US20110150853A1 - Mycotoxin-reducing composition - Google Patents

Mycotoxin-reducing composition Download PDF

Info

Publication number
US20110150853A1
US20110150853A1 US12/447,837 US44783707A US2011150853A1 US 20110150853 A1 US20110150853 A1 US 20110150853A1 US 44783707 A US44783707 A US 44783707A US 2011150853 A1 US2011150853 A1 US 2011150853A1
Authority
US
United States
Prior art keywords
mycotoxin
composition
enzyme
foodstuff
toxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/447,837
Inventor
Stephen Philip Mann
David Parfitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37547166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110150853(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of US20110150853A1 publication Critical patent/US20110150853A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/27Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • A23K10/38Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material from distillers' or brewers' waste
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/28Silicates, e.g. perlites, zeolites or bentonites
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/27Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption
    • A23L5/273Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption using adsorption or absorption agents, resins, synthetic polymers, or ion exchangers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/28Removal of unwanted matter, e.g. deodorisation or detoxification using microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/062Ascomycota
    • A61K36/064Saccharomycetales, e.g. baker's yeast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/443Oxidoreductases (1) acting on CH-OH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03002L-Amino-acid oxidase (1.4.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03003D-Amino-acid oxidase (1.4.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01007Peroxidase (1.11.1.7), i.e. horseradish-peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01013Manganese peroxidase (1.11.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/010251,4-Lactonase (3.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y303/00Hydrolases acting on ether bonds (3.3)
    • C12Y303/02Ether hydrolases (3.3.2)
    • C12Y303/02003Epoxide hydrolase (3.3.2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • This invention relates to reducing the mycotoxin content of a foodstuff.
  • Mycotoxins are toxins produced by funghi that are known to affect adversely the nutrition and health of humans and animals.
  • the production of mycotoxins is the result of the natural biological process of funghi and has occurred over thousands of years.
  • mycotoxin production has been influenced by climate change and changes in agricultural practise.
  • Mycotoxins are produced by a wide range of funghi including Aspergillus (Aflatoxin and Ochratoxin), Fusarium , (Zearalenone, Deoxynivalenol, Fumonisin) and Penicillium (PR toxin and Roquefortin). These toxins have a considerable pharmacological effect, even at very low concentrations (parts per billion), while toxicity may be further enhanced by metabolism in vivo, particularly by the liver. Detoxification of most toxins occurs in the liver, while in the gastro-intestinal tract (GIT), under certain conditions, detoxification may also be achieved by micro-organisms.
  • Aflatoxins Aflatoxins
  • trichothenes for example Deoxynivalenol
  • Zearalenone group the Fumonisins
  • endophyte toxins Aflatoxins, the trichothenes (for example Deoxynivalenol), the Zearalenone group, the Fumonisins and the endophyte toxins.
  • Aflatoxins can cause growth reduction, suppressed immunity, reduced feed efficiency and increased mortality in cattle, among other symptoms. In pigs, reduced feed efficiency, increased mortality, and lower growth rates can be observed. In poultry, there are similar symptoms and a decreased ability to metabolize fat, protein and starch.
  • Zearalenone in cattle and pigs mimics oestrogen and produces a considerable reduction in reproductive performance, reduced growth, reduced milk production and reduced feed efficiency. In poultry, increased mortality is observed.
  • Deoxynivalenol an example of a trichothene, causes severe symptoms in cattle, pigs and poultry, including gastric effects such as vomiting, reduced growth rates, reduced egg production, scours and reduced feed efficiency.
  • Fumonisin produces negative effects via a reduction in blood circulation and cardiac output, at least in part by agonising sphingosine receptors. In this way they reduce growth and cause pulmonary oedema in swine and poultry. This reduction of circulation affects all major organs including the liver and can exacerbate and enhance the effects of other toxins that may also be present.
  • Ochratoxin can be carcinogenic in man and produces immuno-suppression in farm animals.
  • Lolitrem B ( Acremonium lolii in Ryegrass) is an example of an endophyte toxin that produces a form of grass staggers often confused with hypomagnesaemia.
  • Sporidesmin ( Pithomyces spp. in Ryegrass) is an endophyte that causes facial eczema and liver damage in sheep.
  • Ergovaline ( Acremonium coenophialum ) is an endophyte toxin found in tall fescue, which reduces prolactin release and reduces blood flow.
  • mycotoxin-binding agents such as bentonite clay
  • binding and removal of mycotoxins are only partly successful. Some mycotoxins remain toxic even when attached to a binding agent, while some toxins do not bind efficiently at normal in vivo concentrations. Higher contamination levels are also an issue as the current recommended levels of binders may not be sufficient to remove all toxins present.
  • An alternative technique is to add to foodstuffs enzymes, or microorganisms, that break down mycotoxins, to reduce toxicity.
  • this is often not effective at reducing mycotoxin content sufficiently, which may be due to a dynamic equilibrium in the gasto-intestinal tract, which prevents excretion of the toxins.
  • the present invention is based on the surprising realisation that a composition containing an enzyme, a mycotoxin-binding agent and a microorganism capable of taking up a mycotoxin is unexpectedly effective at reducing mycotoxin toxicity.
  • a composition comprises an enzyme, a mycotoxin-binding agent and a microorganism capable of taking up a mycotoxin.
  • a method of reducing the toxicity of a mycotoxin in a foodstuff comprises the step of contacting the foodstuff with a composition as defined above.
  • a foodstuff comprises a composition as defined above.
  • a composition as defined above is useful in therapy, in particular the treatment of a disease caused by a mycotoxin.
  • a composition as defined above is used in the manufacture of a medicament for the treatment of a disease caused by a mycotoxin.
  • FIG. 1 is a graph indicating the binding percentage of various mycotoxins and mycotoxin-binding agents
  • FIG. 2 illustrates the effect of Saccharomyces cerevisiae uptake of DON, which is then modified by the yeast, followed by release and binding of the modified toxin to bentonite;
  • FIG. 3 illustrates the effect of Saccharomyces cerevisiae uptake of Zearalenone
  • FIG. 4 illustrates the reduction of fumonisin using Saccharomyces cerevisiae
  • FIG. 5 shows the increase in milk production seen in a dairy herd, contaminated with Deoxynivalenol and Zearalenone, after application of a composition according to the invention.
  • FIG. 6 shows the increase in milk production seen in a dairy herd, contaminated with Vomitoxin, after application of a composition according to the invention.
  • the invention is based on the finding that combining an enzyme, a mycotoxin-binding agent and a microorganism that is capable of taking up a mycotoxin is surprisingly effective at reducing the toxicity of mycotoxins present in a foodstuff.
  • the present inventor has realised that, when an enzyme alone is used, a dynamic equilibrium exists that prevents toxins from being defecated. Therefore, the sequestration by a microorganism and binding by a binding agent act as an aid to the ultimate degradation of the toxin by the enzymes and, optionally, microorganisms in the composition.
  • an enzyme is to be given its usual meaning in the art, i.e. a biological catalyst.
  • an enzyme is a protein.
  • the enzyme is preferably at least partially purified, i.e. is provided as a cell extract, isolate or purified preparation.
  • the enzyme is present in the composition in addition to any enzymes present in the microorganism, i.e. the enzymes, microorganism and mycotoxin-binding agent are present as three separate components of the composition.
  • the purpose of the enzyme in the composition of the invention is to modify one or more mycotoxins, to reduce the toxicity of the toxin.
  • the enzyme breaks down the toxin, partially or completely, thereby removing the toxicity of the toxin.
  • the one or more enzymes of the composition preferably break down the toxin.
  • the enzyme may further induce a modification of a toxin so that binding to the binding agent is increased, pending further degradation.
  • the inventor believes that epoxidation and/or dehydrogenation of the toxin, in particular, improves binding.
  • An increase in binding of the toxin to the binding agent may be detected by a toxin binding assay, as detailed in Example B, experiment 4.
  • Other enzymes, that do not necessarily act directly upon a mycotoxin may be used to produce radicals that modify the toxin. This may be achieved with or without binding of the toxin to the enzyme.
  • An example of a suitable enzyme of this type is lignin peroxidase.
  • the enzyme may be replaced with a biomimetic catalyst (such as the haem prosthetic group), an organo-metallic catalyst or a metallic catalyst.
  • Any enzyme, or combination of enzymes, with the ability to reduce the toxicity of a mycotoxin is within the scope of the invention.
  • Preferred enzymes include an esterase, lipase, protease, oxidase, amino acid oxidase, lactonohydrolase, peroxidase, lactoperoxidase, manganese peroxidase, epoxidase, polysaccharase and dehydrogenase. Any combination of preferred enzymes can be used and the skilled person will realise that the specific combination of enzymes required may depend on the toxin or toxins to be treated.
  • Particularly preferred enzymes include cellulases, epoxidases, dehydrogenases, hemicellulases (also known as xylanases) and lipases, preferably a triacylglycerol lipase (E.C. number 3.1.1.3), such as lipase AE 02 (obtainable from Candida Rugosa and commercially available from Mann Associates, Cambridge, UK) or “Lipase OF” (commercially available from Meito Sangyo, Japan).
  • the combination preferably includes a lipase.
  • a preferred combination of enzymes is the combination of a cellulase, a hemicellulase (xylanase) and a lipase.
  • a preferred combination of enzymes suitable for use in the invention is shown in Table 2, below.
  • the second component of the composition according to the invention is a mycotoxin-binding agent.
  • One or more binding agents can be included. Preferably, 2, 3, 4 or more different binding agents are included.
  • binding refers both to ionic or covalent chemical bonding and weaker physical adsorption involving van der waals interactions and/or hydrogen bonding.
  • the binding agent has a charged surface. The charge may be positive or negative.
  • Binding refers to the non-transient association of a mycotoxin to the binding agent.
  • the binding has a minimum affinity between the mycotoxin and binding agent such that 10 mg of binding agent will bind 50% of a 200 ⁇ g/l (i.e. physiological) concentration of toxin.
  • Binding may be determined using the method provided in Example B, experiment 4.
  • Mycotoxin-binding agents are known in the art; examples of suitable binding agents are zeolites, montmorillonite, bentonite clays, diatomaceous earth, activated charcoals, fibrous plant materials such as wheat bran and alfalfa fibre, yeast cell wall extract and polysaccharides. Any agent that can bind a mycotoxin or a mycotoxin breakdown product is within the scope of the invention.
  • Preferred mycotoxin-binding agents include a bentonite clay, preferably sodium bentonite or more preferably calcium bentonite, and a polysaccharide, preferably glucomannan, more preferably an esterified glucomannan.
  • the glucomannan is preferably obtained as a yeast cell wall extract, as is recognised in the art.
  • Glucomannan-containing mycotoxin adsorbents are commercially available, for example Mycosorb®, obtainable from Alltech UK, Stamford, UK.
  • the binding agent has at least one ionic, i.e. charged, surface, which will allow (strong) ionic bonding between the toxin and binding agent to occur.
  • the charge may be positive or negative.
  • ionic binding agents are bentonites such as sodium bentonite and calcium bentonite.
  • the third component of the composition according to the invention is a microorganism.
  • the term “microorganism” refers to bacteria and yeasts. The skilled person will recognise that the microorganism is preferably not harmful to the health of the human or animal which will ingest the foodstuff to which the composition will be applied, i.e. the microorganism is preferably non-pathogenic.
  • the purpose of the microorganism is to uptake mycotoxins. Any microorganism that can uptake mycotoxins can be used according to the invention. Once taken up, the microorganism sequesters the toxin, which cannot then be taken up by the host animal. The microorganism's endogenous enzymes may then breakdown the toxins, although this is not an absolute requirement.
  • the microorganism is a yeast, more preferably a saccharomyces , most preferably Saccharomyces cerevisiae.
  • the microorganism has the function of physically taking up the toxin to sequester it within the bacterial or yeast cell.
  • the toxin is modified in the cell and analogues are released, which are then able to bind to the binders where further enzyme degradation can take place. Therefore, in a preferred embodiment, the microorganism additionally performs a second function, that of expressing one or more enzymes capable of breaking down a mycotoxin.
  • One or more different microorganisms can be included in the composition of the invention.
  • at least two microorganisms are included; the first microorganism is primarily responsible for mycotoxin uptake and the second is primarily responsible for mycotoxin degrading enzyme expression.
  • the composition must still contain the enzyme component as a separate component of the composition.
  • Example Composition according to the Invention. Approx Name Source/Company Specification kg % wt FerMos JACKLYN IND FerMos, 25 kg Bags 7.445 35% Mannan oligosaccharide (Binding Agent) Terra-Green OIL DRI Terra-Green, 24/48 6.68742 30% 24/48 LVM LVM, 50 lb bags (Binding Agent) Sodium Eastern Mineral Sodium Bentonite 2.06116 10% bentonite Granular (Binding Agent) Diabond Eastern Mineral 200 Bags of Diabond 2.06116 10% Granular granular, 50 lb bags (Binding Agent) Dried molasses Bartlett Milling Dried molasses, 50 lb 1.03058 5% bags.
  • additional components can be included in a composition of the invention, if necessary.
  • suitable additional components are food supplements such as vitamins and minerals, mineral oil, a flow agent such as a fine, precipitated calcium silicate powder (e.g. hubersorb), and a sugar source such as dried molasses.
  • An example of a formulation according to the invention is provided in Table 1.
  • the three essential components are preferably prepared as a mixture, optionally with a flow agent (as in Table 2), and subsequently combined with the additional components when needed for application to a foodstuff.
  • a flow agent as in Table 2
  • any amount of each of the three essential components of the composition can be used that achieves the desired result of reducing mycotoxin levels.
  • Preferably, between 0.1 kg and 50 kg of the composition is applied to each tonne of feed, more preferably between 0.2 kg and 10 kg per tonne, e.g. 0.5, 1, 1.2, 1.5, 2.5, 5, 7.5 kg or more per tonne. Suitable levels will be apparent to the skilled person.
  • the composition is applied to the feed such that the microorganism is present at approximately 1 ⁇ 10 9 cells per tonne of feed or greater. More preferably, the microorganism is present at 2 ⁇ 10 9 , 3 ⁇ 10 9 , 4 ⁇ 10 9 , or 5 ⁇ 10 9 cells per tonne of feed or greater. Yet more preferably, 1 ⁇ 10 10 cells per tonne of feed is applied, more preferably 1 ⁇ 10 11 cells per tonne of feed or greater is applied, for example greater than 2 ⁇ 10 11 cells per tonne of feed, more preferably greater than 1 ⁇ 10 12 , 2 ⁇ 10 12 cells per tonne of feed or more.
  • compositions that is required per tonne of feed will depend on the feed to be treated, the toxins present and the intended recipient of the feed.
  • an animal that consumes a small amount of feed per day will generally require a higher concentration of microorganism applied to the feed than an animal that consumes a large amount of feed per day.
  • a suitable amount is 2.2 ⁇ 10 11 cells per tonne of feed, while for swine and poultry a preferred amount is 1.1 ⁇ 10 12 cells per tonne of feed.
  • the microorganism is present at any suitable level that allows detoxification to occur when applied to a foodstuff.
  • the microorganism is present at approximately 1 ⁇ 10 9 cells or greater per kilogram of the composition, more preferably 1 ⁇ 10 10 cells per kilogram of composition, or greater, for example 1 ⁇ 10 11 or 1 ⁇ 10 12 cells per kilogram, or greater.
  • the skilled person will appreciate that the amount of microorganism in the composition will affect the amount of composition required to achieve the desired effect, in particular the cells per tonne of feed recited above.
  • yeast is included at approx 5% (by weight).
  • 1 Kg of the composition defined by Table 1 contains approximately 5 ⁇ 10 11 yeast cells.
  • the one or more enzyme is present in the composition at an effective level. Less than 5% by weight of enzyme is preferred, more preferably less than 1%, more preferably between 0.01% and 0.5% by weight, yet more preferably between 0.15% and 0.25% by weight.
  • the composition of Table 1 contains an enzyme mixture totalling 0.16% by weight, including the flow agent.
  • the binder is present in the largest proportion, at an effective level.
  • at least 50% by weight of the composition should be binding agent, more preferably 60 to 90%.
  • the composition of Table 1 contains a mixture of binding agents totalling approx 85%.
  • a suitable range for each of the essential ingredients in the composition of the invention is: microorganism—0.1% to 10% by weight, preferably 2% to 8%, i.e. 5%; enzyme—less than 5% by weight of enzyme is preferred, more preferably less than 1%, more preferably between 0.01% and 0.5% by weight, yet more preferably between 0.15% and 0.25% by weight; binder—preferably at least 50% by weight of the composition is binding agent, more preferably 60 to 90%.
  • the balance (if any) can be made up with the additional agents recited above, if required.
  • composition of the invention can be in any suitable formulation, for example a solid such as a powder or granulate, a gel or a liquid.
  • a solid such as a powder or granulate, a gel or a liquid.
  • the formulation is a solid, more preferably a powder.
  • the composition of the invention is effective at reducing mycotoxin levels.
  • the composition is used to reduce mycotoxins in a foodstuff.
  • foodstuff is to be given its usual meaning in the art, referring to any material that is eaten by a human or animal for nutrition.
  • Foodstuffs comprise carbohydrates, fats and/or proteins among other components.
  • the foodstuff can be of animal or vegetable origin. Human food and animal feeds are within the scope of the term.
  • the foodstuff is an animal feed of plant origin, commonly known as fodder, more preferably a cereal foodstuff.
  • the term “foodstuff” includes materials that must be processed before safe consumption by a human or animal.
  • distiller's grains are a cereal by-product of the distillation process. Distiller's grains are known in the art. Briefly, they are produced in distilleries by drying mash and are used commonly as a fodder for livestock, especially ruminants. Detoxifying distiller's grains, by reduction of mycotoxin content, is therefore within the scope of the invention.
  • the composition can be added to the foodstuff any way that is effective at reducing the mycotoxin content. Contact between the composition and foodstuff is required.
  • the preferred method is to treat the foodstuff before ingestion to remove, preferably completely, the toxicity. This is “detoxification” of the foodstuff before consumption.
  • An alternative method is to treat the feed immediately before ingestion, or simultaneous with ingestion, and to rely on the invention to complete the detoxification during digestion. This post-ingestion detoxification is particularly suitable for use in animals, preferably ruminants such as cattle and sheep.
  • a method of reducing the toxicity of a mycotoxin or mycotoxins in a foodstuff comprises the step of contacting the foodstuff with a composition as defined herein.
  • the mycotoxin can be any mycotoxin.
  • Preferred mycotoxins include Zearalenone, a tricothene such as Deoxynivalenol, Aflatoxin, Fumonisin, Roquefortin, ochratoxin or an endophyte toxin, such as sporidesmin, ergovaline or Lolitrem B.
  • a foodstuff of any human or non-human animal, preferably non-human mammal, can be detoxified according to the invention.
  • the foodstuff is for a farm animal such as cattle, horses, pigs or poultry.
  • detoxification is thought to be achieved in a number of ways, acting in synergy.
  • the enzyme component breaks down toxins and/or improves the toxin binding to the mycotoxin-binding agent.
  • the binding agent prevents the mycotoxins from being absorbed by the animal and allows their excretion.
  • the microorganism uptakes and sequesters the toxins and may also break down the toxins. Any toxin that is released by the microorganism is thought to bind more strongly to the binding agent, where further degradation (by the enzymes) may occur. Therefore, the actions of the microorganism and/or enzyme are thought to potentiate the binding of the toxin to the binding agent.
  • the toxin may therefore be removed from the foodstuff by enzyme breakdown, by binding to the binding agent and/or sequestration in the micro-organism, thus removing it from the foodstuff; if detoxification occurs in an animal, the removal is ultimately from the gastrointestinal tract in faecal material.
  • sequestrations have the further effects of preventing absorption into the animal and facilitating the action of the enzymes of the invention in the gastrointestinal tract.
  • compositions of the invention can therefore be used in therapy, to treat a disease caused by a mycotoxin.
  • the modification of various toxins by enzymes was examined by screening the activity of a number of a selection of enzymes against various toxins.
  • the change in the toxin was measured by a monoclonal antibody in an Elisa test. Since the monoclonal antibody retains, in many cases, the ability to cross react with the fragments produced by the enzyme catalysis, this provides a definitive screening tool but not a quantitative measure of the enzymes activity.
  • Suitable enzymes which may be used as part of the invention are shown in Table 3 and examples of their action are shown in Tables 4-6.
  • Lipase AE 02 Mann Associates, Cambridge, UK was incubated with Fumonisin 200 ⁇ g/litre and measured after 1 hour at 37° C. The remaining fumonisin was measured by ELISA assay. Boiled enzyme controls were also used in each case. It can be seen that there was a considerable reduction in the Fumonisin reacting with the antibody indicating degradation of the toxin.
  • Fumonisin was further examined by incubating it as in Table 3, but with an aminoxidase to remove the amine groups.
  • the lipase 2 again achieved degradation while the oxidase also degraded the toxin.
  • Enzyme degradation of Zearalenone was examined using a variety of preparations. Of these preparations, some achieved degradation but the composition according to the invention (as defined in Table 1) produced a synergistic effect. Repeats of the experiment followed by analysis by HPLC showed that the formulation was capable of reducing the toxin levels to zero.
  • Toxin at physiological levels of approx. 200 ⁇ g/L was mixed with a constant quantity (50 mg) of binder, agitated for 30 min, centrifuged and the toxin remaining in solution measured using a RIDASCREEN® FAST mycotoxin test kit (available from R-Biopharm GmbH, Darmstadt, Germany). The results are determined by reference to a standard binding curve for the toxin and binder.
  • FIG. 1 shows the binding percentage at a typical (physiological) rumen concentration.
  • the binding abilities of various components are demonstrated at a physiological concentration of toxin. It can be seen from the variability in the results that a mixture of binders is preferable to a single entity.
  • FIGS. 2 , 3 , and 4 illustrate the effects of the microorganism and its endogenous microbial enzymes on the mycotoxins DON, Zearalenone and Fumonisin.
  • the yeast take up the toxin, rapidly reducing the toxicity of the culture.
  • the toxin is then metabolised and released, in an altered form, where it is able to bind the binding agent, for subsequent degradation.
  • Yeast Saccharomyces Cerevisiae NYCC R404 rapidly take up DON from solution, preventing uptake into the animal.
  • the yeast metabolise the DON and release break-down products (metabolites) which are able to bind to two different bentonite binders. Further degradation can then occur on the binders. See FIG. 2 .
  • Yeast Saccharomyces Cerevisiae NYCC R404
  • FIG. 5 shows that as the desired formulation (as defined in Table 1) was added, at a rate of 0.5 kilos/1000 kilos of feed for 2 days, and 0.25 kilos 1000 kilos of feed thereafter, milk production increased. Milk production is shown in lbs.
  • Boars also benefited. Exposed to DON, their semen volume and sperm concentration decreased by 50% within 7 days. On treatment they returned to normal also in approximately 7 days.

Abstract

A composition comprising an enzyme, a mycotoxin-binding agent and a microorganism capable of taking up a mycotoxin.

Description

    FIELD OF THE INVENTION
  • This invention relates to reducing the mycotoxin content of a foodstuff.
  • BACKGROUND OF THE INVENTION
  • Mycotoxins are toxins produced by funghi that are known to affect adversely the nutrition and health of humans and animals. The production of mycotoxins is the result of the natural biological process of funghi and has occurred over thousands of years. However, mycotoxin production has been influenced by climate change and changes in agricultural practise.
  • Mycotoxins are produced by a wide range of funghi including Aspergillus (Aflatoxin and Ochratoxin), Fusarium, (Zearalenone, Deoxynivalenol, Fumonisin) and Penicillium (PR toxin and Roquefortin). These toxins have a considerable pharmacological effect, even at very low concentrations (parts per billion), while toxicity may be further enhanced by metabolism in vivo, particularly by the liver. Detoxification of most toxins occurs in the liver, while in the gastro-intestinal tract (GIT), under certain conditions, detoxification may also be achieved by micro-organisms.
  • A large number of mycotoxins have been identified. Currently, there are five main groups of particular agricultural interest: the Aflatoxins, the trichothenes (for example Deoxynivalenol), the Zearalenone group, the Fumonisins and the endophyte toxins.
  • Aflatoxins can cause growth reduction, suppressed immunity, reduced feed efficiency and increased mortality in cattle, among other symptoms. In pigs, reduced feed efficiency, increased mortality, and lower growth rates can be observed. In poultry, there are similar symptoms and a decreased ability to metabolize fat, protein and starch.
  • Zearalenone in cattle and pigs mimics oestrogen and produces a considerable reduction in reproductive performance, reduced growth, reduced milk production and reduced feed efficiency. In poultry, increased mortality is observed.
  • Deoxynivalenol (DON), an example of a trichothene, causes severe symptoms in cattle, pigs and poultry, including gastric effects such as vomiting, reduced growth rates, reduced egg production, scours and reduced feed efficiency.
  • Fumonisin produces negative effects via a reduction in blood circulation and cardiac output, at least in part by agonising sphingosine receptors. In this way they reduce growth and cause pulmonary oedema in swine and poultry. This reduction of circulation affects all major organs including the liver and can exacerbate and enhance the effects of other toxins that may also be present.
  • Ochratoxin can be carcinogenic in man and produces immuno-suppression in farm animals.
  • Lolitrem B (Acremonium lolii in Ryegrass) is an example of an endophyte toxin that produces a form of grass staggers often confused with hypomagnesaemia.
  • Sporidesmin (Pithomyces spp. in Ryegrass) is an endophyte that causes facial eczema and liver damage in sheep.
  • Ergovaline (Acremonium coenophialum) is an endophyte toxin found in tall fescue, which reduces prolactin release and reduces blood flow.
  • It is in the interests of the health of both humans and animals that mycotoxins are reduced, or preferably removed altogether, from the food chain.
  • Current techniques used to reduce mycotoxin content in a foodstuff involve the use of mycotoxin-binding agents, such as bentonite clay, to which the toxins bind and can therefore be removed with the clay. However, binding and removal of mycotoxins are only partly successful. Some mycotoxins remain toxic even when attached to a binding agent, while some toxins do not bind efficiently at normal in vivo concentrations. Higher contamination levels are also an issue as the current recommended levels of binders may not be sufficient to remove all toxins present.
  • An alternative technique is to add to foodstuffs enzymes, or microorganisms, that break down mycotoxins, to reduce toxicity. However, this is often not effective at reducing mycotoxin content sufficiently, which may be due to a dynamic equilibrium in the gasto-intestinal tract, which prevents excretion of the toxins.
  • An effective technique for reducing mycotoxin toxicity is therefore still required.
  • SUMMARY OF THE INVENTION
  • The present invention is based on the surprising realisation that a composition containing an enzyme, a mycotoxin-binding agent and a microorganism capable of taking up a mycotoxin is unexpectedly effective at reducing mycotoxin toxicity.
  • According to a first aspect of the invention, a composition comprises an enzyme, a mycotoxin-binding agent and a microorganism capable of taking up a mycotoxin.
  • According to a second aspect of the invention, a method of reducing the toxicity of a mycotoxin in a foodstuff comprises the step of contacting the foodstuff with a composition as defined above.
  • According to a third aspect of the invention, a foodstuff comprises a composition as defined above.
  • According to a fourth aspect of the invention, a composition as defined above is useful in therapy, in particular the treatment of a disease caused by a mycotoxin.
  • According to a fifth aspect of the invention, a composition as defined above is used in the manufacture of a medicament for the treatment of a disease caused by a mycotoxin.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention is described with reference to the following figures, wherein:
  • FIG. 1 is a graph indicating the binding percentage of various mycotoxins and mycotoxin-binding agents;
  • FIG. 2 illustrates the effect of Saccharomyces cerevisiae uptake of DON, which is then modified by the yeast, followed by release and binding of the modified toxin to bentonite;
  • FIG. 3 illustrates the effect of Saccharomyces cerevisiae uptake of Zearalenone;
  • FIG. 4 illustrates the reduction of fumonisin using Saccharomyces cerevisiae;
  • FIG. 5 shows the increase in milk production seen in a dairy herd, contaminated with Deoxynivalenol and Zearalenone, after application of a composition according to the invention; and
  • FIG. 6 shows the increase in milk production seen in a dairy herd, contaminated with Vomitoxin, after application of a composition according to the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is based on the finding that combining an enzyme, a mycotoxin-binding agent and a microorganism that is capable of taking up a mycotoxin is surprisingly effective at reducing the toxicity of mycotoxins present in a foodstuff.
  • The present inventor has realised that, when an enzyme alone is used, a dynamic equilibrium exists that prevents toxins from being defecated. Therefore, the sequestration by a microorganism and binding by a binding agent act as an aid to the ultimate degradation of the toxin by the enzymes and, optionally, microorganisms in the composition.
  • As used herein, the term “enzyme” is to be given its usual meaning in the art, i.e. a biological catalyst. For the avoidance of doubt, an enzyme is a protein. The enzyme is preferably at least partially purified, i.e. is provided as a cell extract, isolate or purified preparation. The enzyme is present in the composition in addition to any enzymes present in the microorganism, i.e. the enzymes, microorganism and mycotoxin-binding agent are present as three separate components of the composition. The purpose of the enzyme in the composition of the invention is to modify one or more mycotoxins, to reduce the toxicity of the toxin. Preferably, the enzyme breaks down the toxin, partially or completely, thereby removing the toxicity of the toxin.
  • Therefore, the one or more enzymes of the composition preferably break down the toxin. The enzyme may further induce a modification of a toxin so that binding to the binding agent is increased, pending further degradation. Without wishing to be bound by theory, the inventor believes that epoxidation and/or dehydrogenation of the toxin, in particular, improves binding. An increase in binding of the toxin to the binding agent may be detected by a toxin binding assay, as detailed in Example B, experiment 4. Other enzymes, that do not necessarily act directly upon a mycotoxin, may be used to produce radicals that modify the toxin. This may be achieved with or without binding of the toxin to the enzyme. An example of a suitable enzyme of this type is lignin peroxidase. In this embodiment, where radicals are used, the enzyme may be replaced with a biomimetic catalyst (such as the haem prosthetic group), an organo-metallic catalyst or a metallic catalyst.
  • Any enzyme, or combination of enzymes, with the ability to reduce the toxicity of a mycotoxin is within the scope of the invention. Preferred enzymes include an esterase, lipase, protease, oxidase, amino acid oxidase, lactonohydrolase, peroxidase, lactoperoxidase, manganese peroxidase, epoxidase, polysaccharase and dehydrogenase. Any combination of preferred enzymes can be used and the skilled person will realise that the specific combination of enzymes required may depend on the toxin or toxins to be treated. Particularly preferred enzymes include cellulases, epoxidases, dehydrogenases, hemicellulases (also known as xylanases) and lipases, preferably a triacylglycerol lipase (E.C. number 3.1.1.3), such as lipase AE 02 (obtainable from Candida Rugosa and commercially available from Mann Associates, Cambridge, UK) or “Lipase OF” (commercially available from Meito Sangyo, Japan). The combination preferably includes a lipase. A preferred combination of enzymes is the combination of a cellulase, a hemicellulase (xylanase) and a lipase. A preferred combination of enzymes suitable for use in the invention is shown in Table 2, below.
  • The second component of the composition according to the invention is a mycotoxin-binding agent. One or more binding agents can be included. Preferably, 2, 3, 4 or more different binding agents are included. The term “binding” refers both to ionic or covalent chemical bonding and weaker physical adsorption involving van der waals interactions and/or hydrogen bonding. In a preferred embodiment, the binding agent has a charged surface. The charge may be positive or negative. Binding refers to the non-transient association of a mycotoxin to the binding agent. In a preferred embodiment, the binding has a minimum affinity between the mycotoxin and binding agent such that 10 mg of binding agent will bind 50% of a 200 μg/l (i.e. physiological) concentration of toxin. Binding may be determined using the method provided in Example B, experiment 4. Mycotoxin-binding agents are known in the art; examples of suitable binding agents are zeolites, montmorillonite, bentonite clays, diatomaceous earth, activated charcoals, fibrous plant materials such as wheat bran and alfalfa fibre, yeast cell wall extract and polysaccharides. Any agent that can bind a mycotoxin or a mycotoxin breakdown product is within the scope of the invention. Preferred mycotoxin-binding agents include a bentonite clay, preferably sodium bentonite or more preferably calcium bentonite, and a polysaccharide, preferably glucomannan, more preferably an esterified glucomannan. The glucomannan is preferably obtained as a yeast cell wall extract, as is recognised in the art. Glucomannan-containing mycotoxin adsorbents are commercially available, for example Mycosorb®, obtainable from Alltech UK, Stamford, UK.
  • Preferably, the binding agent has at least one ionic, i.e. charged, surface, which will allow (strong) ionic bonding between the toxin and binding agent to occur. The charge may be positive or negative. Examples of ionic binding agents are bentonites such as sodium bentonite and calcium bentonite.
  • The third component of the composition according to the invention is a microorganism. As used herein, the term “microorganism” refers to bacteria and yeasts. The skilled person will recognise that the microorganism is preferably not harmful to the health of the human or animal which will ingest the foodstuff to which the composition will be applied, i.e. the microorganism is preferably non-pathogenic. The purpose of the microorganism is to uptake mycotoxins. Any microorganism that can uptake mycotoxins can be used according to the invention. Once taken up, the microorganism sequesters the toxin, which cannot then be taken up by the host animal. The microorganism's endogenous enzymes may then breakdown the toxins, although this is not an absolute requirement. Preferably, the microorganism is a yeast, more preferably a saccharomyces, most preferably Saccharomyces cerevisiae.
  • The microorganism has the function of physically taking up the toxin to sequester it within the bacterial or yeast cell. In the case of one toxin at least (DON), the toxin is modified in the cell and analogues are released, which are then able to bind to the binders where further enzyme degradation can take place. Therefore, in a preferred embodiment, the microorganism additionally performs a second function, that of expressing one or more enzymes capable of breaking down a mycotoxin.
  • One or more different microorganisms can be included in the composition of the invention. In one embodiment, at least two microorganisms are included; the first microorganism is primarily responsible for mycotoxin uptake and the second is primarily responsible for mycotoxin degrading enzyme expression. For the avoidance of doubt, in the embodiments where a microorganism expresses one or more enzymes capable of breaking down a mycotoxin, the composition must still contain the enzyme component as a separate component of the composition.
  • TABLE 1
    Example Composition according to the Invention.
    Approx
    Name Source/Company Specification kg % wt
    FerMos JACKLYN IND FerMos, 25 kg Bags 7.445    35%
    Mannan
    oligosaccharide
    (Binding Agent)
    Terra-Green OIL DRI Terra-Green, 24/48 6.68742    30%
    24/48 LVM LVM, 50 lb bags
    (Binding Agent)
    Sodium Eastern Mineral Sodium Bentonite 2.06116    10%
    bentonite Granular
    (Binding Agent)
    Diabond Eastern Mineral 200 Bags of Diabond 2.06116    10%
    Granular granular, 50 lb bags
    (Binding Agent)
    Dried molasses Bartlett Milling Dried molasses, 50 lb 1.03058    5%
    bags.
    S. cerevisiae JACKLYN IND Bulk Yeast 10 B/g, 20 kg 1    5%
    Yeast box
    Vitamin A, A-30 RC BWATER Vitamin A, A-30, 50 lb 0.51529    2%
    bag
    Vitamin E, E-20 RC BWATER Vitamin E, E-20, 50 lb 0.51529    2%
    bag
    Enzyme Premix Micron Mycotex SW enzymes 0.03405    <1%
    IV (See Table  (0.16%)
    2)
    Light mineral oil AKEY Light mineral oil, 387 lb 0.22809    1%
    drum
    TOTAL 21.53204 100.00%
  • TABLE 2
    Enzyme Formulation suitable for use in the Composition of the
    Invention
    Name Source Specification kg % wt
    Cellulase 300 BIOCAT Cellulase 300 0.49000 32.67%
    TR TR, 75,000/g,
    Hemicellulase BIOCAT Hemicellulase 0.49000 32.67%
    1500 1500
    Lipase OF Meito 400,000 U/g 0.49000 32.67%
    Sangyo
    Flow Agent DUNLEARY Hubersorb 600, 0.03000 2.00%
    30 lb bag
    TOTAL 1.50000 100.00%
  • In addition to these essential components, additional components can be included in a composition of the invention, if necessary. Examples of suitable additional components are food supplements such as vitamins and minerals, mineral oil, a flow agent such as a fine, precipitated calcium silicate powder (e.g. hubersorb), and a sugar source such as dried molasses. An example of a formulation according to the invention is provided in Table 1.
  • The three essential components are preferably prepared as a mixture, optionally with a flow agent (as in Table 2), and subsequently combined with the additional components when needed for application to a foodstuff.
  • Any amount of each of the three essential components of the composition can be used that achieves the desired result of reducing mycotoxin levels. Preferably, between 0.1 kg and 50 kg of the composition is applied to each tonne of feed, more preferably between 0.2 kg and 10 kg per tonne, e.g. 0.5, 1, 1.2, 1.5, 2.5, 5, 7.5 kg or more per tonne. Suitable levels will be apparent to the skilled person.
  • In a preferred embodiment, the composition is applied to the feed such that the microorganism is present at approximately 1×109 cells per tonne of feed or greater. More preferably, the microorganism is present at 2×109, 3×109, 4×109, or 5×109 cells per tonne of feed or greater. Yet more preferably, 1×1010 cells per tonne of feed is applied, more preferably 1×1011 cells per tonne of feed or greater is applied, for example greater than 2×1011 cells per tonne of feed, more preferably greater than 1×1012, 2×1012 cells per tonne of feed or more. The skilled person will realise that the precise amount of composition that is required per tonne of feed will depend on the feed to be treated, the toxins present and the intended recipient of the feed. For example, an animal that consumes a small amount of feed per day will generally require a higher concentration of microorganism applied to the feed than an animal that consumes a large amount of feed per day. For cattle, an example of a suitable amount is 2.2×1011 cells per tonne of feed, while for swine and poultry a preferred amount is 1.1×1012 cells per tonne of feed.
  • In the composition, the microorganism is present at any suitable level that allows detoxification to occur when applied to a foodstuff. Preferably, the microorganism is present at approximately 1×109 cells or greater per kilogram of the composition, more preferably 1×1010 cells per kilogram of composition, or greater, for example 1×1011 or 1×1012 cells per kilogram, or greater. The skilled person will appreciate that the amount of microorganism in the composition will affect the amount of composition required to achieve the desired effect, in particular the cells per tonne of feed recited above. In the example composition of Table 1, yeast is included at approx 5% (by weight). 1 Kg of the composition defined by Table 1 contains approximately 5×1011 yeast cells. Therefore, applying 0.5 Kg of this composition to a tonne of feed will provide approximately 2.5×1011 cells per tonne of feed, while applying 2.5 Kg of this composition to a tonne of feed will provide approximately 1.25×1012 cells per tonne of feed.
  • The one or more enzyme is present in the composition at an effective level. Less than 5% by weight of enzyme is preferred, more preferably less than 1%, more preferably between 0.01% and 0.5% by weight, yet more preferably between 0.15% and 0.25% by weight. The composition of Table 1 contains an enzyme mixture totalling 0.16% by weight, including the flow agent.
  • The binder is present in the largest proportion, at an effective level. Preferably, at least 50% by weight of the composition should be binding agent, more preferably 60 to 90%. The composition of Table 1 contains a mixture of binding agents totalling approx 85%.
  • For the avoidance of doubt, a suitable range for each of the essential ingredients in the composition of the invention is: microorganism—0.1% to 10% by weight, preferably 2% to 8%, i.e. 5%; enzyme—less than 5% by weight of enzyme is preferred, more preferably less than 1%, more preferably between 0.01% and 0.5% by weight, yet more preferably between 0.15% and 0.25% by weight; binder—preferably at least 50% by weight of the composition is binding agent, more preferably 60 to 90%. The balance (if any) can be made up with the additional agents recited above, if required.
  • The composition of the invention can be in any suitable formulation, for example a solid such as a powder or granulate, a gel or a liquid. Preferably, the formulation is a solid, more preferably a powder.
  • The composition of the invention is effective at reducing mycotoxin levels. Preferably, the composition is used to reduce mycotoxins in a foodstuff. As used herein, the term “foodstuff” is to be given its usual meaning in the art, referring to any material that is eaten by a human or animal for nutrition. Foodstuffs comprise carbohydrates, fats and/or proteins among other components. The foodstuff can be of animal or vegetable origin. Human food and animal feeds are within the scope of the term. In a preferred embodiment, the foodstuff is an animal feed of plant origin, commonly known as fodder, more preferably a cereal foodstuff. The term “foodstuff” includes materials that must be processed before safe consumption by a human or animal. A preferred example of such a material are “distiller's grains”. These grains, also known as “distiller's dried grains”, are a cereal by-product of the distillation process. Distiller's grains are known in the art. Briefly, they are produced in distilleries by drying mash and are used commonly as a fodder for livestock, especially ruminants. Detoxifying distiller's grains, by reduction of mycotoxin content, is therefore within the scope of the invention.
  • The composition can be added to the foodstuff any way that is effective at reducing the mycotoxin content. Contact between the composition and foodstuff is required. The preferred method is to treat the foodstuff before ingestion to remove, preferably completely, the toxicity. This is “detoxification” of the foodstuff before consumption. An alternative method is to treat the feed immediately before ingestion, or simultaneous with ingestion, and to rely on the invention to complete the detoxification during digestion. This post-ingestion detoxification is particularly suitable for use in animals, preferably ruminants such as cattle and sheep.
  • A method of reducing the toxicity of a mycotoxin or mycotoxins in a foodstuff comprises the step of contacting the foodstuff with a composition as defined herein. The mycotoxin can be any mycotoxin. Preferred mycotoxins include Zearalenone, a tricothene such as Deoxynivalenol, Aflatoxin, Fumonisin, Roquefortin, ochratoxin or an endophyte toxin, such as sporidesmin, ergovaline or Lolitrem B.
  • A foodstuff of any human or non-human animal, preferably non-human mammal, can be detoxified according to the invention. Preferably, the foodstuff is for a farm animal such as cattle, horses, pigs or poultry.
  • Without wishing to be bound by theory, detoxification is thought to be achieved in a number of ways, acting in synergy. The enzyme component breaks down toxins and/or improves the toxin binding to the mycotoxin-binding agent. The binding agent prevents the mycotoxins from being absorbed by the animal and allows their excretion. The microorganism uptakes and sequesters the toxins and may also break down the toxins. Any toxin that is released by the microorganism is thought to bind more strongly to the binding agent, where further degradation (by the enzymes) may occur. Therefore, the actions of the microorganism and/or enzyme are thought to potentiate the binding of the toxin to the binding agent. These three components therefore work in an advantageous complex synergy that could not be predicted.
  • The toxin may therefore be removed from the foodstuff by enzyme breakdown, by binding to the binding agent and/or sequestration in the micro-organism, thus removing it from the foodstuff; if detoxification occurs in an animal, the removal is ultimately from the gastrointestinal tract in faecal material. These sequestrations have the further effects of preventing absorption into the animal and facilitating the action of the enzymes of the invention in the gastrointestinal tract.
  • The skilled person will realise that the health of animals and humans can be adversely affected by the presence of a mycotoxin in a foodstuff. The compositions of the invention can therefore be used in therapy, to treat a disease caused by a mycotoxin.
  • The invention is further described with reference to the following non-limiting examples.
  • EXAMPLES Example A Experimental Degradation of Toxins and Identification of Catalysts
  • The modification of various toxins by enzymes was examined by screening the activity of a number of a selection of enzymes against various toxins. The change in the toxin was measured by a monoclonal antibody in an Elisa test. Since the monoclonal antibody retains, in many cases, the ability to cross react with the fragments produced by the enzyme catalysis, this provides a definitive screening tool but not a quantitative measure of the enzymes activity.
  • Suitable enzymes which may be used as part of the invention are shown in Table 3 and examples of their action are shown in Tables 4-6.
  • TABLE 3
    Examples of the Enzymes suitable for use in the Composition of the
    Invention.
    ENZYME EC NUMBER ACTION
    Esterase 3.1.1.x Ester hydrolysis
    Lipase 3.1.1.3 Ester hydrolysis
    Protease 3.4.x.x Hydrolysis of peptides
    Oxidase 1.4.3 Oxidations
    Aminoacid oxidase 1.4.3.2 & 3 Oxidation of amino acid NH2
    Lacotonohydrolase 3.1.1.25 Hydrolysis of lactones
    Peroxidase 1.11.1.7 Peroxidation reactions
    Lactoperoxidase 1.11.1.7 Peroxidation reactions
    Manganese peroxidase 1.11.1.13 Production of Mn+++
    Epoxidase 3.3.2.3 Hydrolysis of peroxides
    Polysaccharase 3.2.1 Hydrolysis of sugar cross links
    Dehydrogenases 1.1 Oxidation by removal of
    hydrogen
  • Experiment 1 Fumonisin Modification by Lipase
  • Lipase AE 02 (Mann Associates, Cambridge, UK) was incubated with Fumonisin 200 μg/litre and measured after 1 hour at 37° C. The remaining fumonisin was measured by ELISA assay. Boiled enzyme controls were also used in each case. It can be seen that there was a considerable reduction in the Fumonisin reacting with the antibody indicating degradation of the toxin.
  • TABLE 4
    pH 6.4 pH4.5 No Buffer
    Std Norm 0.06 0.045 0.028
    Experimental 0.039 0.046 0.01
    % degradation 30 0 50
    Std boiled 0.049 0.054 0.046
    Experimental 0.039 0.046 0.014
    % degradation 22 15 70
  • Experiment 2 Fumonisin Modification by Lipase and Amine Oxidase
  • Fumonisin was further examined by incubating it as in Table 3, but with an aminoxidase to remove the amine groups. The lipase 2 again achieved degradation while the oxidase also degraded the toxin. There was no apparent synergy of using both enzymes. This demonstrates that a combination of enzymes, alone, is not effective at improving mycotoxin degradation.
  • TABLE 5
    Lipase Lipase AE 02 +
    Blank AEO 2 Oxidase Oxidase
    Results 0.38 0.45 0.41 0.46
    % max abs Ave 20.89 24.91 22.6 23.23
    ppm 0.26 0.18 0.2 0.19
    % degradation 31.90% 22.10% 26.00%
  • Experiment 3 Enzyme Modification of Zearalenone
  • Enzyme degradation of Zearalenone was examined using a variety of preparations. Of these preparations, some achieved degradation but the composition according to the invention (as defined in Table 1) produced a synergistic effect. Repeats of the experiment followed by analysis by HPLC showed that the formulation was capable of reducing the toxin levels to zero.
  • TABLE 6
    Formulation Cellulase
    defined in From Xylanase Nitrilase Lipase
    Enzyme Table 1 Table 2 of Table 2 (Control) AE 02
    Experimental 0.0010 0.014 0.022 0.024 0.006
    Control 0.019 0.015 0.026 0.017 0.012
    % reduction 47 7 17 0 12
    in apparent
    toxin
    concen-
    tration
  • Example B Experimental Binding of Toxins and Identification of the Properties of Binders Experiment 4
  • Toxin at physiological levels of approx. 200 μg/L was mixed with a constant quantity (50 mg) of binder, agitated for 30 min, centrifuged and the toxin remaining in solution measured using a RIDASCREEN® FAST mycotoxin test kit (available from R-Biopharm GmbH, Darmstadt, Germany). The results are determined by reference to a standard binding curve for the toxin and binder.
  • The results are shown in FIG. 1, which shows the binding percentage at a typical (physiological) rumen concentration. The binding abilities of various components are demonstrated at a physiological concentration of toxin. It can be seen from the variability in the results that a mixture of binders is preferable to a single entity. (Volclay=Na bentonite; Teragreen=Ca bentonite, FerMOS=polysaccharide binding complex).
  • Example C Sequestration of Toxins and Subsequent Enzyme Degradation of the Toxin
  • In the following experiments (5, 6, 7) active yeast cultures (Saccharomyces Cerevisiae NYCC R404) were charged with the appropriate toxin at 200 μg/L and the disappearance from the supernatant followed by ELISA assays.
  • FIGS. 2, 3, and 4 illustrate the effects of the microorganism and its endogenous microbial enzymes on the mycotoxins DON, Zearalenone and Fumonisin. In each case, the yeast take up the toxin, rapidly reducing the toxicity of the culture. The toxin is then metabolised and released, in an altered form, where it is able to bind the binding agent, for subsequent degradation. These examples illustrate the synergy of the composition according to the invention.
  • Experiment 5 DON Uptake and Degradation by Yeast Enzymes
  • Yeast (Saccharomyces Cerevisiae NYCC R404) rapidly take up DON from solution, preventing uptake into the animal. The yeast metabolise the DON and release break-down products (metabolites) which are able to bind to two different bentonite binders. Further degradation can then occur on the binders. See FIG. 2.
  • Experiment 6 Zearalenone Degradation by Yeast Enzymes
  • Rapid uptake by yeast (Saccharomyces Cerevisiae NYCC R404) is demonstrated with the toxin Zearalenone. The enzyme modification occurs in the cell and metabolite peak is then produced, as with DON, before it is subsequently degraded. See FIG. 3.
  • Experiment 7 Fumonisin Degradation by Yeast Enzymes
  • Yeast (Saccharomyces Cerevisiae NYCC R404) can remove fumonisin from the gastro-intestinal tract by sequestration, as shown in FIG. 4. Again, a peak of metabolites is produced early on before further degradation over time.
  • Example D DON (Deoxynivalenol and Zearalenone) in a Dairy Herd
  • Treatment of a small herd receiving contaminated feed. Prior to treatment the 49 head herd exhibited rough hair coat, abortions, scours, erratic appetites, a lower and erratic milk production, feed in manure and stressed demeanour in the animals. FIG. 5 shows that as the desired formulation (as defined in Table 1) was added, at a rate of 0.5 kilos/1000 kilos of feed for 2 days, and 0.25 kilos 1000 kilos of feed thereafter, milk production increased. Milk production is shown in lbs.
  • Example E Deoxynivalenol (DON) in a Dairy Herd
  • Feed containing corn silage known to be contaminated with Vomitoxin (DON), and determined to be at 16.6 ppm, was fed to a 160 head dairy herd which was used in a one month experiment. Enzymes and binders (as part of the formulation defined in Table 1) were fed at 0.5 kilo per 1000 kilo of total mixed ration. Milk production is shown in FIG. 6, adjusted for 150 DIM.
  • Example F Porcine Deoxynnivalenol
  • In a group of pigs where reproduction and growth performance was poor and the conception rate was less than 50%, the number born alive was at 5 pigs per litter. Grower finisher days were over 200 days and animals were very variable. A toxin challenge was identified. Feed analysis showed 4.1 and 4.8 ppm of DON. All breeding pigs were immediately placed on feed containing 2.5 kg/tonne of the formulation (as defined in Table 1).
  • After 21 days first service, conception was back to normal at over 90% and pigs born alive returned to Greater than 10. Pig feed intake in grower finisher was back to normal. Subsequently, pig variation in grower finisher also returned to normal.
  • Boars also benefited. Exposed to DON, their semen volume and sperm concentration decreased by 50% within 7 days. On treatment they returned to normal also in approximately 7 days.

Claims (22)

1. A composition comprising an enzyme, a mycotoxin-binding agent and a saccharomyces yeast capable of taking up a mycotoxin.
2. The composition according to claim 1, wherein the active agents consist of the enzyme, mycotoxin-binding agent and saccharomyces yeast capable of taking up a mycotoxin.
3. The composition according to claim 1, wherein the saccharomyces yeast is Saccharomyces cerevisiae.
4. The composition according to claim 1, wherein the enzyme is an esterase, lipase, protease, oxidase, amino acid oxidase, lactonohydrolase, peroxidase, lactoperoxidase, manganese peroxidase, epoxidase, polysaccharase or dehydrogenase.
5. The composition according to claim 1, wherein the binder comprises a polysaccharide, such as glucomannan, or a bentonite.
6. The composition according to claim 1, wherein the microorganism expresses at least one enzyme selected from among an esterase, lipase, protease, oxidase, amino acid oxidase, lactonohydrolase, peroxidase, lactoperoxidase, manganese peroxidase, epoxidase, polysaccharase, and dehydrogenase.
7. The composition according to claim 1, comprising a further microorganism that expresses at least one enzyme selected from among an esterase, lipase, protease, oxidase, amino acid oxidase, lactonohydrolase, peroxidase, lactoperoxidase, manganese peroxidase, epoxidase, polysaccharase, and dehydrogenase.
8. The composition according to claim 1 for application to a foodstuff.
9. The composition according to claim 1, wherein the toxin binder is charged.
10. A method of reducing the toxicity of a mycotoxin in a foodstuff, comprising the step of contacting the foodstuff with a composition comprising an enzyme, a mycotoxin-binding agent and a saccharomyces yeast capable of taking up a mycotoxin.
11. The method according to claim 10, wherein the mycotoxin to be modified is a tricothene.
12. The method according to claim 11, wherein the tricothene mycotoxin to be modified is Deoxynivalenol.
13. The method according to claim 10, wherein the mycotoxin to be modified is Zearalenone, Aflatoxin, Fumonisin, Roquefortin, an ochratoxin or an endophyte toxin.
14. The method according to claim 13, wherein the endophyte is Lolitrem B, sporidesmin or ergovaline.
15. The method according to claim 10, wherein the foodstuff is contacted with the composition prior to consumption by an animal.
16. The method according to claim 10, wherein the foodstuff is contacted with the composition simultaneous with consumption by an animal.
17. The method according to claim 10, wherein the enzyme potentiates the toxin binding to the toxin binder.
18. A foodstuff comprising a composition comprising an enzyme, a mycotoxin-binding agent and a saccharomyces yeast capable of taking up a mycotoxin.
19-21. (canceled)
22. A method for the treatment of a disease caused by mycotoxin in a human or non-human animal, comprising providing a composition to the human or non-human animal for consumption, wherein the composition comprises an enzyme, a mycotoxin-binding agent and a saccharomyces yeast capable of taking up a mycotoxin, and wherein the composition is consumed by the human or non-human animal.
23. The method according to claim 22, wherein a foodstuff comprising the composition is provided to the human or non-human animal, and wherein the foodstuff is consumed by the human or non-human animal.
24. A method for making a composition, comprising combining an enzyme, a mycotoxin-binding agent and a saccharomyces yeast capable of taking up a mycotoxin.
US12/447,837 2006-11-01 2007-11-01 Mycotoxin-reducing composition Abandoned US20110150853A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0621792.1 2006-11-01
GBGB0621792.1A GB0621792D0 (en) 2006-11-01 2006-11-01 Composition
PCT/GB2007/004191 WO2008053232A2 (en) 2006-11-01 2007-11-01 Mycotoxin-reducing composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/004191 A-371-Of-International WO2008053232A2 (en) 2006-11-01 2007-11-01 Mycotoxin-reducing composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/577,567 Division US9901108B2 (en) 2006-11-01 2014-12-19 Mycotoxin-reducing composition

Publications (1)

Publication Number Publication Date
US20110150853A1 true US20110150853A1 (en) 2011-06-23

Family

ID=37547166

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/447,837 Abandoned US20110150853A1 (en) 2006-11-01 2007-11-01 Mycotoxin-reducing composition
US14/577,567 Active 2028-03-01 US9901108B2 (en) 2006-11-01 2014-12-19 Mycotoxin-reducing composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/577,567 Active 2028-03-01 US9901108B2 (en) 2006-11-01 2014-12-19 Mycotoxin-reducing composition

Country Status (13)

Country Link
US (2) US20110150853A1 (en)
EP (1) EP2094107B1 (en)
AT (1) ATE493037T1 (en)
AU (1) AU2007315907B2 (en)
CA (1) CA2668024C (en)
DE (1) DE602007011664D1 (en)
DK (1) DK2094107T3 (en)
ES (1) ES2357750T3 (en)
GB (1) GB0621792D0 (en)
MX (1) MX2009004724A (en)
NZ (1) NZ576662A (en)
PL (1) PL2094107T3 (en)
WO (1) WO2008053232A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219683A1 (en) * 2009-08-27 2012-08-30 Sud-Chemie Ag Toxin adsorbent
WO2014127851A1 (en) * 2013-02-21 2014-08-28 Direvo Industrial Biotechnology Gmbh Mycotoxin-binders
WO2015169847A1 (en) * 2014-05-06 2015-11-12 Veterinærinstituttet A method for trichothecene detoxification
WO2015168751A1 (en) * 2014-05-09 2015-11-12 Hicare Health Foods Pty Limited Digestive supplement to mitigate adverse reactions
US20160374364A1 (en) * 2015-06-25 2016-12-29 Lee Tech LLC. Method of and system for producing a high value animal feed additive from a stillage in an alcohol production process
US9695381B2 (en) 2012-11-26 2017-07-04 Lee Tech, Llc Two stage high speed centrifuges in series used to recover oil and protein from a whole stillage in a dry mill process
CN108893416A (en) * 2018-06-01 2018-11-27 河南广安生物科技股份有限公司 It is a kind of degrade vomitoxin saccharomycete and its application
US11166478B2 (en) 2016-06-20 2021-11-09 Lee Tech Llc Method of making animal feeds from whole stillage
CN114698767A (en) * 2022-06-07 2022-07-05 山东健源生物科技有限公司 Biological agent for removing mycotoxin in feed as well as preparation method and application of biological agent
US11427839B2 (en) 2014-08-29 2022-08-30 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
US11623966B2 (en) 2021-01-22 2023-04-11 Lee Tech Llc System and method for improving the corn wet mill and dry mill process
US11680278B2 (en) 2014-08-29 2023-06-20 Lee Tech Llc Yeast stage tank incorporated fermentation system and method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA200901471A1 (en) * 2008-12-29 2010-12-30 Ооо "Промфермент" METHODS AND COMPOSITIONS FOR FINE DECOMPOSITION CONTAINING MYCOTOXINS DISTRIBUTED IN NORTHERN AND SOUTHERN LATITUDES
US8828465B2 (en) * 2010-05-17 2014-09-09 Kemin Industries, Inc. Mycotoxin binder
US20120070516A1 (en) * 2010-09-16 2012-03-22 Cubena, Inc. Mycotoxin binding food and feed additives and processing aids, fungistatic and bacteriostatic plant protecting agents and methods of utilizing the same
AT513472A1 (en) * 2012-10-09 2014-04-15 Erber Ag Enzyme preparation for the transformation of ergopeptins, process therefor and feed and feed or silage additive containing the same
DK201400146A1 (en) * 2014-03-16 2015-09-28 Janima Holding Aps Combination product for bedding in animal husbandry. Product is manufactured as a traditional drying agent for housing and has been added to raw materials in the form of stomach stabilizing starch and fiber, as well as minerals that bind toxins.
WO2017075289A1 (en) 2015-10-27 2017-05-04 Cytozyme Animal Nutrition, Inc. Animal nutrition compositions and related methods
US10674746B2 (en) 2015-10-27 2020-06-09 Cytozyme Animal Nutrition, Inc. Animal nutrition compositions and related methods
WO2017083964A1 (en) * 2015-11-16 2017-05-26 Mycotox Solutions Inc. Uses of mycotoxin-detoxifying antibodies
BE1024550B1 (en) * 2016-12-28 2018-04-03 Impextraco Nv Composition for use as a toxin eliminator in animals
CN107012131B (en) * 2017-01-12 2020-11-06 中国农业科学院北京畜牧兽医研究所 Manganese peroxidase, gene thereof and application of manganese peroxidase in mycotoxin detoxification
EP3430913B1 (en) 2017-07-20 2020-12-02 Tolsa, S.A. Composition for binding mycotoxins and its use
CA3070726A1 (en) 2017-07-31 2019-02-07 Poet Research, Inc. Remediation of toxins in biorefinery process streams
CN109486776B (en) * 2018-12-11 2021-03-26 中国农业科学院北京畜牧兽医研究所 Manganese peroxidase NfMnP and coding gene and application thereof
US20210403841A1 (en) 2020-03-12 2021-12-30 Poet Research, Inc. Enzymatic degradation of mycotoxins during grain processing
GB2610895B (en) * 2021-05-21 2023-12-06 Anpario Plc Composition for use in the treatment and/or prevention of mycotoxic disease
CN113693189B (en) * 2021-09-28 2023-11-17 中国农业科学院北京畜牧兽医研究所 Application and method of manganese peroxidase for degrading patulin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305876A (en) * 1976-05-10 1981-12-15 Hoffmann-La Roche, Inc. Process for the manufacture of tertiary, optically active aliphatic compounds
US5716820A (en) * 1994-08-12 1998-02-10 Pioneer Hi-Bred International, Inc. Fumonisin detoxification enzymes
US20040208956A1 (en) * 2001-12-20 2004-10-21 Gerd Schatzmayr Microorganism for biological detoxification of mycotoxins, namely ochratoxins and/or zearalenons, as well as method and use thereof
US20050079352A1 (en) * 2001-05-25 2005-04-14 Joey Glorioso Expandable microspheres for foam insulation and methods
WO2005079584A2 (en) * 2004-02-13 2005-09-01 Roquette Freres Mean volume of loaves (2 hours 30 min and 3 hours 0 min of rising)
US20060045934A1 (en) * 2004-08-25 2006-03-02 Cadbury Adams Usa Llc Liquid-filled chewing gum composition
US20060188549A1 (en) * 2005-01-28 2006-08-24 Block Stephanie S Animal feed compositions capable of reducing the incidence of fescue toxicosis in mammals
US20070065413A1 (en) * 2005-09-22 2007-03-22 Castillo Alejandro R Livestock anti-acid composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165946A (en) * 1990-03-07 1992-11-24 Engelhard Corporation Animal feed additive and method for inactivating mycotoxins present in animal feeds
AT504U1 (en) * 1994-10-19 1995-12-27 Erber Erich Kg FEED ADDITIVES AND USE OF THE SAME FOR INACTIVATING MYCOTOXINS IN FEEDS OR. IN THE DIGESTIVE WAY OF ANIMALS AND METHOD FOR PRODUCING A FEED
DE69935428T2 (en) * 1998-04-17 2007-12-06 Alltech, Inc. COMPOSITIONS FOR REMOVING MYCOTOXINES FROM FEEDSTUFFS
WO2000065928A1 (en) * 1999-05-03 2000-11-09 Alltech, Incorporated Novel compositions and methods for reduction of effects of endophyte-infected forages
EP1560917A1 (en) * 2002-11-08 2005-08-10 University of Copenhagen Method of immobilising a protein to a zeolite
AT501359B1 (en) * 2004-11-16 2007-10-15 Erber Ag METHOD AND MICROORGANISM FOR THE DETOXIFICATION OF FUMONISINES AND THEIR USE AND FEED ADDITIVE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305876A (en) * 1976-05-10 1981-12-15 Hoffmann-La Roche, Inc. Process for the manufacture of tertiary, optically active aliphatic compounds
US5716820A (en) * 1994-08-12 1998-02-10 Pioneer Hi-Bred International, Inc. Fumonisin detoxification enzymes
US20050079352A1 (en) * 2001-05-25 2005-04-14 Joey Glorioso Expandable microspheres for foam insulation and methods
US20040208956A1 (en) * 2001-12-20 2004-10-21 Gerd Schatzmayr Microorganism for biological detoxification of mycotoxins, namely ochratoxins and/or zearalenons, as well as method and use thereof
WO2005079584A2 (en) * 2004-02-13 2005-09-01 Roquette Freres Mean volume of loaves (2 hours 30 min and 3 hours 0 min of rising)
US20070166446A1 (en) * 2004-02-13 2007-07-19 Roquette Freres Method for producing a gluten-based baked product
US20060045934A1 (en) * 2004-08-25 2006-03-02 Cadbury Adams Usa Llc Liquid-filled chewing gum composition
US20060188549A1 (en) * 2005-01-28 2006-08-24 Block Stephanie S Animal feed compositions capable of reducing the incidence of fescue toxicosis in mammals
US20070065413A1 (en) * 2005-09-22 2007-03-22 Castillo Alejandro R Livestock anti-acid composition

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
definition of "express" from http://en.mimi.hu.org/biology/express.htm, 5 pages *
machine translation of WO/9612414 downloaded from the EPO 2/12/2012. *
Nurminen et al. Biocehm. J. (1970) 118: 759-763. *
Shetty et al. Trends in Food Sci. (2006) 12: 48-55. *
Zhang et al. Journal of AOAC International (2014) 97(3): 889-895. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219683A1 (en) * 2009-08-27 2012-08-30 Sud-Chemie Ag Toxin adsorbent
US9695381B2 (en) 2012-11-26 2017-07-04 Lee Tech, Llc Two stage high speed centrifuges in series used to recover oil and protein from a whole stillage in a dry mill process
WO2014127851A1 (en) * 2013-02-21 2014-08-28 Direvo Industrial Biotechnology Gmbh Mycotoxin-binders
US10131866B2 (en) 2013-02-21 2018-11-20 Direvo Industrial Biotechnology Gmbh Mycotoxin-binders
WO2015169847A1 (en) * 2014-05-06 2015-11-12 Veterinærinstituttet A method for trichothecene detoxification
WO2015168751A1 (en) * 2014-05-09 2015-11-12 Hicare Health Foods Pty Limited Digestive supplement to mitigate adverse reactions
US11427839B2 (en) 2014-08-29 2022-08-30 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
US11680278B2 (en) 2014-08-29 2023-06-20 Lee Tech Llc Yeast stage tank incorporated fermentation system and method
WO2016209776A1 (en) * 2015-06-25 2016-12-29 Lee Tech Llc A method of and system for producing a high value animal feed additive from a stillage in an alcohol production process
US20160374364A1 (en) * 2015-06-25 2016-12-29 Lee Tech LLC. Method of and system for producing a high value animal feed additive from a stillage in an alcohol production process
US11166478B2 (en) 2016-06-20 2021-11-09 Lee Tech Llc Method of making animal feeds from whole stillage
CN108893416A (en) * 2018-06-01 2018-11-27 河南广安生物科技股份有限公司 It is a kind of degrade vomitoxin saccharomycete and its application
US11623966B2 (en) 2021-01-22 2023-04-11 Lee Tech Llc System and method for improving the corn wet mill and dry mill process
CN114698767A (en) * 2022-06-07 2022-07-05 山东健源生物科技有限公司 Biological agent for removing mycotoxin in feed as well as preparation method and application of biological agent

Also Published As

Publication number Publication date
GB0621792D0 (en) 2006-12-13
NZ576662A (en) 2012-03-30
WO2008053232A3 (en) 2008-08-21
ATE493037T1 (en) 2011-01-15
DK2094107T3 (en) 2011-03-28
US9901108B2 (en) 2018-02-27
AU2007315907B2 (en) 2012-02-23
AU2007315907A1 (en) 2008-05-08
EP2094107B1 (en) 2010-12-29
CA2668024A1 (en) 2008-05-08
PL2094107T3 (en) 2011-07-29
ES2357750T3 (en) 2011-04-29
EP2094107A2 (en) 2009-09-02
WO2008053232A2 (en) 2008-05-08
DE602007011664D1 (en) 2011-02-10
CA2668024C (en) 2012-06-26
MX2009004724A (en) 2009-10-12
US20150150285A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
US9901108B2 (en) Mycotoxin-reducing composition
AU2012200952B2 (en) Mycotoxin-reducing composition
Dierick Biotechnology aids to improve feed and feed digestion: enzymes and fermentation
Francesch et al. Nutritional factors affecting excreta/litter moisture and quality
AU732047B2 (en) Compositions for removal of mycotoxins from feed
Yoon et al. Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review
Brossard et al. Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: new type of interaction
McNab et al. Barley β-glucan: An antinutritional factor in poultry feeding
RU2457851C2 (en) Agent for fermentation improvement in ruminant scars
CN109554356B (en) Mycotoxin biodegradation agent containing glucose oxidase and saccharomyces cerevisiae and application thereof
US20180343891A1 (en) System for and a method of producing enriched and digested probiotic super feed using wet mill and dry mill processes
JP2018509173A (en) Use of trichothecene-converted alcohol dehydrogenase, method for converting trichothecene, and trichothecene-converting additive
Sherif Effect of dietary additives on growth performance, carcass traits and some blood constituents of rabbits
Zhang et al. Effects of dietary supplementation with different fermented feeds on performance, nutrient digestibility, and serum biochemical indexes of fattening lambs
Pettersson Controlling mycotoxins in animal feed H. Pettersson, Swedish University of Agricultural Sciences, Sweden
AU714602B2 (en) Animal feed additives
El-Sagheer et al. Effect of enzymes and probiotic mixture supplementation to the diet of growing female rabbits on performance and carcass criteria
WO1996017525A1 (en) Micro-organisms, enzymes, and their use
Perry Biotechnology in animal feeds and animal feeding: an overview
Sawsan et al. Determine the proper level of yeast with different levels of roughages to improve the nutritive value of lamb’s ration
CN112293568A (en) Fermented Chinese herbal medicine and preparation method thereof, and feed mycotoxin mold removal agent and preparation method thereof
CN106306407A (en) Plant-eating animal feed processed by corn cobs and preparation method thereof
Žitñan et al. The effect of diet composition on the development of rumen digestion in lambs
Purushothaman et al. Effect of autoclaving and supplementation of enzyme or yeast culture on feeding value of little millet for broilers
Kirby et al. Adaptation to grain feeding

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION