US20110157322A1 - Controlling a pixel array to support an adaptable light manipulator - Google Patents

Controlling a pixel array to support an adaptable light manipulator Download PDF

Info

Publication number
US20110157322A1
US20110157322A1 US12/774,225 US77422510A US2011157322A1 US 20110157322 A1 US20110157322 A1 US 20110157322A1 US 77422510 A US77422510 A US 77422510A US 2011157322 A1 US2011157322 A1 US 2011157322A1
Authority
US
United States
Prior art keywords
pixel array
pixels
image
adaptable
light manipulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/774,225
Inventor
James D. Bennett
Jeyhan Karaoguz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avago Technologies International Sales Pte Ltd
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Priority to US12/774,225 priority Critical patent/US20110157322A1/en
Priority to EP20100015980 priority patent/EP2357508A1/en
Priority to US12/982,309 priority patent/US9204138B2/en
Priority to US12/982,362 priority patent/US9049440B2/en
Priority to US12/982,088 priority patent/US9066092B2/en
Priority to US12/982,069 priority patent/US8922545B2/en
Priority to US12/982,031 priority patent/US9019263B2/en
Priority to TW99147124A priority patent/TW201142357A/en
Priority to CN201010619646XA priority patent/CN102215408A/en
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, JAMES D., KARAOGUZ, JEYHAN
Publication of US20110157322A1 publication Critical patent/US20110157322A1/en
Priority to US14/504,095 priority patent/US20150015668A1/en
Priority to US14/723,922 priority patent/US20150264341A1/en
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: BROADCOM CORPORATION
Assigned to AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. reassignment AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BROADCOM CORPORATION
Assigned to BROADCOM CORPORATION reassignment BROADCOM CORPORATION TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/161Encoding, multiplexing or demultiplexing different image signal components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/189Recording image signals; Reproducing recorded image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/312Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being placed behind the display panel, e.g. between backlight and spatial light modulator [SLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/235Processing of additional data, e.g. scrambling of additional data or processing content descriptors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4122Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/04Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N2013/40Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene
    • H04N2013/403Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene the images being monoscopic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N2013/40Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene
    • H04N2013/405Privacy aspects, i.e. devices showing different images to different viewers, the images not being viewpoints of the same scene the images being stereoscopic or three dimensional

Definitions

  • the present invention relates to techniques for displaying images.
  • Images may be transmitted for display in various forms.
  • television is a widely used telecommunication medium for transmitting and displaying images in monochromatic (“black and white”) or color form.
  • images are provided in analog form and are displayed by display devices in the form of two-dimensional images. More recently, images are being provided in digital form for display in two-dimensions on display devices having improved resolution. Even more recently, images capable of being displayed in three-dimensions are being provided.
  • a parallax barrier is one example of a device that enables images to be displayed in three-dimensions.
  • a parallax barrier includes of a layer of material with a series of precision slits. The parallax barrier is placed proximate to a display so that a viewer's eyes each see a different set of pixels to create a sense of depth through parallax.
  • a lenticular lens is another example of a device that enables images to be displayed in three-dimensions.
  • a lenticular lens includes an array of sub-lenses. As with the parallax barrier, placement of the lenticular lens proximate to an array of pixels enables a viewer's eyes to each see a different set of the pixels.
  • a disadvantage of parallax barriers and lenticular lenses is that the viewer must be positioned in a well-defined location in order to experience the three-dimensional effect. If the viewer moves his/her eyes away from this “sweet spot,” image flipping and/or exacerbation of the eyestrain, headaches and nausea that may be associated with prolonged three-dimensional image viewing may result.
  • Conventional three-dimensional LCD displays that utilize parallax barriers are also constrained in that the displays must be entirely in a two-dimensional image mode or a three-dimensional image mode at any time.
  • conventional three-dimensional LCD displays that utilize lenticular lenses typically are capable of displaying only three-dimensional images.
  • ______ include a parallax barrier that may be dynamically modified in order to adaptively accommodate, for example, a changing viewer sweet spot, switching between two-dimensional images, three-dimensional images, and multi-view three-dimensional content, and the simultaneous display of two-dimensional images, three-dimensional images and multi-view three-dimensional content.
  • the viewing displays of U.S. patent application Ser. No. ______ include an elastic light manipulator (e.g., an elastic parallax barrier, an elastic lenticular lens, etc.) that may be stretched in order to adaptively accommodate, for example, a changing viewer sweet spot and/or that may be retracted to adaptively accommodate, for example, a two-dimensional image mode.
  • an elastic light manipulator e.g., an elastic parallax barrier, an elastic lenticular lens, etc.
  • modifying a configuration of an adaptable light manipulator may negatively affect accuracy of an image as perceived by a viewer.
  • FIG. 1 shows a block diagram of a display system according to an example embodiment.
  • FIG. 2 shows a block diagram of an example implementation of a display system shown in FIG. 1 in accordance with an embodiment.
  • FIG. 3 depicts an example implementation of an adaptable light manipulator shown in FIGS. 1 and 2 that includes an array of elastic sub-lenses in accordance with an embodiment.
  • FIGS. 4 and 5 depict cross-sectional views of an adaptable light manipulator shown in FIG. 3 in a non-stretched state and in a stretched state, respectively, according to example embodiments.
  • FIG. 6 depicts a view of a surface of another example implementation of an adaptable light manipulator shown in FIGS. 1 and 2 that includes a plurality of parallax barrier elements in accordance with an embodiment.
  • FIGS. 7 and 8 depict views of a parallax barrier element of an adaptable light manipulator shown in FIG. 6 that is selected to be transparent and to be opaque, respectively, according to example embodiments.
  • FIG. 9 depicts a flowchart of a method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment.
  • FIG. 10 shows a cross-sectional view of an example implementation of a display system shown in FIG. 2 according to an embodiment.
  • FIG. 11 depicts a flowchart of another method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment.
  • FIG. 12 depicts a cross-sectional view of another example implementation of a display system shown in FIG. 2 according to an embodiment.
  • FIG. 13 depicts a view of the adaptable light manipulator of FIG. 6 with transparent slits according to an example embodiment.
  • FIG. 14 shows the display system of FIG. 10 providing a three-dimensional image to a user according to an example embodiment.
  • FIG. 15 depicts a cross-sectional view of a display system shown in FIG. 2 that provides multiple three-dimensional images according to an example embodiment.
  • FIG. 16 is a block diagram of an example implementation of a display controller shown in FIG. 2 according to an embodiment.
  • FIGS. 17-20 depict flowcharts of methods for controlling a pixel array to support an adaptable light manipulator in accordance with example embodiments.
  • FIGS. 21-23 illustrate mappings of image pixels to display pixels in accordance with example embodiments.
  • FIGS. 24 and 25 show cross-sectional views of display systems in which a three-dimensional image is provided to a user based on respective first and second mappings of image pixels to display pixels according to example embodiments.
  • FIG. 26 shows a block diagram of an example computer system in which embodiments may be implemented.
  • references in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” or the like, indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the relevant art(s) to implement such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • Example embodiments relate to controlling a pixel array to support an adaptable light manipulator.
  • the pixel array is included in an image generator.
  • the adaptable light manipulator is positioned proximate to the image generator to provide an image to a viewer based on light that is received from the image generator.
  • the pixel array includes a plurality of pixels, which are referred to as “display pixels”.
  • Image pixels are rendered among the display pixels, so that a viewer may perceive the image.
  • Image pixels are representations (i.e., signals, data, etc., or a combination thereof) that define respective portions of an image.
  • Example embodiments are capable of changing a number of display pixels that represents each image pixel and/or which display pixels or groups thereof correspond to the respective image pixels, in response to modification of a configuration of an adaptable light manipulator.
  • FIG. 1 shows a block diagram of a display system 100 according to an example embodiment.
  • system 100 includes a display device 112 .
  • Display device 112 enables the display of 2D and 3D images as described above.
  • Display device 112 includes an image generator 102 and an adaptable light manipulator 104 .
  • image generator 102 emits video information in the form of light 108 .
  • Light 108 is received by adaptable light manipulator 104 , which manipulates light 108 to pass manipulated light 110 .
  • adaptable light manipulator 104 may include an adaptable parallax barrier.
  • adaptable light manipulator 104 may filter light 108 with a plurality of barrier regions that are selectively opaque or transparent.
  • adaptable light manipulator 104 may include an elastic light manipulator (e.g., an elastic parallax barrier, an elastic lenticular lens, etc.).
  • adaptable light manipulator 104 may refract light 108 in accordance with optical properties of adaptable light manipulator 104 that are dependent on an extent to which adaptable light manipulator 104 is stretched along axis 114 .
  • Manipulated light 110 includes a plurality of video images formed from the video information included in light 108 .
  • manipulated light 110 may include one or more two-dimensional images and/or one or more three-dimensional images.
  • Manipulated light 110 is received in a viewing space 106 proximate to display device 112 .
  • One or more users may be present in viewing space 106 to view the video images included in manipulated light 110 .
  • Display device 112 may be configured in various ways.
  • display device 112 may be a television display (e.g., an LCD (liquid crystal display) television, a plasma television, etc.), a computer monitor, or any other type of display device.
  • Image generator 102 may be any suitable type of image generating device, including but not limited to an LCD screen, a plasma screen, an LED (light emitting device) screen, etc.
  • Adaptable light manipulator 104 may be any suitable type light manipulating device that is capable of being dynamically modified to accommodate changed circumstances.
  • elastic light manipulators are described herein as being stretched along a single axis (e.g., axis 114 ) for purposes of illustration, the example embodiments are not limited in this respect. It will be recognized that the elastic light manipulators described herein may be stretched along multiple axes. For instance, adaptable light manipulator 104 may be stretched along a second axis in addition to or in lieu of being stretched along axis 114 . For example, the second axis may be perpendicular to axis 114 .
  • FIG. 2 shows a block diagram of a display system 200 , which is an example of system 100 shown in FIG. 1 , according to an embodiment.
  • system 200 includes a display controller 202 and display device 112 (which includes image generator 102 and adaptable light manipulator 104 ).
  • image generator 102 includes a pixel array 208 .
  • display controller 202 includes a pixel array controller 204 and a manipulator controller 206 .
  • Pixel array 208 includes a two-dimensional array of pixels (e.g., arranged in a grid).
  • the pixels of pixel array 208 may each emit light included in light 108 .
  • Each pixel may be a separately addressable light source (e.g., a pixel of a plasma, LCD, or LED display) and/or may include a filter that filters light received from a separate or included light source.
  • Each pixel of pixel array 208 may be individually controllable to vary color and intensity.
  • each pixel of pixel array 208 may include a plurality of sub-pixels that correspond to separate color channels, such as a trio of red, green, and blue sub-pixels that is included in each pixel.
  • Adaptable light manipulator 104 is positioned proximate to a surface of pixel array 208 .
  • Adaptable light manipulator 104 may be configured to be stretchable along axis 114 , though the scope of the example embodiments is not limited in this respect.
  • FIG. 3 shows an adaptable light manipulator 300 that is implemented as an elastic lenticular lens in accordance with an embodiment.
  • Adaptable light manipulator 300 is an example of adaptable light manipulator 104 of FIGS. 1 and 2 .
  • adaptable light manipulator 300 includes a sub-lens array 302 .
  • Sub-lens array 302 includes a plurality of elastic sub-lenses 304 arranged in a two-dimensional array (e.g., arranged side-by-side in a row). Each sub-lens 304 is shown in FIG. 3 as cylindrical in shape and having a substantially semi-circular cross-section, but in other embodiments may have other shapes. In FIG. 3 , sub-lens array 302 is shown to include eight sub-lenses for illustrative purposes and is not intended to be limiting. For instance, sub-lens array 302 may include any number (e.g., hundreds, thousands, etc.) of sub-lenses 304 .
  • Adaptable light manipulator 300 is configured to be stretchable along axis 114 .
  • FIG. 4 depicts a cross-sectional view of adaptable light manipulator 300 in a non-stretched state
  • FIG. 5 depicts a cross-sectional view of adaptable light manipulator 300 in a stretched state, according to example embodiments.
  • adaptable light manipulator 300 When adaptable light manipulator 300 is in a non-stretched state, as shown in FIG. 4 , adaptable light manipulator 300 has a first length L 1 .
  • adaptable light manipulator 300 When adaptable light manipulator 300 is in a stretched state, as shown in FIG. 5 , adaptable light manipulator 300 has a second length L 2 that is greater than L 1 .
  • the second length L 2 may be selectable to achieve desired optical properties of sub-lenses 304 .
  • the second length L 2 may be selectable to accommodate a change in a number of users 212 and/or to accommodate movement of users 212 , so that users 212 are able to perceive images that are intended for them. Accordingly, light 108 received at adaptable light manipulator 300 is manipulated to generate manipulated light 110 .
  • FIG. 6 shows an adaptable light manipulator 600 that is implemented as an adaptable parallax barrier in accordance with an embodiment.
  • Adaptable light manipulator 600 is another example of adaptable light manipulator 104 of FIGS. 1 and 2 .
  • adaptable light manipulator 600 includes a blocking region array 602 .
  • Blocking region array 602 includes a plurality of blocking regions 604 arranged in a two-dimensional array (e.g., arranged in a grid).
  • Each blocking region 604 is shown in FIG. 6 as rectangular (e.g., square) in shape, but in other embodiments may have other shapes.
  • Blocking region array 602 may include any number of blocking regions 604 . For instance, in FIG.
  • blocking region array 602 includes twenty-eight blocking region 604 along an x-axis and includes twenty blocking regions 604 along a y-axis, for a total number of 560 blocking regions 604 .
  • these dimensions of blocking region array 602 and the total number of blocking regions 604 for blocking region array 602 shown in FIG. 6 are provided for illustrative purposes, and are not intended to be limiting.
  • Blocking region array 602 may include any number of blocking regions 604 , and may have any number of blocking regions 604 along the x- and y-axes, including hundreds or thousands of blocking regions 604 along each of the x- and y-axes.
  • Each blocking region 604 of blocking region array 602 is selectable to be opaque or transparent.
  • FIG. 7 shows a blocking region 604 x that is selected to be transparent
  • FIG. 8 shows blocking region 604 x when selected to be opaque, according to example embodiments.
  • blocking region 604 x is selected to be transparent
  • light 108 from pixel array 208 may pass through blocking region 604 x (e.g., to viewing space 106 ).
  • blocking region 604 x is selected to be opaque
  • light 108 from pixel array 208 is blocked from passing through blocking region 604 x .
  • By selecting some of blocking regions 604 of blocking region array 602 to be transparent, and some of blocking regions 604 of blocking region array 602 to be opaque light 108 received at blocking region array 602 is filtered to generate manipulated light 110 .
  • Display controller 202 is configured to generate control signals (and in some embodiments, to stretch adaptable light manipulator 104 ) to enable display device 112 to display two-dimensional and three-dimensional images to users 212 in viewing space 106 .
  • pixel array controller 204 is configured to generate a control signal 214 that is received by pixel array 208 .
  • Control signal 214 may include one or more image pixels and a mapping indicator that maps the image pixels to respective subsets of pixels of pixel array 208 .
  • control signal 214 may cause the subsets of the pixels of pixel array 208 to emit light 108 of desired colors and/or intensities. Each subset may include one or more pixels of pixel array 208 .
  • Manipulator controller 206 is configured to generate a control signal 216 that is received by adaptable light manipulator 104 and/or to provide a tensile stress along axis 114 to stretch adaptable light manipulator 104 .
  • pixel array controller 204 updates control signal 214 to include a revised mapping indicator that maps the image pixels to other respective subsets of pixels of pixel array 208 .
  • adaptable light manipulator 104 includes an elastic light manipulator (e.g., elastic lenticular lens 300 )
  • stretching elastic light manipulator 104 causes the optical properties of adaptable light manipulator 104 to change, so that adaptable light manipulator 104 manipulates light 108 in accordance with the changed optical properties to generate manipulated light 110 that includes one or more two-dimensional and/or three-dimensional images that may be viewed by users 212 in viewing space 106 .
  • control signal 214 may control multiple sets of pixels of pixel array 208 to each emit light representative of a respective image, to provide a plurality of images.
  • Manipulator controller 206 may stretch adaptable light manipulator 104 to manipulate the light received from pixel array 208 corresponding to the provided images such that one or more of the images are received at one or more of users 212 in two-dimensional form.
  • manipulator controller 206 may stretch adaptable light manipulator 104 to manipulate the light received from pixel array 208 corresponding to at least one pair of the provided images such that the image pair is received at one or more of the users to be perceived as a three-dimensional image.
  • Manipulator controller 206 may be further configured to perform any of a variety of other operations with respect to adaptable light manipulator 104 , though the example embodiments are not limited in this respect.
  • manipulator controller 206 may be configured to change a curvature of adaptable light manipulator 104 and/or an angle at which adaptable light manipulator 104 is mounted with respect to pixel array 208 . Such changes may be performed to accommodate a moving user based on a location of the user's head, for instance.
  • manipulator controller 206 may be configured to retract adaptable light manipulator 104 , such that adaptable light manipulator 104 (or a portion thereof) is removed from a position that is between pixel array 208 and users 212 .
  • retracting adaptable light manipulator 104 may provide an unfiltered view of some or all of the pixels in pixel array 208 .
  • retracting adaptable light manipulator 104 may enable one or more of the users to view a two-dimensional image that is generated by pixels of pixel array 208 that are not covered by adaptable light manipulator 104 , even if adaptable light manipulator 104 is configured to provide a three-dimensional image with respect to other pixels of pixel array 208 .
  • control signal 216 may include one or more control signals used to cause blocking regions 604 of blocking region array 602 to be transparent or opaque to filter light 108 to facilitate the generation of manipulated light 110 that includes one or more two-dimensional and/or three-dimensional images that may be viewed by users 212 in viewing space 106 .
  • control signal 216 may control blocking regions 604 of blocking region array 602 to filter the light received from pixel array 208 corresponding to the provided images such that one or more of the images are received at one or more of users 212 in two-dimensional form. For instance, control signal 216 may select one or more sections of blocking regions 604 of blocking region array 602 to be transparent, to transmit one or more corresponding two-dimensional images to users 212 . Furthermore, control signal 216 may control blocking regions 604 of blocking region array 602 to filter the light received from pixel array 208 corresponding to at least one pair of the provided images such that the image pair is received at one or more of the users to be perceived as a three-dimensional image. For example, control signal 216 may select parallel strips of blocking regions 604 of blocking region array 602 to be transparent to form a three-dimensional image to be perceived by one or more of users 212 .
  • manipulator controller 206 may generate control signal 216 to form any number of parallel strips of blocking regions 604 of blocking region array 602 to be transparent, to modify the number and/or spacing of parallel strips of blocking regions 604 of blocking region array 602 that are transparent, to select and/or modify a width and/or a length (in blocking regions 604 ) of one or more strips of blocking regions 604 of blocking region array 602 that are transparent, to select and/or modify an orientation of one or more strips of blocking regions 604 of blocking region array 602 that are transparent, to select one or more areas of blocking region array 602 to include all transparent or all opaque blocking regions 604 , etc.
  • FIG. 9 depicts a flowchart 900 of a method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment.
  • Flowchart 900 may be performed by system 200 in FIG. 2 , for example.
  • Flowchart 900 is described with respect to FIG. 10 , which shows a cross-sectional view of a display system 1000 .
  • Display system 1000 is an example embodiment of system 200 shown in FIG. 2 .
  • system 1000 includes a pixel array 1002 and an elastic light manipulator 1004 . Further structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion regarding flowchart 900 .
  • Flowchart 900 is described as follows.
  • Flowchart 900 begins with step 902 .
  • a plurality of images is received from an array of pixels at an elastic light manipulator.
  • pixel array 1002 includes a plurality of pixels 1014 A- 1014 D and 1016 A- 1016 D. Pixels 1014 alternate with pixels 1016 , such that pixels 1014 A- 1014 d and 1016 A- 1016 D are arranged in series in the order of pixels 1014 A, 1016 A, 1014 B, 1016 B, 1014 C, 1016 C, 1014 D, and 1016 D. Further pixels may be included in pixel array 1002 that are not visible in FIG. 10 .
  • Each of pixels 1014 A- 1014 D and 1016 A- 1016 D generates light, which emanates from display surface 1024 of pixel array 1002 generally in all directions of a hemispherical pattern (e.g., generally upward in FIG. 10 ) towards elastic light manipulator 1004 .
  • Some example indications of light emanating from pixels 1014 A- 1014 D and 1016 A- 1016 D are shown in FIG. 10 (as dotted lines), including light 1024 A and light 1018 A emanating from pixel 1014 A, light 1024 B, light 1018 B, and light 1024 C emanating from pixel 1014 B, etc.
  • Elastic light manipulator 1004 is shown to be implemented as an elastic lenticular lens for illustrative purposes and is not intended to be limiting. Elastic light manipulator 1004 may be any suitable type of elastic light manipulator.
  • the elastic light manipulator is stretched from a first length to a selectable second length to provide the plurality of images to a plurality of respective locations.
  • a tensile stress (indicated by arrows 1012 A and 1012 B) may be applied to elastic light manipulator 1004 along axis 1010 to stretch elastic light manipulator 1004 from the first length (e.g., L 1 in FIG. 4 ) to the second length (e.g., L 2 in FIG. 5 ).
  • first length e.g., L 1 in FIG. 4
  • the second length e.g., L 2 in FIG. 5
  • pixel array 1002 includes a first set of pixels 1014 A- 1014 D and a second set of pixels 1016 A- 1016 D. Pixels 1014 A- 1014 D correspond to first image 1006 A and pixels 1016 A- 1016 D correspond to second image 1006 B.
  • first and second images 1006 A and 1006 B are formed at locations 1008 A and 1008 B, respectively, which are positioned at a distance D from pixel array 1002 .
  • light 1018 A- 1018 D from the first set of pixels 1014 A- 1014 D forms first image 1006 A at first location 1008 A
  • light 1020 A- 1020 D from the second set of pixels 1016 A- 1016 D forms second image 1006 B at second location 1008 B, based on the optical properties of elastic light manipulator 1004 .
  • elastic light manipulator 1004 may refract a first portion of the light emanating from pixel array 1002 that corresponds to first image 1006 A such that first image 1006 A is perceived at first location 1008 A but not at second location 1008 B.
  • the first portion of the light is shown in FIG. 10 to include light 1018 A- 1018 D and light 1024 A- 1024 C.
  • Elastic light manipulator 1004 may refract light 1018 A- 1018 D toward location 1008 A and may refract light 1024 A- 1024 C toward locations other than first location 1008 A and second location 1008 B.
  • Elastic light manipulator 1004 may refract a second portion of the light emanating from pixel array 1002 that corresponds to second image 1006 B such that second image 1006 B is perceived at second location 1008 B but not at first location 1008 A.
  • instances of first and second images 1006 A and 1006 B may repeat in viewing space 1026 .
  • FIG. 11 depicts a flowchart 1100 of another method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment.
  • Flowchart 1100 may be performed by system 200 in FIG. 2 , for example.
  • Flowchart 1100 is described with respect to FIG. 12 , which shows a cross-sectional view of a display system 1200 .
  • Display system 1200 is another example embodiment of system 200 shown in FIG. 2 .
  • system 1200 includes a pixel array 1202 and a blocking region array 1204 . Further structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion regarding flowchart 1100 .
  • Flowchart 1100 is described as follows.
  • step 1102 light is received from a surface at an adaptable parallax barrier that is positioned proximate to the surface.
  • pixel array 1202 includes a plurality of pixels 1214 a - 1214 d and 1216 a - 1216 d .
  • Pixels 1214 alternate with pixels 1216 , such that pixels 1214 a - 1214 d and 1216 a - 1216 d are arranged in series in the order of pixels 1214 a , 1216 a , 1214 b , 1216 b , 1214 c , 1216 c , 1214 d , and 1216 d .
  • pixels 1214 a - 1214 d and 1216 a - 1216 d generates light, which emanates from display surface 1224 of pixel array 1202 generally in all directions of a hemispherical pattern (e.g., generally upward in FIG. 12 ) towards blocking region array 1204 .
  • Some example indications of light emanating from pixels 1214 a - 1214 d and 1216 a - 1216 d are shown in FIG.
  • each blocking region in a plurality of parallel strips of blocking regions of the blocking region array is selected to be transparent to form a plurality of parallel transparent slits, the number of transparent slits in the plurality of parallel transparent slits being selectable.
  • blocking region array 1204 includes a plurality of blocking regions that are each either transparent or opaque.
  • blocking regions that are opaque are indicated as blocking regions 1210 a - 1210 f
  • blocking regions that are transparent are indicated as blocking regions 1212 a - 1212 e .
  • Further blocking regions may be included in blocking region array 1204 that are not visible in FIG. 12 .
  • Each of blocking regions 1210 a - 1210 f and 1212 a - 1212 e may include one or more blocking regions.
  • Blocking regions 1210 alternate with blocking regions 1212 , such that blocking regions 1210 a - 1210 f and 1212 a - 1212 e are arranged in series in the order of blocking regions 1210 a , 1212 a , 1210 b , 1212 b , 1210 c , 1212 c , 1210 d , 1212 d , 1210 e , 1212 e , and 1210 f .
  • opaque blocking regions 1210 are alternated with transparent blocking regions 1212 to form a plurality of parallel transparent slits in blocking region array 1204 .
  • FIG. 13 depicts a view of adaptable light manipulator 600 of FIG. 6 , which is implemented as an adaptable parallax barrier, according to an example embodiment.
  • adaptable light manipulator 600 includes blocking region array 602 , which includes a plurality of blocking regions 604 arranged in a two-dimensional array.
  • blocking region array 602 includes a plurality of parallel strips of blocking regions 604 that are selected to be transparent to form a plurality of parallel transparent strips 1302 A- 1302 G.
  • FIG. 13 depicts a view of adaptable light manipulator 600 of FIG. 6 , which is implemented as an adaptable parallax barrier, according to an example embodiment.
  • adaptable light manipulator 600 includes blocking region array 602 , which includes a plurality of blocking regions 604 arranged in a two-dimensional array.
  • blocking region array 602 includes a plurality of parallel strips of blocking regions 604 that are selected to be transparent to form a plurality of parallel transparent strips 1302 A- 1302 G.
  • parallel transparent strips 1302 A- 1302 G are alternated with parallel opaque strips 1304 A- 1304 G of blocking regions 304 that are selected to be opaque to provide a slit pattern.
  • a slit pattern is an arrangement of blocking regions in an adaptable light manipulator in which transparent strips of blocking regions are alternated with opaque strips of blocking regions.
  • transparent strips 1302 A- 1302 G and opaque strips 1304 A- 1304 G each have a width (along the x-dimension) of two blocking regions 304 , and have lengths that extend along the entire y-dimension (twenty blocking regions 304 ) of blocking region array 304 , although in other embodiments, may have alternative dimensions.
  • the light is filtered at the parallax barrier to form a plurality of images in a viewing space.
  • light emanating from pixel array 1202 is filtered by blocking region array 1204 to form a plurality of images in a viewing space 1226 , including a first image 1206 A at a first location 1208 A and a second image 1206 B at a second location 1208 B.
  • a portion of the light emanating from pixel array 1202 is blocked by opaque blocking regions 1210 , while another portion of the light emanating from pixel array 1202 passes through transparent blocking regions 1212 , to be filtered by blocking region array 1204 .
  • light 1224 A from pixel 1214 A is blocked by opaque blocking region 1210 A
  • light 1224 B and light 1224 C from pixel 1214 B are blocked by opaque blocking regions 1210 B and 1210 C, respectively.
  • light 1218 A from pixel 1214 A is passed by transparent blocking region 1212 A
  • light 1218 B from pixel 1214 B is passed by transparent blocking region 1212 B.
  • system 1200 shown in FIG. 12 is configured to form first and second images 1206 A and 1206 B at locations 1208 A and 1208 B, respectively.
  • instances of first and second images 1206 A and 1206 B may repeat in viewing space 1226 .
  • pixel array 1202 includes a first set of pixels 1214 A- 1214 D and a second set of pixels 1216 A- 1216 D. Pixels 1214 A- 1214 D correspond to first image 1206 A and pixels 1216 A- 1216 D correspond to second image 1206 B.
  • first and second images 1206 A and 1206 A are formed at locations 1208 A and 1208 B, respectively, which are positioned at a distance D from pixel array 1202 .
  • the geometry of transparent blocking regions 1212 may be based on an extent to which blocking region array 1204 is stretched.
  • a greater extent of stretching may result in opaque blocking regions 1210 having a greater length W 1 and/or transparent blocking regions 1212 having a greater length W 2 .
  • the greater extent of stretching may result in a greater slit spacing 1222 (center-to-center).
  • Slit spacing 1222 is described in greater detail in the following discussion.
  • a lesser extent of stretching may result in opaque blocking regions 1210 having a lesser length W 1 and/or transparent blocking regions 1212 having a lesser length W 2 . Accordingly, the lesser extent of stretching may result in a narrower slit spacing 1222 .
  • light 1218 A- 1218 D from the first set of pixels 1214 A- 1214 D forms first image 1206 A at first location 1208 A and light 1220 A- 1220 D from the second set of pixels 1216 A- 1216 D forms first image 1206 A at second location 1208 B due to the filtering of the transparent slits (corresponding to transparent blocking regions 1212 A- 1212 E) in blocking region array 1204 .
  • FIG. 12 shows a slit spacing 1222 (center-to-center) of transparent blocking regions 1212 in blocking region array 1204 .
  • Spacing 1222 may be determined to select locations for parallel transparent slits to be formed in blocking region array 1204 for a particular image distance 1228 at which images are desired to be formed (for viewing by users). If a spacing of pixels 1214 A- 1214 D and distance 1228 are known, the spacing 1222 between adjacent parallel transparent slits in blocking region array 1204 may be selected.
  • manipulator controller 206 (of FIG. 2 ) may be configured to calculate spacing 1222 for particular spacing of pixels 1214 A- 1214 D and a desired distance D for images 1206 to be formed.
  • a display system (e.g., display system 1000 of FIG. 10 or display system 1200 of FIG. 12 ) may be configured to generate three-dimensional images for viewing by users in a viewing space.
  • display system 1000 as shown in FIG. 14 for illustrative purposes and is not intended to be limiting. Persons skilled in the relevant art(s) will recognize that the techniques described herein for providing three-dimensional and multi-three-dimensional images are applicable to any suitable display system.
  • first and second images 1006 A and 1006 B may be configured to be perceived by a user as a three-dimensional image.
  • light from the array of pixels may be manipulated to form a first image corresponding to the first set of pixels at a right eye location and to form a second image corresponding to the second set of pixels at a left eye location.
  • a user 1402 receives first image 1006 A at a first eye location 1402 A and second image 1006 B at a second eye location 1402 B according to an example embodiment.
  • First and second images 1006 A and 1006 B may be generated by first set of pixels 1014 A- 1014 D and second set of pixels 1016 A- 1016 D, respectively, as images that are slightly different from each other. Images 1006 A and 1006 B are combined in the visual center of the brain of user 1404 to be perceived as a three-dimensional image.
  • first and second images 1006 A and 1006 B may be formed by display system 1000 such that their centers are spaced apart a width of a user's pupils (e.g., an “interocular distance”, labeled as “X” in FIG. 14 ).
  • the spacing of first and second images 1006 A and 1006 B may be approximately 65 mm (or other suitable spacing) to generally be equivalent to interocular distance X.
  • display system 1000 may be configured to generate multiple three-dimensional images for viewing by users in a viewing space.
  • Each of the three-dimensional images may correspond to a pair of images generated by sets of pixels of pixel array 1024 .
  • Adaptable light manipulator 1004 manipulates light from pixel array 1024 to form the image pairs in a viewing space to be perceived by users as three-dimensional images.
  • Adaptable light manipulator 1004 is shown to be implemented as an elastic lenticular lens for illustrative purposes and is not intended to be limiting.
  • FIG. 15 depicts a cross-sectional view of a display system 1500 that provides multiple three-dimensional images according to an example embodiment.
  • system 1500 includes a pixel array 1502 and an adaptable light manipulator 1004 .
  • System 1500 may also include display controller 202 of FIG. 2 , which is not shown in FIG. 15 for ease of illustration.
  • System 1500 is described as follows.
  • pixel array 1502 includes a first set of pixels 1514 A- 1514 D, a second set of pixels 1516 A- 1516 D, a third set of pixels 1518 A- 1518 D, and a fourth set of pixels 1520 A- 1520 D.
  • Each set of pixels generates a corresponding image.
  • First set of pixels 1514 A- 1514 D and third set of pixels 1518 A- 1518 D are configured to generate images that combine to form a first three-dimensional image.
  • Second set of pixels 1516 A- 1516 D and fourth set of pixels 1520 A- 1520 D are configured to generate images that combine to form a second three-dimensional image.
  • Pixels of the four sets of pixels are alternated in pixel array 1502 in the order of pixel 1514 A, pixel 1516 A, pixel 1518 A, pixel 1520 A, pixel 1514 B, pixel 1516 B, etc. Further pixels may be included in each set of pixels in pixel array 1502 that are not visible in FIG. 15 , including hundreds, thousands, or millions of pixels in each set of pixels.
  • Each of pixels 1514 A- 1514 D, pixels 1516 A- 1516 D, pixels 1518 A- 1518 D, and pixels 1520 A- 1520 D generates light, which emanates from the surface of pixel array 1502 toward adaptable light manipulator 1004 .
  • light emanating from pixel array 1502 is manipulated by adaptable light manipulator 1004 to form a plurality of images in a viewing space 1526 .
  • four images are formed in viewing space 1526 , including first-fourth images 1506 A- 1506 D.
  • Pixels 1514 A- 1514 D correspond to first image 1506 A
  • pixels 1516 A- 1516 D correspond to second image 1506 B
  • pixels 1518 A- 1518 D correspond to third image 1506 C
  • pixels 1520 A- 1520 D correspond to fourth image 1506 D.
  • adaptable light manipulator 1004 is described as being stretched for illustrative purposes and is not intended to be limiting. It will be recognized that a configuration of adaptable light manipulator 1004 may be modified in any suitable manner.
  • first-fourth images 1506 A- 1508 D may be formed in viewing space 1526 in a repeating fashion due to the optical characteristics of adaptable light manipulator 1004 .
  • a first instance of third image 1506 C is next to a first instance of fourth image 1506 D, which is next to a first instance of first image 1506 A, followed by a first instance of second image 1506 D, followed by a second instance of third image 1506 C, followed by a second instance of fourth image 1506 D, followed by a second instance of first image 1506 A, followed by a second instance of second image 1506 B.
  • first-fourth images 1506 A- 1508 D is generated by light emanating from first-fourth sets of pixels 1514 A- 1514 D, 1516 A- 1516 D, 1518 A- 1518 D, and 1520 A- 1520 D, respectively. Further instances of first-fourth images 1506 A- 1506 D may repeat in viewing space 1526 in a similar fashion, but are not shown in FIG. 15 for ease of illustration.
  • any pair of images 1506 A- 1506 D may be configured to be perceived as a three-dimensional image by a user in viewing space 1526 (similarly to user 1404 in FIG. 14 ).
  • first and third images 1506 A and 1506 C may be configured to be perceived by a user as a first three-dimensional image, such that first image 1506 A is received at a first eye location and third image 1506 C is received at a second eye location of a first user.
  • second and fourth images 1506 B and 1506 D may be configured to be perceived by a second user as a second three-dimensional image, such that second image 1506 B is received at a first eye location and fourth image 1506 D is received at a second eye location of the second user.
  • the additional instances of the pair of first and third images 1506 A and 1506 C, and of the pair of second and fourth images 1506 B and 1506 D may be perceived as the first and second three-dimensional images by further users in viewing space 1526 .
  • each three-dimensional image is generated by manipulating light (using an adaptable light manipulator) corresponding to an image pair generated by a corresponding pair of sets of pixels of the pixel array, in a similar fashion as described with respect to FIG. 15 for two three-dimensional images.
  • mapping of image pixels to display pixels may be changed to accommodate modification of a configuration of an adaptable light manipulator. For instance, changing the mapping of the image pixels with respect to the display pixels may enable a viewer to perceive an accurate rendering of an image that is defined by the image pixels.
  • the mapping of the image pixels may be changed in any of a variety of ways, including but not limited to changing a number of display pixels that represents each image pixel, changing the display pixels or groups thereof that correspond to the respective image pixels, etc.
  • FIG. 16 is a block diagram of an example implementation of a display controller shown in FIG. 2 according to an embodiment.
  • Display controller includes a manipulator controller 1602 , a locator 1604 , and a pixel array controller 1606 .
  • Manipulator controller 1602 is configured to modify a configuration of an adaptable light manipulator.
  • the adaptable light manipulator may be positioned proximate to a pixel array, so that the adaptable light manipulator may manipulate light that is received from the pixel array.
  • manipulator controller 1604 may be configured to stretch the adaptable light manipulator to change optical properties thereof. If the adaptable light manipulator is implemented as an adaptable parallax barrier that includes a plurality of blocking regions, manipulator controller 1604 may be configured to change one or more of the blocking regions from an opaque state to a transparent state and/or one or more of the blocking regions from a transparent state to an opaque state.
  • an elastic light manipulator e.g., an elastic lenticular lens, an elastic parallax barrier, etc.
  • manipulator controller 1604 may be configured to stretch the adaptable light manipulator to change optical properties thereof.
  • manipulator controller 1604 may be configured to change one or more of the blocking regions from an opaque state to a transparent state and/or one or more of the blocking regions from a transparent state to an opaque state.
  • Locator 1604 is configured to determine whether a position of a viewer is changed with respect to the pixel array.
  • locator 1604 may be configured to provide a position indicator to manipulator controller 1602 upon determining that the position of the viewer is changed with respect to the pixel array.
  • manipulator controller 1604 may be configured to modify the configuration of the adaptable light manipulator in response to receiving the position indicator from locator 1604 .
  • Pixel array controller 1606 is configured to control the pixel array to support the adaptable light manipulator.
  • Pixel array controller 1606 includes a conversion module 1608 and a mapping module 1610 .
  • Conversion module 1608 is configured to convert image pixels among various formats. For instance, conversion module 1608 may be configured to convert image pixels that correspond to a two-dimensional representation of an image to image pixels that correspond to a three-dimensional representation of the image, or vice versa.
  • Mapping module 1610 is configured to map image pixels among the display pixels of the pixel array. For example, mapping module 1610 may be configured to initially map the image pixels to respective first subsets of the display pixels. In accordance with this example, mapping module 1610 may be further configured to map the image pixels to respective second subsets of the display pixels in response to determining that manipulator controller 1602 has modified the configuration of the adaptable light manipulator.
  • display controller 1600 may not include one or more of manipulator controller 1602 , locator 1604 , pixel array controller 1606 , conversion module 1608 , and/or mapping module 1610 .
  • display controller 1600 may include modules in addition to or in lieu of manipulator controller 1602 , locator 1604 , pixel array controller 1606 , conversion module 1608 , and/or mapping module 1610 .
  • FIGS. 17-20 depict flowcharts 1700 , 1800 , 1900 , and 2000 of methods for controlling a pixel array to support an adaptable light manipulator in accordance with example embodiments.
  • the methods of flowcharts 1700 , 1800 , 1900 , and 2000 may be performed, for example, by display controller 1600 of FIG. 1600 .
  • the methods are not limited to that embodiment and may be implemented by other display controllers.
  • step 1702 a plurality of image pixels is mapped to a plurality of respective first subsets of display pixels in a pixel array.
  • mapping module 1610 maps the plurality of image pixels to the plurality of respective first subsets of the display pixels.
  • a configuration of an adaptable light manipulator that is positioned proximate to the pixel array is changed.
  • the adaptable light manipulator includes an adaptable parallax barrier
  • a slit pattern, an orientation, etc. of the adaptable parallax barrier may be changed.
  • an extent to which the elastic light manipulator is stretched may be changed; an orientation of the elastic light manipulator may be changed, etc.
  • the orientation of an adaptable light manipulator may be changed by moving the adaptable light manipulator in any direction with respect to the pixel array, rotating the adaptable light manipulator, changing an angle between the adaptable light manipulator and the pixel array, etc.
  • manipulator controller 1602 changes the configuration of the adaptable light manipulator.
  • a mapping of the plurality of image pixels is changed from the plurality of respective first subsets of the display pixels to a plurality of respective second subsets of the display pixels in the pixel array to compensate for changing the configuration of the adaptable light manipulator.
  • the mapping of the plurality of image pixels may be changed in response to changing the configuration of the adaptable light manipulator.
  • the mapping of the plurality of image pixels may be changed on-the-fly.
  • each of the first subsets and each of the second subsets may include the same number of display pixels.
  • each of the first subsets may include a first number of display pixels
  • each of the second subsets may include a second number of pixels that is different from the first number.
  • mapping module 1610 changes the mapping of the plurality of image pixels from the plurality of respective first subsets of the display pixels to the plurality of respective second subsets of the display pixels.
  • step 1802 a configuration of an adaptable light manipulator is modified.
  • the adaptable light manipulator receives light from a pixel array that includes a plurality of display pixels.
  • manipulator controller 1602 modifies the configuration of the adaptable light manipulator.
  • a number of the display pixels in the pixel array that represents each image pixel of a plurality of image pixels is changed in response to modifying the configuration of the adaptable light manipulator. For instance, the number of the display pixels in the pixel array that represents each image pixel may be changed on-the-fly.
  • mapping module 1610 changes the number of the display pixels in the pixel array that represents each image pixel of the plurality of image pixels.
  • FIGS. 21-23 illustrate mappings 2100 , 2200 , and 2300 of image pixels to display pixels in accordance with example embodiments.
  • a pixel array 2110 includes sixty-four display pixels 2112 arranged in eight rows and eight columns for illustrative purposes.
  • Pixel array 2110 includes a first subset 2102 of the pixels 2112 , a second subset 2104 of the pixels 2112 , a third subset 2106 of the pixels 2112 , and a fourth subset 2108 of the pixels 2112 .
  • Each subset 2102 , 2104 , 2106 , and 2108 of the pixels 2112 includes sixteen pixels arranged in four rows and four columns.
  • a first image pixel is mapped to the first subset 2102 ; a second image pixel is mapped to the second subset 2104 ; a third pixel is mapped to the third subset 2106 ; and a fourth image pixel is mapped to the fourth subset 2108 . Accordingly, the first image pixel is rendered to the first subset 2102 ; the second image pixel is rendered to the second subset 2104 ; the third image pixel is rendered to the third subset 2106 ; and the fourth image pixel is rendered to the fourth subset 2108 .
  • subsets 2102 , 2104 , 2106 , and 2108 correspond to a two-dimensional representation of an image.
  • subsets 2102 , 2104 , 2106 , and 2108 are configured to be perceived by a viewer as respective portions of a two-dimensional image.
  • mapping 2100 may correspond to a two-dimensional mode of operation of pixel array 2110 .
  • pixel array 2110 includes first, second, third, fourth, fifth, sixth, seventh, and eighth subsets 2202 , 2204 , 2206 , 2208 , 2210 , 2212 , 2214 , and 2216 of the pixels 2112 in pixel array 2110 .
  • Each subset 2202 , 2204 , 2206 , 2208 , 2210 , 2212 , 2214 , and 2216 of the pixels 2112 includes eight pixels arranged in four rows and two columns.
  • a first image pixel is mapped to the first subset 2202 ; a second image pixel is mapped to the second subset 2204 ; and so on. Accordingly, the first image pixel is rendered to the first subset 2202 ; the second image pixel is rendered to the second subset 2204 ; and so on.
  • subsets 2202 , 2204 , 2206 , 2208 , 2210 , 2212 , 2214 , and 2216 correspond to a three-dimensional representation of an image.
  • subsets 2202 and 2204 combine to be perceived by a viewer as a first portion of a three-dimensional image
  • subsets 2206 and 2208 combine to be perceived by the viewer as a second portion of the three-dimensional image
  • subsets 2210 and 2212 combine to be perceived by the viewer as a third portion of the three-dimensional image
  • subsets 2214 and 2216 combine to be perceived by the viewer as a fourth portion of the three-dimensional image.
  • mapping 2200 may correspond to a first three-dimensional mode of operation of pixel array 2110 in which pixel array 2110 provides a single three-dimensional image.
  • pixel array 2110 includes first through sixteenth subsets 2302 , 2304 , 2306 , 2308 , 2310 , 2312 , 2314 , 2316 , 2318 , 2320 , 2322 , 2324 , 2326 , 2328 , 2330 , and 2332 of the pixels 2112 in pixel array 2110 .
  • Each subset 2302 , 2304 , 2306 , 2308 , 2310 , 2312 , 2314 , 2316 , 2318 , 2320 , 2322 , 2324 , 2326 , 2328 , 2330 , and 2332 of the pixels 2112 includes four pixels arranged in four rows and one column.
  • a first image pixel is mapped to the first subset 2302 ; a second image pixel is mapped to the second subset 2304 ; and so on. Accordingly, the first image pixel is rendered to the first subset 2302 ; the second image pixel is rendered to the second subset 2304 ; and so on.
  • subsets 2302 , 2306 , 2310 , 2314 , 2318 , 2322 , 2326 , and 2330 correspond to a three-dimensional representation of a first image
  • subsets 2304 , 2308 , 2312 , 2316 , 2320 , 2324 , 2328 , and 2332 correspond to a three-dimensional representation of a second image.
  • subsets 2302 and 2306 combine to be perceived by a viewer as a first portion of a first three-dimensional image; subsets 2310 and 2314 combine to be perceived by the viewer as a second portion of the first three-dimensional image; subsets 2318 and 2322 combine to be perceived by the viewer as a third portion of the first three-dimensional image; and subsets 2326 and 2330 combine to be perceived by the viewer as a fourth portion of the first three-dimensional image.
  • subsets 2304 and 2308 combine to be perceived by a second viewer as a first portion of a second three-dimensional image; subsets 2312 and 2316 combine to be perceived by the second viewer as a second portion of the second three-dimensional image; subsets 2320 and 2324 combine to be perceived by the second viewer as a third portion of the second three-dimensional image; and subsets 2328 and 2332 combine to be perceived by the second viewer as a fourth portion of the second three-dimensional image.
  • subsets 2302 , 2304 , 2310 , 2312 , 2318 , 2320 , 2326 , and 2328 correspond to a three-dimensional representation of a first image
  • subsets 2306 , 2308 , 2314 , 2316 , 2322 , 2324 , 2330 , and 2332 correspond to a three-dimensional representation of a second image.
  • subsets 2302 and 2304 combine to be perceived by a viewer as a first portion of a first three-dimensional image; subsets 2310 and 2312 combine to be perceived by the viewer as a second portion of the first three-dimensional image; subsets 2318 and 2320 combine to be perceived by the viewer as a third portion of the first three-dimensional image; and subsets 2326 and 2328 combine to be perceived by the viewer as a fourth portion of the first three-dimensional image.
  • subsets 2306 and 2308 combine to be perceived by a second viewer as a first portion of a second three-dimensional image; subsets 2314 and 2316 combine to be perceived by the second viewer as a second portion of the second three-dimensional image; subsets 2322 and 2324 combine to be perceived by the second viewer as a third portion of the second three-dimensional image; and subsets 2330 and 2332 combine to be perceived by the second viewer as a fourth portion of the second three-dimensional image.
  • mapping 2300 may correspond to a second three-dimensional mode of operation of pixel array 2110 in which pixel array 2110 provides two three-dimensional images.
  • each of the two three-dimensional images may use a respective half of the display pixels 2112 in pixel array 2110 , as described above.
  • Pixel array 2110 is shown in FIGS. 21-23 to include sixty-four display pixels 2112 for illustrative purposes and is not intended to be limiting.
  • a pixel array (e.g., pixel array 2110 ) may include any suitable number of pixels.
  • the example mappings 2100 , 2200 , and 2300 are provided for illustrative purposes and are not intended to be limiting. It will be recognized that image pixels may be mapped to any suitable number and/or any suitable arrangement of display pixels. For instance, image pixels may be mapped to display pixels to enable a pixel array to provide any number of two-dimensional and/or three-dimensional images to viewer(s).
  • each of the three three-dimensional images may use one-third of the display pixels in the pixel array. If four three-dimensional images are provided, each of the four three-dimensional images may use one-fourth of the display pixels in the pixel array, and so on.
  • the method of flowchart 1900 begins at step 1902 .
  • a determination is made that a position of a user with respect to a pixel array is changed.
  • the pixel array includes a plurality of display pixels. For example, a determination may be made that the user moves toward the pixel array, away from the pixel array, to the left or right with respect to the pixel array, up or down with respect to the pixel array, or another direction.
  • locator 1604 determines that the position of the user with respect to the pixel array is changed.
  • a configuration of an adaptable light manipulator is modified in response to determining that the position of the user with respect to the pixel array is changed.
  • the adaptable light manipulator receives light from the pixel array.
  • manipulator controller 1602 modifies the configuration of the adaptable light manipulator.
  • subsets of the plurality of display pixels to which respective image pixels are rendered are changed to compensate for the configuration of the adaptable light manipulator being modified.
  • the subsets of the plurality of display pixels to which the respective image pixels are rendered may be changed in response to the configuration of the adaptable light manipulator being modified.
  • the subsets of the plurality of display pixels to which the respective image pixels are rendered may be changed on-the-fly.
  • mapping module 1610 changes the subsets of the plurality of display pixels to which the respective image pixels are rendered.
  • step 1902 of flowchart 1900 is not performed.
  • the configuration of the adaptable light manipulator is modified at step 1904 even in the absence of determining that the position of the user with respect to the pixel array is changed.
  • FIGS. 24 and 25 show cross-sectional views of display systems 2400 and 2500 in which a three-dimensional image is provided to a user based on respective first and second mappings of image pixels to display pixels according to example embodiments.
  • Display systems 2400 and 2500 are example embodiments of system 200 shown in FIG. 2 .
  • system 2400 includes a pixel array 2402 and an adaptable light manipulator 2404 .
  • Adaptable light manipulator 2404 is shown to be implemented as an adaptable parallax barrier for illustrative purposes and is not intended to be limiting.
  • Adaptable light manipulator 2404 may be any suitable type of adaptable light manipulator.
  • Pixel array 2402 includes a plurality of subsets 2406 A- 2406 I of display pixels arranged in a series. Further subsets of display pixels may be included in pixel array 2402 that are not visible in FIG. 24 .
  • Each of the display pixels in subsets 2406 A- 2406 I generates light, which emanates from display surface 2408 of pixel array 2402 towards adaptable light manipulator 2404 . Due to the spacing of subsets 2406 A- 2406 I and the configuration of adaptable light manipulator 2404 , image pixels 2416 A- 2416 H are mapped to respective subsets 2406 A- 2406 H, so that first and second images 2412 A and 2412 B are formed at respective locations 2414 A and 2414 B.
  • image pixel 2416 A is rendered to subset 2406 A; image pixel 2416 B is rendered to subset 2406 B; and so on.
  • Light 2420 A- 2420 D from respective subsets 2406 A, 2406 C, 24206 E, and 2406 G forms first image 2412 A
  • light 2422 A- 2422 D from respective subsets 2406 B, 2406 D, 2406 F, and 2406 H forms second image 2412 B.
  • the first and second images 2412 A and 2412 B are combined to be perceived as a three-dimensional image by a user 2424 who is positioned a distance D from display surface 2408 of pixel array 2402 and a distance Y to the right of a left-most edge of subset 2406 A.
  • any of a variety of factors may affect the mapping of image pixels 2416 A- 2416 H among subsets 2406 A- 2406 I. Such factors may include but are not limited to changing the position of the user 2424 with respect to pixel array 2402 , changing the spacing of subsets 2406 A- 2406 I, and/or changing the configuration of adaptable light manipulator 2404 .
  • display system 2500 of FIG. 25 includes pixel array 2402 and adaptable light manipulator 2404 as shown in FIG. 24 .
  • the configuration of adaptable light manipulator 2404 shown in FIG. 25 differs from the configuration of adaptable light manipulator 2404 shown in FIG. 24 in that adaptable light manipulator 2404 is moved toward the left in FIG. 25 , as indicated by arrow 2504 .
  • the position of user 2424 as shown in FIG. 25 is moved to the right with respect to pixel array 2402 , as compared to the position of user 2424 as shown in FIG. 24 , as indicated by arrow 2502 .
  • user 2424 is shown in FIG. 25 to be positioned a distance D from display surface 2408 of pixel array 2402 and a distance Z to the right of the left-most edge of subset 2406 A, where Z>Y.
  • adaptable light manipulator 2404 may be moved to the left in response to user 2424 moving to the right, though the scope of the embodiments is not limited in this respect.
  • the mapping of image pixels among subsets 2406 A- 2406 I is changed in FIG. 25 , as compared to the mapping shown in FIG. 24 , to compensate for the changed position of user 2424 and the modified configuration of adaptable light manipulator 2404 .
  • image pixels 2416 A- 2416 H are mapped to respective subsets 2406 B- 2406 I, rather than respective subsets 2406 A- 2406 H, which enables first and second images 2412 A and 2412 B to be formed at respective locations 2514 A and 2514 B.
  • image pixel 2416 A is rendered to subset 2406 B; image pixel 2416 B is rendered to subset 2406 C; and so on.
  • Light 2520 A- 2520 D from respective subsets 2406 B, 2406 D, 24206 F, and 2406 H forms first image 2412 A
  • light 2522 A- 2522 D from respective subsets 2406 C, 2406 E, 2406 G, and 2406 I forms second image 2412 B.
  • the first and second images 2412 A and 2412 B are combined to be perceived as a three-dimensional image by a user 2424 .
  • each of subsets 2406 A- 2406 I is shown to include a single display pixel for illustrative purposes and is not intended to be limiting. It will be recognized that subsets 2406 A- 2406 I may include any suitable number (e.g., 1, 2, 3, etc.) of display pixels. Moreover, the display pixels in each subset may be configured in any suitable arrangement. For instance, each subset may include one or more rows and/or one or more columns of display pixels.
  • step 2002 a first plurality of image pixels that corresponds to an N-dimensional representation of an image is rendered to a plurality of display pixels in a pixel array.
  • mapping module 1610 renders the first plurality of image pixels to the plurality of display pixels.
  • a configuration of an adaptable light manipulator that receives light from the pixel array is changed.
  • manipulator controller 1602 changes the configuration of the adaptable light manipulator.
  • the first plurality of image pixels is converted to a second plurality of image pixels that corresponds to an M-dimensional representation of the image.
  • M is not equal to N.
  • the first plurality of image pixels may be converted to the second plurality of image pixels on-the-fly.
  • conversion module 1608 converts the first plurality of image pixels to the second plurality of image pixels.
  • Display controller 202 , pixel array controller 204 , and manipulator controller 206 may be implemented in hardware, software, firmware, or any combination thereof.
  • display controller 202 , pixel array controller 204 , and/or manipulator controller 206 may be implemented as computer program code configured to be executed in one or more processors.
  • display controller 202 , pixel array controller 204 , and/or manipulator controller 206 may be implemented as hardware logic/electrical circuitry.
  • FIG. 26 shows a block diagram of an example implementation of display controller 202 , according to an embodiment.
  • display controller 202 may include one or more of the elements shown in FIG. 26 .
  • display controller 202 may include one or more processors (also called central processing units, or CPUs), such as a processor 2604 .
  • processors also called central processing units, or CPUs
  • Processor 2604 is connected to a communication infrastructure 2602 , such as a communication bus.
  • processor 2604 can simultaneously operate multiple computing threads.
  • Display controller 202 also includes a primary or main memory 2606 , such as random access memory (RAM).
  • Main memory 2606 has stored therein control logic 2628 A (computer software), and data.
  • Display controller 202 also includes one or more secondary storage devices 2610 .
  • Secondary storage devices 2610 include, for example, a hard disk drive 2612 and/or a removable storage device or drive 2614 , as well as other types of storage devices, such as memory cards and memory sticks.
  • display controller 202 may include an industry standard interface, such a universal serial bus (USB) interface for interfacing with devices such as a memory stick.
  • Removable storage drive 2614 represents a floppy disk drive, a magnetic tape drive, a compact disk drive, an optical storage device, tape backup, etc.
  • Removable storage drive 2614 interacts with a removable storage unit 2616 .
  • Removable storage unit 2616 includes a computer useable or readable storage medium 2624 having stored therein computer software 2628 B (control logic) and/or data.
  • Removable storage unit 2616 represents a floppy disk, magnetic tape, compact disk, DVD, optical storage disk, or any other computer data storage device.
  • Removable storage drive 2614 reads from and/or writes to removable storage unit 2616 in a well known manner.
  • Display controller 202 further includes a communication or network interface 2618 .
  • Communication interface 2618 enables the display controller 202 to communicate with remote devices.
  • communication interface 2618 allows display controller 202 to communicate over communication networks or mediums 2642 (representing a form of a computer useable or readable medium), such as LANs, WANs, the Internet, etc.
  • Network interface 2618 may interface with remote sites or networks via wired or wireless connections.
  • Control logic 2628 C may be transmitted to and from display controller 202 via the communication medium 2642 .
  • Any apparatus or manufacture comprising a computer useable or readable medium having control logic (software) stored therein is referred to herein as a computer program product or program storage device.
  • Devices in which embodiments may be implemented may include storage, such as storage drives, memory devices, and further types of computer-readable media.
  • Examples of such computer-readable storage media include a hard disk, a removable magnetic disk, a removable optical disk, flash memory cards, digital video disks, random access memories (RAMs), read only memories (ROM), and the like.
  • computer program medium and “computer-readable medium” are used to generally refer to the hard disk associated with a hard disk drive, a removable magnetic disk, a removable optical disk (e.g., CDROMs, DVDs, etc.), zip disks, tapes, magnetic storage devices, MEMS (micro-electromechanical systems) storage, nanotechnology-based storage devices, as well as other media such as flash memory cards, digital video discs, RAM devices, ROM devices, and the like.
  • Such computer-readable storage media may store program modules that include computer program logic for display controller 202 , pixel array controller 204 , manipulator controller 206 , and/or display controller 1600 or any one or more elements thereof (e.g., manipulator controller 1602 , locator 1604 , pixel array controller 1606 , conversion module 1608 , and/or mapping module 1610 ), flowchart 900 (including any one or more steps of flowchart 900 ), flowchart 1100 (including any one or more steps of flowchart 1100 ), flowchart 1700 (including any one or more steps of flowchart 1700 ), flowchart 1800 (including any one or more steps of flowchart 1800 ), flowchart 1900 (including any one or more steps of flowchart 1900 ), and/or flowchart 2000 (including any one or more steps of flowchart 2000 ), and/or further embodiments of the present invention described herein.
  • flowchart 900 including any one or more steps of flowchart 900
  • flowchart 1100 including any one or more
  • Embodiments of the invention are directed to computer program products comprising such logic (e.g., in the form of program code or software) stored on any computer useable medium.
  • Such program code when executed in one or more processors, causes a device to operate as described herein.

Abstract

A display system is provided that enables three-dimensional images to be displayed. The display system includes an adaptable light manipulator positioned proximate to an image generator to provide an image to a viewer based on light that is received from the image generator. The image generator includes a pixel array. A display controller controls the pixel array to compensate for modification of a configuration of the adaptable light manipulator. The pixel array includes a plurality of display pixels. A plurality of image pixels is rendered to a plurality of respective subsets of the display pixels. The display controller is capable of changing a number of display pixels that represents each image pixel and/or which display pixels or groups thereof correspond to the respective image pixels.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/291,818, filed Dec. 31, 2009, and U.S. Provisional Application No. 61/303,119, filed Feb. 10, 2010, the entireties of which are incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to techniques for displaying images.
  • 2. Background Art
  • Images may be transmitted for display in various forms. For instance, television (TV) is a widely used telecommunication medium for transmitting and displaying images in monochromatic (“black and white”) or color form. Conventionally, images are provided in analog form and are displayed by display devices in the form of two-dimensional images. More recently, images are being provided in digital form for display in two-dimensions on display devices having improved resolution. Even more recently, images capable of being displayed in three-dimensions are being provided.
  • A parallax barrier is one example of a device that enables images to be displayed in three-dimensions. A parallax barrier includes of a layer of material with a series of precision slits. The parallax barrier is placed proximate to a display so that a viewer's eyes each see a different set of pixels to create a sense of depth through parallax. A lenticular lens is another example of a device that enables images to be displayed in three-dimensions. A lenticular lens includes an array of sub-lenses. As with the parallax barrier, placement of the lenticular lens proximate to an array of pixels enables a viewer's eyes to each see a different set of the pixels. A disadvantage of parallax barriers and lenticular lenses is that the viewer must be positioned in a well-defined location in order to experience the three-dimensional effect. If the viewer moves his/her eyes away from this “sweet spot,” image flipping and/or exacerbation of the eyestrain, headaches and nausea that may be associated with prolonged three-dimensional image viewing may result. Conventional three-dimensional LCD displays that utilize parallax barriers are also constrained in that the displays must be entirely in a two-dimensional image mode or a three-dimensional image mode at any time. Moreover, conventional three-dimensional LCD displays that utilize lenticular lenses typically are capable of displaying only three-dimensional images.
  • Commonly-owned, co-pending U.S. patent application Ser. Nos. ______ and ______ present innovative two-dimensional/three-dimensional viewing displays that include adaptable light manipulators to address the aforementioned issues associated with conventional three-dimensional LCD displays that utilize parallax barriers or lenticular lenses. An adaptable light manipulator is a light manipulator (e.g., parallax barrier, lenticular lens, etc.) that is capable of being dynamically modified to accommodate changed circumstances. For example, the viewing displays of U.S. patent application Ser. No. ______ include a parallax barrier that may be dynamically modified in order to adaptively accommodate, for example, a changing viewer sweet spot, switching between two-dimensional images, three-dimensional images, and multi-view three-dimensional content, and the simultaneous display of two-dimensional images, three-dimensional images and multi-view three-dimensional content. The viewing displays of U.S. patent application Ser. No. ______ include an elastic light manipulator (e.g., an elastic parallax barrier, an elastic lenticular lens, etc.) that may be stretched in order to adaptively accommodate, for example, a changing viewer sweet spot and/or that may be retracted to adaptively accommodate, for example, a two-dimensional image mode. However, modifying a configuration of an adaptable light manipulator may negatively affect accuracy of an image as perceived by a viewer.
  • BRIEF SUMMARY OF THE INVENTION
  • Methods, systems, and apparatuses are described for controlling a pixel array to support an adaptable light manipulator substantially as shown in and/or described herein in connection with at least one of the figures, as set forth more completely in the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
  • The accompanying drawings, which are incorporated herein and form part of the specification, illustrate embodiments of the present invention and, together with the description, further serve to explain the principles involved and to enable a person skilled in the relevant art(s) to make and use the disclosed technologies.
  • FIG. 1 shows a block diagram of a display system according to an example embodiment.
  • FIG. 2 shows a block diagram of an example implementation of a display system shown in FIG. 1 in accordance with an embodiment.
  • FIG. 3 depicts an example implementation of an adaptable light manipulator shown in FIGS. 1 and 2 that includes an array of elastic sub-lenses in accordance with an embodiment.
  • FIGS. 4 and 5 depict cross-sectional views of an adaptable light manipulator shown in FIG. 3 in a non-stretched state and in a stretched state, respectively, according to example embodiments.
  • FIG. 6 depicts a view of a surface of another example implementation of an adaptable light manipulator shown in FIGS. 1 and 2 that includes a plurality of parallax barrier elements in accordance with an embodiment.
  • FIGS. 7 and 8 depict views of a parallax barrier element of an adaptable light manipulator shown in FIG. 6 that is selected to be transparent and to be opaque, respectively, according to example embodiments.
  • FIG. 9 depicts a flowchart of a method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment.
  • FIG. 10 shows a cross-sectional view of an example implementation of a display system shown in FIG. 2 according to an embodiment.
  • FIG. 11 depicts a flowchart of another method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment.
  • FIG. 12 depicts a cross-sectional view of another example implementation of a display system shown in FIG. 2 according to an embodiment.
  • FIG. 13 depicts a view of the adaptable light manipulator of FIG. 6 with transparent slits according to an example embodiment.
  • FIG. 14 shows the display system of FIG. 10 providing a three-dimensional image to a user according to an example embodiment.
  • FIG. 15 depicts a cross-sectional view of a display system shown in FIG. 2 that provides multiple three-dimensional images according to an example embodiment.
  • FIG. 16 is a block diagram of an example implementation of a display controller shown in FIG. 2 according to an embodiment.
  • FIGS. 17-20 depict flowcharts of methods for controlling a pixel array to support an adaptable light manipulator in accordance with example embodiments.
  • FIGS. 21-23 illustrate mappings of image pixels to display pixels in accordance with example embodiments.
  • FIGS. 24 and 25 show cross-sectional views of display systems in which a three-dimensional image is provided to a user based on respective first and second mappings of image pixels to display pixels according to example embodiments.
  • FIG. 26 shows a block diagram of an example computer system in which embodiments may be implemented.
  • The features and advantages of the disclosed technologies will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The drawing in which an element first appears is indicated by the leftmost digit(s) in the corresponding reference number.
  • DETAILED DESCRIPTION OF THE INVENTION I. Introduction
  • The following detailed description refers to the accompanying drawings that illustrate exemplary embodiments of the present invention. However, the scope of the present invention is not limited to these embodiments, but is instead defined by the appended claims. Thus, embodiments beyond those shown in the accompanying drawings, such as modified versions of the illustrated embodiments, may nevertheless be encompassed by the present invention.
  • References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” or the like, indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the relevant art(s) to implement such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • Furthermore, it should be understood that spatial descriptions (e.g., “above,” “below,” “up,” “left,” “right,” “down,” “top,” “bottom,” “vertical,” “horizontal,” etc.) used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner.
  • II. Example Embodiments
  • Example embodiments relate to controlling a pixel array to support an adaptable light manipulator. The pixel array is included in an image generator. The adaptable light manipulator is positioned proximate to the image generator to provide an image to a viewer based on light that is received from the image generator. The pixel array includes a plurality of pixels, which are referred to as “display pixels”. Image pixels are rendered among the display pixels, so that a viewer may perceive the image. Image pixels are representations (i.e., signals, data, etc., or a combination thereof) that define respective portions of an image. Example embodiments are capable of changing a number of display pixels that represents each image pixel and/or which display pixels or groups thereof correspond to the respective image pixels, in response to modification of a configuration of an adaptable light manipulator.
  • The following subsections describe a variety of example embodiments of the present invention. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made to the embodiments described herein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the example embodiments described herein.
  • A. Example Display System and Method Embodiments
  • For instance, FIG. 1 shows a block diagram of a display system 100 according to an example embodiment. As shown in FIG. 1, system 100 includes a display device 112. Display device 112 enables the display of 2D and 3D images as described above. Display device 112 includes an image generator 102 and an adaptable light manipulator 104. As shown in FIG. 1, image generator 102 emits video information in the form of light 108. Light 108 is received by adaptable light manipulator 104, which manipulates light 108 to pass manipulated light 110. For example, adaptable light manipulator 104 may include an adaptable parallax barrier. In accordance with this example, adaptable light manipulator 104 may filter light 108 with a plurality of barrier regions that are selectively opaque or transparent. In another example, adaptable light manipulator 104 may include an elastic light manipulator (e.g., an elastic parallax barrier, an elastic lenticular lens, etc.). In accordance with this example, adaptable light manipulator 104 may refract light 108 in accordance with optical properties of adaptable light manipulator 104 that are dependent on an extent to which adaptable light manipulator 104 is stretched along axis 114. Manipulated light 110 includes a plurality of video images formed from the video information included in light 108. For instance, manipulated light 110 may include one or more two-dimensional images and/or one or more three-dimensional images. Manipulated light 110 is received in a viewing space 106 proximate to display device 112. One or more users may be present in viewing space 106 to view the video images included in manipulated light 110.
  • Display device 112 may be configured in various ways. For instance, display device 112 may be a television display (e.g., an LCD (liquid crystal display) television, a plasma television, etc.), a computer monitor, or any other type of display device. Image generator 102 may be any suitable type of image generating device, including but not limited to an LCD screen, a plasma screen, an LED (light emitting device) screen, etc. Adaptable light manipulator 104 may be any suitable type light manipulating device that is capable of being dynamically modified to accommodate changed circumstances.
  • Although elastic light manipulators are described herein as being stretched along a single axis (e.g., axis 114) for purposes of illustration, the example embodiments are not limited in this respect. It will be recognized that the elastic light manipulators described herein may be stretched along multiple axes. For instance, adaptable light manipulator 104 may be stretched along a second axis in addition to or in lieu of being stretched along axis 114. For example, the second axis may be perpendicular to axis 114.
  • FIG. 2 shows a block diagram of a display system 200, which is an example of system 100 shown in FIG. 1, according to an embodiment. As shown in FIG. 2, system 200 includes a display controller 202 and display device 112 (which includes image generator 102 and adaptable light manipulator 104). As shown in FIG. 2, image generator 102 includes a pixel array 208. Furthermore, as shown in FIG. 2, display controller 202 includes a pixel array controller 204 and a manipulator controller 206. These features of system 200 are described as follows.
  • Pixel array 208 includes a two-dimensional array of pixels (e.g., arranged in a grid). The pixels of pixel array 208 may each emit light included in light 108. Each pixel may be a separately addressable light source (e.g., a pixel of a plasma, LCD, or LED display) and/or may include a filter that filters light received from a separate or included light source. Each pixel of pixel array 208 may be individually controllable to vary color and intensity. In an embodiment, each pixel of pixel array 208 may include a plurality of sub-pixels that correspond to separate color channels, such as a trio of red, green, and blue sub-pixels that is included in each pixel.
  • Adaptable light manipulator 104 is positioned proximate to a surface of pixel array 208. Adaptable light manipulator 104 may be configured to be stretchable along axis 114, though the scope of the example embodiments is not limited in this respect. For example, FIG. 3 shows an adaptable light manipulator 300 that is implemented as an elastic lenticular lens in accordance with an embodiment. Adaptable light manipulator 300 is an example of adaptable light manipulator 104 of FIGS. 1 and 2. As shown in FIG. 3, adaptable light manipulator 300 includes a sub-lens array 302. Sub-lens array 302 includes a plurality of elastic sub-lenses 304 arranged in a two-dimensional array (e.g., arranged side-by-side in a row). Each sub-lens 304 is shown in FIG. 3 as cylindrical in shape and having a substantially semi-circular cross-section, but in other embodiments may have other shapes. In FIG. 3, sub-lens array 302 is shown to include eight sub-lenses for illustrative purposes and is not intended to be limiting. For instance, sub-lens array 302 may include any number (e.g., hundreds, thousands, etc.) of sub-lenses 304.
  • Adaptable light manipulator 300 is configured to be stretchable along axis 114. For instance, FIG. 4 depicts a cross-sectional view of adaptable light manipulator 300 in a non-stretched state, and FIG. 5 depicts a cross-sectional view of adaptable light manipulator 300 in a stretched state, according to example embodiments. When adaptable light manipulator 300 is in a non-stretched state, as shown in FIG. 4, adaptable light manipulator 300 has a first length L1. When adaptable light manipulator 300 is in a stretched state, as shown in FIG. 5, adaptable light manipulator 300 has a second length L2 that is greater than L1. By stretching adaptable light manipulator 300, optical properties of sub-lenses 304 are changed. For example, the second length L2 may be selectable to achieve desired optical properties of sub-lenses 304. In accordance with this example, the second length L2 may be selectable to accommodate a change in a number of users 212 and/or to accommodate movement of users 212, so that users 212 are able to perceive images that are intended for them. Accordingly, light 108 received at adaptable light manipulator 300 is manipulated to generate manipulated light 110.
  • In another example, FIG. 6 shows an adaptable light manipulator 600 that is implemented as an adaptable parallax barrier in accordance with an embodiment. Adaptable light manipulator 600 is another example of adaptable light manipulator 104 of FIGS. 1 and 2. As shown in FIG. 6, adaptable light manipulator 600 includes a blocking region array 602. Blocking region array 602 includes a plurality of blocking regions 604 arranged in a two-dimensional array (e.g., arranged in a grid). Each blocking region 604 is shown in FIG. 6 as rectangular (e.g., square) in shape, but in other embodiments may have other shapes. Blocking region array 602 may include any number of blocking regions 604. For instance, in FIG. 6, blocking region array 602 includes twenty-eight blocking region 604 along an x-axis and includes twenty blocking regions 604 along a y-axis, for a total number of 560 blocking regions 604. However, these dimensions of blocking region array 602 and the total number of blocking regions 604 for blocking region array 602 shown in FIG. 6 are provided for illustrative purposes, and are not intended to be limiting. Blocking region array 602 may include any number of blocking regions 604, and may have any number of blocking regions 604 along the x- and y-axes, including hundreds or thousands of blocking regions 604 along each of the x- and y-axes.
  • Each blocking region 604 of blocking region array 602 is selectable to be opaque or transparent. For instance, FIG. 7 shows a blocking region 604 x that is selected to be transparent, and FIG. 8 shows blocking region 604 x when selected to be opaque, according to example embodiments. When blocking region 604 x is selected to be transparent, light 108 from pixel array 208 may pass through blocking region 604 x (e.g., to viewing space 106). When blocking region 604 x is selected to be opaque, light 108 from pixel array 208 is blocked from passing through blocking region 604 x. By selecting some of blocking regions 604 of blocking region array 602 to be transparent, and some of blocking regions 604 of blocking region array 602 to be opaque, light 108 received at blocking region array 602 is filtered to generate manipulated light 110.
  • Display controller 202 is configured to generate control signals (and in some embodiments, to stretch adaptable light manipulator 104) to enable display device 112 to display two-dimensional and three-dimensional images to users 212 in viewing space 106. For example, pixel array controller 204 is configured to generate a control signal 214 that is received by pixel array 208. Control signal 214 may include one or more image pixels and a mapping indicator that maps the image pixels to respective subsets of pixels of pixel array 208. For instance, control signal 214 may cause the subsets of the pixels of pixel array 208 to emit light 108 of desired colors and/or intensities. Each subset may include one or more pixels of pixel array 208. Manipulator controller 206 is configured to generate a control signal 216 that is received by adaptable light manipulator 104 and/or to provide a tensile stress along axis 114 to stretch adaptable light manipulator 104. When a configuration of adaptable light manipulator 104 is modified based on control signal 216 and/or a tensile stress, pixel array controller 204 updates control signal 214 to include a revised mapping indicator that maps the image pixels to other respective subsets of pixels of pixel array 208. A more detailed discussion of some example techniques for controlling a pixel array to support an adaptable light manipulator is provided below in section II.E with reference to FIGS. 16-25.
  • In embodiments in which adaptable light manipulator 104 includes an elastic light manipulator (e.g., elastic lenticular lens 300), stretching elastic light manipulator 104 causes the optical properties of adaptable light manipulator 104 to change, so that adaptable light manipulator 104 manipulates light 108 in accordance with the changed optical properties to generate manipulated light 110 that includes one or more two-dimensional and/or three-dimensional images that may be viewed by users 212 in viewing space 106.
  • For example, control signal 214 may control multiple sets of pixels of pixel array 208 to each emit light representative of a respective image, to provide a plurality of images. Manipulator controller 206 may stretch adaptable light manipulator 104 to manipulate the light received from pixel array 208 corresponding to the provided images such that one or more of the images are received at one or more of users 212 in two-dimensional form. Furthermore, manipulator controller 206 may stretch adaptable light manipulator 104 to manipulate the light received from pixel array 208 corresponding to at least one pair of the provided images such that the image pair is received at one or more of the users to be perceived as a three-dimensional image.
  • Manipulator controller 206 may be further configured to perform any of a variety of other operations with respect to adaptable light manipulator 104, though the example embodiments are not limited in this respect. For example, manipulator controller 206 may be configured to change a curvature of adaptable light manipulator 104 and/or an angle at which adaptable light manipulator 104 is mounted with respect to pixel array 208. Such changes may be performed to accommodate a moving user based on a location of the user's head, for instance.
  • In another example, manipulator controller 206 may be configured to retract adaptable light manipulator 104, such that adaptable light manipulator 104 (or a portion thereof) is removed from a position that is between pixel array 208 and users 212. For instance, retracting adaptable light manipulator 104 may provide an unfiltered view of some or all of the pixels in pixel array 208. Accordingly, retracting adaptable light manipulator 104 may enable one or more of the users to view a two-dimensional image that is generated by pixels of pixel array 208 that are not covered by adaptable light manipulator 104, even if adaptable light manipulator 104 is configured to provide a three-dimensional image with respect to other pixels of pixel array 208.
  • In embodiments in which adaptable light manipulator 104 includes an adaptable parallax barrier (e.g., adaptable light manipulator 600), control signal 216 may include one or more control signals used to cause blocking regions 604 of blocking region array 602 to be transparent or opaque to filter light 108 to facilitate the generation of manipulated light 110 that includes one or more two-dimensional and/or three-dimensional images that may be viewed by users 212 in viewing space 106.
  • In accordance with these embodiments, control signal 216 may control blocking regions 604 of blocking region array 602 to filter the light received from pixel array 208 corresponding to the provided images such that one or more of the images are received at one or more of users 212 in two-dimensional form. For instance, control signal 216 may select one or more sections of blocking regions 604 of blocking region array 602 to be transparent, to transmit one or more corresponding two-dimensional images to users 212. Furthermore, control signal 216 may control blocking regions 604 of blocking region array 602 to filter the light received from pixel array 208 corresponding to at least one pair of the provided images such that the image pair is received at one or more of the users to be perceived as a three-dimensional image. For example, control signal 216 may select parallel strips of blocking regions 604 of blocking region array 602 to be transparent to form a three-dimensional image to be perceived by one or more of users 212.
  • In further accordance with these embodiments, manipulator controller 206 may generate control signal 216 to form any number of parallel strips of blocking regions 604 of blocking region array 602 to be transparent, to modify the number and/or spacing of parallel strips of blocking regions 604 of blocking region array 602 that are transparent, to select and/or modify a width and/or a length (in blocking regions 604) of one or more strips of blocking regions 604 of blocking region array 602 that are transparent, to select and/or modify an orientation of one or more strips of blocking regions 604 of blocking region array 602 that are transparent, to select one or more areas of blocking region array 602 to include all transparent or all opaque blocking regions 604, etc.
  • B. Additional Information Regarding Example Elastic Light Manipulator Embodiments
  • Two-dimensional and three-dimensional images may be generated by system 200 in various ways, in embodiments. For instance, FIG. 9 depicts a flowchart 900 of a method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment. Flowchart 900 may be performed by system 200 in FIG. 2, for example. Flowchart 900 is described with respect to FIG. 10, which shows a cross-sectional view of a display system 1000. Display system 1000 is an example embodiment of system 200 shown in FIG. 2. As shown in FIG. 10, system 1000 includes a pixel array 1002 and an elastic light manipulator 1004. Further structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion regarding flowchart 900. Flowchart 900 is described as follows.
  • Flowchart 900 begins with step 902. In step 902, a plurality of images is received from an array of pixels at an elastic light manipulator. For example, as shown in FIG. 10, pixel array 1002 includes a plurality of pixels 1014A-1014D and 1016A-1016D. Pixels 1014 alternate with pixels 1016, such that pixels 1014A-1014 d and 1016A-1016D are arranged in series in the order of pixels 1014A, 1016A, 1014B, 1016B, 1014C, 1016C, 1014D, and 1016D. Further pixels may be included in pixel array 1002 that are not visible in FIG. 10. Each of pixels 1014A-1014D and 1016A-1016D generates light, which emanates from display surface 1024 of pixel array 1002 generally in all directions of a hemispherical pattern (e.g., generally upward in FIG. 10) towards elastic light manipulator 1004. Some example indications of light emanating from pixels 1014A-1014D and 1016A-1016D are shown in FIG. 10 (as dotted lines), including light 1024A and light 1018A emanating from pixel 1014A, light 1024B, light 1018B, and light 1024C emanating from pixel 1014B, etc. Elastic light manipulator 1004 is shown to be implemented as an elastic lenticular lens for illustrative purposes and is not intended to be limiting. Elastic light manipulator 1004 may be any suitable type of elastic light manipulator.
  • In step 904, the elastic light manipulator is stretched from a first length to a selectable second length to provide the plurality of images to a plurality of respective locations. For example, as shown in FIG. 10, a tensile stress (indicated by arrows 1012A and 1012B) may be applied to elastic light manipulator 1004 along axis 1010 to stretch elastic light manipulator 1004 from the first length (e.g., L1 in FIG. 4) to the second length (e.g., L2 in FIG. 5). As shown in FIG. 10, light emanating from pixel array 1002 is manipulated by elastic light manipulator 1004 to form a plurality of images in a viewing space 1026, including a first image 1006A at a first location 1008A and a second image 1006B at a second location 1008B. As described above, pixel array 1002 includes a first set of pixels 1014A-1014D and a second set of pixels 1016A-1016D. Pixels 1014A-1014D correspond to first image 1006A and pixels 1016A-1016D correspond to second image 1006B. Due to the spacing of pixels 1014A-1014D and 1016A-1016D in pixel array 1002, and the geometry of elastic light manipulator 1004, first and second images 1006A and 1006B are formed at locations 1008A and 1008B, respectively, which are positioned at a distance D from pixel array 1002. As shown in FIG. 10, light 1018A-1018D from the first set of pixels 1014A-1014D forms first image 1006A at first location 1008A, and light 1020A-1020D from the second set of pixels 1016A-1016D forms second image 1006B at second location 1008B, based on the optical properties of elastic light manipulator 1004.
  • For example, elastic light manipulator 1004 may refract a first portion of the light emanating from pixel array 1002 that corresponds to first image 1006A such that first image 1006A is perceived at first location 1008A but not at second location 1008B. For instance, the first portion of the light is shown in FIG. 10 to include light 1018A-1018D and light 1024A-1024C. Elastic light manipulator 1004 may refract light 1018A-1018D toward location 1008A and may refract light 1024A-1024C toward locations other than first location 1008A and second location 1008B. Elastic light manipulator 1004 may refract a second portion of the light emanating from pixel array 1002 that corresponds to second image 1006B such that second image 1006B is perceived at second location 1008B but not at first location 1008A. Although not shown in FIG. 10, instances of first and second images 1006A and 1006B may repeat in viewing space 1026.
  • C. Additional Information Regarding Example Adaptable Parallax Barrier Embodiments
  • FIG. 11 depicts a flowchart 1100 of another method for generating two-dimensional and/or three-dimensional images in accordance with an example embodiment. Flowchart 1100 may be performed by system 200 in FIG. 2, for example. Flowchart 1100 is described with respect to FIG. 12, which shows a cross-sectional view of a display system 1200. Display system 1200 is another example embodiment of system 200 shown in FIG. 2. As shown in FIG. 12, system 1200 includes a pixel array 1202 and a blocking region array 1204. Further structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the discussion regarding flowchart 1100. Flowchart 1100 is described as follows.
  • Flowchart 1100 begins with step 1102. In step 1102, light is received from a surface at an adaptable parallax barrier that is positioned proximate to the surface. For example, as shown in FIG. 12, pixel array 1202 includes a plurality of pixels 1214 a-1214 d and 1216 a-1216 d. Pixels 1214 alternate with pixels 1216, such that pixels 1214 a-1214 d and 1216 a-1216 d are arranged in series in the order of pixels 1214 a, 1216 a, 1214 b, 1216 b, 1214 c, 1216 c, 1214 d, and 1216 d. Further pixels may be included in pixel array 1202 that are not visible in FIG. 12. Each of pixels 1214 a-1214 d and 1216 a-1216 d generates light, which emanates from display surface 1224 of pixel array 1202 generally in all directions of a hemispherical pattern (e.g., generally upward in FIG. 12) towards blocking region array 1204. Some example indications of light emanating from pixels 1214 a-1214 d and 1216 a-1216 d are shown in FIG. 12 (as dotted lines), including light 1224 a and light 1218 a emanating from pixel 1214 a, light 1224 b, light 1218 b, and light 1224 c emanating from pixel 1214 b, etc.
  • In step 1104, each blocking region in a plurality of parallel strips of blocking regions of the blocking region array is selected to be transparent to form a plurality of parallel transparent slits, the number of transparent slits in the plurality of parallel transparent slits being selectable. For example, as shown in FIG. 12, blocking region array 1204 includes a plurality of blocking regions that are each either transparent or opaque. For example, blocking regions that are opaque are indicated as blocking regions 1210 a-1210 f, and blocking regions that are transparent are indicated as blocking regions 1212 a-1212 e. Further blocking regions may be included in blocking region array 1204 that are not visible in FIG. 12. Each of blocking regions 1210 a-1210 f and 1212 a-1212 e may include one or more blocking regions. Blocking regions 1210 alternate with blocking regions 1212, such that blocking regions 1210 a-1210 f and 1212 a-1212 e are arranged in series in the order of blocking regions 1210 a, 1212 a, 1210 b, 1212 b, 1210 c, 1212 c, 1210 d, 1212 d, 1210 e, 1212 e, and 1210 f. In this manner, opaque blocking regions 1210 are alternated with transparent blocking regions 1212 to form a plurality of parallel transparent slits in blocking region array 1204.
  • For instance, FIG. 13 depicts a view of adaptable light manipulator 600 of FIG. 6, which is implemented as an adaptable parallax barrier, according to an example embodiment. As shown in FIG. 13, adaptable light manipulator 600 includes blocking region array 602, which includes a plurality of blocking regions 604 arranged in a two-dimensional array. Furthermore, as shown in FIG. 13, blocking region array 602 includes a plurality of parallel strips of blocking regions 604 that are selected to be transparent to form a plurality of parallel transparent strips 1302A-1302G. As shown in FIG. 13, parallel transparent strips 1302A-1302G (transparent slits) are alternated with parallel opaque strips 1304A-1304G of blocking regions 304 that are selected to be opaque to provide a slit pattern. A slit pattern is an arrangement of blocking regions in an adaptable light manipulator in which transparent strips of blocking regions are alternated with opaque strips of blocking regions. In the example of FIG. 13, transparent strips 1302A-1302G and opaque strips 1304A-1304G each have a width (along the x-dimension) of two blocking regions 304, and have lengths that extend along the entire y-dimension (twenty blocking regions 304) of blocking region array 304, although in other embodiments, may have alternative dimensions.
  • In step 1106, the light is filtered at the parallax barrier to form a plurality of images in a viewing space. For example, as shown in FIG. 12, light emanating from pixel array 1202 is filtered by blocking region array 1204 to form a plurality of images in a viewing space 1226, including a first image 1206A at a first location 1208A and a second image 1206B at a second location 1208B. A portion of the light emanating from pixel array 1202 is blocked by opaque blocking regions 1210, while another portion of the light emanating from pixel array 1202 passes through transparent blocking regions 1212, to be filtered by blocking region array 1204. For instance, light 1224A from pixel 1214A is blocked by opaque blocking region 1210A, and light 1224B and light 1224C from pixel 1214B are blocked by opaque blocking regions 1210B and 1210C, respectively. In contrast, light 1218A from pixel 1214A is passed by transparent blocking region 1212A and light 1218B from pixel 1214B is passed by transparent blocking region 1212B.
  • By forming parallel transparent slits in a blocking region array, light from a pixel array can be filtered to form multiple images in a viewing space. For instance, system 1200 shown in FIG. 12 is configured to form first and second images 1206A and 1206B at locations 1208A and 1208B, respectively. Although not shown in FIG. 12, instances of first and second images 1206A and 1206B may repeat in viewing space 1226. As described above, pixel array 1202 includes a first set of pixels 1214A-1214D and a second set of pixels 1216A-1216D. Pixels 1214A-1214D correspond to first image 1206A and pixels 1216A-1216D correspond to second image 1206B. Due to the spacing of pixels 1214A-1214D and 1216A-1216D in pixel array 1202, and the geometry of transparent blocking regions 1212 in blocking region array 1204, first and second images 1206A and 1206A are formed at locations 1208A and 1208B, respectively, which are positioned at a distance D from pixel array 1202.
  • For example, in embodiments in which the adaptable light manipulator is implemented as an elastic parallax barrier, the geometry of transparent blocking regions 1212 may be based on an extent to which blocking region array 1204 is stretched. In accordance with this example, a greater extent of stretching may result in opaque blocking regions 1210 having a greater length W1 and/or transparent blocking regions 1212 having a greater length W2. Accordingly, the greater extent of stretching may result in a greater slit spacing 1222 (center-to-center). Slit spacing 1222 is described in greater detail in the following discussion. A lesser extent of stretching may result in opaque blocking regions 1210 having a lesser length W1 and/or transparent blocking regions 1212 having a lesser length W2. Accordingly, the lesser extent of stretching may result in a narrower slit spacing 1222.
  • As shown in FIG. 12, light 1218A-1218D from the first set of pixels 1214A-1214D forms first image 1206A at first location 1208A and light 1220A-1220D from the second set of pixels 1216A-1216D forms first image 1206A at second location 1208B due to the filtering of the transparent slits (corresponding to transparent blocking regions 1212A-1212E) in blocking region array 1204.
  • FIG. 12 shows a slit spacing 1222 (center-to-center) of transparent blocking regions 1212 in blocking region array 1204. Spacing 1222 may be determined to select locations for parallel transparent slits to be formed in blocking region array 1204 for a particular image distance 1228 at which images are desired to be formed (for viewing by users). If a spacing of pixels 1214A-1214D and distance 1228 are known, the spacing 1222 between adjacent parallel transparent slits in blocking region array 1204 may be selected. For instance, manipulator controller 206 (of FIG. 2) may be configured to calculate spacing 1222 for particular spacing of pixels 1214A-1214D and a desired distance D for images 1206 to be formed.
  • D. Example Multi-Three-Dimensional Image Embodiments
  • In an embodiment, a display system (e.g., display system 1000 of FIG. 10 or display system 1200 of FIG. 12) may be configured to generate three-dimensional images for viewing by users in a viewing space. The following discussion is provided with reference to display system 1000 as shown in FIG. 14 for illustrative purposes and is not intended to be limiting. Persons skilled in the relevant art(s) will recognize that the techniques described herein for providing three-dimensional and multi-three-dimensional images are applicable to any suitable display system.
  • Referring to FIG. 14, first and second images 1006A and 1006B may be configured to be perceived by a user as a three-dimensional image. For example, light from the array of pixels may be manipulated to form a first image corresponding to the first set of pixels at a right eye location and to form a second image corresponding to the second set of pixels at a left eye location. As shown in FIG. 14, a user 1402 receives first image 1006A at a first eye location 1402A and second image 1006B at a second eye location 1402B according to an example embodiment. First and second images 1006A and 1006B may be generated by first set of pixels 1014A-1014D and second set of pixels 1016A-1016D, respectively, as images that are slightly different from each other. Images 1006A and 1006B are combined in the visual center of the brain of user 1404 to be perceived as a three-dimensional image.
  • In such an embodiment, first and second images 1006A and 1006B may be formed by display system 1000 such that their centers are spaced apart a width of a user's pupils (e.g., an “interocular distance”, labeled as “X” in FIG. 14). For example, the spacing of first and second images 1006A and 1006B may be approximately 65 mm (or other suitable spacing) to generally be equivalent to interocular distance X.
  • In a further embodiment, display system 1000 may be configured to generate multiple three-dimensional images for viewing by users in a viewing space. Each of the three-dimensional images may correspond to a pair of images generated by sets of pixels of pixel array 1024. Adaptable light manipulator 1004 manipulates light from pixel array 1024 to form the image pairs in a viewing space to be perceived by users as three-dimensional images. Adaptable light manipulator 1004 is shown to be implemented as an elastic lenticular lens for illustrative purposes and is not intended to be limiting. For instance, FIG. 15 depicts a cross-sectional view of a display system 1500 that provides multiple three-dimensional images according to an example embodiment. As shown in FIG. 15, system 1500 includes a pixel array 1502 and an adaptable light manipulator 1004. System 1500 may also include display controller 202 of FIG. 2, which is not shown in FIG. 15 for ease of illustration. System 1500 is described as follows.
  • In the example of FIG. 15, pixel array 1502 includes a first set of pixels 1514A-1514D, a second set of pixels 1516A-1516D, a third set of pixels 1518A-1518D, and a fourth set of pixels 1520A-1520D. Each set of pixels generates a corresponding image. First set of pixels 1514A-1514D and third set of pixels 1518A-1518D are configured to generate images that combine to form a first three-dimensional image. Second set of pixels 1516A-1516D and fourth set of pixels 1520A-1520D are configured to generate images that combine to form a second three-dimensional image. Pixels of the four sets of pixels are alternated in pixel array 1502 in the order of pixel 1514A, pixel 1516A, pixel 1518A, pixel 1520A, pixel 1514B, pixel 1516B, etc. Further pixels may be included in each set of pixels in pixel array 1502 that are not visible in FIG. 15, including hundreds, thousands, or millions of pixels in each set of pixels. Each of pixels 1514A-1514D, pixels 1516A-1516D, pixels 1518A-1518D, and pixels 1520A-1520D generates light, which emanates from the surface of pixel array 1502 toward adaptable light manipulator 1004.
  • As shown in FIG. 15, light emanating from pixel array 1502 is manipulated by adaptable light manipulator 1004 to form a plurality of images in a viewing space 1526. For instance, four images are formed in viewing space 1526, including first-fourth images 1506A-1506D. Pixels 1514A-1514D correspond to first image 1506A, pixels 1516A-1516D correspond to second image 1506B, pixels 1518A-1518D correspond to third image 1506C, and pixels 1520A-1520D correspond to fourth image 1506D. As shown in FIG. 15, light 1522A-1522D from the first set of pixels 1514A-1514D forms first image 1506A, and light 1524A-1524D from the third set of pixels 1518A-1518D forms third image 1506C, due to the optical characteristics of adaptable light manipulator 1004 that are associated with adaptable light manipulator 1004 being stretched to a specified length. Although not shown in FIG. 15 (for ease of illustration), in a similar fashion, light from the second set of pixels 1516A-1516D forms second image 1506B, and light from the fourth set of pixels 1520A-1520D forms fourth image 1506D. Adaptable light manipulator 1004 is described as being stretched for illustrative purposes and is not intended to be limiting. It will be recognized that a configuration of adaptable light manipulator 1004 may be modified in any suitable manner.
  • It is noted that multiple instances of each of first-fourth images 1506A-1508D may be formed in viewing space 1526 in a repeating fashion due to the optical characteristics of adaptable light manipulator 1004. As shown in FIG. 15, a first instance of third image 1506C is next to a first instance of fourth image 1506D, which is next to a first instance of first image 1506A, followed by a first instance of second image 1506D, followed by a second instance of third image 1506C, followed by a second instance of fourth image 1506D, followed by a second instance of first image 1506A, followed by a second instance of second image 1506B. Each instance of first-fourth images 1506A-1508D is generated by light emanating from first-fourth sets of pixels 1514A-1514D, 1516A-1516D, 1518A-1518D, and 1520A-1520D, respectively. Further instances of first-fourth images 1506A-1506D may repeat in viewing space 1526 in a similar fashion, but are not shown in FIG. 15 for ease of illustration.
  • In the embodiment of FIG. 15, any pair of images 1506A-1506D may be configured to be perceived as a three-dimensional image by a user in viewing space 1526 (similarly to user 1404 in FIG. 14). For instance, first and third images 1506A and 1506C may be configured to be perceived by a user as a first three-dimensional image, such that first image 1506A is received at a first eye location and third image 1506C is received at a second eye location of a first user. Furthermore, second and fourth images 1506B and 1506D may be configured to be perceived by a second user as a second three-dimensional image, such that second image 1506B is received at a first eye location and fourth image 1506D is received at a second eye location of the second user. Furthermore, the additional instances of the pair of first and third images 1506A and 1506C, and of the pair of second and fourth images 1506B and 1506D may be perceived as the first and second three-dimensional images by further users in viewing space 1526.
  • In the example of FIG. 15, two three-dimensional images are provided by system 1500. In further embodiments, further numbers of three-dimensional images may be provided, including three three-dimensional images, four three-dimensional images, etc. In such case, each three-dimensional image is generated by manipulating light (using an adaptable light manipulator) corresponding to an image pair generated by a corresponding pair of sets of pixels of the pixel array, in a similar fashion as described with respect to FIG. 15 for two three-dimensional images.
  • E. Example Pixel Array Controlling Embodiments
  • As mentioned above, mapping of image pixels to display pixels may be changed to accommodate modification of a configuration of an adaptable light manipulator. For instance, changing the mapping of the image pixels with respect to the display pixels may enable a viewer to perceive an accurate rendering of an image that is defined by the image pixels. The mapping of the image pixels may be changed in any of a variety of ways, including but not limited to changing a number of display pixels that represents each image pixel, changing the display pixels or groups thereof that correspond to the respective image pixels, etc.
  • FIG. 16 is a block diagram of an example implementation of a display controller shown in FIG. 2 according to an embodiment. Display controller includes a manipulator controller 1602, a locator 1604, and a pixel array controller 1606. Manipulator controller 1602 is configured to modify a configuration of an adaptable light manipulator. For instance, the adaptable light manipulator may be positioned proximate to a pixel array, so that the adaptable light manipulator may manipulate light that is received from the pixel array. Some example techniques for modifying a configuration of an adaptable light manipulator are described above with reference to FIGS. 3-15. For example, if the adaptable light manipulator is implemented as an elastic light manipulator (e.g., an elastic lenticular lens, an elastic parallax barrier, etc.), manipulator controller 1604 may be configured to stretch the adaptable light manipulator to change optical properties thereof. If the adaptable light manipulator is implemented as an adaptable parallax barrier that includes a plurality of blocking regions, manipulator controller 1604 may be configured to change one or more of the blocking regions from an opaque state to a transparent state and/or one or more of the blocking regions from a transparent state to an opaque state.
  • Locator 1604 is configured to determine whether a position of a viewer is changed with respect to the pixel array. For example, locator 1604 may be configured to provide a position indicator to manipulator controller 1602 upon determining that the position of the viewer is changed with respect to the pixel array. In accordance with this example, manipulator controller 1604 may be configured to modify the configuration of the adaptable light manipulator in response to receiving the position indicator from locator 1604.
  • Pixel array controller 1606 is configured to control the pixel array to support the adaptable light manipulator. Pixel array controller 1606 includes a conversion module 1608 and a mapping module 1610. Conversion module 1608 is configured to convert image pixels among various formats. For instance, conversion module 1608 may be configured to convert image pixels that correspond to a two-dimensional representation of an image to image pixels that correspond to a three-dimensional representation of the image, or vice versa.
  • Mapping module 1610 is configured to map image pixels among the display pixels of the pixel array. For example, mapping module 1610 may be configured to initially map the image pixels to respective first subsets of the display pixels. In accordance with this example, mapping module 1610 may be further configured to map the image pixels to respective second subsets of the display pixels in response to determining that manipulator controller 1602 has modified the configuration of the adaptable light manipulator.
  • It will be recognized that display controller 1600 may not include one or more of manipulator controller 1602, locator 1604, pixel array controller 1606, conversion module 1608, and/or mapping module 1610. Furthermore, display controller 1600 may include modules in addition to or in lieu of manipulator controller 1602, locator 1604, pixel array controller 1606, conversion module 1608, and/or mapping module 1610.
  • FIGS. 17-20 depict flowcharts 1700, 1800, 1900, and 2000 of methods for controlling a pixel array to support an adaptable light manipulator in accordance with example embodiments. The methods of flowcharts 1700, 1800, 1900, and 2000 may be performed, for example, by display controller 1600 of FIG. 1600. However, the methods are not limited to that embodiment and may be implemented by other display controllers.
  • As shown in FIG. 17, the method of flowchart 1700 begins at step 1702. In step 1702, a plurality of image pixels is mapped to a plurality of respective first subsets of display pixels in a pixel array. In an example implementation, mapping module 1610 maps the plurality of image pixels to the plurality of respective first subsets of the display pixels.
  • At step 1704, a configuration of an adaptable light manipulator that is positioned proximate to the pixel array is changed. For example, in implementations in which the adaptable light manipulator includes an adaptable parallax barrier, a slit pattern, an orientation, etc. of the adaptable parallax barrier may be changed. In implementations in which the adaptable light manipulator includes an elastic light manipulator, an extent to which the elastic light manipulator is stretched may be changed; an orientation of the elastic light manipulator may be changed, etc. The orientation of an adaptable light manipulator may be changed by moving the adaptable light manipulator in any direction with respect to the pixel array, rotating the adaptable light manipulator, changing an angle between the adaptable light manipulator and the pixel array, etc. In an example implementation, manipulator controller 1602 changes the configuration of the adaptable light manipulator.
  • At step 1706, a mapping of the plurality of image pixels is changed from the plurality of respective first subsets of the display pixels to a plurality of respective second subsets of the display pixels in the pixel array to compensate for changing the configuration of the adaptable light manipulator. For example, the mapping of the plurality of image pixels may be changed in response to changing the configuration of the adaptable light manipulator. In another example, the mapping of the plurality of image pixels may be changed on-the-fly. In yet another example, each of the first subsets and each of the second subsets may include the same number of display pixels. In still another example, each of the first subsets may include a first number of display pixels, and each of the second subsets may include a second number of pixels that is different from the first number. In an example implementation, mapping module 1610 changes the mapping of the plurality of image pixels from the plurality of respective first subsets of the display pixels to the plurality of respective second subsets of the display pixels.
  • As shown in FIG. 18, the method of flowchart 1800 begins at step 1802. In step 1802, a configuration of an adaptable light manipulator is modified. The adaptable light manipulator receives light from a pixel array that includes a plurality of display pixels. In an example implementation, manipulator controller 1602 modifies the configuration of the adaptable light manipulator.
  • At step 1804, a number of the display pixels in the pixel array that represents each image pixel of a plurality of image pixels is changed in response to modifying the configuration of the adaptable light manipulator. For instance, the number of the display pixels in the pixel array that represents each image pixel may be changed on-the-fly. In an example implementation, mapping module 1610 changes the number of the display pixels in the pixel array that represents each image pixel of the plurality of image pixels.
  • FIGS. 21-23 illustrate mappings 2100, 2200, and 2300 of image pixels to display pixels in accordance with example embodiments. As shown in FIG. 21, a pixel array 2110 includes sixty-four display pixels 2112 arranged in eight rows and eight columns for illustrative purposes. Pixel array 2110 includes a first subset 2102 of the pixels 2112, a second subset 2104 of the pixels 2112, a third subset 2106 of the pixels 2112, and a fourth subset 2108 of the pixels 2112. Each subset 2102, 2104, 2106, and 2108 of the pixels 2112 includes sixteen pixels arranged in four rows and four columns. A first image pixel is mapped to the first subset 2102; a second image pixel is mapped to the second subset 2104; a third pixel is mapped to the third subset 2106; and a fourth image pixel is mapped to the fourth subset 2108. Accordingly, the first image pixel is rendered to the first subset 2102; the second image pixel is rendered to the second subset 2104; the third image pixel is rendered to the third subset 2106; and the fourth image pixel is rendered to the fourth subset 2108.
  • In an example embodiment, subsets 2102, 2104, 2106, and 2108 correspond to a two-dimensional representation of an image. In accordance with this example embodiment, subsets 2102, 2104, 2106, and 2108 are configured to be perceived by a viewer as respective portions of a two-dimensional image. Accordingly, mapping 2100 may correspond to a two-dimensional mode of operation of pixel array 2110.
  • As shown in FIG. 22, pixel array 2110 includes first, second, third, fourth, fifth, sixth, seventh, and eighth subsets 2202, 2204, 2206, 2208, 2210, 2212, 2214, and 2216 of the pixels 2112 in pixel array 2110. Each subset 2202, 2204, 2206, 2208, 2210, 2212, 2214, and 2216 of the pixels 2112 includes eight pixels arranged in four rows and two columns. A first image pixel is mapped to the first subset 2202; a second image pixel is mapped to the second subset 2204; and so on. Accordingly, the first image pixel is rendered to the first subset 2202; the second image pixel is rendered to the second subset 2204; and so on.
  • In an example embodiment, subsets 2202, 2204, 2206, 2208, 2210, 2212, 2214, and 2216 correspond to a three-dimensional representation of an image. In accordance with this example embodiment, subsets 2202 and 2204 combine to be perceived by a viewer as a first portion of a three-dimensional image; subsets 2206 and 2208 combine to be perceived by the viewer as a second portion of the three-dimensional image; subsets 2210 and 2212 combine to be perceived by the viewer as a third portion of the three-dimensional image; and subsets 2214 and 2216 combine to be perceived by the viewer as a fourth portion of the three-dimensional image. Accordingly, mapping 2200 may correspond to a first three-dimensional mode of operation of pixel array 2110 in which pixel array 2110 provides a single three-dimensional image.
  • As shown in FIG. 23, pixel array 2110 includes first through sixteenth subsets 2302, 2304, 2306, 2308, 2310, 2312, 2314, 2316, 2318, 2320, 2322, 2324, 2326, 2328, 2330, and 2332 of the pixels 2112 in pixel array 2110. Each subset 2302, 2304, 2306, 2308, 2310, 2312, 2314, 2316, 2318, 2320, 2322, 2324, 2326, 2328, 2330, and 2332 of the pixels 2112 includes four pixels arranged in four rows and one column. A first image pixel is mapped to the first subset 2302; a second image pixel is mapped to the second subset 2304; and so on. Accordingly, the first image pixel is rendered to the first subset 2302; the second image pixel is rendered to the second subset 2304; and so on.
  • In an example embodiment, subsets 2302, 2306, 2310, 2314, 2318, 2322, 2326, and 2330 correspond to a three-dimensional representation of a first image, and subsets 2304, 2308, 2312, 2316, 2320, 2324, 2328, and 2332 correspond to a three-dimensional representation of a second image. In accordance with this example embodiment, subsets 2302 and 2306 combine to be perceived by a viewer as a first portion of a first three-dimensional image; subsets 2310 and 2314 combine to be perceived by the viewer as a second portion of the first three-dimensional image; subsets 2318 and 2322 combine to be perceived by the viewer as a third portion of the first three-dimensional image; and subsets 2326 and 2330 combine to be perceived by the viewer as a fourth portion of the first three-dimensional image. In further accordance with this example embodiment, subsets 2304 and 2308 combine to be perceived by a second viewer as a first portion of a second three-dimensional image; subsets 2312 and 2316 combine to be perceived by the second viewer as a second portion of the second three-dimensional image; subsets 2320 and 2324 combine to be perceived by the second viewer as a third portion of the second three-dimensional image; and subsets 2328 and 2332 combine to be perceived by the second viewer as a fourth portion of the second three-dimensional image.
  • In another example embodiment, subsets 2302, 2304, 2310, 2312, 2318, 2320, 2326, and 2328 correspond to a three-dimensional representation of a first image, and subsets 2306, 2308, 2314, 2316, 2322, 2324, 2330, and 2332 correspond to a three-dimensional representation of a second image. In accordance with this example embodiment, subsets 2302 and 2304 combine to be perceived by a viewer as a first portion of a first three-dimensional image; subsets 2310 and 2312 combine to be perceived by the viewer as a second portion of the first three-dimensional image; subsets 2318 and 2320 combine to be perceived by the viewer as a third portion of the first three-dimensional image; and subsets 2326 and 2328 combine to be perceived by the viewer as a fourth portion of the first three-dimensional image. In further accordance with this example embodiment, subsets 2306 and 2308 combine to be perceived by a second viewer as a first portion of a second three-dimensional image; subsets 2314 and 2316 combine to be perceived by the second viewer as a second portion of the second three-dimensional image; subsets 2322 and 2324 combine to be perceived by the second viewer as a third portion of the second three-dimensional image; and subsets 2330 and 2332 combine to be perceived by the second viewer as a fourth portion of the second three-dimensional image.
  • Accordingly, mapping 2300 may correspond to a second three-dimensional mode of operation of pixel array 2110 in which pixel array 2110 provides two three-dimensional images. For instance, each of the two three-dimensional images may use a respective half of the display pixels 2112 in pixel array 2110, as described above.
  • Pixel array 2110 is shown in FIGS. 21-23 to include sixty-four display pixels 2112 for illustrative purposes and is not intended to be limiting. A pixel array (e.g., pixel array 2110) may include any suitable number of pixels. Furthermore, the example mappings 2100, 2200, and 2300 are provided for illustrative purposes and are not intended to be limiting. It will be recognized that image pixels may be mapped to any suitable number and/or any suitable arrangement of display pixels. For instance, image pixels may be mapped to display pixels to enable a pixel array to provide any number of two-dimensional and/or three-dimensional images to viewer(s). For example, if three three-dimensional images are provided, each of the three three-dimensional images may use one-third of the display pixels in the pixel array. If four three-dimensional images are provided, each of the four three-dimensional images may use one-fourth of the display pixels in the pixel array, and so on.
  • As shown in FIG. 19, the method of flowchart 1900 begins at step 1902. In step 1902, a determination is made that a position of a user with respect to a pixel array is changed. The pixel array includes a plurality of display pixels. For example, a determination may be made that the user moves toward the pixel array, away from the pixel array, to the left or right with respect to the pixel array, up or down with respect to the pixel array, or another direction. In an example implementation, locator 1604 determines that the position of the user with respect to the pixel array is changed.
  • In an example embodiment, instead of (or in addition to) determining that the position of the user with respect to the pixel array is changed, a determination is made that an orientation of the user's head with respect to the pixel array is changed. For example, a determination may be made that the user's head is rotated from a substantially vertical orientation to a substantially horizontal orientation (as may occur if the user goes from a seated or standing position to a lying position), or vice versa. It will be recognized that the orientation of the user's head need not necessarily be substantially vertical or substantially horizontal. For instance, the orientation of the user's head may be at an angle between substantially vertical and substantially horizontal.
  • At step 1904, a configuration of an adaptable light manipulator is modified in response to determining that the position of the user with respect to the pixel array is changed. The adaptable light manipulator receives light from the pixel array. In an example implementation, manipulator controller 1602 modifies the configuration of the adaptable light manipulator.
  • At step 1906, subsets of the plurality of display pixels to which respective image pixels are rendered are changed to compensate for the configuration of the adaptable light manipulator being modified. For example, the subsets of the plurality of display pixels to which the respective image pixels are rendered may be changed in response to the configuration of the adaptable light manipulator being modified. In another example, the subsets of the plurality of display pixels to which the respective image pixels are rendered may be changed on-the-fly. In an example implementation, mapping module 1610 changes the subsets of the plurality of display pixels to which the respective image pixels are rendered.
  • In one example embodiment, step 1902 of flowchart 1900 is not performed. In accordance with this embodiment, the configuration of the adaptable light manipulator is modified at step 1904 even in the absence of determining that the position of the user with respect to the pixel array is changed.
  • FIGS. 24 and 25 show cross-sectional views of display systems 2400 and 2500 in which a three-dimensional image is provided to a user based on respective first and second mappings of image pixels to display pixels according to example embodiments. Display systems 2400 and 2500 are example embodiments of system 200 shown in FIG. 2. As shown in FIG. 24, system 2400 includes a pixel array 2402 and an adaptable light manipulator 2404. Adaptable light manipulator 2404 is shown to be implemented as an adaptable parallax barrier for illustrative purposes and is not intended to be limiting. Adaptable light manipulator 2404 may be any suitable type of adaptable light manipulator.
  • Pixel array 2402 includes a plurality of subsets 2406A-2406I of display pixels arranged in a series. Further subsets of display pixels may be included in pixel array 2402 that are not visible in FIG. 24. Each of the display pixels in subsets 2406A-2406I generates light, which emanates from display surface 2408 of pixel array 2402 towards adaptable light manipulator 2404. Due to the spacing of subsets 2406A-2406I and the configuration of adaptable light manipulator 2404, image pixels 2416A-2416H are mapped to respective subsets 2406A-2406H, so that first and second images 2412A and 2412B are formed at respective locations 2414A and 2414B. For example, image pixel 2416A is rendered to subset 2406A; image pixel 2416B is rendered to subset 2406B; and so on. Light 2420A-2420D from respective subsets 2406A, 2406C, 24206E, and 2406G forms first image 2412A, and light 2422A-2422D from respective subsets 2406B, 2406D, 2406F, and 2406H forms second image 2412B. The first and second images 2412A and 2412B are combined to be perceived as a three-dimensional image by a user 2424 who is positioned a distance D from display surface 2408 of pixel array 2402 and a distance Y to the right of a left-most edge of subset 2406A.
  • It will be recognized that any of a variety of factors may affect the mapping of image pixels 2416A-2416H among subsets 2406A-2406I. Such factors may include but are not limited to changing the position of the user 2424 with respect to pixel array 2402, changing the spacing of subsets 2406A-2406I, and/or changing the configuration of adaptable light manipulator 2404.
  • For example, display system 2500 of FIG. 25 includes pixel array 2402 and adaptable light manipulator 2404 as shown in FIG. 24. However, the configuration of adaptable light manipulator 2404 shown in FIG. 25 differs from the configuration of adaptable light manipulator 2404 shown in FIG. 24 in that adaptable light manipulator 2404 is moved toward the left in FIG. 25, as indicated by arrow 2504. Moreover, the position of user 2424 as shown in FIG. 25 is moved to the right with respect to pixel array 2402, as compared to the position of user 2424 as shown in FIG. 24, as indicated by arrow 2502. For example, user 2424 is shown in FIG. 25 to be positioned a distance D from display surface 2408 of pixel array 2402 and a distance Z to the right of the left-most edge of subset 2406A, where Z>Y.
  • In the example embodiment of FIG. 25, adaptable light manipulator 2404 may be moved to the left in response to user 2424 moving to the right, though the scope of the embodiments is not limited in this respect. Regardless, the mapping of image pixels among subsets 2406A-2406I is changed in FIG. 25, as compared to the mapping shown in FIG. 24, to compensate for the changed position of user 2424 and the modified configuration of adaptable light manipulator 2404. As shown in FIG. 25, image pixels 2416A-2416H are mapped to respective subsets 2406B-2406I, rather than respective subsets 2406A-2406H, which enables first and second images 2412A and 2412B to be formed at respective locations 2514A and 2514B. For example, image pixel 2416A is rendered to subset 2406B; image pixel 2416B is rendered to subset 2406C; and so on. Light 2520A-2520D from respective subsets 2406B, 2406D, 24206F, and 2406H forms first image 2412A, and light 2522A-2522D from respective subsets 2406C, 2406E, 2406G, and 2406I forms second image 2412B. The first and second images 2412A and 2412B are combined to be perceived as a three-dimensional image by a user 2424.
  • In FIGS. 24 and 25, each of subsets 2406A-2406I is shown to include a single display pixel for illustrative purposes and is not intended to be limiting. It will be recognized that subsets 2406A-2406I may include any suitable number (e.g., 1, 2, 3, etc.) of display pixels. Moreover, the display pixels in each subset may be configured in any suitable arrangement. For instance, each subset may include one or more rows and/or one or more columns of display pixels.
  • As shown in FIG. 20, the method of flowchart 2000 begins at step 2002. In step 2002, a first plurality of image pixels that corresponds to an N-dimensional representation of an image is rendered to a plurality of display pixels in a pixel array. In an example implementation, mapping module 1610 renders the first plurality of image pixels to the plurality of display pixels.
  • At step 2004, a configuration of an adaptable light manipulator that receives light from the pixel array is changed. In an example implementation, manipulator controller 1602 changes the configuration of the adaptable light manipulator.
  • At step 2006, the first plurality of image pixels is converted to a second plurality of image pixels that corresponds to an M-dimensional representation of the image. M is not equal to N. For instance, the first plurality of image pixels may be converted to the second plurality of image pixels on-the-fly. In an example embodiment, M=2 and N=3. In another example embodiment, M=3 and N=2. In an example implementation, conversion module 1608 converts the first plurality of image pixels to the second plurality of image pixels.
  • At step 2008, the second plurality of image pixels is rendered to the plurality of display pixels in response to changing the configuration of the adaptable light manipulator. For instance, the second plurality of image pixels may be rendered in lieu of the first plurality of image pixels to the plurality of display pixels. In an example implementation, mapping module 1610 renders the second plurality of image pixels to the plurality of display pixels.
  • III. Example Display Controller Implementations
  • Display controller 202, pixel array controller 204, and manipulator controller 206 may be implemented in hardware, software, firmware, or any combination thereof. For example, display controller 202, pixel array controller 204, and/or manipulator controller 206 may be implemented as computer program code configured to be executed in one or more processors. Alternatively, display controller 202, pixel array controller 204, and/or manipulator controller 206 may be implemented as hardware logic/electrical circuitry.
  • For instance, FIG. 26 shows a block diagram of an example implementation of display controller 202, according to an embodiment. In embodiments, display controller 202 may include one or more of the elements shown in FIG. 26. As shown in the example of FIG. 26, display controller 202 may include one or more processors (also called central processing units, or CPUs), such as a processor 2604. Processor 2604 is connected to a communication infrastructure 2602, such as a communication bus. In some embodiments, processor 2604 can simultaneously operate multiple computing threads.
  • Display controller 202 also includes a primary or main memory 2606, such as random access memory (RAM). Main memory 2606 has stored therein control logic 2628A (computer software), and data.
  • Display controller 202 also includes one or more secondary storage devices 2610. Secondary storage devices 2610 include, for example, a hard disk drive 2612 and/or a removable storage device or drive 2614, as well as other types of storage devices, such as memory cards and memory sticks. For instance, display controller 202 may include an industry standard interface, such a universal serial bus (USB) interface for interfacing with devices such as a memory stick. Removable storage drive 2614 represents a floppy disk drive, a magnetic tape drive, a compact disk drive, an optical storage device, tape backup, etc.
  • Removable storage drive 2614 interacts with a removable storage unit 2616. Removable storage unit 2616 includes a computer useable or readable storage medium 2624 having stored therein computer software 2628B (control logic) and/or data. Removable storage unit 2616 represents a floppy disk, magnetic tape, compact disk, DVD, optical storage disk, or any other computer data storage device. Removable storage drive 2614 reads from and/or writes to removable storage unit 2616 in a well known manner.
  • Display controller 202 further includes a communication or network interface 2618. Communication interface 2618 enables the display controller 202 to communicate with remote devices. For example, communication interface 2618 allows display controller 202 to communicate over communication networks or mediums 2642 (representing a form of a computer useable or readable medium), such as LANs, WANs, the Internet, etc. Network interface 2618 may interface with remote sites or networks via wired or wireless connections.
  • Control logic 2628C may be transmitted to and from display controller 202 via the communication medium 2642.
  • Any apparatus or manufacture comprising a computer useable or readable medium having control logic (software) stored therein is referred to herein as a computer program product or program storage device. This includes, but is not limited to, display controller 202, main memory 2606, secondary storage devices 2610, and removable storage unit 2616. Such computer program products, having control logic stored therein that, when executed by one or more data processing devices, cause such data processing devices to operate as described herein, represent embodiments of the invention.
  • Devices in which embodiments may be implemented may include storage, such as storage drives, memory devices, and further types of computer-readable media. Examples of such computer-readable storage media include a hard disk, a removable magnetic disk, a removable optical disk, flash memory cards, digital video disks, random access memories (RAMs), read only memories (ROM), and the like. As used herein, the terms “computer program medium” and “computer-readable medium” are used to generally refer to the hard disk associated with a hard disk drive, a removable magnetic disk, a removable optical disk (e.g., CDROMs, DVDs, etc.), zip disks, tapes, magnetic storage devices, MEMS (micro-electromechanical systems) storage, nanotechnology-based storage devices, as well as other media such as flash memory cards, digital video discs, RAM devices, ROM devices, and the like. Such computer-readable storage media may store program modules that include computer program logic for display controller 202, pixel array controller 204, manipulator controller 206, and/or display controller 1600 or any one or more elements thereof (e.g., manipulator controller 1602, locator 1604, pixel array controller 1606, conversion module 1608, and/or mapping module 1610), flowchart 900 (including any one or more steps of flowchart 900), flowchart 1100 (including any one or more steps of flowchart 1100), flowchart 1700 (including any one or more steps of flowchart 1700), flowchart 1800 (including any one or more steps of flowchart 1800), flowchart 1900 (including any one or more steps of flowchart 1900), and/or flowchart 2000 (including any one or more steps of flowchart 2000), and/or further embodiments of the present invention described herein. Embodiments of the invention are directed to computer program products comprising such logic (e.g., in the form of program code or software) stored on any computer useable medium. Such program code, when executed in one or more processors, causes a device to operate as described herein.
  • The invention can be put into practice using software, firmware, and/or hardware implementations other than those described herein. Any software, firmware, and hardware implementations suitable for performing the functions described herein can be used
  • IV. Conclusion
  • While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be understood by those skilled in the relevant art(s) that various changes in form and details may be made to the embodiments described herein without departing from the spirit and scope of the invention. Accordingly, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims (24)

1. A display system comprising:
a pixel array that includes a plurality of display pixels;
an adaptable light manipulator configured to manipulate light that is received from the pixel array;
a manipulator controller configured to modify a configuration of the adaptable light manipulator; and
a pixel array controller configured to change a mapping of a plurality of image pixels from a plurality of respective first subsets of the display pixels to a plurality of respective second subsets of the display pixels in the pixel array to compensate for modification of the configuration of the adaptable light manipulator.
2. The display system of claim 1, wherein each of the first subsets and each of the second subsets includes N display pixels; and
wherein N is an integer.
3. The display system of claim 1, wherein each of the first subsets includes N display pixels;
wherein each of the second subsets includes M display pixels;
wherein N and M are integers; and
wherein N is not equal to M.
4. The display system of claim 1, wherein the pixel array controller is configured to change the mapping of the plurality of image pixels to switch operation of the display system from a first mode in which the pixel array provides B three-dimensional images each of which uses a respective 1/B of the plurality of display pixels to a second mode in which the pixel array provides C three-dimensional images each of which uses a respective 1/C of the plurality of display pixels;
wherein B and C are integers; and
wherein B is not equal to C.
5. The display system of claim 1, further comprising:
a locator configured to determine that a position of a user with respect to the pixel array is changed;
wherein the manipulator controller is configured to modify the configuration of the adaptable light manipulator in response to determination that the position of the user with respect to the pixel array is changed; and
wherein the pixel array controller is configured to change the mapping of the plurality of image pixels from the plurality of respective first subsets of the display pixels to the plurality of respective second subsets of the display pixels in the pixel array in response to the determination that the position of the user with respect to the pixel array is changed.
6. The display system of claim 1, further comprising:
a locator configured to determine that an orientation of a user's head with respect to the pixel array is changed;
wherein the manipulator controller is configured to modify the configuration of the adaptable light manipulator in response to determination that the orientation of the user's head with respect to the pixel array is changed; and
wherein the pixel array controller is configured to change the mapping of the plurality of image pixels from the plurality of respective first subsets of the display pixels to the plurality of respective second subsets of the display pixels in the pixel array in response to the determination that the orientation of the user's head with respect to the pixel array is changed.
7. The display system of claim 1, wherein the adaptable light manipulator includes an adaptable parallax barrier; and
wherein the modification of the configuration of the adaptable light manipulator includes a modification of a slit pattern of the adaptable parallax barrier.
8. The display system of claim 1, wherein the adaptable light manipulator includes an elastic light manipulator; and
wherein the modification of the configuration of the adaptable light manipulator includes a modification of an extent to which the elastic light manipulator is stretched.
9. The display system of claim 1, wherein the modification of the configuration of the adaptable light manipulator includes a modification of an orientation of the adaptable light manipulator.
10. A display system comprising:
a pixel array that includes a plurality of display pixels;
an adaptable light manipulator configured to manipulate light that is received from the pixel array;
a manipulator controller configured to modify a configuration of the adaptable light manipulator; and
a pixel array controller comprising:
a conversion module configured to convert a first plurality of image pixels that corresponds to an N-dimensional representation of an image to a second plurality of image pixels that corresponds to an M-dimensional representation of the image, M≠N; and
a mapping module configured to initially render the first plurality of image pixels to the plurality of display pixels, the mapping module further configured to render the second plurality of image pixels in lieu of the first plurality of image pixels to the plurality of display pixels in response to a determination that the configuration of the adaptable light manipulator is modified.
11. The display system of claim 10, wherein N=2 and M=3.
12. The display system of claim 10, wherein N=3 and M=2.
13. The display system of claim 10, wherein the adaptable light manipulator includes an adaptable parallax barrier.
14. The display system of claim 10, wherein the adaptable light manipulator includes an elastic lenticular lens.
15. A method comprising:
modifying a configuration of an adaptable light manipulator that receives light from a pixel array that includes a plurality of display pixels; and
changing a number of the display pixels in the pixel array that represents each image pixel of a plurality of image pixels in response to modifying the configuration of the adaptable light manipulator.
16. The method of claim 15, wherein modifying the configuration of the adaptable light manipulator comprises:
modifying a slit pattern of an adaptable parallax barrier.
17. The method of claim 15, wherein modifying the configuration of the adaptable light manipulator comprises:
modifying an extent to which an elastic light manipulator is stretched.
18. The method of claim 15, wherein changing the number of the display pixels in the pixel array that represents each image pixel of the plurality of image pixels comprises:
switching operation of the pixel array from a first mode in which the pixel array provides B three-dimensional images each of which uses a respective 1/B of the plurality of display pixels to a second mode in which the pixel array provides C three-dimensional images each of which uses a respective 1/C of the plurality of display pixels;
wherein B and C are integers; and
wherein B is not equal to C.
19. A method comprising:
modifying a configuration of an adaptable light manipulator that receives light from a pixel array that includes a plurality of display pixels; and
changing subsets of the plurality of display pixels to which respective image pixels are rendered to compensate for the configuration of the adaptable light manipulator being modified.
20. The method of claim 19, wherein modifying the configuration of the adaptable light manipulator comprises:
modifying a slit pattern of an adaptable parallax barrier.
21. The method of claim 19, wherein modifying the configuration of the adaptable light manipulator comprises:
modifying an extent to which an elastic light manipulator is stretched.
22. The method of claim 19, wherein modifying the configuration of the adaptable light manipulator comprises:
modifying an orientation of the adaptable light manipulator.
23. The method of claim 19, further comprising:
determining that a position of a user with respect to the pixel array is changed;
wherein modifying the configuration of the adaptable light manipulator and changing the subsets of the plurality of display pixels to which the respective image pixels are rendered are performed in response to determining that the position of the user with respect to the pixel array is changed.
24. The method of claim 19, further comprising:
determining that an orientation of a user's head with respect to the pixel array is changed;
wherein modifying the configuration of the adaptable light manipulator and changing the subsets of the plurality of display pixels to which the respective image pixels are rendered are performed in response to determining that the orientation of the user's head with respect to the pixel array is changed.
US12/774,225 2009-12-31 2010-05-05 Controlling a pixel array to support an adaptable light manipulator Abandoned US20110157322A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US12/774,225 US20110157322A1 (en) 2009-12-31 2010-05-05 Controlling a pixel array to support an adaptable light manipulator
EP20100015980 EP2357508A1 (en) 2009-12-31 2010-12-22 Controlling a pixel array to support an adaptable light manipulator
US12/982,309 US9204138B2 (en) 2009-12-31 2010-12-30 User controlled regional display of mixed two and three dimensional content
US12/982,362 US9049440B2 (en) 2009-12-31 2010-12-30 Independent viewer tailoring of same media source content via a common 2D-3D display
US12/982,088 US9066092B2 (en) 2009-12-31 2010-12-30 Communication infrastructure including simultaneous video pathways for multi-viewer support
US12/982,069 US8922545B2 (en) 2009-12-31 2010-12-30 Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US12/982,031 US9019263B2 (en) 2009-12-31 2010-12-30 Coordinated driving of adaptable light manipulator, backlighting and pixel array in support of adaptable 2D and 3D displays
TW99147124A TW201142357A (en) 2009-12-31 2010-12-31 Controlling a pixel array to support an adaptable light manipulator
CN201010619646XA CN102215408A (en) 2009-12-31 2010-12-31 A display system and method
US14/504,095 US20150015668A1 (en) 2009-12-31 2014-10-01 Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US14/723,922 US20150264341A1 (en) 2009-12-31 2015-05-28 Communication infrastructure including simultaneous video pathways for multi-viewer support

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29181809P 2009-12-31 2009-12-31
US30311910P 2010-02-10 2010-02-10
US12/774,225 US20110157322A1 (en) 2009-12-31 2010-05-05 Controlling a pixel array to support an adaptable light manipulator

Publications (1)

Publication Number Publication Date
US20110157322A1 true US20110157322A1 (en) 2011-06-30

Family

ID=43797724

Family Applications (27)

Application Number Title Priority Date Filing Date
US12/774,225 Abandoned US20110157322A1 (en) 2009-12-31 2010-05-05 Controlling a pixel array to support an adaptable light manipulator
US12/774,307 Active 2032-01-14 US8964013B2 (en) 2009-12-31 2010-05-05 Display with elastic light manipulator
US12/845,440 Abandoned US20110157697A1 (en) 2009-12-31 2010-07-28 Adaptable parallax barrier supporting mixed 2d and stereoscopic 3d display regions
US12/845,409 Abandoned US20110157696A1 (en) 2009-12-31 2010-07-28 Display with adaptable parallax barrier
US12/845,461 Active 2031-10-30 US8767050B2 (en) 2009-12-31 2010-07-28 Display supporting multiple simultaneous 3D views
US12/982,309 Active 2033-05-02 US9204138B2 (en) 2009-12-31 2010-12-30 User controlled regional display of mixed two and three dimensional content
US12/982,088 Active 2032-01-06 US9066092B2 (en) 2009-12-31 2010-12-30 Communication infrastructure including simultaneous video pathways for multi-viewer support
US12/982,053 Abandoned US20110157309A1 (en) 2009-12-31 2010-12-30 Hierarchical video compression supporting selective delivery of two-dimensional and three-dimensional video content
US12/982,248 Abandoned US20110157315A1 (en) 2009-12-31 2010-12-30 Interpolation of three-dimensional video content
US12/982,140 Abandoned US20110161843A1 (en) 2009-12-31 2010-12-30 Internet browser and associated content definition supporting mixed two and three dimensional displays
US12/982,199 Active 2032-09-27 US8988506B2 (en) 2009-12-31 2010-12-30 Transcoder supporting selective delivery of 2D, stereoscopic 3D, and multi-view 3D content from source video
US12/982,124 Active 2033-02-08 US9124885B2 (en) 2009-12-31 2010-12-30 Operating system supporting mixed 2D, stereoscopic 3D and multi-view 3D displays
US12/982,047 Abandoned US20110157330A1 (en) 2009-12-31 2010-12-30 2d/3d projection system
US12/982,377 Abandoned US20110157327A1 (en) 2009-12-31 2010-12-30 3d audio delivery accompanying 3d display supported by viewer/listener position and orientation tracking
US12/982,330 Abandoned US20110157326A1 (en) 2009-12-31 2010-12-30 Multi-path and multi-source 3d content storage, retrieval, and delivery
US12/982,020 Abandoned US20110157257A1 (en) 2009-12-31 2010-12-30 Backlighting array supporting adaptable parallax barrier
US12/982,069 Active 2033-05-07 US8922545B2 (en) 2009-12-31 2010-12-30 Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US12/982,156 Active 2035-11-09 US9654767B2 (en) 2009-12-31 2010-12-30 Programming architecture supporting mixed two and three dimensional displays
US12/982,212 Active 2032-04-05 US9013546B2 (en) 2009-12-31 2010-12-30 Adaptable media stream servicing two and three dimensional content
US12/982,273 Active 2032-08-13 US9979954B2 (en) 2009-12-31 2010-12-30 Eyewear with time shared viewing supporting delivery of differing content to multiple viewers
US12/982,173 Active 2033-08-22 US9143770B2 (en) 2009-12-31 2010-12-30 Application programming interface supporting mixed two and three dimensional displays
US12/982,062 Active 2032-06-13 US8687042B2 (en) 2009-12-31 2010-12-30 Set-top box circuitry supporting 2D and 3D content reductions to accommodate viewing environment constraints
US12/982,031 Active 2032-12-14 US9019263B2 (en) 2009-12-31 2010-12-30 Coordinated driving of adaptable light manipulator, backlighting and pixel array in support of adaptable 2D and 3D displays
US12/982,362 Active 2031-02-05 US9049440B2 (en) 2009-12-31 2010-12-30 Independent viewer tailoring of same media source content via a common 2D-3D display
US14/504,095 Abandoned US20150015668A1 (en) 2009-12-31 2014-10-01 Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US14/616,130 Abandoned US20150156473A1 (en) 2009-12-31 2015-02-06 Transcoder supporting selective delivery of 2d, stereoscopic 3d, and multi-view 3d content from source video
US14/723,922 Abandoned US20150264341A1 (en) 2009-12-31 2015-05-28 Communication infrastructure including simultaneous video pathways for multi-viewer support

Family Applications After (26)

Application Number Title Priority Date Filing Date
US12/774,307 Active 2032-01-14 US8964013B2 (en) 2009-12-31 2010-05-05 Display with elastic light manipulator
US12/845,440 Abandoned US20110157697A1 (en) 2009-12-31 2010-07-28 Adaptable parallax barrier supporting mixed 2d and stereoscopic 3d display regions
US12/845,409 Abandoned US20110157696A1 (en) 2009-12-31 2010-07-28 Display with adaptable parallax barrier
US12/845,461 Active 2031-10-30 US8767050B2 (en) 2009-12-31 2010-07-28 Display supporting multiple simultaneous 3D views
US12/982,309 Active 2033-05-02 US9204138B2 (en) 2009-12-31 2010-12-30 User controlled regional display of mixed two and three dimensional content
US12/982,088 Active 2032-01-06 US9066092B2 (en) 2009-12-31 2010-12-30 Communication infrastructure including simultaneous video pathways for multi-viewer support
US12/982,053 Abandoned US20110157309A1 (en) 2009-12-31 2010-12-30 Hierarchical video compression supporting selective delivery of two-dimensional and three-dimensional video content
US12/982,248 Abandoned US20110157315A1 (en) 2009-12-31 2010-12-30 Interpolation of three-dimensional video content
US12/982,140 Abandoned US20110161843A1 (en) 2009-12-31 2010-12-30 Internet browser and associated content definition supporting mixed two and three dimensional displays
US12/982,199 Active 2032-09-27 US8988506B2 (en) 2009-12-31 2010-12-30 Transcoder supporting selective delivery of 2D, stereoscopic 3D, and multi-view 3D content from source video
US12/982,124 Active 2033-02-08 US9124885B2 (en) 2009-12-31 2010-12-30 Operating system supporting mixed 2D, stereoscopic 3D and multi-view 3D displays
US12/982,047 Abandoned US20110157330A1 (en) 2009-12-31 2010-12-30 2d/3d projection system
US12/982,377 Abandoned US20110157327A1 (en) 2009-12-31 2010-12-30 3d audio delivery accompanying 3d display supported by viewer/listener position and orientation tracking
US12/982,330 Abandoned US20110157326A1 (en) 2009-12-31 2010-12-30 Multi-path and multi-source 3d content storage, retrieval, and delivery
US12/982,020 Abandoned US20110157257A1 (en) 2009-12-31 2010-12-30 Backlighting array supporting adaptable parallax barrier
US12/982,069 Active 2033-05-07 US8922545B2 (en) 2009-12-31 2010-12-30 Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US12/982,156 Active 2035-11-09 US9654767B2 (en) 2009-12-31 2010-12-30 Programming architecture supporting mixed two and three dimensional displays
US12/982,212 Active 2032-04-05 US9013546B2 (en) 2009-12-31 2010-12-30 Adaptable media stream servicing two and three dimensional content
US12/982,273 Active 2032-08-13 US9979954B2 (en) 2009-12-31 2010-12-30 Eyewear with time shared viewing supporting delivery of differing content to multiple viewers
US12/982,173 Active 2033-08-22 US9143770B2 (en) 2009-12-31 2010-12-30 Application programming interface supporting mixed two and three dimensional displays
US12/982,062 Active 2032-06-13 US8687042B2 (en) 2009-12-31 2010-12-30 Set-top box circuitry supporting 2D and 3D content reductions to accommodate viewing environment constraints
US12/982,031 Active 2032-12-14 US9019263B2 (en) 2009-12-31 2010-12-30 Coordinated driving of adaptable light manipulator, backlighting and pixel array in support of adaptable 2D and 3D displays
US12/982,362 Active 2031-02-05 US9049440B2 (en) 2009-12-31 2010-12-30 Independent viewer tailoring of same media source content via a common 2D-3D display
US14/504,095 Abandoned US20150015668A1 (en) 2009-12-31 2014-10-01 Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US14/616,130 Abandoned US20150156473A1 (en) 2009-12-31 2015-02-06 Transcoder supporting selective delivery of 2d, stereoscopic 3d, and multi-view 3d content from source video
US14/723,922 Abandoned US20150264341A1 (en) 2009-12-31 2015-05-28 Communication infrastructure including simultaneous video pathways for multi-viewer support

Country Status (5)

Country Link
US (27) US20110157322A1 (en)
EP (4) EP2357508A1 (en)
CN (3) CN102183840A (en)
HK (1) HK1161754A1 (en)
TW (3) TW201142356A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110157326A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Multi-path and multi-source 3d content storage, retrieval, and delivery
US20110164188A1 (en) * 2009-12-31 2011-07-07 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test
US20120146897A1 (en) * 2009-08-28 2012-06-14 National Institute Of Information And Communications Technology Three-dimensional display
US8854531B2 (en) 2009-12-31 2014-10-07 Broadcom Corporation Multiple remote controllers that each simultaneously controls a different visual presentation of a 2D/3D display
US20150077526A1 (en) * 2013-09-16 2015-03-19 Samsung Electronics Co., Ltd. Display device and method of controlling the same
US9247286B2 (en) 2009-12-31 2016-01-26 Broadcom Corporation Frame formatting supporting mixed two and three dimensional video data communication
WO2017188955A1 (en) * 2016-04-28 2017-11-02 Hewlett-Packard Development Company, L.P. Digital display devices
CN108287679A (en) * 2017-01-10 2018-07-17 中兴通讯股份有限公司 A kind of display characteristic parameter adjusting method and terminal
US10072283B2 (en) 2010-09-24 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target DNA using immobilized primers
US10802324B2 (en) 2017-03-14 2020-10-13 Boe Technology Group Co., Ltd. Double vision display method and device

Families Citing this family (505)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416217B1 (en) * 2002-11-04 2013-04-09 Neonode Inc. Light-based finger gesture user interface
US9015736B2 (en) * 2005-12-29 2015-04-21 Rovi Guides, Inc. Systems and methods for episode tracking in an interactive media environment
US8121361B2 (en) 2006-05-19 2012-02-21 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
FR2906899B1 (en) * 2006-10-05 2009-01-16 Essilor Int DISPLAY DEVICE FOR STEREOSCOPIC VISUALIZATION.
JP2008106185A (en) * 2006-10-27 2008-05-08 Shin Etsu Chem Co Ltd Method for adhering thermally conductive silicone composition, primer for adhesion of thermally conductive silicone composition and method for production of adhesion composite of thermally conductive silicone composition
US8570423B2 (en) * 2009-01-28 2013-10-29 Hewlett-Packard Development Company, L.P. Systems for performing visual collaboration between remotely situated participants
US8775023B2 (en) 2009-02-15 2014-07-08 Neanode Inc. Light-based touch controls on a steering wheel and dashboard
EP2256620A1 (en) * 2009-05-29 2010-12-01 Koninklijke Philips Electronics N.V. Picture selection method for modular lighting system
US8125418B2 (en) * 2009-06-26 2012-02-28 Global Oled Technology Llc Passive-matrix chiplet drivers for displays
US9407908B2 (en) * 2009-08-20 2016-08-02 Lg Electronics Inc. Image display apparatus and method for operating the same
US20110080472A1 (en) * 2009-10-02 2011-04-07 Eric Gagneraud Autostereoscopic status display
CA2776909A1 (en) * 2009-10-07 2011-04-14 Telewatch Inc. Video analytics method and system
CN102474632A (en) * 2009-12-08 2012-05-23 美国博通公司 Method and system for handling multiple 3-d video formats
US20110143769A1 (en) * 2009-12-16 2011-06-16 Microsoft Corporation Dual display mobile communication device
CA2889724C (en) 2009-12-21 2021-06-08 Kik Interactive Inc. Systems and methods for accessing and controlling media stored remotely
US8684531B2 (en) * 2009-12-28 2014-04-01 Vision3D Technologies, Llc Stereoscopic display device projecting parallax image and adjusting amount of parallax
US20110187839A1 (en) * 2010-02-01 2011-08-04 VIZIO Inc. Frame based three-dimensional encoding method
US20110191328A1 (en) * 2010-02-03 2011-08-04 Vernon Todd H System and method for extracting representative media content from an online document
US20110202845A1 (en) * 2010-02-17 2011-08-18 Anthony Jon Mountjoy System and method for generating and distributing three dimensional interactive content
JP2011199853A (en) * 2010-02-23 2011-10-06 Panasonic Corp Three-dimensional image reproducing apparatus
DE102010009737A1 (en) * 2010-03-01 2011-09-01 Institut für Rundfunktechnik GmbH Method and arrangement for reproducing 3D image content
JP5462672B2 (en) * 2010-03-16 2014-04-02 株式会社ジャパンディスプレイ Display device and electronic device
US8634873B2 (en) * 2010-03-17 2014-01-21 Microsoft Corporation Mobile communication device having multiple, interchangeable second devices
KR101289269B1 (en) * 2010-03-23 2013-07-24 한국전자통신연구원 An apparatus and method for displaying image data in image system
KR20110109565A (en) * 2010-03-31 2011-10-06 삼성전자주식회사 Backlight unit, 3d display having the same and method of making 3d image
US10448083B2 (en) * 2010-04-06 2019-10-15 Comcast Cable Communications, Llc Streaming and rendering of 3-dimensional video
KR20110115806A (en) * 2010-04-16 2011-10-24 삼성전자주식회사 Display apparatus and 3d glasses, and display system including the same
WO2011132422A1 (en) * 2010-04-21 2011-10-27 パナソニック株式会社 Three-dimensional video display device and three-dimensional video display method
US8667533B2 (en) * 2010-04-22 2014-03-04 Microsoft Corporation Customizing streaming content presentation
US9271052B2 (en) * 2010-05-10 2016-02-23 Comcast Cable Communications, Llc Grid encoded media asset data
US9030536B2 (en) 2010-06-04 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for presenting media content
JP5510097B2 (en) * 2010-06-16 2014-06-04 ソニー株式会社 Signal transmission method, signal transmission device, and signal reception device
US9225975B2 (en) 2010-06-21 2015-12-29 Microsoft Technology Licensing, Llc Optimization of a multi-view display
US10089937B2 (en) * 2010-06-21 2018-10-02 Microsoft Technology Licensing, Llc Spatial and temporal multiplexing display
KR20110139497A (en) * 2010-06-23 2011-12-29 삼성전자주식회사 Display apparatus and method for displaying thereof
JP2012013980A (en) * 2010-07-01 2012-01-19 Sony Corp Stereoscopic display device and display drive circuit
US9049426B2 (en) * 2010-07-07 2015-06-02 At&T Intellectual Property I, Lp Apparatus and method for distributing three dimensional media content
US8670070B2 (en) * 2010-07-15 2014-03-11 Broadcom Corporation Method and system for achieving better picture quality in various zoom modes
US9032470B2 (en) 2010-07-20 2015-05-12 At&T Intellectual Property I, Lp Apparatus for adapting a presentation of media content according to a position of a viewing apparatus
US9232274B2 (en) 2010-07-20 2016-01-05 At&T Intellectual Property I, L.P. Apparatus for adapting a presentation of media content to a requesting device
JP2012034138A (en) * 2010-07-29 2012-02-16 Toshiba Corp Signal processing apparatus and signal processing method
KR20120020627A (en) * 2010-08-30 2012-03-08 삼성전자주식회사 Apparatus and method for image processing using 3d image format
TW201227684A (en) * 2010-09-01 2012-07-01 Seereal Technologies Sa Backplane device
US20120057007A1 (en) * 2010-09-03 2012-03-08 Satoshi Ishiguro Simplified Visual Screening Check on Television
JP5058316B2 (en) * 2010-09-03 2012-10-24 株式会社東芝 Electronic device, image processing method, and image processing program
JP5364666B2 (en) * 2010-09-13 2013-12-11 株式会社東芝 Stereoscopic image display apparatus, method and program
JP5368399B2 (en) * 2010-09-17 2013-12-18 富士フイルム株式会社 Electronic album generating apparatus, stereoscopic image pasting apparatus, operation control method thereof, and program thereof
EP2432218B1 (en) * 2010-09-20 2016-04-20 EchoStar Technologies L.L.C. Methods of displaying an electronic program guide
EP2629135B1 (en) * 2010-10-13 2015-03-18 Sharp Kabushiki Kaisha Display device
KR20120046937A (en) * 2010-11-03 2012-05-11 삼성전자주식회사 Method and apparatus for providing 3d effect in video device
US8922658B2 (en) * 2010-11-05 2014-12-30 Tom Galvin Network video recorder system
US9860490B2 (en) 2010-11-05 2018-01-02 Tom Galvin Network video recorder system
US10157526B2 (en) 2010-11-05 2018-12-18 Razberi Technologies, Inc. System and method for a security system
KR101670927B1 (en) * 2010-11-05 2016-11-01 삼성전자주식회사 Display apparatus and method
US11082665B2 (en) 2010-11-05 2021-08-03 Razberi Secure Technologies, Llc System and method for a security system
US10477158B2 (en) 2010-11-05 2019-11-12 Razberi Technologies, Inc. System and method for a security system
US9218115B2 (en) 2010-12-02 2015-12-22 Lg Electronics Inc. Input device and image display apparatus including the same
US9172943B2 (en) * 2010-12-07 2015-10-27 At&T Intellectual Property I, L.P. Dynamic modification of video content at a set-top box device
KR20120065774A (en) * 2010-12-13 2012-06-21 삼성전자주식회사 Audio providing apparatus, audio receiver and method for providing audio
KR101734285B1 (en) * 2010-12-14 2017-05-11 엘지전자 주식회사 Video processing apparatus of mobile terminal and method thereof
US8963694B2 (en) * 2010-12-17 2015-02-24 Sony Corporation System and method for remote controlled device selection based on device position data and orientation data of a user
US20120154559A1 (en) * 2010-12-21 2012-06-21 Voss Shane D Generate Media
US9386294B2 (en) * 2011-01-05 2016-07-05 Google Technology Holdings LLC Method and apparatus for 3DTV image adjustment
US8983555B2 (en) * 2011-01-07 2015-03-17 Microsoft Technology Licensing, Llc Wireless communication techniques
US8643684B2 (en) * 2011-01-18 2014-02-04 Disney Enterprises, Inc. Multi-layer plenoptic displays that combine multiple emissive and light modulating planes
TW201232280A (en) * 2011-01-20 2012-08-01 Hon Hai Prec Ind Co Ltd System and method for sharing desktop information
KR20120088467A (en) * 2011-01-31 2012-08-08 삼성전자주식회사 Method and apparatus for displaying partial 3d image in 2d image disaply area
JP5632764B2 (en) * 2011-02-02 2014-11-26 セイコーインスツル株式会社 Stereoscopic image display device
US20120202187A1 (en) * 2011-02-03 2012-08-09 Shadowbox Comics, Llc Method for distribution and display of sequential graphic art
US10083639B2 (en) * 2011-02-04 2018-09-25 Seiko Epson Corporation Control device for controlling image display device, head-mounted display device, image display system, control method for the image display device, and control method for the head-mounted display device
US8724467B2 (en) 2011-02-04 2014-05-13 Cisco Technology, Inc. System and method for managing congestion in a network environment
TWI569041B (en) 2011-02-14 2017-02-01 半導體能源研究所股份有限公司 Display device
US8630247B2 (en) * 2011-02-15 2014-01-14 Cisco Technology, Inc. System and method for managing tracking area identity lists in a mobile network environment
US9035860B2 (en) 2011-02-16 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2012111427A1 (en) 2011-02-16 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US9443455B2 (en) 2011-02-25 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Display device having a plurality of pixels
KR101852428B1 (en) * 2011-03-09 2018-04-26 엘지전자 주식회사 Mobile twrminal and 3d object control method thereof
US9558687B2 (en) 2011-03-11 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for driving the same
US9578299B2 (en) * 2011-03-14 2017-02-21 Qualcomm Incorporated Stereoscopic conversion for shader based graphics content
JP5766479B2 (en) * 2011-03-25 2015-08-19 京セラ株式会社 Electronic device, control method, and control program
JP5730091B2 (en) * 2011-03-25 2015-06-03 株式会社ジャパンディスプレイ Display panel, display device and electronic device
JP5092033B2 (en) * 2011-03-28 2012-12-05 株式会社東芝 Electronic device, display control method, and display control program
JP2012205285A (en) * 2011-03-28 2012-10-22 Sony Corp Video signal processing apparatus and video signal processing method
WO2012138539A2 (en) * 2011-04-08 2012-10-11 The Regents Of The University Of California Interactive system for collecting, displaying, and ranking items based on quantitative and textual input from multiple participants
US8988512B2 (en) * 2011-04-14 2015-03-24 Mediatek Inc. Method for adjusting playback of multimedia content according to detection result of user status and related apparatus thereof
JP5162000B2 (en) * 2011-04-19 2013-03-13 株式会社東芝 Information processing apparatus, information processing method, and program
JP5161998B2 (en) * 2011-04-19 2013-03-13 株式会社東芝 Information processing apparatus, information processing method, and program
JP5161999B2 (en) * 2011-04-19 2013-03-13 株式会社東芝 Electronic device, display control method, and display control program
CN103444187A (en) * 2011-05-05 2013-12-11 英派尔科技开发有限公司 Lenticular directional display
US20120287115A1 (en) * 2011-05-10 2012-11-15 Ding Junjie Method for generating image frames
KR20120126458A (en) * 2011-05-11 2012-11-21 엘지전자 주식회사 Method for processing broadcasting signal and display device thereof
WO2012156778A1 (en) * 2011-05-13 2012-11-22 Sony Ericsson Mobile Communications Ab Adjusting parallax barriers
US8913104B2 (en) * 2011-05-24 2014-12-16 Bose Corporation Audio synchronization for two dimensional and three dimensional video signals
US9420259B2 (en) * 2011-05-24 2016-08-16 Comcast Cable Communications, Llc Dynamic distribution of three-dimensional content
JP6050941B2 (en) * 2011-05-26 2016-12-21 サターン ライセンシング エルエルシーSaturn Licensing LLC Display device and method, and program
US9442562B2 (en) * 2011-05-27 2016-09-13 Dolby Laboratories Licensing Corporation Systems and methods of image processing that adjust for viewer position, screen size and viewing distance
US9084068B2 (en) * 2011-05-30 2015-07-14 Sony Corporation Sensor-based placement of sound in video recording
CN103262551B (en) * 2011-06-01 2015-12-09 松下电器产业株式会社 Image processor, dispensing device, image processing system, image treatment method, sending method and integrated circuit
JP2012253543A (en) * 2011-06-02 2012-12-20 Seiko Epson Corp Display device, control method of display device, and program
JP5770018B2 (en) * 2011-06-03 2015-08-26 任天堂株式会社 Display control program, display control apparatus, display control method, and display control system
US9420268B2 (en) 2011-06-23 2016-08-16 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
WO2012174739A1 (en) * 2011-06-24 2012-12-27 Technicolor (China) Technology Co., Ltd. Method and device for delivering 3d content
US9030522B2 (en) 2011-06-24 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for providing media content
US9445046B2 (en) 2011-06-24 2016-09-13 At&T Intellectual Property I, L.P. Apparatus and method for presenting media content with telepresence
US9602766B2 (en) 2011-06-24 2017-03-21 At&T Intellectual Property I, L.P. Apparatus and method for presenting three dimensional objects with telepresence
KR101772458B1 (en) * 2011-06-28 2017-08-30 엘지전자 주식회사 Display device and method for controlling thereof
US20130265300A1 (en) * 2011-07-03 2013-10-10 Neorai Vardi Computer device in form of wearable glasses and user interface thereof
JP2013015779A (en) * 2011-07-06 2013-01-24 Sony Corp Display control device, display control method, and computer program
US8988411B2 (en) 2011-07-08 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US9137522B2 (en) * 2011-07-11 2015-09-15 Realtek Semiconductor Corp. Device and method for 3-D display control
US9294752B2 (en) * 2011-07-13 2016-03-22 Google Technology Holdings LLC Dual mode user interface system and method for 3D video
US8587635B2 (en) 2011-07-15 2013-11-19 At&T Intellectual Property I, L.P. Apparatus and method for providing media services with telepresence
US8928708B2 (en) 2011-07-15 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for driving the display device
KR101926477B1 (en) * 2011-07-18 2018-12-11 삼성전자 주식회사 Contents play method and apparatus
KR20130010834A (en) * 2011-07-19 2013-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
JP2013038454A (en) * 2011-08-03 2013-02-21 Sony Corp Image processor, method, and program
JP2013038504A (en) 2011-08-04 2013-02-21 Sony Corp Imaging device, image processing method and program
JP5815326B2 (en) * 2011-08-12 2015-11-17 ルネサスエレクトロニクス株式会社 Video decoding device and image display device
WO2013026048A2 (en) * 2011-08-18 2013-02-21 Utherverse Digital, Inc. Systems and methods of virtual world interaction
US10659724B2 (en) * 2011-08-24 2020-05-19 Ati Technologies Ulc Method and apparatus for providing dropped picture image processing
EP2747641A4 (en) 2011-08-26 2015-04-01 Kineticor Inc Methods, systems, and devices for intra-scan motion correction
JP2013050537A (en) * 2011-08-30 2013-03-14 Sony Corp Display device and electronic apparatus
JP2013050539A (en) * 2011-08-30 2013-03-14 Sony Corp Display device and electronic apparatus
US20130050596A1 (en) * 2011-08-30 2013-02-28 Industrial Technology Research Institute Auto-stereoscopic display and method for fabricating the same
JP2013050538A (en) 2011-08-30 2013-03-14 Sony Corp Display device and electronic apparatus
KR102008818B1 (en) * 2011-08-31 2019-08-08 엘지전자 주식회사 Digital broadcast signal processing method and device
US8872813B2 (en) 2011-09-02 2014-10-28 Adobe Systems Incorporated Parallax image authoring and viewing in digital media
CN102368244B (en) * 2011-09-08 2013-05-15 广州市动景计算机科技有限公司 Page content alignment method, device and mobile terminal browser
DE112012003931T5 (en) 2011-09-21 2014-07-10 Magna Electronics, Inc. Image processing system for a motor vehicle with image data transmission and power supply via a coaxial cable
CN102510503B (en) * 2011-09-30 2015-06-03 深圳超多维光电子有限公司 Stereoscopic display method and stereoscopic display equipment
JP5715539B2 (en) * 2011-10-06 2015-05-07 株式会社ジャパンディスプレイ Display device and electronic device
KR20130037861A (en) * 2011-10-07 2013-04-17 삼성디스플레이 주식회사 Display apparatus and method of displaying three dimensional image using the same
KR101813035B1 (en) 2011-10-10 2017-12-28 엘지전자 주식회사 Mobile terminal and method for controlling the same
WO2013055164A1 (en) * 2011-10-13 2013-04-18 삼성전자 주식회사 Method for displaying contents, method for synchronizing contents, and method and device for displaying broadcast contents
GB2495725B (en) * 2011-10-18 2014-10-01 Sony Comp Entertainment Europe Image transfer apparatus and method
JP5149435B1 (en) * 2011-11-04 2013-02-20 株式会社東芝 Video processing apparatus and video processing method
US8933935B2 (en) 2011-11-10 2015-01-13 7D Surgical Inc. Method of rendering and manipulating anatomical images on mobile computing device
KR101887058B1 (en) * 2011-11-11 2018-08-09 엘지전자 주식회사 A process for processing a three-dimensional image and a method for controlling electric power of the same
US20140327708A1 (en) * 2011-11-15 2014-11-06 Sharp Kabushiki Kaisha Display device
US20130127841A1 (en) * 2011-11-18 2013-05-23 Samsung Electronics Co., Ltd. Three-dimensional (3d) image display method and apparatus for 3d imaging and displaying contents according to start or end of operation
US9942580B2 (en) 2011-11-18 2018-04-10 At&T Intellecutal Property I, L.P. System and method for automatically selecting encoding/decoding for streaming media
US8660362B2 (en) * 2011-11-21 2014-02-25 Microsoft Corporation Combined depth filtering and super resolution
WO2013081985A1 (en) 2011-11-28 2013-06-06 Magna Electronics, Inc. Vision system for vehicle
DE102011055967B4 (en) * 2011-12-02 2016-03-10 Seereal Technologies S.A. Measuring method and device for carrying out the measuring method
US9626798B2 (en) 2011-12-05 2017-04-18 At&T Intellectual Property I, L.P. System and method to digitally replace objects in images or video
CN103163650A (en) * 2011-12-08 2013-06-19 武汉天马微电子有限公司 Naked eye three-dimensional (3D) grating structure
US20130156090A1 (en) * 2011-12-14 2013-06-20 Ati Technologies Ulc Method and apparatus for enabling multiuser use
US9042266B2 (en) * 2011-12-21 2015-05-26 Kik Interactive, Inc. Methods and apparatus for initializing a network connection for an output device
US20140317537A1 (en) * 2011-12-22 2014-10-23 Tencent Technology (Shenzhen) Company Limited Browser based application program extension method and device
EP2611176A3 (en) * 2011-12-29 2015-11-18 Samsung Electronics Co., Ltd. Display apparatus and controlling method thereof
CN202995143U (en) * 2011-12-29 2013-06-12 三星电子株式会社 Glasses device and display device
US9392251B2 (en) 2011-12-29 2016-07-12 Samsung Electronics Co., Ltd. Display apparatus, glasses apparatus and method for controlling depth
TWI467235B (en) * 2012-02-06 2015-01-01 Innocom Tech Shenzhen Co Ltd Three-dimensional (3d) display and displaying method thereof
US9324190B2 (en) 2012-02-24 2016-04-26 Matterport, Inc. Capturing and aligning three-dimensional scenes
US11282287B2 (en) 2012-02-24 2022-03-22 Matterport, Inc. Employing three-dimensional (3D) data predicted from two-dimensional (2D) images using neural networks for 3D modeling applications and other applications
US10848731B2 (en) 2012-02-24 2020-11-24 Matterport, Inc. Capturing and aligning panoramic image and depth data
CN103294453B (en) * 2012-02-24 2017-02-22 华为技术有限公司 Image processing method and image processing device
KR20130098023A (en) * 2012-02-27 2013-09-04 한국전자통신연구원 Apparatus and method for displaying an image on 3-dimentional display based on multi-layer parallax barrier
JP5942477B2 (en) 2012-02-29 2016-06-29 富士ゼロックス株式会社 Setting device and program
EP2637416A1 (en) * 2012-03-06 2013-09-11 Alcatel Lucent A system and method for optimized streaming of variable multi-viewpoint media
JP6015743B2 (en) * 2012-03-07 2016-10-26 ソニー株式会社 Information processing apparatus, information processing method, and program
JP5762998B2 (en) * 2012-03-07 2015-08-12 株式会社ジャパンディスプレイ Display device and electronic device
JP5806150B2 (en) * 2012-03-13 2015-11-10 株式会社ジャパンディスプレイ Display device
JP5779124B2 (en) * 2012-03-13 2015-09-16 株式会社ジャパンディスプレイ Display device and electronic device
US9280042B2 (en) * 2012-03-16 2016-03-08 City University Of Hong Kong Automatic switching of a multi-mode projector display screen for displaying three-dimensional and two-dimensional images
CN102650741B (en) * 2012-03-16 2014-06-11 京东方科技集团股份有限公司 Light splitting device, manufacturing method thereof and 3D (Three-Dimensional) display device
WO2013135203A1 (en) 2012-03-16 2013-09-19 Tencent Technology (Shenzhen) Company Limited Offline download method and system
US9733707B2 (en) 2012-03-22 2017-08-15 Honeywell International Inc. Touch screen display user interface and method for improving touch interface utility on the same employing a rules-based masking system
US20130265297A1 (en) * 2012-04-06 2013-10-10 Motorola Mobility, Inc. Display of a Corrected Browser Projection of a Visual Guide for Placing a Three Dimensional Object in a Browser
US9308439B2 (en) * 2012-04-10 2016-04-12 Bally Gaming, Inc. Controlling three-dimensional presentation of wagering game content
WO2013153418A1 (en) * 2012-04-12 2013-10-17 Sony Mobile Communications Ab Improved 3d image display system
CN102645959A (en) * 2012-04-16 2012-08-22 上海颖杰计算机系统设备有限公司 3D (Three Dimensional) integrated computer
KR101923150B1 (en) * 2012-04-16 2018-11-29 삼성디스플레이 주식회사 Display apparatus and method of displaying three dimensional image using the same
US20150062315A1 (en) * 2012-04-18 2015-03-05 The Regents Of The University Of California Simultaneous 2d and 3d images on a display
EP2653906B1 (en) 2012-04-20 2022-08-24 Dolby Laboratories Licensing Corporation A system for delivering stereoscopic images
CN103379362B (en) * 2012-04-24 2017-07-07 腾讯科技(深圳)有限公司 VOD method and system
US9201495B2 (en) * 2012-04-24 2015-12-01 Mobitv, Inc. Control of perspective in multi-dimensional media
US9707892B2 (en) * 2012-04-25 2017-07-18 Gentex Corporation Multi-focus optical system
US20130290867A1 (en) * 2012-04-27 2013-10-31 Litera Technologies, LLC Systems and Methods For Providing Dynamic and Interactive Viewing and Control of Applications
KR20130123599A (en) * 2012-05-03 2013-11-13 한국과학기술원 Speed dependent automatic dimming technique
CN103457960B (en) 2012-05-15 2018-03-09 腾讯科技(深圳)有限公司 The method and system of load document in web game
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
US9201270B2 (en) * 2012-06-01 2015-12-01 Leia Inc. Directional backlight with a modulation layer
JP2015525370A (en) * 2012-06-01 2015-09-03 コーニンクレッカ フィリップス エヌ ヴェ Autostereoscopic display device and driving method
US8570651B1 (en) * 2012-06-04 2013-10-29 Hae-Yong Choi Both side screen for combined use of 2D/3D images
US9418672B2 (en) 2012-06-05 2016-08-16 Apple Inc. Navigation application with adaptive instruction text
US9997069B2 (en) 2012-06-05 2018-06-12 Apple Inc. Context-aware voice guidance
US9886794B2 (en) 2012-06-05 2018-02-06 Apple Inc. Problem reporting in maps
US9159153B2 (en) 2012-06-05 2015-10-13 Apple Inc. Method, system and apparatus for providing visual feedback of a map view change
US9230556B2 (en) 2012-06-05 2016-01-05 Apple Inc. Voice instructions during navigation
US8965696B2 (en) 2012-06-05 2015-02-24 Apple Inc. Providing navigation instructions while operating navigation application in background
US9482296B2 (en) 2012-06-05 2016-11-01 Apple Inc. Rendering road signs during navigation
US9111380B2 (en) 2012-06-05 2015-08-18 Apple Inc. Rendering maps
US10176633B2 (en) 2012-06-05 2019-01-08 Apple Inc. Integrated mapping and navigation application
US9367959B2 (en) * 2012-06-05 2016-06-14 Apple Inc. Mapping application with 3D presentation
JP6046923B2 (en) * 2012-06-07 2016-12-21 キヤノン株式会社 Image coding apparatus, image coding method, and program
WO2013183801A1 (en) * 2012-06-08 2013-12-12 Lg Electronics Inc. Rendering method of 3d web-page and terminal using the same
US9800862B2 (en) * 2012-06-12 2017-10-24 The Board Of Trustees Of The University Of Illinois System and methods for visualizing information
US9829996B2 (en) * 2012-06-25 2017-11-28 Zspace, Inc. Operations in a three dimensional display system
WO2014000129A1 (en) * 2012-06-30 2014-01-03 Intel Corporation 3d graphical user interface
KR101649660B1 (en) * 2012-07-06 2016-08-19 엘지전자 주식회사 Terminal for increasing visual comfort sensation of 3d object and control method thereof
US20140022241A1 (en) * 2012-07-18 2014-01-23 Electronics And Telecommunications Research Institute Display apparatus and method based on symmetrically spb
US10353718B2 (en) * 2012-07-23 2019-07-16 Vmware, Inc. Providing access to a remote application via a web client
US8959176B2 (en) 2012-07-31 2015-02-17 Apple Inc. Streaming common media content to multiple devices
US9491784B2 (en) * 2012-07-31 2016-11-08 Apple Inc. Streaming common media content to multiple devices
CA2822217A1 (en) 2012-08-02 2014-02-02 Iwatchlife Inc. Method and system for anonymous video analytics processing
US9786281B1 (en) * 2012-08-02 2017-10-10 Amazon Technologies, Inc. Household agent learning
KR101310941B1 (en) * 2012-08-03 2013-09-23 삼성전자주식회사 Display apparatus for displaying a plurality of content views, shutter glasses device for syncronizing with one of the content views and methods thereof
US9423871B2 (en) * 2012-08-07 2016-08-23 Honeywell International Inc. System and method for reducing the effects of inadvertent touch on a touch screen controller
KR101994295B1 (en) * 2012-08-08 2019-06-28 삼성전자주식회사 Terminal and method for generating live image in terminal
US9225972B2 (en) 2012-08-10 2015-12-29 Pixtronix, Inc. Three dimensional (3D) image generation using electromechanical display elements
US9198209B2 (en) 2012-08-21 2015-11-24 Cisco Technology, Inc. Providing integrated end-to-end architecture that includes quality of service transport for tunneled traffic
CN103631021B (en) * 2012-08-27 2016-06-15 群康科技(深圳)有限公司 3 d display device and image display method thereof
TWI509289B (en) * 2012-08-27 2015-11-21 Innocom Tech Shenzhen Co Ltd Stereoscopic display apparatus and image display method thereof
KR20140028780A (en) 2012-08-30 2014-03-10 삼성디스플레이 주식회사 Display apparatus and method of displaying three dimensional image using the same
US9811878B1 (en) * 2012-09-04 2017-11-07 Amazon Technologies, Inc. Dynamic processing of image borders
US10171540B2 (en) * 2012-09-07 2019-01-01 High Sec Labs Ltd Method and apparatus for streaming video security
US20150138444A1 (en) * 2012-09-14 2015-05-21 Masayuki Hirabayashi Video display apparatus and terminal device
US9179232B2 (en) * 2012-09-17 2015-11-03 Nokia Technologies Oy Method and apparatus for associating audio objects with content and geo-location
JP5837009B2 (en) * 2012-09-26 2015-12-24 キヤノン株式会社 Display device and control method thereof
CN104104934B (en) * 2012-10-04 2019-02-19 陈笛 The component and method of the more spectators' Three-dimensional Displays of glasses-free
JP5928286B2 (en) * 2012-10-05 2016-06-01 富士ゼロックス株式会社 Information processing apparatus and program
WO2014163665A1 (en) * 2012-10-10 2014-10-09 Kassouf Sidney System for distributing auto-stereoscopic images
US20140104242A1 (en) * 2012-10-12 2014-04-17 Nvidia Corporation System and method for concurrent display of a video signal on a plurality of display devices
US9235103B2 (en) * 2012-10-25 2016-01-12 Au Optronics Corporation 3D liquid crystal display comprising four electrodes alternately arrange between a first and second substrate
CN102917265A (en) * 2012-10-25 2013-02-06 深圳创维-Rgb电子有限公司 Information browsing method and system based on network television
US9161018B2 (en) * 2012-10-26 2015-10-13 Christopher L. UHL Methods and systems for synthesizing stereoscopic images
TWI452345B (en) * 2012-10-26 2014-09-11 Au Optronics Corp Three dimensions display device and displaying method thereof
JP2014092744A (en) * 2012-11-06 2014-05-19 Japan Display Inc Stereoscopic display device
CN104516168B (en) * 2012-11-21 2018-05-08 京东方科技集团股份有限公司 Convertible lens and preparation method thereof, 2 d-3 d display base plate and display device
US9674510B2 (en) * 2012-11-21 2017-06-06 Elwha Llc Pulsed projection system for 3D video
CN102981343B (en) * 2012-11-21 2015-01-07 京东方科技集团股份有限公司 Convertible lens and preparation method thereof, as well as two-dimensional and three-dimensional display surface substrate and display device
US9547937B2 (en) * 2012-11-30 2017-01-17 Legend3D, Inc. Three-dimensional annotation system and method
WO2014085910A1 (en) 2012-12-04 2014-06-12 Interaxon Inc. System and method for enhancing content using brain-state data
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9128580B2 (en) 2012-12-07 2015-09-08 Honeywell International Inc. System and method for interacting with a touch screen interface utilizing an intelligent stencil mask
US20140165209A1 (en) * 2012-12-11 2014-06-12 Verizon Patent And Licensing Inc. Digital content delivery platform for multiple retailers
US9047054B1 (en) 2012-12-20 2015-06-02 Audible, Inc. User location-based management of content presentation
US9497448B2 (en) * 2012-12-31 2016-11-15 Lg Display Co., Ltd. Image processing method of transparent display apparatus and apparatus thereof
TWI531213B (en) * 2013-01-18 2016-04-21 國立成功大學 Image conversion method and module for naked-eye 3d display
US10327708B2 (en) 2013-01-24 2019-06-25 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9717461B2 (en) 2013-01-24 2017-08-01 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9305365B2 (en) 2013-01-24 2016-04-05 Kineticor, Inc. Systems, devices, and methods for tracking moving targets
EP2950714A4 (en) 2013-02-01 2017-08-16 Kineticor, Inc. Motion tracking system for real time adaptive motion compensation in biomedical imaging
WO2014129134A1 (en) * 2013-02-19 2014-08-28 パナソニック株式会社 Image display device
TWI502247B (en) * 2013-02-26 2015-10-01 Chunghwa Picture Tubes Ltd Autostereoscopic display device and display method thereof
US8712217B1 (en) 2013-03-01 2014-04-29 Comcast Cable Communications, Llc Methods and systems for time-shifting content
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US20140267601A1 (en) * 2013-03-14 2014-09-18 Corel Corporation System and method for efficient editing of 3d video
US20140268324A1 (en) * 2013-03-18 2014-09-18 3-D Virtual Lens Technologies, Llc Method of displaying 3d images from 2d source images using a barrier grid
CN103236074B (en) * 2013-03-25 2015-12-23 深圳超多维光电子有限公司 A kind of 2D/3D image processing method and device
US10110647B2 (en) * 2013-03-28 2018-10-23 Qualcomm Incorporated Method and apparatus for altering bandwidth consumption
KR101981530B1 (en) 2013-03-29 2019-05-23 엘지디스플레이 주식회사 Stereoscopic image display device and method for driving the same
CN103235415B (en) * 2013-04-01 2015-12-23 昆山龙腾光电有限公司 Based on the multi-view free stereoscopic displayer of grating
KR101970577B1 (en) * 2013-04-09 2019-04-19 엘지디스플레이 주식회사 Stereoscopic display device and eye-tracking method thereof
US20140316907A1 (en) * 2013-04-17 2014-10-23 Asaf NAIM Multilayered user interface for internet browser
US20140328505A1 (en) * 2013-05-02 2014-11-06 Microsoft Corporation Sound field adaptation based upon user tracking
CN103293689B (en) * 2013-05-31 2015-05-13 京东方科技集团股份有限公司 Method capable of switching between different display modes and display device
KR20140142863A (en) * 2013-06-05 2014-12-15 한국전자통신연구원 Apparatus and method for providing graphic editors
TWI510813B (en) * 2013-06-18 2015-12-01 Zhangjiagang Kangde Xin Optronics Material Co Ltd A liquid crystal parallax barrier device that displays three-dimensional images in both directions
CN104238185B (en) * 2013-06-19 2017-04-12 扬升照明股份有限公司 Light source module, display device and light source module drive method
CN103309639A (en) * 2013-06-21 2013-09-18 广东威创视讯科技股份有限公司 Method and device based on split screen display of three-dimensional scene
US10003789B2 (en) 2013-06-24 2018-06-19 The Regents Of The University Of California Practical two-frame 3D+2D TV
CN103365657B (en) * 2013-06-28 2019-03-15 北京智谷睿拓技术服务有限公司 Display control method, device and the display equipment including the device
TWI495904B (en) * 2013-07-12 2015-08-11 Vision Technology Co Ltd C Field sequential color lcd and method for generating 3d images by matching a software optical grating
US9418469B1 (en) 2013-07-19 2016-08-16 Outward, Inc. Generating video content
JP2015025968A (en) * 2013-07-26 2015-02-05 ソニー株式会社 Presentation medium and display device
US9678929B2 (en) * 2013-08-01 2017-06-13 Equldo Limited Stereoscopic online web content creation and rendering
TWI489148B (en) * 2013-08-23 2015-06-21 Au Optronics Corp Stereoscopic display and the driving method
TWI505243B (en) * 2013-09-10 2015-10-21 Zhangjiagang Kangde Xin Optronics Material Co Ltd A device that can display 2D and 3D images at the same time
US10592064B2 (en) * 2013-09-17 2020-03-17 Amazon Technologies, Inc. Approaches for three-dimensional object display used in content navigation
US10067634B2 (en) 2013-09-17 2018-09-04 Amazon Technologies, Inc. Approaches for three-dimensional object display
US9392355B1 (en) * 2013-09-19 2016-07-12 Voyetra Turtle Beach, Inc. Gaming headset with voice scrambling for private in-game conversations
US9591295B2 (en) * 2013-09-24 2017-03-07 Amazon Technologies, Inc. Approaches for simulating three-dimensional views
WO2015054235A1 (en) * 2013-10-07 2015-04-16 Vid Scale, Inc. User adaptive 3d video rendering and delivery
CN103508999B (en) * 2013-10-12 2015-05-13 浙江海正药业股份有限公司 Maxacalcitol synthesizing intermediate and preparation method and application thereof
US11343487B2 (en) 2013-10-31 2022-05-24 David Woods Trackable glasses system for perspective views of a display
US10116914B2 (en) * 2013-10-31 2018-10-30 3Di Llc Stereoscopic display
US10652525B2 (en) 2013-10-31 2020-05-12 3Di Llc Quad view display system
US9986228B2 (en) 2016-03-24 2018-05-29 3Di Llc Trackable glasses system that provides multiple views of a shared display
US9883173B2 (en) 2013-12-25 2018-01-30 3Di Llc Stereoscopic display
JP6411862B2 (en) 2013-11-15 2018-10-24 パナソニック株式会社 File generation method and file generation apparatus
KR20150057064A (en) * 2013-11-18 2015-05-28 엘지전자 주식회사 Electronic device and control method thereof
US20150138184A1 (en) * 2013-11-20 2015-05-21 Apple Inc. Spatially interactive computing device
CN103605211B (en) * 2013-11-27 2016-04-20 南京大学 Tablet non-auxiliary stereo display device and method
TWI511112B (en) * 2013-11-27 2015-12-01 Acer Inc Image display method and display system
KR20150065056A (en) * 2013-12-04 2015-06-12 삼성디스플레이 주식회사 Image display apparatus
US9988047B2 (en) 2013-12-12 2018-06-05 Magna Electronics Inc. Vehicle control system with traffic driving control
US20150189256A1 (en) * 2013-12-16 2015-07-02 Christian Stroetmann Autostereoscopic multi-layer display and control approaches
CN103676302B (en) * 2013-12-31 2016-04-06 京东方科技集团股份有限公司 Realize array base palte, display device and method that 2D/3D display switches
US10303242B2 (en) 2014-01-06 2019-05-28 Avegant Corp. Media chair apparatus, system, and method
US10409079B2 (en) 2014-01-06 2019-09-10 Avegant Corp. Apparatus, system, and method for displaying an image using a plate
JP6467680B2 (en) * 2014-01-10 2019-02-13 パナソニックIpマネジメント株式会社 File generation method and file generation apparatus
US9785623B2 (en) * 2014-01-22 2017-10-10 Freedom Scientific, Inc. Identifying a set of related visible content elements in a markup language document
WO2015112064A1 (en) * 2014-01-23 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Multi-view display control for channel selection
US9182605B2 (en) * 2014-01-29 2015-11-10 Emine Goulanian Front-projection autostereoscopic 3D display system
US10554962B2 (en) 2014-02-07 2020-02-04 Samsung Electronics Co., Ltd. Multi-layer high transparency display for light field generation
US10565925B2 (en) 2014-02-07 2020-02-18 Samsung Electronics Co., Ltd. Full color display with intrinsic transparency
US10453371B2 (en) 2014-02-07 2019-10-22 Samsung Electronics Co., Ltd. Multi-layer display with color and contrast enhancement
US10375365B2 (en) 2014-02-07 2019-08-06 Samsung Electronics Co., Ltd. Projection system with enhanced color and contrast
CN103792672B (en) * 2014-02-14 2016-03-23 成都京东方光电科技有限公司 Stereo display assembly, liquid crystal panel and display device
CN104853008B (en) * 2014-02-17 2020-05-19 北京三星通信技术研究有限公司 Portable device and method capable of switching between two-dimensional display and three-dimensional display
KR101678389B1 (en) * 2014-02-28 2016-11-22 엔트릭스 주식회사 Method for providing media data based on cloud computing, apparatus and system
US20150253974A1 (en) 2014-03-07 2015-09-10 Sony Corporation Control of large screen display using wireless portable computer interfacing with display controller
CN103903548B (en) * 2014-03-07 2016-03-02 京东方科技集团股份有限公司 A kind of driving method of display panel and drive system
CN106572810A (en) 2014-03-24 2017-04-19 凯内蒂科尔股份有限公司 Systems, methods, and devices for removing prospective motion correction from medical imaging scans
US9373306B2 (en) * 2014-03-25 2016-06-21 Intel Coporation Direct viewer projection
KR102175813B1 (en) * 2014-04-18 2020-11-09 삼성디스플레이 주식회사 Three dimensional image display device and method of processing image
US20150334367A1 (en) * 2014-05-13 2015-11-19 Nagravision S.A. Techniques for displaying three dimensional objects
KR102204830B1 (en) * 2014-05-20 2021-01-19 한국전자통신연구원 Method and apparatus for providing three-dimensional territorial brordcasting based on non real time service
US9838756B2 (en) * 2014-05-20 2017-12-05 Electronics And Telecommunications Research Institute Method and apparatus for providing three-dimensional territorial broadcasting based on non real time service
CN104023223B (en) * 2014-05-29 2016-03-02 京东方科技集团股份有限公司 Display control method, Apparatus and system
CN104090365A (en) * 2014-06-18 2014-10-08 京东方科技集团股份有限公司 Shutter glasses, display device, display system and display method
US10613585B2 (en) * 2014-06-19 2020-04-07 Samsung Electronics Co., Ltd. Transparent display apparatus, group play system using transparent display apparatus and performance methods thereof
GB2527548A (en) * 2014-06-25 2015-12-30 Sharp Kk Variable barrier pitch correction
KR102221676B1 (en) * 2014-07-02 2021-03-02 삼성전자주식회사 Method, User terminal and Audio System for the speaker location and level control using the magnetic field
CN104155769A (en) * 2014-07-15 2014-11-19 深圳市亿思达显示科技有限公司 2D/3D co-fusion display device and advertizing device
CN104090818A (en) * 2014-07-16 2014-10-08 北京智谷睿拓技术服务有限公司 Information processing method, device and system
TWI556624B (en) * 2014-07-18 2016-11-01 友達光電股份有限公司 Image displaying method and image dispaly device
CN104252058B (en) * 2014-07-18 2017-06-20 京东方科技集团股份有限公司 Grating control method and device, grating, display panel and 3D display devices
CN106714681A (en) 2014-07-23 2017-05-24 凯内蒂科尔股份有限公司 Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
EP3175773A4 (en) * 2014-07-30 2018-10-10 Olympus Corporation Image processing device
KR102366677B1 (en) * 2014-08-02 2022-02-23 삼성전자주식회사 Apparatus and Method for User Interaction thereof
WO2016021861A1 (en) * 2014-08-02 2016-02-11 Samsung Electronics Co., Ltd. Electronic device and user interaction method thereof
CN105323654B (en) * 2014-08-05 2019-02-15 优视科技有限公司 The method and apparatus for carrying out the content-data of automatic network is presented
JP6327062B2 (en) * 2014-08-25 2018-05-23 オムロン株式会社 Display device
US9925980B2 (en) 2014-09-17 2018-03-27 Magna Electronics Inc. Vehicle collision avoidance system with enhanced pedestrian avoidance
US11205305B2 (en) 2014-09-22 2021-12-21 Samsung Electronics Company, Ltd. Presentation of three-dimensional video
US10313656B2 (en) 2014-09-22 2019-06-04 Samsung Electronics Company Ltd. Image stitching for three-dimensional video
WO2016046068A1 (en) 2014-09-25 2016-03-31 Koninklijke Philips N.V. Display device with directional control of the output, and a backlight for such a display device
FR3026589A1 (en) * 2014-09-30 2016-04-01 Orange METHOD AND DEVICE FOR ADAPTING THE DISPLAY OF A VIDEO STREAM BY A CLIENT
FR3026852B1 (en) * 2014-10-03 2016-12-02 Thales Sa SEMI-TRANSPARENT SCREEN DISPLAY SYSTEM SHARED BY TWO OBSERVERS
US10506295B2 (en) * 2014-10-09 2019-12-10 Disney Enterprises, Inc. Systems and methods for delivering secondary content to viewers
KR102266064B1 (en) * 2014-10-15 2021-06-18 삼성디스플레이 주식회사 Method of driving display panel, display panel driving apparatus and display apparatus having the display panel driving apparatus
US20160119685A1 (en) * 2014-10-21 2016-04-28 Samsung Electronics Co., Ltd. Display method and display device
CN104361622B (en) * 2014-10-31 2018-06-19 福建星网视易信息系统有限公司 A kind of interface method for drafting and device
DE102014225796A1 (en) * 2014-12-15 2016-06-16 Bayerische Motoren Werke Aktiengesellschaft Method for controlling a vehicle system
CN104461440B (en) * 2014-12-31 2018-01-02 上海天马有机发光显示技术有限公司 Rendering intent, rendering device and display device
EP3243094B1 (en) 2015-01-10 2022-03-23 LEIA Inc. Multibeam grating-based backlight and a method of electronic display operation
KR102322340B1 (en) 2015-01-10 2021-11-05 레이아 인코포레이티드 Diffraction grating-based backlighting having controlled diffractive coupling efficiency
JP6567058B2 (en) 2015-01-10 2019-08-28 レイア、インコーポレイテッドLeia Inc. 2D / 3D (2D / 3D) switchable display backlight and electronic display
EP3248058B1 (en) 2015-01-19 2020-05-06 LEIA Inc. Unidirectional grating-based backlighting employing a reflective island
KR20160089600A (en) * 2015-01-19 2016-07-28 삼성디스플레이 주식회사 Display device
US9690110B2 (en) * 2015-01-21 2017-06-27 Apple Inc. Fine-coarse autostereoscopic display
CN107209393B (en) * 2015-01-28 2022-02-08 镭亚股份有限公司 Three-dimensional (3D) electronic display
US9973725B2 (en) * 2015-02-02 2018-05-15 Continental Teves Ag & Co. Ohg Modular television system
JP6359989B2 (en) * 2015-02-24 2018-07-18 株式会社ジャパンディスプレイ Display device and display method
JP6359990B2 (en) * 2015-02-24 2018-07-18 株式会社ジャパンディスプレイ Display device and display method
TWI554788B (en) * 2015-03-04 2016-10-21 友達光電股份有限公司 Display device
KR102321364B1 (en) * 2015-03-05 2021-11-03 삼성전자주식회사 Method for synthesizing a 3d backgroud content and device thereof
KR102329107B1 (en) 2015-03-16 2021-11-18 레이아 인코포레이티드 Unidirectional grating-based backlighting employing an angularly selective reflective layer
JP6411257B2 (en) * 2015-03-19 2018-10-24 株式会社ジャパンディスプレイ Display device and control method thereof
US9823474B2 (en) 2015-04-02 2017-11-21 Avegant Corp. System, apparatus, and method for displaying an image with a wider field of view
US9995857B2 (en) 2015-04-03 2018-06-12 Avegant Corp. System, apparatus, and method for displaying an image using focal modulation
US9846309B2 (en) * 2015-04-17 2017-12-19 Dongseo University Technology Headquarters Depth-priority integral imaging display method using nonuniform dynamic mask array
CN107533255A (en) 2015-04-23 2018-01-02 镭亚股份有限公司 Backlight based on double light guide gratings and the electronic console using the backlight
US9705936B2 (en) * 2015-04-24 2017-07-11 Mersive Technologies, Inc. System and method for interactive and real-time visualization of distributed media
US10360617B2 (en) 2015-04-24 2019-07-23 Walmart Apollo, Llc Automated shopping apparatus and method in response to consumption
EP3295242B1 (en) 2015-05-09 2020-05-06 LEIA Inc. Colour-scanning grating-based backlight and electronic display using the same
CN104834104B (en) * 2015-05-25 2017-05-24 京东方科技集团股份有限公司 2D/3D switchable display panel, and display method and display device thereof
KR102329110B1 (en) 2015-05-30 2021-11-18 레이아 인코포레이티드 Vehicle monitoring system
US10904091B2 (en) 2015-06-03 2021-01-26 Avago Technologies International Sales Pte. Limited System for network-based reallocation of functions
CN104883559A (en) * 2015-06-06 2015-09-02 深圳市虚拟现实科技有限公司 Video playing method and video playing device
CN104851394B (en) * 2015-06-10 2017-11-28 京东方科技集团股份有限公司 A kind of display device and display methods
CN104849870B (en) * 2015-06-12 2018-01-09 京东方科技集团股份有限公司 Display panel and display device
US10362342B2 (en) * 2015-06-16 2019-07-23 Lg Electronics Inc. Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method
US9846310B2 (en) * 2015-06-22 2017-12-19 Innolux Corporation 3D image display device with improved depth ranges
GB2540376A (en) * 2015-07-14 2017-01-18 Sharp Kk Parallax barrier with independently controllable regions
GB2540377A (en) 2015-07-14 2017-01-18 Sharp Kk Parallax barrier with independently controllable regions
FR3038995B1 (en) * 2015-07-15 2018-05-11 F4 INTERACTIVE DEVICE WITH CUSTOMIZABLE DISPLAY
WO2017015056A1 (en) * 2015-07-17 2017-01-26 Abl Ip Holding Llc Arrangements for software configurable lighting device
US10497337B2 (en) 2015-07-17 2019-12-03 Abl Ip Holding Llc Systems and methods to provide configuration data to a software configurable lighting device
KR20180030878A (en) 2015-07-17 2018-03-26 에이비엘 아이피 홀딩, 엘엘씨 Software configurable lighting devices
US9943247B2 (en) 2015-07-28 2018-04-17 The University Of Hawai'i Systems, devices, and methods for detecting false movements for motion correction during a medical imaging scan
US10079000B2 (en) 2015-08-12 2018-09-18 Microsoft Technology Licensing, Llc Reducing display degradation
CN105100783B (en) 2015-08-19 2018-03-23 京东方科技集团股份有限公司 3D display device and 3D display method
US10186188B2 (en) * 2015-09-23 2019-01-22 Motorola Solutions, Inc. Multi-angle simultaneous view light-emitting diode display
EP3148188A1 (en) * 2015-09-24 2017-03-29 Airbus Operations GmbH Virtual windows for airborne verhicles
FR3042620B1 (en) 2015-10-16 2017-12-08 F4 INTERACTIVE WEB DEVICE WITH CUSTOMIZABLE DISPLAY
CN106254845B (en) * 2015-10-20 2017-08-25 深圳超多维光电子有限公司 A kind of method of bore hole stereoscopic display, device and electronic equipment
CN105306866A (en) * 2015-10-27 2016-02-03 青岛海信电器股份有限公司 Frame rate conversion method and device
US10462453B2 (en) * 2015-11-10 2019-10-29 Koninklijke Philips N.V. Display device and display control method
US11079931B2 (en) 2015-11-13 2021-08-03 Harman International Industries, Incorporated User interface for in-vehicle system
US20170148488A1 (en) * 2015-11-20 2017-05-25 Mediatek Inc. Video data processing system and associated method for analyzing and summarizing recorded video data
US10144419B2 (en) 2015-11-23 2018-12-04 Magna Electronics Inc. Vehicle dynamic control system for emergency handling
US10716515B2 (en) 2015-11-23 2020-07-21 Kineticor, Inc. Systems, devices, and methods for tracking and compensating for patient motion during a medical imaging scan
US9711128B2 (en) 2015-12-04 2017-07-18 Opentv, Inc. Combined audio for multiple content presentation
MX2018008789A (en) 2016-01-19 2019-03-28 Walmart Apollo Llc Consumable item ordering system.
US10373544B1 (en) 2016-01-29 2019-08-06 Leia, Inc. Transformation from tiled to composite images
NZ744813A (en) 2016-01-29 2019-10-25 Magic Leap Inc Display for three-dimensional image
WO2017156622A1 (en) * 2016-03-13 2017-09-21 Rising Sun Productions Limited Head-mounted audiovisual capture device
US10063917B2 (en) 2016-03-16 2018-08-28 Sorenson Media Inc. Fingerprint layouts for content fingerprinting
US10691880B2 (en) * 2016-03-29 2020-06-23 Microsoft Technology Licensing, Llc Ink in an electronic document
US10200428B1 (en) * 2016-03-30 2019-02-05 Amazon Technologies, Inc. Unicast routing of a media stream to subscribers
US10185787B1 (en) * 2016-04-06 2019-01-22 Bentley Systems, Incorporated Tool for accurate onsite model visualization that facilitates environment interaction
US10256277B2 (en) * 2016-04-11 2019-04-09 Abl Ip Holding Llc Luminaire utilizing a transparent organic light emitting device display
US10353534B2 (en) 2016-05-13 2019-07-16 Sap Se Overview page in multi application user interface
US10579238B2 (en) 2016-05-13 2020-03-03 Sap Se Flexible screen layout across multiple platforms
TWI626475B (en) * 2016-06-08 2018-06-11 國立交通大學 Stereoscopic display screen and stereoscopic display system
EP3472832A4 (en) 2016-06-17 2020-03-11 DTS, Inc. Distance panning using near / far-field rendering
CN105842865B (en) * 2016-06-21 2018-01-30 成都工业学院 A kind of slim grating 3D display device based on slit grating
CN106257321B (en) * 2016-06-28 2021-11-30 京东方科技集团股份有限公司 3D head-up display system and method
US20180035236A1 (en) * 2016-07-28 2018-02-01 Leonardo Basterra Audio System with Binaural Elements and Method of Use with Perspective Switching
US10235010B2 (en) 2016-07-28 2019-03-19 Canon Kabushiki Kaisha Information processing apparatus configured to generate an audio signal corresponding to a virtual viewpoint image, information processing system, information processing method, and non-transitory computer-readable storage medium
US10089063B2 (en) 2016-08-10 2018-10-02 Qualcomm Incorporated Multimedia device for processing spatialized audio based on movement
US10154253B2 (en) * 2016-08-29 2018-12-11 Disney Enterprises, Inc. Multi-view displays using images encoded with orbital angular momentum (OAM) on a pixel or image basis
WO2018044711A1 (en) * 2016-08-31 2018-03-08 Wal-Mart Stores, Inc. Systems and methods of enabling retail shopping while disabling components based on location
US10271043B2 (en) 2016-11-18 2019-04-23 Zspace, Inc. 3D user interface—360-degree visualization of 2D webpage content
US10127715B2 (en) * 2016-11-18 2018-11-13 Zspace, Inc. 3D user interface—non-native stereoscopic image conversion
US11003305B2 (en) * 2016-11-18 2021-05-11 Zspace, Inc. 3D user interface
US10621898B2 (en) * 2016-11-23 2020-04-14 Pure Depth Limited Multi-layer display system for vehicle dash or the like
GB2556910A (en) * 2016-11-25 2018-06-13 Nokia Technologies Oy Virtual reality display
US10170060B2 (en) * 2016-12-27 2019-01-01 Facebook Technologies, Llc Interlaced liquid crystal display panel and backlight used in a head mounted display
US11051061B2 (en) 2016-12-31 2021-06-29 Turner Broadcasting System, Inc. Publishing a disparate live media output stream using pre-encoded media assets
US11038932B2 (en) 2016-12-31 2021-06-15 Turner Broadcasting System, Inc. System for establishing a shared media session for one or more client devices
US11503352B2 (en) 2016-12-31 2022-11-15 Turner Broadcasting System, Inc. Dynamic scheduling and channel creation based on external data
US10856016B2 (en) 2016-12-31 2020-12-01 Turner Broadcasting System, Inc. Publishing disparate live media output streams in mixed mode based on user selection
US11134309B2 (en) 2016-12-31 2021-09-28 Turner Broadcasting System, Inc. Creation of channels using pre-encoded media assets
US10425700B2 (en) 2016-12-31 2019-09-24 Turner Broadcasting System, Inc. Dynamic scheduling and channel creation based on real-time or near-real-time content context analysis
US10965967B2 (en) 2016-12-31 2021-03-30 Turner Broadcasting System, Inc. Publishing a disparate per-client live media output stream based on dynamic insertion of targeted non-programming content and customized programming content
US10645462B2 (en) 2016-12-31 2020-05-05 Turner Broadcasting System, Inc. Dynamic channel versioning in a broadcast air chain
US10075753B2 (en) 2016-12-31 2018-09-11 Turner Broadcasting System, Inc. Dynamic scheduling and channel creation based on user selection
US10992973B2 (en) 2016-12-31 2021-04-27 Turner Broadcasting System, Inc. Publishing a plurality of disparate live media output stream manifests using live input streams and pre-encoded media assets
US11051074B2 (en) 2016-12-31 2021-06-29 Turner Broadcasting System, Inc. Publishing disparate live media output streams using live input streams
US11109086B2 (en) 2016-12-31 2021-08-31 Turner Broadcasting System, Inc. Publishing disparate live media output streams in mixed mode
US10694231B2 (en) 2016-12-31 2020-06-23 Turner Broadcasting System, Inc. Dynamic channel versioning in a broadcast air chain based on user preferences
CN106710531B (en) * 2017-01-19 2019-11-05 深圳市华星光电技术有限公司 Backlight control circuit and electronic device
US11044464B2 (en) * 2017-02-09 2021-06-22 Fyusion, Inc. Dynamic content modification of image and video based multi-view interactive digital media representations
US10650416B1 (en) * 2017-02-17 2020-05-12 Sprint Communications Company L.P. Live production interface and response testing
US10210833B2 (en) * 2017-03-31 2019-02-19 Panasonic Liquid Crystal Display Co., Ltd. Display device
US10078135B1 (en) * 2017-04-25 2018-09-18 Intel Corporation Identifying a physical distance using audio channels
JP7089583B2 (en) 2017-05-14 2022-06-22 レイア、インコーポレイテッド Multi-view backlight, display, and method with active emitter
US10375375B2 (en) 2017-05-15 2019-08-06 Lg Electronics Inc. Method of providing fixed region information or offset region information for subtitle in virtual reality system and device for controlling the same
FR3066672B1 (en) * 2017-05-19 2020-05-22 Sagemcom Broadband Sas METHOD FOR COMMUNICATING AN IMMERSIVE VIDEO
US10939169B2 (en) 2017-05-25 2021-03-02 Turner Broadcasting System, Inc. Concurrent presentation of non-programming media assets with programming media content at client device
CN116666814A (en) 2017-05-30 2023-08-29 奇跃公司 Power supply assembly with fan assembly for electronic device
WO2018231258A1 (en) * 2017-06-16 2018-12-20 Microsoft Technology Licensing, Llc Generating user interface containers
CN107146573B (en) * 2017-06-26 2020-05-01 上海天马有机发光显示技术有限公司 Display panel, display method thereof and display device
EP3422151A1 (en) * 2017-06-30 2019-01-02 Nokia Technologies Oy Methods, apparatus, systems, computer programs for enabling consumption of virtual content for mediated reality
US20190026004A1 (en) * 2017-07-18 2019-01-24 Chicago Labs, LLC Three Dimensional Icons for Computer Applications
IL271963B (en) 2017-07-28 2022-08-01 Magic Leap Inc Fan assembly for displaying an image
CN107396087B (en) * 2017-07-31 2019-03-12 京东方科技集团股份有限公司 Naked eye three-dimensional display device and its control method
US10692279B2 (en) * 2017-07-31 2020-06-23 Quantum Spatial, Inc. Systems and methods for facilitating making partial selections of multidimensional information while maintaining a multidimensional structure
US11049218B2 (en) 2017-08-11 2021-06-29 Samsung Electronics Company, Ltd. Seamless image stitching
US10515397B2 (en) * 2017-09-08 2019-12-24 Uptown Network LLC System and method for facilitating virtual gift giving
CN107707901B (en) * 2017-09-30 2019-10-25 深圳超多维科技有限公司 It is a kind of for the display methods of naked eye 3D display screen, device and equipment
CN108205411A (en) * 2017-09-30 2018-06-26 中兴通讯股份有限公司 Display changeover method and device, terminal
US10777057B1 (en) * 2017-11-30 2020-09-15 Amazon Technologies, Inc. Premises security system with audio simulating occupancy
US10212532B1 (en) 2017-12-13 2019-02-19 At&T Intellectual Property I, L.P. Immersive media with media device
EP3503579B1 (en) * 2017-12-20 2022-03-23 Nokia Technologies Oy Multi-camera device
US11132842B2 (en) * 2017-12-22 2021-09-28 Unity IPR ApS Method and system for synchronizing a plurality of augmented reality devices to a virtual reality device
JP2019154008A (en) * 2018-03-06 2019-09-12 シャープ株式会社 Stereoscopic image display device, method for displaying liquid crystal display, and program for liquid crystal display
CN108469682A (en) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 A kind of three-dimensional display apparatus and its 3 D displaying method
CN108490703B (en) * 2018-04-03 2021-10-15 京东方科技集团股份有限公司 Display system and display control method thereof
US11025892B1 (en) 2018-04-04 2021-06-01 James Andrew Aman System and method for simultaneously providing public and private images
US10523921B2 (en) * 2018-04-06 2019-12-31 Zspace, Inc. Replacing 2D images with 3D images
US10523922B2 (en) * 2018-04-06 2019-12-31 Zspace, Inc. Identifying replacement 3D images for 2D images via ranking criteria
WO2019199359A1 (en) 2018-04-08 2019-10-17 Dts, Inc. Ambisonic depth extraction
KR102406219B1 (en) * 2018-04-11 2022-06-08 알카크루즈 인코포레이티드 digital media system
US10999573B2 (en) * 2018-04-25 2021-05-04 Raxium, Inc. Partial light field display architecture
WO2019207440A1 (en) 2018-04-26 2019-10-31 株式会社半導体エネルギー研究所 Display device and electronic apparatus
EP3579584A1 (en) 2018-06-07 2019-12-11 Nokia Technologies Oy Controlling rendering of a spatial audio scene
US10600246B2 (en) * 2018-06-15 2020-03-24 Microsoft Technology Licensing, Llc Pinning virtual reality passthrough regions to real-world locations
KR102506873B1 (en) * 2018-07-18 2023-03-08 현대자동차주식회사 Vehicle cluster having a three-dimensional effect, system having the same and method providing a three-dimensional scene thereof
EP3832638A4 (en) * 2018-07-27 2022-04-27 Kyocera Corporation Display device and mobile body
US11212506B2 (en) 2018-07-31 2021-12-28 Intel Corporation Reduced rendering of six-degree of freedom video
US10762394B2 (en) 2018-07-31 2020-09-01 Intel Corporation System and method for 3D blob classification and transmission
US10893299B2 (en) 2018-07-31 2021-01-12 Intel Corporation Surface normal vector processing mechanism
US11178373B2 (en) 2018-07-31 2021-11-16 Intel Corporation Adaptive resolution of point cloud and viewpoint prediction for video streaming in computing environments
US10887574B2 (en) 2018-07-31 2021-01-05 Intel Corporation Selective packing of patches for immersive video
US10757324B2 (en) 2018-08-03 2020-08-25 Semiconductor Components Industries, Llc Transform processors for gradually switching between image transforms
US11057631B2 (en) 2018-10-10 2021-07-06 Intel Corporation Point cloud coding standard conformance definition in computing environments
US11727859B2 (en) 2018-10-25 2023-08-15 Boe Technology Group Co., Ltd. Display panel and display device
CN109192136B (en) * 2018-10-25 2020-12-22 京东方科技集团股份有限公司 Display substrate, light field display device and driving method thereof
KR102023905B1 (en) * 2018-11-09 2019-11-04 전자부품연구원 Electronic device and method for multi-channel reproduction of tiled image
US10880534B2 (en) * 2018-11-09 2020-12-29 Korea Electronics Technology Institute Electronic device and method for tiled video multi-channel playback
US10699673B2 (en) * 2018-11-19 2020-06-30 Facebook Technologies, Llc Apparatus, systems, and methods for local dimming in brightness-controlled environments
CN109598254B (en) * 2018-12-17 2019-11-26 海南大学 The space representation combined optimization method of Group-oriented
US10880606B2 (en) 2018-12-21 2020-12-29 Turner Broadcasting System, Inc. Disparate live media output stream playout and broadcast distribution
US11082734B2 (en) 2018-12-21 2021-08-03 Turner Broadcasting System, Inc. Publishing a disparate live media output stream that complies with distribution format regulations
US10873774B2 (en) 2018-12-22 2020-12-22 Turner Broadcasting System, Inc. Publishing a disparate live media output stream manifest that includes one or more media segments corresponding to key events
CN109725819B (en) * 2018-12-25 2022-12-13 浙江玖炫智能信息技术有限公司 Interface display method and device, double-screen double-system terminal and readable storage medium
US10854171B2 (en) 2018-12-31 2020-12-01 Samsung Electronics Co., Ltd. Multi-user personal display system and applications thereof
EP3687166A1 (en) * 2019-01-23 2020-07-29 Ultra-D Coöperatief U.A. Interoperable 3d image content handling
CN109686303B (en) * 2019-01-28 2021-09-17 厦门天马微电子有限公司 Organic light-emitting display panel, organic light-emitting display device and compensation method
JP7317517B2 (en) * 2019-02-12 2023-07-31 株式会社ジャパンディスプレイ Display device
US10932080B2 (en) 2019-02-14 2021-02-23 Microsoft Technology Licensing, Llc Multi-sensor object tracking for modifying audio
CN110007475A (en) * 2019-04-17 2019-07-12 万维云视(上海)数码科技有限公司 Utilize the method and apparatus of virtual depth compensation eyesight
US10504453B1 (en) 2019-04-18 2019-12-10 Apple Inc. Displays with adjustable direct-lit backlight units
US10571744B1 (en) 2019-04-18 2020-02-25 Apple Inc. Displays with adjustable direct-lit backlight units and power consumption compensation
US10964275B2 (en) 2019-04-18 2021-03-30 Apple Inc. Displays with adjustable direct-lit backlight units and adaptive processing
US20220068185A1 (en) * 2019-04-29 2022-03-03 Hewlett-Packard Development Company, L.P. Wireless configuration of display attribute
CN110262051B (en) * 2019-07-26 2023-12-29 成都工业学院 Retroreflective stereoscopic display device based on directional light source
EP3779612A1 (en) * 2019-08-16 2021-02-17 The Swatch Group Research and Development Ltd Method for broadcasting a message to the wearer of a watch
CN112394845B (en) * 2019-08-19 2024-03-01 北京小米移动软件有限公司 Distance sensor module, display device, electronic equipment and distance detection method
US11335095B1 (en) * 2019-08-27 2022-05-17 Gopro, Inc. Systems and methods for characterizing visual content
EP4025953A4 (en) * 2019-09-03 2023-10-04 Light Field Lab, Inc. Light field display system for gaming environments
CN111415629B (en) * 2020-04-28 2022-02-22 Tcl华星光电技术有限公司 Display device driving method and display device
US11750795B2 (en) 2020-05-12 2023-09-05 Apple Inc. Displays with viewer tracking
US11936844B1 (en) 2020-08-11 2024-03-19 Apple Inc. Pre-processing in a display pipeline
CN112505942B (en) * 2021-02-03 2021-04-20 成都工业学院 Multi-resolution stereoscopic display device based on rear projection light source
CN113992885B (en) * 2021-09-22 2023-03-21 联想(北京)有限公司 Data synchronization method and device
NL2030325B1 (en) * 2021-12-28 2023-07-03 Dimenco Holding B V Scaling of three-dimensional content for an autostereoscopic display device
KR20230112485A (en) * 2022-01-20 2023-07-27 엘지전자 주식회사 Display device and operating method thereof
CN114936002A (en) * 2022-06-10 2022-08-23 斑马网络技术有限公司 Interface display method and device and vehicle

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829365A (en) * 1986-03-07 1989-05-09 Dimension Technologies, Inc. Autostereoscopic display with illuminating lines, light valve and mask
US5615046A (en) * 1995-01-23 1997-03-25 Cyber Scientific Inc. Stereoscopic viewing system
US5855425A (en) * 1996-07-19 1999-01-05 Sanyo Electric Co., Ltd. Stereoscopic display
US5945965A (en) * 1995-06-29 1999-08-31 Canon Kabushiki Kaisha Stereoscopic image display method
US5959597A (en) * 1995-09-28 1999-09-28 Sony Corporation Image/audio reproducing system
US5969850A (en) * 1996-09-27 1999-10-19 Sharp Kabushiki Kaisha Spatial light modulator, directional display and directional light source
US5990975A (en) * 1996-11-22 1999-11-23 Acer Peripherals, Inc. Dual screen displaying device
US6023277A (en) * 1996-07-03 2000-02-08 Canon Kabushiki Kaisha Display control apparatus and method
US6049424A (en) * 1995-11-15 2000-04-11 Sanyo Electric Co., Ltd. Three dimensional display device
US6094216A (en) * 1995-05-22 2000-07-25 Canon Kabushiki Kaisha Stereoscopic image display method, and stereoscopic image display apparatus using the method
US6144375A (en) * 1998-08-14 2000-11-07 Praja Inc. Multi-perspective viewer for content-based interactivity
US6188442B1 (en) * 1997-08-01 2001-02-13 International Business Machines Corporation Multiviewer display system for television monitors
US6285368B1 (en) * 1997-02-10 2001-09-04 Canon Kabushiki Kaisha Image display system and image display apparatus and information processing apparatus in the system
US20020167862A1 (en) * 2001-04-03 2002-11-14 Carlo Tomasi Method and apparatus for approximating a source position of a sound-causing event for determining an input used in operating an electronic device
US20020171666A1 (en) * 1999-02-19 2002-11-21 Takaaki Endo Image processing apparatus for interpolating and generating images from an arbitrary view point
US20030012425A1 (en) * 1998-11-12 2003-01-16 Canon Kabushiki Kaisha Viewpoint position detection apparatus and method, and stereoscopic image display system
US20030103165A1 (en) * 2000-05-19 2003-06-05 Werner Bullinger System for operating a consumer electronics appaliance
US20030137506A1 (en) * 2001-11-30 2003-07-24 Daniel Efran Image-based rendering for 3D viewing
US20030154261A1 (en) * 1994-10-17 2003-08-14 The Regents Of The University Of California, A Corporation Of The State Of California Distributed hypermedia method and system for automatically invoking external application providing interaction and display of embedded objects within a hypermedia document
US20030223499A1 (en) * 2002-04-09 2003-12-04 Nicholas Routhier Process and system for encoding and playback of stereoscopic video sequences
US20040027452A1 (en) * 2002-08-07 2004-02-12 Yun Kug Jin Method and apparatus for multiplexing multi-view three-dimensional moving picture
US6697687B1 (en) * 1998-11-09 2004-02-24 Hitachi, Ltd. Image display apparatus having audio output control means in accordance with image signal type
US20040036763A1 (en) * 1994-11-14 2004-02-26 Swift David C. Intelligent method and system for producing and displaying stereoscopically-multiplexed images of three-dimensional objects for use in realistic stereoscopic viewing thereof in interactive virtual reality display environments
US20040041747A1 (en) * 2002-08-27 2004-03-04 Nec Corporation 3D image/2D image switching display apparatus and portable terminal device
US6710920B1 (en) * 1998-03-27 2004-03-23 Sanyo Electric Co., Ltd Stereoscopic display
US20040109093A1 (en) * 2002-12-05 2004-06-10 Small-Stryker Aaron Tug Method and apparatus for simultaneous television video presentation and separate viewing of different broadcasts
US20040141237A1 (en) * 1995-06-07 2004-07-22 Wohlstadter Jacob N. Three dimensional imaging system
US20040164292A1 (en) * 2003-02-21 2004-08-26 Yeh-Jiun Tung Transflective display having an OLED backlight
US20040239231A1 (en) * 2002-10-30 2004-12-02 Keisuke Miyagawa Display device and electronic equipment
US20040252187A1 (en) * 2001-09-10 2004-12-16 Alden Ray M. Processes and apparatuses for efficient multiple program and 3D display
US20050073472A1 (en) * 2003-07-26 2005-04-07 Samsung Electronics Co., Ltd. Method of removing Moire pattern in 3D image display apparatus using complete parallax
US20050128353A1 (en) * 2003-12-16 2005-06-16 Young Bruce A. System and method for using second remote control device for sub-picture control in television receiver
US20050237487A1 (en) * 2004-04-23 2005-10-27 Chang Nelson L A Color wheel assembly for stereoscopic imaging
US20060050785A1 (en) * 2004-09-09 2006-03-09 Nucore Technology Inc. Inserting a high resolution still image into a lower resolution video stream
US7030903B2 (en) * 1997-02-20 2006-04-18 Canon Kabushiki Kaisha Image display system, information processing apparatus, and method of controlling the same
US7038698B1 (en) * 1996-02-08 2006-05-02 Palm Charles S 3D stereo browser for the internet
US20060109242A1 (en) * 2004-11-19 2006-05-25 Simpkins Daniel S User interface for impaired users
US20060139490A1 (en) * 2004-12-15 2006-06-29 Fekkes Wilhelmus F Synchronizing audio with delayed video
US20060139448A1 (en) * 2004-12-29 2006-06-29 Samsung Electronics Co., Ltd. 3D displays with flexible switching capability of 2D/3D viewing modes
US7123213B2 (en) * 1995-10-05 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Three dimensional display unit and display method
US20060244918A1 (en) * 2005-04-27 2006-11-02 Actuality Systems, Inc. Minimized-thickness angular scanner of electromagnetic radiation
US20060256302A1 (en) * 2005-05-13 2006-11-16 Microsoft Corporation Three-dimensional (3D) image projection
US20060256136A1 (en) * 2001-10-01 2006-11-16 Adobe Systems Incorporated, A Delaware Corporation Compositing two-dimensional and three-dimensional image layers
US20060271791A1 (en) * 2005-05-27 2006-11-30 Sbc Knowledge Ventures, L.P. Method and system for biometric based access control of media content presentation devices
US20070002041A1 (en) * 2005-07-02 2007-01-04 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding video data to implement local three-dimensional video
US20070008620A1 (en) * 2005-07-11 2007-01-11 Samsung Electronics Co., Ltd. Switchable autostereoscopic display
US20070008406A1 (en) * 2005-07-08 2007-01-11 Samsung Electronics Co., Ltd. High resolution 2D-3D switchable autostereoscopic display apparatus
US20070052807A1 (en) * 2005-09-07 2007-03-08 Fuji Xerox Co., Ltd. System and method for user monitoring interface of 3-D video streams from multiple cameras
US7190518B1 (en) * 1996-01-22 2007-03-13 3Ality, Inc. Systems for and methods of three dimensional viewing
US20070085814A1 (en) * 2003-09-20 2007-04-19 Koninklijke Philips Electronics N.V. Image display device
US20070096125A1 (en) * 2005-06-24 2007-05-03 Uwe Vogel Illumination device
US20070097103A1 (en) * 2003-09-11 2007-05-03 Shoji Yoshioka Portable display device
US20070139371A1 (en) * 2005-04-04 2007-06-21 Harsham Bret A Control system and method for differentiating multiple users utilizing multi-view display devices
US20070147827A1 (en) * 2005-12-28 2007-06-28 Arnold Sheynman Methods and apparatus for wireless stereo video streaming
US20070146267A1 (en) * 2005-12-22 2007-06-28 Lg.Philips Lcd Co., Ltd. Display device and method of driving the same
US20070153916A1 (en) * 2005-12-30 2007-07-05 Sharp Laboratories Of America, Inc. Wireless video transmission system
US20070162392A1 (en) * 2006-01-12 2007-07-12 Microsoft Corporation Management of Streaming Content
US20070258140A1 (en) * 2006-05-04 2007-11-08 Samsung Electronics Co., Ltd. Multiview autostereoscopic display
US20070270218A1 (en) * 2006-05-08 2007-11-22 Nintendo Co., Ltd. Storage medium having game program stored thereon and game apparatus
US20070296874A1 (en) * 2004-10-20 2007-12-27 Fujitsu Ten Limited Display Device,Method of Adjusting the Image Quality of the Display Device, Device for Adjusting the Image Quality and Device for Adjusting the Contrast
US20080025390A1 (en) * 2006-07-25 2008-01-31 Fang Shi Adaptive video frame interpolation
US20080037120A1 (en) * 2006-08-08 2008-02-14 Samsung Electronics Co., Ltd High resolution 2d/3d switchable display apparatus
US20080043644A1 (en) * 2006-08-18 2008-02-21 Microsoft Corporation Techniques to perform rate matching for multimedia conference calls
US20080068329A1 (en) * 2006-09-15 2008-03-20 Samsung Electronics Co., Ltd. Multi-view autostereoscopic display with improved resolution
US7359105B2 (en) * 2006-02-07 2008-04-15 Sharp Kabushiki Kaisha Spatial light modulator and a display device
US20080126557A1 (en) * 2006-09-08 2008-05-29 Tetsuro Motoyama System, method, and computer program product using an SNMP implementation to obtain vendor information from remote devices
US20080133122A1 (en) * 2006-03-29 2008-06-05 Sanyo Electric Co., Ltd. Multiple visual display device and vehicle-mounted navigation system
US20080150853A1 (en) * 2006-12-22 2008-06-26 Hong Kong Applied Science and Technology Research Institute Company Limited Backlight device and liquid crystal display incorporating the backlight device
US20080168129A1 (en) * 2007-01-08 2008-07-10 Jeffrey Robbin Pairing a Media Server and a Media Client
US20080165176A1 (en) * 2006-09-28 2008-07-10 Charles Jens Archer Method of Video Display and Multiplayer Gaming
US20080184301A1 (en) * 1999-10-29 2008-07-31 Boylan Peter C Interactive television system with programming-related links
US20080192112A1 (en) * 2005-03-18 2008-08-14 Ntt Data Sanyo System Corporation Stereoscopic Image Display Apparatus, Stereoscopic Image Displaying Method And Computer Program Product
US20080191964A1 (en) * 2005-04-22 2008-08-14 Koninklijke Philips Electronics, N.V. Auto-Stereoscopic Display With Mixed Mode For Concurrent Display of Two- and Three-Dimensional Images
US20080246757A1 (en) * 2005-04-25 2008-10-09 Masahiro Ito 3D Image Generation and Display System
US7440193B2 (en) * 2004-04-30 2008-10-21 Gunasekaran R Alfred Wide-angle variable focal length lens system
US20080259233A1 (en) * 2005-12-20 2008-10-23 Koninklijke Philips Electronics, N.V. Autostereoscopic Display Device
US20080273242A1 (en) * 2003-09-30 2008-11-06 Graham John Woodgate Directional Display Apparatus
US20080284844A1 (en) * 2003-02-05 2008-11-20 Graham John Woodgate Switchable Lens
US20080303832A1 (en) * 2007-06-11 2008-12-11 Samsung Electronics Co., Ltd. Method of generating two-dimensional/three-dimensional convertible stereoscopic image bitstream and method and apparatus for displaying the same
US20090002178A1 (en) * 2007-06-29 2009-01-01 Microsoft Corporation Dynamic mood sensing
US20090010264A1 (en) * 2006-03-21 2009-01-08 Huawei Technologies Co., Ltd. Method and System for Ensuring QoS and SLA Server
US20090051759A1 (en) * 2005-05-27 2009-02-26 Adkins Sean M Equipment and methods for the synchronization of stereoscopic projection displays
US20090052164A1 (en) * 2007-08-24 2009-02-26 Masako Kashiwagi Directional backlight, display apparatus, and stereoscopic display apparatus
US20090058845A1 (en) * 2004-10-20 2009-03-05 Yasuhiro Fukuda Display device
US7511774B2 (en) * 2005-11-30 2009-03-31 Samsung Mobile Display Co., Ltd. Three-dimensional display device
US20090102915A1 (en) * 2005-04-25 2009-04-23 Svyatoslav Ivanovich Arsenich Stereoprojection system
US20090115800A1 (en) * 2005-01-18 2009-05-07 Koninklijke Philips Electronics, N.V. Multi-view display device
US20090115783A1 (en) * 2007-11-02 2009-05-07 Dimension Technologies, Inc. 3d optical illusions from off-axis displays
US20100238367A1 (en) * 2007-10-01 2010-09-23 David James Montgomery Light output arrangement and display
US7885079B2 (en) * 2006-08-18 2011-02-08 Industrial Technology Research Institute Flexible electronic assembly
US20110063289A1 (en) * 2008-05-08 2011-03-17 Seereal Technologies S.A. Device for displaying stereoscopic images
US20110090413A1 (en) * 2006-08-18 2011-04-21 Industrial Technology Research Institute 3-dimensional image display
US20110109964A1 (en) * 2009-11-06 2011-05-12 Hwi Kim Liquid elastic membrane prism and 3 dimension display device having the same
US20110157336A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Display with elastic light manipulator
US7997783B2 (en) * 2007-08-03 2011-08-16 Samsung Electronics Co., Ltd. Front light unit with prisms structure and display apparatus having the same
US20110199469A1 (en) * 2010-02-15 2011-08-18 Gallagher Andrew C Detection and display of stereo images
US8368745B2 (en) * 2008-09-19 2013-02-05 Samsung Electronics Co., Ltd. Apparatus and method to concurrently display two and three dimensional images

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109649A (en) 1980-02-05 1981-08-31 Matsushita Electric Ind Co Ltd Ultrasonic diagnosing device
JPH05122733A (en) * 1991-10-28 1993-05-18 Nippon Hoso Kyokai <Nhk> Three-dimensional picture display device
US5493427A (en) * 1993-05-25 1996-02-20 Sharp Kabushiki Kaisha Three-dimensional display unit with a variable lens
JPH10232626A (en) * 1997-02-20 1998-09-02 Canon Inc Stereoscopic image display device
US6590605B1 (en) 1998-10-14 2003-07-08 Dimension Technologies, Inc. Autostereoscopic display
US6533420B1 (en) 1999-01-22 2003-03-18 Dimension Technologies, Inc. Apparatus and method for generating and projecting autostereoscopic images
US6591306B1 (en) * 1999-04-01 2003-07-08 Nec Corporation IP network access for portable devices
US8271336B2 (en) 1999-11-22 2012-09-18 Accenture Global Services Gmbh Increased visibility during order management in a network-based supply chain environment
US6976090B2 (en) * 2000-04-20 2005-12-13 Actona Technologies Ltd. Differentiated content and application delivery via internet
US7389214B1 (en) 2000-05-01 2008-06-17 Accenture, Llp Category analysis in a market management
AU2001266862A1 (en) * 2000-06-12 2001-12-24 Vrex, Inc. Electronic stereoscopic media delivery system
DE60124746T2 (en) * 2000-09-22 2007-09-13 Koninklijke Philips Electronics N.V. VIDEO CODING WITH HYBRID TEMPORAL AND SNR-RELATED FEED RANULAR SCALABILITY
US6856581B1 (en) 2000-10-31 2005-02-15 International Business Machines Corporation Batteryless, oscillatorless, binary time cell usable as an horological device with associated programming methods and devices
WO2002037471A2 (en) 2000-11-03 2002-05-10 Zoesis, Inc. Interactive character system
DE10103922A1 (en) 2001-01-30 2002-08-01 Physoptics Opto Electronic Gmb Interactive data viewing and operating system
US20020194604A1 (en) 2001-06-19 2002-12-19 Sanchez Elizabeth C. Interactive television virtual shopping cart
JP2003322824A (en) * 2002-02-26 2003-11-14 Namco Ltd Stereoscopic video display device and electronic apparatus
JPWO2003092303A1 (en) * 2002-04-25 2005-09-08 シャープ株式会社 Multimedia information generating apparatus and multimedia information reproducing apparatus
JP3738843B2 (en) 2002-06-11 2006-01-25 ソニー株式会社 Image detection apparatus, image detection method, and image detection program
US20050259147A1 (en) * 2002-07-16 2005-11-24 Nam Jeho Apparatus and method for adapting 2d and 3d stereoscopic video signal
JP2004072202A (en) 2002-08-01 2004-03-04 Ktfreetel Co Ltd Separate billing method of communication utility charge and apparatus therefor
US20080008202A1 (en) 2002-10-31 2008-01-10 Terrell William C Router with routing processors and methods for virtualization
US7769668B2 (en) * 2002-12-09 2010-08-03 Sam Balabon System and method for facilitating trading of financial instruments
US8799366B2 (en) 2002-12-11 2014-08-05 Broadcom Corporation Migration of stored media through a media exchange network
US8270810B2 (en) 2002-12-11 2012-09-18 Broadcom Corporation Method and system for advertisement insertion and playback for STB with PVR functionality
CA2457602A1 (en) 2003-02-19 2004-08-19 Impatica Inc. Method of synchronizing streams of real time data
EP1628491A4 (en) * 2003-05-28 2011-10-26 Sanyo Electric Co 3-dimensional video display device, text data processing device, program, and storage medium
US8438601B2 (en) 2003-07-02 2013-05-07 Rovi Solutions Corporation Resource management for a networked personal video recording system
US7557876B2 (en) * 2003-07-25 2009-07-07 Nitto Denko Corporation Anisotropic fluorescent thin crystal film and backlight system and liquid crystal display incorporating the same
GB0326005D0 (en) 2003-11-07 2003-12-10 Koninkl Philips Electronics Nv Waveguide for autostereoscopic display
US7488072B2 (en) 2003-12-04 2009-02-10 New York University Eye tracked foveal display by controlled illumination
US8154686B2 (en) 2004-01-20 2012-04-10 Sharp Kabushiki Kaisha Directional backlight, a multiple view display and a multi-direction display
US7091471B2 (en) * 2004-03-15 2006-08-15 Agilent Technologies, Inc. Using eye detection for providing control and power management of electronic devices
US20060087556A1 (en) * 2004-10-21 2006-04-27 Kazunari Era Stereoscopic image display device
JP2008522226A (en) 2004-11-30 2008-06-26 アグーラ テクノロジーズ インコーポレイテッド Application and fabrication technology of large-scale wire grid polarizer
KR100786862B1 (en) 2004-11-30 2007-12-20 삼성에스디아이 주식회사 Barrier device, three dimensional image display using the same and method thereof
WO2006061801A1 (en) 2004-12-10 2006-06-15 Koninklijke Philips Electronics, N.V. Wireless video streaming using single layer coding and prioritized streaming
JP4600317B2 (en) 2005-03-31 2010-12-15 カシオ計算機株式会社 Illumination device that emits at least two illumination lights having directivity and display device using the same
KR100732961B1 (en) 2005-04-01 2007-06-27 경희대학교 산학협력단 Multiview scalable image encoding, decoding method and its apparatus
EP3522529B1 (en) * 2005-04-29 2021-01-27 Koninklijke Philips N.V. A stereoscopic display apparatus
KR100661241B1 (en) * 2005-05-16 2006-12-22 엘지전자 주식회사 Fabrication method of optical sheet
GB2426351A (en) * 2005-05-19 2006-11-22 Sharp Kk A dual view display
KR100813961B1 (en) * 2005-06-14 2008-03-14 삼성전자주식회사 Method and apparatus for transmitting and receiving of video, and transport stream structure thereof
JP5091857B2 (en) 2005-06-30 2012-12-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System control method
KR100647517B1 (en) 2005-08-26 2006-11-23 (주)마스터이미지 Cell type parallax-barrier and stereoscopic image display apparatus using the same
US8157651B2 (en) * 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
JP5112326B2 (en) 2005-11-02 2013-01-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical system for 3D display
US20070110035A1 (en) 2005-11-14 2007-05-17 Broadcom Corporation, A California Corporation Network nodes cooperatively routing traffic flow amongst wired and wireless networks
JP5121136B2 (en) * 2005-11-28 2013-01-16 株式会社ジャパンディスプレイウェスト Image display device, electronic device, portable device, and image display method
KR100739067B1 (en) 2005-11-30 2007-07-12 삼성에스디아이 주식회사 Three-dimensional display device
US8493440B2 (en) * 2005-12-20 2013-07-23 Koninklijke Philips N.V. Autostereoscopic display device
US20070153122A1 (en) 2005-12-30 2007-07-05 Ayite Nii A Apparatus and method for simultaneous multiple video channel viewing
US8233034B2 (en) 2006-02-10 2012-07-31 Reald Inc. Multi-functional active matrix liquid crystal displays
US20070225994A1 (en) 2006-03-17 2007-09-27 Moore Barrett H Method for Providing Private Civil Security Services Bundled with Second Party Products
US8310533B2 (en) 2006-03-27 2012-11-13 GE Sensing & Inspection Technologies, LP Inspection apparatus for inspecting articles
US8466954B2 (en) 2006-04-03 2013-06-18 Sony Computer Entertainment Inc. Screen sharing method and apparatus
US8044994B2 (en) * 2006-04-04 2011-10-25 Mitsubishi Electric Research Laboratories, Inc. Method and system for decoding and displaying 3D light fields
KR100893616B1 (en) 2006-04-17 2009-04-20 삼성모바일디스플레이주식회사 Electronic imaging device, 2d/3d image display device and the driving method thereof
US7844547B2 (en) 2006-08-21 2010-11-30 Carl Raymond Amos Uncle gem IV, universal automatic instant money, data and precious metal and stone transfer machine
WO2008038068A1 (en) 2006-09-25 2008-04-03 Nokia Corporation Supporting a 3d presentation
JP4669482B2 (en) * 2006-09-29 2011-04-13 セイコーエプソン株式会社 Display device, image processing method, and electronic apparatus
US20080086685A1 (en) 2006-10-05 2008-04-10 James Janky Method for delivering tailored asset information to a device
US8645176B2 (en) 2006-10-05 2014-02-04 Trimble Navigation Limited Utilizing historical data in an asset management environment
US20080086391A1 (en) 2006-10-05 2008-04-10 Kurt Maynard Impromptu asset tracking
US7640223B2 (en) 2006-11-16 2009-12-29 University Of Tennessee Research Foundation Method of organizing and presenting data in a table using stutter peak rule
US7586681B2 (en) 2006-11-29 2009-09-08 Honeywell International Inc. Directional display
TW200834151A (en) 2006-11-30 2008-08-16 Westar Display Technologies Inc Motion artifact measurement for display devices
JP4285532B2 (en) 2006-12-01 2009-06-24 ソニー株式会社 Backlight control device, backlight control method, and liquid crystal display device
US8248462B2 (en) * 2006-12-15 2012-08-21 The Board Of Trustees Of The University Of Illinois Dynamic parallax barrier autosteroscopic display system and method
JP4686795B2 (en) * 2006-12-27 2011-05-25 富士フイルム株式会社 Image generating apparatus and image reproducing apparatus
US7924456B1 (en) 2007-01-12 2011-04-12 Broadbus Technologies, Inc. Data distribution and buffering
CN101013559A (en) 2007-01-30 2007-08-08 京东方科技集团股份有限公司 LED brightness control circuit and backlight of LCD
JP4255032B2 (en) 2007-03-15 2009-04-15 富士通テン株式会社 Display device and display method
US7917853B2 (en) 2007-03-21 2011-03-29 At&T Intellectual Property I, L.P. System and method of presenting media content
US8269822B2 (en) 2007-04-03 2012-09-18 Sony Computer Entertainment America, LLC Display viewing system and methods for optimizing display view based on active tracking
US8600932B2 (en) 2007-05-07 2013-12-03 Trimble Navigation Limited Telematic asset microfluidic analysis
GB0709134D0 (en) * 2007-05-11 2007-06-20 Surman Philip Multi-user autostereoscopic Display
GB0709411D0 (en) 2007-05-16 2007-06-27 Barco Nv Methods and systems for stereoscopic imaging
TWI466093B (en) 2007-06-26 2014-12-21 Apple Inc Management techniques for video playback
US7911442B2 (en) 2007-08-27 2011-03-22 Au Optronics Corporation Dynamic color gamut of LED backlight
KR101362647B1 (en) 2007-09-07 2014-02-12 삼성전자주식회사 System and method for generating and palying three dimensional image file including two dimensional image
US7881976B2 (en) * 2007-09-27 2011-02-01 Virgin Mobile Usa, L.P. Apparatus, methods and systems for discounted referral and recommendation of electronic content
TWI354115B (en) * 2007-10-05 2011-12-11 Ind Tech Res Inst Three-dimensional display apparatus
US8416247B2 (en) * 2007-10-09 2013-04-09 Sony Computer Entertaiment America Inc. Increasing the number of advertising impressions in an interactive environment
US8031175B2 (en) 2008-04-21 2011-10-04 Panasonic Corporation Touch sensitive remote control system that detects hand size characteristics of user and adapts mapping to screen display
US8121191B1 (en) 2007-11-13 2012-02-21 Harmonic Inc. AVC to SVC transcoder
JP4956520B2 (en) 2007-11-13 2012-06-20 ミツミ電機株式会社 Backlight device and liquid crystal display device using the same
KR101439845B1 (en) 2007-11-16 2014-09-12 삼성전자주식회사 Digital image processing apparatus
JP2011504710A (en) 2007-11-21 2011-02-10 ジェスチャー テック,インコーポレイテッド Media preferences
CN101925915B (en) 2007-11-21 2016-06-22 高通股份有限公司 Equipment accesses and controls
US20090138280A1 (en) 2007-11-26 2009-05-28 The General Electric Company Multi-stepped default display protocols
JP5236938B2 (en) 2007-12-03 2013-07-17 パナソニック株式会社 Digital broadcast receiving apparatus, semiconductor integrated circuit, and digital broadcast receiving method
TWI365302B (en) * 2007-12-31 2012-06-01 Ind Tech Res Inst Stereo image display with switch function between horizontal display and vertical display
US8339333B2 (en) 2008-01-02 2012-12-25 3M Innovative Properties Company Methods of reducing perceived image crosstalk in a multiview display
WO2009098622A2 (en) 2008-02-08 2009-08-13 Koninklijke Philips Electronics N.V. Autostereoscopic display device
KR101451565B1 (en) 2008-02-13 2014-10-16 삼성전자 주식회사 Autostereoscopic display system
JP5642347B2 (en) 2008-03-07 2014-12-17 ミツミ電機株式会社 LCD backlight device
KR101488199B1 (en) * 2008-03-12 2015-01-30 삼성전자주식회사 Method and apparatus for processing and reproducing image, and computer readable medium thereof
US20090237492A1 (en) 2008-03-18 2009-09-24 Invism, Inc. Enhanced stereoscopic immersive video recording and viewing
US20090244266A1 (en) 2008-03-26 2009-10-01 Thomas Carl Brigham Enhanced Three Dimensional Television
JP4925354B2 (en) 2008-03-31 2012-04-25 富士フイルム株式会社 Image processing apparatus, image display apparatus, imaging apparatus, and image processing method
GB0806183D0 (en) 2008-04-04 2008-05-14 Picsel Res Ltd Presentation of objects in 3D displays
US20090282429A1 (en) * 2008-05-07 2009-11-12 Sony Ericsson Mobile Communications Ab Viewer tracking for displaying three dimensional views
US20090295791A1 (en) 2008-05-29 2009-12-03 Microsoft Corporation Three-dimensional environment created from video
CN101291415B (en) 2008-05-30 2010-07-21 华为终端有限公司 Method, apparatus and system for three-dimensional video communication
US20090319625A1 (en) 2008-06-20 2009-12-24 Alcatel Lucent Interactivity in a digital public signage network architecture
TWI401658B (en) 2008-07-18 2013-07-11 Hannstar Display Corp Gate line driving circuit of lcd panel
JP5127633B2 (en) 2008-08-25 2013-01-23 三菱電機株式会社 Content playback apparatus and method
US20100070987A1 (en) 2008-09-12 2010-03-18 At&T Intellectual Property I, L.P. Mining viewer responses to multimedia content
JP2010074557A (en) 2008-09-18 2010-04-02 Toshiba Corp Television receiver
CN101861735B (en) 2008-09-18 2013-08-21 松下电器产业株式会社 Image decoding device, image encoding device, image decoding method, image encoding method
KR20100033067A (en) 2008-09-19 2010-03-29 삼성전자주식회사 Image display apparatus and method for both 2d and 3d image
EP2395770A3 (en) 2008-09-30 2013-09-25 Panasonic Corporation Recording medium, playback device, integrated circuit, playback method
US20100107184A1 (en) 2008-10-23 2010-04-29 Peter Rae Shintani TV with eye detection
US8752087B2 (en) 2008-11-07 2014-06-10 At&T Intellectual Property I, L.P. System and method for dynamically constructing personalized contextual video programs
KR20110097879A (en) 2008-11-24 2011-08-31 코닌클리케 필립스 일렉트로닉스 엔.브이. Combining 3d video and auxiliary data
US8103608B2 (en) 2008-11-26 2012-01-24 Microsoft Corporation Reference model for data-driven analytics
US20100128112A1 (en) 2008-11-26 2010-05-27 Samsung Electronics Co., Ltd Immersive display system for interacting with three-dimensional content
US20100135640A1 (en) 2008-12-03 2010-06-03 Dell Products L.P. System and Method for Storing and Displaying 3-D Video Content
US8209396B1 (en) 2008-12-10 2012-06-26 Howcast Media, Inc. Video player
CN102272778B (en) 2009-01-07 2015-05-20 汤姆森特许公司 Joint depth estimation
WO2010095381A1 (en) 2009-02-20 2010-08-26 パナソニック株式会社 Recording medium, reproduction device, and integrated circuit
WO2010095440A1 (en) 2009-02-20 2010-08-26 パナソニック株式会社 Recording medium, reproduction device, and integrated circuit
US9565397B2 (en) 2009-02-26 2017-02-07 Akamai Technologies, Inc. Deterministically skewing transmission of content streams
US20100225576A1 (en) 2009-03-03 2010-09-09 Horizon Semiconductors Ltd. Three-dimensional interactive system and method
US8477175B2 (en) 2009-03-09 2013-07-02 Cisco Technology, Inc. System and method for providing three dimensional imaging in a network environment
US20100231511A1 (en) 2009-03-10 2010-09-16 David L. Henty Interactive media system with multi-directional remote control and dual mode camera
EP2409495A4 (en) 2009-03-16 2013-02-06 Lg Electronics Inc A method of displaying three-dimensional image data and an apparatus of processing three-dimensional image data
KR101427211B1 (en) * 2009-03-27 2014-08-13 한국전자통신연구원 Method and apparatus for generating and consuming multi-view image media file
JP5695819B2 (en) 2009-03-30 2015-04-08 日立マクセル株式会社 TV operation method
JP5542912B2 (en) 2009-04-09 2014-07-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Media container file management
EP2425303B1 (en) 2009-04-26 2019-01-16 NIKE Innovate C.V. Gps features and functionality in an athletic watch system
US8315405B2 (en) 2009-04-28 2012-11-20 Bose Corporation Coordinated ANR reference sound compression
US8532310B2 (en) 2010-03-30 2013-09-10 Bose Corporation Frequency-dependent ANR reference sound compression
US20100280959A1 (en) 2009-05-01 2010-11-04 Darrel Stone Real-time sourcing of service providers
CN101983400B (en) 2009-05-15 2013-07-17 株式会社东芝 Image display device
US8788676B2 (en) 2009-05-22 2014-07-22 Motorola Mobility Llc Method and system for controlling data transmission to or from a mobile device
US8704958B2 (en) 2009-06-01 2014-04-22 Lg Electronics Inc. Image display device and operation method thereof
US9237296B2 (en) 2009-06-01 2016-01-12 Lg Electronics Inc. Image display apparatus and operating method thereof
US20100309290A1 (en) 2009-06-08 2010-12-09 Stephen Brooks Myers System for capture and display of stereoscopic content
WO2010143820A2 (en) 2009-06-08 2010-12-16 엘지전자 주식회사 Device and method for providing a three-dimensional pip image
US8411746B2 (en) 2009-06-12 2013-04-02 Qualcomm Incorporated Multiview video coding over MPEG-2 systems
US20100321465A1 (en) 2009-06-19 2010-12-23 Dominique A Behrens Pa Method, System and Computer Program Product for Mobile Telepresence Interactions
CN102713738B (en) 2009-08-07 2016-01-27 瑞尔D股份有限公司 There is the stereoscopic flat panel display of continuous illumination backlight
US8976871B2 (en) 2009-09-16 2015-03-10 Qualcomm Incorporated Media extractor tracks for file format track selection
US8446462B2 (en) 2009-10-15 2013-05-21 At&T Intellectual Property I, L.P. Method and system for time-multiplexed shared display
US20110093882A1 (en) 2009-10-21 2011-04-21 Candelore Brant L Parental control through the HDMI interface
US8705624B2 (en) 2009-11-24 2014-04-22 STMicroelectronics International N. V. Parallel decoding for scalable video coding
US8335763B2 (en) 2009-12-04 2012-12-18 Microsoft Corporation Concurrently presented data subfeeds
US8462197B2 (en) 2009-12-17 2013-06-11 Motorola Mobility Llc 3D video transforming device
US20110153362A1 (en) 2009-12-17 2011-06-23 Valin David A Method and mechanism for identifying protecting, requesting, assisting and managing information
US8823782B2 (en) 2009-12-31 2014-09-02 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test
US9247286B2 (en) 2009-12-31 2016-01-26 Broadcom Corporation Frame formatting supporting mixed two and three dimensional video data communication
US8854531B2 (en) 2009-12-31 2014-10-07 Broadcom Corporation Multiple remote controllers that each simultaneously controls a different visual presentation of a 2D/3D display
US8384774B2 (en) 2010-02-15 2013-02-26 Eastman Kodak Company Glasses for viewing stereo images
KR101356248B1 (en) 2010-02-19 2014-01-29 엘지디스플레이 주식회사 Image display device
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US8964298B2 (en) 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
KR101324412B1 (en) 2010-05-06 2013-11-01 엘지디스플레이 주식회사 Stereoscopic image display and driving method thereof
JPWO2011142141A1 (en) 2010-05-13 2013-07-22 パナソニック株式会社 Display device and video viewing system
KR101255711B1 (en) 2010-07-02 2013-04-17 엘지디스플레이 주식회사 3d image display device and driving method thereof
US8605136B2 (en) 2010-08-10 2013-12-10 Sony Corporation 2D to 3D user interface content data conversion
US8363928B1 (en) 2010-12-24 2013-01-29 Trimble Navigation Ltd. General orientation positioning system
WO2012132797A1 (en) * 2011-03-31 2012-10-04 富士フイルム株式会社 Image capturing device and image capturing method
WO2013078317A1 (en) * 2011-11-21 2013-05-30 Schlumberger Technology Corporation Interface for controlling and improving drilling operations

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829365A (en) * 1986-03-07 1989-05-09 Dimension Technologies, Inc. Autostereoscopic display with illuminating lines, light valve and mask
US20030154261A1 (en) * 1994-10-17 2003-08-14 The Regents Of The University Of California, A Corporation Of The State Of California Distributed hypermedia method and system for automatically invoking external application providing interaction and display of embedded objects within a hypermedia document
US20040036763A1 (en) * 1994-11-14 2004-02-26 Swift David C. Intelligent method and system for producing and displaying stereoscopically-multiplexed images of three-dimensional objects for use in realistic stereoscopic viewing thereof in interactive virtual reality display environments
US5615046A (en) * 1995-01-23 1997-03-25 Cyber Scientific Inc. Stereoscopic viewing system
US6094216A (en) * 1995-05-22 2000-07-25 Canon Kabushiki Kaisha Stereoscopic image display method, and stereoscopic image display apparatus using the method
US20040141237A1 (en) * 1995-06-07 2004-07-22 Wohlstadter Jacob N. Three dimensional imaging system
US6909555B2 (en) * 1995-06-07 2005-06-21 Jacob N. Wohlstadter Three dimensional imaging system
US5945965A (en) * 1995-06-29 1999-08-31 Canon Kabushiki Kaisha Stereoscopic image display method
US5959597A (en) * 1995-09-28 1999-09-28 Sony Corporation Image/audio reproducing system
US7123213B2 (en) * 1995-10-05 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Three dimensional display unit and display method
US6049424A (en) * 1995-11-15 2000-04-11 Sanyo Electric Co., Ltd. Three dimensional display device
US7190518B1 (en) * 1996-01-22 2007-03-13 3Ality, Inc. Systems for and methods of three dimensional viewing
US7038698B1 (en) * 1996-02-08 2006-05-02 Palm Charles S 3D stereo browser for the internet
US6023277A (en) * 1996-07-03 2000-02-08 Canon Kabushiki Kaisha Display control apparatus and method
US5855425A (en) * 1996-07-19 1999-01-05 Sanyo Electric Co., Ltd. Stereoscopic display
US5969850A (en) * 1996-09-27 1999-10-19 Sharp Kabushiki Kaisha Spatial light modulator, directional display and directional light source
US5990975A (en) * 1996-11-22 1999-11-23 Acer Peripherals, Inc. Dual screen displaying device
US6285368B1 (en) * 1997-02-10 2001-09-04 Canon Kabushiki Kaisha Image display system and image display apparatus and information processing apparatus in the system
US7030903B2 (en) * 1997-02-20 2006-04-18 Canon Kabushiki Kaisha Image display system, information processing apparatus, and method of controlling the same
US6188442B1 (en) * 1997-08-01 2001-02-13 International Business Machines Corporation Multiviewer display system for television monitors
US6710920B1 (en) * 1998-03-27 2004-03-23 Sanyo Electric Co., Ltd Stereoscopic display
US6144375A (en) * 1998-08-14 2000-11-07 Praja Inc. Multi-perspective viewer for content-based interactivity
US6697687B1 (en) * 1998-11-09 2004-02-24 Hitachi, Ltd. Image display apparatus having audio output control means in accordance with image signal type
US20030012425A1 (en) * 1998-11-12 2003-01-16 Canon Kabushiki Kaisha Viewpoint position detection apparatus and method, and stereoscopic image display system
US20020171666A1 (en) * 1999-02-19 2002-11-21 Takaaki Endo Image processing apparatus for interpolating and generating images from an arbitrary view point
US20080184301A1 (en) * 1999-10-29 2008-07-31 Boylan Peter C Interactive television system with programming-related links
US20030103165A1 (en) * 2000-05-19 2003-06-05 Werner Bullinger System for operating a consumer electronics appaliance
US20020167862A1 (en) * 2001-04-03 2002-11-14 Carlo Tomasi Method and apparatus for approximating a source position of a sound-causing event for determining an input used in operating an electronic device
US20040252187A1 (en) * 2001-09-10 2004-12-16 Alden Ray M. Processes and apparatuses for efficient multiple program and 3D display
US20060256136A1 (en) * 2001-10-01 2006-11-16 Adobe Systems Incorporated, A Delaware Corporation Compositing two-dimensional and three-dimensional image layers
US20030137506A1 (en) * 2001-11-30 2003-07-24 Daniel Efran Image-based rendering for 3D viewing
US20030223499A1 (en) * 2002-04-09 2003-12-04 Nicholas Routhier Process and system for encoding and playback of stereoscopic video sequences
US20040027452A1 (en) * 2002-08-07 2004-02-12 Yun Kug Jin Method and apparatus for multiplexing multi-view three-dimensional moving picture
US20040041747A1 (en) * 2002-08-27 2004-03-04 Nec Corporation 3D image/2D image switching display apparatus and portable terminal device
US20040239231A1 (en) * 2002-10-30 2004-12-02 Keisuke Miyagawa Display device and electronic equipment
US20040109093A1 (en) * 2002-12-05 2004-06-10 Small-Stryker Aaron Tug Method and apparatus for simultaneous television video presentation and separate viewing of different broadcasts
US20080284844A1 (en) * 2003-02-05 2008-11-20 Graham John Woodgate Switchable Lens
US20040164292A1 (en) * 2003-02-21 2004-08-26 Yeh-Jiun Tung Transflective display having an OLED backlight
US20050073472A1 (en) * 2003-07-26 2005-04-07 Samsung Electronics Co., Ltd. Method of removing Moire pattern in 3D image display apparatus using complete parallax
US20070097103A1 (en) * 2003-09-11 2007-05-03 Shoji Yoshioka Portable display device
US20070085814A1 (en) * 2003-09-20 2007-04-19 Koninklijke Philips Electronics N.V. Image display device
US20080273242A1 (en) * 2003-09-30 2008-11-06 Graham John Woodgate Directional Display Apparatus
US20050128353A1 (en) * 2003-12-16 2005-06-16 Young Bruce A. System and method for using second remote control device for sub-picture control in television receiver
US20050237487A1 (en) * 2004-04-23 2005-10-27 Chang Nelson L A Color wheel assembly for stereoscopic imaging
US7440193B2 (en) * 2004-04-30 2008-10-21 Gunasekaran R Alfred Wide-angle variable focal length lens system
US20060050785A1 (en) * 2004-09-09 2006-03-09 Nucore Technology Inc. Inserting a high resolution still image into a lower resolution video stream
US20090058845A1 (en) * 2004-10-20 2009-03-05 Yasuhiro Fukuda Display device
US20070296874A1 (en) * 2004-10-20 2007-12-27 Fujitsu Ten Limited Display Device,Method of Adjusting the Image Quality of the Display Device, Device for Adjusting the Image Quality and Device for Adjusting the Contrast
US20060109242A1 (en) * 2004-11-19 2006-05-25 Simpkins Daniel S User interface for impaired users
US20060139490A1 (en) * 2004-12-15 2006-06-29 Fekkes Wilhelmus F Synchronizing audio with delayed video
US20060139448A1 (en) * 2004-12-29 2006-06-29 Samsung Electronics Co., Ltd. 3D displays with flexible switching capability of 2D/3D viewing modes
US20090115800A1 (en) * 2005-01-18 2009-05-07 Koninklijke Philips Electronics, N.V. Multi-view display device
US20080192112A1 (en) * 2005-03-18 2008-08-14 Ntt Data Sanyo System Corporation Stereoscopic Image Display Apparatus, Stereoscopic Image Displaying Method And Computer Program Product
US20070139371A1 (en) * 2005-04-04 2007-06-21 Harsham Bret A Control system and method for differentiating multiple users utilizing multi-view display devices
US20080191964A1 (en) * 2005-04-22 2008-08-14 Koninklijke Philips Electronics, N.V. Auto-Stereoscopic Display With Mixed Mode For Concurrent Display of Two- and Three-Dimensional Images
US20090102915A1 (en) * 2005-04-25 2009-04-23 Svyatoslav Ivanovich Arsenich Stereoprojection system
US20080246757A1 (en) * 2005-04-25 2008-10-09 Masahiro Ito 3D Image Generation and Display System
US20060244918A1 (en) * 2005-04-27 2006-11-02 Actuality Systems, Inc. Minimized-thickness angular scanner of electromagnetic radiation
US20060256302A1 (en) * 2005-05-13 2006-11-16 Microsoft Corporation Three-dimensional (3D) image projection
US20090051759A1 (en) * 2005-05-27 2009-02-26 Adkins Sean M Equipment and methods for the synchronization of stereoscopic projection displays
US20060271791A1 (en) * 2005-05-27 2006-11-30 Sbc Knowledge Ventures, L.P. Method and system for biometric based access control of media content presentation devices
US7646451B2 (en) * 2005-06-24 2010-01-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Illumination device
US20070096125A1 (en) * 2005-06-24 2007-05-03 Uwe Vogel Illumination device
US20070002041A1 (en) * 2005-07-02 2007-01-04 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding video data to implement local three-dimensional video
US20070008406A1 (en) * 2005-07-08 2007-01-11 Samsung Electronics Co., Ltd. High resolution 2D-3D switchable autostereoscopic display apparatus
US20070008620A1 (en) * 2005-07-11 2007-01-11 Samsung Electronics Co., Ltd. Switchable autostereoscopic display
US20070052807A1 (en) * 2005-09-07 2007-03-08 Fuji Xerox Co., Ltd. System and method for user monitoring interface of 3-D video streams from multiple cameras
US7511774B2 (en) * 2005-11-30 2009-03-31 Samsung Mobile Display Co., Ltd. Three-dimensional display device
US20080259233A1 (en) * 2005-12-20 2008-10-23 Koninklijke Philips Electronics, N.V. Autostereoscopic Display Device
US20070146267A1 (en) * 2005-12-22 2007-06-28 Lg.Philips Lcd Co., Ltd. Display device and method of driving the same
US20070147827A1 (en) * 2005-12-28 2007-06-28 Arnold Sheynman Methods and apparatus for wireless stereo video streaming
US20070153916A1 (en) * 2005-12-30 2007-07-05 Sharp Laboratories Of America, Inc. Wireless video transmission system
US20070162392A1 (en) * 2006-01-12 2007-07-12 Microsoft Corporation Management of Streaming Content
US7359105B2 (en) * 2006-02-07 2008-04-15 Sharp Kabushiki Kaisha Spatial light modulator and a display device
US20090010264A1 (en) * 2006-03-21 2009-01-08 Huawei Technologies Co., Ltd. Method and System for Ensuring QoS and SLA Server
US20080133122A1 (en) * 2006-03-29 2008-06-05 Sanyo Electric Co., Ltd. Multiple visual display device and vehicle-mounted navigation system
US20070258140A1 (en) * 2006-05-04 2007-11-08 Samsung Electronics Co., Ltd. Multiview autostereoscopic display
US20070270218A1 (en) * 2006-05-08 2007-11-22 Nintendo Co., Ltd. Storage medium having game program stored thereon and game apparatus
US20080025390A1 (en) * 2006-07-25 2008-01-31 Fang Shi Adaptive video frame interpolation
US20080037120A1 (en) * 2006-08-08 2008-02-14 Samsung Electronics Co., Ltd High resolution 2d/3d switchable display apparatus
US20080043644A1 (en) * 2006-08-18 2008-02-21 Microsoft Corporation Techniques to perform rate matching for multimedia conference calls
US20110090413A1 (en) * 2006-08-18 2011-04-21 Industrial Technology Research Institute 3-dimensional image display
US7885079B2 (en) * 2006-08-18 2011-02-08 Industrial Technology Research Institute Flexible electronic assembly
US20080126557A1 (en) * 2006-09-08 2008-05-29 Tetsuro Motoyama System, method, and computer program product using an SNMP implementation to obtain vendor information from remote devices
US20080068329A1 (en) * 2006-09-15 2008-03-20 Samsung Electronics Co., Ltd. Multi-view autostereoscopic display with improved resolution
US20080165176A1 (en) * 2006-09-28 2008-07-10 Charles Jens Archer Method of Video Display and Multiplayer Gaming
US20080150853A1 (en) * 2006-12-22 2008-06-26 Hong Kong Applied Science and Technology Research Institute Company Limited Backlight device and liquid crystal display incorporating the backlight device
US20080168129A1 (en) * 2007-01-08 2008-07-10 Jeffrey Robbin Pairing a Media Server and a Media Client
US20080303832A1 (en) * 2007-06-11 2008-12-11 Samsung Electronics Co., Ltd. Method of generating two-dimensional/three-dimensional convertible stereoscopic image bitstream and method and apparatus for displaying the same
US20090002178A1 (en) * 2007-06-29 2009-01-01 Microsoft Corporation Dynamic mood sensing
US7997783B2 (en) * 2007-08-03 2011-08-16 Samsung Electronics Co., Ltd. Front light unit with prisms structure and display apparatus having the same
US20090052164A1 (en) * 2007-08-24 2009-02-26 Masako Kashiwagi Directional backlight, display apparatus, and stereoscopic display apparatus
US20100238367A1 (en) * 2007-10-01 2010-09-23 David James Montgomery Light output arrangement and display
US20090115783A1 (en) * 2007-11-02 2009-05-07 Dimension Technologies, Inc. 3d optical illusions from off-axis displays
US20110063289A1 (en) * 2008-05-08 2011-03-17 Seereal Technologies S.A. Device for displaying stereoscopic images
US8368745B2 (en) * 2008-09-19 2013-02-05 Samsung Electronics Co., Ltd. Apparatus and method to concurrently display two and three dimensional images
US20110109964A1 (en) * 2009-11-06 2011-05-12 Hwi Kim Liquid elastic membrane prism and 3 dimension display device having the same
US20110157336A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Display with elastic light manipulator
US20110199469A1 (en) * 2010-02-15 2011-08-18 Gallagher Andrew C Detection and display of stereo images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yanagisawa et al. "A Focus Distance Controlled 3DTV". Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 256 (May 15, 1997) *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146897A1 (en) * 2009-08-28 2012-06-14 National Institute Of Information And Communications Technology Three-dimensional display
US8648773B2 (en) * 2009-08-28 2014-02-11 National Institute Of Information And Communications Technology Three-dimensional display
US9019263B2 (en) 2009-12-31 2015-04-28 Broadcom Corporation Coordinated driving of adaptable light manipulator, backlighting and pixel array in support of adaptable 2D and 3D displays
US9247286B2 (en) 2009-12-31 2016-01-26 Broadcom Corporation Frame formatting supporting mixed two and three dimensional video data communication
US20110164188A1 (en) * 2009-12-31 2011-07-07 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test
US8687042B2 (en) 2009-12-31 2014-04-01 Broadcom Corporation Set-top box circuitry supporting 2D and 3D content reductions to accommodate viewing environment constraints
US8767050B2 (en) 2009-12-31 2014-07-01 Broadcom Corporation Display supporting multiple simultaneous 3D views
US8823782B2 (en) 2009-12-31 2014-09-02 Broadcom Corporation Remote control with integrated position, viewer identification and optical and audio test
US8854531B2 (en) 2009-12-31 2014-10-07 Broadcom Corporation Multiple remote controllers that each simultaneously controls a different visual presentation of a 2D/3D display
US8922545B2 (en) 2009-12-31 2014-12-30 Broadcom Corporation Three-dimensional display system with adaptation based on viewing reference of viewer(s)
US8964013B2 (en) 2009-12-31 2015-02-24 Broadcom Corporation Display with elastic light manipulator
US20110157326A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Multi-path and multi-source 3d content storage, retrieval, and delivery
US8988506B2 (en) 2009-12-31 2015-03-24 Broadcom Corporation Transcoder supporting selective delivery of 2D, stereoscopic 3D, and multi-view 3D content from source video
US9013546B2 (en) 2009-12-31 2015-04-21 Broadcom Corporation Adaptable media stream servicing two and three dimensional content
US9049440B2 (en) 2009-12-31 2015-06-02 Broadcom Corporation Independent viewer tailoring of same media source content via a common 2D-3D display
US9979954B2 (en) 2009-12-31 2018-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Eyewear with time shared viewing supporting delivery of differing content to multiple viewers
US9204138B2 (en) 2009-12-31 2015-12-01 Broadcom Corporation User controlled regional display of mixed two and three dimensional content
US9654767B2 (en) 2009-12-31 2017-05-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Programming architecture supporting mixed two and three dimensional displays
US9124885B2 (en) 2009-12-31 2015-09-01 Broadcom Corporation Operating system supporting mixed 2D, stereoscopic 3D and multi-view 3D displays
US9143770B2 (en) 2009-12-31 2015-09-22 Broadcom Corporation Application programming interface supporting mixed two and three dimensional displays
US9066092B2 (en) 2009-12-31 2015-06-23 Broadcom Corporation Communication infrastructure including simultaneous video pathways for multi-viewer support
US20110164115A1 (en) * 2009-12-31 2011-07-07 Broadcom Corporation Transcoder supporting selective delivery of 2d, stereoscopic 3d, and multi-view 3d content from source video
US10072283B2 (en) 2010-09-24 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target DNA using immobilized primers
US9088790B2 (en) * 2013-09-16 2015-07-21 Samsung Electronics Co., Ltd. Display device and method of controlling the same
US20150077526A1 (en) * 2013-09-16 2015-03-19 Samsung Electronics Co., Ltd. Display device and method of controlling the same
WO2017188955A1 (en) * 2016-04-28 2017-11-02 Hewlett-Packard Development Company, L.P. Digital display devices
US20190137771A1 (en) * 2016-04-28 2019-05-09 Hewlett-Packard Development Company, L.P. Digital display devices
US10663755B2 (en) * 2016-04-28 2020-05-26 Hewlett-Packard Development Company, L.P. Digital displays devices
CN108287679A (en) * 2017-01-10 2018-07-17 中兴通讯股份有限公司 A kind of display characteristic parameter adjusting method and terminal
US10802324B2 (en) 2017-03-14 2020-10-13 Boe Technology Group Co., Ltd. Double vision display method and device

Also Published As

Publication number Publication date
US20110157471A1 (en) 2011-06-30
TW201142356A (en) 2011-12-01
US20150156473A1 (en) 2015-06-04
US8767050B2 (en) 2014-07-01
US20110157696A1 (en) 2011-06-30
US9979954B2 (en) 2018-05-22
US9066092B2 (en) 2015-06-23
US20110157168A1 (en) 2011-06-30
US20110157326A1 (en) 2011-06-30
US9013546B2 (en) 2015-04-21
US9204138B2 (en) 2015-12-01
CN102215408A (en) 2011-10-12
US20110161843A1 (en) 2011-06-30
US9654767B2 (en) 2017-05-16
EP2357630A1 (en) 2011-08-17
US20150015668A1 (en) 2015-01-15
US8922545B2 (en) 2014-12-30
EP2346021A1 (en) 2011-07-20
EP2357508A1 (en) 2011-08-17
US20110164034A1 (en) 2011-07-07
EP2357631A1 (en) 2011-08-17
US20110157169A1 (en) 2011-06-30
US8687042B2 (en) 2014-04-01
US20110157257A1 (en) 2011-06-30
CN102183841A (en) 2011-09-14
US20150264341A1 (en) 2015-09-17
TW201142357A (en) 2011-12-01
US20110157315A1 (en) 2011-06-30
TW201137399A (en) 2011-11-01
US20110164115A1 (en) 2011-07-07
CN102183841B (en) 2014-04-02
US20110157339A1 (en) 2011-06-30
US20110157309A1 (en) 2011-06-30
US9124885B2 (en) 2015-09-01
US9049440B2 (en) 2015-06-02
US8964013B2 (en) 2015-02-24
US20110157170A1 (en) 2011-06-30
US9143770B2 (en) 2015-09-22
CN102183840A (en) 2011-09-14
US20110157167A1 (en) 2011-06-30
EP2346021B1 (en) 2014-11-19
US20110169913A1 (en) 2011-07-14
US20110157330A1 (en) 2011-06-30
US9019263B2 (en) 2015-04-28
US20110157264A1 (en) 2011-06-30
HK1161754A1 (en) 2012-08-03
US20110169930A1 (en) 2011-07-14
US20110157697A1 (en) 2011-06-30
US20110164111A1 (en) 2011-07-07
US20110157336A1 (en) 2011-06-30
US20110157172A1 (en) 2011-06-30
US8988506B2 (en) 2015-03-24
US20110157327A1 (en) 2011-06-30
TWI467234B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
US20110157322A1 (en) Controlling a pixel array to support an adaptable light manipulator
EP2497274B1 (en) Autostereoscopic display device
JP5296962B2 (en) Barrier device, stereoscopic image display device and driving method thereof
KR101759585B1 (en) Methods of driving colour sequential displays
KR101115700B1 (en) display apparatus for selecting display from 2-dimension and 3-dimension image
US20090115800A1 (en) Multi-view display device
JP2007020179A (en) Stereoscopic video image display device and 3d video image-stereoscopic video image converter
US10642061B2 (en) Display panel and display apparatus
CN108375838A (en) Display panel, display panel for stereoscopic image and stereoscopic display device
KR102218777B1 (en) Autostereoscopic 3d display device
US9304321B2 (en) Three dimensional image display device and method of displaying three dimensional image
CN208257981U (en) A kind of LED naked-eye 3D display device based on sub-pixel
CN105744253A (en) Autostereoscopic 3D Display Device
KR20160062312A (en) Three dimensional image display device
US10466543B2 (en) Pixel geometries for spatially multiplexed stereo 3D displays
KR101471654B1 (en) Apparatus for 3-dimensional displaying having modified delta pixel structure
US20130038512A1 (en) Simultaneous Reproduction of a Plurality of Images by Means of a Two-Dimensional Imaging Matrix
KR102233116B1 (en) Stereopsis image display device and method of driving the same
JP2006521573A (en) Autostereoscopic 3D display
KR102271171B1 (en) Glass-free multiview autostereoscopic display device and method for image processing thereof
US20240071280A1 (en) Display Method of Display Panel and Display Control Apparatus Thereof, and Display Apparatus
KR101469225B1 (en) Apparatus and method for displaying 3-dimension image
KR20230145477A (en) Autostereoscopic P-view display screen for displaying autostereoscopic I-view images and display device comprising such screen
KR102232462B1 (en) Autostereoscopic 3d display device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001

Effective date: 20160201

AS Assignment

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001

Effective date: 20170120

AS Assignment

Owner name: BROADCOM CORPORATION, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001

Effective date: 20170119