US20110152919A1 - Reversible Vascular Filter Devices and Methods for Using Same - Google Patents

Reversible Vascular Filter Devices and Methods for Using Same Download PDF

Info

Publication number
US20110152919A1
US20110152919A1 US12/977,723 US97772310A US2011152919A1 US 20110152919 A1 US20110152919 A1 US 20110152919A1 US 97772310 A US97772310 A US 97772310A US 2011152919 A1 US2011152919 A1 US 2011152919A1
Authority
US
United States
Prior art keywords
framework
filter
vessel
proximal portion
filter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/977,723
Inventor
Albert K. Chin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pavilion Medical Innovations LLC
Original Assignee
Pavilion Medical Innovations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pavilion Medical Innovations LLC filed Critical Pavilion Medical Innovations LLC
Priority to US12/977,723 priority Critical patent/US20110152919A1/en
Assigned to Pavilion Medical Innovations reassignment Pavilion Medical Innovations ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIN, ALBERT K.
Publication of US20110152919A1 publication Critical patent/US20110152919A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0103With centering means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0105Open ended, i.e. legs gathered only at one side
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0108Both ends closed, i.e. legs gathered at both ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/008Quadric-shaped paraboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis

Definitions

  • This invention relates generally to intravascular devices and more particularly to filter devices implantable within the vena cava for capturing dislodged clots or debris.
  • Vena caval filters can be utilized in conjunction with anti-coagulants and thrombolytic agents to prevent pulmonary embolism and other vascular diseases from occurring within the body. These devices are generally implanted within a vessel, such as the inferior vena cava, to capture dislodged blood clots (emboli) contained in the blood stream. If a blood clot forms in the deep veins of a lower extremity and dislodges, the blood clot may proceed up the vena cava into the heart and into the pulmonary arteries, where it may block and interrupt blood flow. Mortality is typically high in the event of pulmonary embolism.
  • vena caval filters To trap emboli, many conventional vena caval filters employ several independent filter legs that can be expanded within the vessel to form a substantially conical-shaped filtering profile within which emboli or clots can be collected.
  • a hook, barb or other piercing or anchoring mechanisms on the filter leg can be used to secure the filter to the wall of the vena cava.
  • the Greenfield filter has multiple legs meeting at a central apex and has attachment hooks on the legs. Deployment of the Greenfield filter often occurs in a tilted fashion, which decreases clot capture ability of the filter.
  • the Greenfield filter is placed in the vessel in one direction that funnels clots to the apex of the filter and the center of the vessel.
  • the attachment hooks on the legs of the Greenfield filter are also uni-directional and positioned for funneling clot to the apex of the filter.
  • vena caval filter As protection from a pulmonary embolism for a short period of time. As such, leaving an implantable filter in place for an extended period of time may lead to complications, including inferior vena cava thrombosis, deep venous thrombosis, filter migration, and vena cava perforation. Therefore, in some circumstances, it may be desirable to remove the filter from the patient.
  • Another hurdle to removing a filter from the vena cava results from conventional vena caval filters becoming off-centered or tilted with respect to the hub of the filter as well as the longitudinal axis of the vessel within which the filter is situated. Removal of an off-centered or tilted filter can be difficult as the barbs or hooks securing the filter in place can dig further into the vessel walls and act to injure or damage the vessel during removal.
  • the present invention provides, in one embodiment, a filter device for capturing undesirable materials (e.g., clots).
  • the device includes a self-expanding framework defined by a plurality of legs.
  • the filter device can also include a proximal portion on the expandable framework designed for secured placement of the device against a wall of a vessel.
  • the expandable framework includes an attachment mechanism at the proximal portion to enhance secured placement of the device against the wall of the vessel.
  • the framework in an embodiment, may be designed to permit undesirable materials to flow into the framework from the proximal portion towards the filter portion.
  • the filter device can additionally include a filter portion in linear alignment with the proximal portion and formed by constraining the plurality of legs towards an apex.
  • the plurality of legs in the filter portion can be designed to capture undesirable materials flowing through the vessel and direct the captured undesirable materials toward the apex.
  • the filter device can include a securing element at the apex to maintain the plurality of legs in a constrained position, and which upon elimination allows the plurality of legs to expand radially outward, such that a substantially tubular pathway is established through the expandable framework.
  • the securing element can be, for example, one of bio-absorbable, breakable, removable, or any combination thereof.
  • the present invention provides a filter device that can include an expandable framework having a substantially tubular proximal portion for secured placement of the device against a wall of a vessel.
  • the framework can include an attachment mechanism to enhance secured placement of the device against the wall of the vessel.
  • the filter device can also include an elongated leg extending beyond the proximal portion.
  • the elongated leg in an embodiment, can include a securing mechanism at an end opposing the framework at which the filter can terminate.
  • the device further includes a pathway extending through the framework.
  • the device can also include a continuous element extending through the framework between the proximal portion and the elongated leg to define a filter.
  • the filter can act to capture undesirable materials flowing through the vessel from the framework towards the elongated leg.
  • the continuous element upon elimination, may allow establishment of a substantially tubular pathway through the framework.
  • the present invention provides a bi-directional filter device that can include an expandable framework for secured placement of the device against a wall of a vessel.
  • the framework in an embodiment, includes an attachment mechanism to enhance secured placement of the device against the wall of the vessel.
  • the filter device can also include a pathway extending through the expandable framework.
  • the filter device can include a continuous element extending within the pathway between a proximal portion and a distal portion of the framework to define opposing filters within the framework, and which upon elimination allows establishment of a substantially tubular pathway through the framework.
  • the opposing filters within the framework can include an apex situated between the opposing filters.
  • the present invention in another aspect, also features methods for capturing undesirable material.
  • the method in one embodiment, can include initially providing an expandable framework defined by a plurality of legs constrained towards an apex with a securing element to form a filter portion in linear alignment with the proximal portion. Next, a proximal portion on the expandable framework may be secured against a wall of a vessel. Thereafter, undesirable materials may be allowed to flow into the framework toward the filter portion to permit the undesirable material to be captured thereat.
  • the step of allowing includes directing the captured undesirable materials toward the apex.
  • the method can further include eliminating the securing element to allow the plurality of legs to expand radially outward such that a substantially tubular pathway is provided through the expandable framework.
  • the method for capturing undesirable material can include initially placing an expandable framework having a substantially tubular proximal portion and an elongated leg extending beyond the proximal portion. Next, a continuous element may be provided through the framework between the proximal portion and the elongated leg so as to form a filter portion therebetween. Thereafter, the substantially tubular proximal portion may be secured against the wall of the vessel to provide a substantially tubular pathway through the framework. Then, undesirable materials may be allowed to flow into the framework toward the filter portion to permit the undesirable material to be captured thereat. The method can further include eliminating the continuous element extending through the framework between the proximal portion and the elongated leg, so as to establish a substantially tubular pathway through the framework.
  • the method for capturing undesirable material can include initially placing an expandable framework having a proximal portion and a distal portion. Next, a continuous element may be provided through the framework between the proximal portion and the distal portion so as to define opposing filters within the framework. Thereafter, the expandable framework may be secured against a wall of a vessel. Subsequently, undesirable material may be allowed to flow into the framework to permit the undesirable material to be captured by at least one of the opposing filters. The method can further include eliminating the continuous element defining the opposing filters within the framework, so as to establish a substantially tubular pathway through the framework.
  • FIG. 1 shows a vascular filter device in accordance with an embodiment of the present invention.
  • FIG. 2 shows a vascular filter device in accordance with another embodiment of the present invention.
  • FIG. 3 shows a vascular filter device in accordance with an embodiment of the present invention.
  • FIG. 4 shows a vascular filter device in accordance with another embodiment of the present invention.
  • FIG. 5 shows a vascular filter device in accordance with an embodiment of the present invention.
  • FIG. 6 shows a vascular filter device in accordance with another embodiment of the present invention.
  • FIGS. 7A-7C show a bidirectional vascular filter device in accordance with an embodiment of the present invention.
  • FIGS. 8 and 9 show a method of forming a vascular filter device in accordance with another embodiment of the present invention.
  • FIG. 10 shows another bidirectional vascular filter device in accordance with one embodiment of the present invention.
  • Arms or “legs” means an elongated member or a slender part extending from a proximal end to a distal end.
  • Bidirectional means a filter device that can be used in two opposing directions; i.e., either end can allow a fluid to flow through the filter while capturing undesirable materials.
  • Uni-directional or “one-directional” means a filter device that can be used in one direction only; i.e., a fluid can flow through the filter from one end to the other only while capturing undesirable materials.
  • “Blood clots”, “clots”, “emboli” and “debris” refers to substances found within blood flow that can be filtered using the vascular filter device of the present invention. They can have various profiles (e.g., from substantially stringy to substantially globular) and sizes (e.g., from less than 1 mm to a few centimeters). “Blood clots”, “clots”, “emboli” and “debris” can be used interchangeably through the application. Collectively, they can be referred to as “undesirable materials.”
  • Collapsed or Constricted means that at least a portion of a filter device is in a non-expanded position.
  • the filter device or a portion thereof would normally be in a collapsed or constricted position when introduced into a vessel and/or when retained within a cover sheath of a triaxial catheter.
  • “Criss-cross” pattern means a wire pattern wherein the wires cross one another.
  • Device “Device”, “filter device” or “vascular filter device” means a structure for filtering in one or more vessels.
  • Diameter as used in connection with a vessel means the approximate diameter of a vessel since vessels are not often perfectly cylindrical. “Diameter” as used with respect to any structure means an approximate diameter.
  • “Dilated” means enlarged or expanded in width, bulk or extent.
  • Expanded means that at least a portion of a vascular filter device is in an expanded position.
  • a vascular filter device or a portion thereof within a vessel may be expanded for the purpose of allowing fluid to substantially freely flow through the vessel.
  • “Expanded” and “substantially expanded” may be used interchangeably when used in connection with a filtration device. “Self-expanding” means a filter device capable of expanding on its own, without external forces.
  • Frter means a device or structure having the function of holding back or capturing a material.
  • Fluid means any substance, such as a liquid or gas, that can flow, including bodily fluids, such as blood and blood plasma.
  • Offset means the relative position between two things that may otherwise be aligned but are not aligned with one another.
  • “Malleable” means capable of being shaped, altered or controlled by external forces or influences. “Malleable portion” means a portion of the filter device capable of switching between a constricted and an expanded position.
  • Reversible and “reversible vascular filter device” means a device that is capable of being eliminated after a period of time such that the device remains within a vessel but does not continue to filter.
  • “Vessel” means any vessel within a body, such as the human body, through which blood or other fluid flows and includes arteries and veins.
  • Wire means any type of wire, strand, strut or structure, regardless of cross-sectional dimension (e.g., the cross-section could be circular, oval, or rectangular) or shape, and regardless of material, that may be used to construct a filter device as described herein. Some wires may be suitable for one or more of the embodiments but not suitable for others.
  • vascular filter device of the present invention may find use in capturing dislodged clots in, for instance, the vena cava.
  • the filter device can be bi-directional such that the device may be placed in a vessel in either direction to capture clots. In this way, the need associated with uni-directional filters to place them in a particular direction (e.g., along the blood flow) can be eliminated.
  • the device of the present invention can be adapted for use within other vessels in the body.
  • the vascular filter device of the present invention may also find use in veins and arteries, such as the abdominal aorta, aortic arch, the ascending aorta, the descending aorta, a carotid artery, an iliac artery, or a renal artery.
  • the vascular filter device of the present invention includes, in an embodiment, a single-piece reversible design.
  • the reversible design of the vascular filter device of the present invention allows the device to remain within the vessel following implantation and the device can be deployed to not act as a filter, once such function is no longer necessary.
  • the vascular filter device of the present invention can reduce the likelihood of undesirable laceration, perforation or transection of the vessel walls associated with the removal process.
  • the single-piece design may also ensure that the vascular filter device remains intact following implantation and that one of its components does not detach, as may occur if the vascular filter device were composed of more than one piece, which can damage the vessels or other organs or tissues downstream.
  • FIGS. 1 and 2 illustrate a vascular filter device 100 in accordance with one embodiment of the present invention.
  • the vascular filter device 100 includes an expandable framework 120 defined by a plurality of legs 125 .
  • the framework 120 may have a proximal portion 110 for secured placement of the device 100 within a vessel (e.g., against the vessel wall).
  • the proximal portion 110 may include a proximal end 114 , a distal end 116 , and a body 118 therebetween.
  • the proximal portion 110 may be designed to transition from a first position, where the proximal portion 110 is collapsed, to a second position, where the proximal portion 110 is expanded.
  • expansion of the framework 120 including all other frameworks in other various embodiments described herein, can be by self-expansion or by exertion of an external force within the framework.
  • the proximal portion 110 may be designed to have a sufficiently small diameter so that it can be directed along a vessel to a site of interest for implantation.
  • the device 100 can be provided with a collapsed diameter of any size, depending on the application, size of the vessel, and so long as the diameter permits the vascular filter device to fit within a vessel for maneuvering. It should be noted that the diameter of the device 100 should also permit the device 100 to fit within any suitable catheter or other delivery mechanism for insertion into a vessel.
  • the proximal portion 110 of the vascular filter device 100 can allow for the passage of fluid through pathway 160 of the device 100 .
  • the vascular filter device 100 can act to minimize occlusion or hindrance of fluid flow through the vessel at a point of implantation.
  • the vascular filter device 100 may be provided with an expanded diameter of any size, so long as the proximal portion 110 can act to push against the vessel wall at the site of interest to secure itself thereat.
  • the proximal portion 110 should be made from any material and provided with any design that can radially expand to exert a sufficient radial force to push the device 100 against the vessel wall, so as to secure the proximal portion 110 within the vessel. It should be appreciated that the material used should permit the proximal portion 110 of the device to conform to the dimensions of the vessel even when the vessel dimensions may not be uniform. In other words, the proximal portion 110 may have a diameter which can vary along the length of the proximal portion 110 .
  • the proximal portion 110 may be provided on a framework 120 arranged in any suitable geometric or non-geometric pattern, such as a zig-zag, braid, criss-cross, non-overlapping pattern, or any other pattern as the present disclosure is not intended to be limited in this manner.
  • the pattern of the framework 120 may affect the strength and/or flexibility of the vascular filter device. For instance, a braid pattern may have greater strength, while the coil pattern may have better flexibility.
  • framework 120 may be made from one single wire arranged in a zig-zag pattern about the proximal portion 110 .
  • the wire can form at least one leg 125 extending from the proximal portion 110 to the distal portion 130 . It should be noted that these legs 125 can be of varying length.
  • apexes 122 can be provided to alternate between the proximal end 114 and the distal end 116 of the proximal portion. At each apex 122 , there may be provided an eyelet 128 . Eyelets 128 may also be provided along junction 135 , where the proximal portion 110 meets the distal portion 135 .
  • the number of legs 125 and apexes 122 provided about the proximal portion 110 may depend on a variety of factors including, but not limited to, the size and diameter of the wire 120 and the size and diameter of the proximal portion 110 . While shown with a continuous wire forming the zig-zag pattern, it should be appreciated that the proximal portion 110 of the present invention can be formed from a plurality of wires as the present invention is not intended to be limited in this manner.
  • the wire providing the framework 120 with a desired pattern may have a diameter or thickness of any size, depending on the particular application, as the diameter or thickness of the wire 120 may affect the strength and/or flexibility of the vascular filter device 100 .
  • the vascular filter device 100 Since the vascular filter device 100 is designed to be implanted within a vessel of a human or animal body, the vascular filter device 100 should be made from a material that is biocompatible. The biocompatibility of the material may help minimize occurrence of adverse reactions due to implantation of the vascular filter device 100 within a vessel.
  • the vascular filter device 100 can be made entirely or partially from material that is bioresorbable, or biodegradable, or a combination thereof. In such instances, the vascular filter device 100 may be entirely or partially absorbed by the vessel or may be degraded after a certain period of time has elapsed, and would eliminate the need for manual removal of the vascular filter device 100 .
  • the material from which the proximal portion 110 of the vascular filter device 100 may be formed includes metal, metal alloy, polymer, molded plastic, metal-polymer blend, or a combination thereof.
  • the type of material may affect the strength and/or flexibility of the vascular filter device 100 .
  • suitable materials include stainless steel (e.g.
  • PTT polyethylene terapthalate
  • PTFE polytetraflouroethylene
  • FEP polyurethane
  • PP polypropylene
  • PVC polyvinylchloride
  • PES polyether-ester
  • polyester polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), silicones, polyethylene, polyether-ether ketone (PEEK), polyimide (PI), polyetherimide (PEI), tantalum, tungsten, or any other suitable material that is biocompatible and that is capable of being expanded in the manner described above.
  • the vascular filter device 100 may also include an anti-thrombogenic coating such as heparin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent thrombosis or any other adverse reaction from occurring at the site of insertion.
  • an anti-thrombogenic coating such as heparin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent thrombosis or any other adverse reaction from occurring at the site of insertion.
  • the proximal portion 110 of the vascular filter device 100 may include, in an embodiment, a securing or attachment mechanism (not shown).
  • a securing or attachment mechanism can include a hook, pin, needle, prong, barb, wedge or any other attachment mechanism adapted to adequately engage and secure the proximal portion 110 to the vessel wall.
  • the attachment mechanisms can be situated anywhere along the proximal portion 110 , as the present invention is not intended to be limited in this manner.
  • the attachment mechanisms can be located at apexes 122 of the framework 120 .
  • an anti-inflammatory agent such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, mesalamine, or any suitable combination or mixture thereof may be applied to the attachment mechanism to prevent inflammation or any other adverse reaction caused by the engagement of the attachment mechanism along the vessel wall.
  • the vascular filter device 100 may also include a distal portion 130 defining a filter 140 of the device 100 .
  • the distal portion 130 of the vascular filter device 100 when defining filter 140 , can be used to capture clots and other debris from the fluid flow within the vessel.
  • the distal portion 130 includes a proximal end 132 , a distal end 134 , and a body 136 therebetween.
  • the proximal end 132 of the distal portion 130 can be situated adjacent the distal end 134 of the proximal portion 110 .
  • the distal portion 130 can be integral with the proximal portion 110 of the vascular filter device 100 , such that the vascular filter device 100 can be a single-piece device.
  • the distal portion 130 can be independent from the proximal portion 110 , such that the vascular filter device 100 is formed from more than one piece.
  • the distal portion 130 may be designed to include a first position where the distal portion 130 is substantially collapsed. In this first position, the distal portion 130 has a sufficiently small diameter to permit insertion into a vessel.
  • the distal portion 130 can also have a second position where the distal portion 130 is substantially expanded. In the substantially expanded position, the distal portion 130 can permit the flow of fluid through the vascular filter device 100 and can act to minimize any occlusion or hindrance of the flow of fluid through the vessel when filter 140 is eliminated.
  • the distal portion 130 can be formed from a wire that forms the proximal portion 110 .
  • the distal portion 130 can be defined by legs 125 .
  • each leg 125 may include a portion that forms the proximal portion 110 while the remainder of the leg 125 may form the distal portion 130 .
  • the plurality of legs 125 may be constrained towards an apex 145 to form the filter 140 .
  • the filter 140 as illustrated, can be in linear alignment with the proximal portion 110 , and can be used to capture clots and other debris from the fluid flow within the vessel.
  • the vascular filter device 100 can further include a pathway 160 extending from the proximal portion 110 to the distal portion 130 .
  • the presence of pathway 160 within the device 100 can permit fluid flow to enter through the proximal end 114 of the proximal portion 110 , travel along the pathway 160 , and exit through the distal end 134 of the distal portion 130 .
  • the vascular filter device 100 further includes a securing element 170 .
  • the securing element 170 in an embodiment, can be designed to maintain the legs 125 in a constrained position to facilitate formation of the filter portion 140 .
  • the securing element 170 can be a wire or a suture that can be directed through eyelets 128 provided at the apex 145 .
  • the wire or suture in an embodiment, can be tightened to pull the plurality of legs 125 toward one another to provide filter 140 .
  • a cap may be used to place over the apex 145 to allow the apexes 122 to remain close to one another in order for filter 140 to be formed.
  • the securing element 170 should be made from a material that is relatively strong. Additionally, the securing element 170 may be made from a material that is biocompatible. The biocompatibility of the material may help minimize occurrence of adverse reactions due to implantation of the vascular filter device 100 within a vessel.
  • the securing element 170 can also be made from a material that allows for its subsequent elimination once the filtering function is no longer necessary.
  • the term “elimination” can be understood to mean manual removal of the element or otherwise.
  • the plurality of legs 125 may expand radially outward, as they may be provided with shape memory capability or may be expanded by exertion of an external force. Once the legs 125 have been expanded radially outward, a substantially tubular pathway 160 can be established through the framework 120 .
  • the securing element 170 can be made from a material that is capable of being severed or broken. Such a material would allow for manual removal of the securing element 170 .
  • a device can be used to break the securing element 170 .
  • a device such as an angioplasty balloon catheter, may be used to expand the securing element 170 to a point where it breaks causing the distal portion 130 to revert to a fully expanded position.
  • the securing element 170 can be made entirely or partially from material that is bioresorbable or biodegradable.
  • the securing element 170 may be entirely or partially absorbed by the body after a certain period of time had elapsed and would eliminate the need for manual removal of the securing element 170 .
  • suitable materials include metal, metal alloy, polyglycolic acid, polymer, plastic, or metal-polymer blend, or a combination thereof, all of which are described above in greater detail.
  • the vascular filter device 100 can act to capture dislodged clots or debris within the fluid flow.
  • the vascular filter device 100 may be oriented within a vessel in such a manner that the fluid flow would enter through the proximal end 114 of the proximal portion 110 and exit through the substantially conical distal end 134 of the distal portion 130 . In that way, blood clots and other debris may be caught in the filter 140 formed by the distal portion 130 .
  • the legs 125 within the filter portion 140 may be configured so as to be sufficiently spaced from one another in order to capture undesirable materials of a certain or predetermined size. In that way, filter 140 can capture only undesirable materials of a certain or predetermined size, and direct the captured undesirable materials substantially along a predefined path towards apex 145 .
  • the undesirable materials that may be too small to be captured by legs 125 of filter 140 may be permitted to flow through the filter, as these materials can subsequently be eliminated by the natural process of the body (e.g., being degraded and absorbed). For example, as undesirable material within a fluid flow moves from proximal end 114 through framework 120 , the undesirable material can be captured by at least one leg 125 .
  • leg 125 due to the design of legs 125 , once the undesirable material is captured on a leg 125 , the undesirable material can be directed along a predefined path by leg 125 toward apex 145 and toward the center of the vessel. Although described as being captured by one leg 125 , it should be appreciated that the undesirable material having sufficient length can extend across two or more legs 125 and be captured by multiple legs 125 .
  • the securing element 170 can be eliminated to permit pathway 160 to be established. Elimination of the element 170 would result in the reversion of each leg 125 in the distal portion 130 to its previous position shown in FIG. 1 to permit the flow of fluid through the vascular filter device 100 .
  • FIGS. 3 and 4 show a schematic view of a vascular filter device 100 in accordance with one embodiment of the present invention.
  • the distal portion 130 of device 100 is permitted to reverse from a conical position (i.e., filter mode), in FIG. 3 , back into its substantially expanded position, in FIG. 4 , following elimination of the securing element 170 .
  • FIG. 5 illustrates a vascular filter device 200 in accordance with another embodiment of the present invention.
  • device 200 may include a framework 205 having a substantially tubular proximal portion 210 for secured placement of the device 200 within a vessel (e.g., against the vessel wall).
  • Framework 205 may also include an elongated leg 225 extending beyond the proximal potion 210 .
  • a pathway 260 may be provided extending through the framework 205 (e.g., from the proximal portion 210 to the elongated leg 225 ) through which fluid may flow through the device 200 .
  • the device 200 may further include a continuous element 270 extending through the framework 210 between the proximal portion 210 and the elongated leg 225 to define a filter 240 .
  • the continuous element 270 may be designed such that upon its elimination, the pathway 260 is reestablished.
  • device 200 may also include a distal portion 230 to which a filter can terminate within the device.
  • the distal portion 230 may be substantially similar to the distal portion of the embodiments described above, but with only one elongated leg 225 .
  • the elongated leg 225 extends from the proximal portion 210 to define the distal portion 230 .
  • a continuous element 270 such as a wire or a suture, may be used to form a filter 240 at the distal portion 230 of the vascular filter device 200 .
  • a continuous wire 270 or suture can extend through eyelets 228 at the proximal end 214 of the proximal portion 210 to an eyelet 228 ′ at the distal portion 230 to form filter 240 having a plurality of arms therebetween.
  • the resulting filter 240 may have a substantially conical shape at the distal portion 230 of the vascular filter device 200 , as shown in FIG. 6 .
  • the vascular filter device 200 can act to capture dislodged undesirable materials, such as clots or debris, within the fluid flow.
  • the vascular filter device 200 may be oriented within a vessel in such a manner that the fluid flow would enter through the proximal end 214 of the proximal portion 210 and exit through the substantially conical distal end 234 of the distal portion 230 . In that way, blood clots and other debris may be caught in the filter 240 formed by the distal portion 230 .
  • the continuous element 270 within the filter 240 may be threaded such that adjacent arms of the element 270 may be sufficiently spaced from one another in order to capture undesirable materials of a certain or predetermined size.
  • filter 240 can capture only undesirable materials of a certain or predetermined size, and direct the captured undesirable materials substantially along a predefined path towards distal end 234 .
  • the undesirable materials that may be too small to be captured by the arms of filter 240 may be permitted to flow through the filter, as these materials can subsequently be eliminated by the natural process of the body (e.g., being degraded and absorbed).
  • the undesirable material can be captured by at least one arm of filter 240 .
  • the undesirable material can be directed on the arm along a predefined path toward distal end 234 and toward the center of the vessel.
  • the undesirable material having sufficient length can extend across two or more arms and be captured by multiple arms.
  • FIGS. 7A-7C show a vascular filter device 300 in accordance with another embodiment of the present invention.
  • the vascular filter device 300 may be a bidirectional filter device and may include two opposing expandable frameworks 310 and 330 , each being defined by a plurality of legs.
  • the frameworks 310 and 330 as illustrated, can be substantially similar in shape and can be formed from two separate components.
  • the vascular filter device can include a single contiguous framework as will be discussed hereinafter in detail.
  • FIG. 7B shows, in an embodiment, a framework that can be used either as framework 310 or 330 .
  • frameworks 310 and 330 can, of course, have different geometric or non-geometric designs.
  • Each of frameworks 310 and 330 can have a proximal portion for secured placement of the device against the vessel wall, and a filter portion in linear alignment with the proximal portion and formed by constraining the plurality of legs towards an apex.
  • the vascular filter device 300 in accordance with the embodiment shown in FIGS. 7A-7C , may be formed so that the apex of the framework 310 can be situated adjacent the apex of the framework 330 at a junction 345 .
  • a securing element 370 such as a wire or a suture, can be directed through eyelets 328 at the apex of the framework 310 and eyelets 328 at the apex of the framework 330 and tightened at the junction 345 to form two filters 340 that are substantial mirror images of one another.
  • the resulting vascular filter device 300 includes two substantially conical shapes facing in opposing directions.
  • the frameworks 310 and 330 may be substantially mirror images of one another and can act to capture dislodged clots within either of framework 310 or 330 .
  • the vascular filter device 300 of the present invention can be oriented in either direction within a vessel without regard to fluid flow direction to capture dislodged clots once the filter function is no longer necessary.
  • the frameworks 310 and 330 can also be positioned, to the extent desired, to offset from one another. In this way, the dislodged clots that bypass framework 310 can be captured by framework 330 .
  • Framework 310 and 330 as with the other designs described above, can be self-expanding or be expanded by an external force acting within each framework.
  • a vascular filter device may be made from any known ways in the art.
  • the vascular filter device may be made from a continuous piece of wire.
  • the wire may be bent, for instance, in a zig-zag pattern with apexes formed when direction of the wire changes. Once a desired pattern is achieved, the unit can be wrapped about an axis to bring ends 150 and 152 of the zig-zag section toward one another to form a substantially tubular structure for use as a vascular filter device.
  • the vascular filter device may be made from, for instance, a single piece of material, which can be in the shape of a tube or any other geometric or non-geometric shape.
  • the material in one embodiment, may be a superelastic material, such as, for example, Nitinol.
  • the material can be cut or otherwise deformed using, for instance, a laser or any other mechanism to achieve the different configurations, patterns or designs desired for the vascular device, including the eyelets. Additionally processing, such as heating, quenching, or other known methods in the art may be implemented to provide the device with the desired characteristics, including the strength, flexibility, spring force, and shape memory.
  • a securing element such as, for example, a wire, suture, or cap, may be used.
  • the securing element serves to bring together the distal end of the distal portion to form a filter as shown in FIG. 9 .
  • the resulting filter can have a substantially conical shape.
  • Vascular filter device 1000 includes, in one embodiment, an expandable framework or body 1001 capable of expanding from a collapsed state to secure the vascular filter device 1000 within a vessel (e.g. inferior vena cava).
  • the framework 1001 can be made from metal, metal alloy, polymer, molded plastic, metal-polymer blend, or a combination thereof. Examples of suitable materials include stainless steel (e.g.
  • PTT polyethylene terapthalate
  • PTFE polytetraflouroethylene
  • FEP polyurethane
  • PP polypropylene
  • PVC polyvinylchloride
  • PES polyether-ester
  • polyester polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), silicones, polyethylene, polyether-ether ketone (PEEK), polyimide (PI), polyetherimide (PEI), tantalum, tungsten, or any other suitable material that is biocompatible and that is capable of being expanded in the manner described above.
  • the framework may also be made from a bioresorbable, or biodegradable material, or a combination thereof.
  • the framework 1001 may also include an anti-thrombogenic coating such as heparin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent thrombosis or any other adverse reaction from occurring at the site of insertion.
  • an anti-thrombogenic coating such as heparin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent thrombosis or any other adverse reaction from occurring at the site of insertion.
  • the vascular filter device can also include opposing filters 1002 and 1003 formed from a continuous element 1004 (e.g., wire or suture) extending within pathway 1005 of framework 1001 .
  • continuous element 1004 e.g., wire or suture
  • continuous element 1004 can be provided with a criss-cross pattern between a proximal portion and a distal portion about the interior of framework 1001 , so as to form substantially conically shaped opposing filters 1002 and 1003 .
  • eyelets 1006 may be provided at designated locations on framework 1001 and through which continuous element 1004 can be directed.
  • materials from which continuous element 1004 can made include metal, metal alloy, polyglycolic acid, polymer, plastic, metal-polymer blend, or a combination thereof. It should be appreciated that although illustrated as extending from a location away from each end of framework 1001 , filters 1002 and 1003 may be designed to extend from each end of frame work 1001 , if so desired.
  • each of the resulting opposing filters 1002 and 1003 can include an open end 1007 and 1008 , respectively, through which fluid flow may enter along with any clots, and an apex 1009 and 1010 , respectively, toward which a clot may be directed.
  • filters 1002 and 1003 may be designed such that when they are no longer needed, the continuous element 1004 can be cut or severed, and the filters can be eliminated from the framework 1001 to permit pathway 1005 to be reestablished through and along framework 1001 .
  • a user can initially collapse the vascular filter device for insertion into a delivery mechanism, for example, a catheter.
  • a delivery mechanism for example, a catheter.
  • the delivery mechanism may be inserted into the body, and advanced along a vessel within the body (e.g. the inferior vena cava) to a site of interest for implantation.
  • the filter device may then be removed from within the delivery mechanism and permitted to self-expand or, alternatively, a balloon catheter may be placed within the collapsed framework and expanded to expand the framework.
  • the expansion of the device or framework allows the device to engage the wall of the vessel, as shown in FIG. 3 , and to minimize subsequent movement of the device from the site of implantation.
  • securing mechanisms on the framework of the device may be used to enhance secured placement of the framework against the vessel wall.
  • at least one filter having a substantially conical shape may be formed.
  • the filtering function may be desirable to reverse (i.e., eliminate) the filter or filters and reestablish the pathway through the device.
  • Reversal of the filtering function may involve elimination of the filters manually.
  • Manual removal may include, for example, advancing into the vena cave a device capable of severing the filter or filter formation element, locating the filter or filter formation element, and severing the filter or filter formation element. Severing the filter or filter formation element may involve cutting the wires or the mechanism holding the filter in place.
  • the filter or filter formation element can be removed by permitting their resorption or degradation over a period of time.
  • metals including superelastic metals
  • metals may have a hardened state. In a hardened state, the metal may be made to be self-expanding and spring-like.
  • metals, including superelastic metals may have an annealed state. In an annealed state, the metal may be made to be deformable and malleable.
  • a filter framework in accordance with one embodiment, may be manufactured from a single tube. The single tube may, in an embodiment, be in an annealed state, where it is soft and malleable. The tube, for example, can then be cut using laser or other methods known in the art to yield the desired framework.
  • the malleable framework can, in an embodiment, be expanded mechanically using, for instance, a dilation balloon or other dilation device to form a filter or “butterfly” configuration. Once expanded, the tube may remain in the “butterfly” configuration. While in this configuration, the framework may, in one embodiment, be treated and processed by first heating the framework to a substantially high temperature and then quenching the framework in a low temperature fluid bath to harden the entire filter and produce spring-like properties. It should be appreciated that other methods known in the art may also be used to provide spring-like properties to the framework.
  • portions of the framework may be malleable.
  • portions of the framework may be treated and processed by first heating the desired portions, and then letting the desired portions cool at a substantially slower rate, for instance, in the air.
  • the filter arms and the middle portion may be made malleable by reheating and allowing room cooling of these areas. The process of heating followed by air cooling is able to anneal and soften the filter arms and the middle portion making them malleable.
  • other methods known in the art can also be used to treat and process the framework so as to provide malleable characteristics to the desired portions.
  • the filter may be formed from multiple components that can be joined together to form a framework.

Abstract

The present invention provides, in one embodiment, a vascular filter device for capturing dislodged blood clots within a vessel. The vascular filter device includes an expandable framework for securing the device within a vessel. The device also includes a pathway extending through the framework. The device further includes at least one filter in alignment with the pathway for capturing dislodged clots or emboli. In an embodiment, the filter can be given form by a material that can be easily eliminated in situ to permit reestablishment of the pathway.

Description

    RELATED APPLICATIONS
  • The present application claims priority to and benefits of Provisional Application No. 61/289,508 filed Dec. 23, 2009, Provisional Application No. 61/295,457 filed Jan. 15, 2010, Provisional Application No. 61/304,155 filed Feb. 12, 2010, and Provisional Application No. 61/314,816 filed Mar. 17, 2010, the disclosures of all of which applications are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • This invention relates generally to intravascular devices and more particularly to filter devices implantable within the vena cava for capturing dislodged clots or debris.
  • BACKGROUND ART
  • Vena caval filters can be utilized in conjunction with anti-coagulants and thrombolytic agents to prevent pulmonary embolism and other vascular diseases from occurring within the body. These devices are generally implanted within a vessel, such as the inferior vena cava, to capture dislodged blood clots (emboli) contained in the blood stream. If a blood clot forms in the deep veins of a lower extremity and dislodges, the blood clot may proceed up the vena cava into the heart and into the pulmonary arteries, where it may block and interrupt blood flow. Mortality is typically high in the event of pulmonary embolism.
  • Filtering devices that are placed in the vena cava have been available for a number of years. Various vena caval filters have been developed over the years, including the Mobin-Uddin umbrella filter, introduced in 1967 and discontinued in 1986. The Greenfield vena caval filter has been in wide use for a number of years and is known as the standard in vena caval filters.
  • To trap emboli, many conventional vena caval filters employ several independent filter legs that can be expanded within the vessel to form a substantially conical-shaped filtering profile within which emboli or clots can be collected. To prevent migration of the filter within the vessel, a hook, barb or other piercing or anchoring mechanisms on the filter leg can be used to secure the filter to the wall of the vena cava. For example, the Greenfield filter has multiple legs meeting at a central apex and has attachment hooks on the legs. Deployment of the Greenfield filter often occurs in a tilted fashion, which decreases clot capture ability of the filter. Moreover, the Greenfield filter is placed in the vessel in one direction that funnels clots to the apex of the filter and the center of the vessel. In addition, the attachment hooks on the legs of the Greenfield filter are also uni-directional and positioned for funneling clot to the apex of the filter. Thus, continued use of the Greenfield filter in the vessel may lead to accumulation of clots near the apex of the filter, and may further block and interrupt blood flow near the center of the vessel.
  • Furthermore, it should be noted that a percentage of patients only need a vena caval filter as protection from a pulmonary embolism for a short period of time. As such, leaving an implantable filter in place for an extended period of time may lead to complications, including inferior vena cava thrombosis, deep venous thrombosis, filter migration, and vena cava perforation. Therefore, in some circumstances, it may be desirable to remove the filter from the patient.
  • Removal of the filter from the vena cava, however, is met with certain hurdles. For example, some of these filters may not be easily removable from a patient due to fibrous in-growth into the filter. In particular, after deployment of a filter in a patient, proliferating intimal cells can start accumulating around the filter framework in contact with the wall of the vessel. After a length of time, such accumulation or in-growth can prevent removal of the filter without risk of trauma, requiring the filter to remain in the patient.
  • Another hurdle to removing a filter from the vena cava results from conventional vena caval filters becoming off-centered or tilted with respect to the hub of the filter as well as the longitudinal axis of the vessel within which the filter is situated. Removal of an off-centered or tilted filter can be difficult as the barbs or hooks securing the filter in place can dig further into the vessel walls and act to injure or damage the vessel during removal.
  • Accordingly, it would be desirable to have an effective vena caval filter that can be eliminated after the underlying condition has passed, while avoiding damaging the tissue of the vessel wall within which the filter is located.
  • SUMMARY OF THE INVENTION
  • The present invention provides, in one embodiment, a filter device for capturing undesirable materials (e.g., clots). The device includes a self-expanding framework defined by a plurality of legs. The filter device can also include a proximal portion on the expandable framework designed for secured placement of the device against a wall of a vessel. In certain embodiments, the expandable framework includes an attachment mechanism at the proximal portion to enhance secured placement of the device against the wall of the vessel. The framework, in an embodiment, may be designed to permit undesirable materials to flow into the framework from the proximal portion towards the filter portion. The filter device can additionally include a filter portion in linear alignment with the proximal portion and formed by constraining the plurality of legs towards an apex. In some embodiments, the plurality of legs in the filter portion can be designed to capture undesirable materials flowing through the vessel and direct the captured undesirable materials toward the apex. In various embodiments, the filter device can include a securing element at the apex to maintain the plurality of legs in a constrained position, and which upon elimination allows the plurality of legs to expand radially outward, such that a substantially tubular pathway is established through the expandable framework. The securing element can be, for example, one of bio-absorbable, breakable, removable, or any combination thereof.
  • In another embodiment, the present invention provides a filter device that can include an expandable framework having a substantially tubular proximal portion for secured placement of the device against a wall of a vessel. In certain embodiments, the framework can include an attachment mechanism to enhance secured placement of the device against the wall of the vessel. The filter device can also include an elongated leg extending beyond the proximal portion. The elongated leg, in an embodiment, can include a securing mechanism at an end opposing the framework at which the filter can terminate. The device further includes a pathway extending through the framework. The device can also include a continuous element extending through the framework between the proximal portion and the elongated leg to define a filter. In some embodiments, the filter can act to capture undesirable materials flowing through the vessel from the framework towards the elongated leg. The continuous element, upon elimination, may allow establishment of a substantially tubular pathway through the framework.
  • In yet another embodiment, the present invention provides a bi-directional filter device that can include an expandable framework for secured placement of the device against a wall of a vessel. The framework, in an embodiment, includes an attachment mechanism to enhance secured placement of the device against the wall of the vessel. The filter device can also include a pathway extending through the expandable framework. Additionally, the filter device can include a continuous element extending within the pathway between a proximal portion and a distal portion of the framework to define opposing filters within the framework, and which upon elimination allows establishment of a substantially tubular pathway through the framework. In certain embodiments, the opposing filters within the framework can include an apex situated between the opposing filters.
  • The present invention, in another aspect, also features methods for capturing undesirable material. The method, in one embodiment, can include initially providing an expandable framework defined by a plurality of legs constrained towards an apex with a securing element to form a filter portion in linear alignment with the proximal portion. Next, a proximal portion on the expandable framework may be secured against a wall of a vessel. Thereafter, undesirable materials may be allowed to flow into the framework toward the filter portion to permit the undesirable material to be captured thereat. In certain embodiments, the step of allowing includes directing the captured undesirable materials toward the apex. The method can further include eliminating the securing element to allow the plurality of legs to expand radially outward such that a substantially tubular pathway is provided through the expandable framework.
  • In another embodiment, the method for capturing undesirable material can include initially placing an expandable framework having a substantially tubular proximal portion and an elongated leg extending beyond the proximal portion. Next, a continuous element may be provided through the framework between the proximal portion and the elongated leg so as to form a filter portion therebetween. Thereafter, the substantially tubular proximal portion may be secured against the wall of the vessel to provide a substantially tubular pathway through the framework. Then, undesirable materials may be allowed to flow into the framework toward the filter portion to permit the undesirable material to be captured thereat. The method can further include eliminating the continuous element extending through the framework between the proximal portion and the elongated leg, so as to establish a substantially tubular pathway through the framework.
  • In yet another embodiment, the method for capturing undesirable material can include initially placing an expandable framework having a proximal portion and a distal portion. Next, a continuous element may be provided through the framework between the proximal portion and the distal portion so as to define opposing filters within the framework. Thereafter, the expandable framework may be secured against a wall of a vessel. Subsequently, undesirable material may be allowed to flow into the framework to permit the undesirable material to be captured by at least one of the opposing filters. The method can further include eliminating the continuous element defining the opposing filters within the framework, so as to establish a substantially tubular pathway through the framework.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a vascular filter device in accordance with an embodiment of the present invention.
  • FIG. 2 shows a vascular filter device in accordance with another embodiment of the present invention.
  • FIG. 3 shows a vascular filter device in accordance with an embodiment of the present invention.
  • FIG. 4 shows a vascular filter device in accordance with another embodiment of the present invention.
  • FIG. 5 shows a vascular filter device in accordance with an embodiment of the present invention.
  • FIG. 6 shows a vascular filter device in accordance with another embodiment of the present invention.
  • FIGS. 7A-7C show a bidirectional vascular filter device in accordance with an embodiment of the present invention.
  • FIGS. 8 and 9 show a method of forming a vascular filter device in accordance with another embodiment of the present invention.
  • FIG. 10 shows another bidirectional vascular filter device in accordance with one embodiment of the present invention.
  • DESCRIPTION OF SPECIFIC EMBODIMENTS
  • As used herein, in addition to the other terms defined in this disclosure, the following terms may have the following meanings:
  • “Arms” or “legs” means an elongated member or a slender part extending from a proximal end to a distal end.
  • “Bidirectional” means a filter device that can be used in two opposing directions; i.e., either end can allow a fluid to flow through the filter while capturing undesirable materials. “Uni-directional” or “one-directional” means a filter device that can be used in one direction only; i.e., a fluid can flow through the filter from one end to the other only while capturing undesirable materials.
  • “Blood clots”, “clots”, “emboli” and “debris” refers to substances found within blood flow that can be filtered using the vascular filter device of the present invention. They can have various profiles (e.g., from substantially stringy to substantially globular) and sizes (e.g., from less than 1 mm to a few centimeters). “Blood clots”, “clots”, “emboli” and “debris” can be used interchangeably through the application. Collectively, they can be referred to as “undesirable materials.”
  • “Collapsed” or “constricted” means that at least a portion of a filter device is in a non-expanded position. The filter device or a portion thereof would normally be in a collapsed or constricted position when introduced into a vessel and/or when retained within a cover sheath of a triaxial catheter.
  • “Criss-cross” pattern means a wire pattern wherein the wires cross one another.
  • “Device”, “filter device” or “vascular filter device” means a structure for filtering in one or more vessels.
  • “Diameter” as used in connection with a vessel means the approximate diameter of a vessel since vessels are not often perfectly cylindrical. “Diameter” as used with respect to any structure means an approximate diameter.
  • “Dilated” means enlarged or expanded in width, bulk or extent.
  • “Expanded” means that at least a portion of a vascular filter device is in an expanded position. A vascular filter device or a portion thereof within a vessel may be expanded for the purpose of allowing fluid to substantially freely flow through the vessel.
  • “Expanded” and “substantially expanded” may be used interchangeably when used in connection with a filtration device. “Self-expanding” means a filter device capable of expanding on its own, without external forces.
  • “Filter” means a device or structure having the function of holding back or capturing a material.
  • “Fluid” means any substance, such as a liquid or gas, that can flow, including bodily fluids, such as blood and blood plasma.
  • “Offset” means the relative position between two things that may otherwise be aligned but are not aligned with one another.
  • “Malleable” means capable of being shaped, altered or controlled by external forces or influences. “Malleable portion” means a portion of the filter device capable of switching between a constricted and an expanded position.
  • “Reversible” and “reversible vascular filter device” means a device that is capable of being eliminated after a period of time such that the device remains within a vessel but does not continue to filter.
  • “Vessel” means any vessel within a body, such as the human body, through which blood or other fluid flows and includes arteries and veins.
  • “Wire” means any type of wire, strand, strut or structure, regardless of cross-sectional dimension (e.g., the cross-section could be circular, oval, or rectangular) or shape, and regardless of material, that may be used to construct a filter device as described herein. Some wires may be suitable for one or more of the embodiments but not suitable for others.
  • In accordance with one embodiment of the present invention, systems and methods are provided herein for capturing dislodged clots or debris (e.g., emboli) within a vessel using an implantable vascular filter device. The vascular filter device of the present invention may find use in capturing dislodged clots in, for instance, the vena cava. In various embodiments, the filter device can be bi-directional such that the device may be placed in a vessel in either direction to capture clots. In this way, the need associated with uni-directional filters to place them in a particular direction (e.g., along the blood flow) can be eliminated.
  • Although discussed herewith in connection with the vena cava, it should be appreciated that the device of the present invention can be adapted for use within other vessels in the body. For example, the vascular filter device of the present invention may also find use in veins and arteries, such as the abdominal aorta, aortic arch, the ascending aorta, the descending aorta, a carotid artery, an iliac artery, or a renal artery.
  • The vascular filter device of the present invention includes, in an embodiment, a single-piece reversible design. In other words, the reversible design of the vascular filter device of the present invention allows the device to remain within the vessel following implantation and the device can be deployed to not act as a filter, once such function is no longer necessary. By allowing the device to remain within the vessel following implantation, the vascular filter device of the present invention can reduce the likelihood of undesirable laceration, perforation or transection of the vessel walls associated with the removal process. The single-piece design may also ensure that the vascular filter device remains intact following implantation and that one of its components does not detach, as may occur if the vascular filter device were composed of more than one piece, which can damage the vessels or other organs or tissues downstream.
  • FIGS. 1 and 2 illustrate a vascular filter device 100 in accordance with one embodiment of the present invention. In an embodiment, the vascular filter device 100 includes an expandable framework 120 defined by a plurality of legs 125. The framework 120 may have a proximal portion 110 for secured placement of the device 100 within a vessel (e.g., against the vessel wall). The proximal portion 110 may include a proximal end 114, a distal end 116, and a body 118 therebetween. The proximal portion 110 may be designed to transition from a first position, where the proximal portion 110 is collapsed, to a second position, where the proximal portion 110 is expanded. As contemplated by the present invention, expansion of the framework 120, including all other frameworks in other various embodiments described herein, can be by self-expansion or by exertion of an external force within the framework.
  • In the first position, the proximal portion 110 may be designed to have a sufficiently small diameter so that it can be directed along a vessel to a site of interest for implantation. Of course, the device 100 can be provided with a collapsed diameter of any size, depending on the application, size of the vessel, and so long as the diameter permits the vascular filter device to fit within a vessel for maneuvering. It should be noted that the diameter of the device 100 should also permit the device 100 to fit within any suitable catheter or other delivery mechanism for insertion into a vessel.
  • In a second position, where the proximal portion 110 is substantially expanded in order to engage a vessel wall and to secure itself within the vessel, the proximal portion 110 of the vascular filter device 100 can allow for the passage of fluid through pathway 160 of the device 100. In this expanded position, the vascular filter device 100 can act to minimize occlusion or hindrance of fluid flow through the vessel at a point of implantation. It should be appreciated that the vascular filter device 100 may be provided with an expanded diameter of any size, so long as the proximal portion 110 can act to push against the vessel wall at the site of interest to secure itself thereat.
  • To adequately secure the vascular filter device 100 within a vessel, the proximal portion 110 should be made from any material and provided with any design that can radially expand to exert a sufficient radial force to push the device 100 against the vessel wall, so as to secure the proximal portion 110 within the vessel. It should be appreciated that the material used should permit the proximal portion 110 of the device to conform to the dimensions of the vessel even when the vessel dimensions may not be uniform. In other words, the proximal portion 110 may have a diameter which can vary along the length of the proximal portion 110.
  • In an embodiment, the proximal portion 110 may be provided on a framework 120 arranged in any suitable geometric or non-geometric pattern, such as a zig-zag, braid, criss-cross, non-overlapping pattern, or any other pattern as the present disclosure is not intended to be limited in this manner. The pattern of the framework 120, in an embodiment, may affect the strength and/or flexibility of the vascular filter device. For instance, a braid pattern may have greater strength, while the coil pattern may have better flexibility.
  • As shown in FIG. 1, framework 120 may be made from one single wire arranged in a zig-zag pattern about the proximal portion 110. In the zig-zag pattern, the wire can form at least one leg 125 extending from the proximal portion 110 to the distal portion 130. It should be noted that these legs 125 can be of varying length. In one embodiment, apexes 122 can be provided to alternate between the proximal end 114 and the distal end 116 of the proximal portion. At each apex 122, there may be provided an eyelet 128. Eyelets 128 may also be provided along junction 135, where the proximal portion 110 meets the distal portion 135. The number of legs 125 and apexes 122 provided about the proximal portion 110, in one embodiment, may depend on a variety of factors including, but not limited to, the size and diameter of the wire 120 and the size and diameter of the proximal portion 110. While shown with a continuous wire forming the zig-zag pattern, it should be appreciated that the proximal portion 110 of the present invention can be formed from a plurality of wires as the present invention is not intended to be limited in this manner.
  • In accordance with one embodiment of the present invention, the wire providing the framework 120 with a desired pattern may have a diameter or thickness of any size, depending on the particular application, as the diameter or thickness of the wire 120 may affect the strength and/or flexibility of the vascular filter device 100.
  • Since the vascular filter device 100 is designed to be implanted within a vessel of a human or animal body, the vascular filter device 100 should be made from a material that is biocompatible. The biocompatibility of the material may help minimize occurrence of adverse reactions due to implantation of the vascular filter device 100 within a vessel. In some embodiments, the vascular filter device 100 can be made entirely or partially from material that is bioresorbable, or biodegradable, or a combination thereof. In such instances, the vascular filter device 100 may be entirely or partially absorbed by the vessel or may be degraded after a certain period of time has elapsed, and would eliminate the need for manual removal of the vascular filter device 100.
  • In an embodiment, the material from which the proximal portion 110 of the vascular filter device 100 may be formed includes metal, metal alloy, polymer, molded plastic, metal-polymer blend, or a combination thereof. The type of material may affect the strength and/or flexibility of the vascular filter device 100. Examples of suitable materials include stainless steel (e.g. type 304V), gold, platinum, tungsten, nickel-titanium alloy, Beta III Titanium, cobalt-chrome alloy, cobalt-chromium-nickel-molybdenum-iron alloy, Elgiloy, L605, MP35N, Ta-10W, 17-4PH, Aeromet 100, polyethylene terapthalate (PET), polytetraflouroethylene (PTFE), polyurethane (nylon) fluorinated ethylene propylene (FEP), polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester, polyester, polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), silicones, polyethylene, polyether-ether ketone (PEEK), polyimide (PI), polyetherimide (PEI), tantalum, tungsten, or any other suitable material that is biocompatible and that is capable of being expanded in the manner described above. The vascular filter device 100 may also include an anti-thrombogenic coating such as heparin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent thrombosis or any other adverse reaction from occurring at the site of insertion.
  • To enhance secured placement of the proximal portion 110 against the vessel wall, the proximal portion 110 of the vascular filter device 100 may include, in an embodiment, a securing or attachment mechanism (not shown). Examples of possible attachment mechanisms can include a hook, pin, needle, prong, barb, wedge or any other attachment mechanism adapted to adequately engage and secure the proximal portion 110 to the vessel wall. In an embodiment, the attachment mechanisms can be situated anywhere along the proximal portion 110, as the present invention is not intended to be limited in this manner. For example, the attachment mechanisms can be located at apexes 122 of the framework 120. In addition, an anti-inflammatory agent such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, mesalamine, or any suitable combination or mixture thereof may be applied to the attachment mechanism to prevent inflammation or any other adverse reaction caused by the engagement of the attachment mechanism along the vessel wall.
  • Still looking at FIG. 1, the vascular filter device 100 may also include a distal portion 130 defining a filter 140 of the device 100. The distal portion 130 of the vascular filter device 100, when defining filter 140, can be used to capture clots and other debris from the fluid flow within the vessel. In an embodiment, the distal portion 130 includes a proximal end 132, a distal end 134, and a body 136 therebetween. The proximal end 132 of the distal portion 130 can be situated adjacent the distal end 134 of the proximal portion 110. In an embodiment, the distal portion 130 can be integral with the proximal portion 110 of the vascular filter device 100, such that the vascular filter device 100 can be a single-piece device. Of course, the distal portion 130 can be independent from the proximal portion 110, such that the vascular filter device 100 is formed from more than one piece.
  • In one embodiment, the distal portion 130 may be designed to include a first position where the distal portion 130 is substantially collapsed. In this first position, the distal portion 130 has a sufficiently small diameter to permit insertion into a vessel. The distal portion 130 can also have a second position where the distal portion 130 is substantially expanded. In the substantially expanded position, the distal portion 130 can permit the flow of fluid through the vascular filter device 100 and can act to minimize any occlusion or hindrance of the flow of fluid through the vessel when filter 140 is eliminated.
  • In accordance with the embodiment shown in FIGS. 1 and 2, the distal portion 130 can be formed from a wire that forms the proximal portion 110. In one embodiment, the distal portion 130 can be defined by legs 125. To that end, each leg 125, may include a portion that forms the proximal portion 110 while the remainder of the leg 125 may form the distal portion 130. In an embodiment, the plurality of legs 125 may be constrained towards an apex 145 to form the filter 140. The filter 140, as illustrated, can be in linear alignment with the proximal portion 110, and can be used to capture clots and other debris from the fluid flow within the vessel.
  • The vascular filter device 100 can further include a pathway 160 extending from the proximal portion 110 to the distal portion 130. The presence of pathway 160 within the device 100 can permit fluid flow to enter through the proximal end 114 of the proximal portion 110, travel along the pathway 160, and exit through the distal end 134 of the distal portion 130.
  • Referring now to FIG. 2, the vascular filter device 100 further includes a securing element 170. The securing element 170, in an embodiment, can be designed to maintain the legs 125 in a constrained position to facilitate formation of the filter portion 140. In one embodiment, the securing element 170 can be a wire or a suture that can be directed through eyelets 128 provided at the apex 145. The wire or suture, in an embodiment, can be tightened to pull the plurality of legs 125 toward one another to provide filter 140. In an alternate embodiment, rather than a wire or suture, a cap may be used to place over the apex 145 to allow the apexes 122 to remain close to one another in order for filter 140 to be formed.
  • To adequately maintain the legs 125 in a filter formation, the securing element 170 should be made from a material that is relatively strong. Additionally, the securing element 170 may be made from a material that is biocompatible. The biocompatibility of the material may help minimize occurrence of adverse reactions due to implantation of the vascular filter device 100 within a vessel.
  • In one embodiment, the securing element 170 can also be made from a material that allows for its subsequent elimination once the filtering function is no longer necessary. As used herein, the term “elimination” can be understood to mean manual removal of the element or otherwise. Upon elimination of the securing element 170, the plurality of legs 125 may expand radially outward, as they may be provided with shape memory capability or may be expanded by exertion of an external force. Once the legs 125 have been expanded radially outward, a substantially tubular pathway 160 can be established through the framework 120.
  • In one embodiment, the securing element 170 can be made from a material that is capable of being severed or broken. Such a material would allow for manual removal of the securing element 170. In another embodiment, a device can be used to break the securing element 170. For example, a device, such as an angioplasty balloon catheter, may be used to expand the securing element 170 to a point where it breaks causing the distal portion 130 to revert to a fully expanded position. In other embodiments, the securing element 170 can be made entirely or partially from material that is bioresorbable or biodegradable. In such instances, the securing element 170 may be entirely or partially absorbed by the body after a certain period of time had elapsed and would eliminate the need for manual removal of the securing element 170. Examples of suitable materials include metal, metal alloy, polyglycolic acid, polymer, plastic, or metal-polymer blend, or a combination thereof, all of which are described above in greater detail.
  • As shown in FIG. 2, the vascular filter device 100, with the filter 140 formed at the distal portion 130, can act to capture dislodged clots or debris within the fluid flow. To capture a dislodged clot, the vascular filter device 100 may be oriented within a vessel in such a manner that the fluid flow would enter through the proximal end 114 of the proximal portion 110 and exit through the substantially conical distal end 134 of the distal portion 130. In that way, blood clots and other debris may be caught in the filter 140 formed by the distal portion 130.
  • To capture undesirable materials, the legs 125 within the filter portion 140, in an embodiment, may be configured so as to be sufficiently spaced from one another in order to capture undesirable materials of a certain or predetermined size. In that way, filter 140 can capture only undesirable materials of a certain or predetermined size, and direct the captured undesirable materials substantially along a predefined path towards apex 145. The undesirable materials that may be too small to be captured by legs 125 of filter 140, may be permitted to flow through the filter, as these materials can subsequently be eliminated by the natural process of the body (e.g., being degraded and absorbed). For example, as undesirable material within a fluid flow moves from proximal end 114 through framework 120, the undesirable material can be captured by at least one leg 125. In an embodiment, due to the design of legs 125, once the undesirable material is captured on a leg 125, the undesirable material can be directed along a predefined path by leg 125 toward apex 145 and toward the center of the vessel. Although described as being captured by one leg 125, it should be appreciated that the undesirable material having sufficient length can extend across two or more legs 125 and be captured by multiple legs 125.
  • Once the filter 140 may no longer be needed, the securing element 170 can be eliminated to permit pathway 160 to be established. Elimination of the element 170 would result in the reversion of each leg 125 in the distal portion 130 to its previous position shown in FIG. 1 to permit the flow of fluid through the vascular filter device 100.
  • FIGS. 3 and 4 show a schematic view of a vascular filter device 100 in accordance with one embodiment of the present invention. In particular, the distal portion 130 of device 100 is permitted to reverse from a conical position (i.e., filter mode), in FIG. 3, back into its substantially expanded position, in FIG. 4, following elimination of the securing element 170.
  • FIG. 5 illustrates a vascular filter device 200 in accordance with another embodiment of the present invention. In an embodiment, device 200 may include a framework 205 having a substantially tubular proximal portion 210 for secured placement of the device 200 within a vessel (e.g., against the vessel wall). Framework 205 may also include an elongated leg 225 extending beyond the proximal potion 210. A pathway 260 may be provided extending through the framework 205 (e.g., from the proximal portion 210 to the elongated leg 225) through which fluid may flow through the device 200. The device 200 may further include a continuous element 270 extending through the framework 210 between the proximal portion 210 and the elongated leg 225 to define a filter 240. The continuous element 270 may be designed such that upon its elimination, the pathway 260 is reestablished.
  • In accordance with the embodiment shown in FIG. 5, device 200 may also include a distal portion 230 to which a filter can terminate within the device. The distal portion 230 may be substantially similar to the distal portion of the embodiments described above, but with only one elongated leg 225. In this embodiment, the elongated leg 225 extends from the proximal portion 210 to define the distal portion 230. With such a design, a continuous element 270, such as a wire or a suture, may be used to form a filter 240 at the distal portion 230 of the vascular filter device 200. In particular, a continuous wire 270 or suture can extend through eyelets 228 at the proximal end 214 of the proximal portion 210 to an eyelet 228′ at the distal portion 230 to form filter 240 having a plurality of arms therebetween. The resulting filter 240 may have a substantially conical shape at the distal portion 230 of the vascular filter device 200, as shown in FIG. 6. When filter 240 is no longer necessary, elimination of the continuous element 270 can occur manually or automatically as described above, to reestablish pathway 260 through framework 205.
  • As shown in FIG. 6, the vascular filter device 200, with the filter 240 formed at the distal portion 230, can act to capture dislodged undesirable materials, such as clots or debris, within the fluid flow. To capture a dislodged clot, the vascular filter device 200 may be oriented within a vessel in such a manner that the fluid flow would enter through the proximal end 214 of the proximal portion 210 and exit through the substantially conical distal end 234 of the distal portion 230. In that way, blood clots and other debris may be caught in the filter 240 formed by the distal portion 230.
  • To capture undesirable materials such as clots, the continuous element 270 within the filter 240, in an embodiment, may be threaded such that adjacent arms of the element 270 may be sufficiently spaced from one another in order to capture undesirable materials of a certain or predetermined size. In that way, filter 240 can capture only undesirable materials of a certain or predetermined size, and direct the captured undesirable materials substantially along a predefined path towards distal end 234. The undesirable materials that may be too small to be captured by the arms of filter 240, may be permitted to flow through the filter, as these materials can subsequently be eliminated by the natural process of the body (e.g., being degraded and absorbed). For example, as undesirable material within a fluid flow moves from proximal end 214 through framework 205, the undesirable material can be captured by at least one arm of filter 240. In an embodiment, due to the design of the arms, once the undesirable material is captured on an arm, the undesirable material can be directed on the arm along a predefined path toward distal end 234 and toward the center of the vessel. Although described as being captured by one arm, it should be appreciated that the undesirable material having sufficient length can extend across two or more arms and be captured by multiple arms.
  • FIGS. 7A-7C show a vascular filter device 300 in accordance with another embodiment of the present invention. In accordance with the embodiment shown in FIG. 7A, the vascular filter device 300 may be a bidirectional filter device and may include two opposing expandable frameworks 310 and 330, each being defined by a plurality of legs. The frameworks 310 and 330, as illustrated, can be substantially similar in shape and can be formed from two separate components. Alternatively, the vascular filter device can include a single contiguous framework as will be discussed hereinafter in detail. FIG. 7B shows, in an embodiment, a framework that can be used either as framework 310 or 330. Although shown with similar designs, the frameworks 310 and 330 can, of course, have different geometric or non-geometric designs. Each of frameworks 310 and 330 can have a proximal portion for secured placement of the device against the vessel wall, and a filter portion in linear alignment with the proximal portion and formed by constraining the plurality of legs towards an apex. The vascular filter device 300, in accordance with the embodiment shown in FIGS. 7A-7C, may be formed so that the apex of the framework 310 can be situated adjacent the apex of the framework 330 at a junction 345. A securing element 370, such as a wire or a suture, can be directed through eyelets 328 at the apex of the framework 310 and eyelets 328 at the apex of the framework 330 and tightened at the junction 345 to form two filters 340 that are substantial mirror images of one another. The resulting vascular filter device 300 includes two substantially conical shapes facing in opposing directions.
  • As shown in this embodiment, the frameworks 310 and 330 may be substantially mirror images of one another and can act to capture dislodged clots within either of framework 310 or 330. By providing the ability to capture dislodged clots in either framework, the vascular filter device 300 of the present invention can be oriented in either direction within a vessel without regard to fluid flow direction to capture dislodged clots once the filter function is no longer necessary. Although not shown in FIG. 7, it should be understood that the frameworks 310 and 330 can also be positioned, to the extent desired, to offset from one another. In this way, the dislodged clots that bypass framework 310 can be captured by framework 330. Framework 310 and 330, as with the other designs described above, can be self-expanding or be expanded by an external force acting within each framework.
  • With reference now to FIG. 8, a vascular filter device, as described in the embodiments above, may be made from any known ways in the art. In an embodiment, the vascular filter device may be made from a continuous piece of wire. The wire may be bent, for instance, in a zig-zag pattern with apexes formed when direction of the wire changes. Once a desired pattern is achieved, the unit can be wrapped about an axis to bring ends 150 and 152 of the zig-zag section toward one another to form a substantially tubular structure for use as a vascular filter device.
  • In another embodiment, the vascular filter device may be made from, for instance, a single piece of material, which can be in the shape of a tube or any other geometric or non-geometric shape. The material, in one embodiment, may be a superelastic material, such as, for example, Nitinol. The material can be cut or otherwise deformed using, for instance, a laser or any other mechanism to achieve the different configurations, patterns or designs desired for the vascular device, including the eyelets. Additionally processing, such as heating, quenching, or other known methods in the art may be implemented to provide the device with the desired characteristics, including the strength, flexibility, spring force, and shape memory.
  • To create a filter within the distal portion of the vascular filter device, a securing element, such as, for example, a wire, suture, or cap, may be used. In an embodiment, the securing element serves to bring together the distal end of the distal portion to form a filter as shown in FIG. 9. The resulting filter can have a substantially conical shape.
  • Looking now at FIG. 10, there is illustrated another bidirectional vascular filter device 1000, in accordance with an embodiment of the present invention. Vascular filter device 1000 includes, in one embodiment, an expandable framework or body 1001 capable of expanding from a collapsed state to secure the vascular filter device 1000 within a vessel (e.g. inferior vena cava). The framework 1001, similar to those described above, can be made from metal, metal alloy, polymer, molded plastic, metal-polymer blend, or a combination thereof. Examples of suitable materials include stainless steel (e.g. type 304V), gold, platinum, tungsten, nickel-titanium alloy, Beta III Titanium, cobalt-chrome alloy, cobalt-chromium-nickel-molybdenum-iron alloy, Elgiloy, L605, MP35N, Ta-10W, 17-4PH, Aeromet 100, polyethylene terapthalate (PET), polytetraflouroethylene (PTFE), polyurethane (nylon) fluorinated ethylene propylene (FEP), polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester, polyester, polyamide, elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA), silicones, polyethylene, polyether-ether ketone (PEEK), polyimide (PI), polyetherimide (PEI), tantalum, tungsten, or any other suitable material that is biocompatible and that is capable of being expanded in the manner described above. The framework may also be made from a bioresorbable, or biodegradable material, or a combination thereof. The framework 1001 may also include an anti-thrombogenic coating such as heparin (or its derivatives), urokinase, or PPack (dextrophenylalanine proline arginine chloromethylketone) to prevent thrombosis or any other adverse reaction from occurring at the site of insertion.
  • The vascular filter device can also include opposing filters 1002 and 1003 formed from a continuous element 1004 (e.g., wire or suture) extending within pathway 1005 of framework 1001. In an embodiment, continuous element 1004 can be provided with a criss-cross pattern between a proximal portion and a distal portion about the interior of framework 1001, so as to form substantially conically shaped opposing filters 1002 and 1003. To permit the continuous element 1004 or suture to extend within the framework 1001, eyelets 1006 may be provided at designated locations on framework 1001 and through which continuous element 1004 can be directed. In an embodiment, materials from which continuous element 1004 can made include metal, metal alloy, polyglycolic acid, polymer, plastic, metal-polymer blend, or a combination thereof. It should be appreciated that although illustrated as extending from a location away from each end of framework 1001, filters 1002 and 1003 may be designed to extend from each end of frame work 1001, if so desired.
  • Still looking at FIG. 10, each of the resulting opposing filters 1002 and 1003 can include an open end 1007 and 1008, respectively, through which fluid flow may enter along with any clots, and an apex 1009 and 1010, respectively, toward which a clot may be directed. Moreover, filters 1002 and 1003 may be designed such that when they are no longer needed, the continuous element 1004 can be cut or severed, and the filters can be eliminated from the framework 1001 to permit pathway 1005 to be reestablished through and along framework 1001.
  • In operation, to prepare any of the vascular filter devices described above for insertion in the body, a user can initially collapse the vascular filter device for insertion into a delivery mechanism, for example, a catheter. Once loaded into a delivery mechanism, the delivery mechanism may be inserted into the body, and advanced along a vessel within the body (e.g. the inferior vena cava) to a site of interest for implantation. The filter device may then be removed from within the delivery mechanism and permitted to self-expand or, alternatively, a balloon catheter may be placed within the collapsed framework and expanded to expand the framework. The expansion of the device or framework allows the device to engage the wall of the vessel, as shown in FIG. 3, and to minimize subsequent movement of the device from the site of implantation. When engaging the vessel wall, securing mechanisms on the framework of the device may be used to enhance secured placement of the framework against the vessel wall. Upon expansion of the device or framework, at least one filter having a substantially conical shape may be formed. With the vascular filter device deployed and engaged within the vessel, blood clots and other debris can subsequently be captured within the filter or filters.
  • Once the filtering function is no longer necessary, it may be desirable to reverse (i.e., eliminate) the filter or filters and reestablish the pathway through the device. Reversal of the filtering function may involve elimination of the filters manually. Manual removal may include, for example, advancing into the vena cave a device capable of severing the filter or filter formation element, locating the filter or filter formation element, and severing the filter or filter formation element. Severing the filter or filter formation element may involve cutting the wires or the mechanism holding the filter in place. In another embodiment, the filter or filter formation element can be removed by permitting their resorption or degradation over a period of time.
  • A method of manufacturing a filter in accordance with the present invention is also provided. In some embodiments, metals, including superelastic metals, may have a hardened state. In a hardened state, the metal may be made to be self-expanding and spring-like. In other embodiments, metals, including superelastic metals, may have an annealed state. In an annealed state, the metal may be made to be deformable and malleable. A filter framework, in accordance with one embodiment, may be manufactured from a single tube. The single tube may, in an embodiment, be in an annealed state, where it is soft and malleable. The tube, for example, can then be cut using laser or other methods known in the art to yield the desired framework. Once the desired framework is produced, the malleable framework can, in an embodiment, be expanded mechanically using, for instance, a dilation balloon or other dilation device to form a filter or “butterfly” configuration. Once expanded, the tube may remain in the “butterfly” configuration. While in this configuration, the framework may, in one embodiment, be treated and processed by first heating the framework to a substantially high temperature and then quenching the framework in a low temperature fluid bath to harden the entire filter and produce spring-like properties. It should be appreciated that other methods known in the art may also be used to provide spring-like properties to the framework.
  • In some embodiments, it may be desired that certain portions, such as the filter arms and/or the middle portion, of the framework be malleable. Where malleability is desired, portions of the framework may be treated and processed by first heating the desired portions, and then letting the desired portions cool at a substantially slower rate, for instance, in the air. In one embodiment, the filter arms and the middle portion may be made malleable by reheating and allowing room cooling of these areas. The process of heating followed by air cooling is able to anneal and soften the filter arms and the middle portion making them malleable. Of course, other methods known in the art can also be used to treat and process the framework so as to provide malleable characteristics to the desired portions.
  • It should be appreciated, that although described as being formed from a single tube, the filter may be formed from multiple components that can be joined together to form a framework.
  • While the invention has been described in connection with the specific embodiments thereof, it will be understood that it is capable of further modification. Furthermore, this application is intended to cover any variations, uses, or adaptations of the invention, including such departures from the present disclosure as come within known or customary practice in the art to which the invention pertains, and as fall within the scope of the appended claims.

Claims (22)

1. A filter device comprising:
an expandable framework defined by a plurality of legs;
a proximal portion on the expandable framework designed for secured placement of the device against a wall of a vessel;
a filter portion in linear alignment with the proximal portion and formed by constraining the plurality of legs towards an apex; and
a securing element at the apex to maintain the plurality of legs in a constrained position, and which upon elimination allows the plurality of legs to expand radially outward such that a substantially tubular pathway is established through the expandable framework.
2. The filter device of claim 1, wherein the framework includes an attachment mechanism at the proximal portion to enhance secured placement of the device against the wall of the vessel.
3. The filter device of claim 1, wherein the framework is designed to permit undesirable materials to flow into the framework from the proximal portion towards the filter portion.
4. The filter device of claim 1, wherein the plurality of legs in the filter portion are designed to capture undesirable materials flowing through the vessel and direct the captured undesirable materials toward the apex.
5. The filter device of claim 1, wherein the securing element is one of bio-absorbable, breakable, removable, or any combination thereof.
6. The filter device of claim 1 further including an opposing expandable framework defined by a second set of plurality of legs.
7. A filter device comprising:
an expandable framework having a substantially tubular proximal portion for secured placement of the device against a wall of a vessel, and an elongated leg extending beyond the proximal portion;
a pathway extending through the framework; and
a continuous element extending through the framework between the proximal portion and the elongated leg to define a filter.
8. The filter device of claim 7, wherein the framework includes an attachment mechanism to enhance secured placement of the device against the wall of the vessel.
9. The filter device of claim 7, wherein the elongated leg includes a securing mechanism at an end opposing the framework at which the filter can terminate.
10. The filter device of claim 7, wherein the filter acts to capture undesirable materials flowing through the vessel from the framework towards the elongated leg.
11. The filter device of claim 7, wherein the continuous element, upon elimination, allows establishment of a substantially tubular pathway through the framework.
12. A bi-directional filter device comprising:
an expandable framework for secured placement of the device against a wall of a vessel;
a pathway extending through the expandable framework; and
a continuous element extending within the pathway between a proximal portion and a distal portion of the framework to define opposing filters within the framework, and which upon elimination allows establishment of a substantially tubular pathway through the framework.
13. The filter device of claim 12, wherein the framework includes an attachment mechanism to enhance secured placement of the device against the wall of the vessel.
14. The filter device of claim 12, wherein the opposing filters within the framework include an apex situated between the opposing filters.
15. A method for capturing undesirable material, comprising:
providing an expandable framework having a proximal portion, a distal portion, and defined by a plurality of legs;
constraining, at the distal portion, the plurality of legs towards an apex with a securing element to form a filter portion in linear alignment with the proximal portion;
securing the proximal portion on the expandable framework against a wall of a vessel; and
allowing undesirable materials to flow into the framework toward the filter portion to permit the undesirable material to be captured thereat.
16. The method of claim 15, wherein the step of allowing includes directing the captured undesirable materials toward the apex.
17. The method of claim 15 further including eliminating the securing element to allow the plurality of legs to expand radially outward such that a substantially tubular pathway is provided through the expandable framework.
18. A method for capturing undesirable material, comprising:
placing, within a vessel, an expandable framework having a substantially tubular proximal portion, and an elongated leg extending beyond the proximal portion;
providing a continuous element through the framework between the proximal portion and the elongated leg so as to form a filter portion therebetween;
securing the substantially tubular proximal portion against the wall of the vessel to provide a substantially tubular pathway through the framework; and
allowing undesirable materials to flow into the framework toward the filter portion to permit the undesirable material to be captured thereat.
19. The method of claim 17 wherein the step of allowing includes directing the captured undesirable materials toward an end of the elongated leg.
20. The method of claim 18 further including eliminating the continuous element extending through the framework between the proximal portion and the elongated leg, so as to establish a substantially tubular pathway through the framework.
21. A method for capturing undesirable material, comprising:
placing an expandable framework having a proximal portion and a distal portion;
providing a continuous element through the framework between the proximal portion and the distal portion so as to define opposing filters within the framework;
securing the expandable framework against a wall of a vessel; and
allowing undesirable material to flow into the framework to permit the undesirable material to be captured by at least one of the opposing filters.
22. The method of claim 21 further including eliminating the continuous element defining the opposing filters within the framework, so as to establish a substantially tubular pathway through the framework.
US12/977,723 2009-12-23 2010-12-23 Reversible Vascular Filter Devices and Methods for Using Same Abandoned US20110152919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/977,723 US20110152919A1 (en) 2009-12-23 2010-12-23 Reversible Vascular Filter Devices and Methods for Using Same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US28950809P 2009-12-23 2009-12-23
US29545710P 2010-01-15 2010-01-15
US30415510P 2010-02-12 2010-02-12
US31481610P 2010-03-17 2010-03-17
US12/977,723 US20110152919A1 (en) 2009-12-23 2010-12-23 Reversible Vascular Filter Devices and Methods for Using Same

Publications (1)

Publication Number Publication Date
US20110152919A1 true US20110152919A1 (en) 2011-06-23

Family

ID=44152145

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/977,648 Abandoned US20110152918A1 (en) 2009-12-23 2010-12-23 Reversible Vascular Filter Devices and Methods for Using Same
US12/977,723 Abandoned US20110152919A1 (en) 2009-12-23 2010-12-23 Reversible Vascular Filter Devices and Methods for Using Same
US12/977,741 Active 2033-01-04 US9456888B2 (en) 2009-12-23 2010-12-23 Reversible vascular filter devices and methods for using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/977,648 Abandoned US20110152918A1 (en) 2009-12-23 2010-12-23 Reversible Vascular Filter Devices and Methods for Using Same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/977,741 Active 2033-01-04 US9456888B2 (en) 2009-12-23 2010-12-23 Reversible vascular filter devices and methods for using same

Country Status (5)

Country Link
US (3) US20110152918A1 (en)
EP (1) EP2515795A4 (en)
JP (2) JP6087626B2 (en)
CN (1) CN102811679A (en)
WO (3) WO2011079287A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963047A (en) * 2016-03-07 2016-09-28 上海宏普医疗器械有限公司 Novel retrievable vena cava thrombus multi-filtering device
US10226323B2 (en) 2015-10-16 2019-03-12 Cook Medical Technologies Llc Double cone biodegradable filter
US20200113667A1 (en) * 2011-02-28 2020-04-16 Adient Medical, Inc. Absorbable vascular filter
US20200129281A1 (en) * 2017-08-18 2020-04-30 Shanghai Microport Endovascular Medtech Co., Ltd. Filter device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180360586A9 (en) 2013-03-07 2018-12-20 Merit Medical Systems, Inc. Embolic filter balloon
WO2014138404A1 (en) * 2013-03-07 2014-09-12 Merit Medical Systems, Inc. Embolic filter balloon
CN106618794A (en) * 2017-01-06 2017-05-10 上海宏普医疗器械有限公司 Octopus-type retrievable vena cava filter
EP3456291B1 (en) 2017-04-11 2022-09-28 Hangzhou Endonom Medtech Co., Ltd Two-way controllable release vena cava filter
CN207821947U (en) * 2017-04-11 2018-09-07 杭州唯强医疗科技有限公司 With from central vena cava filter
JP6756987B2 (en) * 2017-08-24 2020-09-16 株式会社タンガロイ Cover cutting tool
CN108210113A (en) * 2018-03-23 2018-06-29 上海纽脉太惟医疗科技有限公司 A kind of thrombus filter
US11786388B2 (en) 2021-03-12 2023-10-17 Cook Medical Technologies Llc Endovascular delivery systems with radial orientation mechanisms

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US5370657A (en) * 1993-03-26 1994-12-06 Scimed Life Systems, Inc. Recoverable thrombosis filter
US20010011187A1 (en) * 1998-06-02 2001-08-02 Dusan Pavcnik Multiple-sided intraluminal medical device
US20030139765A1 (en) * 2000-10-20 2003-07-24 Patel Nilesh H. Convertible blood clot filter
US20030176888A1 (en) * 1999-05-03 2003-09-18 B. Braun Medical Sa Blood filter and method for treating vascular disease
US20030208227A1 (en) * 2000-08-04 2003-11-06 John Thomas Temporary vascular filters and methods
US20090105747A1 (en) * 2005-12-07 2009-04-23 C.R. Bard, Inc. Vena Cava Filter with Stent
US20090187210A1 (en) * 2007-12-21 2009-07-23 Abbott Laboratories Vena cava filter having hourglass shape
US20090198270A1 (en) * 2008-01-11 2009-08-06 Mcguckin Jr James F Vein Filter
US7722635B2 (en) * 2004-06-25 2010-05-25 Angiodynamics, Inc. Blood clot filter

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429850A1 (en) 1984-05-12 1986-02-20 Ing. Walter Hengst GmbH & Co KG, 4400 Münster Improved blood filter for insertion into veins
FR2606641B1 (en) 1986-11-17 1991-07-12 Promed FILTERING DEVICE FOR BLOOD CLOTS
FR2737654B1 (en) 1995-08-10 1997-11-21 Braun Celsa Sa FILTRATION UNIT FOR THE RETENTION OF BLOOD CLOTS
AU6617396A (en) * 1996-07-12 1998-02-09 Alain Fouere Extensible filtering sheath for surgical use for vena cava or large blood vessels
US5972019A (en) * 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US6120534A (en) * 1997-10-29 2000-09-19 Ruiz; Carlos E. Endoluminal prosthesis having adjustable constriction
IES81060B2 (en) * 1997-11-07 2000-01-12 Salviac Ltd An embolic protection device
US7018401B1 (en) * 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
AU2001241603A1 (en) * 2000-02-23 2001-09-03 Boston Scientific Limited Intravascular filtering devices and methods
GB0022653D0 (en) 2000-09-15 2000-11-01 Tayside Flow Technologies Ltd Device for insertion into a vein
US7288111B1 (en) * 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
CN2668072Y (en) * 2003-12-26 2005-01-05 徐林 Self-retraction antiskid thorn-like filter
US7998220B2 (en) * 2004-02-04 2011-08-16 Murphy Timothy P Methods for treating obesity
CA2563228C (en) 2004-04-16 2012-12-11 William Cook Europe Aps A self centering vena cava filter
CN100372391C (en) 2004-08-16 2008-02-27 华为技术有限公司 Multimedia message system and method for transmitting multimedia message
CA2580124C (en) * 2004-09-27 2014-05-13 Rex Medical, L.P. Vein filter
JP2008534223A (en) * 2005-04-04 2008-08-28 ビー ブラウン メディカル ソシエテ パル アクシオン サンプリフィエ Removable filter head
JP2009517124A (en) * 2005-11-26 2009-04-30 コンテゴ メディカル エルエルシー Percutaneous transluminal angioplasty device with integrated embolic filter
EP3338735A1 (en) 2006-07-19 2018-06-27 Novate Medical Limited A vascular filter
US20080243170A1 (en) * 2007-03-30 2008-10-02 Boston Scientific Scimed, Inc. Embolic capturing devices and methods
JP2012501694A (en) * 2008-09-05 2012-01-26 クリストフ アンドレア ビンカート, Blood filter
US20100152765A1 (en) * 2008-12-17 2010-06-17 Abbott Laboratories Body lumen filters with structures to reduce particulates and methods for filtering a body lumen
CN102355871B (en) 2009-01-16 2014-07-09 诺瓦特医疗有限公司 A vascular filter device
ATE556669T1 (en) * 2009-01-16 2012-05-15 Novate Medical Ltd VESSEL FILTER

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US5370657A (en) * 1993-03-26 1994-12-06 Scimed Life Systems, Inc. Recoverable thrombosis filter
US20010011187A1 (en) * 1998-06-02 2001-08-02 Dusan Pavcnik Multiple-sided intraluminal medical device
US6508833B2 (en) * 1998-06-02 2003-01-21 Cook Incorporated Multiple-sided intraluminal medical device
US20030176888A1 (en) * 1999-05-03 2003-09-18 B. Braun Medical Sa Blood filter and method for treating vascular disease
US20030208227A1 (en) * 2000-08-04 2003-11-06 John Thomas Temporary vascular filters and methods
US7147649B2 (en) * 2000-08-04 2006-12-12 Duke University Temporary vascular filters
US20030139765A1 (en) * 2000-10-20 2003-07-24 Patel Nilesh H. Convertible blood clot filter
US7261731B2 (en) * 2000-10-20 2007-08-28 Angiodynamics, Inc. Convertible blood clot filter
US7722635B2 (en) * 2004-06-25 2010-05-25 Angiodynamics, Inc. Blood clot filter
US20090105747A1 (en) * 2005-12-07 2009-04-23 C.R. Bard, Inc. Vena Cava Filter with Stent
US20090187210A1 (en) * 2007-12-21 2009-07-23 Abbott Laboratories Vena cava filter having hourglass shape
US20090198270A1 (en) * 2008-01-11 2009-08-06 Mcguckin Jr James F Vein Filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200113667A1 (en) * 2011-02-28 2020-04-16 Adient Medical, Inc. Absorbable vascular filter
US10226323B2 (en) 2015-10-16 2019-03-12 Cook Medical Technologies Llc Double cone biodegradable filter
CN105963047A (en) * 2016-03-07 2016-09-28 上海宏普医疗器械有限公司 Novel retrievable vena cava thrombus multi-filtering device
US20200129281A1 (en) * 2017-08-18 2020-04-30 Shanghai Microport Endovascular Medtech Co., Ltd. Filter device
US11779450B2 (en) * 2017-08-18 2023-10-10 Shanghai Bluevascular Medtech Co., Ltd. Filter device

Also Published As

Publication number Publication date
WO2011079289A1 (en) 2011-06-30
EP2515795A4 (en) 2015-06-24
US9456888B2 (en) 2016-10-04
WO2011079285A1 (en) 2011-06-30
JP6087626B2 (en) 2017-03-01
WO2011079287A1 (en) 2011-06-30
JP6159759B2 (en) 2017-07-05
JP2015226805A (en) 2015-12-17
WO2011079285A9 (en) 2012-09-27
US20110224715A1 (en) 2011-09-15
US20110152918A1 (en) 2011-06-23
EP2515795A1 (en) 2012-10-31
CN102811679A (en) 2012-12-05
JP2013515575A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US20110152919A1 (en) Reversible Vascular Filter Devices and Methods for Using Same
JP7324264B2 (en) Endovascular treatment of vascular occlusion and related devices, systems and methods
US20210137667A1 (en) Intravascular guidewire filter system for pulmonary embolism protection and embolism removal or maceration
EP1175185B1 (en) Blood filter for treating vascular disease
US8617200B2 (en) Multi-layer filtration device
EP2575637B1 (en) Occlusion device
US20060100660A1 (en) Blood clot filter configured for a wire guide
US9271818B2 (en) Conical vena cava filter with jugular or femoral retrieval
US20130131714A1 (en) Embolic protection device and methods of making the same
US20130184740A1 (en) Long-term retrievable medical filter
US20070100372A1 (en) Embolic protection device having a filter
US8795315B2 (en) Emboli capturing device having a coil and method for capturing emboli
US20110106135A1 (en) Indwelling Temporary IVC Filter System With Drug Delivery and Aspiration
US9788932B2 (en) Vascular filter
US20110106134A1 (en) Indwelling Temporary IVC Filter System with Aspiration

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION