder David M Roll mill for reduction of moisture content in waste material
US4491609A (en) * 1982-08-06 1985-01-01 Bergwerksverband Gmbh Method of manufacturing adsorbents
US4436531A (en) * 1982-08-27 1984-03-13 Texaco Development Corporation Synthesis gas from slurries of solid carbonaceous fuels
US4508693A (en) * 1983-11-29 1985-04-02 Shell Oil Co. Solution removal of HCN from gaseous streams, with pH adjustment of reacted solution and hydrolysis of thiocyanate formed
US4505881A (en) * 1983-11-29 1985-03-19 Shell Oil Company Ammonium polysulfide removal of HCN from gaseous streams, with subsequent production of NH3, H2 S, and CO2
US4497784A (en) * 1983-11-29 1985-02-05 Shell Oil Company Solution removal of HCN from gaseous streams, with hydrolysis of thiocyanate formed
US4808194A (en) * 1984-11-26 1989-02-28 Texaco Inc. Stable aqueous suspensions of slag, fly-ash and char
US4572826A (en) * 1984-12-24 1986-02-25 Shell Oil Company Two stage process for HCN removal from gaseous streams
US4720289A (en) * 1985-07-05 1988-01-19 Exxon Research And Engineering Company Process for gasifying solid carbonaceous materials
US4822935A (en) * 1986-08-26 1989-04-18 Scott Donald S Hydrogasification of biomass to produce high yields of methane
US4803061A (en) * 1986-12-29 1989-02-07 Texaco Inc. Partial oxidation process with magnetic separation of the ground slag
US4810475A (en) * 1987-08-18 1989-03-07 Shell Oil Company Removal of HCN, and HCN and COS, from a substantially chloride-free gaseous stream
US4892567A (en) * 1988-08-15 1990-01-09 Mobil Oil Corporation Simultaneous removal of mercury and water from fluids
US5093094A (en) * 1989-05-05 1992-03-03 Shell Oil Company Solution removal of H2 S from gas streams
US4995193A (en) * 1989-09-29 1991-02-26 Ube Industries, Ltd. Method of preventing adherence of ash to gasifier wall
US5074357A (en) * 1989-12-27 1991-12-24 Marathon Oil Company Process for in-situ enrichment of gas used in miscible flooding
US5094737A (en) * 1990-10-01 1992-03-10 Exxon Research & Engineering Company Integrated coking-gasification process with mitigation of bogging and slagging
US5277884A (en) * 1992-03-02 1994-01-11 Reuel Shinnar Solvents for the selective removal of H2 S from gases containing both H2 S and CO2
US5616154A (en) * 1992-06-05 1997-04-01 Battelle Memorial Institute Method for the catalytic conversion of organic materials into a product gas
US5865898A (en) * 1992-08-06 1999-02-02 The Texas A&M University System Methods of biomass pretreatment
US5733515A (en) * 1993-01-21 1998-03-31 Calgon Carbon Corporation Purification of air in enclosed spaces
US5720785A (en) * 1993-04-30 1998-02-24 Shell Oil Company Method of reducing hydrogen cyanide and ammonia in synthesis gas
US5388650A (en) * 1993-06-14 1995-02-14 Generon Systems Non-cryogenic production of nitrogen for on-site injection in downhole drilling
US5388650B1 (en) * 1993-06-14 1997-09-16 Mg Nitrogen Services Inc Non-cryogenic production of nitrogen for on-site injection in downhole drilling
US5566755A (en) * 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US6119778A (en) * 1993-11-03 2000-09-19 Bp Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5388645A (en) * 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US6013158A (en) * 1994-02-02 2000-01-11 Wootten; William A. Apparatus for converting coal to hydrocarbons
US6506349B1 (en) * 1994-11-03 2003-01-14 Tofik K. Khanmamedov Process for removal of contaminants from a gas stream
US5855631A (en) * 1994-12-02 1999-01-05 Leas; Arnold M. Catalytic gasification process and system
US6028234A (en) * 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
US6180843B1 (en) * 1997-10-14 2001-01-30 Mobil Oil Corporation Method for producing gas hydrates utilizing a fluidized bed
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US6692711B1 (en) * 1998-01-23 2004-02-17 Exxonmobil Research And Engineering Company Production of low sulfur syngas from natural gas with C4+/C5+ hydrocarbon recovery
US6015104A (en) * 1998-03-20 2000-01-18 Rich, Jr.; John W. Process and apparatus for preparing feedstock for a coal gasification plant
US6032737A (en) * 1998-04-07 2000-03-07 Atlantic Richfield Company Method and system for increasing oil production from an oil well producing a mixture of oil and gas
EP1004746A1 (en) * 1998-11-27 2000-05-31 Shell Internationale Researchmaatschappij B.V. Process for the production of liquid hydrocarbons
US6855852B1 (en) * 1999-06-24 2005-02-15 Metasource Pty Ltd Natural gas hydrate and method for producing same
US6379645B1 (en) * 1999-10-14 2002-04-30 Air Products And Chemicals, Inc. Production of hydrogen using methanation and pressure swing adsorption
US6506361B1 (en) * 2000-05-18 2003-01-14 Air Products And Chemicals, Inc. Gas-liquid reaction process including ejector and monolith catalyst
US7299868B2 (en) * 2001-03-15 2007-11-27 Alexei Zapadinski Method and system for recovery of hydrocarbons from a hydrocarbon-bearing information
US7077202B2 (en) * 2001-06-15 2006-07-18 The Petroleum Oil and Gas Corporation of South Africa (Proprietary Limited) Process for the recovery of oil from a natural oil reservoir
US20040244973A1 (en) * 2001-08-15 2004-12-09 Parsley Alan John Teritary oil recovery combined with gas conversion process
US7100692B2 (en) * 2001-08-15 2006-09-05 Shell Oil Company Tertiary oil recovery combined with gas conversion process
US20040256116A1 (en) * 2001-08-31 2004-12-23 Ola Olsvik Method and plant or increasing oil recovery by gas injection
US20040020123A1 (en) * 2001-08-31 2004-02-05 Takahiro Kimura Dewatering device and method for gas hydrate slurrys
US7168488B2 (en) * 2001-08-31 2007-01-30 Statoil Asa Method and plant or increasing oil recovery by gas injection
US20030070808A1 (en) * 2001-10-15 2003-04-17 Conoco Inc. Use of syngas for the upgrading of heavy crude at the wellhead
US6878358B2 (en) * 2002-07-22 2005-04-12 Bayer Aktiengesellschaft Process for removing mercury from flue gases
US20060272813A1 (en) * 2002-12-13 2006-12-07 Ola Olsvik Plant and a method for increased oil recovery
US7481275B2 (en) * 2002-12-13 2009-01-27 Statoil Asa Plant and a method for increased oil recovery
US20060231252A1 (en) * 2002-12-13 2006-10-19 Shaw Gareth D H Method for oil recovery from an oil field
US7677309B2 (en) * 2002-12-13 2010-03-16 Statoil Asa Method for increased oil recovery from an oil field
US7205448B2 (en) * 2003-12-19 2007-04-17 Uop Llc Process for the removal of nitrogen compounds from a fluid stream
US20050288537A1 (en) * 2004-06-29 2005-12-29 Conocophillips Company Blending for density specifications using Fischer-Tropsch diesel fuel
US7666383B2 (en) * 2005-04-06 2010-02-23 Cabot Corporation Method to produce hydrogen or synthesis gas and carbon black
US20070000177A1 (en) * 2005-07-01 2007-01-04 Hippo Edwin J Mild catalytic steam gasification process
US20070051043A1 (en) * 2005-09-07 2007-03-08 Future Energy Gmbh And Manfred Schingnitz Method and device for producing synthesis by partial oxidation of slurries made from fuels containing ash with partial quenching and waste heat recovery
US20070083072A1 (en) * 2005-10-12 2007-04-12 Nahas Nicholas C Catalytic steam gasification of petroleum coke to methane
US7922782B2 (en) * 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US20080289822A1 (en) * 2007-05-23 2008-11-27 Ex-Tar Technologies, Inc. Integrated system and method for steam-assisted gravity drainage (sagd)-heavy oil production to produce super-heated steam without liquid waste discharge
US20090048476A1 (en) * 2007-08-02 2009-02-19 Greatpoint Energy, Inc. Catalyst-Loaded Coal Compositions, Methods of Making and Use
US20090090056A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US20090090055A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US7901644B2 (en) * 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7897126B2 (en) * 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7926750B2 (en) * 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US20100076235A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20100071262A1 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US20120046510A1 (en) * 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US20120060417A1 (en) * 2010-09-10 2012-03-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234149B2 (en) 2007-12-28 2016-01-12 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US8123827B2 (en) 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US20090260287A1 (en) * 2008-02-29 2009-10-22 Greatpoint Energy, Inc. Process and Apparatus for the Separation of Methane from a Gas Stream
US8652222B2 (en) 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US20090217584A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Steam Generation Processes Utilizing Biomass Feedstocks
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US8361428B2 (en) 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8349039B2 (en) 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US8297542B2 (en) 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8286901B2 (en) 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8999020B2 (en) 2008-04-01 2015-04-07 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
US20090324459A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Three-Train Catalytic Gasification Systems
US8647402B2 (en) 2008-09-19 2014-02-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8328890B2 (en) 2008-09-19 2012-12-11 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US8502007B2 (en) 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
US8202913B2 (en) 2008-10-23 2012-06-19 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
US20100179232A1 (en) * 2008-10-23 2010-07-15 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
US8734548B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
US8734547B2 (en) 2008-12-30 2014-05-27 Greatpoint Energy, Inc. Processes for preparing a catalyzed carbonaceous particulate
US8728182B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8268899B2 (en) 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728183B2 (en) 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US20110062721A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
US20110062722A1 (en) * 2009-09-16 2011-03-17 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
US8479834B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8479833B2 (en) 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US8733459B2 (en) 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110207002A1 (en) * 2010-02-23 2011-08-25 Greatpoint Energy, Inc. Integrated Hydromethanation Fuel Cell Power Generation
US8669013B2 (en) 2010-02-23 2014-03-11 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US8653149B2 (en) 2010-05-28 2014-02-18 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
WO2012024369A1 (en) 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of carbonaceous feedstock
US8748687B2 (en) 2010-08-18 2014-06-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012033997A1 (en) 2010-09-10 2012-03-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012061238A1 (en) 2010-11-01 2012-05-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012061235A1 (en) 2010-11-01 2012-05-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8648121B2 (en) 2011-02-23 2014-02-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
WO2012116003A1 (en) 2011-02-23 2012-08-30 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US9352270B2 (en) 2011-04-11 2016-05-31 ADA-ES, Inc. Fluidized bed and method and system for gas component capture
WO2012145497A1 (en) 2011-04-22 2012-10-26 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with char beneficiation
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012166879A1 (en) 2011-06-03 2012-12-06 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US20130000352A1 (en) * 2011-06-30 2013-01-03 General Electric Company Air separation unit and systems incorporating the same
WO2013025808A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013025812A1 (en) 2011-08-17 2013-02-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9012524B2 (en) 2011-10-06 2015-04-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2013053017A1 (en) * 2011-10-13 2013-04-18 Linc Energy Ltd System and method for integrated enhanced oil recovery
US9278314B2 (en) 2012-04-11 2016-03-08 ADA-ES, Inc. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9034061B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9273260B2 (en) 2012-10-01 2016-03-01 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
WO2014055351A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
WO2014056946A3 (en) * 2012-10-08 2014-06-19 Mærsk Olie Og Gas A/S Method and apparatus for producing hydrocarbons from a multilayer system
WO2014056949A3 (en) * 2012-10-08 2014-06-19 Mærsk Olie Og Gas A/S Method and apparatus for enhanced oil recovery
EP2716861A1 (en) * 2012-10-08 2014-04-09 Maersk Olie Og Gas A/S Method and apparatus for enhanced oil recovery
WO2014056946A2 (en) * 2012-10-08 2014-04-17 Mærsk Olie Og Gas A/S Method and apparatus for producing hydrocarbons from a multilayer system
EP2716862A1 (en) * 2012-10-08 2014-04-09 Maersk Olie Og Gas A/S Method and apparatus for producing hydrocarbons from a multilayer system
DK178646B1 (en) * 2012-10-08 2016-10-10 Maersk Olie & Gas Method and apparatus for producing hydrocarbons from a multilayer system
EP2735697A1 (en) * 2012-11-27 2014-05-28 Shell Internationale Research Maatschappij B.V. Method and system for inhibiting contact of a corrosive displacement gas with corrosion prone natural gas production facilities
WO2014091024A1 (en) 2012-12-13 2014-06-19 Shell Internationale Research Maatschappij B.V. Integrated recovery of hydrocarbons from a subsurface reservoir with nitrogen injection
US10066834B2 (en) 2013-01-30 2018-09-04 Bogdan Wojak Sulphur-assisted carbon capture and storage (CCS) processes and systems
US10323495B2 (en) * 2016-03-30 2019-06-18 Exxonmobil Upstream Research Company Self-sourced reservoir fluid for enhanced oil recovery
US11131177B2 (en) 2017-07-10 2021-09-28 Exxonmobil Upstream Research Company Methods for deep reservoir stimulation using acid-forming fluids
WO2019013855A1 (en) 2017-07-10 2019-01-17 Exxonmobil Upstream Research Company Methods for deep reservoir stimulation using acid-forming fluids
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
WO2020070298A1 (en) * 2018-10-05 2020-04-09 Total Sa Autonomous plant and method for hydrogen recovery and conversion
FR3086939A1 (en) * 2018-10-05 2020-04-10 Total Sa SELF-CONTAINED INSTALLATION AND PROCESS FOR RECOVERY AND TRANSFORMATION OF HYDROGEN
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
WO2020086258A1 (en) 2018-10-26 2020-04-30 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
WO2020131427A1 (en) 2018-12-18 2020-06-25 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
WO2020141153A1 (en) * 2019-01-02 2020-07-09 L2 Consultancy B.V. System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
EP3470621A1 (en) * 2019-01-02 2019-04-17 L2 Consultancy B.V. System and method for adjusting pressure in a subsurface reservoir and system for producing at least one gas for adjusting pressure in a subsurface reservoir
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea

Also Published As

Publication number Publication date
WO2011084581A1 (en) 2011-07-14
CN102652205A (en) 2012-08-29
AU2010339953A1 (en) 2012-07-05
CA2779712A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US8733459B2 (en) Integrated enhanced oil recovery process
US8479834B2 (en) Integrated enhanced oil recovery process
US8479833B2 (en) Integrated enhanced oil recovery process
US20110146978A1 (en) Integrated enhanced oil recovery process
US8748687B2 (en) Hydromethanation of a carbonaceous feedstock
US9127221B2 (en) Hydromethanation of a carbonaceous feedstock
US20130042824A1 (en) Hydromethanation of a carbonaceous feedstock
US20130046124A1 (en) Hydromethanation of a carbonaceous feedstock
US20120060417A1 (en) Hydromethanation of a carbonaceous feedstock
US20120271072A1 (en) Hydromethanation of a carbonaceous feedstock
WO2011034889A1 (en) Integrated hydromethanation combined cycle process
CA2814201A1 (en) Hydromethanation of a carbonaceous feedstock
WO2020131427A1 (en) Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation

Legal Events

Date Code Title Description
AS Assignment

Owner name: GREATPOINT ENERGY, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PERLMAN, ANDREW;REEL/FRAME:025520/0021

Effective date: 20101122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SURE CHAMPION INVESTMENT LIMITED, VIRGIN ISLANDS,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREATPOINT ENERGY, INC.;REEL/FRAME:051448/0846

Effective date: 20191216